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Preface

In August 2021, I came to Trondheim as a participant in the double-degree master

program SESAM (Sustainable Energy Systems and Markets) at the NTNU and TU

Berlin. A major part of the first semester in Trondheim is a project in preparation

of the Master’s Thesis. I was interested to investigate optimal charging strategies for

electric vehicles in smart neighborhoods. As previous year SESAM student Clara

Pfister had worked on analysing a building complex energy system, I could use her

project work as a starting point. I want to thank Clara for the provided ground work

and data. I extended her project Minimization of energy supply costs for a smart

building complex with several electric vehicles to analyse how different charging

strategies for an increasing number of electric vehicles may influence the operational

energy costs of a local neighborhood. Additionally, discussions with my supervisor

Ruud Egging-Bratseth sparked the idea to incorporate battery degradation costs in

the work. The project showed the importance of battery degradation in operational

decisions and costs, even though we only considered degradation rudimentary. For

the Master’s Thesis, Ruud and I decided to delve deeper into that topic. We decided

to divide this thesis into two journal paper, where in the first we purely focus on

battery degradation and the development of a scalable, accurate battery optimiza-

tion model with the goal to incorporate such model into the work from the project.

Furthermore, the second paper considers uncertainty in the optimization to grasp

the full extend of additional flexibility within the energy system through electric

vehicle charging schemes.

I want to thank you Ruud for the great study program and your challenging but

very fruitful supervision throughout my year at NTNU. Further, I want to thank

Parinaz for her helping hand in the stochastic part of the second paper.

Last but not least, I want to thank all the other students of SESAM. We have spent

hours studying together, helping and learning from each other, next to the social

time away from the campus. I could not have done this without you, thank you!
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Abstract

Optimal energy management becomes increasingly important in the future energy

system. The increasing share of intermittent energy sources, such as solar power,

requires additional flexibility in the system to balance supply and demand. Batteries

are a solution for this increasing need for flexibility. The majority of techno-economic

models in the literature overly simplify the representation of battery degradation.

Especially in dynamic and uncertain settings, accounting properly for battery de-

gradation will allow for better cost-effective trade-offs and optimization of battery

usage.

In the first part of this thesis, we propose scalable model formulations for battery

degradation, considering the impact of Cycle Depth (CD) and the State of Charge

(SOC) on calendar and cycle aging of the battery. We set up a simple price arbitrage

model, where for given market prices, a model decides electricity trades, battery

charges and discharges of electricity, to maximize profit. We investigate how a

better representation of degradation affects charging and discharging patterns.

The results show the importance of an accurate representation of battery degrada-

tion. In a setup ignoring battery degradation, an ex-post calculation of degradation

costs reveals hidden costs that exceed the revenues and hence turn what seem to

be profitable trades into losing trades. We observe that considering battery de-

gradation leads to smaller CDs and a lower average SOC. Overall we show that a

much-improved representation of battery degradation is possible and that two of the

three degradation mechanisms can be represented very well at a low computational

cost.

In the second paper, we use the resulting degradation model in a stochastic model

for an urban neighborhood to analyze the interplay between Electric Vehicle (EV)

charging schemes and battery usage and degradation, and their impact on the energy

costs of the local neighborhood.

We propose a model incorporating PV modules, a combined heat and power plant

(CHP), a stationary battery, and multiple EVs. We first analyze the neighborhood

in a deterministic setting to assess the impact of passive, smart, and vehicle-to-

grid (V2G) charging strategies. Here we find that the smart charging is already

sufficient in reducing the system costs and V2G charging provides no significant

added benefits.

The final analysis concerns multistage stochastic cases in which we incorporate un-
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certainty in electricity prices and arrival SOCs of the EVs. Here we find that the

V2G charging scheme can cope much better with the uncertainty resulting in up to

2.1% reduction in total system costs with a switch from smart to V2G charging.

With these two papers, this thesis provides several contributions to the academic

literature. First, we show that it is possible to reflect more than 90% of the ac-

tual battery degradation using functional forms that scale well in techno-economic

mathematical programming models, including the economic dispatch of batteries.

Second, we compute how much otherwise hidden battery degradation costs can be

and how relatively minor schedule adjustments can considerably mitigate the battery

degradation.

Third, we analyze that the flexibility of smart charging strategies, i.e., allowing a

model to choose the best times to charge rather than passive charging from the

moment an electric vehicle is plugged in, provides a significant part of the benefits

of a vehicle-to-grid strategy. However, the value of vehicle-to-grid becomes larger

when uncertainty increases.

Fourth, based on our observations, we list conditions that are critical success factors

for the profitability of vehicle-to-grid.
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1 Introduction

The recently published IPCC report [1] comes to the alarming result that the effects

of climate change are already more perceptible than expected. However, greenhouse

gas emissions are still increasing worldwide, so that we approach climate tipping

points. Therefore, minimizing CO2 emissions and reaching climate neutrality is

vital. Hence, we need to become more sustainable in all areas of life. As part of

the energy sector’s decarbonization efforts, the share of Renewable Energy Sources

(RES) is increasing to replace the conventional power generation based on fossil

fuels.

However, RES are characterized by intermittency and uncertainty, which may affect

the power grid’s reliability. Energy storage can help manage these issues with their

ability to shift energy through time. Characteristics such as high power and energy

density, spatial placement flexibility, and fast response times combined in one tech-

nology favor batteries compared to other storage technologies like pumped hydro,

compressed-air energy, or flywheels. [2] As a result of these characteristics, and

considering a continuing decrease in battery costs [3], we expect a major increase

in battery storage usage in the energy sector. Another related development is the

rapid penetration of Electric Vehicles (EV) [1], which with their electric battery ca-

pacity, may also provide balancing services. Vehicle-to-Grid (V2G) services concern

discharging EV batteries to support grid management by providing services such as

frequency regulation, load flattening, and load balancing. [4]

Intensive usage of batteries accelerates their aging due to physical and chemical

stresses leading to material degradation, reduced performance, and reduced safety

of the battery [5, 6]. For EV batteries, it is generally accepted that a 20% reduction

in rated capacity and, thereby, the driving range, implies their end of life. Batteries

are an expensive technology, and battery replacement adds significant cost to a

vehicle’s usage costs.

Battery degradation itself should be minimized to maximize the battery lifetime.

However, in a broader problem scope with, for example, very high and very low, or

even negative electricity prices, minimizing battery degradation may mean charging

at unfavorable prices and forgoing on opportunities to charge very cheaply. Arbit-

raging large price differences can allow for steep financial profits, however, at the

expense of increased battery degradation. Therefore, economic dispatch models con-

sidering the dispatch of batteries should explicitly trade off profit opportunities and

the added stress on the battery and the resulting degradation and reduced battery
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life. This leads to the first two research questions of this thesis:

1. How does a detailed representation of battery degradation influence battery

operation in an economic dispatch setting?

2. How can we balance more accurate scheduling decisions for batteries with the

model scalability?

Through a literature research, we gather the main operational influences on battery

lifetime and decide to include the Cycle Depth (CD), average cycle State of Charge

(SOC) and SOC-based calendar aging influence on the battery life. We develop an

extended battery degradation model for a simple arbitrage setting, expanding upon

the CD-based degradation model developed in the master pre-project in the Fall of

2021. The review, model, and results are described in a journal paper. The main

challenge in this first journal paper is the trade-off between model accuracy and

scalability because battery degradation mechanisms show non-convex behavior.

Our results show that two out of three degradation mechanisms can be incorporated

without significantly affecting model tractability. Furthermore, we show the import-

ance of battery degradation as part of the model decision variables, as neglecting

battery degradation can lead to overly aggressive battery scheduling. This results

in seemingly profitable trades becoming unprofitable due to high degradation costs

that are not accounted for. We also show that a CD-based model alone is insufficient

for prolonging the battery lifetime. The addition of degradation in relation to the

SOC leads to an on average lower resting SOC, which is especially beneficial for

mitigating the calendar aging of a battery.

In a second journal paper, we integrate the developed degradation model in a broader

setting. We consider a local energy community in Pfreimd, Germany, with multiple

generation and demand sources. This community consists of four buildings connec-

ted through a local electricity and a local heat grid. Each building has PV modules

installed. Moreover, each building is connected to an external electricity and district

heat grid, and one building features a small-scale combined heat and power plant

(CHP) and a thermal energy storage(TES). To reflect a potential future situation

of interest, we add a stationary electric battery to the complex and EV charge sta-

tions on the parking lot. In this setting, there are many degrees of freedom, and

hence optimizable decisions, in the interplay of different types of power and heat

generation and storage equipment, and variations and uncertainty in demand and

prices.

With this model setup, we address the following questions:

2



1. What is the impact of electric vehicle charging schemes on the operational

energy costs of a neighborhood?

2. How do uncertainty and the accurate representation of battery degradation

influence the optimal system behavior?

We address the first question by considering three different charging schemes, pass-

ive, smart and V2G charging. While passive charging includes no flexibility for EV

charging, smart charging allows the system to optimize when to charge. The V2G

charging scheme allows EV discharging to provide additional generation flexibility

for the neighborhood.

The results indicate cost savings of more flexible charging schemes by up to 10%

and EV battery degradation reduction by up to 29%. However, in the deterministic

setting, we see no significant difference between smart and V2G charging schemes.

This changes with the addition of uncertainty for electricity prices and EV charging

load. Due to the increased flexibility, V2G allows the system to respond better to

external changes. The V2G option results in 2.1% lower costs than smart charging

under the same price and SOC conditions as in the deterministic case, and up to

3.3% in the highest price scenario.

The added flexibility of a V2G charging scheme will become increasingly beneficial in

the future, as the increasing share of renewable production will lead to total market

supply becoming more volatile, and thus electricity prices too.
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The impact of battery degradation on economic

dispatch optimization
Curd Schade ∗ †, Ruud Egging-Bratseth ∗,

∗ Norwegian University of Science and Technology, Dept. of Industrial Economics and Technology Management
† Technical University Berlin, Workgroup for Infrastructure Policy

Abstract—Optimal energy management becomes increasingly
important in the future energy system. The increasing share
of intermittent energy sources, such as solar power, requires
additional flexibility in the system to balance supply and demand.
Batteries are a solution for this increasing need for flexibility.
However, we observe that virtually all techno-economic models
in the literature overly simplify the representation of battery
degradation. Especially in dynamic and uncertain settings, ac-
counting properly for battery degradation will allow for better,
cost-effective tradeoffs and optimal battery usage. However, the
scalability of the resulting model formulations is a major issue. In
this paper, we propose a scalable model formulation for battery
degradation, considering the impact of Cycle Depth and the
State of Charge on calendar and cycle aging of the battery.
We develop piecewise linear functions for which we show high
representative accuracy. We set up a simple price arbitrage
model, where a model decides electricity trades, battery charges
and discharges of electricity to maximize profit for given market
prices. Finally, we investigate how a better representation of
degradation affects charging and discharging patterns and how
this improved accuracy affects computational time. The results
show the importance of an accurate representation of battery
degradation. In a setup ignoring battery degradation, an ex-post
calculation of degradation costs reveals hidden costs that exceed
the revenues and hence turn what seem to be profitable trades
into losing trades. Furthermore, we observe that considering
battery degradation leads to smaller Cycle Depths and lower
average States of Charge. Overall we show that a much-improved
representation of battery degradation is possible and that two of
the three degradation mechanisms can be represented very well
at a low computational cost.

