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Abstract
We prove that under very mild conditions for any interpolation formula f (x) =∑

λ∈� f (λ)aλ(x)+∑
μ∈M f̂ (μ)bμ(x) we have a lower bound for the counting func-

tions n�(R1)+nM (R2) ≥ 4R1R2−C log2(4R1R2)which very closelymatches recent
interpolation formulas of Radchenko and Viazovska and of Bondarenko, Radchenko
and Seip.
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1 Introduction

In the recent breakthrough paper [7] Radchenko and Viazovska showed that any
Schwartz function can be effectively reconstructed from the values of it and its
Fourier transform at the points ±√

n, n ∈ Z≥0 and two more values f ′(0), f̂ ′(0).
If we consider the counting function n�(R) = |� ∩ [−R, R]|, which in the case
� = {±√

n} takes the form n�(R) = 1+ 2[R2], we see that it satisfies the inequality
n�(W ) + n�(T ) ≥ 4WT − O(1) for all W , T . We observe that this bound per-
fectly matches the famous 4WT Theorem of Slepian [10] which says that the space of
functions which are supported on [−T , T ] and such that their Fourier transforms are
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essentially supported on [−W ,W ] has approximate dimension 4WT .1 We prove that
this is not a coincidence and that a similar inequality holds for all such interpolation
formulas with a very small error term.

Theorem 1.1 Let�, M ⊂ R be twomultisets and L be some fixed number. Assume that
the following interpolation formula holds for all CL compactly supported functions
f

f (x) =
∑

λ∈�

f (r(λ))(λ)aλ(x) +
∑

μ∈M
f̂ (k(μ))(μ)bμ(x), (1.1)

where r : � → Z≥0, k : M → Z≥0 and aλ, bμ : R → C, λ ∈ �,μ ∈ M. Assume
additionally that r and k are at most L, the counting function of M satisfies the bound
nM (R) ≤ RL for large enough R and that bμ(x) is polynomially bounded in μ and
x. Then there exists C > 0 depending only on the interpolation formula above such
that for all R1, R2 > 1

n�(R1) + nM (R2) ≥ 4R1R2 − C log2(4R1R2). (1.2)

Remark 1.2 Note that since the right-hand side of (1.1) is continuous in the space
of compactly supported CK functions for big enough K , by the density argument it
is enough to assume that the formula holds only for the C∞ compactly supported
functions, which is a natural space for which the right-hand side of (1.1) is defined.

This result reflects the idea that for a function satisfying the conditions of Slepian’s
theorem, the values of this function and its Fourier transformoutside of the correspond-
ing intervals are mostly irrelevant and to generate an N -dimensional vector space we
need at least N vectors (although the “space” under consideration is by no means a
vector space).

A way to make the 4WT Theorem of Slepian precise is to consider the so-called
prolate spheroidal wave functions, studied by Slepian, Landau and Pollak [5,9,11].
These functions are the eigenvectors of the time-frequency localization operator cor-
responding to the intervals [−W ,W ] and [−T , T ]. Recently, there has been a revival
of interest in these functions and especially in the distribution of the corresponding
eigenvalues, see e.g. [3]. The key ingredient in our proof is a recent sharp estimate for
these eigenvalues proved in [4].

Let us emphasize that for the conclusion of our theorem to hold, it is not enough
to assume only uniqueness i.e. that any function which vanishes on � and whose
Fourier transform vanishes on M is zero. We need some quantitative assumption like
an interpolation formula or frame property. To illustrate this, let us mention a well-
known result of Ascensi, Lyubarskii and Seip [1], which gives us a uniqueness result
(but not an interpolation formula) with effectively half the number of points.

Theorem 1.3 (Ascensi, Lyubarskii, Seip) Let f ∈ L2(R). Assume that it is orthogonal
to the functions exp(−π(t + λ)2), λ ∈ � and exp(−π t2 + 2π iμt), μ ∈ M with
� = {±√

2n} and M = {±√
2n} ∪ {−1, 1}. Then this function is identically zero.

1 Slepian called it the 2WT Theorem since he considered intervals [−W ,W ] and [−T /2, T /2] which is
more natural from the engineering point of view.
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If we think of a Gaussian as a smoothed version of the δ-function used in formula
(1.1) then this result gives us a uniqueness set with half as many points as claimed
in the Theorem 1.1. Nevertheless there is no contradiction between Theorem 1.1 and
Theorem 1.3 because because it is impossible to reconstruct a function f in a stable
way from its scalar products with the functions from the Theorem 1.3.

