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Abstract

Underwater drones have historically not been able to use full ocean simula-
tions due to requiring extensive processing power. This project develops a
cheap data-driven ocean model simulating data from SINTEF’s ocean model
SINMOD using Radial Basis Functions (RBFs) and a Gaussian Kernel. The
RBFs in this project combines sines and cosines to model tidal dynamics
and Laguerre polynomials to model non-tidal dynamics. Initial parameteri-
zation and reparameterization are completed in Python using the MOSEK
Optimization Suite software package. The ocean model should be able to
take measurements at points in the grid and adjust its parameters through a
Kalman filter. The objective of the model, according to SINTEF, is a 2.5m
horizontal landing accuracy at 1000m depth.

Testing showed that the RBFs chosen could follow the flow velocity at the
RBF points accurately and for the whole field with a second optimization. A
Kalman filter was implemented to adjust for incoming measurements. Three
case studies were explored; one static measurement, measurements exceed-
ing RBF points, and a realistic dynamic drone scenario. These showed that
distance from measurement to RBF point was proportional to the change.
The results from these highlighted the importance of measurement position.
There was an issue of convergence for the cases, speculated to be caused
by available processing power or setup of the reparameterization problem.
The dynamic case showed how points closer to the measurement drones were
more prone to adjustment than those further away.

The analysis completed in this paper lays the groundwork for current
prediction in underwater drones. However, for the method to be used effi-
ciently, issues of forecasting and convergence will need to be resolved.
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Sammendrag

Undervannsdroner har historisk sett ikke vært i stand til å bruke fulle
havsimuleringer p̊a grunn av at de krever omfattende prosessorkraft. Dette
prosjektet utvikler en enkel datadrevet havmodell som simulerer data fra
SINTEFs havmodell SINMOD ved hjelp av Radial Basis Functions (RBFs)
og en Gaussian Kernel. RBF-ene i dette prosjektet kombinerer sinus og cos-
inus for å modellere tidevannsdynamikk og Laguerre-polynomer for å mod-
ellere ikke-tidevannsdynamikk. Initiell parameterisering og optimalisering
gjennomføres i Python ved å bruke programvarepakken MOSEK Optimiza-
tion Suite. Havmodellen skal kunne ta m̊alinger p̊a punkter i rutenettet
og justere sine parametere gjennom et Kalman-filter. Målet med modellen,
ifølge SINTEF, er en 2,5m horisontal landingsnøyaktighet p̊a 1000m dybde.

Testing viste at de valgte RBF-ene kunne følge strømningshastigheten
ved RBF-punktene nøyaktig og for hele feltet med en andre optimalisering.
Et Kalman-filter ble implementert for å justere for innkommende m̊alinger.
Tre casestudier ble utforsket; én statisk m̊aling, n̊ar antall m̊alinger over-
skrider RBF-punkter og et realistisk dynamisk dronescenario . Disse viste
at avstanden fra måling til RBF-punkt var proporsjonal med endringen.
Resultatene fra disse fremhevet viktigheten av m̊alepunkt posisjon. Det var
et problem med konvergens for casene, antatt å være for̊arsaket av tilgjen-
gelig prosessorkraft eller oppsett av reparameteriseringsproblemet. Den dy-
namiske casen viste hvordan punkter nærmere m̊aledronene var mer utsatt
for justering enn de som var lenger unna.

Analysen fullført i denne artikkelen legger grunnlaget for havstrømnings-
prediksjon i undervannsdroner. For at metoden skal kunne brukes effektivt,
m̊a problemer med prognoser og konvergens imidlertid løses.
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CHAPTER 1

Introduction

Exploring and analyzing large areas of the ocean floor has been a challenge
for many years. Ocean Bottom Nodes (OBNs) has recently emerged as
a practical approach. OBNs are underwater drones that perform seismic
analysis of the seabed through external sensors. iDrop A/S is a company
that works with the Oceanid™ as an R&D initiative funded by the European
Commission through their Horizon 2020 program [1]. Their drone works
through gravity-assisted navigation, dropping it in the place of interest and
steered down to the intended location. Upon completing the sensor readings,
the drone returns safely to the surface using a patented neutral salt-slurry
release mechanism.

This thesis aims to create and test a simplified current ocean model to
aid navigation to and from the seabed. Furthermore, the model should be
able to take in sensor data to adjust the simplified model through a Kalman
filter. Previously, Oceanid drone trajectory used SINTEF’s SINMOD ocean
model to generate currents. The simplified model in this project uses these
currents as initialization and should be able to predict future currents with
the help of new measurements and a Kalman filter. SINTEF states that
the goal for the OBNs is to have a horizontal location accuracy of 2.5m at
a depth of 1000m. The specific operational area is an arbitrary 50×50 km2

grid.

1.1 Background

Why this project?

As mentioned in the previous section, the Oceanid™ underwater drones can
measure seismic reading through a gravity-assisted system. However, when
not having actuators in an underwater drone, the accuracy of positioning
and overview of surrounding currents is critical. These are attributes that
require expensive and heavy equipment to obtain. Mounting this type of
equipment to the OCEANID™ drone could lead to higher costs for the drone
and increased complexity due to additional weight. A solution was proposed
with SINTEF Ocean and NTNU to implement a more time-efficient, data-
driven model to predict future currents. The model uses Gaussian RFB
to estimate flow velocities at specific grid points. It would also implement
traditional cybernetic methods such as the Kalman filter to take in sensor
readings and update the model parameters. Since the model estimates flow
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velocity only within specific grid points and interpolate the points in be-
tween, it uses much less computing power.

The scope of the OBN project can be seen in figure 1. The OCEANID
drone is divided into three sections: Navigation and control, acoustic mea-
surement, and guidance. Navigation and control describe the physical sys-
tems on the drone, such as the actuators and control systems. Secondly,
acoustic measurement creates an acoustic positioning system using sensor
data and a previously developed hydro acoustic model. Lastly, the guidance
system takes in the acoustic measurements, feeds them into a current model,
which is developed in this thesis, and forwards it to an OCEANID model,
which gives the OBN position references.

Figure 1: OCEANID Drone Three Main Components: Navigation and
Control, Aucustic Measurement and Guidance

Related work

A great help in this thesis has been a research paper from 2014 written by
researchers at the Georgia Institute of Technology. In it, ocean currents
were estimated using RFB and a Gaussian kernel. Its purpose was to repre-
sent high-resolution ocean current model estimations at a low computational
cost. The method was further analyzed to implement a Kalman filter and
change the grid analysis center. This problem is hence similar to this paper.
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The data set used in this project is taken from a SINTEF-made ocean
modeling system called SINMOD, briefly introduced in section 2.1.5. How-
ever, the model is extensive and requires further reading for complete un-
derstanding. The data was used to initialize the model and to create testing
data sets.

A 2D time-varying model was created and analyzed during the fall
semester of 2021 in a specialization project leading to this thesis using si-
nusoidal and constant functions as Gaussian RFBs. These analyses provide
the groundwork for this thesis and contain valuable hyper-parameter analy-
ses, which have proven helpful when developing the method. Furthermore,
it helped the author understand Gaussian radial basis functions and the
scaling of the Gaussian kernel.

What remains to be done?

Figure 2: Detailed Explaination of Ocean Current Model from Figure 1

The ocean current model block seen in figure 1 is expanded in figure
2. It contains a planning- and operation phase. The planning phase is
an initialization of a model which outputs simplified current estimates and
precalculated parameters for future estimations based on SINMOD current
data. The operational phase takes measurements, runs through a Kalman
filter, and creates updated parameters η at the specific grid points. These
updated parameters can then be fed into the RBF model, which updates
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the current estimates. The main purpose of this project is being able to
estimate future flow estimations in order for the OCEANID drone to adjust
its trajectory. Analyses must be completed on the accuracy of the initial
model, reparameterized model, and the Kalman filter adjustments.

1.2 Problem Formulation

A computationally cheap data-driven ocean model shall be developed as
part of a digital twin for navigation of submarine drones from the sea sur-
face to target positions at the sea floor. Full ocean models (such as the
SINMOD model developed at SINTEF) are too computationally heavy to
be used efficiently in real-time high resolution current estimation, so a com-
bined approach using simplified models is needed. In a specialization project
in the fall of 2021, a 2D time-varying model has been set up based on a pa-
rameterization of the flow field using Gaussian radial basis functions (RBFs)
and periodic functions, and initialized using data computed by the full ocean
model SINMOD. In this master project, the model will be further developed
and tested. The concrete tasks of the thesis are:

1. Establish simplified 3D time-varying model with current components
u and v, and including a combination of tidal and non-tidal variable
terms.

2. Implement model correction based on measurements using a Kalman
filter

3. Test model and model correction using a test data set from SINMOD,
including comparison of the accuracy of a static vs. a dynamic model

1.3 Outline

The report structure following this section is explained in table 1:
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Section Title Content

2
Underlying
Theory

Explains the general idea and theory of current
dynamics, flow simulations, relevant underwater
drones, RBF functions and Kalman filtering. This
prepares the reader for further analysis in the re-
sults and discussion part of the paper.

3
Previous
Work

Goes through work done in the previous semester
leading to the research completed in this thesis.

4 Method

Starting with an overview of the data set and vari-
ables used. Afterward shows how the problems
were analyzed and which resources were used to
achieve this goal. It ends with cases used in simu-
lations.

