
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Vilde Haugsbakken Heggen

Functional Encryption for Inner
Product Functionality

Explanation and Applications

Master’s thesis in Industrial Mathematics
Supervisor: Jiaxin Pan
May 2022M

as
te

r’s
 th

es
is

Vilde Haugsbakken Heggen

Functional Encryption for Inner
Product Functionality

Explanation and Applications

Master’s thesis in Industrial Mathematics
Supervisor: Jiaxin Pan
May 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

1

Abstract

The contents of this work is constructing functional encryption schemes for less general
functionalities, which are still expressive enough for practical scenarios. This paper is
restricted to only using inner product as functional. Encrypting a vector x using a
vector y as a key, will only reveal ⟨x,y⟩. A functional encryption scheme for inner
product functionality will be presented, and a proof for its security, which is based on
the decisional Diffie-Hellman assumption. Further I will generalize this scheme, building
its security on the matrix Diffie-Hellman assumptions.

Contents

1 Introduction 3
1.1 Functional Encryption . 3
1.2 Motivation . 3
1.3 Further Directions . 4

2 Preliminaries 5
2.1 Notation . 5

2.1.1 Symbols . 5
2.1.2 Overscore and Underscore Notation 5
2.1.3 Implicit Representation . 5

2.2 Definitions . 6

3 Functional Encryption Scheme based on DDH 10
3.1 Construction . 10

3.1.1 Correctness . 11
3.2 Security . 11

4 Matrix Diffie-Hellman Assumptions 14
4.1 Definition . 14
4.2 Examples . 15

4.2.1 The DDH Assumption . 15
4.2.2 D3,2-MDDH Assumptions . 15
4.2.3 k − Lin Assumption . 16
4.2.4 k − Casc Assumption . 17

5 Functional Encryption Scheme based on MDDH 18
5.1 Construction . 18

5.1.1 Correctness . 19
5.2 Security . 20

2

Chapter 1

Introduction

1.1 Functional Encryption

In functional encryption a message is encrypted in the same way as for public key en-
cryption, using a public key. But decryption for a functional encryption scheme differs
from a public key encryption scheme, in the way that in public key encryption the whole
message is retrieved by the receiver when decrypting. In functional encryption, only the
functional value of the message is retrieved by the receiver.
Functional encryption is interesting since it allows users to control the amount of infor-
mation retrieved by a given receiver. Decryption does no longer have to be an all or
nothing affair, since we can decrypt only some of the information. Functional encryption
could for example be of great use if one wanted to filtrate spam email, since one would
want to leak as little information as possible from the email, just enough to decide if it
is most likely spam or not.

1.2 Motivation

A great motivation of this paper is constructing functional encryption schemes for less
general functionalities, which are still expressive enough for practical scenarios. This
paper is therefore restricted to only using inner product as functional.
The work of this paper is based on Simple Functional Encryption Schemes for Inner
Products, [1]. Further this work generalizes one of the schemes, such that the security
is based on the matrix Diffie-Hellman (MDDH) assumptions. The matrix Diffie-Hellman
assumptions are a generalization of the decisional Diffie-Hellman assumption, and will
give various assumptions depending on the matrix distribution. In this paper I use
the uniform distribution to define a generalized functional encryption scheme for inner
product functionality, such that its security is based on the Uk+1,k−MDDH assumption.

3

4 CHAPTER 1. INTRODUCTION

1.3 Further Directions

The functional encryption schemes introduced in this paper are proven to fulfill the
security notion; selective indistinguishability against chosen plaintext attacks. Further
directions from this paper could be also proving non-selective security, which is a stronger
security notion.

Chapter 2

Preliminaries

2.1 Notation

2.1.1 Symbols

“negl(λ)“ means neglibile given a security parameter λ.
“≈c“ means computationally indistinguishable. The symbol states that no efficient al-
gorithm can tell the difference between the right and the left side of the symbol, except
with small probability.

“
$←−“ means the element on the left side of this symbol is randomly drawn from the set

on the right side.

2.1.2 Overscore and Underscore Notation

Let l > k for l, k ∈ N. These are constants and usually small numbers. For a l×k-matrix
A with rank k, we define A as the first k rows of A and A as the last l − k rows.
We can also define this notation for a vector in conjunction to a matrix with rank k. For
a vector a of dimension l, let a be the first k elements and a be the last l − k.

2.1.3 Implicit Representation

In this work a cyclic group will often be considered. The elements of such a group can
be represented implicit. This notation is introduced in [2]. This implicit representation
is defined below.

