
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Håkon Noren

Numerical integration in inverse
problems for ordinary differential
equations

With application to Hamiltonian systems with
noise in the observed data

Master’s thesis in Industrial Mathematics
Supervisor: Elena Celledoni
Co-supervisor: Sølve Eidnes
June 2022

M
as

te
r’s

 th
es

is





Håkon Noren

Numerical integration in inverse
problems for ordinary differential
equations

With application to Hamiltonian systems with noise
in the observed data

Master’s thesis in Industrial Mathematics
Supervisor: Elena Celledoni
Co-supervisor: Sølve Eidnes
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences





Preface

This thesis was written during the spring 2022 and concludes a five-year master’s
programme in Applied Physics and Mathematics at the Norwegian University of Science
and Technology (NTNU) with a specialization in the field of Industrial Mathematics.

Working with this project, I have received supervision from Elena Celledoni (NTNU)
and Sølve Eidnes (SINTEF Digital). I am grateful for the valuable input and critical
questions you have asked, Elena. In addition, it was a great learning experience get-
ting the chance to present the thesis work at the Manifolds and Geometric Integration
Colloquia. Sølve, thanks for the patience and encouragement you have shown during
our many digital meetings. Thanks also for the invitation to have a week-long stay at
SINTEF in Oslo. This was a source of inspiration and motivation. Furthermore, it
was encouraging to receive the SINTEF Master scholarship, supporting the work.

If it takes a village to raise a child, then my family is a village. Thanks for teaching
me the value of hard work, kindness and curiosity. I am truly grateful for all the
good friends I was fortunate to meet here in Trondheim and for numerous long coffee
breaks with strange conversations at Matteland. My best friend and currently also
my landlord, Ingrid, thanks for being such a good companion during the pandemic
lockdown and for all the support.

If it takes a village to raise a child, it takes a well-functioning welfare state to
educate a master student. Including a significant number of tax payers and a stable
democracy. In the coming years, it is up to me and my fellow graduates to prove that
we were worth the investment.

Trondheim, Norway Håkon Noren
June 2022

i



ii

Abstract
Inverse problems for ordinary differential equations (ODEs) aim at approximating the
vector field given a set of points that are assumed to solve the ODE. Recently, research
on using neural networks to solve inverse ODE problems on Hamiltonian form has
gained traction. However, there has been little effort to systematically explore the space
of different numerical integrators that could be used to solve this type of problems.

This thesis aims first at characterizing properties of numerical integrators that are
beneficial when solving inverse ODE problems in general and problems on Hamilto-
nian form specifically. Mono-implicit Runge–Kutta (MIRK) methods are shown to be
a class of integrators that are explicit for inverse problems. Here, we show how sym-
metric Runge–Kutta methods could be constructed by taking the mean of a MIRK
method and its adjoint. Secondly, taking advantage of the inverse explicit property, a
novel integration method called the mean inverse integrator, tailored for solving inverse
problems with noisy data, is introduced. This method is proved to be less sensitive
to noise in the data and this is verified in numerical experiments on multiple chaotic
dynamical systems.



iii

Samandrag
Dersom ein kjenner punkter av løysinga til ei ordinær differensiallikning (ODE), hand-
lar det inverse problemet om å finne ein approksimasjon av vektorfeltet. Ei forsk-
ingsretning som nyleg har vorte særs aktiv, dreier seg om å nytte nevrale nettverk til
å løyse inverse ODE problem på Hamiltonsk form. Trass dette, er det få som har gjort
systematiske undersøkingar i kva numeriske integrasjonsmetodar som kan verte nytta
i slike problem.

Denne tesa forsøker først å gi ein karakteristikk av nyttige eigenskapar ved nu-
meriske integrasjonsmetodar i løysinga av inverse ODE problem. Først er generelle
ODEar undersøkt, dernest ser vi på Hamiltonske system spesifikt. Mono-implisitte
Runge–Kutta (MIRK) metodar viser seg å vere ei klasse integrasjonsmetodar som er
eksplisitte for inverse problem. Her blir ei klasse symmetriske Runge–Kutta metodar
utleia frå den adjungerte av MIRK metodar. Vidare, gjennom å nytte metodar som
er invers eksplisitte, blir ein ny integrasjonsmetode, skreddarsydd for inverse problem
med støy, introdusert. Det er mogleg å bevise at denne inverse integrasjonsmetoden er
mindre sensitiv for støy i dataet og dette blir bekrefta i numeriske eksperiment utført
på ulike kaotiske dynamiske system.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Samandrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1
1.1 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Relation to the specialization project . . . . . . . . . . . . . . . . . . . 2

2 Geometric numerical integration 3
2.1 Introduction to numerical integration . . . . . . . . . . . . . . . . . . . 3
2.2 Conservation of first integrals . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Hamiltonian systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Symplectic integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Runge–Kutta methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Implicit integration schemes . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Discrete gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Deep learning and numerical integration 17
3.1 Neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Scientific works on ODEs and deep learning . . . . . . . . . . . . . . . 19

4 Integration methods for inverse ODE problems 23
4.1 Inverse ODE problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Inverse explicit integration methods . . . . . . . . . . . . . . . . . . . . 24
4.3 Symmetric MIRK methods . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Solving implicit equations in training . . . . . . . . . . . . . . . . . . . 33
4.5 Structure of integration in training . . . . . . . . . . . . . . . . . . . . 35
4.6 Integrators for noisy inverse problems . . . . . . . . . . . . . . . . . . . 36

5 Numerical experiments 45
5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Variance in the optimization target . . . . . . . . . . . . . . . . . . . . 49
5.3 Variance after training . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.4 Comparative testing of integrators . . . . . . . . . . . . . . . . . . . . . 60

6 Discussion 65

7 Conclusion 69

Bibliography 71

iv



Chapter 1

Introduction

The ability to derive mathematical equations from empirical observations has been
a driver of scientific progress for centuries. Equations describing the interaction of
the objects taking part in a larger system could be used to predict future states and
manipulate the system in order to control its dynamics. This thesis aims at studying
methods for approximating functional terms in equations describing the dynamics of
systems with energy preservation from a set of observations of the system. It is based
on theory and methods from three different fields of study:

• Classical mechanics builds on the discoveries of Sir Isaac Newton aiming at de-
riving a more elegant formulation for the differential equations describing the
dynamics of a mechanical system, focusing on how potential and kinetic energy
changes with time.

• Secondly, geometric integration is the study of differential equations and their
solutions, and how structures such as geometry or energy could be preserved
over time. Predicting the motion of a pendulum, for instance, it is of importance
to make sure that the length of the pendulum remains constant. Moreover, if
there is no friction or damping of the pendulum, the energy of the predictions of
the pendulum should remain constant as well.

• Finally, deep learning and artificial neural networks were studied by computer
scientists already in the 1950s. However, it is only in the last decades that these
methods have proved to have a significant ability to predict and approximate a
range of different phenomena, such as classifying hand-written digits, generating
realistic images of human faces or beating humans in chess or video games.

The dynamical systems studied in this thesis, are Hamiltonian systems which are ubiq-
uitous in classical mechanics Here, the Hamiltonian is a scalar function, which when
known, fully determines the dynamics of a mechanical system. In this thesis, we study
how neural networks could be used to approximate the Hamiltonian from data. In
particular, we investigate how numerical methods from geometric integration could be
used to discretize the ODEs in time. The contributions of the thesis is the study and
development of appropriate numerical integration methods that can be combined with
neural networks to learn the Hamiltonian from data.

1



2 Chapter 1. Introduction

1.1 Structure of the thesis
Chapter 2 and 3 introduce the theoretical background for the thesis. The former states
important results concerning numerical integration of Hamiltonian systems and the
latter introduces neural networks and includes a review of research at the intersection
of numerical integration and deep learning. The connection between mono-implicit
Runge–Kutta methods and inverse ODE problems is discussed in Chapter 4. The
chapter also includes a presentation and analysis of the mean inverse integrator, a
method that approximates the discretized flow by computing the mean of multiple
trajectories. Finally, numerical experiments in Chapter 5 puts the theory and the
methods introduced to the test. The results are discussed in Chapter 6, before the
thesis is concluded in Chapter 7.

1.2 Relation to the specialization project
The work presented in this master thesis builds on the theory studied, and code imple-
mented working on the specialization project throughout the fall 2021. This project is
described an unpublished report by Noren (2022). Here, symplectic integrators and dis-
crete gradients were used to solve inverse ODE problems on Hamiltonian form. Inverse
error analysis, and specifically modified equations were used to show that symplectic
integrators guarantee the existence of a modified Hamiltonian that is the optimization
target for the neural network in the training process. Furthermore, the report included
a novel proof verifying the discrete gradient properties of a recent algorithm used to
compute discrete gradients of neural networks. The discovery of the connection be-
tween mono-implicit Runge–Kutta methods and inverse problems, in addition to the
mean inverse integrator, is novel work for this thesis.

Much of the theory introduced in Chapter 2, is a condensed version of what ap-
peared in the report for the specialization project. Parts of Section 3.1 on neural
networks are similar to this report, as well. Finally, the definition of the Hamilto-
nian systems found in Section 5.1.3 is the same as what is found in the specialization
project.



Chapter 2

Geometric numerical integration

The following section presents how methods from geometric numerical integration could
be used for application on Hamiltonian systems. First, some key concepts of numerical
integration are introduced, before we define what a first integral is. Hamiltonian sys-
tems are then defined, together with a discussion on the symplectic property of their
flow map, before introducing symplectic integrators and two classes of Runge–Kutta
methods. Discrete gradients are another class of numerical integrators with beneficial
preservation properties and are briefly introduced in the end. This chapter follows
sections of the book Geometric Numerical Integration by Hairer et al. (2006), closely.
Furthermore, the sections except the discussion of Runge–Kutta methods and implicit
integration schemes summarize a lengthier discussion of the topics found in the report
made during the specialization project, by Noren (2022).

2.1 Introduction to numerical integration

Numerical integration is the study of methods for calculating numerical values of inte-
grals. This is particularly important when solving differential equations. The solution
of an autonomous (f is not explicitly dependent on t) ODE could be found in time t1
by

dy

dt
= f(y), y(t0) = y0 ∈ Rm

y(t1) = y0 +
∫ t1

t0
f(y(t)) dt.

(2.1)

Here y : [0, T ] → Rm, and for a given t we have f : Rm → Rm. If we can solve or
approximate the integral over the vector field f and know the initial value y0, we can
obtain an approximation of the solution to the ODE in the next time step t1. ODEs
can be solved by discretizing the time domain and approximating the integral.

3



4 Chapter 2. Geometric numerical integration

Consider the time domain ΩT = [0, T ] and let the following notation define its
discretization. Let

• N denote the number of subintervals that ΩT is partitioned into.

• h = T
N

denote the length of each subinterval.

• tn = hn denote the grid points in time, for n = 0, . . . , N

• yn ≈ y(tn) denote the numerical approximation on the grid.

Also note that in many cases, we write time derivatives as

ẏ := dy

dt
.

The exact and the approximated solution of an ODE can be related to different
flow maps.

Definition 2.1
Consider the exact solution of an ODE and a solution approximated by a numerical
integrator. Let

ϕh,f : y(tn)→ y(tn+1), (2.2)

denote the exact flow map and

Φh,f : yn → yn+1, (2.3)

denote the discrete or numerical flow map of a given numerical integrator.

From this, we can define the local error and the order of an integrator, as defined
by (Hairer et al., 2006, p. 29).

Definition 2.2
For any initial value y0 ∈ Rm let

e(h) := ϕh,f (y0)− Φh,f (y0), (2.4)

be the local error.

Thus, we can define the order of a numerical integrator by how fast the local error
decays when h tends to zero.

Definition 2.3
A one-step method has order p, if for all sufficiently regular ODEs, the local error
satisfies

ϕh,f (y0)− Φh,f (y0) = O(hp+1) as h→ 0. (2.5)



5 Chapter 2. Geometric numerical integration

2.2 Conservation of first integrals
This subsection draws on (Hairer et al., 2006, Chapter IV) and introduces first integrals;
quantities that are conserved along the trajectory of an ODE. Consider the differential
equation

ẏ = f(y), y(t) ∈ Rm. (2.6)

Definition 2.4 (First integrals)
A function I : Rm → R is called a first integral if

d

dt
I(y) = 0, ∀y(t) solving (2.6).

By the chain rule, we see that this is equivalent to
d

dt
I(y) = ∇I(y)T dy

dt
= ∇I(y)Tf(y) = 0.

Consider the class of quadratic first integrals that could be written on the form

Q(y) = yTCy C ∈ Rm×m, CT = C. (2.7)

By Theorem 2.2 in (Hairer et al., 2006, Chapter IV.2), Runge—Kutta methods
conserve Q(y) if the coefficients satisfy

biaij + bjaji = bibj.

This will later be shown to be an important property when integrating Hamiltonian
systems.

2.3 Hamiltonian systems
This section follows Hairer et al. (2006) and their introduction of Hamiltonian systems
in Chapter VI.1. Hamiltonian systems are studied in classical mechanics, which is
a continuation of the struggle of Newton to find mathematical formulations of the
dynamics of mechanical systems.

Consider in general a physical system with the time dependent generalized coordi-
nates q(t) ∈ Rd. The Lagrangian of the system, due to Joseph-Louis Lagrange, is given
by

L(q, q̇) = T (q, q̇)− U(q),
where T denotes the kinetic energy of the system, and U the potential energy. The
Hamiltonian of the system is constructed by introducing the conjugate momentum p
and the Legendre transformation on the form

pk : = ∂L

∂q̇k
, k = 1, · · · , d,

H(q, p) : = pT q̇(q, p)− L(q, q̇(q, p)).
(2.8)



6 Chapter 2. Geometric numerical integration

We require that q̇ can be expressed as a function of q, p and that this function is
continuously differentiable and invertible. We now define Hamilton’s equations by

q̇ = ∇pH(q, p).
ṗ = −∇qH(q, p).

(2.9)

Hamilton’s equation (2.9), could be simplified by introducing y = [q, p]T and the canon-
ical structure matrix

J =
[

0 Id
−Id 0

]
,

where Id ∈ Rd×d is the identity matrix. We then get Hamilton’s equations on the form

dy

dt
= J∇H(y). (2.10)

It could be shown that H(y) is a first integral by Definition 2.4, since

d

dt
H(y) = ∇HT ẏ = ∇HTJ∇H = 0.

Remark
Consider the flow map ϕh,f (y0) where f(y) = J∇H(y) for Hamiltonian systems. To
simplify notation, we will denote ϕh,H(y0) as the flow map of a Hamiltonian system,
where the subscript H denotes the Hamiltonian.

A Hamiltonian system is separable if the Hamiltonian could be written as a sum

H(q, p) = H1(q) +H2(p). (2.11)

This is indeed the case if we have kinetic and potential energy by T (q, p) = T (p) and
U(q, p) = U(q).

2.4 Symplectic integration
The previous section introduced Hamilton’s equations. In this section, we will intro-
duce the concept of symplectic transformations. This property is a defining character-
istic of Hamiltonian systems. Hence, by constructing symplectic numerical integrators,
it is possible to preserves some of the structure of Hamiltonian systems.

2.4.1 Symplectic transformations
If y is the solution of a Hamiltonian system, a transformation ψ is symplectic, if
and only if z = ψ(y) is the solution of another Hamiltonian system. This is stated
and proved in (Hairer et al., 2006, p. 187) and motivates the investigation of such
transformations when Hamiltonian systems are investigated.



7 Chapter 2. Geometric numerical integration

Definition 2.5
A linear mapping A : R2d → R2d is called symplectic if

ATJ−1A = J−1

where J−1 = −J with J =
[

0 Id
−Id 0

]
,

Which could be understood as a mapping preserving the sum of oriented areas, as
presented in (Hairer et al., 2006, Ch. VI.2). A transformation in general is symplectic
if its Jacobian matrix is a symplectic linear mapping.

Definition 2.6
A differentiable map g : U → R2d, where U ⊂ R2d, is an open set, is everywhere
symplectic if the Jacobian matrix g′(q, p) is everywhere symplectic

g′(q, p)TJ−1g′(q, p) = J−1.

Theorem 2.4 (Hairer et al., 2006, p. 184) proves that the flow of a Hamiltonian
system is symplectic and is given by

Theorem 2.7
Let the Hamiltonian H(q, p) be twice continuously differentiable on U ⊂ R2d. For each
fixed t, the flow ϕt,H is a symplectic transformation.

Proof. The proof could be found in (Hairer et al., 2006, p. 184) and follows from the
definition of the variational equation, the symmetry of the hessian ∇2H, and by the
fact that J−1JT = −I.

2.4.2 Symplectic integrators
A symplectic integrator is then given by the following definition by (Hairer et al., 2006,
p. 187).

Definition 2.8
A numerical one-step method is called symplectic, if the numerical flow

y1 = Φh,f (y0), (2.12)

is symplectic whenever the method is applied to a smooth Hamiltonian system.

Symplecticity could be studied by considering the variational equation of an ODE
(Leimkuhler and Reich, 2005, Ch. 3.4) and conservation of quadratic invariants. Con-
sider (Hairer et al., 2006, Chapter VI.4) which presents Lemma 4.1, a stepping stone to
Theorem 4.3 in the same chapter, concluding that any integrator preserving quadratic
invariants also preserve symplecticity. As mentioned in Chapter 2.2, a Runge–Kutta
method does this if

biaij + bjaji = bibj.

Hence, such methods are symplectic integrators. Another approach to characterizing
symplectic transformations and thus symplectic integrators could be found by using
the wedge product, as presented in (Leimkuhler and Reich, 2005, Ch. 3.6).



