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Abstract—In this work, we investigate the problem of speaker
independent acoustic-to-articulatory inversion (AAI) in noisy
condition within the deep neural network (DNN) framework.
We claim that DNN vector-to-vector regression for speech en-
hancement (DNN-SE) can play a key role in AAI when used in
a front-end stage to enhance speech features before AAI back-
end processing. Our claim contrasts recent literature reporting
a drop in AAI accuracy on MMSE enhanced data and thereby
sheds some light on the opportunities offered by DNN-SE in
robust speech applications. We have also tested single- and multi-
task training strategies of the DNN-SE block and experimentally
found the latter to be beneficial to AAI. Moreover, DNN-SE
coupled with an AAI deep system tested on enhanced speech can
outperform a multi-condition AAI deep system tested on noisy
speech. We assess our approach on the Haskins corpus using
the Pearson’s correlation coefficient (PCC). A 15% relative PCC
improvement is observed over a multi-condition AAI system at
0dB signal-to-noise ratio (SNR). Our approach also compares
favorably against using a conventional DSP approach, namely
MMSE with IMCRA, in the front-end stage.
Index Terms: Acoustic-to-articulatory inversion, DNN,
speech enhancement

I. INTRODUCTION

The use of articulatory parameters has attracted increasing
interest in the speech field because it has been proven benefi-
cial in applications such as low bit rate coding [1], automatic
speech recognition (ASR) [2], [3], [4], speech synthesis [5],
and speech therapy [6], [7]. The articulators’ movements can
be measured and parameterized using different techniques; for
instance, real-time magnetic resonance imaging (rt-MRI) [8],
X-ray microbeam [9], electromagnetic articulography (EMA)
[10], and ultrasound [11]. Nevertheless, obtaining articulatory
measurements is not practical in real-world applications. The
alternative is to estimate the articulatory parameters from
speech recordings, which are more easily accessible, with a
process called acoustic-to-articulatory inversion (AAI). Unfor-
tunately, the AAI problem is highly non-linear and non-unique
[12], [3], which means that different articulator configura-
tions can produce the same sound. In addition, coarticulation
e,g, [12], i.e., the influence of adjacent phonemes on the
articulators’ movement, makes the AAI problem even harder.
Finally, related to the topic of this paper, the aforementioned
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applications require solutions that work independently of the
speaker, and, possibly, in noisy acoustic conditions.

There exist several techniques to address the AAI problem,
for example, search-based algorithms in the joint codebook
of the acoustic-articulatory space [13], [14], non-parametric
and parametric statistical methods such as support vector
regression (SVR) [15], joint acoustic-articulatory distribution
by utilizing Gaussian mixture models (GMMs) [16], hid-
den Markov models (HMMs) [17], mixture density networks
(MDNs) [18], deep neural networks (DNNs) [19], and recur-
rent neural networks (RNNs) [20], [21]. However, the great
majority of those works deals with clean conditions only.

There are a few works using synthetically generated ar-
ticulatory trajectories for robust ASR [12], [4], where an
AAI system was trained on multi-condition noisy data. How-
ever, we found only a single study about real articulatory
measurements in noisy conditions [22], which claims that is
more beneficial to train the AAI system with multi-condition
noisy data rather than performing speech enhancement as
a pre-processing step to an AAI system trained on clean
data. That result could be explained noticing that a digital
signal processing (DSP) approach to speech enhancement
based on minimum mean square error (MMSE) [23] was used.
Therefore, improved perceptual quality (e.g. higher PESQ) is
attained rather than reduced SNR. Furthermore, artifacts and
attenuation introduced in the signal by DSP enhancement may
create a mismatch between training and testing conditions,
which lead to a performance degradation.

However, DNN-based approaches to speech enhancement,
dubbed DNN-SE, can outperform state-of-the-art conven-
tional DSP ones [24]. Moreover, employing a DNN-SE pre-
processing step before the target speech applications has been
shown to be beneficial [25], [26]. We thus propose to address
the AAI problem in noisy conditions by coupling a DNN-SE
approach as a front-end pre-processing stage with the back-
end AAI. In particular, we use the DNN-based vector-to-vector
regression approach to speech enhancement that was demon-
strated to be highly robust [24]. Experiments are carried out on
the Haskins production rate comparison database (HPRC) [27].
AAI performance is assessed using the Pearson’s correlation
coefficient, PCC = cov(y, ŷ)/(σyσŷ).