Index Terms—electric battery degradation, economic dispatch,
cycle depth, state of charge, calendar aging

NOMENCLATURE

C-rate Current rate

CD Cycle Depth

DOD Depth of Discharge

EV Electric vehicle

LFP Lithium Iron Phosphate

NMC Nickel Manganese Cobalt

PV Photovoltaic

RES Renewable Energy Sources

SOC State of Charge

SEI Solid–Electrolyte Interphase

V2G Vehicle-to-Grid

Sets

h ∈ H Hours
j ∈ J Battery segments

i,m ∈ I Calendar aging breakpoints

Variables

A
cyc
h

Auxiliary, deviation to 50% SOC

Ast
h

Auxiliary, SOC at cycle start

BC
h

Binary, charge mode active

BCAL
i,h

Binary, SOS2 variable

BD
h

Binary, discharge mode active

BEND
h

Binary, end of a cycle

BS
h

Binary, steady-state mode active

BSt
h

Binary, start of a cycle

Cj,h Battery charge
Dj,h Battery discharge
Kh Cost of battery degradation
N Number of segments

QCAL
h

Calendar aging based capacity loss [%]

QCD
h

Cycle depth based capacity loss [%]

QSOC
h

Average cycle SOC based capacity loss [%]

Sj,h Storage Level variable
SOCh State of charge
Zh,i SOS2 weight factor

Parameter

cmax Maximum charge
dmax Maximum discharge

erated Rated energy of the battery
f Fitting parameter for average SOC stress
ph Electricity price
R Replacement cost of the battery [AC /kWh]
vc Charging efficiency

vd Discharging efficiency

oCAL
i Calendar aging breakpoint

oCD
j CD Breakpoint

yi Calendar aging breakpoint aging value

I. INTRODUCTION

In the last decade, the share of Renewable Energy Sources

(RES) in the energy mix is increasing globally. Particularly

prominent are wind and Photovoltaic (PV) power. These tech-

nologies are characterized by intermittency and uncertainty,

which may affect the power grid’s reliability. Energy storage

can help manage these issues with its ability to shift energy

through time. Characteristics such as high power and energy

density, spatial placement and size flexibility, and fast response

times favor batteries compared to other storage technologies

like pumped hydro, compressed-air energy, or flywheels [1].

As a result of these characteristics combined with a continuing

decrease in battery costs [2], we expect a major increase in bat-

tery storage usage in the energy sector. A related development

is the rapid penetration of Electric vehicles (EVs), which with

their electric batteries, may also provide balancing services.
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Vehicle-to-Grid (V2G) services concern discharging EV bat-

teries to support grid management by providing services such

as frequency regulation, load flattening, and load balancing.

[3]

Intensive usage of batteries accelerates their aging due to

physical and chemical stresses leading to material degradation,

reduced performance, and reduced safety of the battery [4], [5].

For EV batteries, it is generally accepted that a 20% reduction

in rated capacity and, thereby, the driving range, implies their

end of life. Batteries are expensive, and battery replacement

significantly adds to vehicle usage costs.

Battery degradation itself should be minimized to maximize

the battery lifetime. However, in broader problem settings

with, for example, very high and very low or even negative

electricity prices, minimizing battery degradation may mean

charging at unfavorable prices and forgoing on opportunities

to charge very cheaply. Arbitraging large price differences can

allow for steep financial profits, however, at the expense of

increased battery degradation. Therefore, economic dispatch

models considering the dispatch of batteries should explicitly

trade off profit opportunities and the added stress on the battery

and the resulting degradation and reduced battery life.

This paper firstly addresses the question: How does a

detailed representation of battery degradation influence bat-

tery operation in an economic dispatch setting? Secondly, it

considers the supporting question: How can we balance more

accurate scheduling decisions for batteries with the model

scalability?

First, we discuss battery structure and aging mechanisms

and their relevance in economic dispatch modeling. Next, we

propose an economic dispatch model with adequate functional

forms for battery degradation, balancing technical representa-

tion accuracy with numerical tractability. Last, we test our

model for accuracy in a market price arbitrage setting and

assess the impact of the individual degradation mechanisms,

including sensitivity analysis for battery replacement costs.

II. LITERATURE

A Lithium-Ion battery consists of a carbonaceous anode, a

metal oxide cathode, a lithium salt electrolyte, and a separa-

tor. Each of these four components experiences degradation,

causing decreasing power output and reducing the maximum

stored energy, which affects overall battery lifetime. Battery

lifetime is related to a battery’s purpose. Generally it means

that the battery’s capacity is reduced so much that it can no

longer adequately perform its intended purposes.

Battery life has two components: the calendar life, and the

cycle life. The aging behaviors are additive, so we should

aim to minimize both [6], [7]. Calendar life corresponds to

the time before the battery reaches a purpose-specific capacity

threshold, e.g., 80% of the original capacity due to chemical

decay, and is independent of how the battery is used. Cycle life

is connected to the number of (charge and discharge) cycles

a battery can experience before the battery reaches the end of

life criterion (e.g., 80% capacity). In frequently used batteries,

the cycle life is always the decisive lifetime component [8].

Stationary batteries connected to electricity grids are often

frequently used, hence, cycle life is generally decisive for the

life of stationary batteries. In contrast, EV batteries are idle

for large parts of the day, and typically have few cycles per

day; therefore for EV batteries calendar aging is generally the

dominant influence.

A. Calendar degradation mechanisms

Calendar aging is mostly driven by time, ambient tempera-

ture, and the State of Charge (SOC). Time, and often ambient

temperature, are uncontrollable, external parameters, while the

SOC (and sometimes temperature) is affected by operational

decisions [8]–[10]. Prolonged, very high SOC levels are dev-

astating to batteries [9], [11]. In addition, measurements of

SOC-induced stress indicate that there are aging plateaus in

the stress curves; local areas where modest changes in SOC

hardly affect stress, and accelerating aging sections at other

SOC levels [7].

Most batteries operate optimally at a cell temperature of

approximately 25°C [4]. While the cell temperature has a very

significant impact, with about doubled battery aging for every

10°C - 15°C increase, it is an easily and cheaply controllable

parameter in stationary conditions by using ventilation. Fur-

thermore, it is difficult to assess the influence of the ambient

temperature on cell temperature, as both temperatures can

deviate significantly, especially for actively used batteries in

low ambient temperature conditions. Therefore, temperature

is often not considered in (techno-economic) optimization

models [5], [12]–[14]. Finally, while low ambient temperatures

are beneficial for the calendar lifetime, they can be harmful to

the cycle lifetime [15].

B. Cycle degradation mechanisms

Besides the intended exchange of electrons, battery charging

and discharging causes side reactions that cause battery degra-

dation by increasing the internal resistance and reducing the

storage capacity. Physical (or mechanical) aging refers to the

loss of active material (e.g., lithium oxide) in the electrodes

and is connected to operation decisions Cycle Depth (CD) and

SOC. In contrast, chemical aging refers to the loss of lithium

inventory for transport between electrodes and is mostly

connected to the time, temperature and Current rate (C-rate)

[4], [8]. Battery cycling induces physical stress in the form of

volume changes through the intercalation and deintercalation

of lithium ions in the anode and the cathode. These volume

changes lead to particle fractures at the electrodes, thereby

exposing additional electrode surface to the electrolyte, which

leads to a growth of the Solid–Electrolyte Interphase (SEI)

layer. This, in turn, results in a permanent drop in cell capacity

and, thereby, in overall battery capacity [11].

Next we describe the four main cycling-related degradation

drivers: CD, C-rate, temperature, and SOC.

Deeper discharge cycles result in faster battery aging [10],

[16]. In the literature, the term Depth of Discharge (DOD) is

used both for the absolute discharge level of the battery (such

that SOC+DOD=100%), but also as a synonym for the depth

of a battery discharge compared to a starting SOC different

from 100%. To be clear, we only use DOD with the meaning
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DOD=100%-SOC. For the other meaning we use Cycle Depth

(CD). The following two definitions of CD are useful in the

context of battery degradation [17]:

1) a full cycle consists of one discharging and one charging

event with the same depth,

2) a half cycle consists of one charging or discharging event.

According to measurement results, operating a battery with

10% cycle depths compared to 100% cycle depths allows

100 times more cycles and, therefore, a ten times larger

energy throughput [18]. This shows a pronounced non-linear

relationship between CD and aging behavior of Lithium-Ion

batteries, which is typically not accounted for in economic

dispatch models.

The second important cycling related aging driver is the

C-rate. It is defined as the charging or discharging current

divided by the rated storage capacity of the battery [in Ah].

The charge and discharge voltage can be considered constant

in grid applications, hence, we can express the C-rate relative

to a full charge or discharge in one hour, Eq. (1) with, P as

power, and erated as rated energy, the maximum stored energy.

The constant voltage removes one variable, thereby enables a

less complex modeling of the C-rate [1].

C-rate =
P

Erated

(1)

Then, 1C indicates a full battery charge in 1 hour, 2C repre-

sents a full charge in 30 minutes, and C/2 means a full charge

in 2 hours. Lower C-rates generally results in lower battery

aging [6]. Batteries live through three degradation phases. In

phase one, representing the first cycles of a new battery, the

aging is the most pronounced. This rapid aging correlates

with the initial formation of the SEI layer resulting in up to

5% capacity loss. In the second phase, the battery is more

stable, aging more slowly compared to the other phases. With

moderate C-rates, the battery spends the most number of cycles

in this stage. After approximately 12% capacity loss (including

phase one), the battery enters phase three, in which we see

an increased sensitivity toward the C-rate. Hence, reducing

battery degradation not only prolongs battery life directly, but

also indirectly, by keeping the battery longer in phase two.

While low C-rates are generally advisable for battery

longevity, the discharge efficiency in low-temperature con-

ditions is worse with low discharge rates. This is attributed

to a lower solid-state diffusivity of the Li-ions and a low

ionic conductivity of the electrolyte, as well as a much higher

interfacial charge transfer resistance [19]. Therefore, optimal

battery operation strategies will vary depending on the ambient

temperature. Generally, C-rates below 1C have modest impact

on battery capacity, regardless of the battery type [8], [20].

However, the impact of higher C-rates varies greatly with

the battery chemistry. While values over 1C cause significant

damage to Nickel Manganese Cobalt (NMC) batteries, Lithium

Iron Phosphate (LFP) batteries are less affected up to 4C.

Considering EVs, a C-rate of 1C will hardly ever be surpassed,

even in rapid charge mode, due to the battery management

system [21]. For grid applications, the power rating is often

lower than the energy rating of the battery, which makes

C-rates exceeding 1C physically not possible. Consequently,

in these situations, the C-rate only has a modest influence on

the battery degradation and can be ignored when modeling

batteries with a low power rating. In contrast, for battery

use in high-power applications such as frequency regulation,

the C-rate impact can be high and should be considered in

modeling approaches [1].

The third important cycling-related aging driver is the

cell temperature. High cell temperatures accelerate chemical

reactions and thus harmful side reactions. As discussed in

Section II-A above, the ambient temperature sets the ground

level for the cell temperature. The temperature gradient in

the battery depends primarily on the C-rate: high C-rates

will result in a high cell temperature. Therefore, the ambient

temperature and the C-rate together set the cell temperature.

Hence the combination of both should be used to determine

the effect on cycle degradation.

Finally, while the SOC is often only considered as a

driver for calendar aging, it also affects the cycle aging. The

optimal average SOC for battery cycling is 50%, which means

that cycles passing symmetrically through a SOC=50% cause

least damage. (C.f., Figure 6 in the Appendix shows how

degradation increases towards the extreme values SOC 0%

and 100% [16], [22])

Table II shows how different the impact of individual

parameters can be, based on the battery chemistry. NMC and

LFP are the most common battery chemistries today, with

NMC being more favored in EVs.

TABLE II: Impact of cycle aging factors for two common

battery chemistries. Based on [22]

NMC LFP

CD ++++ +
Cell temperature ++++ ++
Charge rate ++ ++
Discharge rate ++ ++++
Mean SOC + +

The number of + signs indicates the impact on degradation, where

++++ is the most significant influence.

III. BATTERY DEGRADATION MODELING

Battery degradation mechanisms often have complex non-

linear or even non-convex behavior. This complexity makes in-

tegrating many existing battery degradation prediction models

in economic dispatch models difficult in regard to tractability.

Some studies consider battery degradation through static upper

and lower boundaries for the SOC or limit the battery power

[23], [24]. This simple solution sets artificial limits and thus

would never allow extreme SOCs or CDs. Additionally, it

typically leads in to high resting SOC and relatively deep

cycles, which is harmful to the battery life [25].

A second approach is the use of empirical models. These

tailor mathematical formulations to measurements of specific

battery cells. The biggest drawback of this approach is that the

resulting curvefits are only valid for the specific tested battery

type [22], [26].

Finally, the third approach is an electrochemical model.

While this has the highest validity, it becomes very complex,
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due to non-linear and non-convex formulations. Therefore, it

can not be applied for long time horizons and requires very

detailed data, like the voltage, current level, internal resistance,

and the representation of the entire electric battery circuit [27],

[28].