Let G be a cyclic group of order q with generator g. For an element a ∈ Zq, we de-
fine [a] = ga as the implicit representation of a in the group G.
A similar definition can be given for a vector a ∈ Zk

q of an arbitrary dimension k. The

5

6 CHAPTER 2. PRELIMINARIES

implicit representation of such a vector is

[a] =


a1
a2
...
ak

 =


ga1

ga2
...

gak

 .

For a matrix A = (ai,j) ∈ Zn×m
q we define

[A] =


ga1,1 ga1,2 ... ga1,m

ga2,1 ga2,2 ... ga2,m
...

gan,1 gan,2 ... gan,m


as the implicit representation of A in G.

2.2 Definitions

Definition 2.2.1. PPT

The notion PPT is short for probabilistic polynomial-time. This is a complexity class. If

a decision problem is PPT, there exists an algorithm that makes random decisions which

can solve the problem in polynomial time.

Definition 2.2.2. Group Generator, GGen

A group generator, GGen, is a PPT algorithm that outputs G = (G, g, q)
$←− GGen(1λ),

where G is a cyclic group of prime-order q (2λ−1 ≤ q ≤ 2λ) and g is a generator of G. λ

is a security parameter.

Definition 2.2.3. Public-Key Encryption Scheme

A public-key encryption scheme (PKE) consists of three PPT algorithms:

1. Gen(1λ) which outputs public and secret keys, (pk, sk), for a security parameter λ

2. Enc(pk,m) which inputs a public key and a message from the allowed message space,

and outputs a ciphertext

3. Dec(sk, c) inputs a chipertext and a secret key and outputs a corresponding message.

Correctness of the PKE requires that for all (pk, sk)← Gen(1λ) and all messages m,

Dec(sk, Enc(pk,m)) = m except with negligible probability.

2.2. DEFINITIONS 7

Definition 2.2.4. Functionality

A functionality F defined over (K,X) is a function F : K ×X → Σ ∪ {⊥}, where K is

the key space, X the message space and Σ is the output space and ⊥ is a special string

not contained in Σ. The functionality is undefined when either the key is not in the key

space or the message not in the message space.

Definition 2.2.5. Inner Product

The inner product of two vectors x =


x1

...

xl

 and y =


y1
...

yl

 in some field, is defined as

⟨x,y⟩ =
∑
i∈|l|

xi · yi.

In this paper the inner product is the same as the dot product.

Definition 2.2.6. Functional Encryption Scheme

A functional encryption scheme FE for functionality F is a tuple

FE = (Setup,KeyDer,Encrypt,Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public and master secret keys (mpk,msk) for security parameter λ;

2. KeyDer(msk, k), on input a master secret key, msk, and a key k ∈ K outputs secret

key skk;

3. Encrypt(mpk, x), on input public key mpk and message x ∈ X outputs ciphertext Ct;

4. Decrypt(mpk,Ct, skk) outputs σ ∈ Σ ∪ {⊥}.

We make the following correctness requirement: for all (mpk,msk) ← Setup(1λ), all

k ∈ K and x ∈ X, for skk ← KeyDer(msk, k) and Ct ← Encrypt(mpk, x), we have

that Decrypt(mpk,Ct, skk) = F (k, x), whenever F (k, x) ̸=⊥, except with negligible prob-

ability.

Definition 2.2.7. Code-Based Games

In this paper I will use code-based game-playing to define security notions. Such games

consist of a main procedure and the procedures of some oracles. These procedures varies

according to the security notion. The game is played by executing the main procedure and

responding to the oracle queries of the adversary. The advantage is defined accordingly.

Definition 2.2.8. The DDH Assumption

Let G be a cyclic group of order q with generator g. Let a, b
$←− Zq be independently

8 CHAPTER 2. PRELIMINARIES

chosen. The decisional Diffie-Hellman assumption states that

(ga, gb, gab) ≈c (g
a, gb, gc) (2.1)

for c
$←− Zq.

Definition 2.2.9. The DDH assumption holds relative to GGen if for all PPT algorithms

A, AdvddhGGen,A(λ) is negligible in λ, where λ is a security parameter. The games of figure

2.1 is used to define the advantage AdvddhGGen,A(λ).

For an adversary A playing the games of figure 2.1, the advantage AdvddhGGen,A(λ) will

be defined as

AdvddhGGen,A(λ) = Adv(REALA, RANDA) = |Pr[REALA =⇒ 1]−Pr[RANDA =⇒ 1]|.

Game REAL

G $←− GGen(1λ)

x, y
$←− Zq

β
$←− A(G, X = gx, Y = gy, Z = gxy)

return β

Game RAND

G $←− GGen(1λ)

x, y, z
$←− Zq

β
$←− A(G, X = gx, Y = gy, Z = gz)

return β

Figure 2.1: Game REAL/RAND

Definition 2.2.10. Ul,k Matrix Distribution

A matrix from the matrix distribution Ul,k, is a matrix with l many rows and k many

columns. It has rank k and all elements are drawn uniformly random from Zq.

