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Abstract
Text is a prominent visual element for conveying ideas and emotions, and common
occurrence in our daily lives. As the representation of texts, fonts play an essential role.
Fonts show whether a text is serious or casual, scary or playful. They can impact the
quality of a joke, or make sentences more memorable. However, designing fonts can
be very time consuming, especially for languages with higher character count. Few-shot
font style transfer is able to automate this process, using only a few samples as reference.

This report proposes a novel font style transfer method, named few-shot font style
transfer with Extraction of Partial Style (EPS-Font). The method attempts to solve font
style transfer differently than a typical way, which is using the same encoder architecture
for content feature extraction and style feature extraction, with an encoder architecture
that focuses on treating the style reference images as partial style reference images. It
is shown that this way of extracting style features greatly increases the results over the
typical way, and that EPS-Font is able to outperform state-of-the-art methods in both
quantitative and qualitative evaluations. Additionally, experiments on using Deep Metric
Learning (DML) for font style transfer are conducted. The results of these experiments
suggest that DML does not improve the performance of the model, and that this is
because the model is affected negatively by DML when the datasets have many similar
fonts. Lastly, a modification that can be applied into a font style transfer method, named
Deformation and Texture Separation (DTS) is presented. This modification separates
the task of font style transfer into two parts: predicting the deformation and predicting
the texture using the deformation. DTS shows interesting results and is a potential
approach for new font style transfer methods.
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Sammendrag
Tekst er en sentral verktøy for å formidle ideer og følelser, og er en svært vanlig forekomst
i våre liv. Som representasjon av tekst spiller skrifttype en viktig rolle i formidlingen.
Skrifttyper viser om en tekst er alvorlig eller uformell, skummel eller leken. De kan på-
virke kvaliteten på en vits, eller gjøre setninger mer minneverdige. Design av skrifttyper
kan imidlertid være svært tidkrevende, spesielt for språk med høyere tegnantall. En tek-
nikk kalt skriftstiloverføring kan brukes til å automatisere denne prosessen ved å bruke
bare noen få eksempler som referanse. Skriftstiloverføring utføres ved å ekstrahere tegnet
fra et bilde og ekstrahere skrifttypen fra referansebilder, og blande disse ekstrasjonene
sammen for å lage et bilde av samme tegn og skrifttype som de respektive kildene.

Denne rapporten foreslår en ny metode for skriftstiloverføring, kalt few-shot font style
transfer with Extraction of Partial Style (EPS-Font). Metoden forsøker å løse problemet
annerledes enn en typisk måte, som er å bruke samme kodearkitekturen for ekstrasjon
av tegnet og for ekstrasjon av skrifttypen, med en koderarkitektur som istedet behandler
referansebildene av skrifttypen som delvis referansebilder. Det er vist at denne måten
å ekstraktere skrifttypen i stor grad øker resultatene fremfor den typiske måten, og at
EPS-Font er i stand til å utkonkurrere state-of-the-art metoder i både kvantitative og
kvalitative evalueringer. I tillegg utføres eksperimenter med å bruke Deep Metric Lear-
ning (DML) for skriftstiloverføring. Resultatene av disse eksperimentene tyder på at
DML ikke forbedrer ytelsen til modellen, og at dette er fordi modellen påvirkes negativt
av DML når datasettene har mange like skrifttyper. Til slutt presenteres en modifikasjon
som kan brukes i problemet, kalt Deformation and Texture Separation (DTS). Denne
modifikasjonen deler skriftstiloverføringsoppgaven i to deler: gjette utformingen til bok-
staven, så gjette teksturen ved hjelp av utformingen. DTS viser interessante resultater
og er en potensiell retning for nye metoder.
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1. Introduction
In this chapter, an insight into this thesis is given. The goal of this work is to progress
the state-of-the-art performance of few-shot font style transfer, with a focus on making
unrecognizable characters infrequent. The background and motivation of few-shot font
style transfer are described in Section 1.1, which is partially based on the specializa-
tion project mentioned in the preface. The goal and research questions, which will be
answered in this thesis, are presented in Section 1.2. The main contributions of this
thesis is given in Section 1.3. Finally, an overview of this thesis is given in Section 1.4
with brief explanations of each chapter.

