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ABSTRACT
Image segmentation is one of the key components in systems performing computer vision recognition tasks. Various

algorithms for image segmentation have been developed in the literature. Among them, more recently, deep learning algo-
rithms have been remarkably successful in performing this task. A downside with deep neural networks for segmentation
is that they require a large amount of labeled dataset for training. This prerequisite is one of the main reasons that led
researchers to adopt data augmentation approaches in order to minimize manual labeling efforts while maintaining highly
accurate results. This paper uses classical non-deep learning methods for background extraction to increase the size of
the dataset used to train deep learning attention segmentation algorithms when images are presented as time-series to the
model. The method presented adopts the Gaussian mixture-based (MOG2) foreground-background segmentation followed
by dilation and erosion to create masks necessary to train the deep learning models. It is applied in the context of plank-
tonic images captured in situ as time series. Various evaluation metrics and visual inspection are used to compare the
performance of the deep learning algorithms. Experimental results show higher accuracy achieved by the deep learning
algorithms for time-series image attention segmentation when the proposed data augmentation methodology is utilized to
increase the training dataset.

Keywords: data augmentation, image analysis, deep learning, background extraction algorithms, in-situ plankton taxa
classification, segmentation

1. INTRODUCTION
Image segmentation is a classical problem in computer vision. Proposed algorithms in the literature for image segmen-

tation, such as in [1, 2], tend to assign each pixel in a given image a class. In recent years, deep convolutional neural net-
works for semantic segmentation have achieved improved segmentation accuracy over classical, non-deep-learning meth-
ods. The introduction of the Fully Convolutional Network (FCN) architecture [3] and the legendary U-net [4] showed great
potential for deep neural networks in image segmentation. Several other network architectures such as the DeeplabV3+
[5] and the Unet++ [6], among many others, have since shown improved results over the U-net and the FCN for various
segmentation tasks. However, there are certain drawbacks with the deep neural networks for semantic segmentation, e.g.,
the networks require a sizable training dataset of correctly labeled images to achieve satisfactory accurate results. Attempts
for data augmentation were proposed in the literature to compensate for the small datasets used in the training process
of the deep learning models. Those attempts generally exert some operations on the images provided in the dataset for
training; such operations include geometric transformations, color space augmentations, kernel filters, mixing images, ran-
dom erasing, feature space augmentation, adversarial training, generative adversarial networks, neural style transfer, and
meta-learning [7]. Still, data augmentation efforts do not consider the massive amount of unlabeled data captured during
the data collection process, especially in the context when the data is provided as time-series.

The work presented in this paper aims at performing in-situ detection of planktonic data captured as time-series by a
mobile platform, lightweight autonomous vehicle (AUV), described in [8]. The entire process of pixel-wise classification
and detection of plankton could be done through instance segmentation [9, 10]. However, deep learning methods for
instance segmentation detect planktonic organisms that belong to predefined classes manually labeled by domain experts.
In real-life situations, the AUV may encounter thousands of planktonic species [11] that have never been seen nor included
in the labeled dataset.

The contributions in this paper consist of implementing data augmentation in a novel manner, making use of the massive
amount of the data captured in situ. At the same time, minimize the manual labeling efforts exerted by domain experts,
which is time-consuming and subject to human error. The data augmentation method utilized adopts classical background
extraction methods over images captured as time series to perform attention segmentation by extracting the foreground



objects from the background. The output of this segmentation module consists of masks used to increase the dataset for
the deep learning segmentation algorithm. The method presented applies the Gaussian mixture-based (MOG2) [12, 13] to
perform foreground-background segmentation followed by dilation and erosion [14] to remove detected noise in the masks.
The reason behind applying this method on the time series captured images is that such algorithms do not require labeled
images for training. At the same time, they provide decent up-sizing to the dataset aiming at improving the accuracy of the
deep learning segmentation model.

The deep learning semantic segmentation network architectures are trained on the datasets that contain both types of
masks manually and automatically generated. The original manually labeled dataset consists of 312 planktonic image
scenes with corresponding ground truth image masks labeled by domain experts, biologists. The manually labeled masks
are not a perfect pixel-by-pixel representation of foreground and background; most of the extracted regions detected as
foreground are larger than the actual object size due to human error. Furthermore, some planktonic organisms present
in images were mistakenly not labeled. As the manual labeling is not entirely accurate, we do not expect any model to
produce perfect pixel-by-pixel attention segmentation on the data.

