
Learning-based Collision-free N
avigation for Aerial Robots

M
agnus D

yre-M
oe

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Magnus Dyre-Moe

Learning-based Collision-free
Navigation for Aerial Robots

Master’s thesis in Cybernetics and Robotics
Supervisor: Konstantinos Alexis
Co-supervisor: Dinh Huan Nguyen
June 2022

M
as

te
r’s

 th
es

is

Magnus Dyre-Moe

Learning-based Collision-free
Navigation for Aerial Robots

Master’s thesis in Cybernetics and Robotics
Supervisor: Konstantinos Alexis
Co-supervisor: Dinh Huan Nguyen
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Preface

The delivery of this thesis concludes my five-year journey as a student at NTNU. It is difficult to
describe my stay at NTNU, but it is fair to say it includes a lot of joy, satisfaction, and frustration.
Academically it has been fun and exciting but also challenging and, at times, monotonous. I
am sure that I will look at my time at NTNU fondly, but as of now, I am excited to close this
chapter of my life and open up a new one.

I want to thank my supervisor, Prof. Dr. Konstantinos Alexis, for his invaluable guidance through-
out my final year at NTNU. I would also like to thank Ph.D. candidates Dinh Huan Nguyen and
Mihir Kulkarni for their willingness to help me through periods of frustration and for assisting
me with technical difficulties. Finally, I would like to thank myself for finishing this demanding
degree on time, and my friends for all the great memories I will forever remember.

iii

Abstract

Learning-based approaches in unmanned aerial vehicles have seen increased attention over
recent years. The motivation for the increasing popularity of learning-based methods stems
from traditional methods, such as SLAM, where data association is an active and challen-
ging research topic. More efficient and lighter sensors, more onboard computation power, and
better algorithms have allowed UAVs to run increasingly complex models in real-time. These
advancements, facilitated by a growing open source community and complex simulation tools,
have allowed the more rapid development of complex models while being cost-effective and
without human supervision. Though effective concerning time and money, developing models
in simulation comes at a drawback as it is not yet a perfect replica of the real world. One draw-
back with developing models in simulation is that depth images are more prone to noise and
missing data in the real world, whereas depth in simulation is close to perfect. Various meth-
ods are used to ensure acceptable transfer between simulation and the real world in what
is known as sim-to-real transfer. This thesis explores the use of a deep collision predictor net-
work, trained through supervised learning, to predict collision probabilities of action sequences
drawn from a motion primitives library to navigate real-time in cluttered environments safely.
Furthermore, we attempt to improve sim-to-real transfer by utilizing representation learn-
ing on observed depth, created through semi-global matching, a stereo matching algorithm.
Semi-global matching provided depth images more akin to real-world depth images. Still, the
algorithm struggles to match areas where the texture was lacking. Furthermore, using a vari-
ational autoencoder for representation learning resulted in reconstructions where the depth
was largely preserved but lacked more towards retaining geometric features. For more complex
images, where many features were present, these results partially crumbled as the reconstruc-
ted images struggled more towards preserving depth. The results for collision-free navigation
illustrate how observations are utilized to evaluate the probability of collisions along different
executable trajectories, allowing the robot to safely traverse a simplistic environment with a
success rate of 80%. For a more complex environment, collisions occurred more frequently, res-
ulting in a success rate of 10%. Nonetheless, the results are encouraging but could be further
improved to make navigation safer.

iv

Sammendrag

Læringsbaserte tilnærminger i UAV-er har fått økt oppmerksomhet de siste årene. Motivasjonen
for den økende populariteten stammer fra tradisjonelle metoder, som SLAM, hvor dataassosias-
jon er et aktivt og utfordrende forskningstema. Mer effektive og lettere sensorer, mer innebygd
beregningskraft og bedre algoritmer har gjort det mulig for UAV-er å kjøre stadig mer kom-
plekse modeller i sanntid. Disse fremskrittene, tilrettelagt av et voksende fellesskap med åpen
kildekode og komplekse simuleringsverktøy, har muliggjort raskere utvikling av komplekse
modeller samtidig som de er kostnadseffektive og uten behov for menneskelig tilsyn. Selv om
det er effektivt med tanke på tid og penger, har utvikling av modeller i simulering en ulempe, da
simuleringer ikke er en perfekt kopi av den virkelige verden. En ulempe med å utvikle modeller
i simulering er at dybdebilder er mer utsatt for støy og manglende data i den virkelige verden,
mens dybden i simulering er nærmere perfekt. Ulike metoder brukes for å sikre akseptabel
overføring mellom simulering og den virkelige verden i det som er kjent som simulering-til-
virkelighet overføring. Denne masteroppgaven utforsker bruken av et dypt nevralt network til
å predikere kollisjon, trent gjennom veiledet læring, for å forutsi kollisjonssannsynligheter for
ulike sekvenser av handlinger, hentet fra et bevegelsesprimitivbibliotek for å navigere i sanntid
i rotete miljøer på en sikker måte. Videre prøver vi å forbedre simulering-til-virkelighet over-
føring ved å bruke representasjonslæring på observert dybde, skapt gjennom stereomatching,
som lignet mer på virkelige dybdebilder. Algoritmen sliter likevel med å matche områder der
tekstur mangler. Videre resulterte bruk av en variasjonsautokoder for representasjonslæring i
rekonstruksjoner der dybden stort sett ble bevart, men så større mangler med å beholde geo-
metriske trekk. For mer komplekse bilder, hvor mange særtrekk var til stede, smuldret disse
resultatene delvis opp ettersom de rekonstruerte bildene strevde mer mot å bevare dybden.
Resultatene for kollisjonsfri navigasjon illustrerer hvordan observasjoner brukes til å evaluere
sannsynligheten for kollisjoner langs forskjellige kjørbare baner, slik at roboten trygt kan krysse
et relativt enkelt miljø med en suksessrate på 80%. For et mer komplekst miljø skjedde kollis-
joner oftere, noe som resulterte i en suksessrate på 10%. Likevel er resultatene oppmuntrende,
men de kan forbedres ytterligere for å gjøre navigasjon tryggere.

v

Contents

Preface . iii
Abstract . iv
Sammendrag . v
Contents . vi
Figures . viii
Tables . xi
1 Introduction . 1

1.1 Motivation . 1
1.2 Scope . 2
1.3 Outline . 2

2 Related Works . 4
2.1 Learning-based Approaches For Navigation . 4
2.2 Representation Learning In Robotic Applications . 6

3 Theoretical Background . 8
3.1 Supervised Learning . 8
3.2 Unsupervised Learning . 11
3.3 Neural Networks and Deep Learning . 12

3.3.1 Artificial Neural Networks . 12
3.3.2 Monte Carlo Dropout and Batch Normalization 14
3.3.3 Deep Learning . 15
3.3.4 Convolutional Neural Networks . 15
3.3.5 Recurrent Neural Networks . 17
3.3.6 Long Short-Term Memory . 19

3.4 Representation Learning . 21
3.4.1 Autoencoders . 22
3.4.2 Variational Autoencoders . 23

3.5 Depth From Stereo Imagery and Semi-Global Matching 26
4 Problem Description . 32
5 Software Tools . 33

5.1 Gazebo . 33
5.2 ROS - Robot Operating System . 33
5.3 TensorFlow . 34

vi

Contents vii

5.4 OpenCV . 34
5.5 Quadrotor Robot . 34
5.6 External Processing Power . 35

6 Proposed Approach . 36
6.1 Architectural Expansion . 36
6.2 Environmental Expansion . 40
6.3 Data Collection . 42
6.4 Training . 45

6.4.1 VAE . 46
6.4.2 ORACLE-VAE . 46

6.5 Evaluation . 47
7 Results . 53

7.1 Depth From Disparity . 53
7.2 VAE on Depth Images From Stereo Matching . 57
7.3 ORACLE-VAE . 64

7.3.1 From a Machine Learning Perspective . 64
7.3.2 Navigating in Cluttered Environments . 68

8 Discussion . 76
8.1 Stereo Matching . 76
8.2 Representation Learning and VAE . 77

8.2.1 How The Results Affect Navigation . 77
8.2.2 Improving Representation Learning . 78

8.3 ORACLE-VAE and Safe Navigation . 80
8.3.1 From a Machine Learning Perspective . 80
8.3.2 Navigation in Cluttered Environments . 81
8.3.3 Possible Improvements and Further Work . 82

9 Conclusion . 84
Bibliography . 86
A Acronyms . 91
B Image Reconstruction Of Depth Images From A Depth Camera 93

Figures

3.1 Confusion matrix . 9
3.2 A feed-forward network. The blue nodes comprises the input layer, the green

nodes comprises the hidden layers, and the red nodes comprises the output layer. 13
3.3 A feed-forward network where Monte Carlo dropout is used. The white nodes

on input and hidden nodes represent a node being switched off. 14
3.4 The difference between sparse and full connections between layers in a neural

network . 16
3.5 A 3×3×1 kernel applied to a 5×5×1 input . 16
3.6 MaxPooling applied to a feature map. The colors indicate where the pooling has

been applied. 17
3.7 Two equal representations of a RNN. The −1 in figure 3.7b implies that the

current hidden node receives information from the previous hidden node. 18
3.8 The LSTM cell . 21
3.9 A LSTM RNN . 21
3.10 Architecture of an autoencoder . 22
3.11 The difference between an undercomplete and an overcomplete autoencoder . . 23
3.12 The reparameterization trick . 25
3.13 Architecture of a variational autoencoder . 26
3.14 The relationship between the stereo pair and depth. The figure is inspired by

lecture 12 from the course CSC420: Introduction to Image Understanding at The
University of Toronto [39] . 30

5.1 The digital twin of the RMF used in simulation. Image taken from https://
tiralonghipol.github.io/poldepetris/ . 35

6.1 The architecture of ORACLE. MLP refers to Multi-Layer Perceptron which is
identical to the feed-forward network previously discussed. 37

6.2 The architecture of the expanded ORACLE network. The model has 3 inputs
and 2 outputs. 38

6.3 The residual block . 38

viii

https://tiralonghipol.github.io/poldepetris/
https://tiralonghipol.github.io/poldepetris/

Figures ix

6.4 Residual encoder - ResNet8 CNN.
Every orange square represents a layer where all layers apart from the last one
are convolution layers. The convolution layers are named as Conv number_of_filters,
filter_size, strides. Additionally all the convolution layers uses batch normaliza-
tion, ReLU activation and Monte Carlo dropout. For some of the layers, stride is
1× 1 and not included in the graphic. The two purple layers are pooling layers
and are names as MaxPool, pooling_size, strides. The input to the encoder is the
raw depth image and the outputs are the mean and variance of the input. 39

6.5 Residual decoder - A mirror image of the ResNet8 CNN.
Every orange square represents a layer where all layers apart from the first
one are de-convolution layers, also known as transposed convolution in the
TensorFlow Keras library. The de-convolution layers are named as ConvTrans-
pose number_of_filters, filter_size, strides. Additionally all the de-convolution lay-
ers uses batch normalization, ReLU activation and Monte Carlo dropout. For
some of the layers, stride is 1 × 1 and not included in the graphic. The two
purple layers are up-sampling layers, which are the opposite of pooling, and
are named as UpSampling, pooling_size, strides. The input to the decoder is the
stochastic latent space and the output is the reconstructed image. 39

6.6 One copy of each of the twelve different objects. 41
6.7 The environment used to collect data . 42
6.8 The environment used to collect data filled with obstacles 43
6.9 The training procedure for the VAE . 46
6.10 The "easy" evaluation environment. 49
6.11 The "hard" evaluation environment. 50

7.1 Left and right images captured by the stereo camera in the original grayscale
color palette and with Matplotlib’s standard color palette. 54

7.2 3 random scenes . 55
7.3 3 scenes where fences are present . 57
7.4 Training and validation loss for the VAE on depth images 58
7.5 3 sparsely cluttered scenes . 59
7.6 3 scenes that are more cluttered . 60
7.7 3 very cluttered scenes . 61
7.8 2 scenes where fences are present closer to the robot 62
7.9 2 scenes where fences are present further away from the robot 63
7.10 The ELBO loss on reconstructed images . 64
7.11 The binary loss on the collision probabilities . 65
7.12 The accuracy of predicted collisions . 66
7.13 The precision of predicted collisions . 67
7.14 The recall of predicted collisions . 67
7.15 The F1-score of predicted collisions . 68
7.16 Flight trajectories in the easy and hard environments. Blue paths indicate suc-

cessful runs and red paths indicate runs where a collision occurred. 70
7.17 . 71

Figures x

7.18 . 72
7.19 Depth map and the corresponding GRAD-cam visualization corresponding to

the best action sequence. 73
7.20 Depth map and the corresponding GRAD-cam visualization corresponding to

the worst action sequence. 73
7.21 Depth map and the corresponding GRAD-cam visualization corresponding to

the best action sequence. 74
7.22 Depth map and the corresponding GRAD-cam visualization corresponding to

the worst action sequence. 74
7.23 The two different collisions . 75

B.1 . 94
B.2 . 95
B.3 . 96

Tables

7.1 Performance for the RMF in the easy and hard environments 69

xi

Chapter 1

Introduction

1.1 Motivation

Safe and reliable navigation of autonomous vehicles is a challenging task traditionally solved
by building a map of the surroundings and localizing the vehicle within the map[1–5]. These
methods are usually referred to as simultaneous localization and mapping, SLAM [6, 7], and
provide state-of-the-art methods to solving navigation tasks. However, these methods have
shortcomings, where data association is still an open problem. This problem is specifically
related to learning from previous information[8]. Learning-based approaches are based on
machine learning and present an alternative approach to navigation tasks where a model learns
directly from previous experiences [9–11].

Learning-based approaches, and machine learning in general, have increased in popularity
in recent years. Quicker, cheaper, and more accessible hardware and software have made it
possible to develop more complex algorithms and models. This has enabled the use of learning-
based approaches in applications traditionally limited by computational complexity and weight
constraints, such as aerial robotics, including control, navigation, and guidance tasks. Such
tasks have widespread applications, including among others, search and rescue[12], aerial
inspection[13, 14], and forestry[15].

Learning-based approaches in robotics, like SLAM, rely on sensory data and observations to
properly navigate a challenging environment. Cameras provide rich contextual information
about the surroundings required for different decision-making and navigation tasks. Determ-
ining what information is helpful in images can be difficult. However, convolutional neural
networks (CNNs) have proved to be critical components in feature extraction on images, given
their excellent capabilities on structured data[16]. Although CNNs are good at feature extrac-
tion, there is no certainty that the resulting representation is sufficiently good in union with
other learning tasks. Representation learning aims to solve this issue by ensuring meaning-
ful feature extraction to make subsequent tasks easier. This has given rise to neural network

1

Chapter 1: Introduction 2

architectures such as variational autoencoders (VAEs). Because of the capabilities of making
subsequent learning easier, representation learning has forced its way into robotic applica-
tions where it has been used in tasks, ranging from navigation and path planning[17, 18] to
mapping[19].

Robots inherently interact with the physical world[20]. Still, many recent proposed methods
are developed in simulation. This is largely due to it being more convenient and potentially
less damaging to work in simulation than in the real world. First, the physical world has the
disadvantage of running in real-time, which is time-consuming and often requires human inter-
action. These constraints are avoidable by running in simulation, which allows for automation,
removing the need for human interaction while also being able to run faster than in real-time.
Learning algorithms can also be prone to unexpected and violent behavior, which can poten-
tially be damaging to hardware, and, therefore, expensive[20]. All together, it makes learning
in simulation more convenient. However, learning a model in simulation begs the question of
whether the same model can be used in the real world. Different techniques are used in order
to make a model trained in simulation behave reasonably in the real world. This is known
as sim-to-real transfer. Open-source software, such as ROS[21] and Gazebo[22] has enabled
the use of digital twins in simulation, bridging the reality gap. Still, sensor data, particularly
depth imagery, tend to be close to perfect in simulation. Even though it is possible to add noise
in simulation, the resulting depth images are nonetheless different from images captured in
the real world, as it is not uncommon to see gaps in the depth images due to, among others,
reflection. Additional measures, such as creating depth images in simulation through stereo
matching, can be done to increase sim-to-real transfer further.

1.2 Scope

ORACLE[11] is a deep collision predictor neural network that predicts collision probabilities of
different future action sequences for a micro aerial vehicle (MAV) in cluttered environments.
The goal of ORACLE is to safely and reliably navigate through the environment by using obser-
vations of the surroundings, through images, and the robot’s state. This thesis aims to further
develop the ORACLE model through two further additions done in simulation. First, we at-
tempt to further bridge the gap between simulation and the real world by adding texture to
the simulation and creating depth maps more akin to actual depth maps in the real world.
Creating the depth maps will be done by utilizing a stereo camera and using a stereo matching
algorithm known as semi-global matching. Second, to make learning the collision probabilities
easier, a VAE will be added to the deep neural network architecture, conceivably resulting in
a more meaningful representation of the observed depth.

1.3 Outline

• Chapter 1: Introduction. This chapter contains an introduction to learning-based ap-
proaches, representation learning, and the use of simulations. Furthermore, the scope
of this thesis is presented.

Chapter 1: Introduction 3

• Chapter 2: Related works. In this chapter, relevant previous work and methods are
presented. The chapter is separated into two parts. The first part presents related works
concerning learning-based approaches that utilize supervised learning to solve a navig-
ation task. The second part reviews the successful use of representation learning.
• Chapter 3: Theoretical background. The theoretical background contains five main

sections. The first two parts are used to give a brief introduction to supervised and un-
supervised learning. Next, one part is dedicated to deep learning and artificial neural
network, providing information about the different building blocks used to create OR-
ACLE. The second to last part focuses on representation learning through the autoen-
coder (AE) and variational autoencoder (VAE) neural network architectures. Lastly, the
matching algorithm of choice, semi-global matching, is presented.
• Chapter 4: Problem Description. This chapter describes the problem of safe navigation

through a cluttered environment.
• Chapter 5: Software Tools. This chapter presents the necessary software tools to train

a model through simulation. Moreover, with the relevant hardware, the quadrotor robot
is presented before looking briefly at the external processing power used.
• Chapter 6: Proposed approach. This chapter will focus on the proposed approach in

this thesis, which can be split into five parts. The first two parts focus on expanding the
used neural network architecture and environment. The third part describes how data
is collected through simulation. The second to last part expresses how the deep neural
network is trained, both the VAE separate from ORACLE, as well as expanded ORACLE
structure which includes the VAE. The last part outlines how the model is evaluated
through evaluation studies and machine learning metrics.
• Chapter 7: Results. The results are three-fold, going component by component. First,

the results from the stereo matching algorithm, semi-global matching, will be presen-
ted. Then, the performance of the VAE will be conferred, touching upon the training
procedure and the model output, which are the input images reconstructed. Lastly, the
expanded ORACLE model, ORACLE-VAE, will be evaluated through machine learning
metrics and the evaluation studies presented in the method chapter.
• Chapter 8: Discussion. The results are discussed in this chapter, explaining why they

are as they are while also proposing possible suggestions for improving the results.
• Chapter 9: Conclusion. The conclusion ties the project together, pointing to the main

takeaways.

Chapter 2

Related Works

2.1 Learning-based Approaches For Navigation

Robotic navigation tasks have typically been solved using a paradigm of building a geometric
map and localizing the robot within the built environment to solve the task at hand [8]. Such
methods have enabled current state-of-the-art methods, commonly referred to as SLAM (simul-
taneous mapping and localization). However, these methods face some shortcomings, perhaps
most importantly, learning from prior experiences[8]. Learning-based approaches challenge
these methods by leveraging prior experiences to learn navigation tasks directly. Learning-
based approaches encapsulate a large field of machine learning, from reinforcement learning
approaches to supervised learning methods. Here, we will present different approaches to
solving navigation tasks through supervised learning.

An example of a supervised learning approach to solve navigation tasks is the LaND algorithm.
Recent technological advancements have seen an increased amount of autonomous robots in
practical applications such as sidewalk delivery. By learning from disengagement, the LaND
method seeks to improve safe navigation on sidewalks in urban environments. Although disen-
gagements have typically been used for debugging and troubleshooting, the proposed method
in [9] attempts to use disengagement directly in the learning pipeline. The premise of learning
from disengagement starts with an autonomous robot navigating a sidewalk. For data collec-
tion, whenever the robot is headed in the wrong direction, the robot is disengaged through
human supervision, resetting the course of the robot. This creates the data set labeled through
human involvement. During training, the LaND algorithm predicts disengagement probabilit-
ies of different action sequences through a recurrent CNN neural network architecture, pen-
alizing differences between predicted and actual disengagement in a supervised fashion. The
results show that the robot can travel significantly longer distances on a sidewalk compared
to other methods using reinforcement learning and behavioral cloning, am imitation learning
approach[9].

4

Chapter 2: Related Works 5

A limitation of the LaND method is having a human supervisor when collecting data. Similarly,
other methods have previously required human supervision to learn collision avoidance[23,
24]. The Berkeley Autonomous Driving Ground Robot or BADGR [10] is a 4-wheeled robot
that collects data and learns collision avoidance without human supervision. Simultaneously,
BAGDR can reason about geometric as well as non-geometric navigation. This is achieved by
BADGR collection data on actions and observations in the environment before labeling the
data set through self-supervision. Furthermore, contrary to predicting disengagement[9], the
robot is trained to predict future events, which are driving, bumpy driving, or collision, in a
supervised manner through a deep neural network. The network processes the data and uses
a recurrent network structure to predict future events. Through training, BADGR can navig-
ate to a desired goal position in the environment based on some predefined reward structure,
penalizing bumpiness and collisions. The results even showed the robot’s willingness to tra-
verse areas with tall grass to increase the cumulative rewards. This is something traditional
geometric approaches, such as SLAM, have generally struggled with, showing that there is no
explicit mapping between geometric and physical properties[10].

