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ABSTRACT
Frequent inspection of salmon cage integrity is essential to early detect and prevent the possible escape of farmed

salmon—minimizing the risk of any negative impact for the remaining wild stock of salmon. Current state-of-the-art com-
puter vision-based approaches can detect net irregularities under “optimal” net and illumination conditions but might fail
under real-world conditions. In this paper, we present a novel modularized processing framework based on advanced com-
puter vision and machine learning approaches to effectively detect potential net damages in video recordings from cleaner
robots traversing the net cages. The framework includes a deep learning-based approach to segmenting interpretable net
structure from background, transfer learning facilitated classification of potential holes from irrelevance, and computer
vision-based modules for irregularity detection, filtering, and tracking. Filtering and classification are vital steps to en-
sure that temporally consistent holes within net structure are reported—and irrelevant objects such as by-passing fish are
ignored. We evaluate our approach on representative real-world videos from real cleaning operations and show that the
approach can cope with the difficult lighting conditions that are typical for aquaculture environments.
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1. INTRODUCTION
The rearing of Atlantic Salmon in aquaculture sea cages is an important and fast-growing industry in Norway [1]. It

comes with several challenges that need to be addressed in order to minimize its environmental footprint, and economic and
ecological costs. Fish escapes caused by cage damage is one major concern and can be prevented by regular net inspections.
Net inspections are often carried out by a team of divers or by manual inspection of video captured by Remotely Operated
Vehicles (ROVs) equipped with cameras [2]. The former approach is usually related to higher costs and longer delays
than the latter, in addition to greater health, safety, and environment (HSE) concerns (c.f. [3]). ROVs may in principle
serve to completely automate the process of continuous net integrity inspection if a robust algorithm can process its video
stream and evaluate the pictured net structure. In this paper we introduce a modular framework for automatically analyzing
the net integrity of a sea cage based on video streams from cleaner-robots. The challenges in automatic processing and
analysis of underwater net cage structure are manifold [4]; due to the turbidity of the water, caustics, reflections along with
possible low light conditions, the video quality might be poor even with high quality cameras, causing the net structure
to appear “broken” in some video frames. Additionally, the water current and waves can cause spatial deformations in
the net structure, and fish regularly occlude the net and may appear very similar to holes. Also, heavy algae growth often
covers the net structure to a certain degree. These are all reasons why proof-of-concept hole detection algorithms in well
defined environments and robust hole detection algorithms intended for real environments constitute different difficulty
levels. Figure 1 illustrates the proposed hole detection framework pipeline for a video footage taken during a real industrial
net cleaning operation.

1.1 Contributions
We propose a novel framework for automatic analysis of the net integrity based on video recordings from cleaner-

robots in a sea cage. Furthermore, we introduce two strategies for net segmentation: Firstly, an attentional mechanism
designed to identify the parts of the video frame showing net structure suitable for further analysis. This is implemented as
neural network-based segmentation of the video-frames into three classes: bright-net, dark-net, and non-net. This strategy,
which we call Three-Class Attention Segmentation (3CAS), is followed by an adaptive thresholding algorithm [5]. The
coupling of the two facilitate coherent segmentation of the net structure as white pixels on black background regardless
of the color gradients in the original image. The call for three classes originates in the observation that dark-net on bright
background, bright-net on dark background, and irrelevance, frequently coappear in real recordings (as illustrated for
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Figure 1: The proposed automated hole-detection framework can detect and track a potential hole in difficult real world video-streams.

instance in figure 1 where the lower left part of the input image is bright-net on dark background, the very upper part
is unintelligible, non-net, and the rest of the image is dark-net on bright background). Our second proposed strategy for
net segmentation, which we call Net Thread Segmentation (NTS), combines the attention and binarization into a single
operation, and yielded favorable results also reducing overhead with respect to the processing time. Both segmentation
strategies were successfully implemented for our use-case based on the MultiRes U-Net [6].