As we focus on implementing a fast-solving degradation

model in the context of economic dispatch optimization and

not solely degradation prediction simulation, we concentrate

on empirical modeling. Furthermore, we are only interested

in modeling aging mechanisms tied to operational parameters,

such as SOC, CD, and C-rate.

In the end, the total battery degradation is the sum of

calendar and cycle aging and thus is expressed as [8], [28],

[29]:

Q = Qcalendar +Qcycle (2)

A. Calendar degradation

Multiple studies approach calendar aging with curve fits

based on the Arrhenius Law Eq. (3), with capacity fade

percentage Q, Arrhenius constant A, activation Energy Ea,

gas constant R, and temperature [28], [30], [31].

Q = A · exp (
−Ea

R · T
) (3)

However, out of the influencing parameter for calendar degra-

dation, the only one under the influence of the operator is the

SOC. Calendar aging increases with the time spent in high

SOC areas. A curve fit connects the SOC to the capacity loss

via fitting parameters. Multiple curve fits exist in the literature

for LFP [30], [31] and NMC batteries [28], [32]. These are

either linear or higher polynomial equations. However, linear

fits disregard the aging plateaus mentioned in Section II-A

[7]. Therefore, a more accurate approach is a piece-wise linear

representation of calendar aging.

B. Cycle degradation

1) Cycle Depth (Depth of Discharge): A piecewise linear

approach is also often adopted for degradation cost mod-

elling based on CD [9], [33]–[38]. This approach penalizes

discharges more than proportional to their CD. The base of

this model is the material stress function, which connects the

CD and capacity loss per cycle. Two approaches to this stress

function exist. First, it can be based on an amplitude function

for physical stress, Eq. (4) [9], [16]. Parameter A displays

the maximum capacity loss per cycle for 100% CD, while m

resembles the fatigue strength exponent.

QCD(CD) = A · CD
1

m (4)

Second, it can be based on the Arrhenius equation, with fitting

parameter B and z as in Eq. (5). However, this results in a

concave shape of the stress function, which is in contrast to

the common convex shape in literature [34].

QCD(CD) = B · exp (
−Ea

R · T
) · (CD · erated)z (5)

This stress function is the input for the segmented cost

function Eq. (6), in which R resembles the replacement cost

in AC /kWh, erated the overall battery capacity, and N the

number of virtual battery segments [9]. However, we have

seen multiple takes on this cost function in the literature. We

implement Eq. (6) similar to [35], [36], as it results in an

simpler implementation of further aging mechanisms.

kj = erated ·R · [QCD(
j

N
)−QCD(

j − 1

N
)] (6)

Figure 1a shows the influence of the segment number on the

approximation accuracy. We see that more than four segments

improve the piecewise linear approximation accuracy of the

stress function only marginal. However, in Fig. 1b we see

that the number of segments matters when we look at the

cost function. More segments lead to less distinct cost in-

creases between the segments. Thus, we reduce abrupt borders

between segments. Additionally, a fine-grained segmentation

leads to more accurate counting of individual CDs and together

this achieves a less staggered, more realistic dispatch profile.

Nevertheless, more segments increase the computational re-

quirements. The relative error is approximately 2% with 16

segments for a NMC battery cell [9] and 64 segments for a

tested LFP cell [34]. We want to minimize this error further

and implement a non-uniform segmentation. Therefore, we

implement a piecewise linear search algorithm prior to the

optimization to find the optimal breakpoints for the segment.

[39]
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(a) Cycle degradation as a function of cycle depth
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(b) Stepwise average cost increase per segment

Fig. 1: Battery Segmentation

2) Additional cycle degradation parameters: We see much

less consideration of the C-rate based degradation. This is

primarily due to the rather few high-power battery applica-

tions in the literature. Nevertheless, some studies consider

the C-rate through a curve fit additionally to the CD model.
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Additional approaches sum [8] or multiply [22] the individual

degradation parameters, depending on the overall formulation

approach. However, also entirely C-rate based models exist

for high power applications [1]. Eq. (7) is then used as single

influencing parameter, with β, δ, ζ, ω as fitting coefficients

and C as C-rate.

Qloss = β · exp (δ · C + ζ) + ω (7)

However, as we mention in Section II-B, the C-rate is the

main driver for temperature increase in a battery, while the

ambient temperature sets the ground level for the cell temper-

ature. Therefore, we can neglect the C-rate and the ambient

temperature in the model under the assumption of using a

high energy – e.g. low power battery – leading to overall low

C-rates, and a constant ambient temperature of 25°C.

IV. MODEL FORMULATION

Eq. (8) is the objective function of the model, in which we

minimize the battery degradation cost K over all timesteps. At

the same time, we maximize the arbitrage value, from charges

at low prices (purchases) and discharges at high price (sales)

of the battery (Eq. (8)).

MIN:
∑

h

(Kh − (ph ·
∑

j

(Dj,h − Cj,h))) (8)

The objective function is subject to several constraints. These

constraints are separated into battery and degradation con-

straints.

A. Battery balance Constraints

Eq. (9) computes the storage level at the start of each time

step as the previous storage level modified by loss-corrected

charges or discharges in previous time step. We propose a

non-uniform virtual segmentation for the QCD formulation

(Eq. (16)). Therefore, we multiply the rated energy erated with

the length of each segment, where oCD
j is the SOC value of

the segment breakpoint, to establish the segment storage limit.

Finally, Eqs. (11) and (12) restrict charges and discharges to

their maximum values.

Sj,h =Sj,h−1 + vc · Cj,h−1 −
Dj,h−1

vd
∀ j, h (9)

Sj,h ≤erated · (o
CD
j+1 − oCD

j ) ∀ j, h (10)
∑

j

Cj,h ≤cmax ·BC
h ∀ j, h (11)

∑

j

Dj,h ≤dmax ·BD
h ∀ j, h (12)

BS
h ≥1−

∑

j

(Dj,h + Cj,h) ∀ j, h (13)

BC
h +BD

h +BS
h = 1 ∀ h (14)

Furthermore, we define binary variables for three mutually

exclusive battery modes –charging, discharging and steady

state– in order to calculate the battery degradation (Eqs. (11)

to (14)).

B. Battery degradation

We adopt the widely used CD and Rainflow Algorithm

based model. Additionally, we consider the influence of the

SOC on calendar aging and cycle aging. Thus the final model

considers the capacity loss from three aging parameters: CD,

average cycling SOC and SOC based calendar aging.

The degradation costs K consist of the individual capacity

losses Q in % of each mechanism multiplied with the replace-

ment cost R in C/kWh and erated in kWh.

Kh = R · erated · (QCD
h +QSOC

h +QCAL
h ) ∀ h (15)

1) Cycle depth based degradation: For this degradation

mechanism, it is important to account for small cycles within

one overarching cycle. For example, a battery discharges

from 100% to 40% SOC, causing major battery degradation.

Afterward it charges up to 50% and down to 40% again, which

causes only minor additional damage because the individual

cycle only has a depth of 10%. Each discharge beyond the

preceding deepest depth however damages the battery signifi-

cantly. We keep track of the CD over the entire optimization

period with the virtual segmentation of the battery. Eq. (16)

imposes the CD based capacity loss, with j as the currently

used segment, to localize the CD during discharging. We

linearize the stress level of segment j with the breakpoints

oCD
j . The first term locates which segments, and how much of

them are discharged in the current timestep, while the second

term assigns the segments degradation.

∀ h, j:

QCD
h =

∑

j

(

Dj,h

erated · (oCD
j+1

− oCD
j )

·
[

QCD(oCD
j+1)−QCD(oCD

j )
]

)

(16)

2) Average cycle SOC degradation: For this type of degra-

dation we introduce several auxiliary values to keep track of

battery cycles and crucial SOC levels. These are used to apply

a penalty at the end of a discharge cycle. Eq. (17) computes

the SOC at the end of every hour.

SOCh =

∑
j Sj,h

erated
∀ h (17)

In the following Eqs. (18) to (20) and Eqs. (21) to (23)

we formulate two binary variables that determine a start and

end point of individual discharging half cycles. E.g., a cycle

only starts when the battery did not discharge in h − 1 and

discharges in h. Further, Eq. (19) disables the start of a cycle

if the battery already discharged in h − 1. Eq. (20) restricts

the start of a discharging cycle to h in which the battery is

discharging. Vice versa, we compute in Eq. (21) the cycle

end when the battery was in discharging mode in h − 1 but

is not discharging in the current timestep. This computes the

cycle end one timestep later than the last discharge. Therefore,

it can occur that a cycle at the end of the time horizon is

not correctly computed when a discharge occurs in the last

timestep. However, setting the discharge binary in the last

timestep to zero, thereby disallowing discharging, solves this

issue.
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Bst
h ≥Bd

h −Bd
h−1 ∀ h (18)

Bst
h ≤1−Bd

h−1 ∀ h (19)

Bst
h ≤Bd

h ∀ h (20)

BEND
h ≥Bd

h−1 −Bd
h ∀ h (21)

BEND
h ≤Bd

h−1 ∀ h (22)

BEND
h ≤1−Bd

h ∀ h (23)

We use Bst
h in Eq. (24) to save the starting SOC of a cycle

in the auxiliary variable Ast
h . In the following timesteps, the

first term becomes zero. Hence, the second term copies the

variable value of the previous timestep as long as the cycle

continues. In order to reset Ast for the next cycle, we include

BEND
h−1

in the second term. Thereby, Ast
h always becomes zero

if a cycle ended in the previous timestep, as the sum of the

parenthesis becomes zero.

Ast
h =SOCh ·Bst

h + (1−Bst
h −BEND

h−1 ) ·Ast
h−1 ∀ h

(24)

Eqs. (25) and (26) use Ast
h to compute the deviation of the

average SOC to 50%. Both equations are substitutes for an

absolute function, which allows to save positive and negative

deviations in the same variable. All variables are restricted

to positive values, hence, Eq. (25) accounts for all deviations

above 50% and Eq. (26) for all deviations below 50%.

Acyc
h ≥

SOCh +Ast
h

2
−

1

2
∀ h (25)

Acyc
h ≥

1

2
−

SOCh +Ast
h

2
∀ h (26)

Finally, in Eq. (27) we penalize the absolute deviation Acyc

with the penalty factor f. However, this penalty is only active at

the end of each cycle. Thus we only penalize the average of a

finished cycle and not continuously in every discharge period.

Eqs. (24) and (27) are bi-linear constraints. The Gurobi solver

can solve this type of constraints without further adjustments.

However, if needed both constraints can be reformulated to

linear constraints with McCormick envelopes.

QSOC
h = f ·Acyc

h ·BEND
h ∀ h (27)

3) Calendar degradation: For the calendar life loss QCal

we use a piecewise linearization using SOS2 variables that

define the active lincear segment. Eq. (28) computes the SOS2

weighting factor Zi,h, thereby selecting the segment. Eq. (29)

computes the calendar aging, according to the chosen segment.

Eq. (30) ensures that the interpolation weights sum up to 1.

Eq. (31) ensures only one segment can be active. Eq. (32)

ensures that interpolation weights can only be positive for the

active line segment.

SOCh =
∑

i

(oCAL
i · Zi,h) ∀ i, h (28)

QCAL
h =

∑

i

(yi · Zi,h) ∀ i, h (29)

∑

i

Zi,h = 1 ∀ i, h (30)

BCAL
i,h +BCAL

h,m ≤ 1 ∀ i,m > i+ 1, h (31)

Zi,h ≤ BCAL
i,h ∀ i, h (32)

V. CASE STUDY

In the following section we test the model to assess the

impact of the three considered degradation mechanisms. Fur-

thermore, we conduct a sensitivity analysis on different battery

replacement costs.

The optimization is set up in Pyomo and we use the Gurobi

solver version 9.1.2 on a Intel(R) Core(TM) i5-6200U CPU

@ 2.30 GHz processor with 8 GB RAM.

A. Input Parameters

We test the proposed model for a two day period from the

22nd to 24th of April 2019 with hourly timesteps. The prices

are German spot prices [40], to which we add a grid fee of 7.39

ct [41] and a value-added tax of 19%. We chose a volatile price

period because batteries offer their most value in these periods.