ORACLE[11] is another deep neural network structure trained in simulation and used for
planning and navigation. Contrary to BADGR and LaND, ORACLE is deployed on a micro aer-
ial vehicle (MAV) in a cluttered environment. The MAV is used in simulation to collect data,
labeling it self-supervised, similar to BADGR. The data collected are actions and observed
depth alongside the robot’s state and a collision index. A deep collision predictor network is
used for training, learning collision probabilities from the collected data of different action
sequences. ORACLE also adopts the idea of using a motion primitives library[25] where steer-
ing commands are methodically drawn within the field of view of the robot to generate action
sequences. Additionally, ORACLE utilizes unscented transform on the robot’s state and Monte
Carlo dropout in the deep collision predictor network to account for state and model uncer-
tainty. When deployed on the robot, ORACLE safely traverses a previously unseen cluttered
environment based on a safe navigation policy, penalizing collisions along the way. This res-
ult proves valuable as it shows that the learned policy generalized well to the physical world,
despite being trained in simulation, bridging the gap between simulation and the real world.
However, the ORACLE model was restricted to planar movement and low velocities, indicating
that further improvement is possible.

Perhaps the best results for learning-based approaches for collision-free navigation for a micro
aerial vehicle in cluttered environments is the work of Loquerio et al.[26]. The method in
[26] is based on simulations, utilizing imitation learning through a privileged expert with
perfect knowledge of the states and the environments. The model learns to predict the three
best trajectories for collision-free flight based on partial knowledge of the robot’s states and
depth images created through semi-global matching in simulated environments. This proved
sufficient for flight in the real world as the developed model managed to traverse previously
unseen environments at high speed, up to 10m/s. The results illustrate how the method is
robust to sensor noise, illumination differences, and low-texture surfaces in the real world
while performing complex navigation tasks, outperforming traditional state-of-the-art obstacle
avoidance pipelines. For an aerial robotic to navigate at such high velocities has enormous

Chapter 2: Related Works 6

potential in various applications. A significant benefit to autonomous high-speed navigation
is the omission of expert human pilots, who often require years of training, making using
experts expensive and a scarce recourse. Hence, the result of [26] proved a baseline for further
development, showcasing the enormous potential of aerial robotics.

2.2 Representation Learning In Robotic Applications

As learning-based approaches in robotics have become more widespread, so have convolu-
tional neural networks to capture features from structured data, namely images. This has
sparked interest in representation learning, a learning-based approach to extracting valuable
representations from images. Where LiDARs and depth cameras provide large amounts of re-
dundant data that often require tailored hardware for computation, deep learning-based ap-
proaches can extract useful information on large amounts of data while removing the need for
feature engineering or heuristics[17].

ANYmal is a quadrupedal robot that utilizes representation learning to extract features from
a mounted camera. Using a variational autoencoder to encode the images removes redundant
information, only mapping salient features relevant for collision avoidance. Furthermore, the
model deployed on ANYmal[17] uses an LSTM recurrent network on the encoded features
along with the camera’s trajectory to estimate the environment’s temporal evolution. Further-
more, a reinforcement learning algorithm is used to develop a navigation policy, considering
the environment’s evolution. The results in simulation saw a collision rate of 3%, demonstrat-
ing why incorporating representation learning and temporal awareness is beneficial. When
traversing a real and static environment, the robot managed to navigate and mostly avoid
obstacles within the field of view in a static environment, indicating that the latent represent-
ation from the VAE is very effective for sim-to-real transfer. Furthermore, this portrays that
the latent representation does not differ between simulation and reality [17]. However, the
collision rate increased in real dynamic environments, illustrating that there is still room for
improvement. Nonetheless, the results are encouraging as they illustrate how representation
learning can be used to bridge the reality gap.

Depth sensors, such as RGB-D cameras, have become a core component in many robotic tasks,
including navigation. Depth cameras often come with some particular problems. Firstly, they
suffer from limited range and produce images with noise and missing data. Secondly, such
cameras have trouble capturing objects with bright surfaces, creating holes or noise in the res-
ulting depth map[19]. Not surprisingly, this may cause problems in navigation tasks. Popovíc et
al. [19] solves the issue of incomplete depth images by using Bayesian deep learning, a VAE,
for depth completion in the context of robotic mapping. The network architecture consists
of an encoder, creating a latent representation for features in the images, and two decoders,
one for reconstructing the input image and one for depth uncertainty. By combining the two
outputs, a probabilistic depth map is created. The network also incorporates self-attentions,
which are skip-connections within the network relating different positions in a sequence[27].
Self-attention is mostly associated with transformers, a recurrent neural network structure.
However, using this structure for depth completion, and creating probabilistic depth maps,

Chapter 2: Related Works 7

resulted in more discovered free space compared to mapping with raw depth images within
the environment being mapped. Though, this was on data from the InteriorNet data set[28].
However, this translated to the real world, where probabilistic depth completion consistently
yielded faster free space discovery. These results signify that the latent representation is effect-
ive in sim-to-real transfer.

Chapter 3

Theoretical Background

The landscape that is machine learning is vast but can generally be separated into three genres:
supervised learning, unsupervised learning, and reinforcement learning. In this chapter, the
aim is to present supervised and unsupervised learning in simple terms before elaborating on
more complex general features of neural networks in the context of deep learning. Further-
more, we present representation learning, a domain of unsupervised learning, with focus on
variational autoencoders (VAEs). Finally, semi-global matching (SGM), a computer vision al-
gorithm for depth imagery, is presented.

3.1 Supervised Learning

As the name suggests, supervised learning is a machine learning technique where a supervisor
guides the learning process. This is not to be confused by a human supervisor but instead
supervised by the data at hand. In supervised learning, the data set can be summarized as a
collection of labeled examples on the form {(x i , yi)}Ni=1. Each element of x i among N is called
a feature vector corresponding to the labeled output yi . The feature vector is a vector in which
each dimension j = 1, ..., D contains information that somehow describes the example. The
label yi can be either an element belonging to a finite set of classes {1,2, ..., C}, a real number,
or a more complex structure, like a vector [29].

Supervised learning can be separated into two domains: regression and classification. Regres-
sion is a problem of predicting a continuous value, a quantitative measurement, from the input.
Predicting housing prices is an example of regression where the output, the predicted price, is
a mapping from various input variables such as size and location. On the other hand, classifica-
tion is a mapping from input to discrete outputs, a qualitative measurement [29]. An example
of a classification problem could be detecting spam email, in which the goal is to detect spam
from a set of emails. In this classification problem there would be a finite set of classes, namely
{spam, not_spam}. This is known as a binary classification problem.

8

Chapter 3: Theoretical Background 9

The goal of supervised learning is to use the data set to produce a model, f (x), that takes
in the input feature vector x i and outputs information that allows deducing the label for the
feature vector [29]. In practice, this is commonly done through artificial neural networks,
which will be discussed in more detail in section 3.3.1. The output of the model, ŷ = f (x),
is used to guide to model towards the actual label y through a loss function, also referred
to as an objective function. The loss function can be plenty, depending on the problem at
hand. However, formally, it is a function taking the predicted output and the actual output as
inputs and returning a scalar value, measuring how far the predicted output is from the actual
output[29].

L(y, ŷ) ∈ R (3.1)

Minimizing the difference between y and ŷ will improve the model f (x), enforcing the pre-
dicted output closer to the labeled truth. Observing the loss function and whether it decreases
gives a good indication of if the model is improving at the task. However, it offers little value
when determining the model’s performance. For a binary classification problem, accuracy gives
a good measurement of the performance of the developed model. Accuracy is the total number
of correct classifications over the total amount of test cases.

Accurac y =
Number of correct classifications

Total number of test cases
(3.2)

Furthermore, there are four possible outcomes when making a classification for a binary clas-
sification problem. These are the following: classified as true(1) when the label was true(1),
classified as true(1) when the label was false(0), classified as false(0) when the label was
true(1), or classified as false(0) when the label was false(0). These four different classifica-
tions are referred to as true positive (TP), false negative (FN), false positive (FP), and true
negative (TN), respectively. These can be summarized in a confusion matrix, visualized in
figure 3.1[29].

Figure 3.1: Confusion matrix

Chapter 3: Theoretical Background 10

From the confusion matrix in figure 3.1 it is clear that classifications that fall into the category
of true positive (TP) and true negative (TN) are correct guesses and will yield good results
from an accuracy standpoint. In contrast, false positives (FP) and false negatives (FN) are
incorrect guesses and will drag the overall accuracy down.

Now, lets consider the exmaple of detecting spam e-mail again. Imaging the data set contains
100000 data points where 5000 data points are positive, spam, and 95000 data points are
negative, not spam. By classifying all cases as negative (not spam) the model would achieve
an accuracy of 95%, which from a pure mathematical perspective would seem like a good
result. However, in reality no spam mails where detected when in fact there are 5000 spam
mail. This would make that particular model useless for practical use. Hence, accuracy would
not be a good measurement for such a data set. This will, in fact, be the case for a wide variety
of data sets where there exist a great imbalance between negative and positive labels. For such
data set, precision, recall [30] and F1-score [31] are far better measurements to determine
performance. The formulas for precision and recall are the following

Precision=
TruePosi t ives

Trueposi t ives+ FalsePosi t ives
=

T P
T P + F P

(3.3)

Recall=
TruePosi t ives

TruePosi t ives+ FalseNegatives
=

T P
T P + FN

(3.4)

Precision is a measurement to illustrate how many times the model classified correctly given
that the model predicted true or positive. Recall, on the other hand, tells how often the model
classified positives correctly given the actual number of positive cases there are in the data
[30]. Given these relationships, recall and precision will give reasonable metrics regarding
performance in imbalanced data sets. Consider the example of detecting spam mail again; if
all mails were classified as not spam, the accuracy would still be 95%. However, the recall and
precision would be 0%, indicating that the model is not well suited to detect spam emails.
Alternatively, if the model classified all emails as spam, it would yield an accuracy of 5%.
Similarly, the precision would also be 5% because of all the false positives. However, the recall
would be 100% because there would be no false negatives. Hence, classifying all emails as
spam would not yield a good model either. Instead, accuracy, precision, and recall need to
be evaluated together to determine whether the model is well suited for the task at hand.
Alternatively, it is possible to evaluate the F1-score, which is the harmonic mean of precision
and recall [31]. Thus, F1-score gives a weighted average for the performance of imbalanced
data sets.

F1= 2 ·
Precision ·Recall
Precision+Recall

(3.5)

These performance metrics show that a good model would yield a high F1-score, also resulting
in high accuracy, precision, and recall. In essence, this means that the model can accurately
identify which emails are spam, while still keeping the number of classified trues within a
reasonable range.

Chapter 3: Theoretical Background 11

3.2 Unsupervised Learning

Contrary to supervised learning is unsupervised learning, where, as the name suggests, a model
is learning from data without any supervision. The data set can then be summarized as a collec-
tion of feature vectors {x i}Ni=1 without corresponding labels. Similarly to supervised learning,
each element of x i among N is a feature vector in which each dimension j = 1, ..., D contains
information that somehow describes the example. Unsupervised learning aims to transform
the feature vector into a scalar or another vector that can be used to solve a practical prob-
lem. Because of the absence of corresponding labels, it is often more problematic to use for
practical problems than supervised learning. Still, unsupervised learning has several practical
applications, including clustering and dimensionality reduction [29].

Perhaps the most well-known unsupervised learning problem is clustering. Clustering is a
problem of learning to assign labels to examples by leveraging unlabeled data. Clustering
algorithms, such as k-means clustering, use the mean-squared-error function for optimization,
where data points are assigned to the closest cluster center, the centroid that minimizes the
mean-squared-error. The centroids are then relocated to the mean position of the points in the
cluster. Data points are then assigned to the clusters again, minimizing the loss function and
repeating the process until the loss objective converges, meaning that the centroids are fixed,
and all data points are assigned to a cluster. K-means is well suited to large amounts of data
and is thus also used in union with big data techniques. Additionally, k-means can also be used
for dimensionality reduction, and outlier detection [29].

Data sets often come with many high-dimensional examples, with up to millions of features per
example. Dimensionality reduction handles the high-dimensional data and compresses it into
a space of lower dimension, extracting the most important features. Principal component ana-
lysis (PCA) is an algorithm that compresses the data onto orthogonal vectors, where the vectors
are in the direction where the largest variance in the data is found [29]. Autoencoders are an-
other method used for dimensionality reduction. An autoencoder takes the high-dimensional
data and encodes it into a space of lower dimension, called a latent space, before reconstruct-
ing the data from the encoded latent space. Then, through training, the reconstructed data is
compared to the input data, enforcing an encoded representation to contain the most import-
ant data in the input. This is also known as representation learning, with the primary goal to
make subsequent tasks easier [16].

The absence of labels in unsupervised learning makes evaluating performance harder than in
supervised learning. Performance metrics, such as accuracy, precision, and recall, do not exist
for unsupervised learning problems. Consequently, the performance of a model is solely guided
by the loss objective, which will vary depending on the task at hand.

Chapter 3: Theoretical Background 12

3.3 Neural Networks and Deep Learning

3.3.1 Artificial Neural Networks

Artificial neural networks, or ANNs for short, are computational graphs well suited for complex
optimization problems where the optimal solution may lay hidden in heaps of data. ANNs are
fundamental building blocks for most machine learning tasks and are sufficiently used in a
majority of learning-related tasks.

Artificial neural networks are inspired by human biology, specifically the human brain, and
how signals are transmitted. Signals and impulses are transmitted through connections from
one neuron to another. From a computer science perspective, the connections and neurons are
similar to edges and vertices in a graph. To better understand how artificial neural networks
are structured, let us consider the simplest form of neural networks, the feed-forward neural
network, also referred to as a multi-layer perceptron (MLP), in the literature. The feed-forward
network, visualized in figure 3.2, is a directed acyclic graph consisting of vertices/neurons and
edges with weights. Sequential vertical nodes in the network comprise a layer, and the network
incorporates three different layers. The input layer, visualized as blue nodes, is where the input
data is fed into the network. The input layer is required to be of the same dimension as the data.
Then, there is an output layer, visualized in red, which is the network’s output. In between,
there are hidden layers, visualized in green, which contain hidden representations of the data.
The input is passed from one layer to another through the edges. This forward pass from one
layer to another can be formulated as the following equation:

hi = σ(W ihi−1 + bi) (3.6)

Here, hi is the output of layer i, organized as a vector. hi−1 is the output of the previous layer
i−1, also organized as a vector. W i is the weights along the edges between layers i−1 and i,
formed as a matrix, and bi is an additional bias term, again organized as a vector. σ is an ac-
tivation function, often non-linear. The use of activation functions allows the network to learn
representations of non-linear data, which is essential for most problems. Typical activation
functions used in practice are the sigmoid, tanh, and ReLU functions.

The weights and biases are trainable, meaning they are subject to change. This makes artificial
neural networks well suited to solve complex optimization problems. The weights and biases
are trained through backpropagation. All subsequent neural network architectures presented
are trained through backpropagation. Backpropagation can be viewed as the opposite of a for-
ward pass, namely a backward pass through the network, from output to input. Backpropaga-
tion builds open the chain rule for derivatives, is presented in algorithm 1.

Chapter 3: Theoretical Background 13

Algorithm 1 Backpropagation

1: Input: data x
2: Weights W and biases b for all layers are previously initialized
3: Forward pass the data according to hi = σ(W ihi−1+ bi) from input to output through the

hidden layers
4: Compute the loss L(ŷ , y) where ŷ is the predicted output and y is the true output
5: Compute the gradients ∇W =∇WL for all weights
6: Compute the gradients ∇b =∇bL for all biases

Once the gradients are computed, the weights and biases are updated according to an update
rule. There are plenty of update rules, where perhaps the most well known is the gradient
descent update rule, which is on the following form:

W = W −α∇W (3.7)

b = b−α∇b (3.8)

Here, α is the learning rate, which determines how much the weights and biases are updated.
Other update rules used in practice are the Adam, Adagrad, RMSprop, and many more. These
three update rules are all adaptive, meaning that the magnitude of which the weights and
biases updates decreases when the solution approaches a local solution to the optimization
problem. In the literature, the update rules fall under an umbrella term known as gradient
descent optimization and are also referred to as optimizers [16]. The process of updating the
weights and biases after data has been passed through the network is referred to as training.
It forces parameters to move towards a solution that minimizes the loss objective.

Figure 3.2: A feed-forward network. The blue nodes comprises the input layer, the green nodes
comprises the hidden layers, and the red nodes comprises the output layer.

Chapter 3: Theoretical Background 14

3.3.2 Monte Carlo Dropout and Batch Normalization

The main goal of training neural networks for optimization tasks is for the developed model to
generalize to similar but new and unfamiliar data. Validation and test data sets facilitate this
by being similar data not subject to training. Still, with the model only being trained on the
training data, the model may move into a part of the optimization space where it performs well
on the training data but struggles to perform equally well on unseen data. Hence, the model
does not generalize well to other data. This is known as overfitting. There are multiple ways
to reduce overfitting when training a model, namely regularization techniques. One form of
regularization is called Monte Carlo dropout. With Monte Carlo dropout, nodes in the network
are assigned a probability, known as dropout rate, to be switched off temporarily. This applies
to input and hidden nodes but not to output nodes. There are several benefits of using dropout
when training a neural network model. Firstly, by temporarily switching off nodes, there will be
a collection of different neural networks that share hidden units, training on the same problem.
This is known as ensemble in machine learning and has shown to be an effective regularization
technique because the information is spread more evenly throughout the network, making
the output less dependent on specific nodes in the network[16]. This can also be viewed as
injecting noise into the model. Secondly, using dropout is computationally cheap compared to
other ensemble methods, only requiring O(n) computations per example[16]. An example of
a neural network with Monte Carlo dropout can be seen in figure 3.3.

Figure 3.3: A feed-forward network where Monte Carlo dropout is used. The white nodes on
input and hidden nodes represent a node being switched off.

Batch normalization is another regularization technique that adaptively reparameterizes the
layers in a neural network. When updating a set of weights and biases in a network, the as-
sumption is that the other weights and biases remain constant. Unfortunately, this is not the
case as all weights and biases are updated simultaneously, which can cause the learning al-
gorithm to forever chase a moving target. This may lead to unexpected results during optimiza-
tion for specific problems. Batch normalization provides a reparameterization of the individual

Chapter 3: Theoretical Background 15

layers, significantly reducing the problem of coordinating updates across the weights and bi-
ases. It is done by transforming the batch of data using the following equation [16]:

x ′ =
x −µ
σ

(3.9)

Where x ′ is the normalized data, x is the un-normalized data, and µ and σ are the mean and
variance of the data at a certain layer, respectively. By doing this transformation, the mean
and variance are fixed for each layer speeding up the learning process. Similarly to dropout,
using batch normalization on layers in a neural network is the equivalent of adding noise to
the model, making it well suited as a regularization method [16].

3.3.3 Deep Learning

When the ANN has more than one hidden layer, we refer to the network as a deep neural
network or a DNN for short. This is where the aspect of machine learning known as deep
learning originates from. Adding layers to the networks increases the number of trainable
parameters and allows the network to handle more complex data by finding more structures in
the data. As mentioned previously, non-linearities are usually introduced to the hidden layers,
which allows the DNN to learn representations of non-linear data, which is more complex.

3.3.4 Convolutional Neural Networks

Convolutional neural networks, or CNNs for short, are DNNs that utilize receptive fields to
extract and learn features from structured data. The receptive fields in a CNN utilize shared
weights, resulting in fewer weights, and sparse connections, meaning that the connections
between neurons from one layer to another are one-to-some rather than one-to-all, which is
the case for full connections. This is visualized in figure 3.4. Because CNNs are well suited for
problems of structured data and hierarchical patterns, it is widely used for computer vision
tasks such as image classification and image segmentation.

Chapter 3: Theoretical Background 16

(a) Sparse connection between layers (b) Full connection between layers

Figure 3.4: The difference between sparse and full connections between layers in a neural
network

CNNs get their name from the convolution operation, which accounts for the receptive fields.
The convolution operator is often referred to as a kernel or a filter. Here the kernel or filter is
overlapped and restricted to a part of the structured data, for example, an image. Sliding the
receptive fields over the entire imagery allows for feature extraction of the structured data.
The convolution operation is not to be confused with convolution in mathematics but is a
dot product of the filter or kernel and the data. The kernel is a learnable tensor of values
(weights). Like the weights in a feed-forward network, the filter contains weights from one
layer to another. However, because of the sparse connections, resulting in fewer parameters,
makes the model less computationally complex while still being a suitable architecture for
computer vision tasks. The convolution operator from one layer to another is visualized in
figure 3.5.

Figure 3.5: A 3×3×1 kernel applied to a 5×5×1 input

The output from a convolution operator is often referred to as a feature map or an activation
map because of the feature extracting capabilities of the operator.