8 Chapter 2. Geometric numerical integration

2.5 Runge–Kutta methods
Following the notation of (Hairer et al., 2006, Ch. II.1.1), a Runge–Kutta method with
s stages is a one-step numerical integrator given by

ki = f
(
tn + cih, yn + h

s∑
j=1

aijkj
)
, i = 1, . . . , s,

yn+1 = yn + h
s∑
j=1

biki,

(2.13)

and the method is specified by the coefficient matrix A ∈ Rs×s and the vector b ∈ Rs

where aij = [A]ij, bi = [b]i, requiring that ci = ∑s
j=1 aij for i = 1, . . . , s. A method

could be compactly represented by a Butcher tableau which structures the coefficients
the following way:

c A
bT

A set of equations could be derived to determine the order of a given method. These
equations are derived by comparing the Taylor expansion of the exact solution y(tn+1)
and the numerical approximation given by yn+1. An elegant procedure to derive these
equations exploit the rooted tree structure appearing when doing subsequent differen-
tiation of the vector field f(y) and this approach is presented in (Hairer et al., 2006,
Ch. III.1.1).

2.5.1 Gauss collocation methods
The Gauss collocation methods could be shown to be symplectic and attain relatively
high order for few stages. These methods are thus of interest when studying Hamil-
tonian systems. Collocation methods, following (Hairer et al., 2006, Ch. II.1.2), are
derived by introducing a collocation polynomial that interpolates the solution of the
ODE and its derivative in specified collocation points {ci}si=1. This enables a continu-
ous approximation to the solution, and it is possible to show that these methods does
belong to the class of Runge–Kutta methods. As stated in (Hairer et al., 2006, Ch.
II.1.2), we have that:

Definition 2.9 (Collocation methods)
Let {ci}si=1 be distinct real numbers. The collocation polynomial u(t) of degree s inter-
polates the ODE solution by

u(tn) = yn

u̇(tn + cih) = f
(
tn + cih, u(tn + cih)

) (2.14)

such that the next integration step is found by

yn+1 := u(tn + h)



9 Chapter 2. Geometric numerical integration

As presented in (Hairer et al., 2006, Ch. II.1.2), using Lagrange interpolation in
the points {ci}si=1, the collocation polynomial could be found by

u̇(tn + τh) =
s∑
j=1

u̇(tn + ci)lj(τ),

where lj(τ) : =
∏
i 6=j

τ − ci
cj − ci

.

By integration over u̇(tn + τh) and denoting ki := u̇(tn + ci) we find

u(tn + cih) = yn + h
s∑
j=1

kj

∫ ci

0
lj(τ) dτ.

Comparing this form to the Runge–Kutta methods by Equation (2.13), it is evident
that the coefficients could be identified as

aij :=
∫ ci

0
lj(τ) dτ and bi :=

∫ 1

0
li(τ) dτ.

By specifying the Lagrange interpolation polynomial and showing how this yields coef-
ficients A and b, the remaining free variables for specifying the collocation method are
the interpolation coefficients ci. The Gauss collocation methods (Hairer et al., 2006,
Ch. II.1.3) are defined by selecting ci as the s roots of the shifted Legendre polynomial

ds

dxs

(
xs(x− 1)s

)
.

This yields an interpolation polynomial that interpolates polynomials of order 2s ex-
actly, where 2s could be denoted as the interpolation order. Theorem 1.5 in (Hairer
et al., 2006, Ch. II.1.2) proves that the integration order, by Definition 2.3, of the
collocation method coincides with the interpolation order. Hence, Gauss collocation
methods has order p = 2s.

Consider again the quadratic first integrals defined by Equation (2.7) and the proof
of Theorem 2.1 in (Hairer et al., 2006, Ch. IV.2.1). The quadratic first integral is
given by Q(y) = yTCy such that an insertion of the solution by a Gauss interpolation
polynomial yn+1 = u(tn + h) gives us

Q(u(tn + h)) = Q(u(tn)) +
∫ tn+1

tn

d

dt
Q(u(t)) dt

⇐⇒ yTn+1Cyn+1 = yTnCyn + 2
∫ tn+1

tn
u(t)TCu̇(t) dt

Since d
dt
Q(u(t)) = 2u(t)TCu̇(t) by the symmetry of C and by definition we have that

u(tn) = yn. Since u(t) by definition is a polynomial of degree s, u(t)TCu̇(t) is a
polynomial of degree 2s−1 and is integrated exactly by an s-stage Gaussian quadrature.
Since

u(tn + cih)TCu̇(tn + cih) = u(tn + cih)TCf(u(tn + cih)) = 0



10 Chapter 2. Geometric numerical integration

by the definition of a quadratic first integral, the integrand is zero and the first integral
is preserved since

yTn+1Cyn+1 − yTnCyn = 0.

Hence, Gauss collocation methods preserve quadratic invariants and are thus symplec-
tic. For s = 1, we get the implicit midpoint method of order p = 2 and the two next
methods with two and three stages are presented below.

Example 2.10 (Gauss collocation for s = 2, 3)
For s = 2 we find the following Gauss collocation method of order p = 4,

1
2 −

√
3

6
1
4

1
4 −

√
3

6
1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

whereas for s = 3 the method of order p = 6 is given by:

1
2 −

√
15

10
5
36

2
9 −

√
15

15
5
36 −

√
15

30
1
2

5
36 +

√
15

24
2
9

5
36 −

√
15

24
1
2 +

√
15

10
2
9 +

√
15

15
5
36 +

√
15

30
5
36

5
18

4
9

5
18

2.5.2 Mono-implicit Runge–Kutta methods
Certain classes of implicit Runge–Kutta methods aim at maintaining high order and
good stability properties, while at the same time ensuring that the non-linear equations
for computing the next step, are computationally less demanding to solve. The diag-
onally implicit Runge–Kutta methods (DIRK) (Wanner and Hairer, 1996, Ch. IV.6)
is an example of one such class. Mono-implicit Runge–Kutta methods are another,
which properties are discussed by Burrage et al. (1994). These methods turn out to be
explicit in inverse ODE problems and are thus of particular interest for the problems
studied in this thesis. They could be defined in the following manner:

Definition 2.11 (Mono-implicit Runge–Kutta methods)
Let b ∈ Rs be a coefficient vector for an s-stage Runge–Kutta method and D ∈ Rs×s

be a strictly lower triangular matrix. The s-stage Runge–Kutta method defined by D, b
and the coefficient vector v ∈ Rs yielding the coefficient matrix

A := D + vbT ,

is a mono-implicit Runge–Kutta (MIRK) method.

Here vbT ∈ Rs×s is the outer product of the two vectors. As seen in Burrage et al.
(1994), these methods could be re-written in a useful form



11 Chapter 2. Geometric numerical integration

Lemma 2.12
The stages ki of a MIRK method could be written as

ki = f
(
yn + vi(yn+1 − yn) + h

s∑
j=1

dijkj
)
, (2.15)

where dij := [D]ij.

Proof. Let K = [k1, . . . , ks] ∈ Rm×s be a matrix with the intermediate stages and
ai := [A]Ti = [ai1, . . . , ais]T ∈ Rs be a transposed row of the coefficient matrix A. Then,
a Runge–Kutta method could be written on the form

ki = f(yn + hKai),
yn+1 = yn + hKb.

For a MIRK method, we have that ai = di + vib and since yn+1 − yn = hKb we find
that

ki = f
(
yn + vihKb+ hKdi

)
= f

(
yn + vi(yn+1 − yn) + h

s∑
j=1

dijkj
)
.

The MIRK methods are usually represented by an extended Butcher tableau with
an extra column for the v coefficient vector and the strictly lower triangular matrix D
replaces the A matrix, yielding

c v D
bT

In Burrage et al. (1994) it is proved that the maximum order of an s-stage MIRK
method is p = s + 1 and several methods with stages s ≤ 5 are presented. Consider
two of these methods:

Example 2.13 (MIRK methods order p = 3 and p = 4)
Examples of MIRK methods with stages s = 2, 3 and order p = 3, 4 are given below, and
are found by Burrage et al. (1994). The method with two stages is found by choosing
c = 1 and the three stage method by c = 0, when considering the Butcher tableaux by
Burrage et al. (1994). Both methods are A-stable.

1 1 0 0
1
3

5
9 −2

9 0
1
4

3
4

0 0 0 0 0

1 1 0 0 0
1
2

1
2

1
8 −

1
8 0

1
6

1
6

2
3



12 Chapter 2. Geometric numerical integration

2.6 Implicit integration schemes
The Gauss collocation methods have stages that are implicitly defined, meaning that
a system of equations has to be solved for computing the stage value ki. Similarly, the
next step of a MIRK method requires solving a system for yn+1. This section discusses
how to solve such systems in both of these two cases, efficiently.

2.6.1 Equations for general implicit Runge–Kutta systems
This section follows (Sanz-Serna and Calvo, 2018, Ch. 5.5) and (Hairer et al., 2006,
Ch. VII.6). Let now a Runge–Kutta method be represented by the stage values Yi such
that ki = f(Yi), in comparison to how a Runge–Kutta method was given in Equation
(2.13). The method is thus given by

Yi = yn + h
s∑
j=1

aijf(Yj) i = 1, . . . , s,

yn+1 = yn + h
s∑
i=1

bif(Yi).
(2.16)

Without any assumptions on the coefficients A, computing Yi requires solving a system
of equations. Following (Sanz-Serna and Calvo, 2018, Ch. 5.4.1 ), we consider the
increments

Zi := Yi − yn,

enabling the rewriting of the stage computations in Equation (2.16) to

Zi = h
s∑
j=1

aij(yn + Zj) i = 1, . . . , s. (2.17)

Considering the whole system, we could write
Z1
...
Zs


︸ ︷︷ ︸

:=Z

= h(A⊗ Im)


f(yn + Z1)

...
f(yn + Zs)


︸ ︷︷ ︸

:=F (Z)

,

where we introduce the vectors Z, F (Z) ∈ Rsm such that we can write the system of
equations as

Z = h(A⊗ Im)F (Z). (2.18)

Note that ⊗ denotes the tensor product, and Im ∈ Rm×m is the identity matrix, such
that

A⊗ Im :=


a11Im . . . A1sIm

... ...
as1Im . . . assIm

 ∈ Rsm×sm. (2.19)



13 Chapter 2. Geometric numerical integration

This allows solving one system with dimension sm instead of solving s systems with
dimensionm. In general, evaluations of the vector field f is computationally expensive,
and in particular when f is given by a neural network. When the system in Equation
(2.18) is solved for Z, we still would have to do s evaluations to compute yn+1. However,
following Sanz-Serna and Calvo (2018), it could be shown that this could be avoided,
if we assume that the coefficient matrix A is invertible.

Consider first the following properties for the tensor product Van Loan (2000), that

(A⊗B)(C ⊗D) = (AC ⊗BD),
(A⊗B)−1 = (A−1 ⊗B−1),

and (A⊗B)T = (AT ⊗BT ).

The implicit system by Equation (2.18) could be rewritten as

Z = h(A⊗ Im)F (Z)
(b⊗ Im)T (A−1 ⊗ Im)Z = h(b⊗ Im)TF (Z)

(bTA−1 ⊗ Im)Z = h(b⊗ Im)TF (Z),

which means we can avoid one evaluation of the vector field as we can find

yn+1 = yn + h
s∑
i=1

bif(Yi)

= yn + h(b⊗ Im)TF (Z)
= yn + (bTA−1 ⊗ Im)Z,

using the solution Z directly. Introducing d := bTA−1 we solve the implicit step by

solve Z = h(A⊗ Im)F (Z), (2.20)

yn+1 = yn +
s∑
i=1

diZi. (2.21)

As discussed in (Hairer et al., 2006, Ch. VIII.6.1) interpolation polynomials, such
as the collocation polynomials in the case of Gauss collocation methods, could be used
to obtain a more accurate initial guess starting the iterations for solving the system
above. However, in this setting, we will use the simple initial guess by

Z0
i = hcif(yn)

where ci = ∑s
j=1 aij.

Remark
Consider the Gauss collocation methods with stages s = 2, 3 presented in Example 2.10.
In both cases the coefficient matrix A is invertible, and we find for the method with
s = 2, that

d = [−
√

3,
√

3]T ,
and for s = 3 we find

d = [53 , −
4
3 ,

5
3]T .



14 Chapter 2. Geometric numerical integration

2.6.2 Equations for mono-implicit Runge–Kutta systems
For MIRK methods, on the other hand, the stages only depend on yn, yn+1, and the
integration scheme could thus be formulated as an implicit system for yn+1 only. In
that case, the method is given by

Yi = yn + vi(yn+1 − yn) + h
s∑
i=1

dijf(Yj),

yn+1 = yn + h
s∑
i=1

bif(Yi).

Let us introduce the notation F̂ (yn, yn+1) := ∑s
i=1 bif(Yi) and the increment

zn := yn+1 − yn,

where the increment, and thus the next step is found by solving

zn = hF̂ (yn, zn + yn),
yn+1 = zn + yn.

(2.22)

For starting iterations solving this scheme, we will simply take a step with explicit
Euler such that

z0
n = hf(yn).

2.7 Discrete gradients
The discrete gradient methods are another class of numerical integrators distinct from
Runge–Kutta methods and are designed to preserve invariants of ODEs, where the
Hamiltonian of Hamiltonian systems is one example. There are several specific ex-
amples of different discrete gradient methods, consider for instance the average vector
field discrete gradient presented by McLachlan et al. (1999), or the midpoint discrete
gradient discussed by Gonzalez (1996). Below, we will in a short manner state the
main properties of the class of discrete gradient methods.

Consider the canonical Hamiltonian equation

ẏ = J∇H(y) y(0) = y0 ∈ R2d (2.23)

J ∈ R2d×2d, J =
[

0 Id
−Id 0

]
. (2.24)

In section 2.3 we showed that for such systems the Hamiltonian H : R2d → R is
a first integral, meaning that H(y(t)) = H(y(t0)) is conserved along solution curves.
Discrete gradients allow for preserving such invariants exactly. Given a first integral
H, we define a discrete gradient by:



15 Chapter 2. Geometric numerical integration

Definition 2.14
A discrete gradient ∇H : R2d × R2d → R2d is a function that satisfies

∇H(x, y)T (y − x) = H(y)−H(x),
∇H(x, x) = ∇H(x),

(2.25)

for all x, y ∈ R2d.

This could be utilized to obtain numerical integrators of a certain order, as stated
in the next theorem, which is presented and proved by Eidnes (2022).

Theorem 2.15 (Order of discrete gradients)
Let ∇H(x, y) be a discrete gradient by Definition (2.14) and continuously differentiable
in its second argument. The discrete gradient method defined by

yn+1 := yn + hJ∇H(yn, yn+1), (2.26)

is consistent. If the Jacobian ∂
∂y
∇H(x, y) of the discrete gradient is symmetric, the

integrator is of order p = 2.

It is trivial to show that such integrators preserve the invariant by considering

H(yn+1)−H(yn) = ∇H(yn, yn+1)T (yn+1 − yn)
= h∇H(yn, yn+1)TJ∇H(yn, yn+1)
= 0.

Furthermore, in Eidnes (2022), a methodology is derived for identifying the order
conditions for methods of arbitrarily high order. In the setting of this thesis, the
algorithm introduced by Matsubara et al. (2019), for computing discrete gradients
of neural networks, is of particular interest. In the specialization project, the discrete
Jacobian, as a generalization of the discrete gradient, was introduced and a novel proof
was provided of how the algorithm by Matsubara et al. (2019) allowed for computing
the discrete Jacobian of a neural network. Here, this algorithm will be used without
further introduction.



16 Chapter 2. Geometric numerical integration



Chapter 3

Deep learning and numerical
integration

This section first defines what a neural network is, followed by a brief summary of
recent research at the intersection of deep learning, numerical integration and ODEs.

3.1 Neural networks

A neural network is a parametrized function built by compositions of linear and non-
linear transformations. It could be understood as a generalization of linear regression
to the non-linear domain. As in regression, the aim is to take a finite set of observations,
learn a mapping which allows for predicting some class membership or an unknown
quantity. Where linear regression computes the model parameters by solving a least-
squares optimization problem, the high dimensionality of the parameter space of neural
networks, results in a complicated optimization problem. In general, the following have
to be defined to obtain a functioning neural network:

1. Defining the neural network architecture by choosing how many parameters θ to
include and how to structure a function (forward pass) from the parameters.

2. Defining how to compute gradients of the neural network output (or loss) with
respect to all parameters θ (backwards pass).

3. Specifying how to utilize the training data or observations to search for the
optimal parameters θ (optimization procedure).

One way to solve the first problem is by defining the forward pass of what is often
called a multilayer perceptron (Goodfellow et al., 2016, Part II).

17



18 Chapter 3. Deep learning and numerical integration

Definition 3.1
Let the neural network F : Rn0 → RnN be defined by the following recursion

ãi := f̃i(ai−1) := Wiai−1 + bi

ai := fi(ãi) := σi(ãi)

f̃i : Rni−1 → Rni , fi : Rni → Rni

Wi ∈ Rni×ni−1 , bi ∈ Rni

where a0 = x ∈ Rn0

F (x) := aN ∈ RnN ,

assuming that ni are strictly positive integers, i = 1, . . . , N , and σi is a non-linear
differentiable function applied element wise on ãi. Equivalently the neural network
could be written as

F (x) = fN ◦ f̃N ◦ fN−1 ◦ f̃N−1 ◦ · · · ◦ f1 ◦ f̃1(x).