However, the negative prices in the original time series are

replaced by 0.1 ct/kWh. Otherwise, the negative price would

negate the degradation cost completely due to profits through

aggressive charging. Furthermore, we set the start and end

SOC to zero.

TABLE III: Battery input parameters

Battery chemistry NMC
Rated power 60 kW
Rated energy 100 kWh
Charge efficiency 95%
Discharge efficiency 95%
Assumed operating temperature 25°C
A in Eq. (4) 0.04519 %/cycle
m in Eq. (4) 0.4926
f 0.0085 %/cycle

Table III shows the battery parameters. We consider a NMC

battery for all degradation parameters. Furthermore, the battery

has a power to energy ratio of 0.6 (equal to the maximum

C-rate). Further, we assume an operating temperature of 25°C;

thereby eliminating the need for temperature consideration.

The degradation parameter A, m, f are taken from a measure-

ment series in [16] (c.f. appendix Fig. 6). For f we remove

the offset caused by the cycle depth damage, to separate

the impact of both mechanisms. We multiply the resulting

maximum value by two, so that a deviation of 50% causes

a damage of 0.00425%.

For the calendar degradation, we break down the ten-

month NMC data for 25°C from [7] to hourly degradation

values. However, as various studies have significantly lower

degradation values, we adjust the parameters downwards with

a factor of 0.25. Thus 100% SOC causes 2% capacity loss per

year, which results in a ten-year shelf life of the battery for an

end-of-life condition of 80% of the rated capacity [42]–[44].

Table IV shows the 5 chosen breakpoints, and Fig. 7 in the

appendix presents the final piecewise linear function.
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TABLE IV: Calendar aging values at segment breakpoints in

10−4%

oCAL 0% 30% 60% 70% 100%
y 1.50 3.50 4.0 7.43 8.93

B. Analysis

At first we asses the accuracy of the proposed model.

Second, we analyze the impact of the individual degradation

parameter. In both cases we use a replacement cost R = 150

AC /kWh. Afterwards we conduct a sensitivity analysis for the

replacement cost R.

1) Model accuracy: We measure the model accuracy with

the relative error.

relative error = 100% ·
calculated value − function value

measured value

First, we compare the uniform segmentation and the op-

timized approximation approach. Therefore, we do a model

run considering only QCD as degradation in the objective.

Both approaches have very similar results with 5.000% error

for uniform segmentation and 5.007% for the optimized ap-

proximation. This similarity is due to just minor adjustments

to the breakpoints. In fact, the non-uniform segmentation

performs slightly worse. We see in Fig. 2 that the breakpoints

shift towards the upper end of the stress function. Thus

the lower segments get bigger and less accurate, while the

upper segments become smaller and more accurate. However,

because the battery cycles more often in the smaller segments,

the uniform segmentation performs better.

0 10 20 30 40 50 60 70 80 90 100

0

0.01

0.02

0.03

0.04
Non uniform 16 Segments
Original
Uniform 16 Segments

Cycle Depth in %

D
eg

ra
da

tio
n 

pe
r s

eg
m

en
t i

n 
%

Fig. 2: Segmentation comparison

Now we run the model run with all degradation mechanisms

active. At first, we notice in Table V that the relative error is

positive, hence the model overestimates the degradation. This

is expected as the piecewise linear segments are always above

the real value for a convex function. For QSOC , the relative

Degradation mechanism Relative error [%]

Combined degradation 3.32

QCD 3.24

QSOC 6.57

QCAL 1.62

TABLE V: Relative model error

error is at 6.57%. Fig. 6, in the appendix, shows the original

data which we used for the error calculation. Unfortunately, a

quadratic curve deviates too much from the data for a reliable

comparison. Therefore, we compare the model results to a

piecewise linear function of the 5 data points of the original

measurement.

QCAL is compared to a series of 16 points as seen in

Fig. 7 in the appendix. We see a relative error of 1.62% for

five breakpoints. Even better accuracy is achievable with an

additional breakpoint at 90% SOC. However, in that case, the

model solve time increases from 2 minutes to over an hour.

Hence, we disregard that additional breakpoint to keep the

model scalable. The total relative error for the degradation

lies at 3.32%, which implies a very accurate model. However,

we must notice that the comparison values stem from curve

fits. Therefore, real verification through battery tests with the

same scheduling is necessary.
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Fig. 3: Degradation cost vs. ex post cost calculation for

R=150AC /kWh

Finally, we see on the left bar of Fig. 3 that ex-post

calculated degradation costs are higher than the revenues

for a model run without degradation in the objective. This

shows the importance of penalizing battery operation in the

model. Without operational costs, the battery cycles to the full

extent every time price differences create a small arbitrage

opportunity even when the battery damage costs exceed the

revenue. When degradation is considered, the battery revenue

is cut by 40% but simultaneously, the degradation reduces

significantly. Consequently, the battery now has a profitable

operating schedule. Further, we see that the CD degradation

costs seem to be the primary degradation factor. In the

following section we analyze the individual impact of each

degradation mechanism on the SOC profile of the battery.

2) Influence of degradation mechanisms: Fig. 4 shows the

SOC over two days with different degradation mechanisms

active in the optimization. The graphs for no degradation

and CAL have almost the same SOC profile. We see very

volatile cycles that exploit every price peak. This results in six

cycles. Three of these cycles have a 100% CD, causing high

battery degradation. At 00:00 on the second day, we observe

a different schedule for CAL compared to no degradation.

Despite a slight price increase, we see one hour delay for the

charge. Thus the battery avoids one hour in 100% SOC, which

lowers the calendar aging. Therefore, considering calendar

aging can delay charges to limit the time spent in high SOC.
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Fig. 4: SOC comparison for different degradation mechanisms considered in the model

Next, we look at the CD profile. At hour six of the first day,

we observe the first difference from the previous profiles. One

small 10% cycle replaces the two previous 60% cycles. We

can trace that back to the small price difference at the charge

and discharge hour. While the model previously exploits the

full battery power, it uses significantly less due to added

discharge costs that negate the previous revenues. Additionally,

we observe entirely different battery behavior on the first day’s

evening. While the no degradation has a 100% discharge at

18:00, the battery now only discharges 25%. Thus significant

aging of a 100% cycle is avoided. Furthermore, at midnight

we see no discharge at all, as the price delta is rather small

compared to the following hours. Similarly, we see a smaller

discharge at 06:00. However, we still see a 100% discharge at

18:00. Despite significant battery aging, the model discharges

because it is economically beneficial to go through a 100%

cycle. The battery charges for free at 12:00 of the first day

and now discharges for more than 13 ct/kWh. This shows

the benefit of this cost-to-revenue trade-off approach instead

of hard upper and lower boundaries. Hard boundaries would

simply prevent full battery usage in this arbitrage situation.

Now we activate the full cycle degradation consisting of

QCD and QSOC . At first, we notice that the small cycle

at 06:00 of the first day is now gone. This is due to the

cycling around an extremely low SOC during the CD run.

Now, this additional battery stress is avoided. Furthermore,

we see a lower average SOC in the next periods. The resting

SOC until 18:00 is on 75% (blue line behind the yellow

line) instead of 93% and we see a deeper discharge at 18:00

than before. While a deeper discharge causes slightly more

CD related damage, it is a trade-off for a lower average

SOC during cycling. Consequently, the addition of QSOC

encourages deeper discharges above 50% starting SOC and

discourages discharges below 50% starting SOC.

Finally, we see the interaction of all three mechanisms in

the full degradation graph. For the first day, we see a similar

SOC profile to the CD & SOC profile. However, due to active

calendar aging, the model punishes high resting SOCs. Hence,

the battery charges two hours later resulting in an overall lower

average SOC. This becomes more pronounced starting 06:00

on the second day. Here we see a 50% discharge instead

of the previous 40%. This has two effects. First, calendar

aging is reduced as the battery goes down to 25% resting

SOC. Secondly, QSOC is reduced to zero because the cycle

starts at 75% and ends at 25% resulting in an average of

50%. Consequently, QSOC and QCAL have a complementary

effect in this situation. Nevertheless, during the last charge

period, we see the opposite. Here the calendar aging lowers the

resting SOC, causing a higher QSOC during the last discharge.

Finally, at 11:00, we see that the active calendar degradation

leads again to a later charge hour than considering only cycle

degradation.

Overall, we can assess that the consideration of battery

degradation in the model provides drastically different optimal

solutions than without degradation. Furthermore, we see that

considering only the CD can lead to high resting SOCs and

cycles at the higher and lower SOC spectrum. Thus it is

advisable to consider multiple mechanisms. Additionally, we

can prove the benefit of incorporating the degradation in

the optimization instead of setting artificial SOC boundaries.

This way, the battery is still fully usable in large arbitrage

opportunities.

3) Sensitivity analysis on battery replacement cost: Fig. 5

shows SOC for a range of battery replacement costs with all

three degradation mechanisms active. We set a price range

from 50 to 500 AC /kWh. This reflects the uncertainty in battery

price forecasts. However, studies agree on decreasing prices

for battery packs for the next decades [2]. Table VI shows

performance indicators for the different battery price scenarios.

We observe that the average SOC decreases with rising R.

This is due to higher calendar aging costs as well as more

costly deep discharges. Thus the battery settles at 31% SOC

for the highest price scenario, while we see 100% in the two

lowest price scenarios. Furthermore, the cycle amplitudes are

reduced and located closer to 50% SOC with increasing costs.

The exception is R = 500, where the costs are so high that
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Fig. 5: Sensitivity analysis on R

the battery never charges beyond 31%. More distance to 50%

SOC and thus a higher QSOC is the trade-off for lower QCD

and QCAL in this case.

The annualized CD degradation value for R = 50 and

R = 100 are at 18.7% and at 12.1%. This clearly shows

the advantage of degradation costs as part of the optimization

instead of hard SOC or CD boundaries. Damaging battery

behavior is acceptable as the replacement costs are lower than

the generated revenues.

Additionally, we see that the CD degradation has the dom-

inating share of the total degradation throughout all prices.

However, this gets less pronounced with increasing battery

costs. In return, this means that QSOC and QCAL become

more relevant. However, for QSOC , we see no clear trend as

it depends on where the cycles occur. Thus we see a lower

value for R = 50 because the battery has more 100% cycles,

averaging at 50% compared to R = 100 where the SOC is

lower during the second day.

Finally, the annualized profits show extensive arbitrage

opportunities. Nevertheless, naturally, the profit decreases with

rising battery costs. At R = 500, we observe higher costs

than revenues, resulting in losses despite an optimal arbitrage

setting. Consequently, the battery investment could hardly ever

become profitable due to the high operational costs.

4) Model runtime: In addition, we want to address the

model complexity and runtime in relation to the model ac-

curacy. We see in Table VI that the contribution of each

mechanism to the total battery degradation is very different.

In the case of multiple and deep cycles, such as R = 50,

we see that the CD degradation has a share of 93.5% of

the total degradation, while the QCAL contributes 5% and

QSOC only 1.5%. In the moderate and most realistic case of

R = 150 this changes to QCD contributing 83.1%, QCAL

contributing 11.1% and QSOC contributing 5.8%. Therefore,

we see a clear priority of considering QCD in the optimization

over the two other mechanisms. The model takes 5 minutes

46 seconds to solve the full degradation run for R = 150.

Given that QCD has the most impact, we remove only QSOC

and QCAL respectively from the model to assess the runtime

influence of the added mechanisms. The combination of QCD

and QSOC solves in 17 seconds, while the combination of

QCD and QCAL solves in 0.87 seconds. Therefore, QSOC

has the least impact on the model accuracy but by far the

biggest influence on the run time. Furthermore, we assume

that the model run time will not scale linearly due to the bi-

linear constraints Eqs. (24) and (27) and the number of binary

variables. Consequently, we expect tractability issues for a

larger number of timesteps and in stochastic settings, in which

case we recommend removing QSOC from the optimization.

This reduces the runtime considerably while maintaining a

high model accuracy.