The filters in a CNN come with multiple tunable hyperparameters. It is usually common to use

Chapter 3: Theoretical Background 17

multiple filters between layers. These filters can vary in size, where frequently used sizes are
(2 × 2), (3 × 3), (5 × 5) and (7 × 7). Additionally, the movement of these filters, known as
stride, is tunable. By using stride (1×1), the filter moves one step at a time, meaning that the
filters will overlap across the data. Alternatively, using stride (2× 2) in union with a (2× 2)
filter will result in no overlapping across the data.

Additionally, the convolution layer is often used along with a pooling layer, which is a form of
down-sampling, also using filters. Contrary to convolution, the pooling filters are not learnable
weights. The MaxPooling operator is frequently used. Here, the output from the convolution
operator, the feature map, is sampled on the largest values within the pooling filter. The Max-
Pooling operator is visualized in figure 3.6 where a pooling filter of size (2× 2) with strides
(2× 2) is used on a (4× 4) feature map.

Figure 3.6: MaxPooling applied to a feature map. The colors indicate where the pooling has
been applied.

Multiple convolution layers are usually stacked in CNNs, which allow more complex feature
extraction. However, even though convolution operators are good at extracting features, it
is rare to see CNNs without fully-connected layers following the convolution layers. This is
because, however well the convolution layers are at extracting features, the features still need
to be analyzed to make reasonable outputs.

3.3.5 Recurrent Neural Networks

Recurrent neural networks or RNNs are deep neural networks that consider the information of
previous inputs when determining an output. The structure of an RNN is illustrated through
figure 3.7 where a hidden representation at time t is passed to a hidden representation at time
t+1. This can be viewed as having memory encoded into the network structure. Because of the
recurrent architecture, RNNs are well suited to solve sequential tasks where previous inputs
are perhaps as necessary as the current input to determine the current output.

Chapter 3: Theoretical Background 18

(a) (b)

Figure 3.7: Two equal representations of a RNN. The −1 in figure 3.7b implies that the current
hidden node receives information from the previous hidden node.

The RNN in figure 3.7 is often the typical visualization of an RNN where there are many inputs
to many outputs. These types of networks are sequence-to-sequence, or many-to-many, RNNs
that excel at natural language processing tasks such as machine translation, image captioning,
and text summarization. However, recurrent nets are also well suited for other tasks such
as pattern recognition and image classification. These problems require a different structure,
given that only one output exists. Fortunately, RNNs can be modeled to fit such a problem
by adopting a many-to-one architecture, with many inputs to only one output. Furthermore,
RNNs can be adapted to various problems by alternating the RNN to fit the problem, whether
that is many-to-many, many-to-one, or one-to-many [16].

The RNN architecture can be further expanded by adding more connections between the nodes
in the network. Different possible connections are teacher learning connections, where the pre-
vious true output is fed to the hidden states; skip-connection, where a hidden node may be in-
fluenced directly by multiple other hidden nodes; and many more. There is also possible to cre-
ate bi-directional RNNs where there exist multiple hidden nodes where information is passed
forward through time on some nodes and backward in time through other nodes. Hence, in
bi-directional RNNs, the output may depend on previous, and future inputs [16]. For simpli-
city and the purpose of this thesis, we will only further expand upon the already presented
structure in figure 3.7.

Similarly to feed-forward networks, information is passed through the network following some
formulas. These can be summarized in the following way

hi = σh(Ux i +Whi−1 + bh) (3.10)

y i = σy(Vhi + b y) (3.11)

Here σh andσy are activation functions, usually the tanh function; x i , hi and y i are the input,
hidden state and output at time i; U , W and V are weight matrices and bh and b y are biases.

Chapter 3: Theoretical Background 19

When training an RNN, a problem can occur, which is known as the vanishing gradient prob-
lem. Notice how the same matrices are used repeatedly between the network layers. When
backpropagating through the network, the gradient is calculated over all connections in the
network. If we consider an RNN lacking non-linear activations, we can think of the recurrence
relation

hi = Whi−1 (3.12)

Which lacks the input x . This recurrence relation essentially describes the power method and
can simplifies as

hi = W ih0 (3.13)

where W can be transformed to the eigencomposition

W = QΛQT (3.14)

Here, Λ is a diagonal matrix, and Q is orthogonal, simplifying the recurrence as:

hi = QΛiQT h0 (3.15)

The eigenvalues are raised to the power of i, causing the eigenvalues less than one to decay
while the eigenvalues larger than one to explode. Eventually, any component of h0 that is not
aligned with the largest eigenvalue will be discarded [16]. This relationship will cause gradients
to either vanish or explode, which makes learning long-term dependencies much harder. For
example, it has been shown that gradients reach 0 for sequences of only length 10 or 20
[16], which puts learning longer sequences at a significant disadvantage. Various recurrent
networks, such as long short-term memory (LSTM) solve the issue of the vanishing gradient
problem by cleverly manipulating the way memory is preserved in the network.

3.3.6 Long Short-Term Memory

Long short-term memory, or LSTM for short, is a recurrent neural network architecture that
preserves the gradient of the hidden states through gated units. The LSTM hence falls into
a category of RNNs called gated RNNs which are widely used in practical applications [16].
The LSTM, and gated RNNs in general, are based on the idea of creating paths through the
network where the gradients neither vanish nor explode. This allows the LSTM architecture to
accumulate information over previous inputs and then discard the information when it is no
longer of use. Two types of information are passed through the network, short-term memory,
which is incorporated into the hidden state, and long-term memory, in a separate cell state.
Determining what information gets passed on is done using three different gate types: a forget
gate, an input gate, and an output gate.

The forget gate decides what information in the previous cell state C i−1 to discard [32]. The
forget gate takes the input x i , and the hidden state hi−1 as input and outputs a mask between
zero and one on what information to keep or discard. The sigmoid activation function is used
on the forget gate to create the mask. The forget gate is given as:

f i = σ(W f · [hi−1, x i] + b f) (3.16)

Chapter 3: Theoretical Background 20

Where W f and b f are weights and biases, respectively. [hi−1, x i] indicates that the hidden
state and the input are concatenated.

Next, the LSTM cell decides on what new information we will store in the cell state based on
the two inputs, the hidden state, and the input. This has two parts. Firstly, the two inputs are
passed through the input gate, containing the sigmoid activation function, to create an input
mask j . The input mask determines which parts of the cell state to update. Next, a candidate
cell state C̃ i is made by passing the hidden state and input through a tanh function [32]. This
is done through the following equations:

j i = σ(W j · [hi−1, x i] + b j) (3.17)

C̃ i = tanh(W C · [hi−1, x i] + bC) (3.18)

Similarly to the forget gate, W j and W C are weights, and b j and bC are biases, with [hi−1, x i]
indicating that the hidden state and the input are concatenated.

After the input and short-term memory are used to create the forget mask, the input mask, and
the candidate cell state, the old cell state is updated into a new one. The updated cell state
will carry the long-term memory to the next LSTM cell. First, the new cell state is made by
combining the previous cell state C i−1 and the forget mask f i , determining what information
to keep or discard. Then, the candidate state C̃ i , combined with the input mask j i , is added to
the cell state, updating the long-term memory.

C i = f i ·C i−1 + j i · C̃ i (3.19)

Finally, with the new cell state being made, the output needs to be determined. The output is
a filtered version of the new cell state combined with an output mask through the output gate.
The filtered cell state is made by passing the state through the tanh function to push the values
between -1 and 1. The output mask is made similarly to how the input and forget masks are
made [32].

o i = σ(W o · [hi−1, x i] + bo) (3.20)

hi = o i · tanh(C i) (3.21)

The internal structure of the LSTM cell is visualized in figure 3.8. Similar to the recurrent
network visualized in figure 3.7, it is common to use multiple LSTM cells to represent the
network’s hidden layer. Then, the output hi acts as the output of the cell and the hidden state
for the next LSTM cell. Multiple LSTM cells coupled in a network are visualized in figure 3.9.

Chapter 3: Theoretical Background 21

Figure 3.8: The LSTM cell

Figure 3.9: A LSTM RNN

3.4 Representation Learning

As the name suggests, representation learning aims to learn a representation of the data at
hand. Learning a representation encapsulates both supervised and unsupervised learning.
However, representation learning refers to unsupervised learning where learning is conditioned
on intermediate feature [16].

Determining what a good representation is is ambiguous, but generally speaking, a good rep-
resentation is a representation that makes subsequent learning easier. Autoencoders (AE) and
variational autoencoders (VAE) are two models that excel at representation learning by learn-
ing a representation of the data encoded into a latent space. In particular, AEs and VAEs have
successfully been applied to dimensionality reduction and information retrieval tasks, where

Chapter 3: Theoretical Background 22

the learned latent variables represent a compressed version of the data [16].

3.4.1 Autoencoders

An autoencoder is a neural network that learns a representation of the input by attempting to
copy its input x to its output x̃ . The representation is encoded into an internal latent space
z and describes the input. The network architecture consist of two parts, namely an encoder
and a decoder. The encoder maps the input to the latent variables z = f (x) and the decoder
produces a reconstruction of the input from the latent variable x̃ = g(z) [16]. The encoder
and decoder can be any arbitrary neural network structure, such as a feed-forward network, or
more complex networks such as a CNN or an RNN. From a machine learning perspective, the
autoencoder is visualized in figure 3.10. The color scheme in the figure may seem confusing as
the hidden latent space z is marked in red, indicating an output in previous visualizations. In
the sense of an autoencoder, and the unsupervised learning task is optimized, the reconstruc-
ted input is the output. However, in the context of representation learning, the latent space
contains the encoded representation, which is of further use in subsequent learning tasks.
Hence it is marked in red to indicate the output of the model suited for other tasks.

Figure 3.10: Architecture of an autoencoder

If the AE is able to perfectly reconstruct the data g(f (x)) = x , then it is not especially useful
as it will copy the input without extracting valuable information. This happens if the encoder
and decoder are given too much capacity. Instead, autoencoders are designed not to be able
to perfectly reconstruct the data by restricting the network size or the learning. If the AE is
restricted by its size, it is referred to as an undercomplete autoencoder. In an undercomplete
autoencoder, the hidden layers are smaller than the input, creating a bottleneck for information
to pass through. This forces the AE to learn an undercomplete representation of the most
salient features in the data. On the other hand, if the learning restricts the autoencoder, it is
referred to as a regularized autoencoder. Regularized autoencoders can also be overcomplete,
meaning that the hidden layers are larger than the input. The regularized autoencoders use
loss functions that encourage the model to learn other properties through, as suggested by the
name, regularization techniques [16]. An example of an undercomplete and an overcomplete
autoencoder is visualized in figure 3.11. For this thesis, we will only further focus on the
undercomplete autoencoder.

Chapter 3: Theoretical Background 23

(a) An example of an ndercomplete autoencoder (b) An example of an overcomplete autoencoder

Figure 3.11: The difference between an undercomplete and an overcomplete autoencoder

The undercomplete autoencoder is trained by minimizing a loss function

L(x , g(f (x))) = L(x , x̃) (3.22)

where the loss penalizes dissimilarities between the input and reconstructed input. The loss
function can for example be the mean squared error or the binary cross-entropy functions.

3.4.2 Variational Autoencoders

The autoencoder is inherently deterministic, which raises the question of whether it is pos-
sible to combine representation learning in union with probabilistic models. The variational
autoencoder or VAE is a neural network architecture that allows the modeling of probabilistic
models in machine learning [33]. Similar to the AE, the VAE is well suited for representation
learning and dimensionality reduction, accounting for stochastic data.

Similarly to other unsupervised learning tasks, let us consider a data set {x i}Ni=1 consisting
of N independent and identically distributed samples of a continuous and discrete variable
x . This data is assumed to be generated by the unobserved and continuous random latent
variable z, where the latent variable z is generated from a prior distribution pθ (z) and the
generated data x i is generated from some conditional distribution pθ (x | z). The probability
for the prior and the likelihood are assumed to originate from the same parametric family θ
and are differentiable with respect to both z and θ almost everywhere [34].

With the VAEs goal of being used for representation learning the goal is to properly being able
to reconstruct the data. Hence, the goal is to find the probability distribution for the data p(x).
Unfortunately, the marginal likelihood pθ (x) =

∫

pθ (z)pθ (x | z) is intractable, as we can not
evaluate or differentiate the marginal likelihood. Alternatively, using Bayes rule to find the pos-

Chapter 3: Theoretical Background 24

terior distribution pθ (z | x) = pθ (x | z)pθ (z)/pθ (x) unfortunately runs into the same problem
of being intractable. These intractabilities are common for moderately complicated likelihood
functions pθ (x | z), for example when modelled with a neural network with non-linear activa-
tions. Hence, in order to approximate the true posterior, a recognition model qφ(z | x) is used
instead [34].

From a strict machine learning perspective, we have all the building blocks required. The prior
distribution pθ (z) represent the latent space z, the encoder is the recognition model qφ(z | x),
approximating the true posterior, and the decoder is the conditional distribution pθ (x | z). The
decoder is also referred to as a generative model in the literature. Finally, the reconstruction of
the data is the marginal likelihood pθ (x) =

∫

pθ (z)pθ (x | z).

Next, like any other machine learning optimization problem, a loss function is needed. The
loss function stems from the marginal likelihood, which can be rewritten as:

logpθ (x i) = DK L(qφ(z | x i)||pθ (z | x i)) +L(θ ,φ; x i) (3.23)

Where the marginal likelihood is decomposed into two terms. The first term is the KL diver-
gence of the approximate from the true posterior. The second term L(θ ,φ; x i) is called the
evidence lower bound or ELBO for short. The evidence lower bound is sometimes referred to
as the variational lower bound in literature. The ELBO can be further rewritten as:

L(θ ,φ; x i) = Eqφ(z | x)
�

−logqφ(z | x) + logpθ (x , z)
�

(3.24)

Alternatively, the evidence lower bound can be rewritten be re-arranging equation 3.23 as the
following:

L(θ ,φ; x i) = −DK L(qφ(z | x i)||pθ (z)) +Eqφ(z | x i) [logpθ (x i | z)] (3.25)

Notice how both equation 3.24 and 3.25 include the encoder and decoder models, meaning
that optimizing any of the two losses will train the VAE architecture. Still, with the two different
losses, there are two different approaches to optimizing the ELBO. The first approach is to
estimate the loss term in equation 3.24 through Monte Carlo estimation. This yields the first
Stochastic Gradient Variational Bayes (SGVB) estimator:

L(θ ,φ; x i)≃ L̃A(θ ,φ; x i) =
1
L

L
∑

l=1

logpθ (x i , z i, j)− logqφ(z i, j | x i) (3.26)

Chapter 3: Theoretical Background 25

Alternatively, the KL divergence can often be integrated analytically, such that only the expec-
ted reconstruction loss error Eqφ(z | x i) [logpθ (x i | z)] (equation 3.25) requires estimation by
sampling. Because the KL divergence can be analytically computed, it serves as a regualariz-
ing term on the encoder parametersφ. With this, it is possible to build a second SGVB estimator
from equation 3.25:

L(θ ,φ; x i)≃ L̃B(θ ,φ; x i) = −DK L(qφ(z | x i)||pθ (z)) +
1
L

L
∑

l=1

logpθ (x i , z i, j) (3.27)

Both estimators, L̃A(θ ,φ; x i) and L̃B(θ ,φ; x i) are valid estimators for the evidence lower
bound. However, L̃B(θ ,φ; x i) typically yields lower variance, compared to its alternative[34].

One problem we now run into is that the latent variable or latent space z is stochastic. There-
fore, it is not possible to run back-propagation through random nodes as it is not guaranteed
to have an expectation. The VAE solves this issue by introducing a simple reparameterization
trick, shifting the stochasticity from the latent variable to an auxiliary noise variable ε. By in-
troducing the noise variable ε, it is possible to express the latent variable z through 3 separate
components: a mean, variance, and the auxiliary noise. The reparameterization trick is done
through the following equation:

z = µ+σ ⊙ ε (3.28)

where µ is the mean, σ is the variance, and ε is the standard normal distribution

ε∼N (0, I) (3.29)

The reparameterization trick is illustrated in figure 3.12 and showcases how the stochastic
element of the latent space is in the auxiliary noise node ε. Because the latent space z, the
encoded mean µ and the encoded variance σ are now deterministic, it is possible to perform
back propagation through the network, through the gradients of the loss estimate L̃(θ ,φ; x i).

Figure 3.12: The reparameterization trick

Chapter 3: Theoretical Background 26

With the latent variable now containing three different components, the autoencoder structure
from figure 3.10 needs to be slight changes. The deterministic mean and variance are now the
output of the encoder, while the auxiliary noise is drawn from a standard normal distribution.
In addition, the mean and variance output nodes’ dimensions need to be the same size as the
latent variable. In practice, the encoder output is twice the size of the decoder input. The new
architecture of the VAE is visualized in figure 3.13. The color scheme in figure 3.13 is the same
as in the previously presented architecture for the autoencoder, showcasing that the latent
representation of the input contains the representation of use for other subsequent tasks.

Figure 3.13: Architecture of a variational autoencoder

For practical use cases, the VAE has some advantages over the regular AE that are worth explor-
ing. First, the VAE being a probabilistic model, allows for the modeling of probabilistic data,
adding an element of uncertainty to the modeling. This is of great use in several applications,
including autonomous driving[35]. Next, modeling the latent space as an isotropic Gaussian
through the auxiliary noise variable N ∼ (0, I), forces the latent space to learn independent
features. This is not the case for regular autoencoders as the latent space is fully connected
to both the encoder and decoder, meaning that a single feature can be represented through
multiple nodes in the latent space. Because of the independent latent nodes in the VAE, it can
be used to generate data by sampling the latent space. In general, machine learning tasks re-
quire a lot of data in order to generalize well to unseen data. Thus, having the possibility to
create data artificially is helpful for many tasks. The capability to generate data is also why
the VAE is referred to as a generative model in the literature. Additionally, modeling a task as
a probabilistic model allows us to reduce the cost of learning and inference[16]. Inference in
machine learning refers to a forward pass of live data through a model.

3.5 Depth From Stereo Imagery and Semi-Global Matching

Depth images in simulations tend to be perfect, making the imagery significantly different
from real-world images, thus creating a reality gap. Combining different images in simulation
is more likely to introduce noise and uncertainties, making the differences between simulation
and the real world smaller. The simplest way of obtaining multiple images is through a stereo
camera, which records left and right images, also known as stereo images, at a given frequency.
Using stereo images for visual perception and depth is far from new. Semi-global matching
(SGM) is one algorithm that excels at finding the differences between a stereo pair, which
can be used to measure depth. One particular advantage of SGM compared to several other

Chapter 3: Theoretical Background 27

visual algorithms is its run time, which is faster and more predictable. More specifically, it is
linear with the dimension of the images and the number of disparities, O(W HD), where W
and H are the width and the height of the image, and D is the disparity range which is a
tunable parameter. Using a more extensive disparity range, D, will make the algorithm more
robust as it increases the search area for matching. However, it will increase the run time of
the algorithm[36].

Semi-global matching uses the respective images to create a disparity map, illustrating the
differences between the stereo pair. The algorithm creates the output map through a four-step
sequential process; matching cost computation, cost aggregation, disparity computation, and
disparity refinement. The method is based on pixel-wise matching of mutual information in
many different 1D constraints to approximate a global 2D smoothness constraint. [36].

Matching cost computation
The input images are assumed to have epipolar geometry, meaning that the two different
cameras are planar with the possibility of distortion. It is, however, not assumed that the images
are rectified (without any distortion) as it may not always be possible.

Let us consider a pixel, p, from an base image, Ib, with pixel intensity Ibp . The suspected cor-
responding pixel, q, from a matching image, Im, with similar intensity Imq can be formulated
as q = ebm(p, d), with the function ebm(p, d) symbolizing the epipolar line distance or dispar-
ity, d, between pixel p and pixel q in the base and matching images, respectively. The disparity
parameter, d, is a tunable parameter and defines max disparity allowed when matching the
pixels p and q. One possible way of calculating the cost is through the minimum difference of
intensities at p and q in the range of half a pixel in each direction along the epipolar line. This
cost calculation is developed by Birchfield and Tomasi [37] and is used as the cost calculation
for SGM by OpenCV, a computer vision library. Over all pixels p the cost calculations can be
reformulated as[36]

q = ebm(p, Dp) = C(p, Dp) (3.30)

Alternatively, the cost computation can be calculated through mutual information, which is
based on calculating entropy across the images. However, this will not be presented in this
project as the OpenCV implementation of semi-global matching is based on the cost computa-
tion of Birchfield and Tomasi[37].

Cost aggregation
Cost calculation is generally ambiguous, and wrong matches can easily occur when operat-
ing pixel-wise. Noise is a big contributor to wrong matches where a cost value can be lower
than the correct pixel. Hence, there are added smoothness constraints to penalize changes in
neighboring disparities. This is expressed through an energy function, E(D)

Chapter 3: Theoretical Background 28

E(D) =
∑

p

C(p, Dp) +
∑

q∈Np

P1T
�

|Dp − Dq |= 1
�

+
∑

q∈Np

P2T
�

|Dp − Dq |> 1
�

!

