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Preface

This thesis presents my work in the course TTK4550 during the autumn of 2021 at NTNU, which
lays the foundation for my MSc dissertation in the spring of 2022. I began brainstorming the
project in April of 2021, but the only thing that was clear to me was that I wanted to be creative
and have fun developing it.

The project ended up being an exciting journey of problems, solutions, backtracking, and sidesteps.
To my surprise, the most challenging part of the project was perhaps to complete the loop, stop
developing and feel satisfied with the results.

NTNU supplied me with the equipment necessary to perform my research. The robotic manipulator
I worked on was the OpenManipulator-X, and the stereoscopic depth camera used to capture
sensory information of the operator’s hand was the Intel RealSense Depth Camera D435. The
human-machine interface was developed on a desktop computer, with an Intel i7-8700 CPU, 32
GB of RAM, no GPU, and running 64-bit Ubuntu 20.04. For specific information regarding the
software packages, the reader is referred to Section 4 of this thesis.

I would like to express my gratitude to my supervisor Anastasios Lekkas for accepting my project
proposal. Lekkas made the project possible by lending me both the manipulator and depth camera.
He also supplied me with valuable inspiration, motivation, and precise guidance throughout the
semester. Sindre Remman, PhD candidate at the Department of Engineering Cybernetics, helped
me get started with ROS, explainable artificial intelligence, and provided me with a second depth
camera.

Omega Verksted supplied me with equipment, guidance, and a workshop to construct the camera
stand, holding the depth sensor, and deserves special thanks for their hospitality. During the
semester, my fellow students, who shared an office with me, served as user candidates for the
human-machine interface and provided valuable user experience feedback. The feedback most
definitely raised the system’s overall quality, and for that, they deserve my gratitude.
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Abstract

Peer-to-peer cooperation between humans and robots is the holy grail of human-robotic interac-
tion. Such a high level of cooperation demands more intuitive methods of communicating with
robots. Vague voice commands would be the best way of fulfilling such a goal, but the technology
is still years away. As a step in that direction, this thesis will investigate whether state-of-the-
art artificial intelligence-powered hand tracking methods can be applied to construct an intuitive
human-machine interface for robotic control. The goal is to allow users to efficiently and intuit-
ively operate a robotic manipulator and solve unforeseen problems in environments inaccessible to
humans.

An alphabet of intuitive hand gestures is designed, which serves as input signals to a finite state
machine, overseeing the control of a robotic manipulator. To improve robustness and trust in
the system, explainable artificial intelligence methods are employed in a graphical user interface,
yielding the user an online interpretation of the hand tracking commands.

To validate the system, users are presented with a lever manipulation challenge. The operator uses
the interface to control a robotic arm to the lever’s position before successfully pulling it. The
promising results show how such a system can solve unforeseen challenges in environments where
only unmanned vehicles operate. Such a system might come in handy for Lunar and Martian
astronauts in the near future, who can employ it for solving problems outside the habitat without
venturing outside themselves.
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1 Introduction

1.1 Background and Motivation

Robotic manipulators are being used for a wide variety of tasks, from automating repetitive jobs
on assembly lines to drilling in rocks on other planets and disarming bombs. Yet these use-cases
can be divided into two categories: Boring and physically repetitive tasks and tasks that are too
dangerous for humans. Recent developments in robotics made it possible to automate repetitive
chores that are slightly more complicated than the assembly line problems, such as vacuuming [1]
and lawn mowing [2].

With the development in AI (Artificial Intelligence), a not-so-distant future where robots can
manage complex, unforeseen tasks while dealing with real-world uncertainty seems like a possibility.
A steep increase in the number of AI related patents for the last few years was presented in [3],
depicting the technological advances we have witnessed in the previous decade. Furthermore, AI
has proven a practical, powerful tool for analyzing speech, but also body language [4].

Buttons, levers, and joysticks are among the most widespread HMIs (Human-Machine Interfaces)
but require extensive training and expertise to operate correctly. A more natural way of communic-
ating would be to mimic human-to-human interactions, which often boils down to body language
and speech. Thus the machine would have to interpret spoken commands or gestures from the
operator, as in [5] where a robotic arm controlled by continuous human voice commands is pro-
posed. A semi-autonomous robotic arm controlled by a hybrid gaze-brain interface was presented
in [6], while [7] describes a gesture-controlled HMI for safe bomb disarming. In the future, one can
imagine a scenario where a power line worker inspects power cables in cooperation with a robot
and simply tells the machine what actions to perform via spoken commands or hand gestures.

The challenge of hand tracking was previously solved through complex algorithms specifically
designed to look for contours, colors, and other features in the image to find objects resembling
hands. These methods proved to be computationally demanding and challenging to implement, as
they require hand-designed filters. The previously mentioned advancements in AI have, however,
also contributed to the field of hand tracking [8]. In [9], the author writes a program that opens
and closes the fingers of a 3D printed robotic arm with human features, designed by the french
designer Gaël Langevin, by using Google’s AI-powered hand tracking software. The results are
inspiring. However, the manipulator’s position remains fixed, and the project becomes more of a
neat gimmick than a functional robotic control system.

Mimicking human movements is a complicated challenge. The authors of [10] present a model of
the human hand with 27 DOF (Degrees of Freedom), explaining it as follows: “4 in each finger, 3
for extension and flexion and one for abduction and adduction; the thumb is more complicated and
has 5 DOF, leaving 6 DOF for the rotation and translation of the wrist”. Excitingly, the Shadow
Robot Company [11] has developed a human-like robot hand, the Dexterous Hand, with 20 DOF,
not far away from the ideal 27 DOF presented in [10]. Meanwhile, typical robotic manipulators
only have six DOF. These advancements contribute heavily to the increasing level of cooperation
between humans and robots.

One of the latest fields of AI, XAI (Explainable Artificial Intelligence), is dealing with the problem
of building trust in AI-powered systems. Such applications are often considered black-box models,
portraying limited insight into their reasonings. Methods such as [12] and [13] are proven methods
within this field, yet little has been done for robotic applications. One example, however, is [14],
which focuses on explaining the black-box model used in an automated ship docking application
for different end-users. The captain, for instance, needs to trust that the system is performing
the correct actions in real-time. While the developers designing the system are interested in
more complex detailed explanations, which cannot be delivered in real-time due to computational
requirements.

In this thesis, an HMI for robotic control is proposed. The system combines XAI methods with
cutting-edge hand tracking technologies in an FSM (Finite State Machine) structured system. The
goal is to achieve an intuitive, easy-to-use control system that can rival traditional interfaces such
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as joysticks and keyboards. Although it will not solve generic, semi-automatic tasks at this point,
the interface can be used to control such functionality later on, if desired.

1.2 Objectives and Research Question

We will adopt technologies such as deep neural networks, robotic control, and XAI to answer the
following research questions:

• Can a hand tracking software powered by CNNs, such as the MediaPipe Hands framework, be
applied to construct an intuitive HMI system based solely on hand movements and gestures?

• Can the HMI be used to perform any meaningful work with a robotic manipulator?

• How can XAI methods be used online to help users understand the system?

Hand tracking is not a new field of study and was first developed in 1969 [15], yet the number of
use cases remains limited. In the last decade, we have seen advancements in object recognition
powered by deep neural networks. It is the author’s belief that the classical hand tracking problem
can benefit from these advancements.

A significant objective is to construct an intuitive, easy to learn, control system. As is further
elaborated in the Hand Tracking section, it is crucial to validate the system by testing how easily
other people can adopt it. If the system is difficult to use, traditional approaches such as joysticks
will remain preferred.

Another critical objective in this thesis is to lay the groundwork for a robust and intuitive con-
trol system that will be the subject of the author’s MSc thesis next semester. Should the goals
of this thesis be fulfilled, the next step would be to compensate for disturbances present on un-
derwater, aerial, and ground vehicle- manipulator systems. Such an application will enable the
operator to perform tasks on external platforms such as underwater equipment since the robotic
arm dynamically stabilizes its position.