TABLE VI: Battery performance

KPI Unit R = 50 R = 100 R = 150 R = 200 R = 300 R = 500

Total charge throughput [kWh] 249.38 194.13 137.87 108.07 78.08 29.69
Max SOC [%] 100.00 100.00 75.32 62.75 56.44 31.25
Average SOC [%] 42.71 37.72 32.86 30.64 29.33 10.42
Max CD [%] 60.00 60.00 59.58 59.61 53.62 29.69
Annualized CD degradation [%] 18.69 12.13 6.27 4.02 2.70 0.74
Annualized SOC degradation [%] 0.29 0.75 0.44 0.29 0.34 0.27
Annualized CAL degradation [%] 1.00 0.86 0.84 0.70 0.62 0.48
Annualized revenue [C] 3415.63 2952.21 2161.41 1746.34 1421.5 666.72
Annualized degradation cost [C] 999.17 1373.29 1132.51 1001.98 1098.08 742.15
Annualized profit [C] 2416.46 1578.92 1028.9 744.35 323.42 -75.43
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VI. CONCLUSION

This paper shows the importance of correctly representing

battery costs for economic dispatch decisions. Out of multiple

degradation mechanisms for lithium-ion batteries, we consider

the cycle depth, average cycle SOC, and SOC-based calendar

aging in a mixed-integer linear optimization model.

We can prove a good model accuracy of 3.3% relative error

in relation to the input curve fits. However, a real test series

for a battery adopting the operating schedule would provide

further information about the model accuracy. We set out to

improve the widely used rainflow approximation model with

a non-uniform segmentation. However, the uniform segmenta-

tion performed slightly better.

Additionally, we prove the importance of correct degrada-

tion representation in optimizations. High price differences

create considerable arbitrage opportunities for batteries. How-

ever, an ex-post calculation of degradation costs reveals that

at first profitable trades result in losses, as aggressive battery

scheduling leads to high hidden degradation costs. Addition-

ally, commonly used hard SOC boundaries of 10-15% SOC

as lower and 90% upper limit would prohibit these arbitrage

situations. We show that the option for a trade-off between

more damaging battery behavior and economically profitable

scheduling is necessary. Furthermore, we see that the common

CD model alone results in a high average cycle and resting

SOCs, leading to higher cycle and calendar aging of the battery

than accounted for in the model.

In the last step, we conduct a sensitivity analysis on the

battery replacement cost. With increasing costs, we see lower

cycle amplitudes, closer to 50% average cycle SOC. Further-

more, the battery becomes entirely unprofitable, even during

high price differences, with a high replacement cost of 500

AC /kWh.

Finally, we want to address the limitations of the proposed

model and indicate further research possibilities. Our model

has two core assumptions: 1) a stable 25°C operating temper-

ature and 2) a C-rate lower than one. Thus we do not consider

the effect of these parameters on the battery degradation.

However, deviating temperatures and high C-rates result in

additional battery stress that can even become the primary

damaging influence. Thus the proposed model would lose ac-

curacy. At last, the model needs to be tested in more advanced

optimizations, as the goal is to incorporate the degradation

model in general large-scale dispatch optimizations.
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Abstract—The transition to a sustainable energy system leads
to increasing supply by intermittent, distributed generation, while
at the same time electrification and penetration of electric vehicles
lead to higher, more variable and more uncertain demand. It is
increasingly more interesting for neighborhoods to manage local
supply and demand to minimize overall energy costs. The main
options for this are storage technologies and demand response. In
this study we assess the impact of different charging strategies for
electric vehicles on the energy costs of a local neighborhood. We
analyze a building complex incorporating solar PV modules, a
small-scale combined heat and power plant, a stationary battery
and multiple electric vehicles. We account for battery degradation
to allow for cost-effective tradeoffs and increased optimization of
battery usage. We reflect uncertainty in intraday prices, and user
behavior via the electrical vehicle charging needs in a multistage
stochastic approach.

We discuss a deterministic case to illustrate the workings of
the model. The stochastic results show a significant reduction of
expected energy costs by up to 10% through flexible charging
and a particular vehicle-to-grid benefit in an uncertain setting;
the EV battery degradation is reduced by up to 30%.

Index Terms—battery degradation modeling, economic dis-
patch, energy storage, distributed energy resources

ABBREVIATIONS

CHP Combined Heat and Power plant

CD Cycle Depth

DR Demand Response

DG Distributed Generation

EV Electric vehicle

MG Micro Grid

MILP Mixed-Integer-Linear-Programming

NLP Non-Linear-Programming

PV Photovoltaic

RES Renewable Energy Sources

SOC State of Charge

TES Thermal energy storage

V2G Vehicle-to-Grid

NOMENCLATURE

Sets and indices

b ∈ B Buildings
e ∈ E Energy carriers el, ht, gs
h ∈ H Stochastic scenario tree nodes

h̃ ∈ H Predecessor scenario node of h

ĥ ∈ H Terminal nodes of scenarios
harr ∈ H Arrival time of EV

hdep ∈ H Departure time of EV
i,m ∈ I Calendar aging breakpoints

j ∈ J Segments in the battery
L,M ∈ N Grid types n, local and main
t ∈ T Generation technologies
u ∈ U CHP breakpoints
w ∈ W Storages

Variables

ASt
b,w,el,h

SOC-level at cycle start

A
cyc
b,w,el,h

Deviation to 50% SOC

BC
b,w,e,h

Binary, charge mode active

BCAL
b,w,el,i,h

Binary, SOS2 calendar aging

BCHP
u,h

Binary, SOS2 CHP operation

BD
b,w,e,h

Binary, discharge mode active

BEND
b,w,el,h

Binary, end of a discharge cycle

BS
b,w,e,h

Binary, battery steady-state

BSt
b,w,el,h

Binary, start of a discharge cycle

Cb,w,e,j,h Battery charge

CHP in
b,h

CHP gas consumption

CHP out
b,e,h

CHP energy output

CUb,e,h Generation curtailment
Db,w,e,j,h Discharge
Gb,e,n,h Grid extractions
Ib,e,n,h Grid injections

ICHP
b,e,M,h

Grid Injections, share of CHP

IRES
b,e,M,h

Grid injections, share of RES

Kb,w,el,h Collected cost of battery degradation

QCAL
b,w,el,h

Calendar aging based capacity loss [%]

QCD
b,w,el,h

Cycle depth based capacity loss [%]

QSOC
b,w,el,h

Average cycle SOC based capacity loss [%]

Sb,w,e,j,h Storage Level
SOCb,w,el,h State of charge [%]
Xu,h SOS2 weight factor for CHP
Zb,w,el,i,h SOS2 weight factor for calendar aging

Parameters

ab,w,h EV availability
αh Scenario probability
cmax
b,w,e

Maximum charge

dmax
b,w,e

Maximum discharge

demb,e,h Residential demand

erated
b,w,e

Rated energy of the storage

f Fitting parameter for average SOC stress

gRES
b,t,e,h

Renewable energy production

kend End of horizon penalty cost parameter for EVs

kO Operational costs of CHP
ntce Net transfer capacity
pe,h Grid import price

pRES Price per kWh for RES feed in

pCHP Price per kWh for CHP feed in
R Replacement cost of the battery [AC /kWh]

oCAL
b,w,i,h

Calendar aging breakpoint

oCHP
u,e CHP breakpoints

vc
b,w,e

Charging efficiency

vd
b,w,e

Discharging efficiency

ve,n Grid losses
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yb,w,i Calendar aging breakpoint aging value

I. INTRODUCTION

Electricity distribution is becoming increasingly complex

due to an progressively larger variety of consumption types

–e.g. electric vehicles– with high demand peaks, and a rising

share of decentralized Renewable Energy Sources (RES) feed-

ing into the local distribution grids. [1], [2] The applicability

of RES such as solar PV as the sole power generation source in

urban settings is generally limited due to the fluctuating nature

of its electricity generation [3]. Therefore, we need a smart

set up and operation of energy systems. A straightforward

solution to manage RES intermittency is by using storage

units. Additionally, coupling the electricity grid and heat sector

may help balance generation peaks and ease the integration

of RES. Storage units for power and for heat have high

unit investment costs, and, especially for electric batteries,

charging and discharging patterns have a major impact on

battery degradation, and hence lifetime. An optimal use of

storage capacity allows for investing in smaller, hence cheaper,

units, and considering battery degradation allows to trade off

arbitrage opportunities with battery lifetime. In the interplay

of different types of power and heat generation and storage

equipment, there are many degrees of freedom, and hence opti-

mizable decisions. Additionally, we need to consider variations

and uncertainty in user behavior (i.e., demand) and prices. We

are interested in how different charging strategies for Electric

vehicle (EV) batteries, while considering battery degradation,

affect overall system cost. In this paper, we analyse the impact

of EVs charging strategies on the operational energy costs for

a smart neighborhood in an urban setting: a local energy com-

munity in Pfreimd, Germany. This community consists of four

buildings with 80 apartments combined, connected through

a local electricity and a local heat grid. Each building has

Photovoltaic (PV) modules installed. Moreover, one building

has a small-scale Combined Heat and Power plant (CHP) and a

Thermal energy storage (TES). External electricity and district

heat grids can provide energy to the local community, while

surplus electricity can also be delivered back. We account for

battery degradation for both the stationary battery and the EVs,

and consider uncertainty in electricity prices and demand. The

main contribution of this paper is the combined consideration

of vehicle charging strategies, battery degradation, and uncer-

tainty in a smart neighborhood setting.

II. LITERATURE REVIEW

A. Smart Local Energy System

Optimal energy management of smart energy buildings and

neighborhoods has recently captured significant attention [4],

[5]. Studies focus either on cost-minimization or profit maxi-

mization, often via participation in energy markets. Suggested

approaches vary according to different perspectives. A first

distinction concerns the centralized or decentralized perspec-

tive [6], [7]. In a centralized framework, all relevant input data

for consumers and prosumers is gathered and assessed via a

central entity. In a decentralized framework, this is executed at

the local level. Using centralized frameworks leads to lowest

costs (or highest profit) [8]. Decentralized structures, however,

offer information privacy and other utility to customers in

terms of maximized self or local sufficiency by RES.

Despite increasing intermittency and uncertainty for both

generation and load, supply has to match demand at all times.

Therefore, generation capacity needs to be sufficient to meet

maximum demand. Demand Response (DR) can help reduce

peak loads and shift loads to periods when generation is high.

Through shifting demand, DR can help to handle fluctuating

electricity prices and variable supply [9]. Increasing DR efforts

enables the accommodation of growing demand, e.g., from EV

charging, without expanding the infrastructure [10].

While DR is implemented successfully in the industry, it is

lacking in the residential sector. Smart grids in combination

with aggregators can enable DR in the residential sector. Ag-

gregators are entities that act as a mediator between individual

households and energy utilities. Combining and managing

demand and available flexibility from many households allows

them to balance energy within their portfolio while handling

energy volumes that allow participation in retail and flexibility

markets [11].

Dispatchable energy units, e.g., storage’s and CHP are espe-

cially important in smart grids [12]. The increased flexibility

benefits all actors in the system. Furthermore, a TES will

allow more efficient operation of the CHP as it decouples

the electric and thermal profiles of the CHP, thereby enabling

more flexible operation [13]. This, in turn, is very helpful

when using the CHP as a balancing source for fluctuating RES

(c.f., [14]). Beside (foreseeable) intermittency, uncertainties

arising from a variety of sources such as RES, market prices,

demand profile, and recently EVs, impact least-cost operation

[15]–[18]. Despite a significant impact of uncertainty, most

researchers deploy deterministic models (c.f., [6], [19]). Gen-

erally, deterministic approaches lead to non-optimal solutions.

Accounting for uncertainty gives more robust, lower cost

solutions. E.g., [15] use Monte Carlo simulation to investigate

how Distributed Generation (DG) units (CHP and power-only

units) and EV batteries can be used to mitigate the effects of

price uncertainty in Micro Grid (MG) operation.