(3.31)

Where the T[]-operator is 1 if its argument is true and 0 otherwise. The first term of the
equation is familiar from equation 3.30 and is the pixel matching cost for the disparities of D.
The other terms adds constraints penalties P1 and P2 to neighboring pixels, the neighborhood
Np for the pixel q . The second term with penalty constant P1 is added if the disparity in the
neighboring pixels change with 1. Similarly the penalty constant P2 is added if the neighboring
pixels have a larger disparity change. Using a lower penalty for small changes (P1) permits an
adaptation to slanted or curved surfaces. The penalty for all larger changes (P2) preserves
discontinuities in disparity.

SGM is a "winner takes all" type of algorithm. Thus, finding the disparity map D can be for-
mulated as minimizing the energy function E(D). Unfortunately, a global minimization in 2D
is NP-complete when the image has many discontinuities. Alternatively, minimizing in 1D can
be performed in linear time by using dynamic programming. However, solutions tend to suf-
fer from streaking where undesirable inference is introduced, which can severely effect the
result [38]. Hence, Hirschmüller, the creator of semi-global matching [36], introduced a new
idea where the matching costs are aggregated in 1D from all direction equally. The aggregated
cost S(p, d) is the minimum path that end in pixel p at disparity d. Furthermore the cost of
traversing a path in direction r of the pixel p at disparity d is defined recursively

Lr = C(p, d)

+min
�

Lr (p − r , d), Lr (p − r , d − 1) + P1, Lr (p − r , d + 1) + P1, min
i

Lr (p − r , i) + P2

�

−min
k

Lr (p − r , k)

(3.32)

The last term mink Lr (p − r , k) is subtracted to enforce numerical stability since it is constant
for all values of disparity at the current pixel. The costs Lr are summed over paths in all
direction, giving the following formula for the aggregated cost

S(p, d) =
∑

r

Lr (p, d) (3.33)

Disparity computation
The value of disparity at each pixel is given by d∗(p) = arg mind S(p, d). The two images in the
stereo pair are not treated symmetrically in the cost calculation as one is used as a base image,

Chapter 3: Theoretical Background 29

and the other is used as a matching image. Hence, a consistency check is added to enforce
correct matching. This is done by creating two disparity maps, using both images as a base,
and matching images, Dm, and Db. The outliers of the disparity maps are filtered through a
median filter before being compared. If a pixel in the two disparity maps differs, the pixel is
invalidated. On the other hand, if the disparity at pixel p is consistent, it is set as valid:

Dp =

¨

Dbp if |Dbp − Dmq | ≤ 1

Dinv otherwise
(3.34)

In the OpenCV implementation of SGM, Dinv is set to −1 to indicate an invalid match.

Disparity refinement
When computing the disparity maps, errors may occur even though a consistency check is im-
plemented. Areas with invalid values can be recovered through post-processing. Three post-
processing methods are used: removal of peaks, intensity consistent disparity selection and dis-
continuity preserving interpolation.

Peaks appear as small patches of disparity that is very different from the surrounding dispar-
ities. They usually appear in areas where noise is present; there is low to no texture or due to
reflections. It is important not to confuse peaks from different disparities of valid structures.
Hence, a predefined threshold is used such that smaller patches are unlikely to represent valid
structures. The disparity image is segmented to identify peaks by allowing neighboring dis-
parities within one segment to vary by one pixel, considering a 4-connected image grid. The
disparities of these segments are set to invalid.

In structured indoor environments, foreground objects are often in front of low or untextured
background objects, such as walls. This often results in fuzzy discontinuities around the edges
of the foreground objects. Additionally, it is common to have discontinuities in the untex-
tured background in proximity to foreground objects. In order to remove the discontinuities,
semi-global matching uses fixed bandwidth Mean Shift Segmentation on the intensity image.
Through surface hypothesis, the discontinuities are evaluated to either belong to a specific
surface, thus inheriting the disparity intensity of that particular surface, or being independent
of the hypothesis surface, thus maintaining its original value. This is performed for multiple
hypotheses in what is referred to intensity consistent disparity selection.

The previously mentioned consistency check and peak filtering may invalidate some dispar-
ities, thus creating holes in the disparity image, which need to be interpolated for a dense
resulting disparity map. The invalid disparities are classified into occlusions and mismatches
and can be distinguished as part of the consistency check mentioned earlier. Mismatches are
interpolated from neighboring pixels, whereas occlusions are extrapolated from the neighbor-
ing regions. This ensures correct smoothing in what is referred to as consistency preserving
interpolation.

Chapter 3: Theoretical Background 30

Depth from disparity
When the disparity map is created from the stereo pair, it is relatively straightforward to calcu-
late the depth. Intuitively objects closer to the stereo camera will have a higher disparity than
objects further away. Given this relationship, depth is proportionally inverse to the disparity.
Hence, a larger pixel disparity will give a lower depth value and vice versa. Calculating the
depth from disparity is dependent on the intrinsic parameters of the camera, namely the focal
length, denoted f , which is the distance between the camera pinhole and the image plane;
and the baseline denoted b, which is the distance between the left and right cameras in the
stereo pair. The relationship between depth, the focal length, and the baseline is illustrated in
figure 3.14

Figure 3.14: The relationship between the stereo pair and depth. The figure is inspired by
lecture 12 from the course CSC420: Introduction to Image Understanding at The University of
Toronto [39]

In figure 3.14 the optical centers are denoted Ol and Or for the left and right cameras, respect-
ively. Similarly, the image planes are denoted x l and xr , whereas the pixels pl and pr are the
pixels in the left and right images corresponding to the pixel p. Pixel p yields the world point.
The depth is hence the distance from the epipolar line of the stereo pair to the pixel p. The
baseline and focal length are also illustrated in figure 3.14 as the distance between the optical
centers, and the distance from the optical centers to the image planes. By comparing similar
triangles we get the following relationship

b
depth

=
b+ pr − pl

depth− f
(3.35)

By rearranging the equation we get the following relationship between depth and disparity

Chapter 3: Theoretical Background 31

depth=
f · b

dispari t y
(3.36)

Where the disparity is pl − pr . The disparity is the disparity map created from semi-global
matching. The focal length and disparity are measured in pixels, whereas the baseline is a
distance in meters. Hence, the resulting depth map is also measured in meters.

Chapter 4

Problem Description

The main objective of this thesis is for a micro aerial vehicle to move from an initial position to
a goal position through cluttered simulated environments. We assume the MAV has no access
to maps of the environment but knows its position. Additionally, the MAV has partial know-
ledge of its surroundings through depth images captured in real-time. Let st = [vx , vz ,ω]T

be the current state for forward and vertical velocity and angular velocity around the z-
axis in the body frame. Additionally, let ot be the current depth image. Furthermore, let
at:t+H = [at , at+1, ..., at+H−1] be an action sequence of length H where the action at every
time step contains a forward and vertical velocity reference and a heading reference of the ro-
bot at+i = [vr

x ,t+i , vr
z,t+i ,ψ

r
t+i]

T . The goal is to find an optimized collision-free action sequence
at:t+H that ensures safe navigation towards a goal position based on observations about the
robot’s state and depth image. The goal position is assumed to be given by a global planner,
which gives the robot information towards the heading direction of the goal position,ψg

t . The
ORACLE deep neural network is designed for this particular navigation task. We intend to ex-
pand on the current architecture and simulation environment to increase sim-to-real transfer
and further improve learning, enhancing the policy concerning safe navigation.

32

Chapter 5

Software Tools

5.1 Gazebo

Gazebo is an open-source three-dimensional dynamic robotics simulator that obeys the laws of
physics[22]. By being built upon the Open Dynamics physics engine[40] and OpenGL[41] for
rendering, it allows for realistically and accurately simulation of robots in complex environ-
ments. Furthermore, the use of Gazebo allows for integrating different hardware components,
such as actuators, controllers, and sensors, bridging the reality gap between simulations and
the physical world. Using a digital twin, in turn, allows for data collection, training, and eval-
uation through simulations rather than running a physical robot, which is incredibly beneficial
concerning time and resources.

Furthermore, we have used an open-source Gazebo simulator named RotorS to simulate our
quadrotor. RotorS is a realistic simulation framework designed for Micro Arial Vehicles (MAVs)
[42]. It allows us to use a realistic replica of our real-world quadrotor in a user-designed
environment while also packaging the necessary sensors, actuators, and controllers, needed in
order to simulate the quadrotor robot functionally.

5.2 ROS - Robot Operating System

ROS or Robot Operating System is not an actual operating system but an open-source collec-
tion of software libraries for robot development, such as hardware abstraction, control, and
message-passing. ROS allows users to build different robotic components and connect them
using ROS tools called topics and messages. Topics allow different parts of the robotic system
to subscribe to or publish messages, allowing for seamless and straightforward communica-
tion. Different topics may include channels for low-level controllers, typically used to publish
references, and sensors, such as a stereo camera, which would be subscribed to. The messages
can also be used with visualization tools, such as RViz[43], a ROS visualization library. Fur-

33

Chapter 5: Software Tools 34

thermore, ROS is supported by multiple programming languages, including C++ and Python.
This is beneficial because it means that different parts of the robotic systems can be written
in different languages[21]. Using ROS with a wrapper, RotorS Wrapper, allows for seamless
communication between different languages, namely C++, used for low-level control of the
robot, and Python, used for data manipulation and machine learning.

5.3 TensorFlow

TensorFlow is an open-source software library in Python used for developing machine learning
models. TensorFlow constructs computational, high-level structured graphs that allow for auto-
matic differentiation of neural networks. Equipped in TensorFlow are also high-level applica-
tion programming interfaces(APIs), such as Keras. TensorFlow and Keras offer the implement-
ation of building blocks essential for machine learning. Among the different building blocks
are all necessary neural network layers to build complex networks, such as fully connected
layers, convolution, and deconvolution layers, recurrent layers, and pooling and upsampling
layers. Furthermore, TensorFlow and Keras provide different activation functions, such as the
ReLU and sigmoid functions, dropout, batch normalization, and different optimizers, objective
functions, and regularizers. Finally, different data pre-processing tools are available, making
for easy implementation of data pipelines.

5.4 OpenCV

OpenCV is a library developed by Intel to perform computer vision in real-time. The library
is written in C++, but has a API for several different programming languages, including Py-
thon. Various algorithms are implemented in the library, including semi-global matching. For
example, using OpenCV’s implementation of SGM allows us to perform stereo matching in
real-time, creating an effective pipeline for visual imagery.

5.5 Quadrotor Robot

The robot used in this thesis is a digital twin of the resilient micro flyer (RMF) [44]. The RMF
falls under the category of micro aerial vehicles (MAVs). It is a light and agile robot built into
a collision-tolerant frame, making it well-suited for navigation in cluttered environments. The
digital twin used in simulation can be seen in figure 5.1.

Chapter 5: Software Tools 35

Figure 5.1: The digital twin of the RMF used in simulation. Image taken from https://
tiralonghipol.github.io/poldepetris/

The robot is equipped with several controllers and sensors in simulation. Low-level controllers
are used for roll, pitch, yaw, and altitude. The low-level controllers ensure stability, allowing
reference signals to be utilized when navigating. Furthermore, the digital twin is equipped
with an inertial measurement unit (IMU) consisting of a gyroscope, an accelerometer, and
a stereo camera. The IMU gives three-axis measurements, providing information about the
position, velocity, and angular velocity. The stereo camera provides images within its field of
view, which is 86◦ × 46◦. The range for the stereo camera is between 0.2 and 50 meters, and
images are captured at a rate of 15 frames per second (fps), giving images of size 270× 480
pixels. Furthermore, the stereo camera has a baseline of 9.5 cm with a focal length of 257.6223.

5.6 External Processing Power

Training deep machine learning models is computationally expensive. Hence, training is out-
sourced to a centralized computer equipped with multiple Nvidia GeForce RTX 3090 graphical
processing units (GPUs). GPUs speed up training compared to central processing units (CPUs).
The code and models developed are transferred between the external computer and the work
computer, supplied by NTNU, through ssh pass.

https://tiralonghipol.github.io/poldepetris/
https://tiralonghipol.github.io/poldepetris/

Chapter 6

Proposed Approach

This chapter is split into five different sections. The first two sections focus on the expansions
done to the neural network architecture and the environments in simulation. The third section
presents how data is collected in a simulated environment. Furthermore, the second to last
section presents the training of a stand-alone VAE and the expanded architecture outlined in
the first section. Finally, the last section presents how the results are generated and evaluated.

6.1 Architectural Expansion

The ORACLE network is a deep collision predictor neural network used to predict collision
probabilities of action sequences in real-time. The neural network architecture consists of mul-
tiple MLPs, a CNN, and a recurrent LSTM component. The model has three inputs: a filtered
depth image, the robot’s state, and action sequences generated by a motion primitives library.
The filtered depth image is processed through the CNN and concatenated with the robot’s state,
processed through an MLP. The concatenated processed state is further processed through an
MLP before being fed to the LSTM as the initial state. The action sequences processed through
an MLP act as input to the LSTM as collision probabilities are eventually assigned to the differ-
ent actions. The output for the LSTM is further processed, yielding the model’s output, collision
probabilities of the different action sequences. Furthermore, the robot’s state is transformed
through unscented transform, and the CNN utilized Monte Carlo dropout to account for state
and model uncertainties, respectively[11] The architecture is visualized in figure 6.1.

There are currently a couple of challenges that the current architecture faces. Among them are
the issue of running realistic experiments in simulations. Visual imagery, such as depth images
from depth cameras, is notoriously different between simulations and the real world, creating
a reality cap. In order to improve the sim-to-real transfer, the robot will create its depth images
through stereo matching, using semi-global matching. The depth images are expected to be
more akin to depth images generated by a depth camera under flight in the real world.

36

Chapter 6: Proposed Approach 37

Figure 6.1: The architecture of ORACLE. MLP refers to Multi-Layer Perceptron which is
identical to the feed-forward network previously discussed.

Furthermore, while CNNs are great at encoding structured data such as images, there is room
for improvement. With CNNs, it is difficult to determine whether the encoded representa-
tion contains optimal information that benefits the learning process. Utilizing the concept of
representation learning should conceivably create a more meaningful encoded representation
while simultaneously improving sim-to-real transfer[17]. Accordingly, to obtain more mean-
ingful encoded image representations, the architecture will be expanded to incorporate a vari-
ational autoencoder. Using a VAE instead of an AE is motivated by the reduced cost of training
and inference[16], while also being more suited for autonomous driving through probabilistic
modelling[35]. Presumably, it will make learning collision probabilities easier, improving safe
navigation in cluttered environments.

The expanded ORACLE structure, which we will refer to as ORACLE-VAE, is visualized in figure
6.2 and can be separated into three different components: a VAE, a combiner network, and a
predictor network. The VAE consists of the encoder and decoder and takes an image as input
and returns the reconstructed input. The combiner network consists of the encoder and two
multi-layer perceptrons (MLP) and combines the robot states and the latent representation
from the visual imagery into a combined state. The last part is the predictor network which
takes action sequences from a motion primitives library as input and the combined state as
the initial hidden state to an LSTM recurrent net and outputs the collision probabilities of the
action sequences.

Chapter 6: Proposed Approach 38

Figure 6.2: The architecture of the expanded ORACLE network. The model has 3 inputs and 2
outputs.

In an attempt to mimic the current architecture of ORACLE, the encoder and decoder of the
VAE are based on ResNet8, a convolutional neural network. ResNet stands for residual net-
work, a state-of-the-art neural network architecture for feature extraction related to image
classification tasks[45]. The ResNet builds upon the residual block, visualized in figure 6.3.
Here, skip-connections are used within the network, resulting in internal summations between
hidden layers. The summation is described through the following equation:

y = F(x) + x (6.1)

Here, y is the output of the residual block, and x is the input. The function F(x) could be
multiple layers of a neural network but is illustrated as two layers for simplicity in figure 6.3.
The 8 in ResNet8 stands for the network’s depth, containing eight convolution layers. The
encoder network is visualized in figure 6.4.

Figure 6.3: The residual block

Chapter 6: Proposed Approach 39

Figure 6.4: Residual encoder - ResNet8 CNN.
Every orange square represents a layer where all layers apart from the last one are convolution
layers. The convolution layers are named as Conv number_of_filters, filter_size, strides. Addi-
tionally all the convolution layers uses batch normalization, ReLU activation and Monte Carlo
dropout. For some of the layers, stride is 1×1 and not included in the graphic. The two purple
layers are pooling layers and are names as MaxPool, pooling_size, strides. The input to the en-
coder is the raw depth image and the outputs are the mean and variance of the input.

The encoder in figure 6.4 does not follow the exact formula listed in equation 6.1, but rather on
the form y = F(x)+G(x)where F(x) is two stacked convolution layers and G(x) is one stand-
alone convolution layer. The output of the encoder, µ andσ are both vectors with 64 elements.
The resulting latent space, z, will thus be of dimension 64 after the reparameterization trick
is applied, previously discussed in section 3.4.2.

The stochastic latent space z will be the input to the decoder part of the VAE, which will
architecturally mirror the ResNet encoder. The decoder is visualized in figure 6.5.

Figure 6.5: Residual decoder - A mirror image of the ResNet8 CNN.
Every orange square represents a layer where all layers apart from the first one are de-
convolution layers, also known as transposed convolution in the TensorFlow Keras library. The
de-convolution layers are named as ConvTranspose number_of_filters, filter_size, strides. Addi-
tionally all the de-convolution layers uses batch normalization, ReLU activation and Monte
Carlo dropout. For some of the layers, stride is 1× 1 and not included in the graphic. The two
purple layers are up-sampling layers, which are the opposite of pooling, and are named as Up-
Sampling, pooling_size, strides. The input to the decoder is the stochastic latent space and the
output is the reconstructed image.

Chapter 6: Proposed Approach 40

The ResNet-inspired decoder follows a similar structure to the encoder. Like the encoder, the
decoder utilizes residual blocks on the form y = F(x)+G(x), where F(x) is two layers stacked
and G(x) is one stand-alone layer. The layers used in the model differ from the encoder to the
decoder. Instead of convolution and pooling layers, the decoder utilizes de-convolution (Con-
vTranspose) and upsampling layers, which are inverse operations to convolution and pooling.
The spatial dimensions are identical in the encoder and the decoder mirrored over the latent
space. The resulting output of the decoder is a reconstructed image from the encoded latent
space input.

6.2 Environmental Expansion

Semi-global matching is highly dependent on texture to function as a matching algorithm
properly. Given that the RMF will create depth images through SGM, the environments used
in simulation needs to be adapted to the task at hand. It is done by adding texture to all objects
used in simulation. Three different environments will be utilized, one for data generation and
two different ones for evaluation. These environments will have the same texture wrapped
to walls and floor. The respective environment will later be illustrated in relevant sections.
Furthermore, multiple copies of twelve different objects, varying in size, are manipulated,
adding various textures to every object. These objects will be utilized when collecting data and
evaluating the developed model. One example of each of the 12 objects is visualized in figure
6.6. The copies of pyramids, spheres, pillars and arches from figure 6.6a, 6.6b, 6.6c and 6.6d
are wrapped with three different texture, all carrying stone-like characteristics. The ⊥-figures,
tables and chairs from figure 6.6e, 6.6f and 6.6g are wrapped with wood-like characteristics of
three different colors: white, brown and dark brown. Furthermore, the three different fences
in figure 6.6i, 6.6k and 6.6l are wrapped in different colors, namely, gray, beige, brown and
dark brown. The wall from figure 6.6j comes with four textures: stone, brick, wood, and gray
stone. Finally, the trees from figure 6.6h are as visualized.

Chapter 6: Proposed Approach 41

(a) Pyramid (b) Sphere (c) Pillar

(d) Arch (e) ⊥ - figure (f) Table

(g) Chair (h) Tree (i) Fence

(j) Wall (k) Cross fence (l) Cross fence with cut-out

Figure 6.6: One copy of each of the twelve different objects.

Chapter 6: Proposed Approach 42

6.3 Data Collection

Many data points are required to train the ORACLE-VAE network. The data is collected in a
simulated environment using the RotorS simulator[42]. In addition, low-level controllers are
implemented to ensure sim-to-real transfer successfully.

The environment used for data collection is generated in a region spanning 40 by 40 meters,
closed in by walls on all sides. The walls in the environment are covered by a stone texture,
resembling gray stone walls. Furthermore, the floor is covered in segments resembling a toy
world, adding texture to the floor (figure 6.7).

Figure 6.7: The environment used to collect data

Next, to eventually learn a safe navigation policy through collision avoidance, the model needs
to learn from environments where obstacles are present. Hence, the environment for data col-
lection is filled with the obstacles visualized in figure 6.6. The number of objects used is chosen
randomly before being placed within the environment. The placement of chosen objects is all
drawn from the same uniform distribution and placed correspondingly in the environment. A
resulting environment is be visualized in figure 6.8.

Chapter 6: Proposed Approach 43

Figure 6.8: The environment used to collect data filled with obstacles

With the environment set, the robot can start collecting data. The MAV is spawned in the
environment drawn from the same uniform distribution from which the objects are drawn.
Then, a trajectory and an action sequence are drawn within the MAVs field of view (FOV)
according to algorithm 2.