The usual way to express effective reconstruction is by imposing the frame property.
Recall that the set of vectors {vk} in the Hilbert spaceH is said to be a frame if for all
f ∈ H we have || f ||2 ∼ ∑

k |〈 f , vk〉|2. In this language we can say that the set of
functions from Theorem 1.3 is extremely far from being a frame (even if we only care
about a lower bound for || f ||2 and put a fairly largeweight on |〈 f , vk〉|2), which can be
deduced from the (proof of a) general result of Seip [8] or seen directly by considering
the functions fN (t) = exp(−π(t +N )2 +2π i N t), N → ∞. Theorem 1.1 shows that
a density condition akin to that of [8] holds under a much weaker assumption about
reconstruction than what follows from the frame property.

Let us also mention a recent interpolation formula of Bondarenko, Radchenko and
Seip [2]. They proved that, under suitable conditions, one can recover the value f̂ (x)
bymeans of an interpolation formula from the values of f at the points ± log(n)

4π and the

values of f̂ at the points ρ−1/2
i with ρ ranging over the nontrivial zeros of the Riemann

zeta function. Although in the absence of the Riemann hypothesis these points can be
non-real and the formula from [2] converges only after some grouping of terms, one
can still apply our techniques to their setting and get the bound

2N (T ) + 2e4πW ≥ 4WT − C log2(WT ), (1.3)

where N (T ) is the number of zerosρ of theRiemann zeta functionwith 0 < �(ρ) < T .
Choosing W = 1

4π log( T
2π ) we get the lower bound which matches the Riemann-von

Mangoldt formula up to the power of the logarithmic term

N (T ) ≥ T

2π
log

(
T

2πe

)

− C log2(T ). (1.4)

Finally let us remark that our result admits a natural generalization to the space of
even/odd functions with 4WT replaced by 2WT . This result also perfectly matches
interpolation formulas from [2] and [7].

2 Prolate Spheroidal Wave Functions

In this section we will formulate the basic properties of the prolate spheroidal wave
functions that we need in our proof, as well as the bound for the corresponding eigen-
values from [4] which is the main nontrivial result that we use.

For the intervals I = [− 1
2 ,

1
2 ], J = [− c

2 .
c
2 ] we define an operator TI ,J =

PIF−1PJ F : L2(I ) → L2(I ), where F is the Fourier transform F f (ξ) = f̂ (ξ) =∫
R
f (x)e−2π i xξdx and PI , PJ are the projections from L2(R) to L2(I ) and L2(J )

respectively. TI ,J is a self-adjoint compact positive operator and as such it has a
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complete set of eigenvectors ϕn,c and corresponding eigenvalues λn(c). The prolate
spheroidal wave functions ψn,c(ξ) are defined as the Fourier transforms of ϕn,c(x)
normalized so that ||ψn,c||L2(R) = 1.

Let us list the basic properties of these functions which can be found in e.g. [11]

(i) ψn,c are entire functions,
(ii) ψn,c and ψm,c are orthogonal for n �= m,
(iii) supp ψ̂n,c = [− 1

2 ,
1
2 ],

(iv) λn(c) = ||ψn,c||L2([−c/2,c/2]),
(v) ψ̂n,c(x) = αn(c)ψn,c(cx), |x | < 1

2 , where αn(c) =
√
c

λn(c)
.

(vi) ψn,c is even if n is even and odd if n is odd.

The key nontrivial result about the prolate spheroidal wave functions is the following
theorem which is Corollary 3 from [4].

Theorem 2.1 For any c > 0 and n < c − 2 we have

λn(c) ≥ 1 − 10 exp

(
n − c − 6

2
π2 log(50c + 25)

)

. (2.1)

Note that this statement is a bit different from Corollary 3 from [4] because we use a
different normalization of the Fourier transform.

We will now deduce some corollaries from this theorem which are easier to use.

Corollary 2.2 For every fixed number A > 1 there exists a constant B > 1 such that
for c > 4 and n < c − B log2(c) we have

λn(c) ≥ 1 − 10

cA
. (2.2)

Proof If n < c − B log2(c) and c > 4 then under the exponent in the formula (2.1)
we have at most

− B log(c)2

1000 log(c)
= − B

1000
log(c).

Therefore choosing B = 1000A we get the result. ��
To pass from the bound for the eigenvalues to a pointwise bound we need the

following lemma the proof of which we postpone to the Section 4.