2. RELATED WORK
The automatic analysis of net cage structure integrity is an important step towards more autonomy in aquaculture. Dif-

ferent sensor modalities such as cameras or acoustic based sensors are used to address the problem. Computer vision-based
approaches analyzing the images or video streams are mainly based on image processing techniques [7–9]. Paspalakis et
al. proposed in [8] two strategies to detect net tear. Their first approach was designed to be paralellizable: the frame
was binarized using Otsu’s method [10] and then divided into a grid of overlapping cells. By counting the number of net
pixels per cell, they recognized holes where the net pixel count was significantly low relative to the net pixel count of
other cells in that image. Their second approach utilized the Hough Line Transform [11] to recognize the most prominent
straight lines in the image, identifying holes where such lines were far apart from the nearest net structure pixel in the
binary image. Betancourt et al. [12] resembled other works with respect to several aspects such as the initial binarization
of each frame with Otsu’s method. Following binarization, they applied the Hough Line Transform to recognize the mesh
structure, and from this they identified the knot points in the net, the properties of which were used to reveal holes. The au-
thors tested their scheme on a real fish cage. Their results section depicts test-images, on which their algorithm performed
decently—reconstructing the net structure with high accuracy and recognizing 79% of present holes. However, real world
videos tend to violate some of the underlying assumptions as the net structure may appear bent and more irregular or even
broken in occasional frames. In addition, challenges such as algae growth and occluding fish (which are crucial to cope
with in real-life fish cage inspection applications) need to be addressed [13], as they complicate the process of reconstruct-
ing mesh structure features such as knot points, and in certain situations resemble net holes. The authors of [14] applied
an ensemble of image processing modules, consisting of distortion correction, underwater image dehazing, marine growth
segmentation, net-opening structure analysis, and blocked percentage estimation. To evaluate the proposed method, several
underwater images were collected and labeled with pixel-wise annotations. A first attempt to utilize deep learning for net
hole detection was performed by [15] where ”You Only Look Once” (YOLO) [16] was exploited to detect net structures
and net hole areas in well confined and controlled underwater lab conditions. Within our developed method we make use of
neural networks for both segmentation of net structure and classification of scene content (i.e. is the determined irregularity
actually a fish or a piece of seaweed?). However, also more classical computer vision and image processing techniques for
tracking and thresholding among others are integrated and used in our proposed framework.
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Figure 2: The suggested framework consists of five main modules: net segmentation (interpreting the original frame as a binary image),
irregularity detection (detecting irregular patterns in the binary image), spatiotemporal filtering (verifying irregularities that persist in

space and time), tracking (registering the trajectories of currently visible irregularities and projecting them onto the frame if necessary),
and classification (discriminating plausible holes from noise).

3. APPROACH
In our approach we established five main modules (as displayed in figure 2), all cooperatively addressing the problem

of robust hole detection in realistic environments. The first module is the deep learning based net segmentation, either
based on 3CAS and subsequent binarization, or direct NTS, translating every video frame into a binary image. Black
pixels represent mesh holes, called background, and white pixels represent net structure and irrelevant parts of the image.
The second module is the local irregularity detector, a module that analyzes the binary image and scans it for atypical
patches of background, and thereby finding potential holes. The third module is a spatiotemporal filter which tracks local
irregularities and verifies those irregularities that persist in space and time. The fourth module is concerned with tracking
verified irregularities and the computation of their trajectories. It keeps track of all verified irregularities that are still active
in the current frame, and predicts the position of active irregularities if they are not directly discovered. The fifth module
is based on the scene interpreter—a deep convolutional network originally trained on millions of images [17] and then
specialized on discriminating images of fish, or elsewise non-hole objects like floating seaweed or equipment, from images
of potential real holes. Passing all stages, a hole can be reported, highlighted, and archived. The modules are described in
the following subsections in more detail.