Let matrices Wi and vectors bi, i = 1, . . . , N be denoted as the set of parameters θ.
The neural network could now be represented by Fθ(x) = F (x).

The second problem, is solved by the backpropagation algorithm (Goodfellow et al.,
2016, Chapter 6.5), a special case of automatic differentiation. Automatic differenti-
ation is a framework for breaking up complicated computational graphs into simple
elementary operations and using the chain rule to compute gradients. For implement-
ing the backpropagation of gradients, one has to define how to handle derivatives in
each layer and how to store function evaluations of the forward pass in memory. Using
the chain rule on the function compositions described in Definition 3.1 thus enables
the computation of the gradients of the neural network output, or its loss, with respect
to the various parameter vectors and matrices.

The optimization procedure requires specifying an optimization objective, or what
is commonly called a loss function. Assume that we want to use a neural network fθ
to approximate a function f : Rm → R using a set of samples SM = {xn, f(xn)}Mn=1.
A loss function could be defined by L(fθ, SM) := ∑M

n=1 ‖fθ(xn) − fn‖2, which enables
formulating the following optimization problem over the parameters θ

min
θ

M∑
n=1
‖fθ(xn)− fn‖2.

This optimization problem could be solved by using gradient descent or a similar iter-
ative optimization algorithm. In its simplest form and assuming that the parameters
are initialized by θ0, the gradient descent iteration is given by

θi+1 = θi − η∇θL(fθ, SM), (3.1)



19 Chapter 3. Deep learning and numerical integration

where η > 0 denotes the step size, often called the learning rate, and ∇θL(fθ, SMx) is
the gradient of the loss function with respect to the set of parameters θ. A slightly more
sophisticated variation of gradient descent is the algorithm called Adam, introduced
by Kingma and Ba (2014). Here, the step size of each iteration, ηi, is adaptive, and
the new gradient direction considers the gradient in step i as well as the previous step
i− 1.

On the other hand, optimization methods based on the root finding algorithm
Newton–Raphson, could be shown to have quadratic convergence under some regularity
conditions (Nocedal and Wright, 1999, Ch. 7). These methods do however require
the computation of the inverse Hessian H := (∇2

θL)−1. However, the aim of quasi-
Newton methods is to derive algorithms simplifying this calculation. The limited-
memory Broyden, Fletcher, Goldfarb and Shannon (L-BFGS) algorithm is described
by (Nocedal and Wright, 1999, Ch. 7.2) and is a scheme for iteratively updating the
inverse Hessian approximations using curvature information from earlier iterations, in
a memory efficient way.

Studying the deep learning literature, the Adam algorithm is often the default choice
when selecting an optimization procedure. However, as shown by Le et al. (2011), the
L-BFGS algorithm is in many cases superior, in particular when the domain of the
neural network Fθ is low dimensional, and the number of parameters is not too large.
In the setting of Hamiltonian neural networks studied in this thesis, the problems
are typically of low dimensionality and the number of parameters is relatively low.
Furthermore, during the implementation of the numerical experiments, we experienced
that L-BFGS had better performance than Adam. Hence, L-BFGS will be used as
optimization procedure in this setting.

3.2 Scientific works on ODEs and deep learning

Deep learning and neural networks have typically been studied and developed within
the realm of computer science, whereas differential equations is one of the major areas
studied in mathematics. The combination of deep learning and differential equations
has in the recent years generated substantial research activity. This research is oriented
in some major directions:

1. Using ODEs to describe the optimization iterations as a gradient flow.

2. Interpreting neural network layers as the discretization of an ODE.

3. Using neural networks to approximate terms of an ODE.

4. Approximating functions in energy based equations from classical mechanics.



20 Chapter 3. Deep learning and numerical integration

3.2.1 Gradient descent as continuous gradient flows
The first direction studies the continuous version of the gradient descent step in Equa-
tion (3.1), which could be rewritten by

θi+1 − θi
η

= ∇θL(fθ, SM).

This could be interpreted as an explicit Euler discretization of an ODE with step size
η. The corresponding continuous system of θ(t), where θi+1 ≈ θ(t+ η), could be found
by taking the limit such that η → 0. We get an ODE or a gradient flow by

d

dt
θ(t) = ∇θL(fθ(t), SM).

In particular, the authors of Elkabetz and Cohen (2021) argue that the theoretical
analysis of the continuous gradient flow is able to generate results that could be used
to understand the gradient descent iterations for simple neural networks better. On
the other hand, Shi et al. (2019) consider the different optimization methods obtained
when different numerical integrators are used to discretize the gradient flow.

3.2.2 ResNet layers as an ODE discretization
The residual neural network (ResNet) is a modified version of the multilayer perceptron
by Definition 3.1. Here, each layer is a parametrized perturbation of the identity map,
such that one layer is given by

ai+1 = ai + hσ
(
Wiai + bi

)
.

This could be interpreted as an explicit Euler discretization of an ODE with solution
a(t), where the step size is given by h > 0. Letting h→ 0, the continuous limit to the
ResNet is given by

ȧ(t) = σ
(
W (t)a(t) + b(t)

)
.

In this setting, Haber and Ruthotto (2017) and Weinan (2017) use tools from the
field of dynamical systems to develop strategies to stabilize the learning procedure of
deep ResNets. This could be achieved by restricting the weight matrices Wi to be
antisymmetric, or by recasting the forward propagation as a Hamiltonian system and
discretizing the arising system using symplectic integrators. Building on this, Chen
et al. (2018) suggest formulating neural network dynamics more generally by the ODE

ẏ(t) = fθ(t, y(t)),

or a neural ODE, following the terminology of the authors. Here, fθ describes the
dynamics of the system and could take different forms, as long as the activation func-
tions are continuously differentiable and Lipschitz in order to guarantee uniqueness of
the solution y(t). Chen et al. (2018) suggests formulating an adjoint ODE system in
order to find the gradients of θ, which has to be solved in reverse time. This approach
first derives gradients for solving the optimization problem, before discretization. The



21 Chapter 3. Deep learning and numerical integration

first-optimize-then-discretize approach is studied more thoroughly by Benning et al.
(2019). Here, the neural network training problem is formulated as an optimal control
problem aiming at minimizing some loss function where a neural network defines the
vector field of an ODE constraint. Furthermore, the properties of the systems obtained
when applying different Runge–Kutta methods to discretize both the ODE constraint
and the adjoint ODE, are studied. Discretizing using implicit integration schemes and
the issue of computing parameter gradients in this case, is studied by Bai et al. (2019)
and several other recent papers.

3.2.3 Approximating ODE terms using neural networks
Differential equations are widely used in a range of scientific disciplines. However, in
many cases it is challenging to identify a specific analytical formulation of the dynamics
of a complicated system. The hybrid approach obtained when merging deep learning
with the tools of traditional mathematical modelling has gained traction in the recent
years. Raissi, Perdikaris and Karniadakis introduced the concept of physics informed
neural networks Raissi et al. (2019). Here, the solution of an ODE or a partial differ-
ential equation (PDE) is replaced by a neural network uθ(x, t) with x ∈ Ω ⊂ Rn and
t ∈ [0, T ]. A PDE could thus be formulated as

d

dt
uθ +N [uθ] = 0,

where N [ · ] is a general differential operator. This equation defines a target that
could be used for training the network uθ where boundary and initial conditions also
would have to be included to ensure uniqueness of a solution. Proposing a more general
framework, Rackauckas et al. (2020) allow neural networks to represent unknown terms
in a wide range of mathematical models of dynamical systems. Implementing general
algorithms for computing the adjoint allows for compatibility with a range of different
numerical methods. A somewhat different approach was introduced by Poli et al.
(2020), which use a neural network to approximate the local error term of a numerical
one-step integration method. Considering a step with the first order explicit Euler
method over a known vector field f , this approach would be equivalent to

yn+1 = yn + hf(yn) + h2gθ(yn),

where gθ could be trained on data obtained by using a higher order integrator.

3.2.4 Approximating functions in energy based ODEs
Classical mechanics develops a theory on how the dynamics of a physical system could
be described by equations based on the kinetic and potential energy of the system.
As briefly introduced in section 2.3, the Hamiltonian equations could be numerically
integrated to fully describe the dynamics of a system. This setting is the starting point
for Hamiltonian neural networks and a series of recent scientific works within the realm
of modelling physical systems based on the Lagrangian or Hamiltonian formulation.



22 Chapter 3. Deep learning and numerical integration

A Hamiltonian system, where y = [q, p]T and q, p ∈ Rd are defined as the canonical
coordinates, is defined by

ẏ = J∇H(y).

The Hamiltonian neural network was introduced by Greydanus et al. (2019) and pro-
pose to learn the dynamics of a Hamiltonian system, as seen in Equation (2.24), by
parametrizing the Hamiltonian as a neural network by Hθ(y). It could then be trained
either on observations of both {ẏ(ti), y(ti)}ni=0 or if only y(ti) is available, approximate
the time derivative by finite differences.

In addition to preserving the Hamiltonian, the exact flow of Hamiltonian ODEs
is a symplectic transformation, which was seen in Section 2.3. Zhu et al. (2020) use
backwards error analysis to show that symplectic integrators guarantee the existence
of a modified Hamiltonian which is the learning target for the neural network. David
and Méhats (2021) build on this by deriving a correction term perturbing the modified
Hamiltonian such that it more accurately represents the underlying Hamiltonian of
the observed system. A more detailed analysis of how a symplectic integrator modifies
the learning target and how the integration error is cancelled when using the same
integrator for training and integration after training, is provided by Offen and Ober-
Blöbaum (2022). As already mentioned in Section 2.7, Matsubara et al. (2019) derive
an algorithm to compute discrete gradients of neural networks, allowing the learned
Hamiltonian to be preserved exactly during integration. Celledoni et al. (2022) present
a more rigorous approach on how to deal with the geometry of constrained mechanical
system. Here, problems with solutions evolving on a Lie group are studied and Lie-
group integrators preserving the manifold structure are compared to classical Runge–
Kutta methods.

The equations of Hamiltonian systems come with the assumption of energy conser-
vation. Their generalization into port-Hamiltonian systems is obtained by including
dissipative terms and allowing forcing- or control-terms in the equation. This enables
the derivation of a unified equation describing the interconnection of multiple physi-
cal systems as described by Van Der Schaft and Jeltsema (2014). Zhong et al. (2020)
and Duong and Atanasov (2021) use the port-Hamiltonian formulation to approximate
the underlying Hamiltonian, potential forcing terms and terms describing dissipation.
Eidnes et al. (2022) offer a demonstration of the flexibility of the port-Hamiltonian
formalism, using it to model a system of multiple connected chemical tanks with in-
teracting forces.

On the other hand, Chen et al. (2019) assume that the Hamiltonian is separable and
use the Störmer–Verlet method for discretization. This is a second order, symplectic
method which is explicit for separable Hamiltonian systems. Finzi et al. (2020) assume
that the kinetic energy-term could be modelled as a quadratic form where the mass
matrix could be learned directly.

Finally, an interesting approach is to construct neural networks to have similar
mathematical properties as the flow map of the ODE it is approximating. Since the flow
map of a Hamiltonian system is symplectic, Jin et al. (2020) parametrize symplectic
transformations that could be combined to form a trainable neural network that is a
symplectic transformation by design. Several other works explore a similar approach,
such as Chen and Tao (2021) and Chen et al. (2021).



Chapter 4

Integration methods for inverse
ODE problems

The majority of the approaches to learning Hamiltonian systems from observations
use numerical integrators in the training. However, there has not been much work
on systematically exploring the space of different types of integrators and which prop-
erties are beneficial in the setting of inverse problems on Hamiltonian ODEs. Here,
we show that a particular class of Runge–Kutta methods, namely the mono-implicit
Runge–Kutta methods (MIRK), are computationally efficient for inverse ODE prob-
lems. However, as proved below, this class does not contain symplectic integrators of
order higher than p = 2. We show how a recently introduced MIRK method, suggested
by Eidnes et al. (2022), can be derived by modifying the Gauss collocation method of
order p = 4. Furthermore, the mean inverse integrator is introduced and analyzed on
how it propagates noise in comparison to a one-step method.

4.1 Inverse ODE problems
Let a first order differential equation be defined by a vector field f : Rm → Rm such
that for a given initial value y0 ∈ Rm a solution y(t) has to satisfy

ẏ = f(y). (4.1)

The inverse ODE problem assumes that the vector field f is unknown, but that ob-
servations, or approximations to the exact flow, are available for M different initial
values, at N + 1 different times given by

yji ≈ ϕih,f (yj0) with y0 ∈ S0 ⊂ Rm

for i = 0, . . . , N and j = 1, . . . ,M , assuming uniform time steps ti = ih and letting
the initial values be contained in

S0 = {y0 s.t. ‖y0‖2 ≤ r}, (4.2)

for some r > 0. Let us denote the set of observed, discretized solutions by

SMN =
{
yji
}N,M
i=0,j=1

.

23



24 Chapter 4. Integration methods for inverse ODE problems

For simplicity, it is sometimes convenient to consider a discretized flow from on only a
single initial value. In that case, the set of observations will be denoted by SN = {yi}Ni=0.
An inverse ODE problem could then be defined by:

Definition 4.1 (Inverse ODE problem)
Let fθ be a neural network with parameters θ, Φh,fθ be a one-step integration method
with step length h > 0 and SMN be a set of samples from the flow of an ODE with vector
field f(y). The inverse problem is the following optimization problem

min
θ
L(Φh,fθ , S

M
N , fθ)

where L(Φh,fθ , S
M
N , fθ) :=

M∑
m=1

N−1∑
n=0

∥∥∥∥∥ymn+1 − Φh,fθ(ymn )
∥∥∥∥∥.

Remark
In this thesis we assume that all ODEs are Hamiltonian systems and follow the idea
of Greydanus et al. (2019) of learning the Hamiltonian instead of the full vector field.
We will thus train a neural network on the form

fθ(y) := J∇Hθ(y),

such that the learned vector field will always form a Hamiltonian system.

4.2 Inverse explicit integration methods
The inverse ODE problem requires rethinking how numerical integrators are used, since
we assume that multiple, sequential points in the discretized flow are provided by the
sample SMN . Hence, integrators which are implicit when considering the classical initial
value problem could be made explicit. This is exploited in several works on Hamiltonian
neural networks such as David and Méhats (2021), Celledoni et al. (2022), Eidnes et al.
(2022) and more. Here, this difference is made clear by introducing the simple concept
of the inverse injection.

Definition 4.2 (Inverse injection)
Let SN = {yi}Ni=0 be observations from an ODE by Equation (4.1) and Φh,f be an
implicit integration scheme such that integration requires the solution of a system over
ŷn+1, by

ŷn+1 = Φh,f (yn, ŷn+1), (4.3)
with yn ∈ SN . The inverse injection consists in replacing ŷn+1 in Equation 4.3 with
the observed value of the solution yn+1 ∈ SN , yielding a method given by

ŷn+1 = Φh,f (yn, yn+1).

The notation Φh,f (yn, yn+1) highlights the fact that taking the integration step (with
an implicit integrator) depends on both yn and yn+1. Furthermore, it is necessary to
make a distinction between integrators that are explicit and integrators that are not,
when using the inverse injection.



25 Chapter 4. Integration methods for inverse ODE problems

Definition 4.3 (Inverse explicit)
Let Φh,f be a numerical one-step method. Φh,f is inverse explicit if the integration
scheme is explicit under the inverse injection.

This concept is useful, as inverse explicit integrators, in the same manner as explicit
integrators for the forward problem, mitigate the need to solve a system of equations
before taking a step. It is thus useful to investigate which integrators belong to this
class.

Lemma 4.4
Mono-implicit Runge–Kutta methods are inverse explicit.

Proof. For Runge–Kutta methods we have that

yn+1 = yn + h
s∑
i=1

biki.

As the stages of the MIRK methods could be written on the form given by Equation
(2.15) and by the fact that [D]ij is strictly lower triangular, it is clear that

k1 = f

(
yn + v1(yn+1 − yn)

)

k2 = f

(
yn + v2(yn+1 − yn) + hd21k1)

)
...

ks = f

(
yn + vs(yn+1 − yn) + h

s−1∑
j=1

dikj

)
.

Hence, each stage could be computed without solving any system of equations, when
it is assumed that yn and yn+1 is known. This means that the stages and the method
is explicit under the inverse injection.

Lemma 4.5
The discrete gradient integration methods are inverse explicit.

Proof. The methods depend only on yn, yn+1 and have no implicit intermediate stages.
It is therefore straightforward to verify that they are explicit under the inverse injection.

It is evident that the MIRK methods studied by Burrage et al. (1994) could be very
useful for solving inverse ODE problems, together with the discrete gradient methods
including the ones to an arbitrary order, by Eidnes (2022). However, in the setting of
Hamiltonian ODEs, we have seen that symplecticity is a useful property. Therefore, it
is of relevance to explore the maximum order of symplectic MIRK methods.

Theorem 4.6
The maximum order of a symplectic MIRK method is p = 2.



26 Chapter 4. Integration methods for inverse ODE problems

Proof. As shown in Section 2.4.2, a Runge–Kutta method is symplectic if and only if

biaij + bjaji − bibj = 0.

Inserting the MIRK coefficients aij by Definition 2.11, we get

bi(vibj + dij) + bj(vjbi + dji)− bibj = 0
bidij + bjdji + bibj(vj + vi − 1) = 0.