5 Results Results from section 4 is presented.

6 Discussion
From the results, different points of interest are
discussed in detail.

7 Conclusion
Based on experimentation, a conclusion is made
upon the valuable parts of the paper and achieved
goals.

8

Recommen-
dations for
Further
Work

Further elaboration from the discussion on what
specific points require more work. Creates sugges-
tions for further analyses and points of interest.

Table 1: Section Overview
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CHAPTER 2

Theory

2.1 Current Dynamics and SINMOD

In order to get a proper understanding of what the simplified model will
simulate, we first have to understand the underlying theory. This subsec-
tion goes through introductory hydrodynamics and current theory to get a
foundation to understanding the SINMOD model.

2.1.1 Tides and Tidal Constituents

Tides are defined as the rise and fall of sea surface levels caused by the
combined gravitational forces of the moon and the sun [2]. This motion can
decompose into a series of sinusoidal signals at different frequencies called
tidal constituents, each representing the effects of the sun, the moon, or an
interaction between the two. Tidal constituents can be identified by astron-
omy, and data collection [3]. Although there are hundreds of predictable
periodic motions between the earth, moon, and sun, 37 of these typically
have the most significant effect on the tidal movement. The five most com-
mon tidal constituents at the data set location are used for the sinusoidal
functions in this paper and are taken from the National Oceanic and At-
mospheric Administration (NOAA) [4]. Their values and description can be
shown in table 2.

Name Frequency Description

M2 28.984104 Principal lunar semidiurnal constituent

S2 30.0 Principal solar semidiurnal constituent

N2 28.43973 Larger lunar elliptic semidiurnal constituent

K1 15.041069 Lunar diurnal constituent

M4 57.96821 Shallow water overtides of principal lunar con-
stituent

Table 2: NOAA Frequency Table

2.1.2 Internal dynamics

When looking at an infinitesimal element of water (Figure 3), we can model
three primary forces: Gravitational (Fg), pressure (Fp), and shear (Fs.)
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Gravity acts on the mass of the water, which generates a gravitational force.
The pressure force acts on all four sides of the 2-dimensional element, and
its net effect depends on the pressure gradient. Shear will occur when one
side of the element moves faster. This shear generates shear stress multi-
plied by the occurring area to find the shear force. In addition to this, the
element will experience electromagnetic forces due to particle interaction,
centrifugal forces due to the rotation of the element, and Coriolis forces due
to the earth’s rotation. These, along with the gravitational force, are called
body forces, while the pressure and shear forces are called surface forces.

Figure 3: Force Diagram for Internal Dynamics

We assume an incompressible fluid and constant viscosity to obtain the
incompressible Navier-Stokes equation with constant viscosity. An incom-
pressible fluid means that the density does not change with pressure. Vis-
cosity is defined as the resistance of a fluid to change in shape [5]. It comes
from Newton’s second law of motion F⃗ = ma⃗ and ensures conservation of
momentum in its solutions. The forces in figure 3 combined with the den-
sity give the acceleration of the fluid. The acceleration due to the pressure
forces is represented using a pressure gradient. The vertical pressure gradi-
ent balances the gravitational force, and the shear force is represented using
a diffusion term.

DV⃗

Dt︸︷︷︸
Total Derivative

− µ∇2V⃗︸ ︷︷ ︸
Diffusion Term

= −1

ρ
∇p︸ ︷︷ ︸

Pressure Gradient

+ g⃗︸︷︷︸
Body Force

(1)

The total derivative is a composition of the change of velocity of the
particle with respect to time and the rate of change of the position of a
particle within a fluid flow, also called the convection term. The first of
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these two is usually described as a Lagrangian view, while the latter is called
an Eulerian view. The transition to an Eulerian view causes the expression
to be nonlinear. If considering Coriolis forces, one must include a Coriolis
term in the expression. The Navier-Stokes equation is an essential building
block for the SINMOD simulation.

2.1.3 Density distribution

Density is described as mass over volume. Seawater density will not be the
same everywhere we look. Factors such as temperature, salinity, and pres-
sure create an uneven density distribution and can be challenging to model
accurately. Freshwater run-offs, external temperature variations, geograph-
ical location, and depth are just a tiny portion of all factors. Whenever
density is modeled incorrectly, the internal dynamics calculations will not
represent the actual dynamics, making our model inaccurate. In the Navier
Stokes equation (equation 1), inaccuracies in density distributions will affect
the pressure gradient, which will consequently lead to an inaccurate reading
of the particle acceleration and current dynamics.

2.1.4 Atmospheric forcing

The environment surrounding the ocean is also essential since it affects the
boundary conditions. The sun and its accessibility to the ocean will heat up
and cool down water which will cause evaporation and condensation. Wind
will create shear stresses at the surface, which will affect current gradients
deeper into the ocean. Rain primarily affects the salinity of the water at the
surface. Differences in weather could lead to a varying freshwater run-off
due to increased or decreased melting of ice and water.

2.1.5 SINMOD

SINMOD is an ocean simulation system continuously developed and main-
tained by SINTEF since the early 80s [6]. It models multiple different vari-
ations in ocean dynamics as well as biological processes. Its hydrodynamic
simulation is based on solving simplified Navier-Stokes equations using the
finite difference method on an Arakawa C-grid. The model is commonly
used to model flow fields off the coast of Norway and can model down to
a 32m spatial resolution. The SINMOD model creates open boundary con-
ditions through a hydrodynamic model together with a nested model [7].
The boundary conditions are implemented using a flow relaxation scheme
between these open- and nested boundaries. Atmospheric forcing, freshwa-
ter run-off, density, tidal forcing, and currents are all inputs to the model
as atmospheric input.
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SINMOD is used in this project to initialize our modeling functions and
generate noisy data used as measurements. Ideally, one would like to use
actual measurements, but these were not available.

2.2 OCEANID™ - Underwater Drone

Based on an underwater drone patent from 2012, iDrop A/S participated
in the EU Horizon 2020 program with the project – Oceanid™. The system
under development implements installing thousands of unique sensors via
submarine drones to predefined locations on the seafloor for seismic moni-
toring. When approaching the bottom, the node uses gravity-assisted nav-
igation with the help of its attached fins. Once readings finish, a ballast is
released to create uplift [8]. The nodes can then be retrieved at the surface
again. The project includes multiple disciplines such as engineering cyber-
netics, underwater acoustics, communications, and physical oceanography.

Figure 4: OCEANID™Underwater Drone Illustration [9]

The drones have multiple measurement systems, including depth, IMU,
and compass measurements. There is also an acoustic measurement device
in a planned 1 out of 9 drones that can measure current velocity during
travel. The drones will communicate via acoustic distance sensors between
themselves and vessels at the sea surface. These measurements will aid the
drone in accurate positioning. The release of the drones will happen via a
surface vessel, and nine drones will be released every 15 minutes. Typical dis-
tances between drones are 200-1500 m at an operational area of 50×50km2.
Descent speeds are 5 m/s, while ascend speeds are 3.5 m/s. As mentioned
in section 1, the goal of each OCEANID underwater drone is to have a hor-
izontal accuracy of 2.5 m at 1000 m depth. This accuracy primarily comes
into play at the seabed, where measurements are made. If the drones are
positioned incorrectly, the readings taken will also be inaccurate. As seen
in figure 1, the ocean current model created in this project is one of many
components meaning there can be many pitfalls. The ocean current model
aims to look at the correlation between prediction and measurements and
try to adjust the underwater drone trajectory based on this.
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2.3 Radial Basis Functions

An efficient way of approximating functions with many variables is by using
radial basis functions (RBF). The method has emerged as a valuable tool
within machine learning as far back as 1988 [10] for functional interpolation
and acts as a simplified neural network. The essence of the method is that
the current point we would like to approximate is influenced more by nearby
points than by faraway points. The standard form is [11]:

h(xm) =
N∑

n=1

ξn ϕ∥xm − xn∥︸ ︷︷ ︸
Radial Basis Function

(2)

Where xm is defined as the current point of analysis and ξn is the value
at specified RBF points. A visual explanation of this can be seen in figure
5, where each RBF point has an estimated value ξn, and the drone creates
a new value h by multiplying the radial basis function ϕ with the estimated
value. The values of ϕ are displayed as thicker arrows for closer RBF points.

Figure 5: Values at RBF Points (Yellow, ξ) and Contributions From the
RBF (Blue Arrows, ϕ), Thicker Arrows Indicating Higher Values

The RBF points do not necessarily need to be equidistant but are both
in this project and example. RBF gets its name due to its two components:
Radial, which refers to the Euclidean distance, and the basis function, which
refers to the function used in estimation. In most cases the basis function
contains a Gaussian kernel (exp(−γ∥xm − xn∥2), where γ is a tuned hyper-
parameter) due to its trade-off between accuracy and smoothness in compar-
ison to other basis functions [12]. Expanding on equation 2, with hn being
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the RBF and ξn the value at the RBF point, we can portray it in matrix form:

h1...
hn


︸ ︷︷ ︸

H

=

 ϕ1(∥x1 − x1∥) . . . ϕn(∥x1 − xn∥)
...

. . .
...