3.1 Neural Network Based Cage Net Segmentation
In realistic applications, only a certain part of the video frame depicts interpretable net structure. In order to analyze

such images for net damage, one must solve the problem of attention; the algorithm needs to decide which parts of the
image to consider for further analysis, and which parts to disregard. Specifically, our subsequent irregularity detection
scheme does not analyze the net structure per se, but the properties of the background areas in-between net structure. A
sufficient binary representation of the frame is therefore one where foreground pixels represent net structure and irrelevant
areas, and background pixels represent in-between net structure areas. Below we describe the two different attentional
mechanisms that we developed for this purpose, both based on adapted implementations of the MultiRes U-Net [6].

3.1.1 Three-Class Attention Segmentation
The 3CAS approach provides a three-channel output image, an attention mask, classifying each pixel of the video

frame as either bright-net, dark-net, or non-net. Non-net refers to all regions that constitute non-net areas or net areas
that might not be reliable enough for determining if a net irregularity is present or not. Thus, in our implementation of
3CAS, the MultiRes U-Net [6] was modified to comply with three classes by introducing additional filters in the final layer
to obtain the desired 3-channel output. The left-to-middle part of figure 3 shows an instance from the training dataset of
3CAS, where each pixel of the ground truth mask keeps a certain RGB-color value: non-net is encoded as [1,0,0] (red),
bright-net as [0,1,0] (green), and dark-net as [0,0,1] (blue). Note that this image also illustrates that bright and dark net
regularly coexist in real-world underwater fish cage scenes. To obtain a coherent binarization of the original video frame
(one where net structure is always represented by white pixels and background always by black pixels) we applied an
adaptive thresholding scheme to the video frame [5] combined with the suggested 3CAS masks to disregard irrelevance,
and to invert dark-net areas.
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Figure 3: An example training image and its corresponding segmentations. From left to right: Real-world example image, 3CAS
ground truth, and NTS segmentation proposal.
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Figure 4: Illustration of pixel-wise concatenation of an image and a blurred lag mask carrying previous segmentation information. Each
pixel of the 3CAS input images was expanded from 3 channel RGB-values to 6 channels.

3.1.2 Net Thread Segmentation

The NTS procedure was designed to seamlessly binarize video frames containing bright-net, dark-net, and non-net in
a single operation. Whereas 3CAS produces attention masks to guide subsequent binarization modules, NTS carries itself
out the binarization of net structure and removes non-net components of the video frame. The rightmost part of figure 3
shows an NTS segmentation, where each pixel of the ground truth mask keeps a binary value; 0 for background and 1 for
anything else.

To encourage spatiotemporal continuity were incorporated in both segmentation schemes additional lag masks con-
taining segmentation information from the previous frame, effectively facilitating information transfer from the previous
segmentation result. In this manner we accumulate and exploit knowledge from the previous video frame sequence instead
of evaluating each frame independently. We modified the input layer of the MultiRes U-Net to comply with this idea,
increasing the number of channels per input pixel from 3 to 6 in the 3CAS model (cf. figure 4), and from 3 to 4 in the
NTS model. Instead of directly appending the previous segmentation results they were first blurred with a Gaussian filter.
This compensates for a possible high discrepancy between the previous and current segmentation in particular if the scene
changes rapidly. Additionally, we introduced a regularization that acts during training by replacing 25% of the lag masks
with all-black masks, and 25% with all-white masks. In practice, we selected a random subset of the available data to cor-
rupt per epoch. This method regulated the models’ trust towards the image information of the current video frame contra
the previous lag mask, effectively preventing deadlock-situations where only the lag mask is considered.
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Figure 5: Holes manifest themselves as plateaus in the plot when we apply the closing operator to the binary image with an iteratively
increasing kernel size and count the persisting background regions. Our irregularity detection scheme reveals these plateaus by finding
the elbow. We close the binary image with an iteratively increasing kernel size until we can no longer count K regions (we set K=3). In

this particular case, this kernel size (elbow value) is 25 (the largest kernel size to which 3 regions persist after closing). We then
increase the kernel size by X% (we set X=50) and suggest that regions which persist after a new closing operation are irregular. As for

this example, the one region that persists after closing with kernel size elbow · 1.5 = 37 is an irregularity.