1.3 Main Contributions

The thesis contributes to the fields of robotic control systems, HMI, and XAI, by integrating
existing technologies. A summary is given below, followed by more thorough explanations.

• An intuitive and responsive HMI system for improved HRI (Human Robot Interaction)

• A system-specific online XAI method presenting the outputs from a hand tracking AI under-
standably, for multiple levels of end-users

The control system is designed as an FSM (Finite State Machine) and utilizes hand tracking in
combination with an alphabet of different gestures and poses to switch between states. The result
is a set of commands controlling an affordable open-source robotic manipulator. Further, a low-
cost stereoscopic depth sensor provides the input to the hand tracking module. The choice of
components demonstrates that cheap, off-the-shelf items can contribute valuable information to a
cutting-edge robotic control problem.

The Shadow Robot Company [11] provides haptic gloves, which allow users to take control of up
to two human-like Dexterous Hands from a remote location. The equipment truly is cutting-edge
HMI technology but comes at a steep price. The equipment used in this thesis is approximately
200 times cheaper than the high-end gear. A similar system that does not need gloves or specially
constructed human-like robotic hands could benefit a larger group of people due to the dramatic
price difference.
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Google’s MediaPipe framework will be used to achieve high accuracy in hand tracking. The tracking
software is powered by AI, making it more reliable than traditional methods but simultaneously
introducing the need for explanations. Adequately explained hand tracking information is utilized
to separate seven hand gestures, enabling the operator to control all the manipulator’s degrees of
freedom.

Furthermore, explanations will be performed by methods from the field of XAI to demonstrate how
different end-users can gain insight into how the robotic control system interprets their commands
in real-time. Black-box models need interpretation, and several methods have been presented
for explaining AIs dealing with both classification and regression problems, see [12], and [13].
However, these methods are limited by demanding computations, making them unsuitable for
online explanations.

To the author’s best knowledge, there does not exist another HMI that utilizes visual hand tracking,
hand gestures, and depth information to control a robotic manipulator intuitively. However, a few
similar projects were found. In [7] a robotic manipulator is controlled with hand gestures, and a
YouTube search revealed a similar project also using the MediaPipe framework [9].

1.4 Thesis Structure

The thesis consists of five chapters, excluding the introduction, briefly reviewed here. The relev-
ant theory of robotic manipulators, machine learning, explainable artificial intelligence, and hand
tracking are presented in Section 2. Next, the problem is formulated, followed by a thorough
presentation of the system design and implementation. Following, in Section 4, the experimental
setup, including the depth sensor and robotic manipulator, are introduced. Further, the results
are presented in Section 5, and the research questions are answered in the Conclusion.

4



2 Theory

2.1 Robotic Manipulators

Robotic manipulators are mechanical devices designed to perform a wide range of automated
tasks. Most manipulators consist of a series of rigid links connected by joints with one adjustable
parameter, commonly referred to as one DOF (Degrees of Freedom). [16] explains degrees of
freedom as the number of scalar variables that are necessary and sufficient to describe the locations
of all the components in a mechanical system. Thus, a robotic manipulator with four movable joints
will have four DOF. In some cases, the manipulator might be restricted, however. For instance,
a pendulum attached to a rigid body can only move in a spherical space and has only two DOF
instead of three. Its degrees of freedom is the difference between its DOF in an unrestricted system
and the number of constraints. In this case, the pendulum has originally three DOF, but loses one
since the body it is attached to is rigid. Furthermore, typical robotic manipulators have six DOF,
which means the end effector of the arm is free to move in three translational axes, X, Y, and Z,
but also its orientation through rotations.

There exist many different types of joints, but the two most common are prismatic and revolute
joints.

Prismatic joint
Often also labeled linear joints, the movements from these joints are translational along a single
axis, where the axes of the connected links remain parallel.

Revolute joint
The relative movement between the connected links is rotational, perpendicular, or parallel to the
input link.

2.1.1 Forward Kinematics

Forward kinematics is the process of computing the end-effector’s position by using the geometry
of the robotic manipulator together with the varying link orientations. These varying angles
are commonly known as generalized coordinates. In Figure 10 a total of four coordinate frames
represented by vectors of the type ~Xi, ~Yi, ~Zi has been drawn. The i = 0 frame has been drawn in
the first joint and is static. The subsequent three frames move in relation to each other and are
drawn to represent the movement from all joints in a straightforward manner. Lastly, the fourth
frame has been drawn suitably on the end-effector. The frames have all been assigned according
to the DH (Denavit-Hartenberg) convention.

H0
n =

[
R0
n o0

n

0 1

]
∈ SE(3) (1)

By using the representation depicted in fig. 10, we can introduce homogeneous transformations
between the frames. These transformation matrices can be multiplied to produce a single transform
from zero frame to end-effector frame, as presented in eq. (1), where R0

n is the rotation from 0-
frame to end-effector frame, o0

n is the position of the end-effector in 0-frame, and n is the number
of movable joints. Thus we can acquire the end-effector coordinates in the static zero frame if we
know the DH-parameters. In short, forward kinematics involves calculating the H0

n matrix, such
that we can find the position of the end-effector in the 0-frame, often called world coordinates.

2.1.2 Inverse Kinematics

While forward kinematics can be used to calculate the end-effector position, given joint and link
parameters, inverse kinematics is regarded as the opposite operation. That is, calculating the
variable joint parameters needed to move the end-effector to a pre-determined position.
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H0
n(q1, q2, · · · , qn) = A1(q1)A2(q2) · · ·An(qn) (2)

We start with the solution to the forward kinematics problem; the transformation matrix given
by eq. (1). Equation (2) states that the transformation matrix is made up of the product of the
transformation matrices from one frame to another. That is, Ai is the transformation from frame
i − 1 to frame i, and qi is the variable parameter of joint i. We often have more than six DOF,
which is needed to achieve all possible orientations and positions. Because of this, it is not trivial
to solve eq. (2) since multiple solutions can exist. Without considering this, one can experience
sudden jumps in the variable joint parameters as the controller switches between solutions.

The robotic manipulator used in this thesis, however, has only five DOFs, and the inverse kin-
ematics computations are calculated by a controller supplied by Robotis, the designers of the
manipulator.

2.1.3 Obstacle Representation

It is vital to avoid damaging the equipment and causing injuries when dealing with trajectory
planning. To achieve this, we choose a topological approach, where the subspaces workspace,
configuration space, and obstacle space are defined. According to [16], trajectories are either
“a set of functions describing time-evolution of the generalized coordinates, or a set of functions
describing time-evolution of the end-effector.” In our case, the pre-built ROS controller for the
OpenManipulator, see Section 3.5, takes care of the inverse kinematics. The trajectories in this
thesis will be the second definition, that is, time-evolution of the end-effector.

The trajectories are not large or complex since the system will be taking many contiguous com-
mands from a user. One such command, the system state MOVE FORWARD, is the equivalent
of a time-evolution trajectory lasting 0.6s with a straight path of 8.33cm in the X0Y 0 plane from
??. Even though the trajectories are not complicated, there are still obstacles to avoid in the
manipulator’s workspace. For a comprehensive list of all the system states and their actions, see
Section 3.6.

The robot arm cannot be allowed to crash into itself. As a result, we can define the configuration
space as a set containing all valid values of the generalized coordinates, q, given n links. See
Equation (3). However, the distributed ROS controller handles self-crashing avoidance, and it will
not need further work here.

Q = {q} (3)

W ⊂ R3 (4)

Further, the workspace can be defined according to Equation (4), where W is a subset of 3D space
and represents where the robot moves. The workspace does, however, contain a set of obstacles,
Equation (5).

Oi ⊂ R3, i ∈ R≥0 (5)

A(q) ⊂W (6)

A(q) from Equation (6), is another subspace of the workspace occupied by the robotic manipulator.
The obstacle space can then be defined as shown in Equation (7).