As D is strictly lower triangular, we get that

either dji = 0 or dij = 0 =⇒ bidij + bibj(vj + vi − 1) = 0

if i = j =⇒ b2
i (2vi − 1) = 0

Requiring dij, bi and vi to satisfy the symplecticity condition, yields the following re-
striction

bidij + bibj(vj + vi − 1) = 0, for i 6= j,

and bi = 0 or vi = 1
2 , for i = j.

(4.4)

We get these conditions based on whether or not bi = 0:

bj = 0 bj 6= 0

bi = 0 dij ∈ R dij ∈ R
vi, vj ∈ R vi, vj ∈ R

bi 6= 0 dij = 0 dij = 0
vi, vj ∈ R vi, vj = 1

2

Without loss of generality we assume that the m first entries of b ∈ Rs are zero.
Enforcing the conditions of Equation (4.4) on v ∈ Rs we get

b = [0, . . . , 0, bm+1, . . . , bs]T ,

v = [v1, . . . , vm,
1
2 , . . . ,

1
2]T .



27 Chapter 4. Integration methods for inverse ODE problems

In total, the MIRK coefficient matrix A = D+vbT gives a Butcher tableau of the form

0 0 0 . . . 0 v1bm+1 . . . v1bs

d21 0 0 . . . 0
d31 d32 0 0 ... ...
... . . .

dm,1 . . . . . . dm,m−1 0 vmbm+1 . . . vmbs

0 . . . 0 1
2bm+1 . . . 1

2bs
... ... ... ...
... ... ... ...
0 . . . 0 1

2bm+1 . . . 1
2bs

0 . . . 0 bm+1 . . . bs

Since the lower left submatrix is the zero matrix, this leaves the stages km+1, . . . , ks
unconnected to the first m stages. Furthermore as bi = 0 for i = 1, . . . ,m, these stages
are not included in the computation of the final integration step. The method is thus
reducible to the lower right submatrix of A and bm+1, . . . , bs. The reduced method is
in general given by

1
2b1 . . . 1

2bs
... ...

1
2b1 . . . 1

2bs

b1 . . . bs

It is trivial to check that, if ∑s
i bi = 1 the method satisfies order conditions up to order

p = 2, which could be found in (Hairer et al., 2006, Ch. III.1.1) to be∑
i

bi = 1,

∑
i,j

biaij = 1
2 ,

but fails to satisfy the first of the two conditions required for order p = 3, since∑
i,j,k

biaijaik = 1
4
∑
i,j,k

bibjbk = 1
4 6=

1
3 .

Hence, the maximum order of a symplectic MIRK method is p = 2.

Solving Hamiltonian inverse ODE problems and requiring a MIRK method to be
inverse explicit and symplectic, leaves us with a method of maximum order p = 2,
where the implicit midpoint method is a prominent example. However, considering
the class of partitioned Runge–Kutta methods, see for instance (Hairer et al., 2006,
Ch. II.2), there are symplectic, inverse explicit methods of order p > 2. Consider for
instance the method of order p = 4 by Yoshida (1990).



28 Chapter 4. Integration methods for inverse ODE problems

4.3 Symmetric MIRK methods

Consider the exact flow map of an autonomous ODE, ϕh,f (y(t0)). Let h = t1− t0 such
that y(t1) = ϕh,f (y(t0)). The inverse map is by definition the map ϕ−1

h,f , such that

ϕ−1
h,f ◦ ϕh,f (y(t0)) = y(t0),

⇐⇒ ϕ−1
h,f (y(t1)) = y(t1) +

∫ t0

t1
f(y(t)) dt = y(t0).

Hence, taking a negative time step −h in the inverse flow, leaves us with

ϕ−1
−h,f (y(t0)) = y(t0)−

∫ t0

t1
f(y(t)) dt

= y(t0) +
∫ t1

t0
f(y(t)) dt

= ϕh,f (y(t0))

It is thus clear that the adjoint of the exact flow, meaning the inverse flow map with
negative time step, is the same map. In other words, the exact flow is self-adjoint. As
discussed in (Hairer et al., 2006, Ch. II.3) this property is not necessarily shared by a
numerical one-step map. The adjoint numerical method is defined by:

Definition 4.7
Let Φh,f be a numerical one-step integrator. The adjoint Φ∗h,f is given by the inverse
of the original method with negative step size −h, such that

Φ∗h,f = Φ−1
−h,f .

An integrator satisfying Φ∗h,f = Φh,f is called a symmetric integrator. It also makes
sense to call such an integrator self-adjoint. The symmetry property, similarly as
symplecticity, could be shown to give rise to improved long time behavior of numerical
integrators, as discussed in (Hairer et al., 2006, Ch. V) and (Hairer et al., 2006, Ch.
XI). Hence, in this section two approaches to obtaining symmetric MIRK methods,
will be considered.

4.3.1 Symmetric MIRK by modified Gauss collocation

Studying the Gauss collocation method with two stages and order p = 4 (GC4) found
in Example 2.10, it is clear that this method is not mono-implicit. However, by intro-
ducing two new stages, the method could be modified to a new MIRK method which
is also symmetric and of order p = 4. This method was first derived by Sølve Eidnes as
an approximation of order p = 4 to the modified midpoint rule of Chartier et al. (2007)
and presented by Eidnes et al. (2022). This new method is however, not symplectic.



29 Chapter 4. Integration methods for inverse ODE problems

GC4 is given by the following stages, where we let c =
√

3
6

k1 = f

(
y + h

(k1

4 + (1
4 − c)k2

))
,

k2 = f

(
y + h

(k2

4 + (1
4 + c)k1

))
,

ŷ = y + h

2 (k1 + k2).

However, the stages could be rewritten, such that

k1 = f

(
y + h

(k1

4 + (1
4 − c)k2

))

= f

(
y + h

4
(
k1 + k2

)
− chk2

)

= f

(
1
2(y + ŷ)− chk2

)
,

and similarly k2 = f

(
1
2(y + ŷ) + chk1

)
.

Thus, if we are able to approximate the chk1 and chk2 terms with symmetric, inverse
explicit stages, whilst maintaining the order, we will have a fourth order, four stage
MIRK method.

Theorem 4.8
Let c =

√
3

6 . The Runge–Kutta method defined by the stages

k̃1 = f

(
y + h

4 (1− 2c)
(
k̂1 + k̂2

))

k̃2 = f

(
y + h

4 (1 + 2c)
(
k̂1 + k̂2

))

k̂1 = f

(
y + h

4 (k̂1 + k̂2)− chk̃2

)

k̂2 = f

(
y + h

4 (k̂1 + k̂2) + chk̃1

)

ŷ = y + h

2 (k̂1 + k̂2)

is symmetric, of order p = 4, and A-stable.

Proof. By Taylor expansion around y, and denoting f := f(y) we find that for k1 and



30 Chapter 4. Integration methods for inverse ODE problems

k̂1 we have

k1 = f + h(1
2 − c)f

′f + h2

2 (1
2 − c)

2f ′′(f, f) + h2(1
4 −

c

2 − c
2)f ′f ′f +O(h3),

k̂1 = f + h(1
2 − c)f

′f + h2

2 (1
2 − c)

2f ′′(f, f) + h2

4 f
′f ′f − ch2

2 (1 + 2c)f ′f ′f +O(h3)

= f + h(1
2 − c)f

′f + h2

2 (1
2 − c)

2f ′′(f, f) + h2(1
4 −

c

2 − c
2)f ′f ′f +O(h3),

and similarly for k2 and k̂2 that

k2 = f + h(1
2 + c)f ′f + h2

2 (1
2 + c)2f ′′(f, f) + h2(1

4 + c

2 − c
2)f ′f ′f +O(h3),

k̂2 = f + h(1
2 − c)f

′f + h2

2 (1
2 − c)

2f ′′(f, f) + h2

4 f
′f ′f + ch2

2 (1− 2c)f ′f ′f +O(h3)

= f + h(1
2 − c)f

′f + h2

2 (1
2 − c)

2f ′′(f, f) + h2(1
4 + c

2 − c
2)f ′f ′f +O(h3),

Hence, it is clear that

k̂1 = k1 +O(h3),
k̂2 = k2 +O(h3),

meaning that the for the step ŷ, the MIRK method is an approximation of the GC4
method with an error of O(h4) and has at least order p = 3. However, by introducing
y := ŷ+y

2 the MIRK method could be written on the form

k̃1 = f

(
y − c

(
ŷ − y

))
,

k̃2 = f

(
y + c

(
ŷ − y

))
,

k̂1 = f

(
y − chf

(
y + c

(
ŷ − y

)))
,

k̂2 = f

(
y + chf

(
y − c

(
ŷ − y

)))
.

Denoting the adjoint stages and steps by k∗i and y∗, and finding them by interchanging
ŷ and y in addition to taking negative step size −h, it is trivial to see from above, that
k̂∗1 = k̂2 and k̂∗2 = k̂1. We thus find the adjoint step ŷ∗ by

y = ŷ∗ − h

2 (k̂∗1 + k̂∗2)

=⇒ ŷ∗ = y + h

2 (k̂2 + k̂1)

The adjoint method is the same as the original method and is thus symmetric. By
Theorem 3.2 in (Hairer et al., 2006, Ch. II.3), a symmetric method has even order.



31 Chapter 4. Integration methods for inverse ODE problems

Since the MIRK method has at least order p = 3 and is symmetric, it thus follows that
it is of (at least) order p = 4.

The linear stability function (Wanner and Hairer, 1996, Ch. IV.3) could be used
to characterize how well the solver handles stiff equations. The stability function for a
Runge–Kutta method, is in general given by

R(z) =
det

(
I − zA+ z1bT

)
det

(
I − zA

) ,

where 1 := [1, . . . , 1]T ∈ Rs. By computing the determinants for the MIRK method,
this can be shown to be given by

R(z) =
z2

12 + z
2 + 1

z2

12 −
z
2 + 1

,

which is identical to the stability function of GC4 called Hammer–Hollingsworth order
4 in (Wanner and Hairer, 1996, Ch. IV.3). GC4 is A-stable following (Hairer et al.,
2006, Ch. II.1.3), and it follows that this MIRK method is A-stable.

The classical Butcher-tableau (left), and the extended MIRK tableau (right) for
this MIRK method is given by

1
2 −

√
3

6 0 0 1
4 −

√
3

12
1
4 −

√
3

12
1
2 +

√
3

6 0 0 1
4 +

√
3

12
1
4 +

√
3

12
1
2 −

√
3

6 0 −
√

3
6

1
4

1
4

1
2 +

√
3

6

√
3

6 0 1
4

1
4

0 0 1
2

1
2

1
2 −

√
3

6
1
2 −

√
3

6 0 0 0 0
1
2 +

√
3

6
1
2 +

√
3

6 0 0 0 0
1
2 −

√
3

6
1
2 0 −

√
3

6 0 0
1
2 +

√
3

6
1
2

√
3

6 0 0 0
0 0 1

2
1
2

4.3.2 Symmetric MIRK by the adjoint
One systematic approach to obtaining symmetric inverse explicit Runge–Kutta meth-
ods involves the adjoint of a method, which could be found by Definition 4.7. This
approach results in identical methods to what is called ATPERK methods by Enright
and Muir (1986).

As explained in the proof of Theorem 4.8, the adjoint method could be found by
interchanging yn+1 and yn in addition to changing the sign of the step size h. For a
Runge–Kutta method, denoting the vector field evaluations by

F̂ (yn, yn+1, h) :=
s∑
i=1

biki,

the method and its adjoint could thus be given by

Φh,f (yn) = yn + hF̂ (yn+1, yn, h)
=⇒ Φh,f (yn)∗ = yn + hF̂ (yn, yn+1,−h),



32 Chapter 4. Integration methods for inverse ODE problems

such that a symmetric method could be constructed by taking the mean of the original
and adjoint vector field evaluation. The following is a well known result that we state
here formally.
Theorem 4.9
Let a Runge–Kutta method be given by Φh,f (yn). The method

Ψh,f (yn) = 1
2

(
Φh,f (yn) + Φ∗h,f (yn)

)
,

is symmetric and of even order.
Proof. The adjoint of Ψh,f (yn) is given by

Ψ∗h,f (yn) = 1
2

(
Φ∗h,f (yn) + Φh,f (yn)

)
,

since (Φ∗h,f )∗ = Φh,f . Thus Ψ∗h,f = Ψh,f , so Ψh,f is symmetric, or self-adjoint. By
Theorem 3.2 in (Hairer et al., 2006, Ch. II.3), the method has even order.

The implicit trapezoidal rule could be shown to be a method obtained by taking
the mean of a step with explicit Euler and the adjoint method, which is implicit Euler.

For a MIRK method defined by the coefficients v ∈ Rs, D ∈ Rs×s and b ∈ Rs we
can find the adjoint of the stages by

k∗i = f

(
yn+1 + vi(yn − yn+1)− h

s∑
j=1

dijkj

)

= f

(
yn + (1− vi)(yn+1 − yn) + h

s∑
j=1
−dijkj

)
,

such that the original (left) and corresponding Butcher tableau of the adjoint MIRK
method (right) is given by

c v D

bT
c̃ 1− v −D

bT

Taking the mean of the original MIRK method and the adjoint yields

Ψh,f (yn) = yn + h

2

s∑
i=1

bi(ki + k∗i ),

which is a Runge–Kutta method with 2s stages on the form

vbT +D 0

0 (1− v)bT −D
bT

2
bT

2

It is not difficult to see that the method stated here, is indeed the same as the ATPERK
method derived in the context of a two-point boundary value problem, by Enright and
Muir (1986). Here the authors conduct a more detailed analysis on computational
efficiency and stability properties.



33 Chapter 4. Integration methods for inverse ODE problems

Example 4.10 (Two symmetric, inverse explicit Runge–Kutta methods)
The s = 4 stage method obtained from symmetrizing the third order MIRK method
given in Example 2.13, is given by the Butcher tableau

0 0 0 0
1
3

1
3 0 0

0 0 1
4

3
4

0 0 − 1
12

5
12

1
8

3
8

1
8

3
8

A MIRK method of order p = 5 is found by taking c2 = 0 and c3 = 4
3 of the four stage

method by Burrage et al. (1994). Symmetrizing this method yields a symmetric s = 8
stage method of order p = 6, but it has two zero rows in the A matrix, such that it
could be reduced to the following method with s = 7 stages:

0 0 0 0 0 0 0
73
528

43
168 − 27

1072
78125
123816 0 0 0

205
891

422
567 − 1

67
156250
417879 0 0 0

129163
750000 − 194557

2625000
384021

16750000
89759
281400 0 0 0

43
168 0 0 0 73

528 − 27
1072

78125
123816

−2215
4536 0 0 0 − 119

1296 − 11
1072

78125
303912

15472
46875 0 0 0 − 35021

1031250 −
100737
2093750

17246
55275

1457
7392

43
336 − 27

2144
78125
247632

73
1056 − 27

2144
78125
247632

These methods could be further optimized by symmetrizing the methods before deter-
mining the free parameters (c2 and c3 for the s = 4 MIRK methods), and then finding
the parameters that yield optimal stability properties.

4.4 Solving implicit equations in training
In Section 4.2 inverse explicit integrators were introduced as a special class of integra-
tion methods in the inverse ODE setting. The benefit of such methods are avoiding
to solve non-linear systems of equations when taking an integration step. Using an
implicit integration method in the neural network training, would require backpropa-
gating gradients through every computation used for solving the equation. However,
doing so would open the possibility of using higher order symplectic integrators such
as the Gauss collocation methods in the training. As discussed in Section 2.4.2, sym-
plecticity is a beneficial property when integrating Hamiltonian systems and higher
integration order would increase accuracy.



34 Chapter 4. Integration methods for inverse ODE problems

For solving the systems, which was reformulated to a more efficient form in Sec-
tion 2.6, there are multiple options such as using fixed-point iterations, the Newton–
Raphson method or quasi-Newton methods avoiding computing the full Jacobian ma-
trix at every iteration. Consider in general the problem of finding a fixed point x∗ ∈ Rm

such that for a given function G : Rm → Rm we have that

G(x∗) = x∗.

It is possible to prove that fixed point iterations converge, consider for instance Quar-
teroni et al. (2010), with some regularity assumptions on the domain D ⊂ Rm, and
assuming that G is contractive, or in other words, that it has a Lipschitz constant
C < 1 for all x ∈ D. Then for any x0 ∈ D, the iterations

xk+1 = G(xk),

converges to the fixed point x∗ at a rate given by

‖xk − x∗‖ ≤
Ck

1− C ‖x1 − x0‖.

On the other hand, Newton–Raphson exploits the derivatives, or the Jacobian of a
system in order to find the root. Hence, we rewrite the fixed-point problem in Equation
(4.4) to the problem of finding x∗ such that

K(x∗) := G(x∗)− x∗ = 0.

Let JK denote the Jacobian matrix such that [JK ]ij := ∂Ki
∂xj

, then the Newton–Raphson
iterations are given either by the inverse Jacobian or by solving the linear system

xk+1 = xk − JK(xk)−1K(xk),
⇐⇒ JK(xk)

(
xk+1 − xk

)
= K(xk).

For this method, it is possible to prove convergence Nocedal and Wright (1999), if the
fixed-point x∗ exists, that JK(x∗) is non-singular around x∗ and that the initial guess
x0 is sufficiently close to x∗. In that case, we have quadratic convergence by

‖x∗ − xk+1‖ ≤ C̃‖x∗ − xk‖2,

for some positive constant C̃. In the setting of numerical integration using implicit
Runge–Kutta methods, fixed-point iterations are said to be a tool from the stone-age
transforming the algorithm into an explicit method destroying stability properties,
according to (Wanner and Hairer, 1996, Ch. IV.8). However, it should be noted that
this considers the numerical solution of stiff ODEs. On the other hand, in the setting of
geometric numerical integration of non-stiff problems, in (Sanz-Serna and Calvo, 2018,
Ch. 5.5), several numerical experiments are conducted, finding fixed-point iterations
to be more computationally efficient and in (Hairer et al., 2006, Ch. VIII.6.2) one can
find the same conclusion.