Definition 2.2.11. IND-FE-CPA/s-IND-FE-CPA Security

For a functional encryption scheme FE = (Setup,KeyDer,Encrypt,Decrypt) for func-

tionality F , defined over (K,X), one can define security against chosen plaintext attacks

(IND-FE-CPA security). Consider the games in figure 2.2. The advantage of an adver-

sary A can be defined relative to the games as

Advind-fe-cpaFE,A (λ) =

∣∣∣∣Pr[IND-FE-CPAA =⇒ 1]− 1

2

∣∣∣∣.
We say that FE is IND-FE-CPA secure if the advantage Advind-fe-cpaFE,A (λ) is negligible. The

IND-FE-CPA security game is presented in figure 2.2.

2.2. DEFINITIONS 9

Game IND-FE-CPA(λ, k)

(mpk,msk)
$←− Setup(1λ)

x0, x1 ← A

V ← ∅

β
$←− {0, 1}

β̂
$←− AKeyDer(·),Encrypt(·,·)(mpk)

If ∃k ∈ V s.t. F (k, x0) ̸= F (k, x1):

return false

return β̂ = β

Oracle KeyDer(k)

V ← V ∪ {k}

skk
$←− KeyDer(msk, k)

return skk

Oracle Encrypt(x0, x1)

Ct
$←− Encrypt(mpk, xβ)

return Ct

Figure 2.2: Game IND-FE-CPA

We can also define selective security against chosen plaintext attacks for a functional

encryption scheme (s-IND-FE-CPA security). This is the situation when the challenge

messages x0 and x1 have to be chosen before hand.

Game s-IND-FE-CPA(λ, k, x0, x1)

(mpk,msk)
$←− Setup(1λ)

V ← ∅

β
$←− {0, 1}

β̂
$←− AKeyDer(·),Encrypt(·,·)(mpk)

If ∃k ∈ V s.t. F (k, x0) ̸= F (k, x1):

return false

return β̂ = β

Oracle KeyDer(k)

V ← V ∪ {k}

skk
$←− KeyDer(msk, k)

return skk

Oracle Encrypt(x0, x1)

Ct
$←− Encrypt(mpk, xβ)

return Ct

Figure 2.3: Game s-IND-FE-CPA

A functional encryption scheme is s-IND-FE-CPA secure if the advantage

Advs-ind-fe-cpaFE,A (λ) =

∣∣∣∣Pr[s-IND-FE-CPAA =⇒ 1]− 1

2

∣∣∣∣
is negligible. The s-IND-FE-CPA security game is presented in figure 2.3.

Chapter 3

Functional Encryption Scheme based

on DDH

In this chapter a functional encryption scheme for the inner product functionality is
presented. The security of the scheme is based on the decisional Diffie-Hellman (DDH)
assumption. A proof that the scheme is s-IND-FE-CPA secure will be given.

3.1 Construction

Let IP = (Setup,KeyDer,Encrypt,Deckrypt) be the functional encryption scheme for
inner product functionality. The 4 algorithms are defined as in the figure below.

Setup(1λ, 1l)

(G, q, g)
$←− GGen(1λ)

s = (s1, ..., sl)
T $←− Zl

q

mpk = (hi = [si])i∈|l|

msk = s

return (mpk,msk)

KeyDer(msk,y = (y1, ..., yl)
T ∈ Zl

q)

return sky = ⟨y, s⟩

Encrypt(mpk,x = (x1, ..., xl)
T ∈ Zl

q)

r
$←− Zq

[ct0] = [r] and

[cti] = [si · r + xi] for i ∈ |l|

return [Ct] = [ct0, (cti)i∈|l|]

Decrypt(mpk, [Ct], sky)

return
∏

i∈|l|
[yi·cti]
[sky ·ct0]

Figure 3.1: FE Scheme for Inner Product Functionality

The encryption of this functional encryption scheme is just the same as in the public
key encryption scheme ElGamal [5]. The scheme differs from a public key encryption
scheme, since a user secret key, sky, is computed and used in the decryption.

10

3.2. SECURITY 11

3.1.1 Correctness

For all (mpk,msk)← Setup(1, 1l), for all y,x ∈ Zl
q, sky ← KeyDer(msk,y) and [Ct]←

Encrypt(mpk,x) we have that

Decrypt(mpk, [Ct], sky) =

∏
i∈|l|[yi · cti]
[sky · ct0]

=

[(∑
i∈|l|

yi · cti
)
− sky · ct0

]

=

[(∑
i∈|l|

yi(si · r + xi)

)
−

(∑
i∈|l|

yi · si
)
r

]

=

[∑
i∈|l|

yi · si · r +
∑
i∈|l|

yi · xi −
∑
i∈|l|

yi · si · r
]

=

[∑
i∈|l|

yi · xi

]
=

[
⟨y,x⟩

]
.