3.2 Local Irregularity Detector
The local irregularity detector (denoted LID in figure 2) analyzes the binary image produced by the segmentation

module and detects in it irregular background regions. The module works on single video frames, independently, and
outputs a morphologically [18] closed binary image called the irregularity space (containing the prominent pieces of
background that are filtered in Stage 4 in figure 1) where black pixels represent irregular areas. Furthermore, we introduce
an adaptive variable called the elbow to describe the largest morphological structuring element that allows K patches of
background to persist in the binary image after applying to it the morphological closing operation. In practice, we close
the binary image with a structuring element of increasing size until K such patches can no longer be counted in the closed
image, and we refer to the previous kernel size as the elbow. Having attained the elbow value, we increase the kernel size
with X% and perform a new closing operation. The parameter X decides the relationship between the K-th largest patch
and the detected irregularity. Intuitively, a single broken mesh thread can result in a hole that is 100% wider or taller than
its neighbors, but spatial deformations in the net structure can significantly lower this number. We set X = 50 and hence
require an irregularity to be at least 50% larger than the K-th largest patch. Lowering this number increases the number of
false reports, but increases also the recall in terms of not overlooking true irregularities. Increasing X yields in turn a more
conservative hole detection scheme that reports only severe damage.

In figure 5 it can be observed that the number of persisting patches decreases as the kernel size is incremented, but
the presence of irregularities brings forth a plateau in the plot. The detection of this plateau with the elbow approach is
analogous to finding the K-th largest patch and assuming that no regular patch is X% larger. Since the elbow represents
the size of the K-th largest piece of background in the binary image, it is temporally stable (since the zoom level varies
little from frame to frame) and the search for the elbow can thus be optimized by initializing the search at the elbow value
of the previous frame. As for the parameter K, choosing it too large means a higher computational demand since more
regions need to be counted for each iteration. The lower the K, however, limits the number of irregularities that can be
detected. With K = 3, we obtained a fast-converging scheme that was capable of detecting two irregularities per tile.

One drawback to this approach is the assumption that a hole is always larger than the K-th largest piece of background
in the global image. This is not always the case, for instance if the hole is further away from the camera than intact net
structure in the foreground. We coped with this issue by splitting the binary image into 16 tiles, and evaluated each tile
independently. With this strategy, irregularities were judged by their appearance relative to their immediate neighborhood
and not the global image.

Single broken net threads can result in rectangular holes, which are not easily discoverable with square or disk-shaped
structuring elements. We therefore employed a procedure with rectangular kernels which grew first in the horizontal
direction and later in the vertical direction. With such kernels, we enabled the discovery of irregularities that deviated from
their neighborhood in either height or width but not necessarily in both directions simultaneously.
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Figure 6: Left: Detected and projected center coordinates with movement hypothesis based on instantaneous movement between the
two most recent reports. Right: Detected and projected center coordinates with movement hypothesis based on median movement in

five preceding reports.

Furthermore—if utilizing 3CAS, we propose to use the elbow to derive a fitting neighborhood size for the adaptive
thresholding algorithm [5]. The neighborhood size should be large enough to encapsulate an area consisting of both net
structure and background, but small enough to preserve the adaptive qualities when shifted across an image with a color
gradient. Intuitively, the elbow as identified with a cross-shaped kernel reflects the properties of the mesh structure in the
image. Our experiments concluded that an adaptive neighborhood size of six times the size of the elbow yielded satisfactory
binary results regardless of the distance between net and camera.