ϕ1(∥xm − xn∥) . . . ϕn(∥xm − xn∥)


︸ ︷︷ ︸

Φ

ξ1...
ξn


︸ ︷︷ ︸

Ξ

(3)

If Φ is invertible, the RBF constants Ξ are obtained by taking Φ−1H.
Alternatively, an optimization technique could be utilized. The algorithm at
work can be seen in figure 6, where a Gaussian RBF reconstructs an image
which sustains data loss. The data is reconstructed based on nearby points.

Figure 6: Image reconstruction using RBF [13]

2.4 Temporal and Spatial Basis Functions

As seen in the previous section, the distance from which we take measure-
ments gives different actuation factors. This actuation factor also need an
accurate estimation at the RBF point. A complex system can be mod-
eled more accurately by implementing multiple different, less complex sub-
functions to describe the system’s dynamics further. The functions used in
this case are temporal and spatial basis functions, meaning that they vary
depending on time and position. After generation, these multiply with the
RBF functions. There are plenty of ways to represent physical systems;
however, we will try to generate functions that are relevant to the dynamics
mentioned in 2.1.

2.4.1 Sinusoidal Functions

Perhaps the most famous of all basic functions, sinusoidal functions are
commonly used to model physical phenomena. This project will take into
consideration sine- and cosine functions:
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K sin(ωt+ ϕ), K cos(ωt+ ϕ) (4)

Where K, ϕ, and ω are scalar values that decide the amplitude, phase
shift, and frequency. These are extremely useful when modeling tidal dy-
namics since the motion will be sinusoidal. The hyper-parameters, in this
case, will be the amplitude, frequency, and phase shift. Tidal behavior can
be modeled by summing up sinusoidal functions using the tidal constituents
mentioned in 2.1.1 with the correct amplitude and phase shift.

2.4.2 Laguerre Polynomials

This set of functions is a solution to the Laguerre (differential) equation. In
this project, a sum of different degrees of Laguerre polynomials are scaled
to model non-tidal dynamics. The standard form is:

Lα
n(x) =

x−αex

n!

dn

dxn
(xα+ne−x), n = 0, 1, 2, . . . (5)

For these simulations, a function called genlaguerre from the Python
library Scipy will be used to generate these functions.

2.5 Kalman Filter and Underlying Theory

Rudolf Emil Kalmán invented Kalman filtering to reduce noisy sensor data
during the Apollo missions using the power of Bayesian probability [14].
Today, Kalman filters are standard practice in many cybernetic applications,
from robots to chemical plants. The following section introduces the α-β
filter (also called the g-h filter), the discrete Bayes filter, and the concept of
Gaussians before finishing with how a Kalman filter is set up. The intention
is to create a clear understanding of the underlying concepts leading up to
the Kalman filter. The theory is based on the book Kalman and Bayesian
Filters in Python.

2.5.1 The α - β Filter

The α - β filter derives from trust in either measurement or estimation. We
have to have a physical model and sensor data to implement the filter.The
model could for example be physical laws of how the system should be-
have, such as the speed of a car based on engine output. The problem is
that the car might not have this ideal value due to external factors such as
friction or drag. Sensor data could prove helpful in these estimations; how-
ever, sensor data is historically noisy and could provide less accurate results.

To illustrate how the algorithm works, an example of weight gain is
provided. We see in figure 8 that we have a prediction based on 1 lb gain per
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day, which will be our physical model, and a measurement presumably from
a scale showing a much higher number, which will be our sensor value. We
can then compute an estimate based on an α value between the measurement
and prediction using equation 6.

Figure 7: α - β Filter Prediction, Measurement and Estimate Based on
Previous Estimate[15]

x̂t = xt + α (z − xt) (6)

Where α is a tunable parameter. However, this is only part of the
solution. For the filter to represent the system’s dynamics more accurately,
it needs to be adaptable to change. Using equation 7, we can compute
an updated value of α, which contains how far off our prediction was the
measurement. This offset is also scaled depending on the distance between
measurements.

αt+1 = αt + β
z − xt
∆t

(7)

These two steps are often referred to as the predict, or a-priori step, and
update, or a-posteriori step. A prediction step is used to create a prediction
xt which uses the last estimate x̂t−1. The block diagram in 8 shows how
the process uses previous results to generate new results continuously. By
generating the new estimate x̂t, one can use it to create a new estimate, and
the loop continues. The algorithm can be seen in 1.

2.5.2 The Discrete Bayes Filter

This filter contains Bayesian statistics, which considers prior information
when calculating uncertainty. Bayesian statistics provide a result called pos-
terior probability distribution, or posterior for short, which multiplies the
likelihood from frequentist statistics with our prior information and normal-
izes it because all probabilities have to sum up to one. Bayesian statistics
contrast with frequentist statistics, which contains the probability based on
infinite events.
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Figure 8: Prediction and Update Block Diagram

Algorithm 1 α - β filter

1: procedure AlphaBetaFilter(α, β)
2: Input xt, z, α, β, ∆t
3: for t = 1 ... n do
4: R = z − xt
5: x̂t ← xt + αt × (R) ▷ Update step
6: αt+1 = αt + β × (R/∆t)
7: end for
8: end procedure

posterior =
likelihood× prior

normalization
(8)

This information is useful when we have noisy sensor data because it can
model just how accurate our sensors have been in the past and how reliable
our future readings will become. The prediction-update format will become:

x̄ = x ⋆ fx(•) Prediction Step

x = ∥L · x̄∥ Update Step
(9)

Where fx(•) is called a kernel, which Gaussian RBFs use. This term
usually contains the prior information system behavior, which allows for a
better prediction. The update step contains a likelihood function L which
contains the associated belief regarding the accuracy of the sensors. Com-
bining these two statistical predictions makes the discrete Bayes filter which
accounts for noisy data values.

After the prediction step, the states are called a priori, while after the
update step, they are called a posteriori. This convention is used in the
Kalman filter and hence throughout the paper.
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Convolution

The ⋆ icon indicates that one uses convolution to solve the term. Convolu-
tion means that the product is a third function describing the relationship
and interaction between the two functions [16].

f(t) ⋆ g(t) =

∫ t

0
f(τ)g(t− τ)dτ (10)

Function 10 is the official convolution formula, and in the Bayes filter,
this means that the prediction estimates how our states interact with our
chosen kernel. Let us say that we have a kernel for the probability of accu-
racy within a measurement. Performing convolution for a new measurement
means that we go over each element in the array, multiply by the kernel and
sum the results.

2.5.3 Gaussian Distribution

A problem with the Bayes filter is that we do not have a concrete answer
to where our states are located, just an overview of the probability of each
occurrence. A Gaussian distribution provides a solution to transfer this
probabilistic data into a model of real-life applications.

Mean, Variance and Standard Deviation

Before explaining the concept of Gaussians, we will go through the underly-
ing principles, which are the mean, variance, and standard deviation of the
dataset. The mean value of a data set is defined as the sum of numbers
divided by the amount of numbers.

µ =
1

n

n∑
i=1

xi (11)

The variance of a data set is defined as the sum of the difference between
all data points to the mean squared, divided by the amount of numbers.

V AR(X) =
1

n

n∑
i=1

(xi − µ)2 (12)

Finally, the standard deviation is simply defined as the square root of
the variance.

σ =
√
V AR(X) =

√√√√ 1

n

n∑
i=1

(xi − µ)2 (13)
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1-D Gaussian Distribution

The central limit theorem tells us that the given a sufficiently large sample
size from a population with a finite level of variance, the mean of all sampled
variables from the same population will be approximately equal to the mean
of the whole population [17]. As the amount of measurements or data points
goes towards infinity, plotting the result will look like a Gaussian. The
essentials of this theorem were first discovered by Laplace in 1810 [18] and
have had a significant impact on how we model probability and the world
around us. The terms introduced previously are vital because they allow us
to build a Gaussian distribution using function 14.

f(x, µ, σ) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
(14)

One can see from figure 9 that a lower variance means a higher peak.
In terms of probability, lower variance indicates more accurate readings. If
the Gaussian is not normalized, it is called a Gaussian function instead of
a Gaussian distribution.

16 18 20 22 24 26 28 30
0.00

0.02

0.04

0.06

0.08

0.10 2 = 0.22

2 = 0.52

2 = 12

Figure 9: Continuous Gaussian Distribution Representation with Changing
Variance

An interesting observation is that the product of two Gaussian distri-
butions will be a Gaussian distribution. However, adding two Gaussian
distributions creates a Gaussian function. By adding two Gaussians, the
new mean and standard deviation becomes:

µ = µ1 + µ2

σ2 = σ2
1 + σ2

2

(15)
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And for a product, the mean and standard deviation becomes:

µ =
σ2
1µ2 + σ2

2µ1

σ2
1 + σ2

2

σ2 =
σ2
1σ

2
2

σ2
1 + σ2

2

(16)

Correlation and Covariance

Covariance describes how two variables correlate. If the change is similar,
then the variables are positively correlated. One example of this would be
grain- and bread prices. If one variable tends to increase when the other
decreases, they are negatively correlated. The equation for covariance is:

COV (X,Y ) = σxy = E [(X − µx)(Y − µy)] (17)

This equation is similar to the equation for variance. One can say that
variance describes the differences within a variable while covariance describes
the difference between all the variables. E is called the expected value and
is defined as the weighted average of the values in a range [19]. An example
of this would be the expected value of dice. Since six sides range from 1
to 6, all equally likely, the expected value will be

∑6
1(1/6)xi, adding up to

3.5. If all data points are weighted equally and the problem is discrete, the
equation is:

E =
1

N

n∑
i=1

xi (18)

In multivariate systems, to keep track of all covariance values we use a
covariance matrix Σ.