This paper further presents a comparison between the segmentation results of networks trained on manually labeled
data with a network trained on the augmented dataset using Gaussian mixture-based (MOG2) segmentation to confirm the
usefulness of the novel augmentation approach. Imperial results show that the proposed data augmentation methodology
improves the trained models accuracy.

The rest of the paper is organized as follows: Section 2 introduces some preliminary knowledge related to this pa-
per. Section 3 presents related work in data augmentation. Section 4 explains the methodolgy. Section 5 presents the
experimental results. Finally, section 6 concludes the paper and presents some future directions.

2. BACKGROUND
Image segmentation is the process of partitioning an image into multiple segments or objects aiming at analyzing and

understanding the image and its context for computer vision recognition systems [15]. This section covers the essential
background methods for image segmentation proposed in the literature and utilized in this paper.

2.1 Classical segmentation
Classical segmentation refers to methods that do not rely on deep learning algorithms. There is a broad spectrum of

classical segmentation methods based on thresholding, morphological operators, edge detection, color space or background
extraction. The segmentation algorithms, which are based thresholding techniques, measure the pixel intensity on the gray
scale, then classify the scales based on global or local threshold values [16]. The segmentation methods based on edge
detection detect discontinuity in the local features to generate maps with edges of objects [16]. On the other hand, the
segmentation that relies on color spaces identifies different colors and maps them into separate classes.

Another approach for segmentation is based on background extraction algorithms. This approach can be used as
a segmentation mechanism in applications where images are captured and provided as time series. In this technique,
all detected objects that are static are classified as part of the background, while all moving particles are considered
as foreground [17]. A Gaussian mixture-based (MOG2) model is proposed in [12, 13] utilizes properties of statistical
distributions to create an improved background extraction algorithm that can overcome the complexity of the pixel value
distribution in the image.

2.2 Deep learning segmentation models
Deep learning models have in recent years considerably increased performance for image segmentation tasks [15] over

classical methods. The fully Convolutional network (FCN) proposed by Long et al. in [3] is considered a milestone for
creating segmentation maps for images of varying dimensions using deep convolutional networks. However, the FCN is
too slow when applied in real-time; moreover, it is not effective in capturing global contextual information [15]. In recent
years, researchers have created a wide variety of deep learning models for image segmentation to improve the accuracy and
efficiency of neural network models. This section evaluates a selection of deep learning models for semantic segmentation
in the planktonic domain context.



2.2.1 U-net
U-net has obtained its name from the u-like structure of the network architecture. This architecture consists of one

contracting path, an encoding path, and one expanding path, a decoding path. A key point in the U-net is that the feature
maps generated in the contracting path are passed to the expanding path through skip connections. The skip connections
help the expanding path construct the segmented output. The purpose of the contracting path is to capture contextual
information, while the purpose of the expanding path is to construct the segmentation map output. The U-net architecture
[4] was developed to solve a segmentation task with very little available training data, only 30 labeled images [4]. To
generate a sufficient amount of training data, the author in [4] uses extensive data augmentation, and obtains significantly
improved segmentation accuracy doing so.

2.2.2 Unet++
Unlike the Unet architecture, the U-net++ [6] introduces dense nested skip pathways between the encoder and decoder

of the U-net architecture. The convolutional layers within the pathways are densely connected; this means that every neuron
is connected to all neurons in the previous layer. The convolutional layers are preceded by concatenation layers which fuse
the output from the preceding layer of the same dense block with the up-sampled output from the proceeding layer of the
lower level dense block. This is done to make the encoder and decoder feature maps similar, under the assumption that this
would lead to improved segmentation. U-net++ is in [6] trained and tested on four different datasets containing biomedical
images. With the Intersection over Union (IoU) metric, it outperforms the original U-net on all four datasets.

2.2.3 Pyramid attention network
Just like the U-net, the Pyramid attention network [18] has an encoder decoder architecture. In addition, it utilizes

a feature pyramid attention (FPA) module and global attention upsampling (GAU) modules. The proposed FPA module
fuses features from different scales, to give more accurate segmentation. The GAU modules provides global context for
decoding. Together with the encoder, these modules help the network capture global context, while at the same time they
capture different scale of the feature information. A strength of the pyramid attention network is the ability to localize and
classify small objects.