QO = q ⊂ Q : A(q) ∩Oi 6= ∅,∀i (7)
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When q ⊂ QO, the robot is in collision with an obstacle. Thus we can define the collision-free
subspace as Equation (8)

Qfree = Q \QO (8)

2.2 Machine Learning

ML (Machine Learning) is the study of computer algorithms that can improve automatically
through experience and gathered data [17]. It is a large part of artificial intelligence (AI). Ar-
tificial neural networks (ANNs) are function approximators used extensively in AI where the goal
is to create computers that exhibit intelligent behavior [18]. Modern techniques utilize DNNs (Deep
Neural Networks), which can be seen as an extension of the typical ANN, containing multiple hid-
den layers. The applications for AI methods are countless, yet a common theme is often problems
with vast amounts of data, where some structure is to be found. Examples include driving a car
autonomously, recognizing objects in images, or even outperforming humans at strategic games
such as Go [19]. Generally, an ML algorithm creates a model based on training data gathered and
processed in advance. The topic is, however, often divided into three subcategories:

Supervised learning
The machine receives input data and compares the calculated output with the corresponding label.
For example, a set of images of cars that are masked or labeled makes the computer learn what
features to expect in a new unlabeled image of a car.

Unsupervised learning
The machine does not receive labeled data but learns of any structure in the data by itself. Ex-
amples of use cases include creative tasks, such as writing a screenplay, composing music, or
generating videos.

Reinforcement learning
Reinforcement Learning is often used in cases where rules are easy to define, resulting in measurable
bad or good behavior. Videogames are good examples, with readily defined world spaces and reward
functions, but the algorithms are also useful for real-world robotic applications [20].

Figure 1: (a): A neural network. (b): A close up of a single neuron in a fully connected network
Image borrowed from [21]

2.2.1 Artificial Neural Networks

ANNs are computational models that intend to simulate biological neurons. A typical ANN, shown
in figure Figure 1, consists of an input layer, n hidden layers, and an output layer. The network in
the figure has exactly one hidden layer but can have many more. Looking at figure (b), we can see
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that for all the neurons in a layer, all the inputs from the previous layer are multiplied by weights,
summed, and passed through an activation function. A bias, not shown in the figure, is normally
multiplied by a weight and summed together with the inputs before the activation function. The
activation function mimics whether the neuron is activated or not, just like in a natural brain. The
ReLU activation function, for instance, makes all negative inputs zero while returning the positive
ones. See Equation (9)

f(x) = max(x, 0) (9)

Another commonly used activation function is the Sigmoid, which maps all real values into the
range from 0 to 1. See Equation (10)

f(x) =
1

1 + e−x
(10)

While calculating the output from some input is called forwards propagating, the distinctive learn-
ing algorithm is called backpropagation. Assuming we have a set of images of either cats or dogs
which are labeled, we perform a forward propagation on a single image and compare the output
with the known label. The output is a vector with two decimals, each having a value between 0
and 1, where 1 means that the network is certain that a cat or a dog is present. Thus we can
calculate the error between prediction and label with a loss function. The weights are updated
according to how much they contributed to the error metric in question. This thesis will not delve
into further details concerning the backpropagation algorithm.

A class of neural networks commonly referred to as convolutional neural networks (CNN) is pop-
ularly utilized to analyze visual imagery. [22]. These CNNs consist of hidden convolutional layers,
where the term convolutional comes from the convolving process. A filter, or kernel, is initialized
with random numbers for each convolutional layer and slides across the input, often an image.
The dot product between the input image and the kernel is thus outputted from the convolutional
layer. These filters are good at pattern recognition. By having multiple such layers consecutively,
one layer can detect corners, circles, or squares while the next can detect more complex shapes
such as hands, eyes, or hair. Further, each filter is trained, removing the need for designing each
one by hand, which is a substantial advantage over traditional filtering methods.

MediaPipe, a framework by Google, offers cross-platform, customizable ML solutions for live and
streaming media [23]. It consists of packages for a range of problems, including Face Detection,
Hands, Pose, Hair Segmentation and much more. The Hands API, an ML solution consisting of
two CNNs will be used to solve the hand tracking problem in this thesis. For more information on
these networks, see Section 3.4.1

2.3 Explainable Artificial Intelligence Methods

Neural networks are trained on large amounts of data to create a model function that makes
predictions based on the input information. While impressive, even the designer of the network
does not know how the model makes its predictions. Neural networks are usually just regarded as
black boxes. This phenomenon comes with some difficulties. For example, in 2017, The Guardian
wrote an article about teachers in Houston who had their performance assessed by an AI [24].
The agent made predictions based on their students’ test results compared to the average score
in Texas. The teachers who received a good performance were awarded bonuses, while those with
low scores risked getting fired. The company responsible for the AI refused to reveal how it made
predictions, calling it a trade secret. Thus the teachers were not able to tell if the predictions were
fair or faulty. Later, a federal judge ruled that the AI program could be violating their civil rights.
The school district stopped using it and paid the teachers’ fees.

In the article, The Guardian wrote about similar cases where an AI was judging humans. It is
thus a solid ethical argument to improve on these systems by making the AI’s thought process
understandable for humans. Explainable Artificial Intelligence, or XAI for short, is a field within
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AI with precisely that goal in mind. The authors of [12] have developed LIME, “an algorithm
that can explain the predictions of any classifier or regressor in a faithful way, by approximating
it locally with an interpretable model.” As an illustrative example from the paper, Figure 2 shows
how an AI makes a wrong prediction on a husky. It is clear that the network has been looking for
the wrong kinds of features under training and may have instead noticed that snow was present in
most of the wolf images. Thus when the input is an image of a husky in the snow, it completely
ignores the essential features we are interested in, instead wrongly classifying it as a wolf due to
the presence of snow.

Figure 2: Image borrowed from [12]

ξ(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (11)

The LIME algorithm obtains its explanation by minimizing Equation (11), where f is the black-box
function, and g is a simple model which works in the neighborhood of the input x. Πx is a proximity
measure between samples z and x. The samples are drawn from the vicinity of x. According to
the authors, the running time is around ten minutes when explaining a single prediction for image
classification. This means we cannot run the algorithm online, and we will not be able to answer
the third research question.

2.4 Hand Tracking

Ten years ago, hand tracking was no new field of study, yet the applications remained limited. Due
to advancements in artificial intelligence, the field of hand tracking has seen many improvements
since [25] was written in 2011. The paper looks into a range of different applications for hand
tracking. It discusses the limitations that must be solved before we can see hand tracking gain-
ing commercial success and widespread use. The authors divide the use-cases into four different
classes: namely medical systems and assistive technologies, crisis management and disaster relief,
entertainment, and human-robot interaction, HRI for short, which is where the focus of this thesis
lies.

These limitations addressed by [25] could be seen as guidelines for proper hand tracking software
and are described by the six concepts:

• Intuitiveness

• Comfort

• Come as you are

• Reconfigurability
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• Interaction space

• Gesture spotting and immersion syndrome

While Comfort is trivially explained, the other concepts deserve an introduction.

Intuitiveness is a somewhat loosely defined term, but Cambridge Dictionary provides the fol-
lowing definition: “Able to know or understand something because of feelings rather than facts or
proof” [26]

Come as you are is an HMI design approach, where the user should not be required to wear any
extra utility, such as markers, gloves, or having a fixed background, to interact with the computer.
Most of the HMIs have been utilizing extra equipment or other assumptions and limitations. In [27]
the students built an exoskeleton mounted to the shoulder and down the entire arm of the user. The
exoskeleton controlled a robotic manipulator based on signals from potentiometers properly placed
in relation to the operator’s joints. Another example is [28], where a glove is used to maneuver
a robotic arm. The glove is equipped with a gyroscope, an Arduino, and two flex sensors. Other
similar examples include [29] and [30].