Σ =


E [(X − µ1)(Y − µ1)] E [(X − µ1)(Y − µ2)] . . . E [(X − µ1)(Y − µn)]
E [(X − µ2)(Y − µ1)] E [(X − µ2)(Y − µ2)] . . . E [(X − µ2)(Y − µn)]

...
...

. . .
...

E [(X − µn)(Y − µ1)] E [(X − µn)(Y − µ2)] . . . E [(X − µn)(Y − µn)]


The diagonal contains the variance of the different variables, while the

off-diagonal elements contain the covariance between the elements. The ma-
trix is symmetric meaning that E [(X − µx)(Y − µy)] = E [(X − µy)(Y − µx)].

Multivariate Gaussian Distribution

Using our covariance matrix, we are able to create a new Gaussian distribu-
tion function for a multivariate case:
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f(x, µ,Σ) =
1√

(2π)n|Σ|
exp

[
−1

2
(x− µ)⊤Σ−1(x− µ)

]
(19)

Which is very similar to the 1-D case. Another similarity is the adding
and multiplying of Gaussians. Adding multivariate Gaussians give yields
the following mean and error covariance matrix:

µ = Σ2(Σ1 +Σ2)
−1µ1 +Σ1(Σ1 +Σ2)

−1µ2

Σ = Σ1(Σ1 +Σ2)
−1Σ2

(20)

While multiplying two multivariate Gaussians gives:

µ = (Σ1 +Σ2)
−1(Σ1µ2 +Σ2µ1)

Σ = (Σ1 +Σ2)
−1Σ1Σ2

(21)

2.5.4 The Kalman Filter

This section will go through a Kalman filter’s essentials based on the the-
ory introduced in previous sections. First, going through a 1-D case before
extending into multiple dimensions.

The Kalman filter is a version of the discrete Bayes filter which uses
Gaussians instead of discrete values for the distributions and measurements.
A pair of mean and standard deviation values can replace a whole set of
discrete values, making the algorithm more space-efficient. The resulting
prediction will also be a continuous function rather than multiple discrete
values. The updated steps from 9 will be:

x̄N = xN + fxN (•) Prediction Step

xN = L · x̄N Update Step
(22)

Where the subscript N describes that the item is Gaussian. The con-
volution step in 9 was initially put in place to sum the interaction between
two functions. However, when using Gaussians, this convolution can simply
be replaced by the adding of the two functions, since the result is also a
Gaussian.

Kalman Gain

A term which is used to simplify calculations in the Kalman filter is the
Kalman gain. Equation 16 described the resulting mean and standard de-
viance from multiplying two Gaussians. This equation is simplified using
the Kalman gain K :
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µ =

(
σ2
1

σ2
1 + σ2

2

)
µ1 +

(
σ2
2

σ2
1 + σ2

2

)
µ2

= Kµ1 + (1−K)µ2

= µ2 +K(µ1 − µ2)

(23)

σ2 =
σ2
1σ

2
2

σ2
1 + σ2

2

= Kσ2
2

= (1−K)σ2
1

(24)

From the simplification of mean and standard deviation, the scaling fac-
tor K is defined as:

K =
σ2
1

σ2
1 + σ2

2

(25)

Which is the equation for the Kalman gain.

1-D Kalman Filter

Using all the tools we have derived up until now, we can set up an alorithm
for the prediction and update steps in the Kalman filter. The book Kalman
and Bayesian Filters in Python sets up the equations as:

Table 3: 1-D Kalman Filter Prediction Step

Equation Implementation Kalman Form

x̄ = x+ fx µ̄ = µ+ µf x̄ = ax+ buk

σ̄2 = σ2 + σ2
fx

P̄ = P +Q

Table 4: 1-D Kalman Filter Update Step

Equation Implementation Kalman Form

x = ∥Lx̄∥ y = z − µ̄ y = z − x̄

K = σ̄2

σ̄2+σ2
z

K = P̄
P̄+R

µ = µ̄+Ky x = x̄+Ky

σ2 = σ̄2σ2
z

σ̄2+σ2
z

P = (1−K)P̄

The Implementation column describes how the problem is set up based
on principles described in previous sections, while the Kalman Form column

19



is the formal notation. The latter is more commonly used in cybernetic
settings and will be the default for the remainder of the paper.

Multivariate Kalman Filter

Extending the Kalman filter to multiple dimensions is the last part of this
subchapter and contains certain differences from a 1-D Kalman filter. The
equations will be:

Table 5: Multivariate Kalman Filter Prediction Step

Equation Multivariate Kalman Form

x̄N = xN + fxN (•) x̄ = Fx+Bu

P̄ = FPF⊤ +Q

Table 6: Multivariate Kalman Filter Update Step

Equation Multivariate Kalman Form

xN = L · x̄N y = z−Hx̄

K = P̄H⊤(HP̄H⊤ +R)−1

x = x̄+Ky

P = (I−KH)P̄

One can see that there are a lot of new variables introduced, however
the process is the same as the 1-D filter. Use Gaussians to represent the
model, errors and measurements which are used to create the next state and
estimate a value between the measured and estimated state. An overview
over the newly introduced variables are found in table 7.

The multivariate Kalman filter is what is used to adjust the model in
this paper.
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Table 7: Kalman Filter Variable Overview

Variable Name Description

x State Mean

P Covariance

F State Transition Function

Q Process Covariance

B Input Matrix

u Input Vector

H Measurement Function

z Measurement Mean

R Measurement Noise Covariance

y Residual

K Kalman Gain
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CHAPTER 3

Previous Work

The research completed during the fall semester of 2021 focused on the
behavior of RBFs initialized on the SINMOD dataset [20]. The RBFs used
constant and sinusoidal functions, which differ from this thesis’s equations.
In addition to this, initialization was completed using the scipy command
scipy.optimize.minimize, which was a lot more time-consuming than the
mosek.fusion package introduced in this paper. The minimization problem
was set up to consider phase shifts in contrast to this paper with sine and
cosine functions. There are however relevant results that will be helpful in
this thesis. This section will go through those.

3.1 Scaling Factor λ

In the previous paper, the scaling factor used the letter σ, however, this has
been changed to λ in this paper to avoid confusing it with Kalman filter
variable names. The scaling factor refers to a hyper-parameter within the
Gaussian kernel: exp(−γ∥xm − xn∥2), where γ = 1/(2λ). Essentially, this
value is how we scale the kernel to get contributions from the RBF points.
Over-scaling means too much information is gained at a point, and under-
scaling means there is not enough information. The resolution for each RBF
point was set to be 10 points between each. λ values were changed over a
50×50 point grid to observe variations. A contour plot was used to show
flow velocities at different points in the grid. The results of the changing
scaling parameter can be seen in figure 10. A λ value of 1000 displayed over-
scaling, and 1 displayed under-scaling. The most accurate representation of
the actual flow field can be found in figure 10c, at λ = 100. This show an
optimal λ value depending on the flow field and resolution, which do not
cause over-or under scaling.
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(a) Actual Velocities (b) λ = 1

(c) λ = 100 (d) λ = 1000

Figure 10: Varying Lambda Values in Gaussian Kernel in Simulations and
Resulting Velocities

More tests were completed on the same 50×50 data grid, but this time
over a broader range of λ values, taken at logarithmic intervals. The Frobe-
nius norm was taken at each λ value. Frobenius norm of an m×n matrix A
is defined as the square root of a sum of the absolute squares of its elements
[21], as displayed in equation 26.

∥AF ∥ =

√√√√ m∑
i=1

n∑
j=1

|ai,j |2 (26)

The results can be seen in 11, where there exists a minimum at around
λ ∈ [10, 10 000]. Furthermore, the effects of under scaling reduce exponen-
tially before the optimal λ values, while afterward, over scaling occurs at
a more linear rate. As mentioned before, σ was used instead of λ in this
paper, which can be seen in the x-axis label.
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Figure 11: Frobenius Norm of Error Between Estimated and SINMOD
Velocities on Dataset Versus Logarithmic λ

3.2 Resolution

Figure 12: Resolution (Orange) Defined in This Project as the Amount of
Data Points (Grey) Including Current RBF Point till the Next RBF Point

Horizontally and Vertically

The resolution in the project was defined as the distance between RBF
points horizontally and vertically, including the current RBF point. An
illustration of this is seen in figure 12. Note that resolution is not the

24



distance between any arbitrary RBF point but the ones horizontally and
vertically next to each other. Since the RBF points are placed equidistant,
these distances will be equal throughout the grid. Tests were completed for
the resolution as were completed for λ over a 50×50 data grid with a set λ
value of 150. The results are seen in figure 13.

(a) Actual Velocities (b) Resolution = 5

(c) Resolution = 10 (d) Resolution = 30

Figure 13: Varying Resolution in Simulation and Values Resulting
Velocities

Lower resolutions, meaning lower distances between RBF points, led to
a better representation of the flow field.