3.3 Spatiotemporal Filtering
The spatiotemporal filtering module determines which distinctive irregularities, detected with the local irregularity

detector, are consistent with detected irregularities in previous frames. This allows short term tracking over consecutive
frames, a necessary precondition for later verification. Note that longer term tracking, capable of coping also with missing
observations is handled within the tracking module. The first step within this module is to derive from the irregularity
space which and how many different irregular regions are present in the current frame. All such disjoint regions are stored
as bounding boxes with their respective position and size. Subsequently, we match the current set of detected irregularities
with the irregularities detected in previous frames.

In our implementation we compared the intersection over union (IoU) ratio of the bounding boxes (also known as
Jaccard index [19]) to determine if previous regions match (=overlap) with current regions. To cope with fast-moving
scenes one has to use lower thresholds on the IoU for tracking the irregularities (i.e. a threshold of 0.15 worked well for
our real world scenes). In order to increase robustness, the detected irregularities of three consecutive frames stored in a
short-time frame memory are scanned to identify matches with local irregularities in the current frame. For a matched or
re-identified irregularity we increase its accumulated vote count. To verify that a real irregularity is present, we require a
vote count of seven to be reached, meaning that the irregularity must satisfy the overlap criterion for at least seven frames.
Once verified, the irregularities get a unique ID assigned. This verification procedure effectively nullified the occurrence
of sporadic appearing irregularities mainly caused by occasional poor segmentation. All verified irregularities are stored in
the active irregularities register with a timer that resets every time the irregularity is re-discovered.

3.4 Tracking
The tracking module keeps track of the trajectories of detected and verified irregularities over time. In the case of

the disappearance of an irregularity (that is not at the border) this module also predicts and inserts its anticipated location
based on the previous observations. This is performed by considering its apparent speed and size. For instance, a poor
segmentation may cause a verified irregularity to be overlooked by the local irregularity detector for a number of frames.
In this case, our implementation updates its boundaries within the short-time frame memory and also considers it as active
irregularities register is updated based on the motion hypothesis corresponding to the considered irregularity.

We calculated the relative movement of an irregularity as the spatial difference between its center coordinate (xc, yc)
in frame t − 1 compared to frame t. Our first movement hypothesis utilized the instantaneous movement from the past
two reports to project the irregularity onto the current scene. Our second hypothesis calculated the median movement from
the past five reports, instead, which provided a significantly better tracking of the irregularity. These two hypotheses are
visualized on the left and right side of figure 6 respectively, showing instantaneous and median movement projection.
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Figure 7: The scene interpreter was trained to recognize three image classes. From left to right: fish, net, irrelevance.

3.5 Classification
Although non-net objects such as fish and equipment are supposed to be handled by the segmentation module, a

separate module was developed to effectively verify or falsify arising hole reports. The pre-trained VGG16 [20] model
was fine-tuned on 300 images of the three classes net, fish, and irrelevance (see figure 7). By assuming that holes can
exclusively exist within net, we only verify hole reports if the surrounding area in the video frame is evaluated as such by
the scene interpreter. By introducing the ID: class register, we effectively map irregularity IDs with a class and subsequent
highlighting can decide whether or not to focus on the irregularity based on its proposed class. For instance, fish can be
highlighted with green color, and holes with red.

The module was tested on a set of 300 test images, and its performance saw slight improvement with data augmentation,
increasing precision scores on fish class from 0.83 to 0.84 and net class from 0.89 to 0.91, with irrelevance class put at
0.91. Recall scores improved on fish class, from 0.86 to 0.89, and on net class, from 0.89 to 0.91, whilst irrelevance class
decreased some, from 0.87 to 0.86.