Notice that decrypting an encrypted message x will only reveal the inner product of
x and the key y in the group G.

3.2 Security

Theorem 3.2.1. Under the DDH assumption, the above IP scheme is s-IND-FE-CPA

secure. In particular, for an adversary A there exists an adversary B with roughly the

same running time such that

Advs-ind-fe-cpaFE,A (λ) = AdvddhGGen,B(λ).

Proof:
For the proof consider the three games of figure 3.2.

12 CHAPTER 3. FUNCTIONAL ENCRYPTION SCHEME BASED ON DDH

Game G0/G1/G2

(G, q, g)
$←− GGen(1λ)

a
$←− Zq

s′ = x1 − x0

r
$←− Zl

q

hi = [a · s′i + ri]

mpk = (hi)i∈|l|

V ← ∅

β
$←− {0, 1}

β̂
$←− AKeyDer(·),Encrypt(·,·)(mpk)

If ∃y ∈ V s.t. ⟨y,x0⟩ ≠ ⟨y,x1⟩:

return false

return β̂ = β

Oracle KeyDer(y)

V ← V ∪ {y}

return sky = ⟨r,y⟩

Oracle Encrypt(x0,x1)

b
$←− Zq

z
$←− Zl

q

[ct0] = [b]

[cti] = [(a · s′i + ri) · b+ xβ,i] //G0

[cti] = [zi + xβ,i] //G1

[cti] = [zi] //G2

return [Ct] = [ct0, (cti)i∈|l|]

Figure 3.2: Game G0/G1/G2

Notice that we have the restriction ⟨y,x0⟩ = ⟨y,x1⟩ for the key y when given the
messages x0 and x1. This restriction causes y ∈ {x1−x0}⊥, where {x1−x0} is the space
spanned by x1−x0. The master secret key will in this case be a ·s′+r, where s′ = x1−x0.
Hence simulation of sky = ⟨r,y⟩ is of the same form as ⟨msk,y⟩.

By definition 2.2.11, G0 is the s-IND-FE-CPA-game for the scheme IP . Hence

Pr[s-IND-FE-CPAA =⇒ 1] = Pr[GA
0 =⇒ 1].

G1 differs from G0 only in how [cti] is computed. In G1, z
$←− Zl

q is used in the encryption.
We state the following lemma.

Lemma 3.2.2. There exists an adversary B with roughly the same running time as A

such that

Adv(GA
0 , G

A
1) = AdvddhGGen,B(λ).

G2 is exactly the same as G1 except that in G2 we do not encrypt the message, only
the random vector z. This is just a conceptual change. Hence the distribution of [Ct]
does not change and therefore

Pr[GA
1 =⇒ 1] = Pr[GA

2 =⇒ 1].

In G2, [Ct] = [b, (zi)i∈|l|] which is independent of the challenge bit β. Hence

Pr[GA
2 =⇒ 1] =

1

2
.

3.2. SECURITY 13

Combining the equations derived above we obtain

Pr[s− IND − FE − CPAA =⇒ 1] = Pr[GA
0 =⇒ 1]

= Pr[GA
1 =⇒ 1] + AdvddhGGen,B(λ)

= Pr[GA
2 =⇒ 1] + AdvddhGGen,B(λ)

=
1

2
+ AdvddhGGen,B(λ),

which proves the theorem since Advs-ind-fe-cpaFE,A (λ) =

∣∣∣∣Pr[s-IND-FE-CPAA =⇒ 1] − 1
2

∣∣∣∣ =
AdvddhGGen,B(λ). □

Proof of Lemma 3.2.2:
Let B be an adversary against the DDH assumption. Adversary B inputs (G, [a], [b], [c]),
for a, b, c

$←− Zq, and needs to distinguish c = a ·b (game REAL) from c uniformly random
(game RAND).