Next, the Frobenius error norm between the simulation and the actual
flow was computed at different resolutions with a set λ value of 120. The
results can be seen in figure 14.
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Figure 14: Frobenius Norm of Error Between Estimated and SINMOD
Velocities on Dataset Versus Resolution

Figure 14 shows a linear trend. This means that a low resolution (lower
distance between RBF points) yields a better result across the field.

3.3 Correlation Scaling Factor and Resolution

The results from the previous two sections prompted the question of the
correlation between scaling factors and resolution and how they affect each
other. Optimal λ values ranging from 1-1000 with steps of 1 were found at
resolutions ranging from 10-30 in steps of 1. The optimal λ value was defined
as the value that yielded the lowest Frobenius error norm for that resolution.

After running these tests, there was no clear indication of a trend between
resolution and λ value. There is a slight linear trend after a resolution of
18, but no conclusions were drawn in the project paper.
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Figure 15: Extraction of Best λ Value at Different Resolutions Based on
Lowest Frobenius Norm of Error Between Estimated and SINMOD

Velocities

3.4 Conclusion

The valuable items derived from this research were that we would like an
optimal λ and resolution value that yields accurate flow estimates. One
could also see that a lower distance between RBF points significantly de-
creased error. This decrease means that one should choose a sufficiently low
resolution and find out the optimal λ value for that resolution.

There was no clear trend for optimal λ value at different resolutions,
but one can theorize that the size and behavior of the dataset significantly
impact the optimal λ value.
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CHAPTER 4

Method

This chapter describes the development process and methods used to use
RBFs to model flow in real-time. This includes the implementation of a
Kalman filter, different optimization routines, analyses of model pitfalls and
case studies.

4.1 Data Set Location

To test and develop our method, a trial data set was extracted using the SIN-
MOD simulation right outside of Trondheim. Its dimensions are x, y, z, t ∈
{400, 350, 36, 217} with a resolution of 800 m between each point horizon-
tally and one hour between each estimation. Vertically, the resolution varies
with lower steps down to 3 m closer to the surface and steps up to 500 m
at depths beyond 1000 m. This was considered a sufficient data set to com-
plete testing in since the underwater drones have a typical operational area
of 50 × 50 km2. If field testing was necessary, then the data set is of close
proximity to the student’s university.

64°N

Figure 16: Contour Plot Showing u-Velocity Simulation Located Outside
Trondheim, Norway. Contours Range from Dark (High Velocity) to Light

(Low Velocity)
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4.2 Initial Model Extensions

The initial model establishes an accurate representation of the flow field at
the specified RBF points before using the Gaussian kernel. The RBF model
established during the semester project contained constant- and sinusoidal
functions combined with a Gaussian kernel to scale the contribution of each
RBF point. This project introduces Laguerre polynomials from section 2.4.2
to model non-sinusoidal flow contributions. The previous paper used scaled
sinusoidal functions with phase shift as a variable.This paper uses scaled
sines and cosines instead. The reasoning for this is further explored in section
4.2.1. Further extensions include using a MOSEK library for optimization
of variables and doing a second optimization of the whole grid to improve
grid point flow optimization.

4.2.1 MOSEK Library Implementation and Equation Change

As mentioned in section 3, the function scipy.optimize.minimize was
changed to the MOSEK Optimization Suite software package. The MOSEK
package can not be implemented simply when using a phase shift. The
equations were therefore altered to only include scaled sines and cosines.
Tests were completed using the scipy.optimize.minimize and compared
scaled sines with a scaled phase shift to scaled sine- and cosine functions at
the point (x, y, z) = (250, 250, 5) at times t ∈ [15, 150] to see the performance
of both and if scaled sines and cosines would be a reliable alternative.

4.2.2 Function Setup

Building on theory from section 2.3, the basis functions at each RBF point
will need to be decided before optimization. As mentioned previously, the
choice fell on Laguerre polynomials as well as sines and cosines. The esti-
mates at each RBF point will be denoted as ξi and have the function:

ξi =
W∑
n=1

η1,i,n sin(ωnt) + η2,i,n cos(ωnt) +
L∑

m=1

η3,i,mL(m, t) (27)

Where i denotes the specific grid point, W is the amount of constitu-
tional frequencies and L is the order of Laguerre polynomials. The parame-
ters η in equation 27 was found using least-squares regression in combination
with the MOSEK library optimization. The minimization problem is set up
as:

min
w∈Rd

||y −Xw||2 (28)

Where X is the matrix of the optimization functions, w contains param-
eter values and y has the optimization values. In the case of our RBF point
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estimation function ξi, the setup will be equal to the one seen in 29, where
T is the amount of optimization points and M contains the SINMOD esti-
mation values. There will be 2W + L parameters to be optimized because
there are W sines and cosines and L Laguerre functions.

X =


sin(ω1t1) cos(ω1t1) . . . cos(ωW t1) L(1, t1) . . . L(L, t1)

...
...

. . .
...

...
. . .

...

sin(ω1tT ) cos(ω1tT ) . . . cos(ωW tT ) L(1, tT ) . . . L(L, tT )



w =


η1
...

η2W+L

 , y =


M1

...

MT


(29)

The primary change in the functions from the project thesis were the
implementation of Laguerre polynomials. Testing was completed on varying
degrees of these to see their accuracy at different degrees. These tests were
computed at the RBF point (x, y, z) = (250, 250, 5) at timepoints t ∈ [0, 100].

4.2.3 Second Optimization

As mentioned in 2.3, the RBF also uses a Gaussian kernel which was set
up using a λ value as a hyper parameter. Equation 30 shows the functions
where i indicates the point at which the calculations are taking place and
m is the RBF point.

ϕi = exp

(
−(xi − xm)2 + (yi − ym)2 + (zi − zm)2

2λ2

)
(30)

For N RBF points, this equation is summed over N iterations. We get
an estimate V of the flow at an arbitrary point in the grid by combining
equations 27 and 30.

V =
N∑
i=1

ϕiξi (31)

A second optimization was completed to scale the Gaussian Kernel and
the contribution of each RBF point to the flow field. There were two pro-
posed solutions: To have a constant scaling for the whole field, or to have a
scaling for each RBF. The two options would mathematically look equations
32 and 33, where the constant adjustment (32) has one variable whilst the
RBF adjustment (33) has as many as there are RBFs.
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K4

N∑
i=1

ϕiξi (32)

N∑
i=1

K4,i ϕiξi (33)

The methods were tested over the data set x ∈ [200, 240], y ∈ [200, 240],
z ∈ [5, 10] and t ∈ [0, 50]. Mean and standard deviation for the whole grid
was computed over the whole grid. To graphically see the effects, values at
the point (x, y, z) = (202, 202, 5) were shown over 50 timesteps.

4.3 Gaussian Analysis

An experiment was completed on an arbitrary 40× 40 2D grid to showcase
the potential overlapping of Gaussian RBF values and its influence by the
λ value. RBF values were set to be 5 at a resolution of 5. This experiment
is to show over-and under-scaling much like in the project thesis. The field
was analyzed at λ ∈ [1, 10, 100, 1000000]. Function 30 was used to generate
results in between RBF points.

4.4 Kalman Filter Implementation

The next step after simulating RBF points was to implement a Kalman
filter to adjust between measurements and model. This draws from theory
introduced in 2.5.4 where the first step is to generate a state-space model
of our system to be used in the filter. States in this case are the flow
estimates ξ at the RBF points. The state transition function and control
input matrix will both be identity matrices which is a linear approach. We
choose this because we know that the values are already time varying and
hence a rough estimate is sufficient. wk is defined as the process noise. The
reason for choosing identity matrices is because the state at timestep k, xk,
will need to be retrieved using the re-optimization introduced in section 4.5.
It should be noted that there is no input uk. The function can be seen in
34, where k indicates the timestep and m the amount of RBF points.

xk+1 = Im︸︷︷︸
F

xk + Im︸︷︷︸
B

uk + wk (34)

The model we have initialized will be realized in y, so H will be a function
of our Gaussian functions at the points of measurements. Hence, when
multiplied with the states it creates an estimated value at that point. vk is
defined as the measurement noise. The function 35 shows this process, with
n and m being the amount of measurements and RBF points respectively.
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y =


ϕ1(x1) . . . ϕm(x1)

...
. . .

...

ϕ1(xn) . . . ϕm(xn)


︸ ︷︷ ︸

H


ξ1
...

ξn


︸ ︷︷ ︸

x

+vk (35)

To test the validity of the filter, a data set x ∈ [250, 265], y ∈ [250, 265],
z = 5 and t ∈ [0, 50] was used. Resolution was set to be 5, meaning there
were 16 RBF points and λ was set to be 10. There were 27 measurements
taken in between each RBF point for all 50 timepoints. Noise parameters
were set to be Q = 0.001Im, R = 0.001In and P = 0.001Im. The library
filterpy.kalman was used to create a KalmanFilter object to emulate the
filter. After estimating the new RBF point values they were multiplied with
the Gaussian kernel 30 to create estimates at the measurement point. The
measurement used constant offset noise in the form introduced in 4.6.

4.5 Reparameterization

After implemnting the Kalman filter, the ocean current model’s next step is
generating new η variables. The Kalman filter gives updated states which
represent the RBF point values. For each a posteriori state, one value is
outputted at each RBF point. Previous a posteriori states from the Kalman
filter at the RBF point are used in conjunction with the current to create
more analysis points for the optimization algorithm since one analysis point
is insufficient for complete optimization.