Chapter 6: Proposed Approach 44

Algorithm 2 Motion Primitive Trajectory generation

1: Draw a relative yaw angle ψrelat ive within the horizontal field of view of the robot,
ψrelat ive ∼ U(−34◦, 34◦)

2: Measure yaw ψ of the robot
3: Compute reference yaw angle ψre f =ψ+ψrelat ive
4: Draw forward velocity from a uniform distribution vx ∼ U(0.3, 2.0)
5: Draw a reference tilt angle within the vertical field of view of the robot β ∼ U(−24◦, 24◦)
6: Calculate vertical velocity vz = vx · tan(β) and clip it to be in the range [−2.0,2.0]
7: Initialize acceleration, velocity and position in body frame:
8: a0 = (0, 0,0)T

9: v0 = Rz(ψrelat ive) · (vx , 0, vz)T

10: p0 = (0,0, 0)T

11: Set initial time t = 0
12: for i ∈ number of steps before replanning do
13: t+ = 1

15
14: a = a0
15: v = at + v0

16: p = a t2

2 + vt + p0
17: Create state estimate state[i] = (p, v, a)
18: Create command to be executed cmd[i] = (vx , vz ,ψre f)
19: end for
20: Return state estimate state and command cmd

The motion primitives from algorithm 2 contain a trajectory with positions, velocities, and
accelerations, as well as actions to be executed, including velocities in x and z directions and
a reference heading angleψre f . If the action sequence is fully executed, new motion primitives
are calculated, accounting for a new trajectory and actions. This will continue until the robot
collides with an object or until a timeout occurs. In the case that a collision occurs at time step
t + k, further actions, at+k, k ≤ H, are randomly sampled until a timeout occurs. The timeout
is set to be 30 seconds when collecting data. Executing actions until timeout accounts for an
episode when generating data. Whenever the robot has moved more than ∆ = 0.4 meters a
data point d is recorded, containing a raw and a filtered depth image, the robot’s state, the
action sequence and the collision status, d = (ot , o

′

t , st , at:t+H , ccol
t+1:t+H+1). The collision index

denoted the collision label for every time step t+ i, i = 1, ..., H and is a binary flag equal to zero
for non-collision and one for collision. If the robot collides at one particular time step, t+k, all
the remaining collision labels, ccol

t+k+1:t+H , are set to one. This ensures a more balanced data set
where the number of action sequences with a collision label is roughly the same as collision-
free data points. Furthermore, as the robot dynamics are holonomic and effectively invariant
to its heading orientation, augmented data are stored, further diversifying the data set. The
augmented data point is on the following form d f l ip = (o f l ip

t , o f l ip′

t , s f l ip
t , a f l ip

t:t+H , ccol
t+1:t+H+1)

where o f l ip
t and o f l ip′

t are horizontally flipped images, the raw image and the filtered image,
respectively; and s f l ip

t and a f l ip
t:t+H are created by changing the sign of the angular velocity of

Chapter 6: Proposed Approach 45

the robot and heading reference angle of the action sequence, ωt and ψr
t+1 respectively[11].

This procedure is repeated for a total of 20000 episodes. The data points are stored in separate
files for every 40-th episode, one for the images, raw and filtered, one for the robot state,
one for the action sequence, and one for the collision index. In addition, the environment is
changed every 20-th episode to diversify the data set further. In total, this collects over 1,7
million data points. The procedure of collecting data is summarized in algorithm 3.

Algorithm 3 Data collection

1: Initialize environment
2: for episode in number of episodes do
3: Initialize robot position
4: while Timeout has not occurred do
5: if Robot has not collided then
6: Generate trajectory and actions from motion primitives
7: end if
8: if Robot has collided then
9: Sample actions randomly

10: end if
11: Execute actions
12: Record data d and d f l ip if the robot has travelled more than ∆ meters.
13: end while
14: if episode % 20 = 0 then
15: Reshuffle environment
16: end if
17: if episode % 40 = 0 then
18: Store the recorded data to files
19: end if
20: end for

As the micro aerial vehicle (MAV) is equipped with a stereo camera during the data genera-
tion phase, images from the stereo pair are recorded synchronously. Upon verifying that the
left and right images are captured simultaneously, semi-global matching is performed through
OpenCV’s StereoSGBM.create()-function, creating a disparity map from the current stereo pair.
The parameters chosen in the algorithms are inspired by [46]. After the disparity map is cre-
ated, the depth map is created by combining the disparity map, the focal length, and the
baseline through the relationship established in equation 3.36. Finally, the filtered depth im-
age is created by applying a Gaussian filter to the resulting depth image.

6.4 Training

The training phase is executed in two separate steps. First, the VAE model is trained on its
own. Then, the expanded neural network structure, ORACLE-VAE, from figure 6.2, is trained.

Chapter 6: Proposed Approach 46

6.4.1 VAE

A current time constraint with the current ORACLE network is that image pre-processing,
mainly filtering, is more time-consuming than a complete forward pass through the network.
Hence, a goal of the VAE is to eliminate the need to filter the input images. The core idea is to
force the encoder to act as a filter through training. This is done by passing a raw, unfiltered
depth image through the encoder. The encoded latent space is fed through the decoder to
reconstruct the image. This image will be trained against the filtered depth image, which has
been stored during the data generation phase. Training will force the reconstructed image to
look similar to the filtered image, indicating that the network structure can replace the filter
currently used with ORACLE. The training procedure is illustrated in figure 6.9.

Figure 6.9: The training procedure for the VAE

When training the VAE, the objective function used will be the evidence lower bound or ELBO
for short, established in section 3.4.2. In practice we optimize the single sample Monte Carlo
estimate

log p(x)≥ ELBO ≈ log p(x | z) + log p(z)− log q(z | x) (6.2)

Here, log p(z) and log q(z | x) are calculated analytically. On the other hand, log p(x | z) is the
reconstruction error. It is calculated through binary cross entropy for each pixel in the recon-
structed output against the input. In practice, the evidence lower bound is a negative value.
Therefore, maximizing the evidence lower bound will optimize the model. However, we will
instead minimize the negative evidence lower bound. The change is made to obtain numerical
stability when training the ORACLE-VAE model.

The VAE network is trained with the Adam optimizer with a learning rate of 1 ·10−4 and decay
of 1 · 10−5. The network is trained through 100 epochs, 100 iterations through the data. The
data used is roughly 230000 images for training and just shy of 58000 images for testing. Batch
normalization is utilized, while Monte Carlo dropout is not used when training the stand-alone
VAE.

6.4.2 ORACLE-VAE

Next, training the expanded ORACLE-VAE is a more complicated task as the model has two
outputs, one for collision probabilities and one for the reconstructed image. The problem of
predicting collision probabilities is a supervised learning task, whereas image reconstruction

Chapter 6: Proposed Approach 47

through a VAE is an unsupervised learning task. Hence, in order to fit the new structure, two
separate loss functions are needed. Tensorflow provides an excellent framework for such com-
plex optimization problems, where multiple losses can be combined. Thus, the overall loss for
ORACLE-VAE will accommodate the two learning processes by combining two loss functions
through the following equation, allowing for end-to-end learning:

L(c, ĉ, o, ô) = αcL(c, ĉ) +αoL(o, ô) (6.3)

Here, c and ĉ are the collision index and probability, respectively; and o and ô are the raw
depth image input and the reconstructed filtered depth image output, respectively. The loss
function L(o, ô) is the single sample Monte Carlo estimate of the evidence lower bound, es-
tablished in equation 6.2, which gives a scalar loss value. The other loss function, L(c, ĉ) is
the binary cross entropy loss function which returns a scalar value for the collision predictions.
The constants αc and αo are chosen such that the magnitude of the two losses are roughly the
same. Choosing αc = 1.0 and αo = 0.001 gives the two losses roughly the same magnitude.
This is due to the binary loss function used for collision, iterating over a couple hundred col-
lision predictions. In contrast, the ELBO loss used for the VAE compares every pixel across the
input and reconstructed images, giving it a far greater loss value.

The ORACLE-VAE model is trained with the Adam optimizer, using a learning rate of 1 · 10−4

and decay of 1 · 10−5. Both batch normalization and Monte Carlo dropout are utilized on the
encoder and decoder during training. At the end of every epoch, the model logs the respective
losses, accuracy, precision, and recall for the training and validation data. Naturally, accuracy,
precision, and recall only apply to the collision probabilities. The training continues until the
metrics have more or less stabilized, equating to roughly 500 epochs. The training data set
contains shy of 1.4 million data points, and the validation data set contains roughly 350000
data points, totaling over 1.7 million.

6.5 Evaluation

Evaluation of the developed model will be three-fold. First, the results from SGM will be
presented, highlighting the resulting depth images created. Then, the results from the VAE
will be presented, focusing on the observed training history and the reconstructed images.
Lastly, ORACLE-VAE will be presented from a pure machine learning perspective, and with re-
gard to motion planning and navigation in cluttered environments. The data in the validation
set is not fitted to the VAE and ORACLE-VAE models and will thus yield somewhat reasonable
indications towards the general performance of the models and whether they generalize to
unseen data.

The navigation policy will be evaluated in two separate environments, varying in difficulty.
The environments will both be corridors with obstacles, making for cluttered environments.
The corridors are 100 meters long and 13 meters wide. Both corridors have walls along the

Chapter 6: Proposed Approach 48

longer sides of the environments, covered in the same stone-like texture previously seen in 6.8.
Similar to the environment used to generate data, both corridors will have the floor covered
in a toy-like texture. The first environment contains 6 arches (6.6d), 7 pyramids (6.6a), and
13 pillars (6.6c), a total of 26 objects. We will refer to this environment as the "easy" one. The
easy environment is visualized in figure 6.10. The other corridor will be denser, including more
obstacles, and henceforth be referred to as the "hard" environment. The hard environment,
visualized in figure 6.11, contains 75 pillars, all placed randomly within the corridor. The
increased density of obstacles in the hard environment is expected to result in a decline in
performance compared to the easy environment.

Chapter 6: Proposed Approach 49

Figure 6.10: The "easy" evaluation environment.

Chapter 6: Proposed Approach 50

Figure 6.11: The "hard" evaluation environment.

Chapter 6: Proposed Approach 51

The goal of the evaluation studies is for the RMF to traverse the corridors in a safe and timely
manner. The robot will be spawned on one side of the environment, while the goal position is
on the other side of the corridor. When spawned, the robot will face in the opposite direction
of the goal with a random heading angle. It will encourage the drone to take different paths
to reach its goal. The RMF will be evaluated based on the number of collisions and distance
traveled, based on attempting to traverse the environments 20 times each.

During the flight, the robot is inclined to perform actions that yield a safe, collision-free path.
The robot states and depth images are provided in real-time. Simultaneously, action sequences
in the FOV are drawn from the motion primitives library. There are a total of 256 different se-
quences drawn, each 15 steps long, combining 32 different heading angles ψ, eight different
velocities in z-direction, vz , and a constant forward velocity, vx . The action sequences are
passed through the network along with the robot state and depth image to output collision
probabilities of the action sequences. Then, the final collision cost for each sequence is calcu-
lated as the weighted sum of the collision probabilities at each step. The sooner the collision
event is predicted to happen, the more it will contribute to the final collision cost[11]:

ĉcol =
H
∑

i=1

ĉcol
t+ie
−λ(i−1) (6.4)

The lowest weighted collision probability ĉcol
min is chosen as a baseline for evaluation of the

other probabilities. All other weighted collision probabilities that are of a greater value than
ĉcol

min+ cth, where cth is a positive threshold, are discarded. The remaining action sequences are
checked for deviation against the goal direction ψg

t given by the global planner.

cgoal = |wrap(ψre f +ψt −ψ
g
t)| (6.5)

Here, ψre f is the relative heading angle of the respective action sequences, ψt is the heading
of the robot, and wrap(·) is the function that wraps the angle within the range [−π,π]. Out
of the remaining action sequences, the one that minimizes cgoal is chosen, and the first step
of the sequence is executed. Evaluating action sequences before the first step is executed is
repeated in a receding horizon fashion until the goal position is reached or collision. During
the flight, the robot is restricted to planar movement in the x y-plane. Its forward velocity is
0.5 m

s . The navigation planner is summarized in algorithm 4

Chapter 6: Proposed Approach 52

Algorithm 4 ORACLE Navigation Planner [11]

1: while Robot has not reached goal position or not collided do
2: Get robot’s current state st and depth image ot
3: Get action sequences {at:t+H}Nn=1 from motion primitives library
4: for Each action sequence {a}n, with n ∈ [1, N] do
5: for Each step in the action sequence, i ∈ [t, t +H] do
6: Calculate the collision probability, ccol

i+1 = ORAC LE − VAE(st , ot , ai)
7: end for
8: Calculate the weighted collision cost for action sequence {a}n,
9: ĉcol =

∑H
i=1 ĉcol

i+1e−λ(i−1)

10: end for
11: ĉcol

min = argmin ĉcol

12: Discard all action sequences with a weighted collision cost lower than ĉcol
min + cth

13: Check the remaining action sequences again the deviation from the goal direction,
14: cgoal = |wrap(ψre f +ψt −ψ

g
t)|

15: Choose the action sequence, a∗t:t+H , that minimizes cgoal

16: Execute the first step of the action sequence a∗t
17: end while

Chapter 7

Results

In this chapter, we show the results obtained. This chapter will be split into three separate
sections. One for depth maps from disparity through semi-global matching, one for the vari-
ational autoencoder with reconstructed images, and one for ORACLE-VAE with performance
regarding machine learning metrics and performance for the evaluation studies. The results
will be presented by including images for the relevant sections. For the stereo matching, each
set of images will contain a raw depth image and filtered depth images, along with a corres-
ponding stereo image used for matching. Similarly, when visualizing the results for the VAE,
each set of images will contain three images: the raw and filtered depth images and the recon-
structed image. All image sets will also contain a color bar illustrating the depth, in meters, in
the corresponding images.

7.1 Depth From Disparity

The images captured by the stereo camera are grayscale. Two images are captured simultan-
eously as the robot is mounted with a stereo camera. Typical images captured are visualized
in figure 7.1. The same images are displayed twice, one in its original grayscale color and one
subject to a change in color to Matplotlib’s standard color palette when displaying images.
This and the next section will display Imminent images in Matplotlib’s color palette. There
are plenty of objects visible in the images. Firstly, the floor is covered in texture. Furthermore,
there are multiple arches (figure 6.6d) and a pyramid (figure 6.6a) visible in the foreground
in the center of the images. Additionally, there is a fence (figure 6.6i) visible on the left-hand
side of the images in the foreground, with multiple objects further back in the images, includ-
ing, amongst other things, a stone wall (figure 6.6j) and a cross fence (figure 6.6k). On the
right-hand side of the image, we can see a pillar (figure 6.6c) and some chairs (figure 6.6g)
with more objects further back.

53

Chapter 7: Results 54

(a) Left grayscale image (b) Right grayscale image

(c) Left image with a colorful palette (d) Right image with a colorful palette

Figure 7.1: Left and right images captured by the stereo camera in the original grayscale color
palette and with Matplotlib’s standard color palette.

The images visualized in figure 7.1 are typical images from a stereo pair used to create disparity
maps through semi-global matching before being turned into depth maps. In the resulting
depth maps, the max depth is set to 10 meters as objects further away are less critical for
immediate actions.

First off, from figure 7.2 we can observe how the raw and filtered depth images result from
the corresponding stereo image. There are definite, separable levels of depth for the different
objects in the depth images. The resulting levels of depth are more similar to how depth is
captured through a depth camera. More specifically, in 7.2a, the depth between the central
objects is distinguishable. Additionally, there is a visible depth difference between the image’s
left and right-hand sides. Similarly, in 7.2b, the same results in depth can be seen with the
tabletop in the foreground and other obstacles further back in the scene, and in 7.2c between
the table, the tree, and the background.

Notice how in the raw depth maps (center image in the image sets) in figure 7.2 there are vis-
ible darker patches along the edges of the objects across all three sets of images. These patches
are invalid matches and are removed in the filtered depth maps using a simple Gaussian noise
filter. The invalid matches are particularly visible around the arches in 7.2a, the tabletop in
7.2b, and the tree in 7.2c.

Chapter 7: Results 55

Furthermore, we can observe mismatches in regions towards the top of the images where
the background is textureless. The monotonous green color in the stereo images marks the
textureless background. In these regions, the objects in the foreground tend to blend in with
the background, making them appear larger than their proper size in the depth images. This
effect is most prominent at the top left of the pyramid in figure 7.2a, at the top of the pillar in
figure 7.2b, and around the upper part of the tree in figure 7.2c. Consequently, it may infuse
difficulties when training the deep collision predictor network, ORACLE-VAE, given that objects
in the depth maps appear larger than the actual size. Intuitively, it is difficult to determine how
this may affect the learned navigation policy. It may cause the learned policy to behave safer
as the objects in the depth images appear more extensive. On the other hand, it could also
lead to difficulties learning from imagery as some areas seem closer and impossible to pass
through, while they may be traversable.

(a)

(b)

(c)

Figure 7.2: 3 random scenes

From the images in figure 7.2 we have observed how the stereo matching shows transparent,
distinguishable layers of depth. Nevertheless, invalid matches appear around objects, and the
texture-less background is a cause of mismatches, resulting in objects appearing larger than
the actual size. Interestingly, the method struggles more with one type of structure: the fences.

Chapter 7: Results 56

Depth maps where fences are present are visualized in figure 7.3. In 7.3a there are two fences,
one to the right and one further back on the left-hand side of the image. From the right fence,
we observe that the outlined depth of the fence is distinguishable from the surroundings. How-
ever, with the fence on the left, the lines defining the fence are more blurry in the depth maps.
Evidently, from 7.3a, it suggests that the matching algorithm has an easier time matching the
larger vertical components of the fence and is struggling more with the more minor horizontal
elements. The same effect can be seen in 7.3c, where there is a fence across the captured im-
ages. Here, some horizontal components towards the top of the fence have entirely vanished,
giving a false representation of the object in the resulting depth maps. Similarly, the fence’s
vertical lines get increasingly blurry, moving from left to right in the image. However, the res-
ult in 7.3b tells a different tale. The fence’s components are more uniform in size, resulting
in a clearer and more defined object in the depth maps. Nevertheless, the fence appears to be
more prone to noise and mismatches compared to the section of the arch to the left of the fence
in the raw depth image. Interestingly, the top of the fence is not in the depth maps. It looks
like the top has completely vanished into the textured background. Based on these results, the
resulting depth map around fences seems greatly influenced by the background texture. The
matching of fences, or rather, the lack of, may lead to difficulties in the training of ORACLE as
it may suggest an area of the environment to be traversable based on the depth image when
there, in fact, is a fence present. This may give the model false safety towards where the robot
can move without colliding.

Chapter 7: Results 57

(a) Example 4

(b) Example 6

(c) Example 7

Figure 7.3: 3 scenes where fences are present

The results from stereo matching highlight some significant difficulties when creating depth
maps. The most obvious shortcoming is the matching of fences which tend to be blurry and,
to some extent, blend with the textured background. Additionally, objects appear larger in the
depth images in areas where the background is textureless. Apart from these difficulties, the
matching algorithm creates depth maps where objects are separable through depth, and the
shape of the objects is primarily precise. The noise that comes with the matching results is more
akin to real depth images rather than perfect images that are more common in simulations.
However, whether the resulting depth maps are well-suited for the subsequent learning task
remains to be seen.

7.2 VAE on Depth Images From Stereo Matching

The depth maps presented in section 7.1 are the images used when training the variational
autoencoder. The data set contains roughly 230000 images for training and 58000 images
for validation. An epoch of training is equivalent to one iteration through the data, where
the network weights are updated on the training data and remain unchanged when iterating

Chapter 7: Results 58

through the validation data. The training process proved to be relatively straightforward, only
requiring minor changes to the optimization process in order to land on a suitable model. The
training history is visualized in figure 7.4 with the network trained over 100 epochs. Originally,
the evidence lower bound is subject to maximization as it is a negative scalar. However, as
mentioned previously, the network is trained by minimizing the negative evidence lower bound
for numerical stability. From the visualized history, we observe that the training and validation
loss declines rapidly at the beginning of training before plateauing towards the end of the
training process. Although the losses are of similar magnitude, there is still a noticeable gap
between the values, where the training loss stagnates at around 52500, while the validation
loss remains at around 53200.

Figure 7.4: Training and validation loss for the VAE on depth images

More interestingly, with the VAE outputting reconstructed images, are the reconstructions and
whether the reproduced images are comparable to the input images. Here, we will comment
on the reconstructed images from the generated depth images across five different types of
scenes where different objects are present. First, we will see the results for relatively simple
scenes where only a couple of objects are present within the image. Then, two more different
scenes will be presented, where the images increase in the density of objects. Lastly, we will
examine two scenes where fences, which proved difficult to match through stereo imagery,
are present in images. In order to verify the results, the VAE was also trained on perfect depth
images generated from a depth camera. These results are visualized in Appendix B but will
not be mentioned further.

First, the images in figure 7.5 illustrated three relatively simple scenes where only a couple of
objects are present. In general, the main structures have been reconstructed quite accurately.
More specifically, from 7.5a, the wall, floor, and background have been reconstructed, and
there is little difference between the filtered and reconstructed images. For the table, the re-

Chapter 7: Results 59

construction is slightly more contrasting in the reconstruction. Interestingly, the tabletop, the
horizontal component of the table, seems to more abruptly disappear into the wall, making the
resulting depth less distinguishable from the original filtered depth map. The table leg is also
noticeably different across the two images, with the reconstruction having smooth edges, thus
filtering out mismatches and invalid matches. The same effect can be seen in 7.5b where the
object in the background appears more even in the reconstructed image, similar to a filtering
effect. The result in 7.5c are similar. Here, some details of the arch in the image’s background
have partially vanished in the reconstruction. Overall, the depth is well preserved across all
three scenes.