Procedure B(G, [a], [b], [c])

s′ = x1 − x0

r
$←− Zl

q

hi = [a · s′i + ri]

mpk = (hi)i∈|l|

V ← ∅

β
$←− {0, 1}

β̂
$←− AKeyDer(·),Encrypt(·,·)(mpk)

If ∃y ∈ V s.t. ⟨y,x0⟩ ≠ ⟨y,x1⟩:

return false

return β̂ = β

Oracle KeyDer(y)

V ← V ∪ {y}

return sky = ⟨r,y⟩

Oracle Encrypt(x0,x1)

[ct0] = [b]

[cti] = [c · s′i + b · ri + xβ,i]

return [Ct] = [ct0, (cti)i∈|l|]

Figure 3.3: Adversary B

If B runs the REAL game, the Encrypt simulation is the same as in G0 from figure
3.2, and hence Pr[REALB =⇒ 1] = Pr[GA

0 =⇒ 1]. If B runs the RAND game, the
Encrypt simulation is the same as in G1. Also, in both games the adversary will be
provided with answers to the oracle queries of the KeyDer oracle. The answers of the
KeyDer oracle are of the form ⟨msk,y⟩ = ⟨r,y⟩, since y has to be element in {x1−x0}⊥
if ⟨y,x0⟩ = ⟨y,x1⟩. Hence sky will leak some information about r. But since [a] is random,
[a · s′i + ri] will still be random. Hence Pr[RANDB =⇒ 1] = Pr[GA

1 =⇒ 1]. We can
therefore conclude that

AdvddhGGen,B(λ) = |Pr[REALB =⇒ 1]− Pr[RANDB =⇒ 1]|
= |Pr[GA

0 =⇒ 1]− Pr[GA
1 =⇒ 1]|

= Adv(GA
0 , G

A
1). □

Chapter 4

Matrix Diffie-Hellman Assumptions

Further in this paper I will try to generalize the scheme IP from last chapter. The security
of this more general scheme is based on the matrix Diffie-Hellman (MDDH) assumptions.
This chapter will include the definition of the MDDH assumptions and some examples.
The chapter is taken from my project thesis, Matrix Diffie-Hellman Assumptions [3].

4.1 Definition

The decisional Diffie-Hellman assumption can be generalized to the Dl,k-matrix Diffie-
Hellman (Dl,k−MDDH) assumption.

Definition 4.1.1. Dl,k-Matrix Diffie-Hellman Assumption Let l, k ∈ N and l >

k. These are constants and usually small numbers. Let Dl,k be a matrix distribution

over Zl×k
q , such that a matrix of this distribution has rank k. Let A ← Zl×k

q form the

distribution Dl,k, r
$←− Zk

q and u
$←− Gl. Then the Dl,k-matrix Diffie-Hellman assumption

is defined as

[A||Ar] ≈c [A||u] ∈ Gl×(k+1). (4.1)

The Dl,k-matrix Diffie-Hellman assumption holds if for all PPT adversaries A,

Advmddh
GGen,A(λ) = |Pr[REALA =⇒ 1]− Pr[RANDA =⇒ 1]| = negl(λ),

where negl(λ) means negligible for a given security parameter λ. Pr[REALA =⇒ 1]

means the adversary outputs 1 given a real Dl,k-matrix distribution and Pr[RANDA =⇒

1] means the adversary outputs 1 given a random distribution.

In the following it will be reveled that the matrix Diffie-Hellman (MDDH) assump-
tions with l = k + 1 are, among others, the Linear, Cascade- and Symmetric Cascade

14

4.2. EXAMPLES 15

assumptions. Since these assumptions are the ones of interest, I will restrict this paper
to using l = k + 1. The only interesting case for l > k + 1 is when Dl,k is a random
distribution. If so, one can generalize the results of this paper by adding l − (k + 1)
random rows to the matrix.

4.2 Examples

4.2.1 The DDH Assumption

Let us look at an example of the MDDH assumptions when k = 1 and l = k + 1. Let

A =

(
a
1

)
∈ L1 and

r, z
$←− Zq, [u] =

[
u1

u2

]
∈ G2, then

[A||Ar] =

(
ga gar

g gr

)
and

[A||u] =
(
ga gu1

g gu2

)
.

The MDDH assumption, by equation 4.1, then becomes(
ga gar

g gr

)
≈c

(
ga gu1

g gu2

)
We can rewrite this assumption, in a shorter notation. Then it becomes

([a], [ar], [r]) ≈c ([a], [u1], [u2]).

Since a
$←− Z∗

q and r, u1, u2
$←− Zq, the distributions of the triplets in the assumption above

matches the distributions of the triplets in the DDH assumption (2.1). Hence this is just
the DDH assumption.

4.2.2 D3,2-MDDH Assumptions

Let k = 2 and l = k + 1 then we can consider the following examples of distributions for
the matrix A

L2 : A =

a1 0
0 a2
1 1

 C2 : A =

a1 0
1 a2
0 1

 SC2 : A =

a 0
1 a
0 1

 ,

for uniform a, a1, a2
$←− Z∗

q.

16 CHAPTER 4. MATRIX DIFFIE-HELLMAN ASSUMPTIONS

If we now consider A← L2 and r1, r2
$←− Zq. Let

r =

(
r1
r2

)
, [u] =

u1

u2

u3

 ∈ G3.