[20] propose a two-stage stochastic model to optimize the

operation of a RES-based MG equipped with an EV parking

lot. To account for the risks associated with uncertainties from

load, electricity price, EV drivers behavior, PV, and wind

generation, they use the conditional value at risk measure. As

in energy systems the realization of uncertain events typically

happens at multiple moments in time, multi-stage rather than

two-stage stochastic programs can be more appropriate. (c.f.,

[21], [22]). Few papers only develop multi-stage models for

operational scheduling in energy systems. [23] compare a two-

stage and a multi-stage model for an economic dispatch prob-

lem with RES to minimize the expected total cost. They solve

a case study based on IEEE 118-bus system using stochastic

dual dynamic programming, and illustrate the improvement

and robustness of the solution found. [24] apply a multistage

stochastic model accomplish more energy-efficient scheduling

of a CHP unit, PV, heat boiler, and energy storage systems

in a building with electricity and thermal demand. To take

advantage of a DR program, load profiles are separated into
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a deterministic non-controllable load and a controllable load

with a stochastic attribute. They use a rolling scheduling

method to reoptimize based on updates of the information

on uncertain parameters corresponding to load and PV power

generation.

B. Electric vehicles in Smart neighborhoods

EVs have typically up to 90% idle time, which can offer

significant flexibility in terms of both (shiftable) demand and

(storable) supply (via the battery). The distribution of EV

arrival times at home is skewed towards the afternoon. Most

EVs connect between 13:00 and 19:00 at work days [25].

Spatiotemporal parameters like charging at home or at work,

weekday, the car-type and the charging infrastructure influence

the charging schedule, i.e., the load and peaks therein (c.f.,

[26]).

Managing charging schedules can be beneficial for the

operational cost. We can distinguish passive, uncontrolled and

active, flexible charging strategies [27]. Uncontrolled, passive

charging means that vehicles charge, from the moment they

are plugged in, at the maximum possible charge power until

the battery is full. Flexible approaches may be controlled,

when an aggregator controls EV charging schedules directly,

or incentivised, when she provides price signals to incentivize

users to charge at moments most convenient for the broader

system. A flexible approach only managing the charging

schedule is smart charging, while a charging schedule that

also allows discharges is Vehicle-to-Grid (V2G). Naturally,

V2G provides the most flexible charging scheme, but may

create additional stress on the EV battery [27], leading to

degradation, and reduced battery lifetime. While many stud-

ies have investigated the interplay between EVs and smart

neighborhoods, they ignore degradation costs when evaluating

charging strategies [15], [18].

C. Battery degradation

Battery lifetime has two components, calendar and cycle

life, that both reduce through chemical and mechanical stress

[28]. In frequently used batteries, cycle life tends to be the

decisive lifetime component [29]. This is the case in stationary

batteries, while for EV batteries, with up to 90% idle time,

calendar aging tends to be the dominant influence. As the two

aging behaviors are additive, both should be minimized [30],

[31].

Avoiding battery degradation can be done by accounting

for penalties per kWh throughput and State of Charge (SOC)

boundaries [32], [33]. However, such simple representations

disregard the quadratic increase of Cycle Depth (CD) based

aging and ignore other aging mechanisms. Typically, this

results in relatively deep cycles and high resting SOC lev-

els, causing the actual battery degradation to be (potentially

much) larger than the model shows. To better account for

nonlinear or even non-convex characterizations of degradation,

researchers have used advanced optimization methods, such

as Mixed-Integer-Linear-Programming (MILP) [34]–[36], and

mixed-integer Non-Linear-Programming (NLP) [37]. MILP

methods are able to model on/off decisions for equipment

and incorporate piecewise linear functions, thereby providing

good approximations of nonlinearities – often with lower

computational complexity compared to NLP. They are well-

suited for energy management problems in the context of

smart neighborhoods. Specifically for approximating CD based

degradation, piecewise linear functions using segments is

commonly used [38]–[40]. Concerning V2G strategies there is

mixed evidence for their viability as the additional degradation

costs can be prohibitive (c.f., [41] where high charge powers

cause significant damage to the battery). As we also see in

our case study, in other cases the arbitrage benefits outweigh

the increased degradation costs. More complex degradation

models, like an open circuit model, however, often become

non-convex [42].

In [43] we propose and test a scalable, MILP battery

degradation model considering three degradation components,

which we integrate in this paper in a stochastic multi-stage

optimization model for a smart neighborhood. For the cycle

aging, we consider a segmented CD model, in which cycles are

penalized more than proportional with CD [43]. The penalty

is calculated according to Eq. (1) [44].

QCD(CD) = A · CD
1

m (1)

Additionally, we consider the average SOC within a cycle,

represented by binary constraints. The penalty increases sym-

metrically with the SOC’s distance to 50% SOC [43]. The

third mechanism is SOC-related calendar aging [31], [43].

We ignore charge-rate dependent degradation as stationary

batteries with low power to energy ratios can not reach

damaging charge rate levels over 1C. Additionally, moderate

charge rates imply a low temperature gradient in the battery

[41]. Further, the ambient temperature impact is hard to model,

as it sets the cell temperature’s initial level but can deviate

significantly from it, especially for actively used batteries in

low ambient temperature conditions.

III. MODEL FORMULATION

We present the model in its general form, allowing V2G.

A. Objective function

MIN :
∑

h

αh ·





∑

b,e

(pe,h ·Gb,e,M,h

− ve,M · (pRES · IRES
b,e,M,h + pCHP · ICHP

b,e,M,h)) (2)

+
∑

b

(pgs,h · CHP in
b,h + kO · CHP out

b,el,h) +
∑

b,w

Kb,w,h





+
∑

b,w,ĥ

(αh · (SOCb,w,el,0 − SOC
b,w,el,ĥ

) · kend)

The model minimizes expected operational energy costs

Eq. (2). The first term describes the energy purchased from

the main grid, and the second term the feed-in remuneration

from injecting into the main grid. Here, the feed-in is separated

into RES and CHP as they may have different selling prices.
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The next terms, on the third line are the CHP gas input costs

and operational costs per kWhel produced. The last term on

the third line is the battery degradation costs K. On the fourth

line we include a penalty (a bonus for negative values) for the

deviation of SOC levels at the end of the planning horizon and

the starting SOC. For the smart and V2G charging schemes,

we penalize the delta of the starting SOC and the SOC at the

end of the optimization horizon. Thereby, we account for the

need to have EVs fully charged at their departure, but allow

lower SOC values in some scenarios if alternative electricity

supply would be very expensive.

B. Constraints

We omit the scope of some constraints to allow fitting them

on a single line. E.g., in Eq. (3) the scope is ∀ b, e, h.

1) Grid constraints: Eq. (3) is the energy balance. For

every building, hour, for both electricity and gas, the supply

in form of RES and CHP generation, grid import, stationary

and vehicle storage discharges equals the sum of residential

demand, potential curtailment, grid exports, and storage de-

mand. We allow curtailment because heat cannot be delivered

to the main grid, and this might unnecessarily prevent the CHP

from generating electricity. Here, only main grid injections

are efficiency adjusted. We apply the local grid efficiency

in Eq. (4), the balance for local generation and injections

correctly. All round-trip efficiency losses are accounted when

injecting.
∑

t

gRES
b,t,e,h + CHP out

b,e,h +
∑

n

Gb,e,n,h +
∑

w,j

Db,w,e,j,h =

demb,e,h + CUb,e,h +
Ib,e,M,h

ve,M
+ Ib,e,L,h +

∑

w,j

Cb,w,e,j,h

(3)

∑

b

Gb,e,L,h = ve,L ·
∑

b

Ib,e,L,h ∀ e, h (4)

We do not allow heat injection into the main grid and set

Ib,ht,M,h = 0, ∀b, h. Thus excess heat is either stored in

the TES or curtailed. The upper bound for RES-based grid

injections is the RES production Eq. (5) .

IRES
b,e,M,h ≤ ve,M ·

∑

t

gRES
b,t,e,h ∀ b, e, h (5)

2) Storage constraints: The storage level at the start of a

time step equals the storage level of the previous time step

adjusted for, loss-corrected, charges or discharges (Eq. (6)).

To enable the consideration of CD based degradation, we

divide batteries into virtual segments J with equal sizes and

segment specific costs. Eq. (7) imposes segment-level storage

limits. Eqs. (8) and (9) restrict charges and discharges to their

maximum values. We assign a parameter value Sb,w,e,j,harr =
Sarrival
b,w,e,j,h to arriving EVs. In following time steps, for con-

nected EVs, Eq. (6) applies. For the departure time step, we

impose Sb,w,el,j,hdep = eratedb,w,el to assure a fully charged EV.

Sb,w,e,j,h =Sb,w,e,j,h̃ + vcb,w,e · Cb,w,e,j,h̃ −
Db,w,e,j,h̃

vdb,w,e

(6)

Sb,w,e,j,h ≤
eratedb,w,e

|J |
(7)

EV batteries are modelled as stationary batteries, with the

addition of arrival and departure times [45]. Thereby EVs act

as a (dependent on the charging strategy, possibly flexible)

demand and as storages in given time periods. The presence

of EVs is reflected by parameter ab,w,h = 1. Consequently,

ab,w,h = 0 imposes zero as upper limits in Eqs. (8) and (9).

For stationary storages, all ab,w,h = 1.

To model degradation, details in the next Section, binary

variables indicate three mutually exclusive states Eq. (11):

charging, discharging and steady state. (Eqs. (8) to (10)).
∑

j

Cb,w,e,j,h ≤ cmax
b,w,e · ab,w,h ·BC

b,w,e,h ∀ b, w, e, h (8)

∑

j

Db,w,e,j,h ≤ dmax
b,w,e · ab,w,h ·BD

b,w,e,h ∀ b, w, e, h (9)

1−
∑

j

(Db,w,e,j,h + Cb,w,e,j,h) ≤ BS
b,w,e,h ∀ b, w, e, h (10)

BC
b,w,e,h +BD

b,w,e,h +BS
b,w,e,h = 1 ∀ b, w, e, h (11)

A passive charging mode can be represented by imposing

adequate minimum SOCs levels for the relevant time steps. For

smart charging, we only impose a full battery at the departure

time, and do not allow discharges.

C. Battery degradation

We use the battery degradation constraints developed in

[43]. The degradation cost K (Eq. (12)) has three components

QCD
b,w,el,h - the cycle depth degradation, QSOC

b,w,el,h - the average

SOC cycle degradation, and QCAL
b,w,el,h - the calendar degrada-

tion. The component wise % capacity losses are multiplied

by the battery replacement cost (C/kWh) and battery capacity

(kWh).

Kb,w,el,h = R · eratedb,w,el · (Q
CD
b,w,el,h +QSOC

b,w,el,h +QCAL
b,w,el,h) ∀ h

(12)

1) Cycle Depth degradation: Eq. (13) determines the CD

based damage considering J segments, which is accounted for

during discharging. Discharges in consecutive time steps are

part of the same cycle, which needs to be handled. The first

term in Eq. (13) locates how much of which segments is

discharged in the current time step, while the second term

provides the degradation value.

QCD
b,w,el,h =

∑

j





Db,w,el,j,h

erated
b,w,el

|J|

[

QCD

(

j

|J |

)

−QCD

(

j − 1

|J |

)]





(13)

2) Average cycle SOC degradation: Quite some bookkeep-

ing is needed to account for this type of degradation. We

compute several auxiliary values, which are used to apply a
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penalty at the end of a discharge cycle only. Eq. (14) computes

the relative SOC at the end of every hour.

SOCb,w,e,h =

∑

j Sb,w,e,j,h

eratedb,w,e

∀ b, w, e, h (14)

Following [43], Eqs. (15) to (17) and Eqs. (18) to (20), use the

binary variables to determine start respectively end points of

specific discharging half cycles. Eq. (15) only allows the start

of a discharging cycle, if for h the battery is discharging, but

in previous time step h̃ it was not. Eq. (16) only allows the

start of a discharging cycle, if for h it is discharging. Eq. (17)

disallows the start of a discharging cycle, if for h̃ the battery

was discharging already. These three combined appropriately

determine the start of discharging cycles.

BSt
b,w,el,h ≥BD

b,w,el,h −BD

b,w,el,h̃
∀ b, w, h (15)

BSt
b,w,el,h ≤BD

b,w,el,h ∀ b, w, h (16)

BSt
b,w,el,h ≤1−BD

b,w,el,h̃
∀ b, w, h (17)

BEND
b,w,el,h ≥BD

b,w,el,h̃
−BD

b,w,el,h ∀ b, w, h (18)

BEND
b,w,el,h ≤BD

b,w,el,h̃
∀ b, w, h (19)

BEND
b,w,el,h ≤1−BD

b,w,el,h ∀ b, w, h (20)

In Eq. (21), the first term saves the SOC at the start of a

discharge cycle in auxiliary variable ASt. In following time

steps, the second term keeps this value in the cache. After the

cycle end, the auxiliary must be reset before the next cycle.