(a)

(b)

(c)

Figure 7.5: 3 sparsely cluttered scenes

In a more cluttered environment, three different scenes are captured in figure 7.6. First, in
7.6a, there are multiple objects in the scene, including a tree, a table, and objects along the
sides. This makes the scene appear like a narrow, cluttered corridor. In 7.6b, a tree is to the
right side of the images with another object in front of it. There is also a pyramid at roughly the
same depth as the tree. Furthermore, there is a wall in the background. Lastly, in 7.6c, there
is an arch in the foreground with multiple objects at a greater depth, partially covered by the
arch. Across the reconstructed images, we observe, similarly to the more simple scenes, that

Chapter 7: Results 60

the reconstruction has a filtering effect. Overall, the depth is largely preserved, but geometric
features seem to vanish somewhat. This is especially noticeable in 7.6a where the details of the
tree have disappeared, and the table is unrecognizable in the reconstructed image. Also, the
depth along the sides is smoother and more gradual, in the reconstructed image, compared
to the filtered image. The same smoothing effect is visible in 7.6b where the transition across
objects is smoother in the reconstruction compared to the more abrupt changes in depth in
the raw and filtered depth images. Here, in 7.6b, it has resulted in the tree and the foreground
object fused into what looks like a completely different object. The same effect is visible in
7.6c where the transition between the arch and the background objects is more gradual in the
reconstruction and more sudden in the raw and filtered depth images. Overall, by comparing
figure 7.6 to 7.5, it seems like the more cluttered a scene is, the more likely it is to lose details
in the reconstructed image.

(a)

(b)

(c)

Figure 7.6: 3 scenes that are more cluttered

Following the same pattern, if the scene is even more complex, more details would be lost
during reconstruction. Judging from figure 7.7, we can observe that to be the case. From
7.7a, the reconstruction shows that the depth is somewhat well preserved with imperfection
in reconstructing details. Perhaps most interesting is the tree reconstruction, which resembles

Chapter 7: Results 61

a shape similar to a traffic cone. Likewise to the less cluttered environments, the reconstruction
has a filtering effect, resulting in a smoother reconstruction compared to the raw and filtered
depth maps. In 7.7b, depth is mostly intact similar to what can be observed in 7.7a. However,
more details are lost, for example, objects in the background and the chair object to the right-
hand side of the image. In the even more complex scene in 7.7c, the reconstructed depth
is more lacking in preserving depth. The trees to the center-right are less defined than in
previous images. In particular, the right-most branch has more or less vanished completely in
the reconstructed image, giving a false perception of the depth. Likewise, the object further
back in the center-left has mostly vanished where only simple lines are reconstructed, giving
the impression of a different object. Altogether, in 7.7c, the objects are less defined. Overall, it
appears to be a linear relationship between the number of obstacles in the depth images and
the VAE’s capability to preserve depth.

(a)

(b)

(c)

Figure 7.7: 3 very cluttered scenes

Previously, we have seen how the stereo matching algorithm struggles when there is a lack
of texture. Notably, the fences proved to be difficult to match accurately. This may pose prob-
lems when reconstructing images containing fences as well, as can be observed in figure 7.8.
From the two separate reconstructed images, the characteristic features of the fences have

Chapter 7: Results 62

disappeared. In 7.8a and 7.8b the reconstruction looks more like pillars than fences due to
the missing reconstruction of the horizontal elements. Also, similarly to previous results, the
model has a filtering effect on the reconstructions.

(a)

(b)

Figure 7.8: 2 scenes where fences are present closer to the robot

Lastly, we will look at scenes where fences are at a greater depth. Fortunately, when the fences
are further back in the scene, the reconstruction is better (figure 7.9). In 7.9a and 7.9b, the
reconstructions have, once again, a filtering effect, making the fences appear more like walls
than fences.

Chapter 7: Results 63

(a)

(b)

Figure 7.9: 2 scenes where fences are present further away from the robot

From the presented results, it is evident that less complex scenes will likely result in better
reconstructions. From figure 7.5, where the depth images are less cluttered, the depth is pre-
served, and most features are distinguishable in the reconstruction. However, when the envir-
onments in the images are more complex, we have seen how several details are left out of the
reconstruction, like in figure 7.6. Nonetheless, depth is primarily intact. Differently, for even
more cluttered environments, like in figure 7.7, reconstruction gets more blurry, sometimes
failing to reconstruct the depth correctly.

The fences proved to cause difficulties for semi-global matching. Similarly, they proved to be
challenging for the variational autoencoder. As a result, the resulting reconstructions displayed
shapes more akin to pillars rather than fences, as is visualized in figure 7.8. However, as seen
in figure 7.9, when the fences are at greater depth, the matching tends to be better, resulting
in more accurate reconstructions.

Overall, the model developed is capable of accurately reconstructing images, mostly upholding
depth. However, the two difficulties addressed; namely, complex scenes and the fences up
close, are troubling and may present difficulties when training the deep collision predictor
network.

Chapter 7: Results 64

7.3 ORACLE-VAE

7.3.1 From a Machine Learning Perspective

Training the ORACLE-VAE model turned out to be more difficult than just the stand-alone VAE.
Different combinations of weights αc and αo and different dropout rates p for Monte Carlo
dropout were applied to reach the best model. Additionally, different learning procedures were
explored, such as pre-training different components before fine-tuning some of the layers. In
the end, the model that provided the best results was trained end-to-end, without pre-training,
and with αc = 1.0, αo = 0.001, p = 0.5.

The learning history is visualized in the following illustrations. First, the ELBO loss for recon-
structed images, visualized in figure 7.10 proved to be quite similar to the stand-alone VAE.
The training and validation ELBO loss decreases rapidly at the beginning of the learning pro-
cess. Before 100 epochs, the curves start to plateau. After 100 epochs, the validation ELBO
remains more or less constant, whereas the training ELBO sees a slight decrease. The loss val-
ues are significantly larger, here at around 56000, compared to in the stand-alone VAE (figure
7.4), where the values are in proximity of 53000. Still, the reconstructed images are similar to
the previously presented reconstructions and will not be visualized here.

Figure 7.10: The ELBO loss on reconstructed images

Next, the binary cross-entropy loss on the collision probabilities is visualized in figure 7.11.
The history curves here see different trajectories compared to the reconstruction loss. The
validation loss decreases rapidly before slowly increasing after around 50 epochs. After around

Chapter 7: Results 65

400 epochs, it looks like the validation loss plateaus. On the other hand, the training loss
continues to decrease further and is still slowly decreasing towards the end of the learning
process. Still, the rate of change in the training loss decreases, indicating that the loss will
eventually plateau. Interestingly, the two losses have a large cap in values. Towards the end of
the learning process, the training loss reaches values approaching 20, whereas the validation
loss reaches a value of around 50.

Figure 7.11: The binary loss on the collision probabilities

The accuracy, illustrated in figure 7.12, also see a significant gap in values between the training
and validation. At the end of the training, the training accuracy is above 98% while the val-
idation accuracy is around 96.5%. Early on, both training and validation accuracy see a rapid
increase. While the training accuracy continues to increase, the validation accuracy plateaus at
around 50 epochs. Curiously, this is around the same epoch where the validation loss reached
its minimum value before it started to increase.

The history for precision (figure 7.13) is different from the other histories we have looked at.
While the training precision increases, the validation precision decreases immediately. Valida-
tion precision starts at a higher value than the training precision, peaking as high as 98.5%. The
rate at which validation precision decreases after several epochs is pretty significant. Eventu-
ally, the value is slightly below 96.5%. It is worth noting that the validation precision variance
decreases with the number of epochs. This can be observed as the sporadic changes from epoch
to epoch get less significant further down the line of training. On the contrary, the training pre-
cision keeps increasing, eventually plateauing at around 98.5%. The cap between training and
precision is in the same range observed with accuracy.

Chapter 7: Results 66

Recall, visualized in figure 7.14, sees learning curves similar to accuracy. Both the training and
validation recall increases rapidly in the beginning. The validation recall remains roughly the
same after around 100 epochs, perhaps with a slight increase. Similar to the validation preci-
sion, the variance of the validation recall decreases with the number of epochs. The training
precision continues to increase beyond 100 epochs, similar to the previous metrics. The value
gap between validation and training is also similar to what was observed earlier, with the gap
being around 2%.

Lastly, F1-score is the harmonic mean of precision and recall and can be observed in figure
7.15. Hence, it is expected that the learning curves see somewhat similar characteristics to
precision and recall. Again, training and validation for F1-score increase rapidly at the begin-
ning of training. The training F1-score continues to increase before arriving at a more constant
value toward the end of training. On the other hand, the validation F1-score stops increasing
after roughly 50 epochs, mainly remaining the same for the remaining epochs, perhaps slightly
decreasing. Interestingly, the validation F1-score stays relatively constant, considering the de-
crease in validation precision.

Figure 7.12: The accuracy of predicted collisions

Chapter 7: Results 67

Figure 7.13: The precision of predicted collisions

Figure 7.14: The recall of predicted collisions

Chapter 7: Results 68

Figure 7.15: The F1-score of predicted collisions

A pattern exists for the supervised learning metrics and the binary loss on collision probab-
ilities. Apart from validation precision which decreases, the validation accuracy, recall, and
F1-score do not further increase beyond roughly 50 epochs after an initial rapid increase. Co-
incidentally, this is around the same time as when the validation loss starts to increase. From a
pure machine learning perspective, having values for the various metrics above 95% generally
indicates a well-behaved model. Whether this has translated into a safe navigation policy will
soon be explored.

7.3.2 Navigating in Cluttered Environments

The RMF drone was tasked with traversing two corridors of 100× 13 meters of different dif-
ficulty. During the flight, the position of the robot and the traversed distance are recorded
along with a collision index. The performance of the planner in the respective environments
are summarized in table 7.1.

In the easy environment, the RMF reached the goal position 16 times on 20 runs, equating to a
success rate of 80%. All runs are visualized in the environment in figure 7.16a where the robot
starts movement at the top of the image. The blue trajectories indicate successful runs, whereas
the red trajectories indicate runs where the robot collided. The average distance traveled across
all 20 runs was 101.26 meters with a standard deviation of 21.86 meters. However, on the
16 successful runs, the average distance increased slightly to 108.27 meters with a standard
deviation of 3.46 meters. From the visualization, it appears that the robot drifts to the right

Chapter 7: Results 69

when it has managed to avoid all the obstacles, explaining the average distance traveled on the
successful runs, considering the corridor is 100 meters long. Interestingly, from the visualized
trajectories, two of the runs that ended in collision managed to safely traverse the corridor,
avoiding the obstacles along the way, before colliding in the wall in proximity to the goal
position. For the remaining two collision runs, the robot collides earlier in the environment,
one time roughly in the middle of the corridor and once closer to the spawn location. The
more significant variance in the distance traveled when colliding is also noticeable in table
7.1, where the average distance traveled was 73.21 meters with a standard deviation of 36.87
meters.

The performance of the RMF sees a significant dip in performance in the hard environment,
which is expected. In the hard environment, the robot reached the goal position on 2 of 20
runs, yielding a success rate of 10%. Consequently, the average distance traveled decreases,
to 46.99 meters, with a standard deviation of 30.45 meters. Similarly, the average distance
traveled when colliding has decreased to 40.67 meters, with a standard deviation of 25.10
meters. However, on the successful runs, the robot reaches the goal position faster, with the
average distance traveled being 103.91 meters with 1.16 meters as standard deviation. The
trajectories across all 20 runs in the hard environment are illustrated in figure 7.16b. Similar to
visualizing the trajectories in the easy environment, blue trajectories indicate successful runs.
In contrast, red indicates runs where the robot collided. On the two successful runs, the robot’s
trajectory appears similar, apart from a different path to avoid the last encountered obstacles,
explaining the low standard deviation. The paths for collision are more sporadic, varying more
in the traversed path taken and distance traveled before colliding.

Table 7.1: Performance for the RMF in the easy and hard environments

Performance
Easy Hard

Success rate 16/20 2/20
Distance travelled [m] 101.26± 21.86 46.99± 30.45
Distance travelled on success [m] 108.27± 3.46 103.91± 1.16
Distance travelled on collision [m] 73.21± 36.87 40.67± 25.10

Chapter 7: Results 70

(a) Easy environment (b) Hard environment

Figure 7.16: Flight trajectories in the easy and hard environments. Blue paths indicate success-
ful runs and red paths indicate runs where a collision occurred.

Chapter 7: Results 71

During the flight, the RMF receives information about its state and the current depth image
created from stereo matching. This is used to reason about collision probabilities of the dif-
ferent action sequences created by the motion primitives library. The different sequences are
classified as safe or unsafe, where the sequence least likely to cause a collision determines a
baseline for evaluating the different sequences. Typical reasoning is visualized in figure 7.17.
Here, the green sequences are safe action sequences, with lower collision probabilities than
ccol

min+cth. Furthermore, the yellow sequences are deemed unsafe, meaning the probabilities are
higher than the upper threshold. For the purposes of debugging, the worst action sequence is
visualized in red. The worst action sequence is the sequence that yields the highest probability
of collision. Additionally, there is a blue sequence, which is the safe sequence that minimizes
the deviation from the goal heading. This sequence will henceforth be referred to as the best
action sequence, given the goal of minimizing the deviation in heading angle from the goal
direction. However, the best action sequence is not visible in figure 7.17 due to the high density
of sequences.

(a) The different action sequences (b) The depth image

Figure 7.17

For this particular evaluation of action sequences, the model has determined that it is safe to
move to the left and unsafe to continue flight to the right, which is reasonable when considering
the corresponding depth image in 7.17 given that there is an obstacle to the right-hand side
of the image. An alternative visualization, at a different point in time, is visualized in figure
7.18 where only the first and last action in the different sequences are visualized. Here, the
model has determined that it is safe for the RMF to execute forward motion and unsafe to turn
to either the left or the right. Again, considering the depth image in 7.18, the evaluation is
reasonable given that there are obstacles to the left and right sides of the robot. Here, the best
action sequence is visualized in blue, indicating that the robot prefers a downward motion.
The preference for moving in a downward trajectory is prevalent during the entire flight.

Chapter 7: Results 72

(a) The different action sequences (b) The depth image

Figure 7.18

Another exciting aspect when evaluating action sequences is determining which parts of the
observation contribute to the different outcomes. More specifically, which parts of the images
are essential to presume safe action sequences, and which parts are instrumental in determin-
ing a high probability of collision. Gradient-weighted class activation mapping (Grad-CAM) is
a visualization method for CNNs that allow for "visual explanation" for decision making based
on the gradients of a network, given predicted outputs. Observing the activations from the
output of the last pooling layer in our encoder network enables us to produce a coarse local-
ization map where the crucial regions in the depth image are highlighted. For the following
visualizations, highlighted regions indicate activations within the encoder network. The darker
blue color in the Grad-CAM visualizations indicates no activation.

In figure 7.19 we can observe a depth image with the best action sequence, a safe sequence
with the lowest deviation to the goal direction, and the corresponding Grad-CAM visualization.
In the depth image, three pillars are present: one to the left, close to the robot, one in the center
of the image, and one further back to the right. The Grad-CAM visualization shows highlighted
regions on the right-hand side of the image where obstacles are absent. Furthermore, the pillar
to the image’s left and the free space behind it are highlighted. The immediate collision threat
in the left pillar and the obstacle-free traversable space appear more pronounced in the Grad-
CAM visualization.

Chapter 7: Results 73

(a) Depth map with the best action sequence (b) Grad-CAM visualization

Figure 7.19: Depth map and the corresponding GRAD-cam visualization corresponding to the
best action sequence.

Next, we have the same scene, this time with the action sequence most likely to cause a colli-
sion. From figure 7.20, the highlighted region in the Grad-CAM visualization is almost entirely
on the left pillar, which poses the most immediate threat to a collision-free path. Interestingly,
the floor is not highlighted even though it could be a potential collision threat if the robot was
allowed motion in the z-direction.

(a) Depth map with the least safe action sequence (b) Grad-CAM visualization

Figure 7.20: Depth map and the corresponding GRAD-cam visualization corresponding to the
worst action sequence.

Moving on to a different scene, in figure 7.21, the RMF has moved to the left side of the corridor
and is facing a wall. The action sequence that minimizes the goal objective is visualized in blue,
pointing towards an obstacle-free space between the wall and a pillar on the right-hand side
of the image. The localization map highlights the obstacle-free space between the wall and
the pillar. Interestingly, the left-most part of the wall, along with the floor and the pillar, is
barely highlighted in the Grad-CAM visualization, indicating that these areas also play a part
in determining the action sequence.

Chapter 7: Results 74

(a) Depth map with the best action sequence (b) Grad-CAM visualization

Figure 7.21: Depth map and the corresponding GRAD-cam visualization corresponding to the
best action sequence.

The wall is the most prominent feature in determining the collision for the action sequence
most likely to cause a collision, as visualized in figure 7.22. This makes sense given the current
trajectory of the robot, moving left, as the wall poses the most immediate threat for collision.
Again, the floor is not highlighted.

(a) Depth map with the least safe action sequence (b) Grad-CAM visualization of the least safe ac-
tion sequence

Figure 7.22: Depth map and the corresponding GRAD-cam visualization corresponding to the
worst action sequence.

Although the results presented this far mainly highlight a well-behaving navigation policy, the
results in table 7.1 also tells us that the policy is not perfect and prone to collision, especially in
the hard environment. The collisions can be separated into two categories: head-on collisions
and pass-by collisions. Head-on collisions are when an object is well within the observed depth
map. The cause of head-on collisions was, more often than not, objects close together within
the environment. When two objects were close together, the drone managed to avoid the first
obstacle by turning around it. After avoiding the first obstacle, the robot would turn towards
the goal direction, where there would be another obstacle. With little to no time to react,

Chapter 7: Results 75

the robot would collide head-on. These collisions accounted for the majority of collisions in
the hard environment. On the other hand, pass-by collision is when an obstacle is present
within the FOV, located towards the edges of the observed depth. This causes the robot to clip
the obstacle when attempting to traverse around it. These collisions would usually happen
as a consequence of the robot turning towards the goal direction too quickly after initially
attempting to avoid an obstacle. Pass-by collisions were the primary cause of collisions in the
easy environment but also occurred in the hard environment. The most usual causes for head-
on and pass-by collisions are visualized in figure 7.23.

(a) Head-on collision (b) Pass-by collision

Figure 7.23: The two different collisions

Overall, safe navigation has proved to be more difficult when there is an abundance of obstacles.
The easy environment saw a success rate of 80% along with an average distance traveled above
100 meters, suggesting that the navigation policy is mainly sufficient to traverse corridors of
such complexity. On the other hand, we saw a decrease in performance in the hard environ-
ment on the number of successful runs and the average distance traveled, resulting in 10%
and close to 47 meters, respectively. Furthermore, the robot can reason in real-time about the
environment based on the observations, as is visualized through the trajectories in figure 7.17
and 7.18. The Grad-CAM visualizations illustrate which parts of the observed images are es-
sential to calculating collision probabilities of the best and worst action sequences. The results
show that obstacle-free space is highlighted for safe action sequences, whereas immediate col-
lision threats are more prominent in the Grad-CAM visualization for unsafe action sequences.
Furthermore, collisions happen, and the type of collisions are separated into head-on and pass-
by collisions. Head-on collisions accounted for most of the collisions in the hard environment,
whereas pass-by collisions occurred more often in the easy environment.

Chapter 8

Discussion

As illustrated and described in chapter 7, there are some shortcomings within the different
components leading up to the performance of ORACLE. Still, the overall results are encour-
aging. In this section, we aim to discuss the results presented by focusing on the probable
causes as to why the results are as they are. Furthermore, we will suggest improvements or
different approaches that, in turn, could be beneficial for further development.

8.1 Stereo Matching

Stereo matching was implemented in used in order to bridge the reality gap and increase
sim-to-real transfer. We have seen how semi-global matching has been used to produce depth
images.

First, through the results, it is evident that texture is essential when performing semi-global
matching. Through illustrations of different scenes, the matching algorithm proved useful with
enough texture as it performed well on multiple objects, like the tables and trees. However,
it struggled more with less texture, as was palpable with the fences. In addition, the texture-
less background, often towards the images’ ceiling, proved difficult when matching on the
stereo pair. These results are not unanticipated from the theory established in section 3.5. An
immediate improvement would be to add more texture to the objects, particularly the fences,
as well as to the background. However, this would require more feature engineering, which is
tedious. Unfortunately, applying sufficient texture to the fences proved difficult as the objects
were impervious to details other than a color change. Instead, for training, it would be possible
to remove the fences entirely, creating a slightly simpler environment for data collection.