Reconfigurability can be explained by the one size fits all terminology, which means that the
system should yield the same behavior when used by different users. Some papers use color
segmentation, movement, or shape for hand detection, which can be argued to be lacking in
reconfigurability. Examples of such implementations are [31] and [32]. The latter makes use of
both color and shape to detect human hands. The correct color is decided by running face detection
on an image of the user and then finding the largest segmented image region that is not the face.
This method limits the use to only focus on one hand at a time and could cause challenges for
people with different skin tones on their hands than in their faces. Further, the only hand gesture
that the method can detect is an open hand with all fingers spread out, limiting the applications.
Yet, the researchers utilized this information to control a robotic manipulator by moving a hand
in different positions in the image.

Interaction space is the space in which the system assumes the user is standing. Ten years ago,
it was far more common for systems to demand that the users were standing in a fixed location
with their hands extended and head visible, according to [25]. Even though some methods today
require such limitations, as [32], with the use of deep learning techniques, one can easily detect
hands without a static background, visible head, or a specific skin tone. Even under low light
conditions, [33] shows that it is feasible to detect hands with thermal cameras using deep neural
networks.

Gesture spotting and immersion syndrome is the art of distinguishing useful hand gestures
from unintentional movement. This is a challenge, especially with temporal gestures, with both
start and endpoints in time and space. [34] shows how this is feasible, but such a solution will not
be attempted in this thesis.

The terms briefly discussed here were necessary for analyzing the status quo for hand tracking
applications in 2011 and why they were not in everyday use then. Thus the same terminology will
be used to validate the quality of the HMI implemented in this thesis.

As we shall see in Section 3.4.1, modern hand tracking methods powered by CNNs do a great job
at addressing the limitations discussed here.
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3 Problem Formulation and System Design

3.1 Problem Formulation

The problem at hand is the challenge of controlling a five DOF robotic manipulator with the help of
a custom-made gesture-recognizing HMI. The level of control should allow the operator to take full
advantage of all the manipulator’s degrees of freedom. Further, the accuracy of the HMI should be
high enough to allow the operator to solve a lever manipulation challenge. Additionally, it should
be explained to the operator how the system interprets their given commands in a continual fashion.

3.2 System Overview

Figure 3 depicts the information flow and overall workings of the control system. The camera
sensor is the red block in the upper right corner and records the operator workspace, outputting
both RGB- and depth images. The black box CNN is the MediaPipe Hands machine learning
model, which receives the RGB image on its input, and yields estimated locations for 21 3D points
where the third dimension is a synthetic height. The points are used to produce 2D and 3D
skeleton hands, visualized in the operator panel. Meanwhile, the points are fed into a finite state
machine, which also receives the depth image and tunable parameters from the operator panel.
The information is scrutinized to determine the system state, which the controller uses to activate
the correct proportional velocity controller. The controller communicates with the manipulator
through the ROS 2 framework. Further, a feedback loop is incorporated into the system by the
presence of a human operator. The user sees the movement of the robotic manipulator and the
interpretations of their hand gesture in the operator panel. Based on this information, the user
provides the system with new gestures to achieve the intended manipulator movement.

Figure 3: Information flow, and system overview

The class diagram Figure 20, in Appendix C, shows the most important classes of the system,
excluding the GUI application. The graph does not show inputs to the class methods to reduce
complexity, but the return types and class variables are appropriately defined. The FSM has
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exactly one Controller object, one HandTracking object, and one HandModel object. There is no
limit for how many Obstacle objects it can have, but the implementation discussed in this thesis
has five obstacles. The Controller communicates with the robotic manipulator through ROS 2 with
two subscriber objects and four client objects. The HandTracking module, which produces the 21
3D landmarks, has one CameraStream object, which communicates with the depth sensor. The
HandModel module estimates current gestures based on the landmarks from the HandTracking
module, which is received through a call to the addMeasurement() method.

3.3 Finite State Machine

An FSM (Finite State Machine) is a mathematical model of computations that can be in exactly
one state out of a limited number of states. The FSM can change between states in response to
some inputs, in what is called a transition [35].

The states of the FSM implemented in this thesis are visualized in Figure 4. The diagram is a
simplified state diagram, where transitions between the major states are not drawn for readability.
The removed transitions are, however, easily described by an extra transition within STOP. The
text along the arrows represents the input necessary to trigger the transition. Should these signals
no longer be active, the state will transition to the STOP state. The signals are generated in
the HandModel class from Figure 20 and accessed through the methods getCurrentGesture() and
getWorkspaceLocation(). The different signals are presented in Table 1.

When it became apparent that the state machine would have thirteen states, research was done
on implementing the control system as a DT (Decision Tree) instead. The idea was dropped, but
the analogous DT is added in Appendix B, as it does an excellent job at representing the system
logic. The FSM implementation proved to be a more readable and maintainable code.
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Figure 4: FSM diagram depicting all system states and transitions.

Hand gestures Workspace locations

Stop Turn Left

Grip Turn Right

Ungrip Move Forward

Precision Move Backward

Tilt Up Misc

Tilt Down Hand Not Present

Move Height

Table 1: The input signals determining the state of the FSM
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3.4 Hand Tracking

3.4.1 MediaPipe

MediaPipe is an open source ML library provided by Google, where the Hand Tracking API is the
part we are interested in. Researchers at Google have trained a neural network to recognize human
hands, and estimate the position of joints from a single image frame. The software detects initial
hand locations, with the ability to recognize occluded hands in various sizes and environments.
Next, a hand landmark model localizes 21 3D coordinates inside the detected hand via regression.
According to the MediaPipe team, the model ”learns a consistent internal hand pose representation
and is robust even to partially visible hands and self-occlusions.”

Xw
k (t) =

xwk (t)
ywk (t)
zwk (t)

 , k ∈ [0, 20] and t > 0 (12)

The joint positions are outputted as 21 3D landmarks on the form given by eq. (12). The notation
for the points is as follows: A hand point in coordinate system of joint (i − 1), with an index

k ∈ [0, 20] is written as X
(i−1)
k . Further, xwk and ywk are normalized pixel coordinates. zwk is a

representation of the depth of the landmarks, where zw0 = 0 at the location of the wrist. Note that
the information given by zwk only describes the estimated depth of the joints in relation to each
other. Further, since the depth information is artificially constructed by a machine learning model,
it is referred to as synthetic information. Figure 5 illustrates how the landmarks are structured.

Figure 5: How the hand landmarks from MediaPipe are structured.
Image borrowed from [23]

According to [36], the machine learning pipeline is a two step Convolutional Neural Network
consisting of a single-shot detector, followed by a regression model. The input can either be a
single image frame, or a video stream, while the outputs are: ”21 3-dimensional screen landmarks”,
”A float scalar represents the handedness probability of the predicted hand”, ”21 3-dimensional
metric scale world landmarks.” Note that for both sets of predicted 3D points, the z-screen value
and z coordinate, are provided by synthetic data based on the GHUM hand model ([37]). Due to
the synthetic nature of the depth information outputted from the model, we will be comparing the
synthetic depth information with measurements from a stereoscopic depth sensor.

The detector model detects the palm location(s) in the input data. A crop of the input data,
containing the hand, is then used as input to the regression model, that outputs a hand skeleton
as the 3D points discussed above.

The authors have done extensive evaluations on the method, where the hand tracking algorithm
was tested on 14 different groups of peoples from around the world, divided into groups based on
the United Nations geoscheme. The results from this test yielded no error pattern with respect to
regions, but showed that the error metric was smaller at the base of each finger, with larger values
closer to the finger tips. Another test did not confirm any error pattern with respect to skin tone
or gender.

14



3.4.2 Hand Gestures

Based on the hand tracking information, seven different gestures and six hand locations are defined
in the operator workspace. These are the input signals listed in Table 1, which are used to transition
between states in the FSM. To separate the gestures from one another, a coordinate system for
the hand representation was designed and implemented in the HandModel module from Figure 20.
A human hand consists of revolute joints, where the joints between fingers and palm are more
complicated, rotating around two axes. Transformation matrices for each finger were designed,
inspired by the convenient DH-convention. The landmarks from the hand tracker are given in
workspace coordinates, Equation (12). We are, however, interested in the relative angles between
the finger links.