35 Chapter 4. Integration methods for inverse ODE problems

The problem of solving non-linear systems involving neural network evaluations, is
discussed by Bai et al. (2019). Here, differentiation through the solution of the fixed
point equations are done by implicit differentiation, in order to obtain a more efficient
backwards pass. In this setting, however, we will rely on using the basic fixed point
iterations and naively perform backpropagation over all the iterations. The motivation
is in part the results by Hairer et al. (2006) and Sanz-Serna and Calvo (2018), but also
the simplicity of its implementation, in comparison to the Newton–Raphson method or
quasi-Newton methods. However, it would be an interesting area of future research to
compare different algorithms for solving the equations, and different implementations
of the backwards pass. One such approach is studied by Bai et al. (2019).

Considering first general implicit Runge–Kutta methods, the fixed point the equa-
tion (2.21) could be solved by the following iterations

Z
(0)
i = hcif(yn),

Z(k+1) = h(A⊗ Im)F (Z(k)).
(4.5)

Whereas solving the Equation (2.22) for MIRK methods could be done by the following
iterations

z(0)
n = hf(yn),

z(k+1)
n = hF̂ (yn, z(k)

n + yn).
(4.6)

The iterations are terminated when ‖Z(k+1) − Z(k)‖ ≤ TOL for the general Runge–
Kutta methods and ‖z(k+1)

n − z(k)
n ‖ ≤ TOL for the MIRK methods. In both cases, the

iterations are also terminated when the number of iterations reaches a maximum limit
nmax iter.

4.5 Structure of integration in training
In the inverse ODE problem, one assumes that one or multiple trajectories of solutions
yi ≈ ϕih,f (y0) for i = 0, . . . , N , are available. Considering the optimization problem
in Definition 4.1, this represents one approach for how to structure the numerical
integration for solving the inverse problem. However, there are different approaches to
how this could be done. First, following Definition 4.1, one-step explicit integration
with the inverse injection

ŷn+1 = Φh,fθ(yn, yn+1) n = 0, . . . , N,

secondly one-step, with an implicit integrator

ŷn+1 = Φh,fθ(yn, ŷn+1) n = 0, . . . , N,

or third, multiple implicit steps from one initial value y0

ŷ1 = Φh,fθ(y0, ŷ1),
ŷn+1 = Φh,fθ(ŷn, ŷn+1) n = 1, . . . , N.



36 Chapter 4. Integration methods for inverse ODE problems

Let us denote the first approach as explicit one-step training, the second as implicit
one-step training and the third approach as implicit multistep training. The difference
between the dependency of the sequential observations yi is made clear by Figure 4.1.

y0 y1

ŷ1

y2

ŷ2

y3

ŷ3
One-step explicit:

y0 y1

ŷ1

y2

ŷ2

y3

ŷ3
One-step implicit:

y0 y1

ŷ1

y2

ŷ2

y3

ŷ3
Multistep implicit:

Figure 4.1: Illustration of the differences of the observation dependency, assuming N = 3
for explicit one-step training, implicit one-step training and implicit multistep training.

As mentioned in Section 4.2, the inverse injection yielding the one-step explicit ap-
proach, is used in several other works. It is also interesting to note that this approach
is somewhat similar to teacher forcing Williams and Zipser (1989), used in the training
of recurrent neural networks. Implicit multistep training is similar to what is done
by Chen et al. (2019), however in this setting the ODEs studied are assumed to be
separable Hamiltonian systems such that the second order, symplectic Störmer–Verlet
integrator could be given on an explicit form. Here, the authors find that the multi-
step (or recurrent, following their terminology), for some test problems, has stronger
performance when training on data with noise. Assuming noisy data, they also per-
form initial state optimization by simultaneously optimizing over the neural network
parameters and searching for an initial value y0 that minimizes the loss.

Introducing iterative schemes to solve the equations (2.21), (2.22) given by implicit
integration steps in Chapter 2.6 allows for both using symplectic integrators of higher
order p > 2, such as Gauss collocation methods of stages s = 3, 4, and to perform
implicit multistep training on Hamiltonian systems that are not necessarily separable.

4.6 Integrators for noisy inverse problems
Assume we are solving an inverse problem with observations from a system that could
be described by an underlying ODE. It is often necessary to assume that the obser-
vations are not exact, but perturbed by noise. This could be due to inexact mea-
surements, external, chaotic forces perturbing the system being measured or a range
of other different factors depending on the specific setting. In this section, we will



37 Chapter 4. Integration methods for inverse ODE problems

derive an alternative formulation of the optimization problem found in Definition 4.1
by rethinking how to utilize numerical one-step methods. It leverages the algebraic
structure of the exact flow map to get an optimization target that is less sensitive to
noise.

4.6.1 Noisy ODE observations
Here, the noise of the observations will be modelled assuming it is independent and
identically normally distributed.

Definition 4.11 (Noisy ODE observation)
Let SMN = {yji }

N,M
i=0,j=1 be observations from an ODE for a vector field f(y). A noisy

ODE observation is defined by the perturbation

ỹji = yji + δij, δij ∼ N (0, σ2I),

where N (0, σ2I) represents the multivariate normal distribution with a zero mean vector
and a diagonal covariance matrix scaled by the variance σ2, where σ > 0.

Solving an inverse problem with noisy observations ỹi, introduces a perturbation
to the target for the optimization problem specified by Definition 4.1, where we aim
at minimizing

‖ỹn+1 − ŷn+1‖ = ‖yn+1 + δn+1 − Φh,fθ(yn + δn)‖,

and ỹn+1 − ŷn+1 = 0 is defined as the optimization target.

4.6.2 Motivation
The flow map y(t0 + h) = ϕh,f (y0), of an ODE has the algebraic property, such that
composing two steps with step size h1 and h2 equals one step with step size h1 +h2, or

ϕf,h1 ◦ ϕf,h2(y0) = ϕf,h1+h2(y0).

A numerical one-step method Φh,f is an approximation of the exact flow map up
to order p. Hence, compositions of a one-step method could be utilized to generate
multiple approximations to the same point in the flow, starting from different initial
values. Assuming we know the points {ỹ0, ỹ1, ỹ2, ỹ3}, then ŷ2 could be approximated
in the three different ways

ŷ
(1)
2 ≈ Φh,f (y1),
ŷ

(2)
2 ≈ Φh,f ◦ Φh,f (y0),

ŷ
(−1)
2 ≈ Φ−h,f (y3),

taking integrations steps with size h. For ŷ(j)
2 , the superscript (j) denotes the number

of steps with length h in positive direction of the flow. If the numerical method used
in the optimization problem is sensitive to a perturbation in a single point, taking



38 Chapter 4. Integration methods for inverse ODE problems

the mean over all possible approximations using a fixed step size could reduce the
sensitivity, as we will show below.

Let f̂n,n+1 be a simplified notation for how an inverse explicit numerical integrator
evaluates the vector field, such that an integration step could be given by

Φh,f (ỹn, ỹn+1) = ỹn + hf̂n,n+1.

By repeatedly applying the inverse injection, compositions of integration steps could
be approximated by summation over the vector field. For the midpoint method, we
have that

f̂n,n+1 = f
( ỹn + ỹn+1

2
)
,

such that taking two integration steps could be approximated by

ŷ
(2)
2 = Φh,f ◦ Φh,f (ỹ0)

= Φh,f (ỹ0) + hf

(
Φh,f (ỹ0) + ŷ

(2)
2

2

)

≈ Φh,f (ỹ0) + hf

(
ỹ1 + ỹ2

2

)

= ỹ0 + hf

(
ỹ0 + Φh,f (ỹ0)

2

)
+ hf̂1,2

≈ ỹ0 + hf

(
ỹ0 + ỹ1

2

)
+ hf̂1,2

= ỹ0 + hf̂0,1 + hf̂1,2.

This enables multiple vector field evaluations to be reused when computing the mean
of the different flow approximations. In example, computing y2 could be done by

y2 = 1
3
∑
i

ŷ
(i)
2 = 1

3

(
ỹ0 + ỹ1 + ỹ3 + h(f̂0,1 + 2f̂1,2 − f̂3,2)

)
.

Assuming the ODE observation is given by SN , then the mean approximation over
the whole trajectory yi for i = 0, . . . , N , could be computed simultaneously, reusing
multiple vector field evaluations efficiently, as shown below.

4.6.3 The mean inverse integrator

Assume the vector field evaluation f̂i,j is given by an inverse explicit integrator. The
mean inverse integrator for N = 3 is given by

y0
y1
y2
y3

 = 1
3

(
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0



ỹ0
ỹ1
ỹ2
ỹ3

+ h


−3 −2 −1
1 −2 −1
1 2 −1
1 2 3



f̂0,1

f̂1,2

f̂2,3


)
. (4.7)



39 Chapter 4. Integration methods for inverse ODE problems

In comparison, a one-step scheme will be on the sparse form
ŷ0
ŷ1
ŷ2
ŷ3

 =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0



ỹ0
ỹ1
ỹ2
ỹ3

+ h


0 0 0
1 0 0
0 1 0
0 0 1



f̂0,1

f̂1,2

f̂2,3

 . (4.8)

In general, the mean inverse integrator is given by the following definition.

Definition 4.12 (Mean inverse integrator)
Let f̂ij be the vector field evaluation of an inverse explicit one-step integrator. Assume
that {yi}Ni=0 is a sample with N + 1 sequential points with uniform step size h from an
ODE with a vector field f : Rm → Rm. Let

Y := [y0, . . . , yN ]T ∈ R(N+1)×m,

F̂ := [f̂0,1, . . . , f̂N−1,N ]T ∈ RN×m.

The mean inverse integrator is given by

Y = 1
N

(
UY + hV F̂

)
, (4.9)

such that Y := [y0, . . . , yN ]T ∈ R(N+1)×m, where U ∈ R(N+1)×(N+1) and V ∈ R(N+1)×N

are defined by

[U ]ij :=

0 if i = j

1 else

[V ]ij :=

j − 1−N if j ≥ i

j else

Considering Section 4.5, which illustrated different approaches to structuring the
data for solving the optimization problem, the structure of the mean inverse integrator
could be found in Figure 4.2.

In the setting of an inverse ODE problem, we assume that the vector field f is
unknown. In that case, we replace F̂ by

F̂θ :=


fθ(s(y0, y1))
fθ(s(y1, y2))

...
fθ(s(yN−1, yN))

 ,
where s(yn, yn+1) is the vector field evaluation, such that s(yn, yn+1) = 1

2(yn + yn+1)
for the midpoint method, in example. Now denote the flow approximated by a neural
network by

Y θ := 1
N

(
UY + hV F̂θ

)
. (4.10)



40 Chapter 4. Integration methods for inverse ODE problems

y0 y1 y2 y3

−hf̂2,3
−2hf̂1,2

−3hf̂0,1

y0 y1 y2 y3

hf̂0,1
−2hf̂1,2 −hf̂2,3

y0 y1 y2 y3

hf̂0,1
2hf̂1,2 −hf̂2,3

y0 y1 y2 y3

hf̂0,1
2hf̂1,2

3hf̂2,3

Figure 4.2: Illustration of the structure of the mean inverse integrator for N = 3.

If the observations are given by SMN whereM initial values are observed in N+1 points
in time, we let

Y j := [yj0, . . . , yjn]T ∈ R(N+1)×m, j = 1, · · · ,M,

and an inverse ODE problem using the mean inverse integrator is given by the opti-
mization problem

min
θ

M∑
j=1
‖Y j − Y j

θ‖.

By Taylor expansion it is possible to compare how the mean inverse integrator
propagates uncertainty to how a one-step method propagates uncertainty. In other
words, if the observations SMN has a given variance σ2, what will be the variance of the
optimization target given by the mean inverse integrator

[Y ]i − [Y θ]i = ỹi − yi,

compared to the optimization target obtained using a numerical one-step method di-
rectly

ỹi − ŷi = ỹi − Φh,f (ỹi−1).

Consider first a general result for any inverse explicit integration method where we
assume that the step size in the flow sample h is small.

Theorem 4.13 (Variance in optimization target for small h)
Let {ỹi}Ni=0 be a noisy ODE observation with variance σ2 following Definition 4.11. Let
yi = [Y ]i be a step with the mean inverse integrator given by Definition 4.12 where f̂ij
is the vector field evaluation of an inverse explicit integration method ŷn+1 = Φh,f (yn).



41 Chapter 4. Integration methods for inverse ODE problems

Assuming the step size h is sufficiently small, the reduction of variance of the opti-
mization target, when using the mean inverse integrator, compared to using a one-step
method Φh,f could be approximated by

Var[ỹi − yi]
Var[ỹi − ŷi]

≈ N + 1
2N .

Proof. Assuming h is small, we can do the following truncation

ỹi − yi = ỹi −
1
N

N∑
j=0
j 6=i

ỹj −
h

N

N∑
j=1

vijf(s(ỹj, ỹj+1))

≈ yi + δi −
1
N

N∑
j=0
j 6=i

(yj + δj). (4.11)

We find an approximation to the variance by recalling that the perturbations are
identically distributed δi ∼ N (0, σ2I) and independent, such that

Var[ỹi − yi] ≈ Var[yi + δi] + 1
N2Var

[
N∑
j=0
j 6=i

(yj + δj)
]

= Var[δi] + 1
N

Var[δj]

= σ2N + 1
N

I. (4.12)

Considering the one-step numerical integrator, we truncate by

ỹi − ŷi = yi + δi − yi−1 − δi−1 − hf(s(yi−1, yi) + s(δi−1, δi))
≈ yi + δi − yi−1 − δi−1.

Similarly, the variance could be approximated by

Var[ỹi − ŷi] ≈ Var[yi + δi] + Var[yi−1 − δi−1]
= Var[δi] + Var[δi−1]
= 2σ2I, (4.13)

where I ∈ Rm×m is the identity matrix. This leads to the following expression for the
reduction of variance when using the mean inverse integrator in comparison with a
one-step method:

Var[ỹi − yi]
Var[ỹi − ŷi]

≈ N + 1
2N I.

Secondly, we prove a more accurate approximation of the variance specifically for
using the midpoint method in the mean inverse integrator.



42 Chapter 4. Integration methods for inverse ODE problems

Theorem 4.14 (Variance in optimization target for the midpoint method for large h)
The variance in the optimization target of the midpoint method in mean inverse inte-
grator yi, and the variance in the optimization target using the midpoint method directly
ŷi, could be estimated by

Var[ỹi − yi] ≈
σ2

N

[
(N + 1)I − h

2 (Pi,i + P T
i,i) + h

2N

N∑
j=0
j 6=i

(Pi,j + P T
i,j) + h2

4N

(
N∑
j=1

Pi,jP
T
i,j

)]
,

and

Var[ỹi − ŷi] ≈ σ2
[
2I + h2

2 f
′
(yi−1 + yi

2
)
f ′
(yi−1 + yi

2
)T]

,

for i = 0, . . . , N where

Pi,j := ṽi,jf
′
(yj−1 + yj

2
)

+ ṽi,j+1f
′
(yj + yj+1

2
)
,

and ṽi,j = [Ṽ ]i,j where Ṽ ∈ R(N+1)×(N+2) is obtained from padding each row of V with
zeros in the beginning and the end, and allowing the columns of Ṽ to be zero-indexed.

Proof. For the midpoint method, we have that s(yi, yi+1) := yi+yi+1
2 . Consider the

Taylor expansion of the mean inverse integrator in the direction of the perturbation,
such that

ỹi − yi = yi + δi −
1
N

N∑
j=0
j 6=i

(yj + δj)−
h

N

N∑
j=1

vijf

(
s(yj−1, yj) + s(δj−1, δj)

)

≈ yi + δi −
1
N

N∑
j=0
j 6=i

(yj + δj)−
h

N

N∑
j=1

vij

[
f(s(yj−1, yj)) + f ′(s(yj−1, yj))s(δj−1, δj)

]

= yi + δi −
1
N

N∑
j=0
j 6=i

(yj + δj)−
h

N

N∑
j=1

vij

[
f
(yj−1 + yj

2
)

+ f ′
(yj−1 + yj

2
)δj−1 + δj

2

]
.

We collect the terms where δi and δj appears and introduce the matrices Pi,j ∈ Rs×s

depending on the Jacobian f ′, such that

−1
N

N∑
j=0
j 6=i

(
I + h

2Pi,j
)
δj := −1

N

N∑
j=0
j 6=i

[
I + h

2

(
ṽi,jf

′
(yj−1 + yj

2
)

+ ṽi,j+1f
′
(yj + yj+1

2
)

︸ ︷︷ ︸
=:Pi,j

)]
δj,

(
I − h

2NPi,i

)
δi =

[
I − h

2N

(
ṽi,if

′
(yi−1 + yi

2
)

+ ṽi,i+1f
′
(yi + yi+1

2
)

︸ ︷︷ ︸
=Pi,i

)]
δi,

where i, j = 0, . . . , N . The coefficient matrix Ṽ ∈ R(N+1)×(N+2) is obtained from
padding each row of V with zeros in the beginning and end, such that ṽi,j = 0 if



43 Chapter 4. Integration methods for inverse ODE problems

j ∈ {0, N} and ṽi,j = vi,j else. Furthermore, the columns of Ṽ are zero indexed, in
contrast to the notation for matrices in the rest of the thesis.