Hence, the second term checks if a cycle ended in the previous

scenario node, to set the variable back to zero.

ASt
b,w,el,h = SOCb,w,el,h ·BSt

b,w,el,h

+(1−BSt
b,w,el,h −BEND

b,w,el,h̃
) ·ASt

b,w,el,h̃
∀ b, w, h (21)

This starting SOC is then passed to Eqs. (22) and (23) that

compute the deviation of the average SOC to 50%.

Acyc
b,w,el,h ≥

SOCb,w,el,h +ASt
b,w,el,h

2
−

1

2
∀ b, w, h (22)

Acyc
b,w,el,h ≥

1

2
−

SOCb,w,el,h +ASt
b,w,el,h

2
∀ b, w, h (23)

Finally, in Eq. (24) we penalize the absolute deviation Acyc

with the penalty factor f . However, this penalty is only active

at the end of each cycle. Thus we penalize the average

deviation over the cycle once and not every period.

QSOC
b,w,el,h = f ·Acyc

b,w,el,h ·BEND
b,w,el,h ∀ b, w, h (24)

3) Calendar degradation: For the calendar life loss QCAL

we use a piecewise linearization using SOS2 variables that

define which line segment of the linearization is active.

Eq. (25) computes the SOS2 weighting factor Zb,w,el,i,h.

Eq. (26) computes the calendar aging. Eq. (27) ensures that

the interpolation weights sum up to 1. Eq. (28) ensures only

one segment can be active. Eq. (29) ensures that interpolation

weights can only be positive for the active line segment.

SOCb,w,el,h =
∑

i

(oCAL
b,w,i · Zb,w,el,i,h) ∀ b, w, h (25)

QCAL
b,w,el,h =

∑

i

(yb,w,i · Zb,w,el,i,h) ∀ b, w, h (26)

∑

i

Zb,w,el,i,h =1 ∀ b, w, h (27)

BCAL
b,w,el,i,h+BCAL

b,w,el,m,h ≤ 1 ∀ b, w, i,m > i+ 1, h (28)

Zb,w,el,i,h ≤BCAL
b,w,el,i,h ∀ b, w, i, h (29)

D. CHP Operation

We model CHP operation with a piecewise segmentation.

Eq. (30) and Eq. (31) define the energy input and output.

CHP in
b,h =

∑

u

oCHP
u,gs ·Xu,h ∀ b, h (30)

CHP out
b,el,h =

∑

u

oCHP
u,el ·Xu,h ∀ b, h (31)

The CHP has several breakpoints, including an off state

and a minimum operating level. Eq. (32) ensurs that the first

breakpoint can only be active alone, enforcing zero input and

output. For the remaining breakpoints Eq. (33) enforces that

only one line segment can be active at the same time. Eq. (34)

ensures that the sum of the weights Xu,h equals 1. Finally,

Eq. (35) guarantees that weights can only be positive for active

segments.

BCHP
1,h +BCHP

u,h ≤ 1 ∀ u > 1, h (32)

BCHP
u,h +BCHP

u+2,h ≤ 1 ∀ u, h (33)
∑

u

Xu,h = 1 ∀ h (34)

Xu,h ≤ BCHP
u,h ∀ u, h (35)

IV. CASE STUDY

We start with analyzing a set of deterministic cases to

provide a clear understanding of what is driving the operational

dynamics of the system when considering the three different

charging schemes while accounting for battery degradation.

Next, we consider the influence of uncertainty in both main

grid electricity prices and the SOC of EVs when they arrive at

the building complex in the late afternoon. All cases are solved

using Pyomo with Gurobi version 9.1.2 [46]. The model runs

on a Lenovo ThinkSystem SD530 with CPU@ 2x 3.5GHz

Intel Xeon Gold 6144 CPU – 8 core and 384GB RAM. With

this setup, the deterministic V2G case solves in 86.61 seconds.

Due to increased complexity in the stochastic case, we set the

gap tolerance to 0.1% which results in a solve time of 19

minutes and 12 seconds.

A. Input data

The building complex data are based on an existing complex

in Pfreimd, Germany. It consists of three high-rise and one

lower apartment building with in total 80 apartments and about

300 residents. All buildings have rooftop PV modules, and

there are local grids for heat and electricity. Moreover, the

buildings are connected to the main grids for electricity and

district heating. One of the buildings features a small-scale
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CHP, and a TES. To reflect a potential future situation of

interest, we add a stationary electric battery to the complex,

and add EV charge stations on the parking lot. We consider

TABLE II: CHP characteristics [47]

Operating Level [%] 0 50.0 75.0 100.0

Gas consumption [kW] 0 37.1 48.1 61.1
Electric output [kW] 0 10.0 15.0 20.0
Heat output [kW] 0 28.1 34.2 42.2

an hourly time resolution. For the specific day considered,

Monday the third of June 2019, the complex had a residential

peak electricity demand of 68 kW and a peak heat demand

of 43 kW. The PV modules peak generation at this date was

73 kW. This was larger than peak demand, which will induce

battery charging and / or grid exports in the model. Table II

presents the CHP output and efficiency for four different

operation modes. The model determines the operational level

using interpolation, as explained above in Section III-D. The

maximum CHP heat output is just short of covering the peak

demand, so some heat supply must come from the main grid

or the TES. Table III summarizes the storage data. In the case

TABLE III: Storage data

Storage type Battery TES EV (each)

Capacity [kWh] 150.0 172.0 40.0
Power [kW] 90 42.2 7.0
Round trip efficiency [%] 90.0 90.0 88.0
Assumed operating temperature [°C] 25.0 – 25.0
A in Eq. (1) [%/cycle] 0.04519 – 0.04519
m in Eq. (1) 0.4926 – 0.4926
f [%/cycle] 0.0085 – 0.0085

set up, we include six EVs with the battery dimensions of

a typical Nissan Leaf [48]. For the replacement cost R, we

assume 150 C/kWh [49]. The round trip efficiency of the

EVs is assumed to be slightly lower than for the stationary

battery. We base the cycle degradation parameters A, m, f

on measurements from [44]. For the calendar degradation we

use measurements from [31] but divide them by 4 as various

studies show significantly lower degradation values [50]–[52].

Hence, the battery can experience up to 2% capacity loss per

year (equal to ten-year shelf life). All degradation data is valid

for a nickel manganese cobalt battery chemistry.

TABLE IV: Calendar aging values at segment breakpoints in

10−4%

oCAL 0% 30% 60% 70% 100%
y 1.50 3.50 4.0 7.43 8.93

The hourly electricity prices are based on the German

spot prices for this specific date; we add the network fee

(7.39 ct/kWh [53]) and value-added tax (19%). For the gas

price, we assume a constant 6.145 ct/kWh, the average gas

price for German household consumers in 2019, including

network charges and tax [54]. In addition to the gas costs,

the CHP has operational costs of 1.7 ct/kWhel, based on

the service contract of the building complex. We assume a

constant 8 ct/kWh as the district heating grid price. In line

with regulations for feed-in tariffs concerning PV modules

with peak power ≤ 100kW, the excess PV power can be

sold at a fixed rate of 6.59 ct/kWh [55]. This encourages self

consumption, possibly via own storage.

For the EV availability parameter ab,w,h, we use the distri-

bution from [25] for week days. We consider three car groups

with two cars each, with arrival times: 16:00, 17:00, and 20:00,

with respective SOC levels of 50%, 60%, and 40%.

Finally, we need to address the treatment of the arrival SOC

and the virtual battery segmentation of EVs in the model.

An EV battery always arrives at the neighborhood with the

expensive segments filled. E.g., an EV that arrives with 50%

SOC, arrives with the bottom 10 out of 20 segments filled.

Thereby, we account for the discharge while driving. If we

would not specify this, the model would fill the cheap battery

segments, which represent less battery degradation. In the V2G

case, upon arrival, this would lead to very cheap EV discharges

and thus a misrepresentation of the degradation in an V2G

charging scheme. All in all, the EV was already discharging

and thus experiencing degradation while driving which must

be acknowledged by the model.

B. Deterministic Case

We consider three EV charging strategies: passive, smart,

and V2G.

1) Passive charging: Fig. 1a displays generation, battery

discharges, and grid imports as positive values, while demand,

battery charges, and grid exports are negative values. At the

start of the day, from 00:00 to 03:00, the CHP runs at full

capacity, at a slightly lower level until 05:00 (when solar

generation is starting), and at a more reduced load until 09:00.

As such, CHP covers most of the electric and the entire heat

demand during the night, while also charging the TES.

In the morning after 9:00 PV generation continues to rise,

and the CHP shuts down until the evening. Surplus PV power

not immediately needed to cover demand, is used for two

purposes. First, some of it is sold to the main grid. Here

we note that the specific selling hour does not affect the

timing of sales, due to the fixed feed-in remuneration.1 Second,

stationary and EV batteries are charged. The rather low feed-

in tariff means that the opportunity cost of PV generated

electricity is only 6.59 ct/kWh, which is lower than the lowest

hourly price when buying from the grid. The stationary battery

charges gradually over the day with a big charge to the max

SOC right before the first EVs arrives. Again, due to fixed

feed-in remuneration, there is no price arbitrage opportunity

concerning the timing of selling the grid or charging the

battery. In fact, the charging schedule is optimized to minimize

the calendar aging of the battery by keeping the battery at a

low SOC during most of the day.

Fig. 1c shows the SOC profiles of all battery groups. For

EVs an SOC of zero indicates that they are not present at the

charger. By assumption, the start and end SOC levels of the

stationary battery are 30%. The EVs start at time 00:00 with

1Generation costs from the CHP are too high to profitably sell to the grid
at any time.
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(a) Hourly mass balance electricity–passive charging, Deterministic
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(c) Battery and EV SOC profiles - passive charging, Deterministic

Fig. 1: Passive charging, Deterministic

SOC levels equal to the last time step: EV1 and EV2 start the

day at 100%, and EV3 at 90%. The latter charges one hour at

the beginning of the day to reach 100%.

During the entire evening, there is a high residential and

EV demand. As soon as an EV connects, it starts charging at

maximum capacity. Additionally, the PV generation declines

rapidly after 18:00, leading to a spike in grid imports around

20:00, when electricity prices are at their highest for the day.

Therefore, the stationary battery discharges during these hours

to avoid main grid import costs.

As a side note, the TES, which is preset to start with exactly

and end the day with at least 30% of capacity, is charged

by the CHP to 64%. It can thereby cover the heat demand

between 09:00 and 15:00. Consequently, the neighborhood is

self-sufficient for heat this summer day.

The EV charge load is more than 12% of total electricity de-

mand. Adding this load to the residential demand increases the

total energy costs by almost 30% (from 66.86AC to 86.45AC ).

Passive charging imposes that EVs are mostly charged when

electricity prices are highest.

2) Smart charging: Here, we allow the model to determine

when to charge the EVs, given the same starting SOC levels

as above, and impose a full charge upon departure.

Fig. 2 shows a significant change in the charging schedule

compared to the passive charging. The EVs start the day with

their low arrival SOC from the night before. Thus, they charge

during the lowest price period. In terms of DR, we see valley

filling: EV demand shifts towards the low residential demand,

low-price period between 02:00 and 05:00. This flexibility

has two benefits. First, the EVs charge at the lowest possible

energy cost. Second, they avoid calendar aging as the SOC

stays low until shortly before departure. In Table V, we see

that the annualized battery degradation is reduced by 29%.

As we apply cycle aging only during discharge periods and

discharges are not allowed, this reduction is entirely due to

reduced calendar aging due to delayed charging.
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(a) Hourly mass balance electricity – smart charging, Deterministic
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(b) Battery and EV SOC profiles – smart charging, Deterministic

Fig. 2: Smart charging – Deterministic

Smart charging reduces main grid imports by 4%, and peak

imports by as much as 20%. Total grid exports are reduced

by 15%. Compared to passive charging, EV1 charges 5 kWh

extra in the evening. This leads to a higher SOC at 23:00 than

at 0:00. This is driven by the SOC deviation penalty acting

as a reward, as its value is higher than the sales value of

surplus PV. This reflects the value of a lower charging load

the following day. For EV1-2 there is not enough time left

the next morning to charge fully to benefit from lower prices.