The optimization problem is similar to the one in 29 and 28, however,
in this case, the y matrix will be the accumulated RBF values from the
Kalman filter. This will generate new η variables which can be used in the
ocean current model. The function setup will then be:

X =


sin(ω1t1) cos(ω1t1) . . . cos(ωW t1) L(1, t1) . . . L(L, t1)

...
...

. . .
...

...
. . .

...

sin(ω1tKT ) cos(ω1tKT ) . . . cos(ωW tKT ) L(1, tKT ) . . . L(L, tKT )



w =


η1
...

η2W+L

 , y =


S1

...

SKT


(36)

Where KT is the time the simulation has been running for and S are the
Kalman state estimates at that point. As mentioned previously, the S values
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are cumulative throughout simulation and are optimized at their respective
time points.

4.6 Synthetic Measurement Data

We use our knowledge of Gaussian distributions from section 2.5.3 to create
Gaussian, or white, noise for testing. This means that the values added
or to our original data is taken randomly from a Gaussian distribution.
Mathematically, as seen in 37, we use equation 14 and add it to our original
data. In this thesis, x is the SINMOD simulation.

xr = x+ f(x, µ, σ) (37)

Next, we would like our artificial measurements to have systematic dif-
ferences from the original data, this means either having a scaling value or a
constant offset. Scaling is represented in equation 38 as multiplying xr with
a scaling variable KS . To add constant offset, a KO parameter is added to
the function. A visual representation of both of these effects can be seen in
figure 17.

xaug = KSxr +KO (38)
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Figure 17: Effects of Offset (Orange) and Scaling Factor (Green) with
Gaussian Noise

Ultimately for testing the algorithms, the choice fell on the constant
offset augmentation. This was to see clear differences between the model,
the measurements and the actual data when comparing.
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4.7 Case Study I - Static Measurement

The first case study will obtain one static measurement and see its effects
on the rest of the grid. This was completed over a 2-dimensional 40×40
point grid in a timespan of t ∈ [0, 50]. The coordinates of the grid are
x ∈ [200, 240], y ∈ [200, 240], z = 5 with the one static measurement being
taken at (x, y, z) = (223, 223, 5). An overview over the RBF points and
measurements can be seen in figure 18.
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Figure 18: RBF and Measurement Locations for Case I

Analyses were completed for the whole grid at one time point and specific
points for all times.

4.7.1 Timespan Analysis

As mentioned in section 4.5, the Kalman filter values used in reparam-
eterization are cumulative. Hence, reparameterization will have different
results and accuracies throughout the simulation. To see how effective the
method would be in predicting future results, reparameterized parameters
at KT = 50 and coordinates (x, y, z) = (223, 223, 1) in case I were tested
for exceeding timepoints. The static model initialized on the SINMOD data
was also tested.

Following this, parameters η at KT = 5 was extracted and used to
generate flow estimates for times t = 5 and t = 50. This experimentation
was to see how effective the reparameterization is at lower time points.
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4.8 Case Study II - Measurements Exceeding RBF Points

The second case study tests the model’s response to having more measure-
ments than RBF points. The case area and timeframe will be the same
as in case I, but case II includes two measurements in between each edge
connecting the RBF points as seen in figure 19.
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Figure 19: RBF and Measurement Locations for Case II

Analyses completed in this case were similar to the ones in case I, with
whole-grid analyses at one time point and specific points for all time points.

4.9 Case Study III - Dyanmic Underwater Drones

A third case study was created to simulate real-life dynamic measurements.
In section 2.2, the OCEANID drone, its measurements systems and intended
deployment was introduced. Case III builds upon these requirements and
uses them to create a dynamic example of measurements taken at different
locations. This is to test the accuracy of the updated method for a realistic
case and to see if the model correction is sufficient for different points within
the grid.

A typical operation involving the drones have an operational area of
50×50km2 and depth of 1000 m. To simplify the modelling process, we say
that the resolutions for the data set are 250 m horizontally and 100 m ver-
tically. According to specifications, 9 drones are dropped in between 4 RBF
coordinates. The resolution specified means the drones are 250 m apart
horizontally and vertically which is within typical operation. If the middle
drone takes measurements every 100 meters, we can simulate a measurement
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for each resolution layer, meaning 10 measurements for ascent and descent.
From the specifications, we also know that 9 new drones are released every
15 minutes at a new location. A reasonable estimate would be that the
drones takes 7.5 minutes to transverse each ascent and descent. This comes
from the ascent and descent speeds and allows for an ascent and descent
between each drop. A resolution of 4 was chosen to have three points be-
tween each RBF and the measurement drone centered between these. The
deployment procedure with dropping drones each 15 minutes can be seen in
figure 20.

Figure 20: Node Drop Location Illustration for Case III Containing Nodes,
Drop Zones (Orange Boxes) and RBF Points (Yellow Circles) up to n

Drops

The data set used in this project has a time frame from 0 to 217 hours
with 1 hour intervals. For this case, the interval was changed to 7.5 minutes,
meaning one update per ascent and descent. This was done to include suf-
ficient updates across the field and a realistic amount of node deployments.
At the specified resolution, the SINMOD data set was not large enough to
compute a 50×50km2 grid, so a 5×5km2 grid was chosen instead. All in all,
this gives 25 drops over a 187.5 minute long period.
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CHAPTER 5

Results

5.1 MOSEK and Function Testing

(a) SINMOD Data (Blue) Comparing
Sine With Amplitude and Phase Shift
Scaling (Orange) and Sines and Cosines

With Amplitude Scaling (Green)

(b) Failed Convergence When Summing
Up To 10th Degree Laguerre Polynomial

Figure 21a represents the difference between optimizing a sine with phase
shift and an alternative function consisting of sines and cosines. One can
see both function outputs were similar. This means that the MOSEK Op-
timization Suite is a viable option and that the function setup in 27 was
changed to sines and cosines.

Figure 21b shows the Scipy minimize function not converging with an
8th degree Laguerre polynomial. Meanwhile, the MOSEK optimization con-
verged up to the 12th degree. The MOSEK package showed significantly
faster results overall and convergence at higher Laguerre polynomials. The
package was therefore used for the remainder of this thesis.
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5.2 RBF Point Estimation
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(a) Laguerre 2nd Degree
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(b) Laguerre 12th Degree

Figure 22: Comparing SINMOD Velocities to Estimates Using Sums of
Laguerre Polynomials and Scaled Sines and Cosines With 5 Tidal

Frequencies

Figure 22 shows the result of summing up to a 2nd- and 12th degree La-
guerre polynomial at the RBF point estimation. One can see that the graph
follows the actual velocities better at higher degrees. 10th degree polynomi-
als were used for the remainder of this project because it was believed that
Laguerre polynomials of too high degree could be problematic.
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5.3 Second Optimization

As mentioned in 4.2.3, a second optimization was completed to scale the
Gaussian kernel for the whole flow field. Two methods were suggested, one
with a constant scaling of the whole field and one scaling each RBF. Table
8 shows the mean error and standard deviation for each of the suggested
methods. Both adjustments improved the standard deviation and mean
error of the result however the RBF adjustment had a slightly lower value.

Table 8: Second Optimization Results

Method Mean Error Standard Deviation

Original 4.721× 10−2 2.990× 10−1

Constant −6.502× 10−3 1.020× 10−1

RBF Adjustment 3.970× 10−3 6.104× 10−2

The datapoint at (x, y, z) = (202, 202, 5) during times t ∈ [0, 50] are
shown in figure 23 and shows both methods and their outputs. The RBF
point adjusted method is closer to the SINMOD data in blue.
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Figure 23: Comparing SINMOD Data (Blue) With Optimized RBF Point
Multiplied With Gaussian Kernel, No Adjustment (Grey), Constant

Adjustment (Blue) and RBF Point Adjustment (Orange)

The conclusion from both of these results is that the RBF point estima-
tion performs better than the constant adjustment. This was therefore the
preferred method when continuing experimentation.
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5.4 Gaussian Analysis
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(a) λ = 1
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(b) λ = 10
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(c) λ = 100
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(d) λ = 1 000 000

Figure 24: Gaussian Analysis at Constant RBF Values

Figure 24 showcases four λ values for a constant RBF point field cal-
culated using a Gaussian kernel. These results aim to see the pitfalls if a
Gaussian kernel is over or under-tuned. The RBF values are not from the
dataset but instead set to be constant values of 5. The RBF points do not
contribute to calculating the grid values when lambda is low, creating a
lower value than at the RBF points. At higher λ values, the contributions
overlap, creating a larger value than the initial 5. At a λ value of 10, the
overlap is not as present compared to the higher values; however, one can
see that a middle point obtains higher values than the surrounding ones.
These higher values are an indication that overlapping effects are taking
place. These results are useful when it comes to discussing the effects of
using a Gaussian kernel.
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5.5 Kalman Filter Implementation

Testing the Kalman filter with the parameters mentioned in 4.4 and multi-
plying the a posteriori states with the Gaussian kernel led to the plot seen
in figure 25 at the point (x, y, z) ∈ (262, 262, 5).
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Figure 25: Kalman Filter Results

Here we can see that the filter follows the measurements closely. If the
filter was tuned to trust the model more than the measurements, the results
might follow the model estimate curve more closely. However, this indicated
that the Kalman filter worked according to the expectations and no further
experimentation was completed.