Note that for multivariate distributions X, we have that Var[X] := Cov[X,X]
where the covariance Cov[· , ·] is a bilinear form. As δi is independent of δj we get

Var[ỹi − yi] ≈Var
[(
I − h

2NPi,i

)
δi

]
+ Var

[
−1
N

N∑
j=0
j 6=i

(
I + h

2Pi,j
)
δj

]

=σ2
(
I − h

2NPi,i

)(
I − h

2NPi,i

)T
+ σ2

N2

N∑
j=0
j 6=i

(
I + h

2Pi,j
)(

I + h

2Pi,j
)T

=σ
2

N

[
(N + 1)I − h

2 (Pi,i + P T
i,i) + h

2N

N∑
j=0
j 6=i

(Pi,j + P T
i,j)

+ h2

4N

(
Pi,iP

T
i,i +

N∑
j=0
j 6=i

Pi,jP
T
i,j

)]

=σ
2

N

[
(N + 1)I − h

2 (Pi,i + P T
i,i) + h

2N

N∑
j=0
j 6=i

(Pi,j + P T
i,j) + h2

4N

(
N∑
j=1

Pi,jP
T
i,j

)]
.

(4.14)

For the midpoint method we find the optimization target by

ỹi − ŷi ≈ δi − δi−1 − hf ′
(yi−1 + yi

2
)δi−1 + δi

2

=
(
I − h

2f
′
(yi−1 + yi

2
))
δi −

(
I + h

2f
′
(yi−1 + yi

2
))
δi−1,

so that the variance could be found by

Var[ỹi − ŷi] ≈Var
[(
I − h

2f
′
(yi−1 + yi

2
))
δi

]
+ Var

[(
I + h

2f
′
(yi−1 + yi

2
))
δi−1

]

=σ2
(
I − h

2f
′
(yi−1 + yi

2
))(

I − h

2f
′
(yi−1 + yi

2
))T

+
(
I + h

2f
′
(yi−1 + yi

2
))(

I + h

2f
′
(yi−1 + yi

2
))T

=σ2
[
2I + h2

2 f
′
(yi−1 + yi

2
)
f ′
(yi−1 + yi

2
)T]

. (4.15)

Remark
Bounds on the variance estimates could be found by assuming, for some matrix norm,
that the Jacobian ‖f ′(yi)‖ ≤ C is bounded ∀yi ∈ S ⊂ Rm for a given problem. However,



44 Chapter 4. Integration methods for inverse ODE problems

if this is done for an inverse problem, the vector field f is by definition unknown, and
it would thus be uncertain if such an assumption is reasonable.

Consider the variance estimate for using the midpoint method as a one-step inte-
grator, and note that the first order terms of h are cancelled in Equation (4.15). This
happens as the midpoint integrator evaluates the vector field in the midpoint. This is
note true for all symmetric integrators. Consider for instance the implicit trapezoidal
rule, which is symmetric. However, in this case the first order term in h, would not
cancel in the corresponding variance estimate.

Instead of taking the mean of the different numerical integration trajectories in the
mean inverse integrator by Definition 4.12, one could in general compute a weighted
sum of trajectories yk = ∑

iwiŷ
(i)
k where ∑iwi = 1. Here, the weights wi could be

chosen as to minimize the variance and the mean error of the optimization target.



Chapter 5

Numerical experiments

5.1 Experimental setup

5.1.1 Implementation
The code implemented to run the numerical experiments described below, contains the
following main modules:

• A general class for representing a Hamiltonian system which is instantiated by
a LATEX-coded Hamiltonian and utilizes SymPy for computing gradients of the
Hamiltonian to obtain the vector field f(y).

• A function to generate the flow sample SMN for a given Hamiltonian system, with
or without noise, used for training the neural networks.

• A class for representing general Runge–Kutta and MIRK methods, in addition
to functions to do implicit integration with the fixed point iterations described in
Section 4.4. All computations are implemented using PyTorch arrays such that
numerical operations are recorded in a computational graph, enabling automatic
differentiation.

• Routines for training neural networks (implemented in PyTorch) using the flow
sample SMN and a numerical integrator Φh,f which could be used as a mean inverse
integrator or as a one-step method.

• Specific routines for running and plotting the results from the experiments de-
scribed in this section.

The modules described above depend are implemented in Python and builds on several
libraries:

• PyTorch by Paszke et al. (2019) is used to implement the neural networks ap-
proximating the vector field fθ. The library allows for efficient computation
of gradients implementing an algorithm for automatic differentiation. It also
contains implementations of several optimization routines, such as L-BFGS and
Adam.

45



46 Chapter 5. Numerical experiments

• NumPy by Harris et al. (2020) is used together with PyTorch to handle vectors,
matrices and tensors.

• SciPy by Virtanen et al. (2020) has implementations of several numerical in-
tegrators and is used for generating the training data, where integration over
the Hamiltonian systems is necessary. Specifically, the Dormand-Prince, Runge–
Kutta method of order p = 8 Dormand and Prince (1980) with step size control,
abbreviated by DOP853 is used.

• SymPy by Meurer et al. (2017) has been useful to do symbolic computations.
Avoiding hard-coding every Hamiltonian for testing, SymPy allows for parsing
a LATEX-coded Hamiltonian into a Python-function operating on NumPy arrays.
Furthermore, it allows for symbolic differentiation and matrix operations useful
for testing and mathematical exploration.

• PyBs by Sundklakk (2015) is a Python library for handling B-series and thus for
checking order conditions and symplecticity of Runge–Kutta integration methods.
This was actively used for exploring different Runge–Kutta methods.

• The discrete gradient algorithm for neural networks and the PyTorch implemen-
tation by Matsubara et al. (2019) including modifications as presented by Eidnes
(2022) were used for the numerical experiments.



47 Chapter 5. Numerical experiments

5.1.2 Numerical integrators used in training
Table 5.1 provides an overview of the different numerical integration methods presented
in the thesis and used in experiments.

Integration method Name in plots Order Symm. Sympl. Inv. expl. Type
Symplectic Euler Symplectic Euler 1 no yes yes PRK
Implicit midpoint Midpoint 2 yes yes yes MIRK
MIRK3 MIRK3 3 no no yes MIRK
MIRK4 MIRK4 4 no no yes MIRK
MIRK4 from midpoint MIRK4 mid 4 yes no yes MIRK
MIRK6 MIRK6 6 no no yes MIRK
MIRK3 Symmetrized MIRK3 sym 4 yes no yes MIRK
MIRK5 Symmetrized MIRK5 sym 6 yes no yes MIRK
Gauss col. s = 2 GC4 4 yes yes no RK
Gauss col. s = 3 GC6 6 yes yes no RK
Discrete gradient 2 DGM2 2 yes no yes DG
Discrete gradient 3 DGM3 3 no no yes DG

Table 5.1: Numerical integration methods used in the experiments. Symm. is short for
symmetric, sympl. for symplectic, col. for collocation. PRK is short for partitioned Runge–
Kutta and DG for discrete gradients.

The midpoint method could be found in (Hairer et al., 2006, p. 30) whereas sym-
plectic Euler is introduced in (Hairer et al., 2006, p. 189). The MIRK methods are
first introduced by Burrage et al. (1994). MIRK3 and MIRK4 is presented in Section
2.5.2. MIRK5 (used in the symmetric method) is found by taking c2 = 0 and c3 = 4

3 ,
whereas for MIRK6 we choose c3 = 1

4 and c4 = 3
4 considering how the methods are

presented by Burrage et al. (1994). The symmetrized methods are presented in Ex-
ample 4.10. The Gauss collocation methods was introduced in Section 2.5.1 and taken
from (Hairer et al., 2006, p. 34). Finally, the discrete gradients methods are found by
Eidnes (2022).

5.1.3 Hamiltonian systems
These definitions follow the report for the specialization project, Noren (2022). The
following four Hamiltonian systems will be included in the numerical experiments:

Definition 5.1 (Pendulum)
Let the pendulum problem be defined setting the mass m = 1, the pendulum length l = 1
and the acceleration due to gravitation to g = 1. Let q = θ denote the angle and p
the angular momentum of the pendulum. The pendulum problem then has a separable
Hamiltonian and is on the form

H(q1, p1) = 1
2p

2
1 + (1− cos(q1)).



48 Chapter 5. Numerical experiments

Definition 5.2 (Double pendulum)
The double pendulum system has a Hamiltonian that is not separable, where

y = [q1, q2, p1, p2]T .

Let qi and pi denote the angle and angular momentum of pendulum i = 1, 2. The
double pendulum is a chaotic system, meaning a small perturbation to the initial value
y0 yields potentially significant changes in the resulting flow. An introduction to chaotic
dynamics could be found in (Goldstein et al., 2001, Chapter 11). The Hamiltonian is
given by

H(q1, q2, p1, p2) =
1
2p

2
1 + p2

2 − p1p2 cos(q1 − q2)
1 + sin2(q1 − q2) − 2 cos(q1)− cos(q2).

Definition 5.3 (Hénon-Heiles)
The Hénon-Heiles model was introduced for describing stellar motion inside the gravi-
tational potential of a galaxy, as described in (Hairer et al., 2006, Chapter I.3). This
Hamiltonian is separable. However, it is a canonical example of a chaotic system and
its properties are discussed more in detail in (Goldstein et al., 2001, Chapter 11). The
Hamiltonian is given by

H(q1, q2, p1, p2) = 1
2(p2

1 + p2
2) + 1

2(q2
1 + q2

2) + q2
1q2 −

1
3q

3
2.

5.1.4 Experimental parameters
The parameters needed in to specify the numerical experiments is given below:

• The analytical Hamiltonian H : Rm → R.

• The integration parameters:

– r > 0, the radii in the ball S0 = {y0 s.t. ‖y0‖2 ≤ r} where initial values for
generating the flow sample SMN are sampled.

– N ∈ Z>0, the number of partitions of the time interval in the flow sample
SMN for training, such that N + 1 is the number of points in time.

– M ∈ Z>0, the number of initial values in the flow sample SMN .
– h > 0, the step length in the training data.
– TOL, the tolerance for terminating the fixed-point iterations of the implicit

integrators.
– nmax iter fp, the maximum number of iterations allowed for the fixed-point

iterations.

• The neural network and optimization parameters:

– L ∈ Z>0, the number of layers.



49 Chapter 5. Numerical experiments

– {ni}L−1
i=1 , the set of dimensions for the linear layers.

– {σi}Li=0, the set of differentiable non-linear activation functions.

– nhistory, the history size of L-BFGS.

– nmax iter the maximum number of iterations per time step.

– nepochs, the number of training epochs.

The neural networks and their corresponding optimization procedure used in the
the numerical experiments below, are defined by the following parameters.

L = 4
σi = tanh

{ni}4
i=0 = {m,nhidden, nhidden, 1}

nhistory = 10
nmax iter = 15

where nhidden is a positive integer specifying the dimension of the hidden layers and
m is the dimension of the ODE such that yi ∈ Rm. The hidden dimension is set to
nhidden = 100 for problems where yi ∈ R2 and to nhidden = 200 for problems where
yi ∈ R4. Furthermore, the implicit integrators are always used with

TOL = 10−14

nmax iter fp = 30.

5.2 Variance in the optimization target

Here, assuming that the vector field f is known, we aim at testing if the two different
approximations to the variance, or the covariance matrices of the optimization target,
provided by Theorem 4.13 and Theorem 4.14, are accurate.

Let yi = ϕih,f (y0) + δi be a random variable since we assume that δi ∼ N (0, σ2I)
for i = 0, · · · , N . In order to check if the variance estimates given by Theorem 4.13
and Theorem 4.14 are accurate, we will derive an empirical estimate of the variance by
sampling. We draw (N + 1) ·K realizations εij from the normal distribution N (0, σ2I)
such that

ỹji = yi + εij

and Ỹ j = [ỹj0, . . . , ỹjn]T ∈ R(N+1)×m, j = 1, · · · , K.

Hence, we can estimate the distribution of the points found when integrating over
ỹji , first by the mean inverse integrator and then using the one-step approach. Let
ΦOS
h,f (ỹ

j
i−1) denote the j-th approximation of y(ti) using the one-step approach, and

ΦMII
h,f (Ỹ j)i denote the j-th approximation of y(ti) using the mean inverse integrator.



50 Chapter 5. Numerical experiments

Assuming we have K samples xj ∈ Rm, for j = 1, . . . , K or as a matrix we have
x ∈ Rm×K . The mean vector x ∈ Rm and the covariance matrix Q ∈ Rm×m of this
sample could be estimated by

x := 1
K

N∑
j=0

xj, (5.1)

Q(x) := 1
K − 1

K∑
j=0

(
xj − x

)(
xj − x

)T
. (5.2)

In the same fashion, we can estimate the covariance matrix of the K approximations
to y(ti) using both integration methods. Let

QOS
i := Q(ΦOS

h,f (yi−1))
QMII
i := Q(ΦMII

h,f (Ỹ )i),

be the sample covariance matrices calculated using K samples where ΦOS
h,f (yi−1) and

ΦMII
h,f (Ỹ )i are matrices in Rm×K . Let

Q̂OS
i and Q̂MII

i ,

be the approximations for large h by Theorem 4.14 and let

Q
OS
i and Q

MII
i ,

denote the approximations where we assume that h is small, by Equation (4.13) and
(4.12). To obtain a more practical measure of variance, instead of reporting the co-
variance matrices, we will compute the spectral radius of the three different covariance
matrix approximations. The spectral radius is the largest absolute value of the eigen-
values:

Definition 5.4 (Spectral radius)
Let λ1, . . . , λn be the eigenvalues of a matrix A ∈ Rn×n. The spectral radius is defined
as

ρ(A) := max{|λ1|, . . . , |λn|}.

Let ρINT
i := ρ(QINT

i ) where INT ∈ {OS,MII}. For testing if the variance estimates
are accurate, we will assume that the vector field f is known and that one trajectory
yi ≈ ϕih,f (y0) is given. Furthermore, normally distributed perturbations are sampled,
to obtain ỹji for i = 0, . . . , N and j = 1, . . . , K. Then, integration over the K trajec-
tories allows for computing the sample variances and the corresponding spectral radii,
and secondly by using the known vector field and its Jacobian f ′, the estimates for
small and large h could be computed.



51 Chapter 5. Numerical experiments

This is first done for fixed step sizes, plotting the of the spectral radii over time
ti = ih for i = 0, . . . , N . Secondly, by letting hk = 1

i
for i = 1, . . . , K, and computed

the mean of spectral radius over one flow by

1
N + 1

N∑
i=0

ρINT
i .

Finally, since the spectral radius of the covariance matrix represents the variance, com-
puting the square root √ρ of this quantity would represent the standard deviation and
would be on the same order of magnitude as the mean, allowing for easier comparison
and analysis.

Algorithm 1 Variance estimates over one trajectory fixed h
Require: Vector field f , a trajectory {yi}Ni=0 with step size h, variance σ2.
Draw εij from N (0, σ2I) to get ỹji = yi + εij
Compute sample variance ρOS

i , ρMII
i from integration over f

Compute the small h estimate ρOS
i , ρMII

i by Equations (4.12) and (4.13).
Compute the large h estimate ρ̂OS

i , ρ̂MII
i by Equations (4.14) and (4.15).

Results running Algorithm 1 on the simple and double pendulum, including the
Henon–Héiles ODE for h = 0.1, 0.5, with σ = 0.05, for a trajectory with N = 6 and
sampling K = 105 samples, could be found in Figure 5.1.

Algorithm 2 Variance estimates with decreasing h
Require: Vector field f , trajectories SjN = {yi}Ni=0 for decreasing step sizes hj, variance
σ2.
for k = 1, . . . , K do
{yi}Ni=0 ← SkN
h← hk
Draw εij from N (0, σ2I) to get ỹji = yi + εij
Compute the mean sample variance ρOS, ρMII from integration over f
Compute the mean small h estimate ρOS, ρMII by Equations (4.12) and (4.13).
Compute the mean large h estimate ρ̂OS, ρ̂MII by Equations (4.14) and (4.15).

end for

Letting againN = 6, σ = 0.05 andK = 105, the experiment described by Algorithm
2 is run for hk =

{
1, 0.9, 0.8, . . . , 0.1

}
for simple and double pendulum. For Henon–

Héiles, we let hk =
{

0.7, 0.6, . . . , 0.1
}
due to the large error when too large step sizes

are used for this chaotic dynamical system. The results are found in Figure 5.2.



52 Chapter 5. Numerical experiments

0 1 2 3 4 5 6

ti

0.0550

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

√
ρ

Simple pendulum, std for h = 0.5

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0 1 2 3 4 5 6

ti

0.0550

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

√
ρ

Simple pendulum, std for h = 0.1

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0 1 2 3 4 5 6

ti

0.06

0.07

0.08

0.09

0.10

√
ρ

Double pendulum, std for h = 0.5

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0 1 2 3 4 5 6

ti

0.0550

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725
√
ρ

Double pendulum, std for h = 0.1

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0 1 2 3 4 5 6

ti

0.06

0.07

0.08

0.09

0.10

0.11

√
ρ

Henon-Héiles, std for h = 0.5

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0 1 2 3 4 5 6

ti

0.0550

0.0575

0.0600

0.0625

0.0650

0.0675

0.0700

0.0725

√
ρ

Henon-Héiles, std for h = 0.1

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

Figure 5.1: Results for the experiment following Algorithm 1. Three different estimates
of the standard deviation √ρ over the flow when integrating over noisy initial values, for
t0, . . . , t6 on the x-axis. The dotted lines represent the estimate assuming h is small, the red
and green lines are the more accurate estimate where h is not negligible, whereas the blue
and orange are estimated by sampling. Simple pendulum (top row), double pendulum (mid
row) and Henon–Héiles (bottom row) tested for h = 0.1 (left column) and h = 0.5 (right
column).