Additionally, the OpenCV implementation of semi-global matching contains multiple tunable
parameters, including penalties and smoothness. Finding the optimal combination of these
parameters is complex, and in this thesis, the parameters used were inspired by [46]. The
set of parameters is likely not optimal and could thus be improved. Determining the optimal

76

Chapter 8: Discussion 77

set of parameters is impossible to obtain through manual tuning, given the endless possibilit-
ies. Alternatively, finding a better set of parameters, perhaps the optimal set, could be solved
through a learning-based approach. [47] used a deep neural network to learn the penalties
and smoothness parameters of semi-global matching on the KITTI dataset. The KITTI dataset
is a benchmark dataset for computer vision related to autonomous driving, containing real
images of various traffic scenarios[48]. The results of [47] showed an improvement toward
accurate matching in the dataset, highlighting how a learning-based approach can be used to
improve semi-global matching. Adopting the method of [47], a learning-based approach to
parameter selection could likely be beneficial for our matching purposes and potentially make
subsequent learning easier.

Another issue encountered with the stereo matching was the range of depth when matching.
As established in the theory section of semi-global matching 3.5, depth is inversely propor-
tional to the disparity. Hence, more extensive disparity results in less depth. However, when
initially deploying the matching algorithm and converting to depth, the depth across all im-
ages was on a scale from −1.5 and 3 meters, a range far from the actual depth as the stereo
camera captured objects away as 50 meters. The negative part of the scale can be explained
through invalid matches being converted to depth. However, the positive part of the scale only
covering up to 3 meters is more illogical. When the range scale is inaccurate, the often logical
explanation converges towards the camera setup and the images not being rectified. Despite
that, the documentation of the stereo camera used in the simulation suggests that the stereo
pair is rectified. Hence, the range scale is puzzling, and the origin of the range scale is uncer-
tain. Given that the scale was off, it required engineering to adapt the scale to fit the images in
question. Given that this scale was not perfectly linear, some distances in the resulting depth
images are slightly off concerning actual depth. However, this is not expected to be a decisive
factor when running the planner in the evaluation environments as the images received in
real-time are identical in range to the images used for training.

8.2 Representation Learning and VAE

8.2.1 How The Results Affect Navigation

First, we will discuss the training history for the VAE, visualized in figure 7.4. The history
decreases rapidly at the beginning, which is typical for machine learning tasks. This is due
to the solution being far from an optimum solution, resulting in more significant gradients
and thus more extensive updates. The gradient will eventually be more diminutive as the
model approaches a local or global optimum. Simultaneously, as the model moves towards a
solution in the optimization space, the adaptive optimizer Adam makes the rate at which the
parameters in the network change even smaller. This effect is visible in the training history, as
the respective losses converge towards more or less constant values. At the end of the training,
there is a visible value gap between the training and validation losses. This is known as a
generalization or training gap and is impossible to remove entirely. However, it could perhaps
be reduced by adopting additional regularization methods, such as Monte Carlo dropout. Still,
the validation loss does not increase during the training process, indicating that the model

Chapter 8: Discussion 78

does not overfit the training data. Given the training history in figure 7.4, the model seems
to generalize well to the validation data. Naturally, this would most likely indicate that the
model would generalize well to similar but previously unseen data, namely data received in
real-time when traversing the two evaluation environments.

An interesting observation about the reconstructed images is that there is a trend for larger
objects, for example, pyramids and arches, to be reconstructed. In comparison, smaller objects,
like the chairs or the cross-fences, are more likely to disappear or at least lack coherent features.
Intuitively, this is reasonable given the utilized loss function of the evidence lower bound.
Previously established, the reconstruction term of the loss contributes the most to the overall
loss. Hence, the model is more likely to properly reconstruct larger objects to optimize the loss,
as they cover a more significant section of the images. This means that the more prominent
objects are more likely to be represented in the latent space. However, this may not be optimal
concerning motion planning as objects closer to the robot are more critical to detect to execute
safe actions. Hence, a possible extension to the VAE to make feature extraction more suitable
for motion planning could be to add a weight term to the loss function. Adding more constraints
on objects at lesser depth makes objects further away less critical to minimizing the negative
evidence lower bound.

The results in chapter 7.2 show how the VAE is used for representation learning, thus learning
the most salient features in the depth images. The reconstruction of images is usually satis-
factory when it comes to preserving depth but is more lacking in retaining geometric features.
For more complex scenes, these results partially crumble, as the results have shown an in-
creased difficulty in reconstructing the depth in scenes where obstacles/objects are abundant
or where fences are close to the camera. In other words, the reconstructions are lacking when
many features are present within the images. The reconstructions could potentially be a direct
consequence of the results observed from stereo matching. However, from the part of the res-
ults where fences are closer to the robot, the reconstructions are still missing components that
are somewhat present in the filtered depth maps. More likely, these results are explainable
by evaluating the latent space. For the results obtained, the latent dimension of choice was
64. However, this does not necessarily mean that the latent space could represent 64 different
obstacles. Realistically, when describing an object in the latent space representation, at least
a couple of variables are utilized to describe a feature in the input, for example, the position
and size of the object. In practice, this means that, realistically, a latent space dimension of 64
can only describe a couple of handfuls of different features. Hence, for cluttered scenes, where
there are more objects, it is realistic that there would be gaps in the reconstruction as the size
of the latent space is insufficient to capture all the features in the input image. This could be
the case for the fences, as well as the dense environments.

8.2.2 Improving Representation Learning

Perhaps the most obvious solution to having a latent space incapable of representing all fea-
tures in the input is to increase the size of the latent space. Doing so would allow more features
in the input to be encoded into the latent space, also making reconstruction easier as there are

Chapter 8: Discussion 79

more latent variables to draw from. However, increasing the latent space comes with some dis-
advantages. First, increasing the latent size would increase the capacity of the VAE structure,
possibly allowing shortcuts where information is copied rather than learned. For our partic-
ular problem, one could likely increase the latent space quite a lot without running into this
particular problem. However, it is worth considering to what extent the size of the latent space
could be expanded while still learning the most salient features. Second, although the model’s
performance is likely to increase by having a larger latent space, the model would also require
more training. Naturally, this would increase the time required to reach a satisfactory model.
Additionally, a model with higher capacity is more likely to overfit on the data[49, 50]. This, in
turn, either put more constraints on the learning process, requiring further regularization, or
on the data to have a higher variance. With our data set containing roughly 230000 images for
training, it is reasonable to assume sufficient variance to support a higher latent dimension.
Lastly, and perhaps most important, is the consequences of increasing the capacity, namely the
model complexity. Increasing the complexity of the model is equal to increasing the number
of weights or parameters in the network. Besides making training more cumbersome as more
gradients need to be computed during backpropagation, the forward pass will also be more
cumbersome. This will increase inference time when running the planner in real-time. Given
that our developed model is implemented on a robot to traverse a cluttered environment, com-
putational time is a severely important constraint. Therefore, it should at least be considered
before increasing the complexity of the model.

Another potential solution related to the latent space would be that of disentanglement. The
VAE we have used in learning safe and resilient navigation has an entangled latent space. A
latent space is said to be entangled if one node, also known as a generative factor, contributes
to two or more features in the reconstructed image. On the contrary, in a disentangled latent
space, one generative factor is only mapped to one feature in the output [51]. Independent
nodes in the latent space are not sufficient to ensure disentanglement. Having a disentangled
latent space has proved useful as fewer nodes in the latent space are required to learn a rep-
resented feature[51]. An extension to the VAE[34] that utilizes a disentangled latent space is
the β-VAE [52]. The β-VAE is created through a slight modification in the loss objective:

L(θ ,φ; x , z,β) = Eqφ(z | x) [logpθ (x | z)]− β DK L(qφ(z | x)||pθ (z)) (8.1)

Having β = 1 leads to the original VAE objective. Utilizing β > 1, however, puts a stronger
constraint on the capacity of the encoder network, constituting a more considerable bottleneck
for the latent distribution[52]. Alternatively, this β can be viewed as forcing an upper bound
on the information transmitted through the network. In other words, the bottleneck on z en-
courages the model to learn the most efficient representation of the input data, thus creating
a disentangled latent space. However, this usually comes at the cost of having a weaker recon-
struction due to the loss of high-frequent details. Still, using a β-VAE has proved beneficial for
sim-to-real transfer in robotics[53]. Furthermore, for our purposes of safe navigation, adopt-
ing the β-VAE approach could make representation learning more effective without expanding
the latent space and increasing inference time.

Chapter 8: Discussion 80

8.3 ORACLE-VAE and Safe Navigation

8.3.1 From a Machine Learning Perspective

We will start the discussion about ORACLE-VAE by analyzing the performance from a pure
machine learning standpoint. First, the binary loss in figure 7.11 on the collision probabilities
sees quite a large generalization gap. Furthermore, it seems to overfit the training data. This
can be seen from the increase in the validation loss compared to the training loss. The learning
curves for the successive metrics, accuracy, precision, recall, and F1-score, from figure 7.12,
7.13, 7.14 and 7.15 respectively, are likely as observed due to the overfitting observed from
the loss. More notably is the validation precision, which decreases. Unfortunately, precision
and recall are often in tension, meaning that precision is likely to decrease if recall increases.
Despite the dip in validation precision, the F1-score remains mostly the same, showcasing
how the overall performance is stable. Additionally, from the validation F1-score, the value
increases until around 50 epochs. Coincidentally, this is also when the validation loss is at its
lowest value and when the validation accuracy stabilizes. This tells us that training beyond this
point is mostly a "tug-of-war" between precision and validation. Interestingly, the history of the
VAE loss in ORACLE-VAE is remarkably similar to the stand-alone VAE in that it is not overfitting
the training data. Concurrently, the gap between the values of the training and validation loss is
smaller. Regularization is utilized to reduce the generalization gap. The reduced gap observed
can likely be attributed to the use of Monte Carlo dropout in addition to batch normalization.

Furthermore, when optimizing on two losses, the optimization space in which the model at-
tempts to find an optimum becomes more complex. In turn, this creates a more complex op-
timization problem. It is not entirely unlikely that the loss for the reconstructions and the loss
for the collision probabilities pull the model in different directions in the optimization space,
as the reconstruction loss values larger objects that cover a larger portion of the images. In
contrast, the collision probabilities would likely emphasize objects close by. With the chosen
loss weights αc = 1.0 and αo = 0.001, the different losses, after the initial decrease in val-
ues, will contribute with values at roughly 25 and 56 (56000 ·0.001), respectively to the total
loss. Consequently, it will yield larger gradients for the reconstruction loss, resulting in larger
parameter updates for the weights that infer the reconstructed output. If the two losses pull
in different directions in the optimization space, it would explain the overfitting on collision
probabilities and not on the reconstructed images. Furthermore, it could also explain the gap
in values in the ELBO loss when trained in union with collision probabilities compared to the
stand-alone VAE. Different approaches to optimizing the total loss of ORACLE-VAE, such as
pre-training and fine-tuning of various components and freezing different layers, could result
in a learning process where less overfitting occurs. Even so, the best model for safe navigation
in cluttered environments was the model trained end-to-end. An interesting addition to the
training of the model could be to adaptively assign weights to the different losses, αo and αc ,
based on the magnitude of values in the respective losses.

Chapter 8: Discussion 81

8.3.2 Navigation in Cluttered Environments

The results when navigating cluttered environments are greatly affected by the difficulty. The
easy environment yielded a substantially higher success rate than the hard environment, at
80% and 10% respectively.

The results in the easy environment are encouraging as they demonstrated that it is possible to
execute mostly safe navigation in relatively simple environments. Through the 20 runs, 16 runs
were successful, and another two runs managed to avoid all obstacles safely but crashed close
to the goal position, as is visualized in 7.16a. After clearing the obstacles, the RMF had a bias
toward moving to the right. A possible explanation for this behavior can be traced back to ste-
reo matching. The environment was defined by walls on two sides, while the two remaining
sides, at the spawn and goal location, were not encapsulated by walls, as illustrated in fig-
ure 6.10. In the simulated environments, when the robot has managed to avoid all obstacles
along the corridor, the observed depth turns entirely to noise due to lack of texture. As the
model approaches the goal, this seemingly creates confusion towards determining safe action
sequences, resulting in the RMF colliding on two separate runs. These results also illustrated
how the learned navigation policy has a bias for a motion to the right when it is impossible
to interpret depth. Presumably, a quick fix to this particular response would be to alter the
environment to be squared off by walls on all sides of the environment.

When observations are entirely noise, the bias towards the movement to the right is less pro-
nounced in the hard environment. As the environment is denser with more obstacles, a pillar
is very close to the goal position, as visualized in figure 7.16b. When the robot avoids the last
obstacle, it is just meters away from the goal, thus potentially giving it less time to move to the
right. Still, from the two trajectories, it is possible to observe a slight bias towards rightward
movement. Again, this is probably attributed to the open-ended environment, as illustrated in
figure 6.11.

Furthermore, from the results in chapter 7.3, the robot is capable of making reasonable pre-
dictions towards safe actions given the observed depth, as is visualized in figure 7.17 and
7.18. Furthermore, the Grad-CAM visualization illustrates how the different components in
observed depth influence decision-making. Here, the least safe action sequences are more in-
fluenced by obstacles that are more likely to be an immediate cause of collisions. In contrast,
safe actions are more affected by the obstacle-free space visible in the observations. Therefore,
the Grad-CAM visualization and the predicted action sequences indicate a well-behaving nav-
igation policy. Interestingly, the robot often preferred downward motion, as can be observed
with the trajectories and partially from the Grad-CAM visualization, somewhat highlighting
the floor in the case of a safe action sequence. Intuitively, this is illogical as the floor is a
surface it is possible to collide with. Also, remember from stereo matching how textureless
background would make objects appear larger. As the textureless background only occurred
towards the top of objects, this could have implications for learning, resulting in the learned
policy preferring downward motion. However, running a short test, allowing the robot to have
non-zero velocity in the z-direction, vz , resulted in the robot colliding with the floor. Hence, a

Chapter 8: Discussion 82

more probable explanation for the preferred downward movement is an error when labeling
collision with the floor through self-supervision. If collisions with the floor are not labeled in
the data set, it would explain the desire to move towards the ground, as such movement is
"safe" according to the data used to train the policy.

Collisions occurred more frequently in the hard environment than in the easy one. The two
environments also saw different collisions, with head-on collisions being the primary cause of
collisions in the hard environment, while pass-by collisions were more frequent in the easy
environment. Both types of collisions can largely be attributed to the desire to move towards
the goal position. After initially avoiding an obstacle, it is common for the object to move out
of the field of view due to a sharp turn. Because the robot only evaluates actions based on the
current depth image and state, most subsequent action sequences would be evaluated as safe.
Given the desire to move in the goal direction, the robot will likely choose an action with a
significant change in heading angle, inducing another sharp turn. For the easy environment,
this would occasionally result in a pass-by collision as the robot turned too quickly. While for
the hard environment, the initial movement to avoid an obstacle would usually be sufficient to
clear the obstacle, avoiding pass-by collisions. However, when a second object appears quickly
after clearing the first obstacle, it infuses confusion, making subsequent evaluation more dif-
ficult, resulting in head-on collisions. The underlying controller for heading was tuned in an
attempt to solve this issue as it influences the rate at which the robot turns. However, forcing a
slower rate of change for heading would often result in the robot being unable to initially avoid
the obstacle, ending flight with a head-on collision. Changing the parameter when calculating
the weighted collision cost in equation 6.4 to increase the influence of future actions was also
experimented with. However, this would often result in more sporadic movement as too little
weight was put into immediate actions. On the other hand, decreasing the weight on future
actions and prioritizing more immediate actions allowed the robot to get too close to obstacles
before turning. Thus, increasing and decreasing λ resulted in more frequent collisions.

8.3.3 Possible Improvements and Further Work

Several extensions to our method were mentioned through discussion about stereo matching
and image reconstruction, which could result in an improved navigation policy. For example,
it could be beneficial to adopt the ideas of learning-based semi-global matching and β-VAE.
However, it is possible to further extend the model by allowing the robot to choose its velocity
freely, incorporate memory about previous observations, and perhaps utilize reinforcement
learning for fine-tuning.

During data collection, the actions performed by the robot were sampled when creating motion
primitive trajectories. Hence, different actions across different epochs were assigned different
velocities in forward and vertical directions, vx and vz . As a result, the actions stored in the data
set used for training contain action sequences varying in velocities. In theory, this would indic-
ate that the robot implicitly learns to adjust its velocity to avoid obstacles. However, because
the motion primitives library produces actions with a constant forward velocity, the robot’s
ability to adjust its speed to avoid obstacles is not tested when traversing the obstacle-filled

Chapter 8: Discussion 83

corridors. Allowing the robot to determine its velocity would be an exciting addition to the
ORACLE framework. In practice, this could be implemented by sampling the forward velocity
from a uniform distribution in the motion primitives library, adding an element of reasoning
when evaluating the action sequences. If the robot could adapt its velocity through reasoning,
it would be expected to observe higher velocities when navigating in obstacle-free space and
slower movement in proximity to obstacles. Hence, variations in velocity could perhaps lead
to an improved navigation policy.

The causes of collisions emphasize that the robot only acts on the current observations and
thus does not consider previous observations. Introducing temporal awareness into the model
could be beneficial as previous observations would be considered upon evaluating action se-
quences at a current point in time. Similar to the ANYmal robot[17], which can reason about
movement in a dynamic environment, it would be possible to adopt a recurrent structure to
the observations, thus introducing a memory of previous observations. More specifically, dur-
ing training, one could utilize an LSTM network to predict future observations, optimizing
the difference between predicted and actual observations. By considering previous observa-
tions when evaluating action sequences, it would be reasonable to suggest that the frequency
of which the collisions we have encountered would be reduced, as the robot would possess
knowledge of the location of obstacles even though no obstacles are present within the field
of view after executing a collision avoiding maneuver.

More far-fetched, combining the learned navigation policy, learned through supervised learn-
ing, with reinforcement learning could yield interesting results. Reinforcement learning has
also proved useful for aerial robotic applications, allowing for precise and collision-free nav-
igation[54–56]. However, these methods are trained end-to-end on reinforcement learning
algorithms. For our model, being trained through supervised learning, it would perhaps be
more interesting to adopt some elements of RL without having to train the model end-to-end.
Encouragingly, supervised learning and RL have been utilized in union for continuous con-
trol[57], increasing performance in simulation. By imposing the learned policy onto an RL
framework, transferring the behavior[58] could thus potentially be used in order to fine-tune
the navigation policy to increase performance.

Chapter 9

Conclusion

More effective and lighter sensors, more on-board computational power, better software and
hardware, and difficulties related to data association in traditional SLAM methods have resul-
ted in the increasing popularity of learning-based approaches towards solving complex navig-
ation tasks. Learning-based approaches for ground and aerial robots [9–11, 26] have shown
remarkable results in collision-free navigation. The goal of this thesis was to further improve
upon the ORACLE[11] neural network architecture, which has proved successful in safe nav-
igation in cluttered environments. Attempting to improve the navigation policy and increase
sim-to-real transfer was done by adding depth images created through semi-global matching, a
stereo matching algorithm, and representation learning through probabilistic modeling using
a VAE. In order to conduct experiments, the relevant theory was presented, focusing on the
various neural network architectures used in the ORACLE model.

The depth images created through semi-global matching illustrate how the texture is crit-
ical to obtaining meaningful depth images. Consequently, the matching algorithm struggled
with fences, which lacked essential characteristics, and the untextured background, making
surrounding objects appear larger than their actual size. Furthermore, the VAE used was well-
behaved, primarily preserving depth, but struggled more with retaining geometric features.
For denser environments, these results partially deteriorated as preserved depth in the recon-
structed images was more inadequate. The results when navigating cluttered environments are
two-fold. On the one hand, it is encouraging that the learned policy can frequently traverse
a relatively simplistic environment, avoiding obstacles to reach a goal position. On the other
hand, deploying the learned policy in a denser and more complex environment illustrates that
there is still room for improvement as the robot collides more often. Still, the result shows
how the RMF can reason about its observations to evaluate safe actions. Here, safe actions are
more influenced by free space in the environments, whereas unsafe actions depend more on
immediate threats to collision in close obstacles. Furthermore, when the robot collided, it was
usually due to sharp turns to minimize the deviation in heading of the goal direction supplied
by a global planner. The sharp turns can be seen as premature movement and are influenced

84

Chapter 9: Conclusion 85

by the lack of temporal awareness.

Further improvements can be made to improve collision-free navigation. First, semi-global
matching could potentially be improved through a learning-based approach[47]. Furthermore,
additional work towards the simulation can be done by adding more texture, thus making semi-
global matching more robust. Second, it can possibly further improve representation learning
by altering the loss objective to emphasize closer objects. Furthermore, representation learn-
ing could be improved by either increasing the dimension of the latent space in the VAE or
through disentanglement of the latent space. Adopting the idea of β-VAE[52] could, in turn,
result in an increased amount of represented features in the latent space, making subsequent
learning for collision probabilities easier. Lastly, further work can be done on ORACLE-VAE. As
velocities are sampled when collecting data, the model should implicitly learn to adjust its ve-
locity to navigate collision-free cluttered environments. However, when evaluating the model
in cluttered environments, the robot is limited to constant velocities, thus not exploring the
full potential of the navigation policy. Extending the evaluation procedure to allow the robot
to adjust its velocity could result in improved performance. Furthermore, adopting temporal
awareness through a recurrent neural network would add a sense of memory towards made
observations, which could further improve the performance of the policy. More far-fetched, the
training of ORACLE-VAE could potentially be used in union with RL as a means of fine-tuning,
further improving the learned policy.

Bibliography

[1] S. Shen, N. Michael and V. Kumar, ‘Autonomous multi-floor indoor navigation with a
computationally constrained mav,’ in 2011 IEEE International Conference on Robotics
and Automation, 2011, pp. 20–25. DOI: 10.1109/ICRA.2011.5980357.