To have a comprehensive assessment, we compare and
contrast our approach with an AAI system paired with a
conventional speech enhancement approach, based on MMSE
with improved minima controlled recursive averaging (IM-



CRA) [28]. We investigate different DNN-SE configurations:
speaker-independent training with matched and mismatched
test and training speakers; single-task training, where the
DNN-SE estimates only log power spectra (LPS) later con-
verted to MFCCs to be used as an AAI input; and multi-task
training, where both MFCCs and LPS are estimated by DNN-
SE. Multi-task training is shown to not only be beneficial for
speech enhancement but also for the AAI.

II. DEEP NEURAL MODELS

A. DNN based acoustic-to-articulatory inversion

A fully-connected, feed-foward DNN is built to accomplish
AAI. The DNN-AAI system is speaker-independent (SI), i.e.,
leave-one-speaker-out (LOSO) trained. The input features are
Mel frequency cepstral coefficients (MFCCs), which attained
the highest AAI accuracy in SI conditions [29] by removing
the higher order cepstral coefficients, that describe the spec-
tral fine structure. Due to the smooth nature of articulatory
trajectories and co-articulation effects, the temporal context at
the input acoustic layer should be long enough [3] to capture
useful information with respect to the output trajectories. MAAI
frames around the current input frame are thus used.

B. DNN based speech enhancement

The DNN-SE system has three ReLU-based non-linear lay-
ers. The input feature vectors are globally mean and variance
normalized LPS, extracted as the log squared magnitude of
the short-time Fourier transform of the signal. Test set feature
vectors are normalized using mean and variance information
obtained on the training data. The noisy phase information
is not processed during the enhancement process and is only
used to reconstruct the speech signal, as in [24]. MSE previous
and future frames around the current frame are used at the
DNN-SE input layer. The temporal context MSE is shorter
than MAAI. This shorter context is congruous with the non-
stationary property of noises, enabling the network to have
a better estimation of the short-time noise spectrum to be
suppressed. The DNN-SE system is trained in two different
ways. In single-task training the network predicts clean LPS
frames given noisy LPS frames as input. In multi-task training,
the network predicts at the same time the clean LPS frames
and the MFCCs.

III. CORPORA

This work is concerned with AAI in noisy condition. We
thus artificially added noise from the Aurora 2 corpus [30] to
the Haskins production rate comparison database (HPRC) [27]
speech waveforms and obtained multi-condition speech data
paired with articulatory trajectory measurements. Aurora 2 au-
dio recordings are from eight different environments, namely
airport, babble, car, exhibition, restaurant, street, subway and
train. The sampling rate is 8kHz. Some of these noises include
non-stationary parts, e.g. the street and the airport, and some
of them are fairly stationary like car and exhibition.

The HPRC database is a multi-speaker speech database that
contains synchronous EMA recordings. The original sampling

rate of the audio recordings is 44.1kHz and the EMA param-
eters are recorded at rate of 100 Hz. Eight native American
English speakers (half male, half female) were asked to read
720 different sentences from the IEEE sentence list [31] in
normal and fast speaking style. We used sensor measurements
from the tongue rear (TR), tongue blade (TB), tongue tip (TT),
lower lip (LL), upper lip (UL) and jaw (JAW) in the X and Z
directions, denoting sensor movements from the posterior to
the anterior and from the inferior to the superior, respectively.
We converted the articulators’ measurements to tract variables
(TVs) by the geometrical transformations defined in [32], [33].
The TVs represent the constriction degree and location of
the articulators producing the speech. In contrast with the
EMA measurements TVs are calculated relatively and suffer
less from non-uniqueness [34]. The HPRC audio data was
downsampled to 8kHz to match the Aurora recordings.

IV. EXPERIMENTAL SETUP

A. Multi-condition data

We use the normal speaking style utterance from the HPRC
corpus. For each speaker, 80% of the utterances are used for
training, 10% for for validation, and 10% for testing. Noise
is artificially added to the clean speech signals to simulate
noisy working conditions. All eight available noises from the
Aurora 2 corpus were used to corrupt the clean HPRC speech
waveforms, using five signal-to-noise ratio (SNR) levels, from
0dB to 20dB with a step size of 5dB. Therefore, the noisy data
size is 40 times bigger than that of the clean data size, which
covers roughly around four hours. That is, we have generated
160 hours of multi-condition data, including clean data.

B. Feature representation

For the AAI system, as it is described previously, the
input acoustic features are (MFCCs) and the outputs are tract
variables. The input and output of the AAI system are z-
score normalized per utterance which is suggested by [22].
The DNN-SE system uses noisy LPS as input and either clean
LPS or clean LPS and MFCCs as outputs. The input and output
LPS are normalized with the global mean and variance. The
TVs’ rate is 100 Hz, so MFCCs and LPSs were extracted
with a 20ms window and a 10 ms shift. The MFCCs were 13
dimensional vectors computed over 23 Mel filterbanks.