4. RESULTS
The effectiveness of the framework was investigated on ten ten-second test videos. These were extracted from videos

of two cleaning operations and were not utilized during the U-Net training stages. The videos displayed holes in the net
structure (No. 1, 2, 5, and, 9), and swimming fish (No. 8 and 9). Five videos (No. 3, 4, 6, 7, and 10) were hole- and
fish-free. We investigated binary image quality (representation of the net structure), robustness and effectiveness of the
local irregularity detector, irregularity classification (net, fish, and irrelevance), and tracking quality. Additionally, in a
second test trial using the same video material we added salt-and-pepper noise, corrupting 2% of the pixels of each frame.
These tests were executed to investigate the noise influence on the performance of the framework. The performance scores
from all tests are summarized in table 1. We achieved on these difficult videos hole detection precision and recall of 71%
(both) with no salt-and-pepper noise introduced. With additional noise, the numbers worsened to 50% and 14%.

The Net Thread Segmentation (NTS) performed better in comparison to the Three-Class Attention Segmentation
(3CAS), providing stable results and seamlessly combining segmentation, binarization, and denoising in a single opera-
tion. However, compared to the 3CAS approach, NTS turned out to be more sensitive to salt-and-pepper noise—ultimately
leading to an increased number of detected local irregularities. A solution likely to improve this tendency is to increase
the training data foundation and to introduce additional regularization as noisy input frames during U-Net training stages.
The developed scene interpreter discriminated effectively floating potential non-holes, leading to high number of irrele-
vance classification, ITP, especially when the local irregularity detector over-reported in noisy tests in table 1. The fish
recognition demonstrated robustness even when fish contours were non-trivial (see figure 8h).

In the future we intend to increase the robustness of our approach towards different types of noise by enlarging the
training dataset with images disturbed by the considered noise-types. Naturally, the training data foundation will be signif-
icantly extended when we are able to perform more experiments. A parallelized version of our approach can be designed by
independently analyzing the different overlapping tiles of a image. The tracking module might be improved by integrating
more sophisticated motion hypotheses allowing to cope better with circumstances when the movement is non-constant.
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(a) Reported hole in test video 1. (b) Reported hole and overlooked hole in test video 2.

(c) Reported fish in test video 3. (d) Scene from test video 4.

(e) Reported hole in test video 5. (f) Scene from test video 6.

(g) Scene from test video 7. (h) Reported fish in test video 8.

(i) One of two reported fish in test video 9. (j) Scene from test video 10.
Figure 8: Each video shows three views; the leftmost view is the irregularity space in which local irregularities arise and accumulate

votes. Red squares indicate verified holes (as classified by the scene interpreter), green squares are verified fish, black squares are
verified irrelevance, and blue squares are unverified irregularities in the process of accumulating votes. The number accompanying each

square is the vote count of unverified irregularities (in blue), or the ID of verified ones (in red or green). The middle view shows the
binary representation as proposed by NTS, and the rightmost view is the output view where only verified fish and holes appear.
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Table 1: Noisy tests are tagged with N-suffixes. Views indicate which of the ROVs three cameras is used: S(tarboard), P(ort), F(ore).
NIRR is the number of local irregularities (not necessarily verified). Subsequent short-hands are true positives (-TP), false positives
(-FP), and false negatives (-FN), for holes (H-), fish (F-), and irrelevance (I-), all applicable to verified irregularities only. SP30F is

mean execution time [s] per 30 frames. The NVIDIA Titan X GPU was utilized during testing.

C
hapter

1.
R

esults

Table 1.1: Noisy tests are tagged with N-suffixes. QR codes lead to videos (or visit appendix A). Views: S(tarboard), P(ort),
F(ore). NIRR is the number of local irregularities. Subsequent short-hands are True Positives (-TP), False Positives (-FP),
and False Negatives (-FN), for Holes (H-), Fish (F-), and Nonsense (N-). SP F is mean execution time [s] per 30 frames.30