[2] S. Weiss, D. Scaramuzza and R. Siegwart, ‘Monocular-slam-based navigation for autonom-
ous micro helicopters in gps-denied environments,’ J. Field Robotics, vol. 28, pp. 854–
874, Nov. 2011. DOI: 10.1002/rob.20412.

[3] P. Murray and M. Schukat, ‘Mav based slam and autonomous navigation: A view towards
efficient on-board systems,’ in 2017 28th Irish Signals and Systems Conference (ISSC),
2017, pp. 1–6. DOI: 10.1109/ISSC.2017.7983597.

[4] M. Blösch, S. Weiss, D. Scaramuzza and R. Siegwart, ‘Vision based mav navigation in
unknown and unstructured environments,’ in 2010 IEEE International Conference on
Robotics and Automation, 2010, pp. 21–28. DOI: 10.1109/ROBOT.2010.5509920.

[5] F. Fraundorfer et al., ‘Vision-based autonomous mapping and exploration using a quad-
rotor mav,’ in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012, pp. 4557–4564. DOI: 10.1109/IROS.2012.6385934.

[6] H. Durrant-Whyte and T. Bailey, ‘Simultaneous localization and mapping: Part i,’ IEEE
Robotics Automation Magazine, vol. 13, no. 2, pp. 99–110, 2006. DOI: 10.1109/MRA.
2006.1638022.

[7] T. Bailey and H. Durrant-Whyte, ‘Simultaneous localization and mapping (slam): Part
ii,’ IEEE Robotics Automation Magazine, vol. 13, no. 3, pp. 108–117, 2006. DOI: 10.
1109/MRA.2006.1678144.

[8] J. Fuentes-Pacheco, J. Ascencio and J. Rendon-Mancha, ‘Visual simultaneous localiz-
ation and mapping: A survey,’ Artificial Intelligence Review, vol. 43, Nov. 2015. DOI:
10.1007/s10462-012-9365-8.

[9] G. Kahn, P. Abbeel and S. Levine, Land: Learning to navigate from disengagements, 2020.
DOI: 10.48550/ARXIV.2010.04689. [Online]. Available: https://arxiv.org/abs/
2010.04689.

[10] G. Kahn, P. Abbeel and S. Levine, Badgr: An autonomous self-supervised learning-based
navigation system, 2020. DOI: 10.48550/ARXIV.2002.05700. [Online]. Available: https:
//arxiv.org/abs/2002.05700.

86

https://doi.org/10.1109/ICRA.2011.5980357
https://doi.org/10.1002/rob.20412
https://doi.org/10.1109/ISSC.2017.7983597
https://doi.org/10.1109/ROBOT.2010.5509920
https://doi.org/10.1109/IROS.2012.6385934
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1638022
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1109/MRA.2006.1678144
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.48550/ARXIV.2010.04689
https://arxiv.org/abs/2010.04689
https://arxiv.org/abs/2010.04689
https://doi.org/10.48550/ARXIV.2002.05700
https://arxiv.org/abs/2002.05700
https://arxiv.org/abs/2002.05700

Bibliography 87

[11] H. Nguyen, S. H. Fyhn, P. D. Petris and K. Alexis, Motion primitives-based navigation
planning using deep collision prediction, 2022. arXiv: 2201.03254 [cs.RO].

[12] C. Sampedro Pérez, A. Rodríguez Ramos, H. Bavle, A. Carrio, P. de la Puente and P.
Campoy, ‘A fully-autonomous aerial robot for search and rescue applications in indoor
environments using learning-based techniques,’ Journal of Intelligent Robotic Systems,
vol. 95, pp. 1–27, Aug. 2019. DOI: 10.1007/s10846-018-0898-1.

[13] S. Hossain and D. Lee, ‘Deep learning-based real-time multiple-object detection and
tracking from aerial imagery via a flying robot with gpu-based embedded devices,’
Sensors, vol. 19, p. 3371, Jul. 2019. DOI: 10.3390/s19153371.

[14] A. Giusti et al., ‘A machine learning approach to visual perception of forest trails for
mobile robots,’ IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 661–667, 2016.
DOI: 10.1109/LRA.2015.2509024.

[15] S. Ross et al., ‘Learning monocular reactive UAV control in cluttered natural environ-
ments,’ CoRR, vol. abs/1211.1690, 2012. arXiv: 1211.1690. [Online]. Available: http:
//arxiv.org/abs/1211.1690.

[16] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[17] D. Hoeller, L. Wellhausen, F. Farshidian and M. Hutter, ‘Learning a state representation
and navigation in cluttered and dynamic environments,’ 2021. DOI: 10.48550/ARXIV.
2103.04351. [Online]. Available: https://arxiv.org/abs/2103.04351.

[18] C. Richter and N. Roy, ‘Safe visual navigation via deep learning and novelty detection,’
Jul. 2017. DOI: 10.15607/RSS.2017.XIII.064.

[19] M. Popovic, F. Thomas, S. Papatheodorou, N. Funk, T. Vidal-Calleja and S. Leutenegger,
Volumetric occupancy mapping with probabilistic depth completion for robotic navigation,
2020. DOI: 10.48550/ARXIV.2012.03023. [Online]. Available: https://arxiv.org/
abs/2012.03023.

[20] J. Kober, J. Bagnell and J. Peters, ‘Reinforcement learning in robotics: A survey,’ The
International Journal of Robotics Research, vol. 32, pp. 1238–1274, Sep. 2013. DOI: 10.
1177/0278364913495721.

[21] M. Quigley et al., ‘Ros: An open-source robot operating system,’ vol. 3, Jan. 2009.

[22] N. Koenig and A. Howard, ‘Design and use paradigms for gazebo, an open-source multi-
robot simulator,’ in 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, 2004, 2149–2154 vol.3. DOI: 10.
1109/IROS.2004.1389727.

[23] G. Kahn, A. Villaflor, P. Abbeel and S. Levine, Composable action-conditioned predictors:
Flexible off-policy learning for robot navigation, 2018. DOI: 10.48550/ARXIV.1810.
07167. [Online]. Available: https://arxiv.org/abs/1810.07167.

[24] G. Kahn, A. Villaflor, B. Ding, P. Abbeel and S. Levine, Self-supervised deep reinforcement
learning with generalized computation graphs for robot navigation, 2017. DOI: 10.48550/
ARXIV.1709.10489. [Online]. Available: https://arxiv.org/abs/1709.10489.

https://arxiv.org/abs/2201.03254
https://doi.org/10.1007/s10846-018-0898-1
https://doi.org/10.3390/s19153371
https://doi.org/10.1109/LRA.2015.2509024
https://arxiv.org/abs/1211.1690
http://arxiv.org/abs/1211.1690
http://arxiv.org/abs/1211.1690
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.2103.04351
https://doi.org/10.48550/ARXIV.2103.04351
https://arxiv.org/abs/2103.04351
https://doi.org/10.15607/RSS.2017.XIII.064
https://doi.org/10.48550/ARXIV.2012.03023
https://arxiv.org/abs/2012.03023
https://arxiv.org/abs/2012.03023
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1177/0278364913495721
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.48550/ARXIV.1810.07167
https://doi.org/10.48550/ARXIV.1810.07167
https://arxiv.org/abs/1810.07167
https://doi.org/10.48550/ARXIV.1709.10489
https://doi.org/10.48550/ARXIV.1709.10489
https://arxiv.org/abs/1709.10489

Bibliography 88

[25] M. W. Mueller, M. Hehn and R. D’Andrea, ‘A computationally efficient motion primitive
for quadrocopter trajectory generation,’ IEEE Transactions on Robotics, vol. 31, no. 6,
pp. 1294–1310, 2015. DOI: 10.1109/TRO.2015.2479878.

[26] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun and D. Scaramuzza, ‘Learning
high-speed flight in the wild,’ Science Robotics, vol. 6, no. 59, Oct. 2021. DOI: 10.1126/
scirobotics.abg5810. [Online]. Available: https://doi.org/10.1126%2Fscirobotics.
abg5810.

[27] A. Vaswani et al., Attention is all you need, 2017. DOI: 10.48550/ARXIV.1706.03762.
[Online]. Available: https://arxiv.org/abs/1706.03762.

[28] W. Li et al., Interiornet: Mega-scale multi-sensor photo-realistic indoor scenes dataset,
2018. DOI: 10.48550/ARXIV.1809.00716. [Online]. Available: https://arxiv.org/
abs/1809.00716.

[29] A. Burkov, The Hundred-Page Machine Learning Book. Andriy Burkov, 2019, ISBN: 9781999579517.
[Online]. Available: https://books.google.no/books?id=0jbxwQEACAAJ.

[30] D. M. W. Powers, ‘Evaluation: From precision, recall and f-measure to roc, informed-
ness, markedness and correlation,’ 2020. DOI: 10.48550/ARXIV.2010.16061. [Online].
Available: https://arxiv.org/abs/2010.16061.

[31] Y. Sasaki, ‘The truth of the f-measure,’ Teach Tutor Mater, Jan. 2007.

[32] S. Hochreiter and J. Schmidhuber, ‘Long short-term memory,’ Neural computation, vol. 9,
pp. 1735–80, Dec. 1997. DOI: 10.1162/neco.1997.9.8.1735.

[33] D. J. Rezende, S. Mohamed and D. Wierstra, Stochastic backpropagation and approx-
imate inference in deep generative models, 2014. DOI: 10.48550/ARXIV.1401.4082.
[Online]. Available: https://arxiv.org/abs/1401.4082.

[34] D. P. Kingma and M. Welling, Auto-encoding variational bayes, 2013. DOI: 10.48550/
ARXIV.1312.6114. [Online]. Available: https://arxiv.org/abs/1312.6114.

[35] C. Hubmann, J. Schulz, M. Becker, D. Althoff and C. Stiller, ‘Automated driving in un-
certain environments: Planning with interaction and uncertain maneuver prediction,’
IEEE Transactions on Intelligent Vehicles, vol. PP, pp. 1–1, Jan. 2018. DOI: 10.1109/TIV.
2017.2788208.

[36] H. Hirschmuller, ‘Stereo processing by semiglobal matching and mutual information,’
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–
341, 2008. DOI: 10.1109/TPAMI.2007.1166.

[37] S. Birchfield and C. Tomasi, ‘Depth discontinuities by pixel-to-pixel stereo,’ in Sixth In-
ternational Conference on Computer Vision (IEEE Cat. No.98CH36271), 1998, pp. 1073–
1080. DOI: 10.1109/ICCV.1998.710850.

[38] D. Scharstein, R. Szeliski and R. Zabih, ‘A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms,’ in Proceedings IEEE Workshop on Stereo and Multi-
Baseline Vision (SMBV 2001), 2001, pp. 131–140. DOI: 10.1109/SMBV.2001.988771.

[39] S. Fidler, ‘Depth from stereo,’ p. 15, Mar. 2021. [Online]. Available: http://www.cs.
toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf.

https://doi.org/10.1109/TRO.2015.2479878
https://doi.org/10.1126/scirobotics.abg5810
https://doi.org/10.1126/scirobotics.abg5810
https://doi.org/10.1126%2Fscirobotics.abg5810
https://doi.org/10.1126%2Fscirobotics.abg5810
https://doi.org/10.48550/ARXIV.1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.48550/ARXIV.1809.00716
https://arxiv.org/abs/1809.00716
https://arxiv.org/abs/1809.00716
https://books.google.no/books?id=0jbxwQEACAAJ
https://doi.org/10.48550/ARXIV.2010.16061
https://arxiv.org/abs/2010.16061
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.48550/ARXIV.1401.4082
https://arxiv.org/abs/1401.4082
https://doi.org/10.48550/ARXIV.1312.6114
https://doi.org/10.48550/ARXIV.1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1109/TIV.2017.2788208
https://doi.org/10.1109/TIV.2017.2788208
https://doi.org/10.1109/TPAMI.2007.1166
https://doi.org/10.1109/ICCV.1998.710850
https://doi.org/10.1109/SMBV.2001.988771
http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf
http://www.cs.toronto.edu/~fidler/slides/2015/CSC420/lecture12_hres.pdf

Bibliography 89

[40] R. Smith, Open dynamics engine, http://www.ode.org/, 2008. [Online]. Available: http:
//www.ode.org/.

[41] M. Woo, J. Neider, T. Davis and D. Shreiner, OpenGL programming guide: the official
guide to learning OpenGL, version 1.2. Addison-Wesley Longman Publishing Co., Inc.,
1999.

[42] F. Furrer, M. Burri, M. Achtelik and R. Siegwart, ‘Rotors – a modular gazebo mav simu-
lator framework,’ in Jan. 2016, vol. 625, pp. 595–625, ISBN: 978-3-319-26054-9. DOI:
10.1007/978-3-319-26054-9_23.

[43] H. R. Kam, S.-H. Lee, T. Park and C.-H. Kim, ‘Rviz: A toolkit for real domain data visu-
alization,’ Telecommun. Syst., vol. 60, no. 2, pp. 337–345, Oct. 2015, ISSN: 1018-4864.
DOI: 10.1007/s11235-015-0034-5. [Online]. Available: https://doi.org/10.1007/
s11235-015-0034-5.

[44] P. De Petris, H. Nguyen, T. Dang, F. Mascarich and K. Alexis, ‘Collision-tolerant autonom-
ous navigation through manhole-sized confined environments,’ in 2020 IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR), 2020, pp. 84–89. DOI:
10.1109/SSRR50563.2020.9292583.

[45] K. He, X. Zhang, S. Ren and J. Sun, ‘Deep residual learning for image recognition,’
CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online]. Available: http://
arxiv.org/abs/1512.03385.

[46] P. De Petris, T265d epth, https://github.com/tiralonghipol/t265_depth/tree/
master, 2021.

[47] A. Seki and M. Pollefeys, ‘Sgm-nets: Semi-global matching with neural networks,’ in
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 6640–
6649. DOI: 10.1109/CVPR.2017.703.

[48] A. Geiger, P. Lenz and R. Urtasun, ‘Are we ready for autonomous driving? the kitti vision
benchmark suite,’ in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
2012, pp. 3354–3361. DOI: 10.1109/CVPR.2012.6248074.

[49] K. Huesmann, S. Klemm, L. Linsen and B. Risse, Exploiting the full capacity of deep
neural networks while avoiding overfitting by targeted sparsity regularization, 2020. DOI:
10.48550/ARXIV.2002.09237. [Online]. Available: https://arxiv.org/abs/2002.
09237.

[50] R. Caruana, S. Lawrence and C. Giles, ‘Overfitting in neural nets: Backpropagation,
conjugate gradient, and early stopping.,’ vol. 13, Jan. 2000, pp. 402–408.

[51] C. P. Burgess et al., Understanding disentangling in -vae, 2018. DOI: 10.48550/ARXIV.
1804.03599. [Online]. Available: https://arxiv.org/abs/1804.03599.

[52] I. Higgins et al., ‘Beta-vae: Learning basic visual concepts with a constrained variational
framework,’ in ICLR, 2017.

[53] I. Higgins et al., Darla: Improving zero-shot transfer in reinforcement learning, 2017. DOI:
10.48550/ARXIV.1707.08475. [Online]. Available: https://arxiv.org/abs/1707.
08475.

http://www.ode.org/
http://www.ode.org/
https://doi.org/10.1007/978-3-319-26054-9_23
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1007/s11235-015-0034-5
https://doi.org/10.1109/SSRR50563.2020.9292583
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://github.com/tiralonghipol/t265_depth/tree/master
https://github.com/tiralonghipol/t265_depth/tree/master
https://doi.org/10.1109/CVPR.2017.703
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.48550/ARXIV.2002.09237
https://arxiv.org/abs/2002.09237
https://arxiv.org/abs/2002.09237
https://doi.org/10.48550/ARXIV.1804.03599
https://doi.org/10.48550/ARXIV.1804.03599
https://arxiv.org/abs/1804.03599
https://doi.org/10.48550/ARXIV.1707.08475
https://arxiv.org/abs/1707.08475
https://arxiv.org/abs/1707.08475

Chapter : Conclusion 90

[54] Y. Song, M. Steinweg, E. Kaufmann and D. Scaramuzza, ‘Autonomous drone racing with
deep reinforcement learning,’ CoRR, vol. abs/2103.08624, 2021. arXiv: 2103.08624.
[Online]. Available: https://arxiv.org/abs/2103.08624.

[55] A. Singla, S. Padakandla and S. Bhatnagar, ‘Memory-based deep reinforcement learning
for obstacle avoidance in UAV with limited environment knowledge,’ CoRR, vol. abs/1811.03307,
2018. arXiv: 1811.03307. [Online]. Available: http://arxiv.org/abs/1811.03307.

[56] O. Bouhamed, H. Ghazzai, H. Besbes and Y. Massoud, ‘Autonomous uav navigation:
A ddpg-based deep reinforcement learning approach,’ in 2020 IEEE International Sym-
posium on Circuits and Systems (ISCAS), 2020, pp. 1–5. DOI: 10.1109/ISCAS45731.
2020.9181245.

[57] D. Kangin and N. Pugeault, ‘Continuous control with a combination of supervised and
reinforcement learning,’ in 2018 International Joint Conference on Neural Networks (IJCNN),
2018, pp. 1–8. DOI: 10.1109/IJCNN.2018.8489702.

[58] V. Campos et al., Beyond fine-tuning: Transferring behavior in reinforcement learning,
2021. DOI: 10.48550/ARXIV.2102.13515. [Online]. Available: https://arxiv.org/
abs/2102.13515.

https://arxiv.org/abs/2103.08624
https://arxiv.org/abs/2103.08624
https://arxiv.org/abs/1811.03307
http://arxiv.org/abs/1811.03307
https://doi.org/10.1109/ISCAS45731.2020.9181245
https://doi.org/10.1109/ISCAS45731.2020.9181245
https://doi.org/10.1109/IJCNN.2018.8489702
https://doi.org/10.48550/ARXIV.2102.13515
https://arxiv.org/abs/2102.13515
https://arxiv.org/abs/2102.13515

Appendix A

Acronyms

MAV - Micro aerial vehicle

RMF - Resilient micro flyer

SLAM - Simultaneous localization an mapping

NN - Neural networks

ANN - Artificial neural networks

DNN - Deep neural network

CNN - Convolutional neural network

RNN - Recurrent neural network

LSTM - Long short-term memory

GRU - Gated recurrent unit

MLP - Multi-layer perceptron

EA - Autoencoder

VAE - Variational autoencoder

ELBO - Evidence lower bound

91

Chapter A: Acronyms 92

PCA - Principal component analysis

TP - True positive

TN - True negative

FP - False positive

FN - false negative

ReLU - Rectified linear unit

Adam - Adaptive moment estimation

Adagrad - Adaptive gradient descent

RMSprop - Root mean square propagation

SGM - Semi-global matching

ROS - Robot operating system

API - Application programming interface

IMU - Inertial measurement unit

FPS - Frames per second

FOV - Field of view

Grad-CAM - Gradient-weighted class activation mapping

93

Chapter B: Image Reconstruction Of Depth Images From A Depth Camera 94

Appendix B

Image Reconstruction Of Depth
Images From A Depth Camera

(a)

(b)

(c)

(d)

Figure B.1

Chapter B: Image Reconstruction Of Depth Images From A Depth Camera 95

(a)

(b)

(c)

(d)

Figure B.2

Chapter B: Image Reconstruction Of Depth Images From A Depth Camera 96

(a)

(b)

(c)

(d)

Figure B.3

Learning-based Collision-free N
avigation for Aerial Robots

M
agnus D

yre-M
oe

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Magnus Dyre-Moe

Learning-based Collision-free
Navigation for Aerial Robots

Master’s thesis in Cybernetics and Robotics
Supervisor: Konstantinos Alexis
Co-supervisor: Dinh Huan Nguyen
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Introduction
	Motivation
	Scope
	Outline

	Related Works
	Learning-based Approaches For Navigation
	Representation Learning In Robotic Applications

	Theoretical Background
	Supervised Learning
	Unsupervised Learning
	Neural Networks and Deep Learning
	Artificial Neural Networks
	Monte Carlo Dropout and Batch Normalization
	Deep Learning
	Convolutional Neural Networks
	Recurrent Neural Networks
	Long Short-Term Memory

	Representation Learning
	Autoencoders
	Variational Autoencoders

	Depth From Stereo Imagery and Semi-Global Matching

	Problem Description
	Software Tools
	Gazebo
	ROS - Robot Operating System
	TensorFlow
	OpenCV
	Quadrotor Robot
	External Processing Power

	Proposed Approach
	Architectural Expansion
	Environmental Expansion
	Data Collection
	Training
	VAE
	ORACLE-VAE

	Evaluation

	Results
	Depth From Disparity
	VAE on Depth Images From Stereo Matching
	ORACLE-VAE
	From a Machine Learning Perspective
	Navigating in Cluttered Environments

	Discussion
	Stereo Matching
	Representation Learning and VAE
	How The Results Affect Navigation
	Improving Representation Learning

	ORACLE-VAE and Safe Navigation
	From a Machine Learning Perspective
	Navigation in Cluttered Environments
	Possible Improvements and Further Work

	Conclusion
	Bibliography
	Acronyms
	Image Reconstruction Of Depth Images From A Depth Camera