The corresponding MDDH assumption can be written

([a1], [a2], [a1r1], [a2r2], [r1 + r2]) ≈c ([a1], [a2], [u1], [u2], [u3]).

This is the 2− Lin assumption.

Let us now consider A← C2 and r and u as before. The 2− Casc assumption (Cascade
Assumption) can be defined as 2−Casc := C2-MDDH assumption. The assumption will
become

([a1], [a2], [a1r1], [r1 + a2r2], [r2]) ≈c ([a1], [a2], [u1], [u2], [u3]).

Considering A ← SC2 and r and u as before. The 2 − SCasc assumption (Symmet-
ric Cascade Assumption) can be defined as 2− SCasc := SC2-MDDH assumption. The
assumption will become

([a], [a · r1], [r1 + a · r2], [r2]) ≈c ([a], [u1], [u2], [u3]).

4.2.3 k − Lin Assumption

Let Lk be the linear matrix distribution such that a (k+1)×k-matrixA of this distribution
has the form

A =



a1 0 ... 0 0
0 a2 ... 0 0

0 0
. . . 0

...
. . .

...
0 0 ... 0 ak
1 1 ... 1 1


∈ Z(k+1)×k

q ,

where ai ← Z∗
q.

Let a matrix A← Lk, then the k−Lin assumption (where k ∈ N) is equivalent to the Lk-
MDDH assumption. The assumption can be written as ([a1], ..., [ak], [a1r1], ..., [akrk], [r1+
... + rk]) ≈c ([a1], ..., [ak], [u1], ..., [uk], [uk+1]), where ai ← Z∗

q, and ri, uj ← Zq for i =
1, ..., k and j = 1, ..., k + 1.
Examples of this when k = 1 and k = 2 have been shown.

4.2. EXAMPLES 17

4.2.4 k − Casc Assumption

Let Ck be a matrix distribution such that a (k+ 1)× k-matrix A of this distribution has
the form

A =



a1 0 ... 0 0
1 a2 ... 0 0

0 1
. . . 0

...
. . .

...
0 0 ... 1 ak
0 0 ... 0 1


∈ Z(k+1)×k

q ,

where ai ← Z∗
q.

Let a matrix A ← Ck, then the k − Casc assumption is defined as the Ck-MDDH as-
sumption. The assumption can be written as ([a1], ..., [ak], [a1 · r1], [r1+ a2 · r2], ..., [rk−1+
ak · rk], [rk]) ≈c ([a1], ..., [ak], [u1], [u2], ..., [uk], [uk+1]), where ai ← Z∗

q, and ri, uj ← Zq for
i = 1, ..., k and j = 1, ..., k + 1.

Chapter 5

Functional Encryption Scheme based

on MDDH

In chapter 3, a functional encryption scheme for inner product functionality is presented.
Its security is based on the decisional Diffie-Hellman (DDH) assumption. Chapter 4
describes how the DDH assumption can be generalized to the matrix Diffie-Hellman
(MDDH) assumptions, among these is the Uk+1,k-MDDH assumption.
This chapter includes the generalization of the scheme IP from chapter 3, and the proof
of its security based on the Uk+1,k-MDDH assumption. The scheme is proven s-IND-FE-
CPA secure under the Uk+1,k-MDDH assumption.

5.1 Construction

Let IPMDDH = (Setup,KeyDer,Encrypt,Deckrypt) be the functional encryption scheme
for inner product functionality based on the Uk+1,k-MDDH assumption. The matrix dis-
tribution Uk+1,k is described in definition 2.2.10 in the preliminaries. The 4 algorithms
for the generalized scheme are defined as in the figure below.

18

5.1. CONSTRUCTION 19

Setup(1λ, 1l)

(G, q, g)
$←− GGen(1λ)

A← Uk+1,k

TA = AA
−1

for i = 1, ..., l :

si
$←− Z∗

q

Ai = siA

Ti = siTA

mpk =


A

A1

...

Al

 ∈ G(k+l)×k

msk = T =


T1

...

Tl

 ∈ Zl×k
q

return (mpk,msk)

KeyDer(msk,y = (y1, ..., yl)
T ∈ Zl

q)

sky = yTT =
∑

i∈|l| yiTi

return sky

Encrypt(mpk,x = (x1, ..., xl)
T ∈ Zl

q)

r
$←− Zk

q

[ct0] = [A · r]

[cti] = [Ai · r+ xi] for i ∈ |l|

return [Ct] = [ct0, (cti)i∈|l|]

Decrypt(mpk, [Ct], sky)

return
∏

i∈|l|
[yi·cti]
[sky ·ct0]

Figure 5.1: FE Scheme for Inner Product Functionality based on MDDH

Notice that the user secret key, sky, is the matrix-vector product of the key y with
the master secret key T. The matrix-vector product of y with T is just the dot product
of y with each row of T. Notice that only the user secret key is used in the decryption.