Lemma 2.3 For every k ∈ N0 there exists a constant Ck such that for all f ∈ L2(R)

with supp f̂ ⊂ [− 1
2 ,

1
2 ] we have

| f (k)(x)| ≤ Ck || f ||1/2L2(R)
|| f ||1/2

L2([x,+∞))
. (2.3)

From this lemma and Corollary 2.2 we get the following.
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Corollary 2.4 For any number D > 0 and k ∈ N0 there exists constants B and C such
that for c > 4, n < c − B log2(c) and ξ with |ξ | > c

2 we have

|ψ(k)
n,c(ξ)| ≤ C

cD
. (2.4)

Proof Without loss of generality we can assume that ξ > c
2 . Since supp ψ̂n,c ⊂

[− 1
2 ,

1
2 ] we have

|ψ(k)
n,c(ξ)| ≤ Ck ||ψn,c||1/2L2(R)

||ψn,c||1/2L2([ξ,+∞))
≤ Ck ||ψn,c||1/2L2([c/2,+∞))

≤ Ck(1 − λn(c)
2)1/4. (2.5)

The bound (2.4) now follows from (2.2) if A is big enough depending on D. ��
A final thing that we need is the following crude bound for the derivatives of the

functions ψ̂n,c on the interval (− 1
2 ,

1
2 ).

Proposition 2.5 For every m ≥ 0 there exists constants Am, Bm such that for c > 4
and n < c − 100 log(c) we have

|ψ̂(m)
n,c (x)| ≤ Amc

Bm , |x | <
1

2
. (2.6)

Proof First of all we note that if c > 4 and n < c−100 log(c) then the inequality (2.1)
implies that λn(c) ≥ 1

2 (note that we can get a similar bound using the classical result
of Landau and Widom [6]). Therefore, in the fifth property of the prolate spheroidal
wave functions we have αn(c) ≤ 2

√
c and so proving bounds for the derivatives of

ψ̂n,c is the same as proving bounds for the derivatives of ψn,c. To do so we again use
Lemma 2.3 and get

|ψ(m)
n,c (x)| ≤ Cm ||ψn,c||1/2L2(R)

||ψn,c||1/2L2([x,+∞))
≤ Cm ||ψn,c||L2(R) = Cm (2.7)

which, after a change of variables, transforms into the bound (2.6). ��

3 Proof of Theorem 1.1

Put c = 4R1R2 and assume that n�(R1) + nM (R2) < c − C log2(c). We also fix a
big enough integer K to be determined later. Consider the function f with f̂ (x) =∑N

n=0 a jψn,c(2R1x) for some numbers a j ∈ C, where N = n�(R1) + nM (R2) +
2K + 2. Note that f is a restriction of an entire function to the interval (−R1, R1) so
we can speak of it and its derivatives at the points ±R1 understood as the limits from
the appropriate sides. By the linear algebra argument we can choose nontrivial a j so
that f (r(λ))(λ) = 0, |λ| ≤ R1, f̂ (k(μ))(μ) = 0, |μ| ≤ R2 and f (±R1) = f ′(±R1) =
. . . = f (K )(±R1) = 0. This in particular implies that f ∈ CK (R). For convenience
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we normalize an so that
∑ |an|2 = 1. Finally, we assume for now that the number c

is big enough.
Let us write the interpolation formula (1.1) for the function f (it is valid as long as

K ≥ L)

f (x) =
∑

λ∈�

f (r(λ))(λ)aλ(x) +
∑

μ∈M
f̂ (k(μ))(μ)bμ(x). (3.1)

Note that by assumption f (r(λ))(λ) = 0, |λ| ≤ R1 and f̂ (k(μ))(μ) = 0, |μ| ≤ R2.
Moreover, since the function f is supported on [−R1, R1], we have f (r(λ))(λ) =
0, |λ| > R1. Therefore, formula (3.1) simplifies to

f (x) =
∑

μ∈M,|μ|>R2

f̂ (k(μ))(μ)bμ(x). (3.2)

We are going to prove two estimates for f̂ (s)(x), |x | > R2 with fixed s, one of which
will be useful for small values of x and the other one for big values of x . We begin
with the first one.