For every finger, each transformation is represented by an angle δ
(i−1)
i , from joint (i − 1) to i in

the X
(i−1)
i Y

(i−1)
i -plane, an angle γ

(i−1)
i in the X

(i−1)
i Z

(i−1)
i -plane, and a translation t

(i−1)
i from

joint (i− 1) to i.

Hw
0 =

[
R(δw0 ) tw0

0 1

]
, tw0 =

xw0yw0
0

 (13)

The first transformation matrix, from workspace coordinates w to point 0 coordinates (from Fig-
ure 5) is given by Equation (13), and is the same for all fingers. The general transformation
matrices from joint (i− 1) to i, are on the form Equation (14).

H
(i−1)
i =

[
R(δ

(i−1)
i )R(γ

(i−1)
i ) t

(i−1)
i

0 1

]
, t

(i−1)
i =

x
(i−1)
k

y
(i−1)
k

z
(i−1)
k

 (14)

x38y38
z38

 = Hw
7 Xw

8 = H6
7H

5
6H

0
5H

w
0

xw8yw8
zw8

 (15)

As an example, Equation (15) shows how the coordinates for the fingertip of the index finger,
represented in the second to last joint, can be acquired. The angles are the essential results from
this process, however, and are found iteratively by Equation (16) and Equation (17). To determine

whether a finger is extended, we are interested in δ
(i−1)
i and γ

(i−1)
i of the two outer joints for each

finger.

δ
(i−1)
i = arctan

(
y
(i−1)
i

x
(i−1)
i

)
(16)

γ
(i−1)
i = −arctan

 z
(i−1)
i√

(x
(i−1)
i )2 + (y

(i−1)
i )2

 (17)

By trial and error, threshold values were found to separate between an open and a closed finger.
The threshold values were the same for all fingers and angular variables, except the thumb, which

responded better to other thresholds. To check if the thumb is extended, δ
(i−1)
i for both joints

must be greater than −15◦. Meanwhile, for the remaining fingers, if either of δ
(i−1)
i and γ

(i−1)
i for

any of the outer two joints are larger than 25◦, the finger is marked as closed.

Further, the mean of landmarks Xw
0 , Xw

1 , Xw
5 , Xw

9 , Xw
13 and Xw

17 is used when deciding on where
in the operator workspace the hand is located.
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3.5 ROS - Robot Operating System

The Robot Operating System is a general open source framework for writing robotic applications. It
contains conventions, libraries and tools that are helpful when working with a robotic manipulator.
In this project, ROS will be used due to its tools for communicating with the robotic manipulator,
which has custom built packages specifically for use with ROS. The framework is available in
multiple distributions, but here ROS 2 Foxy will be used due to its compatibility with both
Python and OpenManipulator-X.

To communicate with the manipulator, one should have a general understanding of the following
modules in ROS: Nodes, Topics, Services and Actions.

Nodes
A node is responsible for a single modular operation, which could be to control the wheels in a car,
or in our case to control a robotic manipulator. Another node could handle user input, and would
probably want to transmit this information to the controller node. Which is what Nodes, Topics
and Services are used for.

Topics
Nodes use topics to either publish data, or subscribe to data being published by other nodes.
Topics can either be one-to-one, one-to-many, many-to-one or many-to-many communication and
are meant for continuous streams of data. There are however no handshakes between the nodes,
and one node does not know how many nodes has successfully received the data being pushed on
a topic.

Services
Services are a more direct way of communicating than topics, and are based on a call-and-response
model. Each Service has exactly one server node that waits on requests from one or more client
nodes, and transmits a response to the client that made a request. A client can for example ask
for the joint positions of a robotic arm with one dedicated service.

Actions
Actions combine topics and services into a third communication type, meant for longer running
tasks. Every action consists of three parts, a goal, a feedback and a result. The goal and result
are services while the feedback is a topic. An action client first sends a goal to the server, which
responds and acknowledges the goal. Next, the client asks for a result, and while the action is being
performed, the server streams data though the feedback topic. Once the goal has been achieved,
or is cancelled, a result is transmitted to the client.

3.6 Controller

This section describes the Controller class from Figure 20. As discussed in Section 4, the Ro-
botis OpenManipulator-X comes equipped with controllers dealing with motor control and inverse
kinematics. The results are positional controllers for the end-effector, abstracted into ROS top-
ics. Thus, the controllers presented in this section use these topics to control the manipulator to
velocity references. The Controller object consists of four proportional velocity controllers, each
with a default reference velocity of 0m/s. The controllers set the velocity of the manipulator by
requesting a new pose and a path time, which is set at 0.6s.

One controller sets the reference velocity for the horizontal radius of the manipulator, and is ac-
tivated in the MOVE FORWARD, MOVE BACKWARD, MOVE FORWARD SLOW, and MOVE
BACKWARD SLOW states. For the former two, the speed is set at 8.33cm/s, while the latter
controllers operate at 1.67cm/s. Another controller sets the reference velocity for the horizontal
turning angle β, which is used by the states TURN LEFT, TURN RIGHT, TURN LEFT SLOW,
and TURN RIGHT SLOW. As for the previous controller, the reference speed is set at 19.10◦/s for
the former states, and 3.82◦/s for the latter two. A third controller is used for the second to last
revolute joint, effectively adjusting the tilt angle of the end-effector. When active, the end-effector
will tilt by 14.32◦/s. The last controller, responsible for setting the end-effector’s velocity along

16



the Z0-axis, calculates the reference velocity based on the positional height of the operator’s hand,
using information from the depth sensor. The numerical values described here, were found through
tuning of the proportional constants, Kp,β ,Kp,r,Kp,Z0

e
,Kp,θ.

Meanwhile the end-effector, also known as gripper, is controlled in a binary fashion, and is either
closed or opened. Unlike the previously discussed controllers, it has a positional reference, the
distance, dgripper. Possible values are of −1cm to close the gripper, and 1cm to fully open it.

Table 2 sums up the relationship between controllers and their velocity references to the states of
the FSM.

State Controlled variable Reference

MOVE FORWARD r 8.33cm/s

MOVE BACKWARD r −8.33cm/s

MOVE FORWARD SLOW r 1.67cm/s

MOVE BACKWARD SLOW r −1.67cm/s

TURN LEFT β 19.10◦/s

TURN RIGHT β −19.10◦/s

TURN LEFT SLOW β 3.82◦/s

TURN RIGHT SLOW β −3.82◦/s

TILT UP θ 14.32◦/s

TILT DOWN θ −14.32◦/s

MOVE HEIGHT Z0
e Dynamic

GRIP dgripper −1.0cm

UNGRIP dgripper 1.0cm

Table 2: The states of the FSM, the variables that are controlled when they are active, and the
respective references.

3.7 Explainable Artificial Intelligence Implementation

The approach to XAI implemented in this section is not a typical method like SHAP [13] or LIME
[12], but follows a more general concept of explaining model outputs through visual representation.
While SHAP and LIME do not allow for real-time explanations, this approach does, at the cost
of being problem-specific and yielding shallow explanations. As seen in Section 2.3, LIME can
give more in-depth explanations, telling us which pixels of the image are responsible for a specific
classification. SHAP yields information on how much each input feature contributes to the output
value. These thorough explanations come at the cost of computational time. Thus they will
not be able to help an operator of the control system understand how their hand gestures are
being interpreted. That is the reasoning behind choosing a GUI (Graphical User Interface) as an
explanation method.
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Figure 6: Operator panel

The GUI was designed using the Qt 5 Designer and implemented with PyQt 5, a set of Python
bindings for the Qt Company’s Qt application framework [38]. The result can be seen in Figure 6.
The GUI, or operator panel, consists of a video stream, known as the operator workspace, where a
depth sensor is recording the operator’s hand. Colored, curved boxes are drawn in the video frame
to provide the user with a set of different commands by placing their hand inside these boxes.
Further, a 2D hand skeleton is drawn on top of the detected hand, visualizing where the machine
learning model estimates the position of the hand’s joints.