5.6 Re-Optimizing Parameters

Figure 26 displays the a priori and a posteriori states for the Kalman filter as
well as the updated, or reparameterized, model created using the methods
described in 4.5. After getting measurements from 50 timesteps, the updated
model fits the a posteriori state well.
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Figure 26: Updated Model at RBF

5.7 Case Study I - Static Measurement

Case I received one measurement creating an a priori, a posteriori, and
reparametrized model per timepoint. The absolute error between the a pos-
teriori state and the reparametrized model was also computed. One can see
from figure 27 that there are primarily corrections close to the measurement
point. As the analysis point moves further away from the measurement,
there is a lower correction. These are expected results from a Kalman filter.

When running through the simulation, it was experienced that the MOSEK
optimization did not converge at specific time points, and an error was re-
ceived that the solution was not optimal. The code would then stop running,
which prevented further experimentation. When this occurred, a fail-safe
mechanism was implemented where the reparametrized model was set to be
the a posteriori state. The reparameterized field was then set to zero. This
effect can be seen in 28. The error, in this case, was representative of the
whole field. The error messages were received at different time points when
running the simulation multiple times, concluding that the effect is non-
deterministic and could be caused by software or hardware in computation.
The errors received happened in the t ∈ [11, 17] range.
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Figure 27: Kalman Filter A Priori, A Posteriori, Reparametirized Model
Based on A Posteriori States and Absolute Error Between A Priori and

Reparametirized Model for Case I at t = 5
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Figure 28: Kalman Filter A Priori, A Posteriori, Reparametirized Model
Based on A Posteriori States and Absolute Error Between A Priori and

Reparametirized Model for Case I During Error at t = 14
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A final analysis was completed by plotting the Kalman filter output
at three different points: The measurement point, an RBF point, and an
arbitrary point which was neither. Getting these measurements means mul-
tiplying the a posteriori states with the Gaussian kernel. This was compared
to the SINMOD data and initial model developed in 5.2 and 5.3. Figure 29
shows similar results to figure 27, where larger corrections to the states are
completed closer to the point of measurement.
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(a) Measurement Point, (x, y, z) =
(223, 223, 1)
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(b) RBF Point, (x, y, z) =
(215, 220, 1)
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(c) Arbitrary Point, (x, y, z) =
(212, 212, 1)
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Figure 29: SINMOD Data and Kalman Filter (KF) Adjusted Point Values
at Measurement Point, RBF Point and Arbitrary Point With Locations for

Case I

One can see that the arbitrary point in 29c is the furthest away and
hence has the least correction. The measurement point follows the graph
more closely.
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5.7.1 Case I Timespan Analysis
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(a) t = 50
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(b) t = 51
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Figure 30: Timespan Analyses for (x, y, z) = (223, 223, 1)

Figure 30 shows how the Kalman filter and initial model react to forecast-
ing. The initial, or static, model (orange) and reparameterized, or dynamic,
model (green) are in figure 30a plotted and compared for timepoints up to
50. The reparameterized model is based on the a posteriori states from the
previous 50 time points. Both graphs follow the SINMOD data well up to
50; however, at one timepoint beyond, the dynamic model diverges and does
not fit the data anymore, which can be seen in 30b. The same thing hap-
pens to the static model in figure 30c at around a time point of 52. These
divergences shows that the models are not a good fit for time points beyond
the measurements.
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Figure 31: Timespan Analyses for Reparametirized Model at t = 5

For the second analysis, the reparameterization model was optimized on
a posteriori states for up to KT = 5. The static model, and the model
in the previous experimentation at KT = 50 were tested for t ∈ [1, 5] and
t ∈ [1, 50] and compared with the SINMOD data. Results can be seen in
figure 31a. In 31a, the reparameterized model for KT = 5 looks to have an
almost constant value; hence, the fit is not representative of the flow field.
Figure 31b shows that the model diverges from the initial values at higher
timepoints. This divergence means that the reparameterization for lower
timepoints is under-scaled and not a good representation of the flow field.
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5.8 Case Study II - Measurements Exceeding RBF Points

Using more measurements than RBF points yielded a more even update
across the field. Figure 32 shows the a priori, a posteriori, and reparame-
terized model. Also shown is the absolute error between the a priori and
reparameterized model. Compared with only one measurement, the a poste-
riori looks more similar to the a priori state. A higher correction across the
field can be seen in the magnitude difference of the absolute error between
figure 32 and figure 27.
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Figure 32: Kalman Filter A Priori, A Posteriori, Reparametirized Model
Based on A Posteriori States and Absolute Error Between A Priori and

Reparametirized Model for Case II at t = 5

For case II, the algorithm still had convergence issues, and the parame-
ters did not reach an optimal solution at multiple time points. These errors
were observed in the range t ∈ [13, 32].
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The Kalman filter output is compared with the SINMOD data and ini-
tialized model developed in 5.2 and 5.3 at three different points with loca-
tions seen in figure 33d. Using more measurements led to higher corrections
of graphs at all points as opposed to only one measurement in figure 29 ,
which had the highest effect at the measurement point.
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(a) Measurement Point, (x, y, z) =
(223, 223, 1)
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(b) RBF Point, (x, y, z) =
(215, 220, 1)

0 10 20 30 40 50
Time

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u-
Ve

lo
cit

y

KF Adjusted Flow SINMOD Data Model

(c) Arbitrary Point, (x, y, z) =
(212, 212, 1)
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Figure 33: SINMOD Data and Kalman Filter (KF) Adjusted Point Values
at Measurement Point, RBF Point and Arbitrary Point With Locations for

Case II
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5.9 Case Study III - Dyanmic Underwater Drones

For the final case study, OBNs provided measurements dynamically through-
out the grid. A priori, a posteriori, reparameterized model and the absolute
error between the a priori state and reparameterized model can be seen in
figure 34 at t = 10 and z = 1. Like case study I, which used one measure-
ment, the absolute error plot shows the most correction happening at the
measurement point. At t = 10, the measurement is at (x, y) = (218, 218).
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Figure 34: Kalman Filter A Priori, A Posteriori, Reparametirized Model
Based on A Posteriori States and Absolute Error Between A Priori and

Reparametirized Model for Case III at t = 10

The reparameterization for this case did not converge for timepoints
t ∈ [13, 30]. Since the simulation runs for 36 timesteps, this represents a
large portion of the operational time and could hinder the effective use of
the reparameterized model.

Plots were also created to showcase the development of the model at the
first, the last, and a middle drone drop location. For the first drop location,
the Kalman filter adjusted values follow the SINMOD data more closely at
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lower timesteps meaning measurements are closer to the point. The data
becomes less accurate as time progresses and measurements are made further
away. The middle drop location is evenly adjusted and seems to follow the
trend of the SINMOD data more closely than the other two. The last drop
location has little to no following of the SINMOD data throughout the time
series.
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(a) First Drop Location, (x, y, z) =
(203, 203, 1)
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(b) Last Drop Location, (x, y, z) =
(218, 218, 1)
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(c) Middle Drop Location, (x, y, z) =
(210, 210, 1)
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Figure 35: SINMOD Data and Kalman Filter (KF) Adjusted Point Values
at Drop Location 1 and 2 With Locations for Case III

Like the other cases, the model receives higher corrections the closer it
is to the measurement. One can also see that there is little to no correction
for the first and last drop locations. These are both far away for most of
the measurement points. This inaccuracy could be harmful if the drones are
dependent on far-away measurements. However, if the drones are released
next to each other, they receive input from nearby measurements, and the
model could be efficient in making local adjustments to the model. Further
testing on this efficiency was not researched in this paper.
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CHAPTER 6

Discussion

6.1 Model Fitting Functions

Throughout this project, a linear combination of sines and cosines as well as
Laguerre polynomials of different degrees has been used to model the data
from SINMOD and the a posteriori Kalman filter states. Higher-degree La-
guerre polynomials were chosen due to them fitting the data accurately and
their common use in modelling non-periodical natural data. At certain time
points during testing, the methods did not converge. It can be theorized
that this was due to the divergence of Laguerre polynomials at higher de-
grees. The choice of other functions could lead to higher accuracy and faster
convergence. Examples of divergence are figures 30 and 31 which show how
Laguerre polynomials could lead to exponential divergence at higher time
steps. Constant functions were tested during the project thesis leading up to
this master thesis, however these were not as efficient in modelling. Choos-
ing other functions which do not converge as rapidly at higher time points
could help decrease this effect.

6.2 Gaussian Kernel

The Gaussian kernel is an essential part of the updated model and makes
us able to calculate values from the RBF points. As seen in 5.4, there is a
potential risk of overlap if the scaling factor becomes too high, resulting in
a higher value than the initial RBF points. This can also be seen in 3.1,
where over- and underscaling was present at different λ values. These results
are important because it says something about how scaling of the Gaussian
kernel provides different results. To correct for a wrong scaling factor in the
initial model, a second optimization was put into place taking in data from
the whole field via the SINMOD simulation. However, when implementing
a Kalman filter we are only given the a posteriori states of the RBF points
and cannot do a second optimization over the whole field. This could hence
lead to an over- or underscaling of the model depending on initial values of λ.