2.2.4 Deeplab V3+
The Deeplab V3+ uses dialations, so called atrous convolution, in the decoding of the segmentation maps [5, 19]. This

enables, more computational efficient decoding, with a larger field of view for filters. In addition, Deeplab V3+ utilizes
spatial pyramid pooling for robust segmentation of objects at multiple scales. Deeplab V3+ also combines methods from
deep convolutional networks with probabilistic graphical models in order to improve the localization of object boundaries
[5, 19].

2.2.5 Linknet
For real time applications that apply semantic segmentation, the run time is crucial. Linknet [20] is a simple network

architecture designed to reduce the run time for predictions. It is 10 times faster than Segnet [21], another light-weight
network that achieves higher accuracy for commonly used Cityscapes datasets [22].

3. RELATED WORK
Data augmentation is commonly used in computer vision to improve generalization for deep learning models. This

applies especially when there are few labeled training images available [7]. A model with little available training data
tends to overfit, meaning that the model is well adapted to the training set, while the performance drops significantly on
the validation set. Data augmentation increases the number of data points for training, decreasing the distance between
the training set and the validation set. This fact often yields improved model performance on the validation set [7]. There
exists several methods to avoid overfitting for small datasets without data augmentation, such as batch normalization,
dropout, pre-training, and transfer learning. These methods focus on the network architecture to increase the ability of
generalization [7]. Data augmentation, on the other hand, handles the problem of small-sized training data at its core by
creating additional training data.

Data augmentations is carried out through oversampling or data warping. Oversampling involves creating synthetic
data through methods like feature space augmentations, mixing images, and generative adversarial networks (GANs) [7].
Data warping preserves the original labeling of the images. Geometric transformations, neural style transforms, random
erasing, and color transformations are some examples of data warping [7].



3.1 Data augmentation using basic image manipulations
Two widely used groups of data warping manipulations are color space transformations and geometric transformations.

The former transformations involve changing the color space within training images to make models more robust towards
variations in lighting and color [23]. On the other hand, geometric transformations change geometric properties of the
training images to make the models more robust to changes in position and orientation [23]. Examples of geometric trans-
formations are rotation and flipping. Oversampling techniques using basic image manipulations include mixing images
and random erasing. Mixing images combines sections of images into synthetic images [24]. Random erasing is done by
selecting patches of training images while assigning all pixel values randomly or with predefined values [25]. Random
erasing is done to overcome overfitting due to some objects or parts of images being unclear [7].

3.2 Data Augmentation using deep learning methods
Neural networks have the ability to map high dimensional inputs into lower dimensional representations [7]. Low

dimensional feature maps can be extracted and isolated, opening up possibilities to use the neural networks in data aug-
mentation [7]. Oversampling can be exerted by Generative adversarial network (GANs) as an example of deep neural
network. GANs are used to generate artificial instances from a dataset while retaining similar characteristics of the original
dataset. Another method is called neural style transfers can recreate an image so that it is displayed in a different style,
while still retaining the original image motive [7].

4. METHODOLOGY
Proposed approaches for semantic segmentation having deep neural networks as their backbone architectures are ex-

tensively studied in the literature. This paper provides the experimental results based on the implementation, training, and
performance comparison of the following network architectures.

• U-net [4]

• U-net++ [6]

• Linknet [20]

• Deeplab V3+ [5]

• Pyramid Attention Network (PAN) [18]

The training set consists of 284 images, and the validation set consists of 28 images. The labeling is done manually
by domain experts, biologists. The original image size is 2448x2050. Figure 1 shows two input images along with their
corresponding manually labeled masks. It is evident that the masks do not represent a perfect segmentation map. Figure 1
shows that the regions representing plankton in the masks are slightly bigger than the actual planktonic organisms sizes.

The different deep neural networks for segmentation, mentioned above, are trained over 15 epochs with batch size set
to 4 using the dataset containing only manually labeled masks. The images and their masks are downsized to 512x512
as a preprocessing step before the training. The training is exerted over different loss functions in order to optimize the
segmentation accuracy. Fine tuning the loss function is an important step in the training process since there is no ideal loss
function that generalizes to all segmentation tasks[26]. The utilized loss functions in the process are listed as: binary cross
entropy loss (BCE), weighted BCE, focal loss, and lovasz loss. For the U-net and the U-net++, the optimal loss function
is the weighted BCE with positive weights set to 2. For the other network architectures, the optimal loss function is the
weighted BCE with positive weight set to 7.