53 Chapter 5. Numerical experiments

0.2 0.4 0.6 0.8 1.0

Step size h

0.055

0.060

0.065

0.070

0.075

0.080

m
ea

n
√
ρ

Simple pendulum, std for decreasing h

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0.2 0.4 0.6 0.8 1.0

Step size h

0.06

0.08

0.10

0.12

0.14

m
ea

n
√
ρ

Double pendulum, std for decreasing h

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Step size h

0.06

0.07

0.08

0.09

0.10

0.11

m
ea

n
√
ρ

Henon-Héiles, std for decreasing h

ρMII
i , samples

ρOS
i , samples

ρ̂MII
i , for big h

ρ̂OS
i , for big h

ρMII
i , for small h

ρOS
i , for small h

Figure 5.2: Results for the experiment following Algorithm 2. Three different estimates
of the standard deviation √ρ of the integration error for decreasing step sizes h. Simple
pendulum (top), double pendulum (mid) and Henon–Héiles (bottom).



54 Chapter 5. Numerical experiments

5.3 Variance after training
This experiment aims at testing how noise in the data is propagated by an integration
method to the learned vector field fθ. In other words: it aims at testing if the mean
inverse integrator could enable learning a vector field more accurately, when there is
noise in the data, compared to using a one-step method.

Let S be a tensor with points in the flow such that S ∈ R(N+1)×M×m and

[S]ij := ϕih,f (yj0)

where i = 0, . . . , N and j = 1, . . . ,M . For approximating the normal distribution, let
∆l ∈ R(N+1)×M×m be a tensor of independent samples εijl from the normal distribution
N (0, σ2I) such that we get multiple perturbed flow samples S̃l by

[S̃l]ij := ϕih,f (yj0) + εijl

⇐⇒ S̃l = S + ∆l,

for l = 1, . . . , L. In order to investigate how different training procedures propagate
noise, the mean inverse integrator and the one-step method will be used to train mul-
tiple neural networks, one each for each integration method, for each perturbed flow
sample S̃l. This gives a set of neural networks {fMII

θ,l , f
OS
θ,l }Ll=1 and the noise propagation

could be studied by integrating over all neural networks from the same initial value,
and study the distribution of the end point. Let the approximated flow end points be
given by

yMII
Ñ,l := Φh,f ◦ · · · ◦ Φh,f (y0), f = fMII

θ,l ,

yOS
Ñ,l := Φh,f ◦ · · · ◦ Φh,f (y0), f = fOS

θ,l ,

where Ñ is the number of integration steps in the testing. However, as we are only
interested in how perturbations of the flow sample S is propagated during neural
network training, the interesting quantity is the error

eMII
Ñ := [yMII

Ñ,1 − yÑ , . . . , y
MII
Ñ,L − yÑ ]T ,

eOS
Ñ := [yOS

Ñ,1 − yÑ , . . . , y
OS
Ñ,L − yÑ ]T ,

where yÑ ≈ ϕÑh,f (y0) is found by integrating over the true vector field f and eMII
Ñ
, eOS
Ñ
∈

RL×m. The magnitude of the covariance of the error is estimated by the sample co-
variance following Equation (5.1) and computing the spectral radius by Definition 5.4,
yielding

ρMII := ρ(Q(eMII
Ñ )),

ρOS := ρ(Q(eOS
Ñ )).

Finally, it is not only the variance in the flow approximation over the learned vector
fields that is relevant, but also the mean, which is found by



55 Chapter 5. Numerical experiments

eMII :=
∥∥∥∥∥ 1
L

L∑
l=1

eMII
Ñ,l

∥∥∥∥∥,
eOS :=

∥∥∥∥∥ 1
L

L∑
l=1

eOS
Ñ,l

∥∥∥∥∥.
In order to study how the noise is propagated, multiple experiments will be conducted
with decreasing step size h in the flow sample S. Furthermore, to make the experiments
more robust, we compute the mean of ρMII, ρOS, eMII and eOS for M̃ different initial
values.

Algorithm 3 Variance after training for decreasing h
Require: Vector field f , trajectories Sk = {yji }

N,M
i=0,j=1 for decreasing step sizes hk,

variance σ2.
for k = 1, . . . , K do

h← hk
S ← Sk

for l = 1, . . . L do
Draw εijl from N (0, σ2I) to get S̃l = S + ∆l

Train neural network minθ L(ΦMII, S̃l, fMII
θ,l )

Train neural network minθ L(ΦOS, S̃l, fOS
θ,l )

end for
Compute mean eMII

N and eOS
N integrating over fMII

θ,l and fOS
θ,l over M initial values.

Compute mean ρMII
k and ρOS

k over M̃ initial values.
Compute mean eMII

k and eOS
k over M̃ initial values.

end for

The experiment in Algorithm 3 is run for L = 10 noisy realizations of the flow
sample with S given by N = 6 partitions, M = 500 different initial values that
are bounded ‖yj0‖ ≤ r with r = 0.7. The neural networks fOS

θ,l are trained with
nepochs = 6, whilst fMII

θ,l are trained 3 epochs with the one-step method and then 3
epochs using the mean inverse integrator. Similar as the previous experiment, we have
hk =

{
1, 0.9, 0.8, . . . , 0.1

}
for the simple pendulum problem. However, for double

pendulum we consider h ∈ [0.7, 0.1] and for Henon–Héiles we let h ∈ [0.5, 0.1], due
too the large error obtained when choosing to large step sizes h for chaotic systems.
For all problems, let σ = 0.05. Finally, we compute the distribution after integrating
M̃ = 25 initial values Ñ = 5 steps. The results for the simple and double pendulum,
in addition to the Henon–Héiles problem can be found in Figure 5.3.

The plots in the figures 5.4, 5.5 and 5.6, visualizes the distribution of points when
integrating over the learned vector fields. The networks are trained in the same manner
as above, with step size h = 0.1 where σ = 0.05. After training the neural networks,
Ñ = 60 integration steps are done, to generate the plots.



56 Chapter 5. Numerical experiments

0.2 0.4 0.6 0.8 1.0

Step size h

0.02

0.03

0.04

0.05

0.06

0.07

0.08

S
td
√
ρ

Simple pendulum, std after training σ = 0.05

Std
√
ρ MII

Std
√
ρ OS

0.2 0.4 0.6 0.8 1.0

Step size h

0.02

0.04

0.06

0.08

0.10

0.12

0.14

M
ea

n
er

ro
r

Simple pendulum, mean error after training σ = 0.05

Mean error MII

Mean error OS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Step size h

0.06

0.08

0.10

0.12

0.14

S
td
√
ρ

Double pendulum, std after training σ = 0.05

Std
√
ρ MII

Std
√
ρ OS

0.1 0.2 0.3 0.4 0.5 0.6 0.7

Step size h

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

M
ea

n
er

ro
r

Double pendulum, mean error after training σ = 0.05

Mean error MII

Mean error OS

0.50.40.30.20.1

Step size h

0.05

0.10

0.15

0.20

0.25

0.30

0.35

S
td
√
ρ

Henon-Héiles, std after training σ = 0.05

Std
√
ρ MII

Std
√
ρ OS

0.50.40.30.20.1

Step size h

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n
er

ro
r

Henon-Héiles, mean error after training σ = 0.05

Mean error MII

Mean error OS

Figure 5.3: Results for the experiment following Algorithm 3. The standard deviation (left
column) and mean (right column) of integration error for training multiple neural networks
on realizations of noisy data, with decreasing step size h. Experiment done for the simple
pendulum (top row), the double pendulum (mid row) and the Henon–Héiles ODE (lower
row).



57 Chapter 5. Numerical experiments

Simple pendulum

−1.0 −0.5 0.0 0.5 1.0

q1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

p 1

Flow sample simple pendulum σ = 0.05

−0.4 −0.2 0.0 0.2 0.4

q1

−0.4

−0.2

0.0

0.2

0.4

p 1

Integration over learned vector field OS

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−0.4 −0.2 0.0 0.2 0.4

q1

−0.4

−0.2

0.0

0.2

0.4

p 1

Integration over learned vector field MII

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

Figure 5.4: The upper plots display one sample of perturbed training data S̃l for the simple
pendulum. The two lower plots display the numerical flow integrating over multiple learned
vector fields trained on noisy data from the simple pendulum with htrain = 0.1 and σ = 0.05.
The gray lines each represent one neural network fθ,l that is trained on one realization of
perturbed data S̃l with the midpoint metod as a one-step integrator (OS, left) and the mean
inverse integrator (MII, right). The orange line is a neural network fθ trained on data that
is not perturbed and the green line is integration over the exact vector field.



58 Chapter 5. Numerical experiments

Henon–Héiles

−0.5 0.0 0.5

q1

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

p 1
Flow sample Henon-Héiles σ = 0.05

−0.5 0.0 0.5 1.0

q2

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

p 2

Flow sample Henon-Héiles σ = 0.05

−0.25 0.00 0.25 0.50 0.75 1.00

q1

−0.4

−0.2

0.0

0.2

0.4

p 1

Integration over learned vector field OS

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−0.4 −0.2 0.0 0.2 0.4

q2

−0.4

−0.2

0.0

0.2

0.4

p 2
Integration over learned vector field OS

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

q1

−0.4

−0.2

0.0

0.2

0.4

p 1

Integration over learned vector field MII

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−0.4 −0.2 0.0 0.2 0.4

q2

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

p 2

Integration over learned vector field MII

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

Figure 5.5: The upper plot displays two projections of one sample of perturbed training data
S̃l for the Henon–Héiles ODE. The four lower plots display the numerical flow integrating
over multiple learned vector fields trained on noisy data with htrain = 0.1 and σ = 0.05.
The gray lines each represent one neural network fθ,l that is trained on one realization of
perturbed data S̃l with the midpoint method as a one-step integrator (OS, mid) and the
mean inverse integrator (MII, lower). The orange line is a neural network fθ trained on data
that is not perturbed and the green line is integration over the exact vector field.



59 Chapter 5. Numerical experiments

Double pendulum

−0.5 0.0 0.5

q1

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

p 1
Flow sample double pendulum σ = 0.05

−1.0 −0.5 0.0 0.5 1.0

q2

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

p 2

Flow sample double pendulum σ = 0.05

−0.4 −0.2 0.0 0.2 0.4 0.6

q1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

p 1

Integration over learned vector field OS

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−1.0 −0.5 0.0 0.5 1.0

q2

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
p 2

Integration over learned vector field OS

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−0.4 −0.2 0.0 0.2 0.4 0.6

q1

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

p 1

Integration over learned vector field MII

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

−0.5 0.0 0.5 1.0

q2

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

p 2

Integration over learned vector field MII

Noise fθ,l

No noise fθ
Exact f

Endpoint fθ,l

Figure 5.6: The upper plots display two projections of one sample of perturbed training
data S̃l for the double pendulum. The four lower plots display the numerical flow integrating
over multiple learned vector fields trained on noisy data with htrain = 0.1 and σ = 0.05.
The gray lines each represent one neural network fθ,l that is trained on one realization of
perturbed data S̃l with the midpoint method as a one-step integrator (OS, mid) and the
mean inverse integrator (MII, lower). The orange line is a neural network fθ trained on data
that is not perturbed and the green line is integration over the exact vector field.



60 Chapter 5. Numerical experiments

5.4 Comparative testing of integrators
In order to compare the different integration methods introduced in the thesis, numer-
ical experiments will be conducted for both the setting of a forward ODE problem, in
addition to inverse Hamiltonian problems.

To verify the order of the integrator, the global integration error will be computed
for decreasing step sizes. Let {hi, Ni}Li=1 be pairs of step sizes hi > 0 and Ni + 1 be
the number of time steps such that hi ·Ni = T is the constant end time T > 0 where
we evaluate the error. The error ei for an integration method Φh,f is found by

ei = ‖yNi − y(T )‖ ∼ hpi ,

for i = 1, . . . , L. Furthermore, the time used by the integration method to compute
yNi , or the running time, by ∆tc = tend − tstart, will be recorded in order to compare
the computational efficiency of the different methods, when they are used to solve the
forward problem. Finally, since we are studying Hamiltonian problems, we will measure
if the Hamiltonian H(y) is preserved along the solution trajectory yi computed by the
numerical integrator. This will be computed by

eHi = |H(y0)−H(yi)|,
for i = 1, . . . , N . Results on order, preservation of Hamiltonian and running time for
integrating the Henon–Héiles Hamiltonian system, could be found in Figure 5.7.

For testing the accuracy of the integrators used in training, we will compute the
mean of the global error over M̃ initial values, when integrating over a learned vector
field fθ that is trained on a flow sample with a step size h. Letting yθ

Ñ
denote the point

found when integrating Ñ steps over the learned vector field fθ, the global error Ñ
steps from initial value y0 could be found by

e(fθ, y0) = ‖yθÑ − y(tÑ)‖,
and let us denote e(fθ) as the mean error over M̃ different initial values.

Algorithm 4 Testing error of learned vector field for decreasing h
Require: Integrator for training Φh,f and trajectories SkN = {yi}Ni=0 for decreasing
step sizes hk
for k = 1, . . . , K do

h← hk

S ← SkN
Ñ ← Nk

test
Train neural network minθ L(Φh,fθ , S, fθ)
Compute mean ek(fθ) integrating Φh,fθ over M̃ initial values, Ñ steps.

end for

In this case, we let hk = {0.5, 0.4, 0.3, 0.2, 0.1}, N = 4 and training onM = 1000
different trajectories with r = 0.9. The neural networks are trained for nepochs = 50,
computing the mean error over M̃ = 10 different initial values for the simple and
double pendulum. The results are found in Figure 5.8, in addition, the time it took to
run the training using the different integrators could be studied in Figure 5.9.



61 Chapter 5. Numerical experiments

10−1

Step size h

10−12

10−10

10−8

10−6

10−4

10−2

‖y
N
−
y
(t
N

)‖

Convergence of error

Midpoint

Symplectic Euler

MIRK3

MIRK4

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

GC6

0 10 20 30 40 50 60
ti

10−14

10−12

10−10

10−8

10−6

10−4

10−2

|H
(y

0
)
−
H

(y
i)
|

Preservation of Hamiltonian H(yi)

Midpoint

Symplectic Euler

MIRK3

MIRK4

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

GC6

101

Number of timesteps Ni

10−2

10−1

100

∆
t c

Running time ∆tc

Midpoint

Symplectic Euler

MIRK3

MIRK4

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

GC6

Figure 5.7: Testing integrators for the forward problem (known vector field). The plots
present convergence of integration error ei (top), the preservation of the Hamiltonian eHi
(mid) and the running time ∆tc in seconds (bottom), for several integrators for the Henon–
Héiles ODE.



62 Chapter 5. Numerical experiments

0.50.40.30.20.1
Test step length h

0.0025

0.0030

0.0035

0.0040
e(
f θ

)

Global error - pendulum σ = 0

DGM2

DGM3

Midpoint

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

0.50.40.30.20.1
Test step length h

0.02

0.04

0.06

0.08

e(
f θ

)

Global error - pendulum σ = 0.05

DGM2

DGM3

Midpoint

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

0.50.40.30.20.1
Test step length h

0.02

0.04

0.06

0.08

e(
f θ

)

Global error - double pendulum σ = 0

DGM2

DGM3

Midpoint

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

0.50.40.30.20.1
Test step length h

0.0

0.5

1.0

1.5

e(
f θ

)

Global error - double pendulum σ = 0.05

DGM2

DGM3

Midpoint

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

Figure 5.8: Results for the experiment following Algorithm 4. The error in the numerical
flow e(fθ) is computed after training neural networks with a range of integrators. The
experiment done on the simple pendulum, double pendulum, with no noise in data (no. 1
and 3 from top) and with noise σ = 0.05 (no. 2 and 4 from top).



63 Chapter 5. Numerical experiments

Simple pendulum Double pendulum
0

100

200

300

400

500

∆
t c

(i
n

se
co

n
d

s)

Running time in training ∆tc

DGM2

DGM3

Midpoint

Symplectic Euler

MIRK6

MIRK3 sym

MIRK5 sym

MIRK4 mid

GC4

Figure 5.9: Running time (in seconds) when the numerical integrators are used to solve the
inverse problem with data from the simple pendulum (left group) and the double pendulum
(right group), or to train a neural network to represent the vector field.



64 Chapter 5. Numerical experiments



Chapter 6

Discussion

This thesis aims at exploring the space of numerical integrators that could be used for
solving inverse problems for ODEs and Hamiltonian ODEs in particular. By identifying
that MIRK methods are explicit for inverse problems, we argue how this large class
of numerical integrators could be efficiently used in solving the optimization problem
over neural network parameters. One key question is thus how to make an informed
decision about which MIRK method or in general which inverse explicit method to
choose. Furthermore, in some cases it might be worthwhile to solve the non-linear
equations required by an integration method that is not inverse explicit, such as GC4
or GC6. The question is then in which cases should this be done.

Comparative testing of integrators
The numerical experiment in Section 5.4 aims at giving answers to these questions.
Studying Figure 5.8 the following could be noted:

• It is difficult to draw any conclusion on the experiments with noisy data (σ =
0.05). It could be that the error introduced from the normally distributed pertur-
bations make the order of the integration method used in training, less significant.