Figure 7: More examples of the operator panel in action

Above the video stream, seven hand gestures are displayed on grey backgrounds. When the system
selects a given hand gesture based on the information provided by the machine learning model, the
gesture’s background switches from grey to green, notifying the user how their hand gestures are
being interpreted. This information is not needed to control the manipulator but certainly elevates
the user’s trust in the hand tracking model and overall system. The control panel also works as a
user interface for new users unfamiliar with the different commands. For more experienced users
and developers, a 3D hand skeleton and a metric of the measured distance to the hand palm from
the stereoscopic sensor are provided. The additional information is easily toggled in the settings
file.

Just below the operator workspace, three tunable parameters are accessible. The wrist thresholds
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are used to differentiate between Tilt Up and Tilt Down, where the angle between the wrist and fin-
gertips must surpass the thresholds for the gestures to be detected. Similarly, the thumb thresholds
are angles that the two outer thumb joints must surpass before the thumb is registered as exten-
ded. The finger threshold functions similarly to the thumb threshold, but it was experimentally
determined that the same threshold worked for both outer joints for all remaining fingers.

With the exception of Slow and Stop gestures, all commands using hand gestures are only in effect
while the palm is located within the green section of the operator workspace. The green and yellow
sections are shaped like half-circles, allowing the operator to keep his shoulder and elbow more or
less stationary when performing rotations in a natural movement. The yellow areas control the
manipulator’s polar coordinate β, turning the robot arm left or right. Further, the blue sections
control the manipulator’s radius, r, where the upper blue area increases it, and the smaller region
reduces it. Figure 7 displays a few user commands in action.
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4 Experimental Setup

4.1 Overview

Figure 8: The Robotis OpenManipulator-X and a custom made lever

Figure 9: The plywood camera stand for the stereoscopic depth sensor

The manipulator was mounted on a wooden platform, together with a lever constructed by the
author of [20]. A motor is connected to the lever, but it is not employed in this thesis. The lever is
approximately 20cm in front of the manipulator, along its X0-axis. Figure 8 depicts both the lever
and the manipulator. Further, Figure 9 exhibits a stand for the stereoscopic depth sensor, made
out of plywood. Three grooves can be seen in the vertical arm, at approximately 58cm, 72cm,
and 85cm. Experiments were carried out to determine at what distance the depth sensor worked
optimally, but in the end, the middle notch yielded the most reliable hand tracking.
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Ubuntu 20.04.3 LTS was selected as the operating system due to dependencies by the provided
control system for the OpenManipulator-X and ROS 2. The decision of using ROS 2 instead of
ROS was made, as ROS 2 supports Python 3.5, while ROS only has support for Python 2 [39],
which the author is most familiar with. Table 3 lists all the dependencies necessary to run the
HMI code from this project. The HMI, named Tyr, is accessible from the author’s GitHub at [40]

Name Version

Ubuntu 20.04.03 LTS

ROS 2 FOXY

DynamixelSDK 3.7.40

Dynamixel Workbench 2.2.1

OpenManipulator 2.0.1

OpenManipulator Msgs 1.0.1

OpenManipulator Dependencies -

Robotis Manipulator 1.1.1

Python 3.5

PyQt 5.9.2

MediaPipe 0.8.9.1

OpenCV 4.5.3.5

Numpy 1.20.3

Scipy 1.7.1

Matplotlib 3.4.3

QDarkStyle 3.0.2

Intel RealSense SDK 2.0 2.49.0

Table 3: The packages used to develop the HMI. A guide for installing the ROS 2 packages can be
found in the OpenManipulator-X e-Manual [41]

4.2 Robotic Manipulator

The robotic manipulator OpenManipulator-X was used in the experimental setup. The manipu-
lator is cost-effective, consisting of both open-source software and hardware. The software is based
on ROS, while most of the manipulator parts are available as STL CAD models, allowing for 3D
printing. The manipulator is mounted on a wooden platform, as seen in Figure 8.
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Figure 10: A model of the robotic manipulator used in this project

Figure 10 displays a model of the manipulator, with DH frames drawn for all joints. Note that
both the inverse- and forward kinematics are handled by the included ROS packages, and the
actual frames are unknown to the author. From tests, it became clear that both the end-effector
frame represented by X4, Y 4, Z4, and the 0 frame X0, Y 0, Z0 are correctly drawn in the model.
The author has drawn the frames in between according to the DH-convention. Table 4 lists the
parameters in the figure. All numerical values are extracted from the OpenManipulator-X e-Manual
[41]

Link θi di ai αi
1 θ1 = β 0.077m 0 π

2
2 π

2 − arcsin( 0.024
0.130 ) + θ2 0 0.130m 0

3 θ3 − π
2 0 0.124m 0

4 θ4 0 0.126m -π2

Table 4: Caption

Further, the manipulator is connected to the computer running the HMI through a USB commu-
nication converter, U2D2. Table 5 lists the OpenManipulator ROS topics, which are used by the
Controller module, discussed in Section 3.6.
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Topic Type

/open manipulator/gripper/kinematics pose open manipulator msgs/KinematicsPose

/joint states sensor msgs/JointState

Service Type

/open manipulator/goal joint space path to kinematics position open manipulator msgs/SetKinematicsPose

/open manipulator/goal joint space path to kinematics orientation open manipulator msgs/SetKinematicsPose

/open manipulator/goal tool control open manipulator msgs/SetJointPosition

/open manipulator/goal joint space path open manipulator msgs/SetJointPosition

Table 5: The ROS topics and services for the OpenManipulator-X, supplied by Robotis, which
were used by the HMI to communicate with the manipulator.

4.3 Depth Sensor

A depth sensor is used together with the hand tracking software to utilize depth information from
the hand. Seen in Figure 11 is the stereoscopic sensor, Intel RealSense Depth Camera D435. It is
powered by a USB 3.0 cable and consists of a pair of depth sensors, one plain RGB camera, and
an infrared projector. Further, the camera has a wide depth field of view of 87◦ x 58◦ and a range
of up to 10 meters. But since we are relying on the RGB sensor information when performing
hand tracking, we are constrained by the RGB sensor’s FOV, which is FOV of 69◦ x 42◦. The IR
projector is handy for improving depth accuracy in environments with lower texture gradients.

Figure 11: The stereoscopic depth camera

Because the depth and RGB sensor are not perfectly overlapping with the depth sensors, we cannot
directly extract depth information from pixels in the RGB image. Luckily, Intel has supplied the
depth camera with an SDK: Intel RealSense SDK 2.0. Using the lines of Python code in Appendix A
Listing 1, we can properly align the depth information to fit onto the RGB frame.

The dept sensor supports ROS as well, but the framegrabbing module was readily implemented in
Python with the SDK. One can argue that it would have been advantageous to extract data from
the sensor with ROS, as the code would become more modular, allowing for easier maintenance
and support for other depth sensors in the future. However, these points were not considered
essential for this project, and a more straightforward approach was implemented.
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5 Results

5.1 Control Systems

Controlling the robotic manipulator with a simple velocity P-controller and human hand movement
was surprisingly easy. Reasons for this may be because the controller was only setting the velocity,
which is a more straightforward task than setting an exact position. The more complicated task
of determining the correct position was left to the human operator. The human operator becomes
a natural part of the control system by choosing this approach, as is visualized in Figure 3.

A naive control system with the intent of making the manipulator control feel more fluid, natural,
and fast is presented below. Then a redesigned approach addressing the drawbacks of the first
system is discussed before the final improved method is reviewed.