This all points to higher self-consumption of PV power.

The overall cost increase due to EV charging is almost 20%

(from 66.86AC to 80.16AC ), one third lower than the 30% in
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TABLE V: Deterministic Case KPI

KPI Passive Smart V2G

Objective value [AC ] 86.45 80.16 80.13
Battery throughput [kWh] 64.12 64.12 64.12
PV generation [kWh] 681.13 681.13 681.13
Electric CHP generation [kWh] 241.31 242.50 242.50
Peak demand [kW] 80.46 68.08 68.08
Peak grid import [kW] 67.64 53.81 53.81
Total grid import [kWh] 294.01 273.42 268.82
Total grid export [kWh] 161.08 136.34 136.34
Annualized stationary battery aging [%] 4.12 4.11 4.11
Average annualized EV battery aging [%]ˆ 1.17 0.83 1.02

ˆWe neglect degradation from discharges while driving; the model only

accounts for EV battery degradation while connected to the charger.

passive charging. Part of this cost saving is caused by 29%

lower EV battery degradation. We can conclude that more

flexible charging is beneficial for the whole neighborhood by

reducing the peak load, grid dependency, and cost, as well as

the individual EV owner by prolonging the EV life.

3) V2G charging: Here, we allow the model to let EVs

discharge. We set the minimum SOC at 0:00 to 30% for all

batteries. Overall, the hourly electricity balance is very similar

in Fig. 3a in comparison to Fig. 2a. The charging hours are the

same. The major difference is in the evening. EV1 discharges

from 19:00 to 21:00. Thereby, it reduces the grid imports

during the highest prices of the day and in total by 1.68 %

(Table V). Despite slightly higher round-trip losses of the EV

compared to the stationary battery, the former is preferred over

the latter. The stationary battery does not exceed 75% SOC.
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(a) Hourly mass balance electricity–V2G charging, Deterministic
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(b) Battery and EV SOC profiles – V2G charging, Deterministic

Fig. 3: V2G - Deterministic

This is because the SOC profile is less damaging, as its average

stays close to 50%. Here, V2G allows a more optimal usage

of the stationary battery as degradation costs of all batteries

are traded off optimal against all other decisions. Additionally,

to benefit from the deviation reward, the optimal EV3 SOC

at 0:00 is 30%, implying a 10% discharge in the last hour

of the previous day. Only EV3 can benefit, as it has a late

enough departure time to allow cheap charging directly from

PV between 06:00 and 09:00 in the morning.

Compared to smart charging, the reduction in total system

costs is very small, while EV battery degradation increases by

23% due to the discharges. A slightly higher value for battery

replacement costs might have resulted in no discharges at all.

C. Stochastic Case

The effects of two sources of uncertainty are explored:

the arrival SOC and the electricity price. We consider three

moments during the day where uncertainty is revealed. At each

price branching point, the medium scenario has a probability

of 40% and low and high scenarios both consider 30% prob-

ability for deviations of 10% down and up respectively. Price

branches occur at 05:00 and 20:00, which we have chosen

based on battery activity and price levels in the deterministic

cases. Price uncertainty during the day would not have much

impact, as the surplus PV generation is sold at a fixed feed-

in tariff. The price deviations are additive, resulting in five

different price levels after 20:00 (c.f., Fig. 4).

EV1 and EV2 have expected arrival SOC levels of 50%

and 60% respectively, that occur with a probability of 80%.

Additionally, with 10% probability, EVs1-2 can arrive with

10% total battery capacity, i.e., 16 kWh higher or lower

combined SOC level. Furthermore, although EV2 arrives one

hour later, the branching on the arrival SOC happens at 16:00.

We ignore SOC uncertainty for EV3 as we have seen that

its late departure time in the morning allows charging using

cheap power, and to reduce the number of scenarios and

ensure model tractability. Additionally, we deactivate QSOC

(Eq. (15)-Eq. (24)), as it significantly increases the model

solution time, but is the degradation mechanism with the

least impact on the overall degradation. To distinguish the
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Fig. 4: Stochastic price scenarios

27 scenarios, we construct identification codes PXN. The first

letter represents the first price branch, while the second letter

represents the arrival SOC branch: low (L), medium (M), and

high (H). The number for the second price branch is explained

by Fig. 4. Thus, LL1 is the scenario: low first price, low arrival

SOC, low second price.
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Please be aware that in many Figures the axes have been

truncated for readability. We illustrate system behavior by

contrasting selected results of five of the 27 scenarios.
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Fig. 5: Stationary battery SOC profiles – V2G charging,

Stochastic.

1) Stochastic - Passive charging: The EVs charge at max-

imum power as soon as they arrive. Consequently, different

charging pattern are only due to different arrival SOC. How-

ever, Fig. 5 shows that the stationary battery discharge paths

do vary according to the scenario path. Firstly, the first price

branch at 05:00 leads to three SOC paths. In all LXN scenarios

the stationary battery reaches a maximum SOC of 70%, in

all MXN scenarios 80%, and in all HXN scenarios 90%. To

illustrate the effect of uncertainty, consider the middle ground

expected value scenario MM3. Compared to the deterministic

case, the battery charges 5% more under the same conditions,

due to taking uncertainty into account.

We see battery discharges starting at 19:00, the hour with

the highest price in the deterministic setting. Comparing LL1

and LH3 shows the impact of arrival SOCs. In LH3, EV1

arrives at 16:00 with a high SOC and is fully charged by 19:00.

Therefore, the stationary battery can wait with discharging

until after the last price split occurs. In the high price scenarios

HX5, the highest price in the day occurs at 20:00 and not

19:00. This is however not known until it is 20:00. Therefore,

the largest discharge in all scenarios happens at 19:00 and the

second price uncertainty does not affect the battery discharge

scheduling in a passive charge scheme.

2) Stochastic - Smart charging: Fig. 6 shows the same

three maximum stationary battery SOC levels as for passive

charging. EV2-3, charge in the morning, while EV1 utilizes

the same amount of PV power upon arrival in all scenarios

(Fig. 7). In the later evening only the residential demand has

to be met, partly covered from the stationary battery, which has

no discernible variation in the discharge pattern in the three

branches. Thus, with smart charging, the arrival SOC and the

second price split do not affect the stationary or EV behavior.

3) Stochastic - Vehicle to Grid: Fig. 8 shows a similar V2G

stationary battery profile as for smart charging. However, EV

discharges do lead to slight changes in the stationary battery.

For instance, LH3 and HH5 both have high arrival SOCs.

In the low price scenario EV discharge happens only after the

price branch at 20:00, while in HH5 EV1 already discharges

at 19:00. This has two reasons. First, EVs have to be fully

charged by their departure, while the stationary battery has
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Fig. 6: Stationary battery, Smart charging, Stochastic
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Fig. 7: EV1, Smart charging, Stochastic

a minimum SOC of 30% at midnight. Therefore, the EV

discharge awaits the last price realization. Is it high, then

the EV starts discharging, is it low, it doesn’t (c.f., the two

grey LH1 and LH2 branches above LH3 in Fig. 9) The

consistently high prices in HH5 lead to an EV1 discharge

at 19:00 because the initial high price split at 5:00 makes it

beneficial in all following scenarios HXN. In these scenarios,

the stationary battery discharges less at 19:00, the EV more.

Thereby, the EV SOC drops from 76% to 60%, which leads to

a significant reduction in calendar aging. LH3 and HL3 show

similar behavior. The EV only discharges after 20:00 if that

is beneficial. The difference in HL3 is the higher maximum

SOC of the stationary battery, while the EV arrives with a

lower SOC. However, we see the same discharge scheduling

of both the stationary battery and the EV in both cases, which

shows that the EV discharge decision is rather independent of

the stationary battery.

In HH5 EV2 also discharges to avoid high price grid

imports, while in LL1 there are no EV discharges at all. We can

conclude that, the particular benefit of the V2G discharging is
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Fig. 8: Stationary battery, V2G charging, Stochastic
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in the scenarios ending in high prices.

Overall, we see only few occurrences of EV discharges.

There are several conditions that must both allow it and make

it optimal. First, EV1 arrives early and can charge one hour

with cheap PV power. This increases the opportunity for price

arbitrage. Second, it has to be more beneficial than other

alternatives. PV, CHP and the stationary battery are cheaper

alternatives in most situations. Furthermore, V2G charges and

discharges can only happen when the EV is connected, and

price arbitrage is possible during this time. Finally, the charge

and discharge power must be high enough to accommodate

charges and discharges on top of reaching a full charge. Higher

power ratings allow for more flexible schedules, because low

price situations can be exploited more aggressively, but may

aggravate degradation. All in all beneficial V2G usage has five

criteria:

1) Electricity price volatility

2) Alternative energy sources

3) Period of availability

4) The difference between arrival and departure SOC

5) Maximum charge and discharge power
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Fig. 9: EV1, V2G charging, Stochastic
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Fig. 10: EV2, V2G charging, Stochastic

Fig. 11 presents the system cost for the three charging

schemes. CHP costs are the same and make up more than half

in all five scenarios shown, as it only covers demand and never

sells to the grid. By contrast, net grid exchange costs vary sig-

nificantly. Net grid import costs gradually increase from LL1 to

HH5. Especially in scenarios HXN, battery degradation costs

are higher due to higher battery discharges, which mitigate

some of the high price consequences. Of these five scenarios,

HL3 and HH5 see the highest battery degradation costs at

5% of total costs, which is substantial. Furthermore, given

relatively modest price variations over the day, the stationary

battery does cycle only once. This causes its degradation to

not depend on the EV charging scheme but rather on the initial

price path that determines its maximum SOC level during the

day.
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Fig. 13: Battery degradation, differences in charging schemes

are less than 0.01%, thus we only show the result of one

scheme

The EV degradation is only a small part of the overall

system costs. Fig. 12 shows that the EV degradation (while

connected) ranges from 0.77 to 1.21%. For all charging

schemes, calendar degradation is the primary EV degradation

factor. This is different from the stationary battery, for which

CD degradation is the biggest contributor (Fig. 13). Overall,
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the benefit of V2G increases with larger uncertainty. In the

middle ground scenario MM3 the V2G charging scheme saves

an additional 2.1% of the overall system costs compared to

smart charging, much more than in the deterministic case.

Consequently, the added system flexibility of a V2G charging

scheme will become increasingly beneficial in the future, as

we can expect more volatile renewable electricity supply and

thus electricity prices.

V. CONCLUSION

We have analysed how different charging strategies for

EV batteries, while considering battery degradation, affect

overall system cost in the operational scheduling for a smart

neighborhood in an urban setting.

The deterministic results show a reduction of charging costs

by 10% through the change from passive charging to smart

charging, due to the systems ability to shift the EV load to

cheap price periods in the morning. Flexible charge pattern

are not only beneficial to the whole neighborhood by reducing

the peak load, grid dependency, and cost, but also for the

individual EV owner by prolonging the EV life by 29%. With

an added V2G option for the EVs the system costs reduce

only 0.23%.

Uncertainty in electricity prices and EV arrival SOCs reveals

a more significant improvement of V2G compared to smart

charging. Due to the increased flexibility, the system can

respond better to external changes. With the same price and

SOC conditions as in the deterministic case, the V2G option

is now 2.1% cheaper than passive charging. Consequently,

the added system flexibility of a V2G charging scheme will

become increasingly beneficial, as we can expect more volatile

renewable production and thus electricity prices in the future.

We deduce five driver for V2G usage: electricity price

volatility, alternative energy sources, time of availability,

departure SOC, and maximum charge and discharge power.

Finally, we want to indicate model limitations and further

research. The short optimization timeframe of one day leads to

end of horizon issues, for which we had to introduce a penalty

term in the objective and fix the stationary battery SOC to

30%. This fixed value takes variability away, which lowers

the scenario variance for the battery in a stochastic setting.

Hence, a longer optimization timeframe would lead to more

natural stationary battery behavior, especially in the context of

degradation. Additionally, we apply degradation, which alters

the generation scheduling, only on battery systems. Further

research on the impact of degradation for other generation

units, such as a CHP, could lead to a similar system changes.
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