5.1.1 Correctness

For all (mpk,msk) ← Setup(1λ, 1l), for all y,x ∈ Zl
q, sky ← KeyDer(msk,y) and

[Ct]← Encrypt(mpk,x) we have that

Decrypt(mpk, [Ct], sky) =

∏
i∈|l|[yi · cti]
[sky · ct0]

=

[(∑
i∈|l|

yi · cti
)
− sky · ct0

]

=

[∑
i∈|l|

yi(Ai · r+ xi)−
(∑

i∈|l|

yiTi

)
A · r

]

=

[∑
i∈|l|

yiAi · r+
∑
i∈|l|

yi · xi −
(∑

i∈|l|

yi · siAA
−1
)
A · r

]

=

[∑
i∈|l|

yi · siA · r+
∑
i∈|l|

yi · xi −
∑
i∈|l|

yi · siA · r
]

=

[∑
i∈|l|

yi · xi

]
=

[
⟨y,x⟩

]
.

20 CHAPTER 5. FUNCTIONAL ENCRYPTION SCHEME BASED ON MDDH

Notice that when decrypting an encrypted message x, only the inner product of x
and the key y in the group G is revealed.

5.2 Security

Theorem 5.2.1. Under the Uk+1,k-MDDH assumption, the scheme IPMDDH is s-IND-

FE-CPA secure. In particular, for an adversary A there exists an adversary B with

roughly the same running time such that

Advs-ind-fe-cpaFE,A (λ) = Advmddh
GGen,B(λ).

Proof:
For the proof consider the three games of figure 5.2.

Game G0/G1/G2

(G, q, g)
$←− GGen(1λ)

A← Uk+1,k

s′ = x1 − x0

for i = 1, ..., l :

Ri
$←− Z1×k

q

[Ai] = [s′iA+RiA]

mpk =


A

A1

...

Al

 , R =


R1

...

Rl

 ∈ Zl×k
q

V ← ∅

β
$←− {0, 1}

β̂
$←− AKeyDer(·),Encrypt(·,·)(mpk)

If ∃y ∈ V s.t. ⟨y,x0⟩ ≠ ⟨y,x1⟩:

return false

return β̂ = β

Oracle KeyDer(y)

V ← V ∪ {y}

sky = yTR =
∑

i∈|l| yiRi

return sky

Oracle Encrypt(x0,x1)

r
$←− Zk

q

b
$←− Zk+1

q

[ct0] = [A · r] //G0

[ct0] = [b] //G1, G2

for i = 1, ..., l :

zi
$←− Zq

[cti] = [s′i(Ai · r) +Ri(A · r) + xβ,i] //G0

[cti] = [s′ib+Rib+ xβ,i] //G1

[cti] = [zi] //G2

return [Ct] = [ct0, (cti)i∈|l|]

Figure 5.2: Game G0/G1/G2

Notice that the master secret key will be T = s′TA+R, where TA = AA
−1
. Because

of the restriction ⟨y,x0⟩ = ⟨y,x1⟩ we have that y ∈ {x1 − x0}⊥. {x1 − x0} is the space
spanned by x1 − x0, where x0 and x1 are two predefined messages. Notice also that we
choose s′ = x1 − x0, hence sky = yTR is simulated in the same way as yTT.

5.2. SECURITY 21

By definition 2.2.11, G0 is the s-IND-FE-CPA-game for the scheme IPMDDH . Hence

Pr[s-IND-FE-CPAA =⇒ 1] = Pr[GA
0 =⇒ 1].

G1 only differs from G0 in how [ct0] and [cti] are computed. In G1 a random vector

b
$←− Zk+1

q is used in the encryption. We state the following lemma.

Lemma 5.2.2. There exists an adversary B with roughly the same running time as A

such that

Adv(GA
0 , G

A
1) = Advmddh

GGen,B(λ).

G2 only differs from G1 in how [cti] is computed. In G2, [cti] is just an element drawn
uniformly random from the group. In G1, [cti] = [s′ib+Rib+ xβ,i]. One can argue that
the distribution of this element is also a uniformly random distribution. The vector b is
a random vector, and multiplying this vector by a non-zero element makes the product
also random. Hence [cti] has the same distribution in G2 as in G1 and therefore

Pr[GA
1 =⇒ 1] = Pr[GA

2 =⇒ 1].