First control system
In the first approach, the manipulator followed the operator’s hand along the Z0-axis using meas-
ured hand depth. A range of 30 to 50 cm away from the camera was directly mapped to the
manipulator’s operational height range by a simple proportional position controller. Simultan-
eously, a proportional velocity controller mapped the hand’s position along the XW -axis of the
camera image to a rotational speed in the robot’s X0Y 0-plane. Another P-controller mapped the
hand position from the YW -axis in the image plane to a rate value, changing the radius of the
manipulator. In theory, such a control system should allow fast and accurate manipulator control.
It was, however, difficult to control the manipulator as the user intended. The author noticed that
the system performed well when controlling either height or (X0, Y 0) position separately but not
simultaneously. By maintaining the hand at a constant depth distance from the camera, the user
achieved control in the X0Y 0-plane at a satisfactory level. Keeping the hand position along the
XW - and YW -axes fixed while controlling the manipulator’s height, were also deemed adequate.

Second control system
The lessons learned from the first control system were utilized when designing the second iteration
of the control system. The system was similar to the first but used finger angles to detect when
the user had their thumb open and the remaining four fingers closed. The thumbs-up gesture
was used to deactivate the height controller and activate the velocity controllers for the polar
coordinates. It was a significant improvement and the manipulator became easier to control to
intended locations. Yet, some issues were still apparent. Firstly, the manipulator could not tilt its
end-effector, nor could it open or close the gripper with this control system. Thus work was done
on adding a set of different hand gestures to swap between system states. It soon became clear
that the hand gestures could not be too similar, as the system had trouble differentiating between
them. Further, to rotate the manipulator, the operator was required to move his hand somewhat
unnaturally across the image plane, resulting in a stiff shoulder for the author. Figure 12 depicts
how the operator workspace was designed for the second generation control system.
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Figure 12: Workspace design for second generation control system. The blue rectangle represents
a desired speed of 0 m/s, while any deviations along x or y axis would adjust the desired velocity
accordingly

Third control system
To solve the issues with the second control system, an effort was made to design more comfortable
hand gestures that remained dissimilar to avoid instabilities and unintended manipulator move-
ment. The operator panel resulting from the third iteration of the control system was thoroughly
discussed in Section 3.7. The green and yellow sections were shaped like half-circles, which allowed
the operator to keep his shoulder and elbow more or less stationary when performing rotations,
greatly increasing the comfort.

5.2 Lever Manipulation Challenge

5.2.1 Results

To verify the HMI has acceptable performance, a task was designed where the robotic manipulator
would pull a stationary lever. The resulting trajectory can be seen in the polar plot of Figure 13.
The lever is mounted approximately at 0◦ and 27 cm out from the robot. Further, the path is
colored according to the time spent performing the task. Figure 14 depicts the manipulator’s pose,
as well as the states of the FSM that were used during run-time. The first row is the height of the
end-effector, given in meters. The following two rows are the polar coordinates of the end-effector
in the X0Y 0-plane The angle β is the angular position of the first joint of the manipulator. The
next row contains the orientation of the end-effector, represented as euler angles on the Tait–Bryan
from: yaw (ψ), pitch (θ), and roll (φ). The last row depicts the state of the system at time t. The
datapoints are all synchronized according to the time steps on the X-axes.

The reader is advised to watch the demonstration video of the HMI in action, see [42].
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Figure 13: Manipulator trajectory plotted in a 3D cartesian environment, and in a 2D polar
coordinate system. The color is dependent of time.
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Figure 14: Manipulator pose and states plotted synchronously. Some state names have been
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5.2.2 Discussion

The plots depict the responsiveness of the HMI, and one can readily verify that when the user
activates the TURN LEFT state, the manipulator turns left. As expected, β increases during the
length of the state, five seconds. However, φ is also similarly affected as β. The manipulator is
not equipped with a gyro and does not measure its yaw. Further, the only actuator capable of
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adjusting the yaw of the manipulator is the first joint. Thus φ should be identical to β. However,
this is not the case and a slight time delay between the angles can be seen in the plot. The angles
are calculated from different values, which are likely updated at different times. The author has
not delved deep into how the ROS topics work, and the reader should consider it an educated
guess. Further, ψ remains at 0 due to OpenManipulator-X only having five DOF, lacking a sixth
controllable variable.

Next, the manipulator responds to the MOVE HEIGHT state. The translational dynamics can
be explained by the user dynamically adjusting the depth of his hand. The user then tilts the
end-effector downwards, which can be seen in θ at approximately t = 7.5s. Following, the radius is
increased when the MOVE FORWARD state is activated. The radius increases rapidly at first, but
then at a lesser pace when the user extends his pinky finger. At this point, t = 10s, the manipulator
is situated just above the lever, as the user activates the GRIP state. The manipulator is, however,
not gripping the lever as the user intends, and the user transitions to the UNGRIP state before
lowering the end-effector a few centimeters with the MOVE HEIGHT state. At approximately
t = 12.5s the user again grips the lever, before pulling it backwards at around t = 14s.

The forces applied on the manipulator by the lever from the dynamics of its circularly constrained
movement is not modeled. Thus when the robot moves backward while gripping the lever, it is
being pulled downwards, following the motion of the lever. This effect is noticed when the UNGRIP
state is activated, as θ experiences a small change, which is soon corrected. A slight disturbance
can also be seen in β when the manipulator is pulling on the lever.

Being experienced in the system, the author managed to move the manipulator to the lever and pull
it down from an upright position in under 15 seconds. The results prove the system certainly has a
quick reaction time in the hands of an experienced operator. Further, it illustrates how operators
can use the system to perform tasks, such as pulling levers and pushing buttons in inaccessible
locations, using a manipulator mounted on some remotely operated vehicle.

5.3 Explainable Artificial Intelligence Methods

5.3.1 Results

Presented in Figure 15, are images of all seven hand gestures in the operator workspace, with the
corresponding 3D hand skeletons. The skeletons are easily distinguishable.

The HMI system was tested on five candidates including the author. The four other candidates
had no prior experience with control interfaces for robotic manipulators but had backgrounds from
STEM fields. The operators quickly learned the different hand gestures and managed to control the
manipulator to the intended locations. Minor problems arose when performing more demanding
tasks, such as the lever manipulation challenge. Most of the candidates performed the job within
a few minutes, but one candidate failed to pull the lever within a reasonable amount of time. The
one who failed became confused and kept moving their hand out of the green section while tilting
or adjusting the height.
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(a): Up / Down (b): Tilt Up (c): Tilt Down

(d): Slow (e): Ungrip (f): Grip

(g): Stop

Figure 15: All possible hand gestures visualized in the operator workspace, with corresponding 3D
skeletons
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It was noticed that the stereoscopic depth sensor sometimes faulted and produced depth images
high in noise. Though easily corrected by replugging the camera, this error was quickly recognized
by interpreting the 3D hand skeleton, which became unrecognizable. The 2D hand skeleton drawn
in the operator workspace did not reveal this vital information. See Figure 16. Further, the validity
of the synthetic depth information produced by the MediaPipe hand tracking AI was tested. To
the author’s surprise, switching from measured depth to synthetic depth had minor effects on the
control system. Most notably, the threshold angles used for tilt control had to be retuned, and
the measured depth information was still necessary for height control. However, nothing had to
be changed to calculate finger angles and determine the remaining hand gestures.

Figure 16: 3D Skeleton with unreliable depth information

The 2D skeleton drawn in the operator workspace did not overlap perfectly with the user’s hand
on some occasions, causing the measured depth to be that of the table underneath the hand
instead. The synthetic depth proved a more stable source of information in these cases. On
further inspections of the 3D skeleton, the author noticed that the model sometimes could not
decide whether the fingertips were located above or below the palm in Zw-direction.