A way to correct for scaling in the reparametirized model was not ex-
plored in this paper. However, a proposed solution could be to find a scaling
factor for each timepoint based off SINMOD data, computed via methods
in 4.2.3, and multiply the a posteriori states with this. This would however
require a great deal of processing power at larger data sets and could defeat
the purpose of preserving computational power. Additionally, the efficiency
of this method would need to be tested.
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6.3 Kalman Filter

The Kalman filter builds upon the state-space model, and in this the-
sis, the state transition and control input matrices are identity matrices.
These matrices are set up like this because states are extracted from the
reparametrized model rather than system equations. The state transition
matrix could be computed based on historical data of the ocean and its
currents to try to compute a new value [12]. This might prevent issues re-
garding optimization and convergence of reparametrization because a priori
states would not come from the reparametrized model.

The H matrix in the filter was composed of Gaussian functions at each
point of measurement. As seen in 6.2, using a Gaussian kernel could be
problematic due to its sensitivity and could provide inaccurate results if
not tuned properly. Depending on the need, one could choose H to be
another measurement kernel, either using displacement as a parameter or
other parameters such as time, but this would most likely require tuning.
The conclusion in 3 was that the optimal resolution and λ value is depen-
dent on the available resolution and data set. Therefore, the Kalman filter
could have received better results if the optimal λ value was found and used
in the Gaussian functions. This option was nonetheless only an afterthought
following experimentation. If the reparameterization of variables somehow
accounted for the scaling factor, most of this uncertainty would be resolved.
How this could be done was not researched further in this paper.

Q and R were in this project set to identity matrices of magnitude 0.001.
However, these will need to be measured in real-life applications from sen-
sor data and general model noise. The P matrix was also initialized as an
identity matrix of magnitude 0.001. It could be improved if the values de-
pended on the distance between each RBF point. This distance dependency
was written about in a previous research paper by Berget et al. [22], where
a Matern kernel was used containing the Euclidean distance as input and
decaying covariance with the distance between points.

6.4 Convergence of Reparametrization

For specific time points during the Kalman filter iteration, the reparameter-
ization for the model did not converge, and an error message was received
from the MOSEK solver. The error messages informed that the solution
was not optimal. There might be several reasons for this. Interestingly, this
error did not occur for optimizing the initial model. One theory is that the
model is not set up to assure convergence, and the values become too high
for the solver. This divergence could be solved by putting a constraint on
the parameters, making divergence less likely. Another possible pitfall could
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be the processing power of the computer. Since the initial model did not
have this issue, one could also theorize that the inclusion of the Kalman fil-
ter used more processing power, leading to non-convergence. When running
the same simulation multiple times, it was observed that the error message
occurred at different time points. A possible reason for this could be the
random noise that affects convergence.

The programming language Python uses more computer memory than,
for example, object-oriented programming. A possible solution to this mem-
ory issue could be to use functions that do not scale up as much as Laguerre
polynomials, to use another programming language, or to use more effective
hardware.

Convergence error messages were not received early or late in the op-
timization process but rather in the middle. Since the data is cumulative
throughout the optimization, smaller amounts of data points are available
during the early stages. It could be that the model requires a set amount
of data points before the method assures convergence and under-fits before
this point is reached. Figure 31a shows proof of underfitting, which supports
the argument.

6.5 Placement of RBF Points

In this project, the RBF points were placed equidistant throughout the grid.
However, different placement of the RBF points could lead to better results.
For example, placing them along the trajectory of the underwater drone
means that the RBF points will get Kalman filter adjustments which are
closer and hence have a higher impact. However, this placement faces many
of the same challenges faced by the equidistant setup. If an RBF point is
predicted inaccurately, it could have dire consequences for the drone’s tra-
jectory.

Another placement suggestion would be to have a movable grid, pre-
sented in Chang 2014 [12]. In it, a model is initialized within a grid, and as
the drone moves outside of it, the grid changes location. Reparametrization
is therefore reset each time the grid is moved. It is also noted that the H
matrix needs to be square, meaning there need to be as many measurements
as there are RBF points. These measurements would require many devices,
meaning more drones or a larger grid. More drones could lead to higher
costs, and a larger grid could lead to an accuracy drop-off. There is, how-
ever, no justification for having H be a square matrix. It can be theorized
that a lower amount of measurements could lead to equally fast convergence.
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6.6 Future Predction

Most of the analyses completed were over a set timeframe; however, one of
the purposes of this project is to predict the flow to be used in OCEANID
underwater drones. Looking at figure 30, we see that neither the reparame-
terized model nor the initial model are reasonable estimates at higher time-
points. From 30b, we see that the reparameterized model falls off quickly
and is not suitable for future predictions. This deviation could be due to La-
guerre polynomials which increase exponentially at higher timesteps. This
exponential divergence can be seen in both the initial and reparameterized
models. A solution to this could be to use different functions which do
not scale as highly with higher timesteps—alternatively, using lower degrees
of Laguerre polynomials. Modification could also be implemented to use
constraints on some of the functions such that they do not go way out of
bounds, as discussed in 6.1.

From figure 31, the method does not converge to the solution with too
few data inputs in a smaller timespan. When testing for larger time val-
ues, the model diverges from the static and dynamic models, which use
parameters at timepoint 50. This divergence means that the reparameter-
ized model at lower timesteps is a poor estimation of future results, and
more data is needed to create an accurate fit. When the model is to be used
in OCEANID, it might need to be initialized with a couple of measurements
beforehand to get accurate reparameterization. Another solution could be
to take measurements one at a time, running through the Kalman filter and
getting more a posteriori states for reparameterization, not per timestep,
but measurement. This paper did not explore this option but could provide
a viable solution.

6.7 Measurements and Sampling Frequency

A large part of the updated model depends upon the measurements and
sampling frequency. More accurate measurements lead to more accurate
updates of the a posteriori state and a higher chance that the node will reach
its desired destination. It has been mentioned that the reparameterized
model requires a certain amount of inputs in order to portray the flow field
accurately. A higher sampling frequency could shorten the time it takes to
receive these. One of the goals for the algorithm in 1.1 was that the Kalman
filter was supposed to run at an update frequency of 15 minutes. Obtaining
measurements at a higher frequency means that the model would be able to
update more accurately when running through the Kalman filter step. Still,
it took the drone 6 minutes to transverse 1000m depth, so a higher update
frequency might yield better results.
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6.8 Case Results

The first two cases in this paper focused on one measurement received and
more measurements than RBF points received. These analyses show that
more measurements led to more model updates across the flow field. Em-
ploying more drones, or employing more drones with measurement devices,
would lead to a more accurate result. However, this expansion could lead
to higher costs due to more equipment and boats dropping drones being
required or more acoustic measurement sensors required.

A case study inspired by the drone requirements from section 2.2 was cre-
ated to showcase how updating the model works in a dynamic environment.
This experimentation showed that adjustments to the model depend on the
distance from the measurements. The result means that drones dropped
after measurements are made at a neighboring point receive substantial ad-
justments to the model. These adjustments would help prediction in drones
dropped directly afterward. How accurate this update would also depend on
the factors discussed previously in this section, such as sampling frequency
and RBF placement. Future work on this case would include realistic mea-
surements and further testing of the updated model. This paper initialized
the project; however, many aspects require analysis before the model can
be put into use.
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CHAPTER 7

Conclusion

A method for modeling ocean current was created using RBFs and a Gaus-
sian kernel. Initialization was completed using SINMOD data at the RBF
points and a second scaling optimization over the flow field. Updates to the
model were made possible by implementing a Kalman filter. Afterward, the
initial functions were reparameterized from available information.

This thesis aimed to develop an ocean current model for underwater
drone positioning. Cases were completed for different scenarios which show-
cases the adjustment of grid to measurements using a Kalman filter. This
highlighted that further work is needed in the development of the algorithm
and potential restrictions. In addition there are a multitude of different
alternatives when it comes to adjusting parameters and methods. No con-
clusion is drawn on the 2.5 m horizontal accuracy specification and further
work is recommended including field testing to test the method.

The information and analysis found in this paper lay the groundwork for
future experimentation and development of the algorithm.
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CHAPTER 8

Recommendations for Further
Work

8.1 Improving Minimization Problem

Convergence issues are closely related to the setup of the minimization prob-
lem. Section 6 goes through different pitfalls, including the use of Laguerre
polynomials. At larger timesteps, these can become exponentially high and
cause divergence. Tests should be completed using different types of es-
timation functions. Additionally, boundaries can be set on parameters to
be optimized to avoid non-converging optimization. Other changes can be
made to the minimization problem, which could improve the stability and
performance of output. However, these were the ones discussed in this paper.

8.2 Point Estimation

A Gaussian kernel with equally spaced RBF points was used to get the point
estimations. The Gaussian kernel can have scaling issues, so alternatives
should be explored. The placement of the RBF points could also potentially
affect final results, and most likely, the two are closely tied.

8.3 Kalman Filter

In 6.3, the idea of using historical data was presented. The matrices in the
state-space system of the Kalman filter influence the results. The H matrix
can also be changed depending on which kernel is used to see the effects.

8.4 Field Testing

A final note is made that all data collected in this research is synthetic or
extracted from SINMOD simulations. For the project to be realized, real-life
data is required to initialize and test the model. This data includes current
data, Q and R matrices, and resulting trajectories.
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