If c is big enough then we have c −C log2(c) + 2K + 2 < c − C
2 log2(c). For any

fixed T > 1 if C
2 is big enough then from the bound (2.4) we have for any x with

|x | > c
2

|ψ(s)
n,c(x)| ≤ Cs,T

cT
, 0 ≤ n ≤ N . (3.3)

Since
∑ |an|2 = 1 we obviously have |an| ≤ 1 for each n. Also if c is big enough

then N < c. Therefore by summing the estimates (3.3) over all n we get

| f̂ (s)(x)| ≤ Cs,T

cT−1 , |x | > R2. (3.4)

This bound is good for not too big x but since the right-hand side does not depend on
x it is not enough by itself. For large values of x we will use that f ∈ CK (R) and
integrate by parts K times. We have

F(((2π iy)s f (y))(K ))(x) = (2π i x)K f̂ (s)(x). (3.5)

Since |y| ≤ R1 ≤ c using the bound (2.6) and the trivial estimate |F(g)(x)| ≤
||g||L1(R) we get that there exist constants UK ,s, VK ,s such that

| f̂ (s)(x)| ≤ UK ,scVK ,s

|x |K . (3.6)

Taking the geometric mean of the bounds (3.4) and (3.6) we get for |x | > R2

| f̂ (s)(x)| ≤ √
Cs,TUK ,sc

VK ,s/2−T /2+1/2|x |−K/2. (3.7)



Journal of Fourier Analysis and Applications (2021) 27 :58 Page 7 of 8 58

Choosing K big enough and then T big enough depending on K (that is, C big
enough since T depends on C) we get for all s = 0, . . . , L

| f̂ (s)(x)| ≤ As,K c
−K/2|x |−K/2. (3.8)

Plugging this bound into formula (3.2) and recalling that we assume polynomial
bounds for bμ(x) and the counting function of the set M we see that for K big enough
we can get

| f (x)| ≤ F

c2
, |x | < R1 (3.9)

for some absolute constant F . On the other hand, since || f ||L2(R) = 1√
2R1

and

supp f = (−R1, R1), there exists x ∈ (−R1, R1) such that | f (x)| ≥ 1
2R1

≥ 1
c .

This gives us a contradiction for big enough c. To prove the theorem for small c as
well we artificially enlarge C so that c − C log2(c) is negative and there’s nothing to
prove.

Finally, if the interpolation formula is true only for even/odd functions f then the
same argument with using only even/odd prolate spheroidal wave functions gives us
a bound 2R1R2 − C log2(2R1R2).

4 Proof of Lemma 2.3

To prove Lemma 2.3 we need the following purely real-variable lemma.

Lemma 4.1 For all k, n ∈ N0, k < n there exists Ck,n > 0 such that for all f ∈
Cn([0,+∞)) ∩ L2([0,+∞)) we have for αk,n = n−k−1/2

n

| f (k)(0)| ≤ Ck,n|| f ||αk,nL2([0,+∞))
|| f (n)||1−αk,n

L2([0,+∞))
. (4.1)

Proof By replacing the function f with the function g(x) = a f (bx) we can without
loss of generality assume that || f ||L2([0,+∞)) = || f (n)||L2([0,+∞)) = 1 (note that at this
step we use the exact value of αk,n so that the left-hand side and the right-hand side of
(4.1) aremultiplied by the same number after this rescaling). The result now follows by
restricting to the interval [0, 1] and using two well-known facts about Sobolev spaces:
that the Sobolev space Hn([0, 1]) embeds continuously into Ck([0, 1]) for k < n and
that using only the norms of the highest derivative and the function itself already gives
an equivalent norm for the Sobolev space in question. ��
Proof of Lemma 2.3 First, we are going to prove that for all n ∈ N there exists Cn > 0
such that || f (n)||L2(R) ≤ Cn|| f ||L2(R). Indeed, we have

|| f (n)||L2(R) = ||(2π i t)n f̂ (t)||L2(R) ≤ πn|| f̂ (t)||L2(R) = πn|| f ||L2(R),

where in the second step we used that supp f̂ ⊂ [− 1
2 ,

1
2 ].
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Combining this bound with (4.1) and applying them to the half-line [x,+∞)

(clearly Lemma 4.1 applies to any half-line in place of [0,+∞)) we get

| f (k)(x)| ≤ Ck,n|| f ||αk,nL2([x,+∞))
|| f (n)||1−αk,n

L2([x,+∞))

≤ Ck,nC
1−αk,n
n || f ||αk,n

L2([x,+∞))
|| f ||1−αk,n

L2(R)
.

Choosing n = 10k + 10 the result now follows by noting that || f ||L2([x,+∞)) ≤
|| f ||L2(R) and αk,n ≥ 1

2 for our choice of n. ��
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