Figure 17: Operator workspace with a checker background, showing a misdetection

Different backgrounds were tested because the stereoscopic depth sensor relies on features visible
in two cameras overlooking the same scene. At first, the wooden stand holding the sensor and
the table served as background. A checkerboard pattern was printed and placed underneath the
sensor to add more features to the scene. The results were not promising, and a higher frequency
of misdetections was noted, see Figure 17. Further, the black pixels in the depth image show that
the sensor could not be trusted either, as it erroneously gave parts of the background a depth of
0 cm, as seen in Figure 18 (b). A white background with few detectable features gave the most
reliable results. In this case, the machine learning model yielded more stable outputs, but also the
depth information was more trustworthy, as depicted in Figure 18 (a).
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(a) Featureless background (b) Checkerboard background

Figure 18: The effects of a checkerboard background in the operator workspace. RGB images on
top and depth images under. Black pixels represents a distant of 0 cm

5.3.2 Discussion

The hand skeletons serve multiple purposes. Firstly, it explains fast and accurately where the
MediaPipe machine learning model has estimated the locations of the hand joints by drawing
them on top of the operator’s hand. The user can thus visually verify that the system behaves as
expected. However, the skeleton drawn in the operator workspace does not explain if the system
interprets depth correctly. Depth information is crucial since it is utilized when controlling the
manipulator’s height, tilting angle, and determining each finger’s angles. That is the reasoning
behind implementing a 3D hand skeleton, as seen in Figure 15. It is used extensively in this section
to discuss the results and illustrate how different levels of XAI are helpful for various end-users.

Inspection of the 3D hand skeleton revealed that the machine learning model correctly predicted the
relative depths of the hand joints, albeit the synthetic numbers had no physical meaning in the same
sense as the measured values. The constructed information was still good enough to differentiate
between gestures. Further, even when the model failed at precisely estimating the hand position,
the finger angles would not change as drastically as when they relied on measured depth. On
the other hand, the tilting maneuver became less stable when using synthetic information, as the
model could sometimes rapidly switch between tilting up and down. The effect was readily visible
in the 3D skeleton. Thus, we can conclude that relying on synthetic or measured depths worked
well in practice, with some occurrences of unstable estimates for both methods.

A reason for the failure of the checkerboard background could be that the overload of features
caused the machine learning model to predict extended fingers wrongfully. Intuitively, the ma-
chine learning model could better estimate hand locations when not distracted by the background
features. The datasheets for the depth sensor [43] revealed that the stereoscopic camera uses an
infrared sensor to project a grid pattern onto the background, which supplies the cameras with
detectable features even when the scene is featureless, which explains why the depth sensor works
well on a blank background.

The results show how different levels of end-users can benefit from XAI methods. The developer
and author of this thesis appreciated the additional intuition from the hand skeletons, which helped
at debugging the system and evaluating the quality of the data. Further, the non-developers of
the system quickly learned the hand gestures to control the manipulator, by observing the GUI.
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6 Conclusion

The research questions from Section 1.2 will be revisited and answered in this section. Finally, the
chapter encompasses a discussion of further work, including suggestions to improve the HMI and
work that will be visited in the author’s MSc thesis next semester.

6.1 Answering the Research Questions

Question one
The first research question is readily answered. With modern hand tracking software powered by
CNNs, it is possible to construct an HMI system based solely on hand movements and gestures. It
is, however, important to debate the quality of the system. Therefore we shall provide arguments
based on the six concepts from Section 2.4, including intuitiveness. For each concept, the HMI will
be given a score of either Low, Medium, or High

Intuitiveness
Score: Medium
As the candidates spent a lot more time completing the lever manipulation challenge than the
author, there is certainly still work to be done on making the HMI more intuitive. However, since
the candidates were not trained and only given a couple of attempts each, the level of intuitiveness
can be considered adequate, as four out of five successfully pulled the lever.

Comfort
Score: High
The system allows the user to rest their hand on the table while controlling the manipulator and
limits stress on the shoulder and arm. Further, the hand gestures feel natural and do not cause
any noticeable strains on the hand joints. Thus one can argue that the level of comfort is high.

Come as you are
Score: High
An operator would need a cost-effective depth camera, a computer, and a monitor to successfully
control the robotic manipulator with the HMI software. Though the depth camera reduces the
level of come as you are, it poses no additional limitations such as gloves, markers, or IMU’s the
user would need to wear. Considering the other attempts at creating hand gesture-based HMIs,
the method proposed in this thesis have a high level of come as you are.

Reconfigurability
Score: High
The system has a high level of reconfigurability due to measures being taken by the developers of
the MediaPipe Hand API, ensuring the hands of people from a multitude of ethnicities, ages, and
genders can be tracked.

Interaction space
Score: Medium
To estimate the hand gestures, no limitations are posed on where the operator needs to place
their hand. However, the operator workspace is static with pre-designed regions. Though such
an implementation allows the system to take advantage of both the user’s hand gesture and palm
location, it is a downside as some users got confused by the non-intuitiveness of the workspace
regions.

Gesture spotting and immersion syndrome
Score: High
The system readily separates between hand gestures. It does not consider temporal gestures but
decides the gesture from which fingers are extended, allowing for reliable estimates.

Question two
The second research question can be answered more straightforwardly, referring to the results of
Section 5.2. An experienced user managed to solve the lever manipulation challenge in approx-
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imately 15 seconds, proving that practical tasks may be solved with the use of the HMI. Such
an application could prove helpful in remote control of robotic manipulators in unknown environ-
ments. Mounted on a UAV it could be used to clear power lines by having the operator pick up
branches. Further, astronauts on future Lunar and Martian outposts could employ the technology
to perform trivial but unforeseen tasks outside the habitat without venturing out into the harsh
environments.

Question three
The third research question can be answered by using the results from Section 5.3. The online
XAI scheme, suggested in this thesis, is an insightful representation of the input- and output data
in relation to each other, in a manner that is helpful for both the developer and operator. The
hand predictions of the AI are drawn as skeletons on top of the inputted image, which is displayed
to the operator through a GUI application. Further, the developer benefitted from a 3D skeleton,
created from the prediction, and depth measurements, to detect anomalies and logical bugs. The
XAI method is problem-specific. Still, it proves that it is possible to gain an understanding of a
black-box model by a representation of input- and output data alone.

6.2 Further Work

The system’s intuitiveness could be improved by designing a better operator workspace and hand
gestures. Another approach could be to make the system more robust to operator-generated errors,
such as an operator misplacing their hand in the workspace, resulting in unintended movement.

In the author’s MSc thesis next semester, the system will be extended to address some of the
problems regarding intuitiveness. An interesting approach would be to implement the results from
[20] into a semi-automatic control system, where the manipulator would solve the lever manipulator
challenge on its own when ordered by a simple hand gesture. Such a high level of HRI would have
many potential use cases.

Further, in a real-world scenario, the object to be manipulated would not be mounted on the same
platform as the robotic arm and would experience environmental forces different from the robot.
Thus to increase the number of use-cases for such a technology, an exciting solution could be to
compensate for said forces by the use of reinforcement learning.
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Appendix

A Code Examples

Listing 1: Python code for extracting and aligning depth information with RGB images from the
Intel RealSense Depth Camera

import pyrealsense2 as rs

import numpy as np

def main():

pipeline = rs.pipeline()

# Configure streams

config = rs.config()

config.enable_stream(rs.stream.depth, 1280, 720, rs.format.z16, 30)

config.enable_stream(rs.stream.color, 1920, 1080, rs.format.bgr8, 30)

profile = pipeline.start(config)

depthSensor = profile.get_device().first_depth_sensor()

depthScale = depthSensor.get_depth_scale()

alignTo = rs.stream.color

align = rs.align(alignTo)

# Get frameset of color and depth

frames = pipeline.wait_for_frames()

# Align the depth frame to color frame

alignedFrames = align.process(frames)

# Get aligned frames

alignedDepthFrame = alignedFrames.get_depth_frame()

colorFrame = alignedFrames.get_color_frame()

pipeline.stop()
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B Decision Tree

Figure 19: The DT analogy to the FSM Diagram.
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C Class Diagram
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Figure 20: Class diagram depicting the most important parts of the system.
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