No. View Segmentation NIRR HTP HFP HFN FTP FFP ITP IFP SP F30

Mostly Excellent 152 1 0 0 0 0 0 0 2.381
S

1N Mostly Poor 659 0 0 1 0 1 7 0 2.87

2 Mostly Excellent 169 1 1 1 0 0 0 0 2.47
P

2N Decent 1181 1 0 1 0 0 10 0 11.63

Excellent 109 0 0 0 0 1 0 0 2.433
P

N Mostly Good 523 0 0 0 0 0 2 0 2.873

4 Very Good 584 0 0 0 0 0 1 0 3.06
F

4N Poor 2154 0 0 0 0 0 18 0 20.39

5 Very Good 148 2 0 0 0 0 1 0 2.20
S

N Poor 1409 0 1 2 0 0 18 0 6.995

Good 74 0 1 0 0 0 0 0 2.186
F

6N Poor 881 0 0 0 0 0 6 0 4.00

7 Decent 1769 0 0 0 0 0 19 0 22.53
F

7N Poor 2416 0 0 0 0 0 25 0 21.60

Excellent 126 0 0 0 1 0 0 0 2.218
F

N Poor 2764 0 0 0 0 0 32 0 17.438

9 Excellent 291 1 0 1 2 0 1 0 2.44
S

9N Mostly Good 834 0 0 2 1 0 6 0 3.88

10 Varying 993 0 0 0 0 0 13 0 3.19
F

N Poor 2691 0 0 0 0 0 26 0 45.6710

5

5. CONCLUSION
We presented a novel framework, consisting of five main modules, for a robust visual-based net hole detection in

realistic aquaculture underwater environments. Two alternative strategies (NST and 3CAS) facilitating deep learning for net
structure segmentation were applied on noise-free as well as noisy video data. Specifically, the MultiRes U-Net with access
to lag masks led to excellent performances and produced well defined binary representations of the test videos. The local
irregularity detector, which utilizes a morphological scheme along with a measure (the elbow) for a typical background
patch analyses every binary image. The combination of the local irregularity detector with the introduced spatiotemporal
filtering to report only those irregularities that sustain themselves in both space and time, led to robust detection. The
problem of over-reporting when noise was introduced, leading to higher computational costs, can be addressed in future
investigations by tuning specific parameters of the detector, and by regularization strategies during U-Net training stages.
More sophisticated motion hypotheses can be deduced to achieve better tracking under circumstances when the movement
is not constant.

ACKNOWLEDGMENTS
This work is based on [21]. We would like to thank Frøy Gruppen for providing the video footage from net cleaning
operations.

Proc. of SPIE Vol. 12084  120840X-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 13 Oct 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



REFERENCES
[1] “Skattlegging av havbruksvirksomhet : utredning fra utvalg oppnevnt ved kongelig resolusjon 7. september 2018 :

avgitt til finansdepartementet 4. november 2019,” (2019).
[2] T. Haugene, Evaluation of Methods for Robust, Automatic Detection of Net Tear with Remotely Operated Vehicle

and Remote Sensing, Master’s thesis, Norwegian University of Science and Technology, Trondheim (2014).
[3] R. A. H. Jakobsen, Automatic Inspection of Cage Integrity with Underwater Vehicle, Master’s thesis, Norwegian

University of Science and Technology, Trondheim (2011).
[4] A. Duda, J. Schwendner, A. Stahl, and P. Rundtop, “Visual pose estimation for autonomous inspection of fish pens,”

in OCEANS 2015 - Genova, 1–6 (2015).
[5] S. Z. Li and A. Jain, eds., Local Adaptive Thresholding, 939–939, Springer US, Boston, MA (2009).
[6] N. Ibtehaz and M. S. Rahman, “Multiresunet : Rethinking the u-net architecture for multimodal biomedical image

segmentation,” Neural networks 121, 74–87 (2020).
[7] Y.-P. Zhao, L.-J. Niu, H. Du, and C.-W. Bi, “An adaptive method of damage detection for fishing nets based on image

processing technology,” Aquacultural Engineering 90, 102071 (2020).
[8] S. Paspalakis, K. Moirogiorgou, N. Papandroulakis, G. Giakos, and M. Zervakis, “Automated fish cage net inspection

using image processing techniques,” IET Image Processing 14(10), 2028–2034 (2020).
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