Each network is trained with its optimal loss function. Transfer learning is applied by importing resnet-101 [27] pre-
trained on imagenet [28]. The learning rate is set to 0.0001 and the Adam optimizer is used in the algorithm [29]. The
following standard data augmentation is used for all images: rotation (0°-35°), horizontal flip and vertical flip. We compare
dice coefficient, precision and recall for all networks. The results from this comparison is used to decide which network to
use for further testing with a larger dataset containing masks generated by Gaussian mixture-based (MOG2) segmentation.

We modify two selected networks by using different encoders. This is done to see if we can obtain less complex models
giving faster predictions without significantly decreasing the dice coefficient. In real time image processing, run time is



Figure 1: Input images and their corresponding manually labeled masks.

an important factor. We found that when using the pre-trained resnet 101 encoder, the Unet++ yields the highest dice
coefficent, while the Linknet yields lowest run-time for prediction of images. We do further training for the U-net++ and
the Linknet using different encoders. For U-net++ and Linknet we employ the following encoders; resnet 101 [27], resnet
34 [27], and mobilenet V2 [30].

The labeled dataset utilized is rather small with only 312 labeled images. Therefore we explore the use of Gaussian
mixture-based (MOG2) segmentation to generate more training data. We carry out dilation [14] and erosion [14] to remove
noise from the output masks. We use a 10×10 kernel for dilation and a 20×20 kernel for erosion. Gaussian mixture-based
(MOG2) segmentation followed by dilation and erosion is carried out on the training data set, and can in that regard be
viewed as a special case of data augmentation. Figure 2 shows the output from MOG2 before and after the removal of
noise. We observe that 19% of the generated masks represent poor foreground and background segmentation; an example
from the poor quality generated masks is shown in figure 3.

5. EXPERIMENTAL RESULTS
As a result of the training process, we observe that the Unet++ achieves the highest overall performance metrics when

we train all networks using only manually labeled masks. We therefore choose the U-net++ for further training using the
larger dataset containing both types of masks manually labelled, and masks generated through Gaussian mixture-based
segmentation (MOG2). The hyper-parameters were fixed and the pre-trained resnet 101 is used as the encoder architecture.
We measure the network accuracy using the dice coefficient, precision and recall.



Figure 2: MOG2 output before and after noise removal

Figure 3: MOG2 poor quality mask output

We observe that the dice score decreases when we use the larger training set generated by the MOG2 algorithm.
However we have seen that our original training data is not perfectly labeled. The masks have a slight overweight of false
positives. The performance metrics, dice, precision and recall, are calculated by comparing the output masks from the
model with manually labeled masks. This implies that a perfect segmentation will have high precision score, and a lower
recall score. We observe that with our proposed MOG2 data augmentation we obtain increased precision and lowered
recall. Figure 4 shows that this leads to improved segmentation. It is worth noting, that the antennas of the planktonic
organisms in the masks to the right are thinner than those presented in the mask to the left. In reality, antennas of this
species of plankton, copepods, are very thin. Both masks show accurate segmentation of the plankton species bodies.

Network architecture Dice Precision Recall
U-net 0.7755 0.7704 0.7821
U-net++ 0.8142 0.7837 0.8493
Linknet 0.7720 0.6756 0.9030
Deeplab V3+ 0.7441 0.6558 0.8610
PAN 0.7515 0.6631 0.8696

Table 1: Performance metrics of the networks trained on the manually labeled dataset



Network architecture Dice Precision Recall
U-net++ 0.7779 0.8527 0.7170

Table 2: Performance metrics of the networks trained on the large dataset

Figure 4: Resulting output masks U-net++. To the left is the result without applying the MOG2 augmentation, to the right
the result after applying the MOG2 augmentation

6. CONCLUSION
This paper uses Gaussian mixture-based (MOG2) segmentation as a data augmentation approach to generate additional

labeling in the training dataset used by deep learning attention segmentation models in their training process. The method
is specifically applied to applications which provide captured images in a time series format. The idea is to extract the
foreground from the background through excluding objects that are statically presented or not changing their positions in
images placed in a sequence. As an example, we showcase the applicability of the method to the planktonic domain and
more specifically to the platform described in [8]. We implement and train several deep neural network architectures for
segmentation, and we train the networks using different loss functions to optimize their accuracy. Experimental results
show that the use of the manually labelled masks augmented by the generated masks from the MOG2 yields improved
segmentation. An interesting future direction would be to investigate other background extraction algorithms and use them
for data augmentation. Another interesting future direction would be exploring the effect of this type of data augmenta-
tion on the different network architectures to determine which combination is more suited to which specific context and
application.
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