In G2, [Ct] = [b, (zi)i∈|l|], which just consist of all random elements. Also [Ct] is inde-
pendent of the challenge bit β. Hence

Pr[GA
2 =⇒ 1] =

1

2
.

Combining the equations derived above we obtain

Pr[s− IND − FE − CPAA =⇒ 1] = Pr[GA
0 =⇒ 1]

= Pr[GA
1 =⇒ 1] + Advmddh

GGen,B(λ)

= Pr[GA
2 =⇒ 1] + Advmddh

GGen,B(λ)

=
1

2
+ Advmddh

GGen,B(λ),

which proves the theorem since Advs-ind-fe-cpaFE,A (λ) =

∣∣∣∣Pr[s-IND-FE-CPAA =⇒ 1] − 1
2

∣∣∣∣ =
Advmddh

GGen,B(λ). □

Proof of Lemma 5.2.2:
Let B be an adversary against the Uk+1,k-MDDH assumption. Adversary B inputs a
matrix [A], where A← Uk+1,k, and a vector [b] ∈ Gk+1. [b] is either from a random dis-

tribution or [b] = [A ·r] for a vector r
$←− Zk

q . The adversary B needs to distinguish a real
Uk+1,k-MDDH distribution (game REAL) from a random distribution (game RAND).

22 CHAPTER 5. FUNCTIONAL ENCRYPTION SCHEME BASED ON MDDH

Procedure B(G, [A], [b])

s′ = x1 − x0

for i = 1, ..., l :

Ri
$←− Z1×k

q

[Ai] = [s′iA+RiA]

mpk =


A

A1

...

Al

 , R =


R1

...

Rl

 ∈ Zl×k
q

V ← ∅

β
$←− {0, 1}

β̂
$←− AKeyDer(·),Encrypt(·,·)(mpk)

If ∃y ∈ V s.t. ⟨y,x0⟩ ≠ ⟨y,x1⟩:

return false

return β̂ = β

Oracle KeyDer(y)

V ← V ∪ {y}

sky = yTR =
∑

i∈|l| yiRi

return sky

Oracle Encrypt(x0,x1)

[ct0] = [b]

[cti] = [s′ib+Rib+ xβ,i]

return [Ct] = [ct0, (cti)i∈|l|]

Figure 5.3: Adversary B

Notice that if B runs the REAL game, the Encrypt simulation is the same as in
G0, from figure 5.2. Hence Pr[REALB =⇒ 1] = Pr[GA

0 =⇒ 1]. In the simulation
above, the master secret key will be msk = s′TA + R. In both games the adversary
will be provided with answers to the oracle queries of the KeyDer oracle. The answers
of the KeyDer oracle are of the form yTR. This will leak some information about R.

Since A ← Uk+1,k the matrix TA = AA
−1

will be a (1 × k)-matrix where each entry
is a random element from Zq. Hence the master secret key is still random even if some
information about R is leaked. If B runs the RAND game, the Encrypt simulation is
the same as in G1, hence Pr[RANDB =⇒ 1] = Pr[GA

1 =⇒ 1]. This leads to

Advmddh
GGen,B(λ) = |Pr[REALB =⇒ 1]− Pr[RANDB =⇒ 1]|

= |Pr[GA
0 =⇒ 1]− Pr[GA

1 =⇒ 1]|
= Adv(GA

0 , G
A
1). □

Bibliography

[1] Abdalla, M., Bourse, F., De Caro, A. & Pointcheval, D. (2015) Simple Functional
Encryption Schemes for Inner Products. In: Katz J. (eds) Public-Key Cryptography
– PKC 2015. PKC 2015. Lecture Notes in Computer Science, vol 9020. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46447-2 33

[2] Escala, A., Herold, G., Kiltz, E., Ràfols, C. & Villar, J. (2013) An Algebraic Frame-
work for Diffie-Hellman Assumptions. In: Canetti R., Garay J.A. (eds) Advances in
Cryptology – CRYPTO 2013. CRYPTO 2013. Lecture Notes in Computer Science,
vol 8043. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40084-1 8

[3] Heggen, V. (2021) Matrix Diffie-Hellman Assumptions. [Project thesis, NTNU]

[4] Kiltz, E. (2021) Cryptographic Protocols. Ruhr-Universitat Bochum.

[5] Elgamal, T. (1985). A Public-Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. IEEE Transactions on Information Theory, VOL. IT-31, NO. 4.
https://doi.org/10.1109/TIT.1985.1057074.

23

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Vilde Haugsbakken Heggen

Functional Encryption for Inner
Product Functionality

Explanation and Applications

Master’s thesis in Industrial Mathematics
Supervisor: Jiaxin Pan
May 2022M

as
te

r’s
 th

es
is