V. EXPERIMENTS AND RESULTS

Experimental evidence to assess the viability and effective-
ness of the proposed approach is given in the next sections.

A. AAI trained with clean data

As indicated in Section II, the speaker-independent AAI
model is fed with MFCC vectors and estimates TVs at its
output. The temporal context MAAI is set equal to 8 frames,
which spans a 340ms segment. In clean conditions, several
experiments have been carried out to select the number of
hidden layers and hidden nodes per layer. We experimented
with the following configurations: [100, 300, 500, 1000] nodes,
and [2, 3, 4, 5] hidden layers. The PCC value is given in
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Fig. 1. Average PCC performance vs AAI DNN parameters with matched
training and test data: clean data (top panel) and multi-condition data (bottom
panel)
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Fig. 2. Average PCC for AAI-MC on noisy data in terms of SNR levels.

the upper panel in Figure 1. The results show us the best
performing system is a 5 hidden layer network with 100 nodes
in each layer. As the amount of available data is limited it is
reasonable that increasing the number of parameters beyond a
certain point will not improve the performance. The speaker-
independent AAI system trained on clean data is referred to
as AAI-C.

B. AAI trained with multi-condition data

Following the procedure highlighted in Section V-A, we
tune the speaker-independent AAI system trained on multi-
condition data. Examining the lower panel in Figure 1, we
chose a configuration with 4 hidden layers of 300 nodes.
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Fig. 3. Average PCC for AAI-C and AAI-MC on different noise types.
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Fig. 4. Long-term average spectrum of different noise types in Aurora 2.

This speaker-independent AAI system is referred to as AAI-
MC. After parameter tuning, we focus on exploring (i) effect
of the SNR level, and (ii) effect of the noise type on the
AAI performance in noisy conditions. Results for various
SNR levels are depicted in Figure 2, where we observe near
constant PCCs for SNRs ≥ 15dB. High standard deviations in
the average PCC is due to several factors, e.g. LOSO cross-
validation, different variation range for each of the TVs and
the effect of various noise types and the SNR levels. The
PCC averages across different speakers and SNRs indicate
the influence of different noise types on the performance of
AAI-MC and AAI-C systems. In Figure 3, it can be seen
that ´exhibition´ and ´subway´ noises have the most adverse
effect on performance, whereas ´car´ and ´train have less
effect on the performance. A visual inspection of the long-
term average power spectrum of different noise types, given in
Fig. 4, hints that noises with considerable energy in frequency
band 1kHz to 3kHz cause a more severe degradation of the
AAI performance. For clean data, AAI-MC performs slightly
better than the AAI-C, which can be explained by having more
training data for almost clean conditions (SNR ≥ 20dB), i.e.,
a data-augmentation effect.

C. DNN based speech enhancement

Speech enhancement experiments are carried out in different
conditions, namely (i) matched (DNN-SE-Match-Spk) versus
mismatched (DNN-SE-MisMatched-Spk) speaker in training
and testing, (ii) single-task (ST) versus multi-task (MT) train-
ing. DNN-SE-Match-Spk is trained on many speakers, so it
is broadly speaking speaker-independent, but test speakers are
seen during training too. To remove such a limiting factor
in a real scenario, a DNN-SE-MisMatch-Spk system is built.
A combination of different aspects provides us with more
insights for further investigation. Table I shows the average
of the perceptual evaluation of speech quality (PESQ) [35]
for different systems and testing conditions. From Table I,
we can see that DSP-SE improves, as expected, the average
PESQ, most for intermediate noise levels. However, DNN-SE
outperforms DSP-SE in line with [24], but most importantly



TABLE I
PERFORMANCE COMPARISON OF SINGLE-TASK AND MULTI-TASK DNN
BASED ENHANCEMENT SYSTEMS IN MATCHED AND MISMATCHED TEST

SPEAKER CASES.

SNR Noisy DSP-SE DNN-SE-Match-Spk DNN-SE-MisMatch-Spk
ST MT ST MT

0 dB 1.51 1.700 2.554 2.653 2.365 2.528
5 dB 1.75 2.077 2.767 2.873 2.544 2.729
10 dB 2.06 2.533 2.955 3.069 2.702 2.907
15 dB 2.47 2.950 3.104 3.224 2.828 3.048
20 dB 2.97 3.316 3.205 3.333 2.919 3.148

it works much better than DSP-SE in low SNRs. DNN-SE-
Match-Spk systems can be trained using single-task and multi-
task strategy. Multi-task gives an increment of 0.1 over the
single-task approach in terms of average PESQ. The MFCC
output acts as a regularizer for the LPS output, as hinted by
improvements in the average PESQ, and vice versa by looking
at the PCC values for AAI in Table II. DNN-SE-MisMatch-
Spk shows a drop of ≈ 0.2 in PESQ value in single-task
training and ≈ 0.15 PESQ in multi-task training with respect
to the DNN-SE-Match-Spk counterparts.