• The MIRK4 mid method has relatively low error for large step sizes when there
is not any noise in the data.

• The discrete gradient methods have relatively better performance for smallest
step size, (h = 0.1).

However, all these remarks should only be considered as steppingstones for generat-
ing hypotheses for further experiments, and not as conclusive results. Furthermore, it
should be noted that we exclusively study Hamiltonian systems in this thesis. Hence, it
could be that geometric properties are more important in this setting, than order. Con-
sider for instance Eidnes (2022), which study a port-Hamiltonian system and observe
improved accuracy with increasing order (and symmetry) of the methods.

The results of using the presented Runge–Kutta methods for solving the forward
problem of Henon-Héiles are found in Figure 5.7. Here, both GC4 and GC6 has

65



66 Chapter 6. Discussion

lower running time than the MIRK methods, even though the system of equations
has dimension sm in comparison to dimension m for the MIRK methods. However,
when the integrators are used in training, the running time for GC4 is considerably
longer since it requires backpropagation of gradients through the fixed point iterations
considering Figure 5.9. Studying the error in the preservation of the Hamiltonian
H(y) and the convergence of the integration error, the MIRK4 method and GC4 has a
performance that is more similar to each other than to MIRK4 mid, which was derived
by modifying GC4. It could be a subject for future research to investigate whether
this is due to some unknown shared features of MIRK4 and GC4.

Sensitivity to noise before and after training
The numerical experiments done in Section 5.2 and 5.3 compare how the mean inverse
integrator and a regular one-step integration method differ in their sensitivity to noise
in the data. This is first studied by assuming that the vector field is known and then
examining how the two different approaches impact the distribution of the optimization
target.

Then, several neural networks were trained on perturbed flow samples. By studying
the distribution of points in the numerical flow obtained by integrating over these
neural networks, we measured how noise was propagated by different integrators in
the training. Consider first the experiments studying the variance in the optimization
target:

• The covariance approximation for larger step size h presented in Theorem 4.14
corresponds well to the covariance obtained by sampling (when measuring the
spectral radius) which could be studied in Figure 5.1 and 5.2.

• The approximation assuming small step size h, presented in Theorem 4.13, seems
to be reasonable when h < 0.1 for all experiments.

• The double pendulum and Henon–Héiles are chaotic systems and more sensi-
tive to noise. For instance, it is reasonable to assume that ‖f ′(y)‖ is larger for
the double than for the simple pendulum. This could explain what is seen in
Figure 5.1 and 5.2, where the standard deviation is much larger for the chaotic
systems than for the simple pendulum. For the chaotic systems, it is clear that
a significantly smaller step size h is needed for the mean inverse integrator to
be expected to reduce the variance in the optimization target, compared to the
simple pendulum.

• Studying the plots in the left column of Figure 5.1, the standard deviation mea-
sured by √ρ for the mean inverse integrator has a significantly more convex
shape, than the one-step method. This means that the approximations on the
beginning and end of the trajectory will have larger variance than the points in
the center of the trajectory. One way to (potentially) reduce the variance in the
beginning and the end of the trajectory could be to reduce the number of different
numerical integration trajectories included in the mean inverse integrator.



67 Chapter 6. Discussion

Secondly, the following could be noted about the experiment measuring the distribution
of points in the flow after training neural networks on perturbed data.

• The mean inverse integrator yields lower mean error and standard deviation for
sufficiently small step size h for all experiments found in Figure 5.3. However,
when the step size is large, the mean inverse integrator has larger error and
standard deviation. Hence, the performance of this method is highly dependent
on the regularity of the underlying ODE and the sampling frequency or the step
size h. The chaotic systems require the step size to be smaller, compared to
the simple pendulum problem, in order to get a reduction in error and standard
deviation.

• This is perhaps more clearly illustrated in the figures 5.4, 5.5 and 5.6, where a
small error early in the trajectory yields a much larger deviation at a later point
in time, for the Henon–Héiles system and the double pendulum, than for the
simple pendulum ODE.

As a general remark, experiments involving neural networks are stochastic. This is due
to the random initialization of the parameters θ, meaning the weight matrices Wi and
bias vectors bi. Since the L-BFGS optimization algorithm is used instead of stochastic
gradient descent or Adams, the training procedure itself is less stochastic. Ideally the
experiments involving neural network training should have been re-run multiple times
with different initialization to ensure robust results and to quantify just how stochastic
the experimental results are.



68 Chapter 6. Discussion



Chapter 7

Conclusion

By describing the inverse explicit property of numerical integrators and identifying the
class of mono-implicit Runge–Kutta methods as inverse explicit, the toolbox for inverse
ODE problems has been expanded. Unfortunately, as proved in this thesis, the highest
order of a symplectic, MIRK method is p = 2, which could be limiting for particular
types of problems. However, as mentioned in the discussion following the numerical
experiments, it is challenging to demonstrate any consistent results that could guide
the choice of numerical integrator for a specific inverse ODE problem. It is hard to
show consistently to what extent symmetry, symplecticity or even the order of the
integration method gives improved training for the problems studied in this thesis.

The mean inverse integrator, on the other hand, is introduced as a method demon-
strating that a more radical rethinking of how a numerical integrator could be used,
could yield an optimization problem less sensitive to perturbations in the data. This,
again could lead to learning a more accurate approximation of the vector field, but
only for sufficiently regular problems and for sufficiently small step sizes in time h.
Hence, this method should be used with some caution.

The increasing amount of data produced by various types of sensors and the grow-
ing number of autonomous systems calls for robust algorithms for prediction and con-
trol of dynamical systems. The energy-based Hamiltonian and Lagrangian equations
from classical mechanics paired with methods from deep learning could thus be helpful.
However, it is important to pay proper attention to how these equations are discretized
in time and how the optimization problems for solving the inverse problems are struc-
tured. This thesis provides some guidance, as well as raising a series of new questions
on how to solve these problems in the best way.

Multiple directions could be followed for expanding on this research. More thor-
ough analysis could be done to describe the properties of the mean inverse integrator.
Consider for instance deriving an expression for the integration error by accumulat-
ing local error from taking compositions of integration steps, or finding the optimal
weights for summing over the different numerical trajectories. More sophisticated nu-
merical experiments on a greater range of dynamical system could perhaps yield more
consistent results on the question of which integration method to choose for a specific
inverse ODE problem. Furthermore, trying to learn the dynamics of more intricate
and higher dimensional systems, such as the oscillatory Fermi–Pasta–Ulam–Tsingou

69



70 Chapter 7. Conclusion

problem (Hairer et al., 2006, Ch. I.5.1), would be an interesting endeavor.



Bibliography

Bai, S., Kolter, J.Z., Koltun, V., 2019. Deep equilibrium models. Advances in Neural
Information Processing Systems 32.

Benning, M., Celledoni, E., Ehrhardt, M.J., Owren, B., Schönlieb, C.B., 2019. Deep
learning as optimal control problems: models and numerical methods. Journal of
Computational Dynamics 6, 171–198.

Burrage, K., Chipman, F., Muir, P.H., 1994. Order results for mono-implicit Runge–
Kutta methods. SIAM journal on numerical analysis 31, 876–891.

Celledoni, E., Leone, A., Murari, D., Owren, B., 2022. Learning Hamiltonians of
constrained mechanical systems. arXiv preprint arXiv:2201.13254 .

Chartier, P., Hairer, E., Vilmart, G., 2007. Numerical integrators based on modified
differential equations. Mathematics of computation 76, 1941–1953.

Chen, R., Tao, M., 2021. Data-driven prediction of general Hamiltonian dynamics via
learning exactly-symplectic maps, in: International Conference on Machine Learn-
ing, PMLR. pp. 1717–1727.

Chen, R.T., Rubanova, Y., Bettencourt, J., Duvenaud, D.K., 2018. Neural ordinary
differential equations. Advances in neural information processing systems 31.

Chen, Y., Matsubara, T., Yaguchi, T., 2021. Neural Symplectic Form: Learning Hamil-
tonian Equations on General Coordinate Systems. Advances in Neural Information
Processing Systems 34.

Chen, Z., Zhang, J., Arjovsky, M., Bottou, L., 2019. Symplectic recurrent neural
networks. arXiv preprint arXiv:1909.13334 .

David, M., Méhats, F., 2021. Symplectic Learning for Hamiltonian Neural Networks.
arXiv preprint arXiv:2106.11753 .

Dormand, J., Prince, P., 1980. A family of embedded Runge–Kutta formulae. Jour-
nal of Computational and Applied Mathematics 6, 19–26. URL: https://www.
sciencedirect.com/science/article/pii/0771050X80900133, doi:https://doi.org/10.
1016/0771-050X(80)90013-3.

Duong, T., Atanasov, N., 2021. Hamiltonian-based neural ODE networks on the SE
(3) manifold for dynamics learning and control. arXiv preprint arXiv:2106.12782 .

71

https://www.sciencedirect.com/science/article/pii/0771050X80900133
https://www.sciencedirect.com/science/article/pii/0771050X80900133
http://dx.doi.org/https://doi.org/10.1016/0771-050X(80)90013-3
http://dx.doi.org/https://doi.org/10.1016/0771-050X(80)90013-3


72 Chapter 7. Conclusion

Eidnes, S., 2022. Order theory for discrete gradient methods. BIT Numerical Mathe-
matics , 1–49.

Eidnes, S., Stasik, A.J., Sterud, C., Bøhn, E., Riemer-Sørensen, S., 2022. Port-
Hamiltonian Neural Networks with State Dependent Ports URL: https://arxiv.org/
abs/2206.02660, doi:10.48550/ARXIV.2206.02660.

Elkabetz, O., Cohen, N., 2021. Continuous vs. discrete optimization of deep neural
networks. Advances in Neural Information Processing Systems 34.

Enright, W.H., Muir, P.H., 1986. Efficient classes of Runge–Kutta methods for two-
point boundary value problems. Computing 37, 315–334.

Finzi, M., Wang, K.A., Wilson, A.G., 2020. Simplifying Hamiltonian and Lagrangian
neural networks via explicit constraints. arXiv preprint arXiv:2010.13581 .

Goldstein, H., Poole, C., Safko, J., 2001. Classical Mechanics. 3 ed., Addison Wesley.

Gonzalez, O., 1996. Time integration and discrete Hamiltonian systems. Journal of
Nonlinear Science 6, 449–467.

Goodfellow, I., Bengio, Y., Courville, A., 2016. Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

Greydanus, S., Dzamba, M., Yosinski, J., 2019. Hamiltonian Neural Networks. CoRR
abs/1906.01563. URL: http://arxiv.org/abs/1906.01563, arXiv:1906.01563.

Haber, E., Ruthotto, L., 2017. Stable architectures for deep neural networks. Inverse
problems 34, 014004.

Hairer, E., Lubich, C., Wanner, G., 2006. Geometric Numerical Integration: Structure-
Preserving Algorithms for Ordinary Differential Equations; 2nd ed. Springer, Dor-
drecht. doi:10.1007/3-540-30666-8.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern, R., Picus, M.,
Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del Río, J.F., Wiebe,
M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser,
W., Abbasi, H., Gohlke, C., Oliphant, T.E., 2020. Array programming with
NumPy. Nature 585, 357–362. URL: https://doi.org/10.1038/s41586-020-2649-2,
doi:10.1038/s41586-020-2649-2.

Jin, P., Zhang, Z., Zhu, A., Tang, Y., Karniadakis, G.E., 2020. SympNets: Intrin-
sic structure-preserving symplectic networks for identifying Hamiltonian systems.
Neural Networks 132, 166–179.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980 .

https://arxiv.org/abs/2206.02660
https://arxiv.org/abs/2206.02660
http://dx.doi.org/10.48550/ARXIV.2206.02660
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://arxiv.org/abs/1906.01563
http://arxiv.org/abs/1906.01563
http://dx.doi.org/10.1007/3-540-30666-8
https://doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2


73 Chapter 7. Conclusion

Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y., 2011. On opti-
mization methods for deep learning, in: ICML.

Leimkuhler, B., Reich, S., 2005. Simulating Hamiltonian Dynamics. Cambridge Mono-
graphs on Applied and Computational Mathematics, Cambridge University Press.
doi:10.1017/CBO9780511614118.

Matsubara, T., Ishikawa, A., Yaguchi, T., 2019. Deep energy-based modeling of
discrete-time physics. arXiv preprint arXiv:1905.08604 .

McLachlan, R.I., Quispel, G.R.W., Robidoux, N., 1999. Geometric integration using
discrete gradients. Philosophical Transactions of the Royal Society of London. Series
A: Mathematical, Physical and Engineering Sciences 357, 1021–1045.

Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., Kirpichev, S.B., Rocklin, M., Ku-
mar, A., Ivanov, S., Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E.,
Muller, R.P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry,
M.J., Terrel, A.R., Roučka, v., Saboo, A., Fernando, I., Kulal, S., Cimrman, R.,
Scopatz, A., 2017. SymPy: symbolic computing in Python. PeerJ Computer Science
3, e103. URL: https://doi.org/10.7717/peerj-cs.103, doi:10.7717/peerj-cs.103.

Nocedal, J., Wright, S.J., 1999. Numerical optimization. Springer.

Noren, H., 2022. Specialization project in industrial mathematics: Preserving invari-
ants in inverse problems. Unpublished .

Offen, C., Ober-Blöbaum, S., 2022. Symplectic integration of learned Hamiltonian
systems. Chaos: An Interdisciplinary Journal of Nonlinear Science 32, 013122.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., et al., 2019. PyTorch: An imperative style,
high-performance deep learning library. Advances in neural information processing
systems 32, 8026–8037.

Poli, M., Massaroli, S., Yamashita, A., Asama, H., Park, J., 2020. Hypersolvers:
Toward fast continuous-depth models. Advances in Neural Information Processing
Systems 33, 21105–21117.

Quarteroni, A., Sacco, R., Saleri, F., 2010. Numerical mathematics. volume 37.
Springer Science & Business Media.

Rackauckas, C., Ma, Y., Martensen, J., Warner, C., Zubov, K., Supekar, R., Skin-
ner, D., Ramadhan, A., Edelman, A., 2020. Universal differential equations
for scientific machine learning URL: http://dx.doi.org/10.21203/RS.3.RS-55125/V1,
doi:10.21203/rs.3.rs-55125/v1.

Raissi, M., Perdikaris, P., Karniadakis, G.E., 2019. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations. Journal of Computational physics 378, 686–707.

http://dx.doi.org/10.1017/CBO9780511614118
https://doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.7717/peerj-cs.103
http://dx.doi.org/10.21203/RS.3.RS-55125/V1
http://dx.doi.org/10.21203/rs.3.rs-55125/v1


74 Chapter 7. Conclusion

Sanz-Serna, J.M., Calvo, M.P., 2018. Numerical Hamiltonian problems. Courier Dover
Publications.

Shi, B., Du, S.S., Su, W., Jordan, M.I., 2019. Acceleration via symplectic discretization
of high-resolution differential equations. Advances in Neural Information Processing
Systems 32.

Sundklakk, H.S., 2015. A Library for Computing with Trees and B-Series. Master’s
thesis. NTNU.

Van Der Schaft, A., Jeltsema, D., 2014. Port-Hamiltonian systems theory: An intro-
ductory overview. Foundations and Trends in Systems and Control 1, 173–378.

Van Loan, C.F., 2000. The ubiquitous kronecker product. Journal of computational
and applied mathematics 123, 85–100.

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett,
M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Lar-
son, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors, 2020.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods 17, 261–272. doi:10.1038/s41592-019-0686-2.

Wanner, G., Hairer, E., 1996. Solving ordinary differential equations II. volume 375.
Springer Berlin Heidelberg.

Weinan, E., 2017. A proposal on machine learning via dynamical systems. Communi-
cations in Mathematics and Statistics 1, 1–11.

Williams, R.J., Zipser, D., 1989. A learning algorithm for continually running fully
recurrent neural networks. Neural computation 1, 270–280.

Yoshida, H., 1990. Construction of higher order symplectic integrators. Physics letters
A 150, 262–268.

Zhong, Y.D., Dey, B., Chakraborty, A., 2020. Dissipative SymODEN: Encoding Hamil-
tonian dynamics with dissipation and control into deep learning. arXiv preprint
arXiv:2002.08860 .

Zhu, A., Jin, P., Tang, Y., 2020. Deep Hamiltonian networks based on symplectic
integrators. arXiv preprint arXiv:2004.13830 .

http://dx.doi.org/10.1038/s41592-019-0686-2


N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n 

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Håkon Noren

Numerical integration in inverse
problems for ordinary differential
equations

With application to Hamiltonian systems with
noise in the observed data

Master’s thesis in Industrial Mathematics
Supervisor: Elena Celledoni
Co-supervisor: Sølve Eidnes
June 2022

M
as

te
r’s

 th
es

is


	Preface
	Abstract
	Samandrag
	Introduction
	Structure of the thesis
	Relation to the specialization project

	Geometric numerical integration
	Introduction to numerical integration
	Conservation of first integrals
	Hamiltonian systems
	Symplectic integration
	Runge–Kutta methods
	Implicit integration schemes
	Discrete gradients

	Deep learning and numerical integration
	Neural networks
	Scientific works on ODEs and deep learning

	Integration methods for inverse ODE problems
	Inverse ODE problems
	Inverse explicit integration methods
	Symmetric MIRK methods
	Solving implicit equations in training
	Structure of integration in training
	Integrators for noisy inverse problems

	Numerical experiments
	Experimental setup
	Variance in the optimization target
	Variance after training
	Comparative testing of integrators

	Discussion
	Conclusion
	Bibliography