D. AAI with enhanced speech data

The first step is to verify whether DNN-based speech
enhancement is useful and can boost the accuracy of the AAI-
C system. To this end, we use the DNN-SE-MisMatch-Spk,
which is more suitable for real-world speech applications.
AAI-C tested on data enhanced by MT-DNN-SE-MisMatch-
Spk performs slightly better than AAI-MC tested on multi-
condition data. It can be argued that the improvement comes
from an increase of the neural parameters caused by coupling
two deep models. Yet, the DNN-SE and AAI-C deep model
were independently trained on different data, and our solution
allows to use an off-the-shelf AAI-C system avoiding training
a system from scratch, an aspect that should not be overlooked
in a production pipeline of a real complex system. It should
be recalled that [22] reported DSP-SE to cause a drop in
the AAI performance. We therefore further compare DSP-
SE and DNN-SE-MisMatch-Spk effects on AAI-C. In Table
II, we see that DSP-SE coupled with AAI-C causes a 0.14
drop in the PCC compared to MT-DNN-SE-MisMatch-Spk
coupled with AAI-C. Most importantly, AAI-C with DSP-
SE enhanced data reduces PCC by 4.5% relative compared
to AAI-C tested on noisy data. That result confirms [22], and
it could be explained by possible signal distortions introduced
by DSP-SE. The DNN-SE method does not cause a drop in
AAI performance, shedding new light on the use of DNN-
based front-end approaches for speech applications. For the
sake of completeness, Table II shows experimental results
with multi-task (MT) and single-task (ST) training strategies,
in matched and mismatched speaker scenarios. MT-DNN-SE
methods outpeform ST-DNN-SE counterparts, whereas a drop
in PCC is observed when moving from matched to mismatched
training/testing speakers. Finally, we also provide results using
AAI-MC on clean, noisy and enhanced data. Interestingly,
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Fig. 5. PCC of AAI-C on enhanced speech at different SNRs.

TABLE II
PCC FOR AAI-C AND AAI-MC ON CLEAN, MULTI-CONDITION AND

ENHANCED DATA.

Test data Enhancement AAI-C AAI-MC

Clean None 0.705 0.710
Multi-Cond None 0.595 0.665
Multi-Cond DSP-SE 0.568 0.620
Multi-Cond MT-DNN-SE-Match-Spk 0.699 0.711
Multi-Cond ST-DNN-SE-Match-Spk 0.689 0.702
Multi-Cond MT-DNN-SE-MisMatch-Spk 0.670 0.711
Multi-Cond ST-DNN-SE-MisMatch-Spk 0.662 0.693

our proposal improves also AAI-MC performance A detailed
comparison in terms of SNR values of the AAI-C on DSP-
SE and DNN-SE-MisMatch-Spk enhacned data is shown in
Figure 5. Enhancement with DNN-SE-MisMatch-Spk always
gives a better PCC in low SNR conditions; moreover, DNN-
SE-MisMatch-Spk and DSP-SE lead to similar PCC only in
very high SNR. At 0dB, from Figures 3 and 5, we see that
AAI-MC attains a PCC of 0.579, and AAI-C on DNN-SE
enhanced data attains a PCC of 0.67, which accounts for a
15% relative improvement in favor of the proposed DNN-SE
based AAI-C approach.

VI. CONCLUSION

We have investigated speaker-independent AAI for noisy
speech, showing that DNN-based speech enhancement can
boost an AAI-C system trained on clean data. Good improve-
ment was observed for an AAI-MC system trained on multi-
condition data. Moreover, the AAI-C system showed no drop
in performance when moving from clean to enhanced data
at testing time and matched speaker. In mismatched-speaker
scenarios, the AAI-C system performed better than the AAI-
MC system on multi-condition data, which clearly demon-
strates the effectiveness of the proposed speech enhancement
pre-processing with deep models. In future work, we will
investigate advanced methods to cope with matched- and
mismatched-speaker scenarios at a DNN-SE level. Moreover,
joint training of the enhancement and inversion could also be
beneficial to both tasks.
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“Electromagnetic articulography: Use of alternating magnetic fields for
tracking movements of multiple points inside and outside the vocal
tract,” Brain and Language, vol. 31, no. 1, pp. 26–35, 1987.
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