1.1. Background and Motivation
Designing fonts can be time-consuming, especially for languages with higher character
count. For instance, the national encoding standard character set issued by the Chinese
government in 2000 consists of 20,000+ Chinese characters1. Many researchers have,
therefore, proposed approaches to automate this (Yuchen, 2017; Azadi et al., 2018; Park
et al., 2021b; Li et al., 2021). In the early work on font generation, methods mainly
relied on shape modeling of outlines and interpolation (Suveeranont and Igarashi, 2010;
Campbell and Kautz, 2014). While these methods got good results, they were easily
overwhelmed when performing on font styles with more low-level handcrafted features
(e.g., graphical or geometrical features). Recently, deep neural networks (DNNs) have
spurred a lot of interest in this research field. Methods using DNNs focus on being able
to generate font libraries by observing a subset of them. Specifically, these methods use
pre-trained models, usually trained on a large dataset, then the pre-trained models are
fine-tuned on a subset of the fonts that are to be generated. While these deep learning
approaches have achieved higher performance than previous methods, there are still
some challenges remaining. Firstly, having to do a fine-tuning for every font library that
is to be generated limits the real-time practicability. Secondly, fine-tuning needs several
hundred samples, in some cases thousands (Yuchen, 2017). This makes it ineffective for
alphabets with low character counts such as the Latin alphabet. Additionally, making
these samples is a labor-intensive job.

Recently, many few-shot learning methods have been proposed. These methods aim at
generating font libraries using only a few samples, without any additional fine-tuning at
test time. Typically, state-of-the-art few-shot font generation methods solve the task as a
few-shot font style transfer task, disentangling the content and style features from glyph

1https://docs.oracle.com/cd/E19253-01/817-2523/auto25/index.html
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1. Introduction

images and combining the features to generate a prediction (Gao et al., 2019; Park et al.,
2021b; Li et al., 2021; Xie et al., 2021). The state-of-the-art methods in few-shot font
style transfer have shown very good results, but are not fully rid of defects. Even small
inaccuracies decrease the incentive of using these methods. Errors like unrecognizable
characters would arguably make an application look incompetent, similar to how spelling
mistakes make a writer look unprofessional. Therefore the aim of this work is to push
the state-of-the-art to a level where unrecognizable characters are infrequent, instead of
somewhat recurrent, to further push the practical usability of this field. Additionally,
a big motivation is opening up the possibility of using font style transfer for real-time
translation with maintenance of font style. Therefore, the thesis focuses on font style
transfer between different languages.

1.2. Goals and Research Questions
The goal of this project is:

Goal Progress the state-of-the-art in few-shot font style transfer between different lan-
guages such that unrecognizable characters are infrequent, even in highly stylized
fonts

The goal is to make a font style transfer method that feels safe to use real-time, that is,
without the risk of generating unrecognizable characters. One approach to achieve this
goal is to push the state-of-the-art’s overall performance in addition to the generated
characters’ recognizability. Another approach is to improve the generated characters’
recognizability at the sacrifice of the overall performance. If so, an analysis of whether
these sacrifices are worth it should be performed.

To reach this goal the following research questions (RQs) will be addressed:

RQ1 How should the content feature and the style feature be properly extracted in few-
shot font style transfer?

Content feature and style feature extraction are crucial parts of any style transfer
method. Identifying proper ways for extracting the respective feature types is beneficial
for new designs of few-shot font style transfer methods.

RQ2 How can Deep Metric Learning be beneficial to few-shot font style transfer?

Deep Metric Learning (DML) has previously been applied to font style transfer by Aoki
et al. (2021), however it has received very little acknowledgement as of writing this thesis.
The effect of DML will be evaluated with a recently proposed method by Xuan et al.
(2020), which shows promising results and is described in detail in Chapter 4.

RQ3 How can the deformation and texture in few-shot font style transfer be separated?

2



1.3. Contributions

With deformation we refer to the difference of shape (e.g. cursive, big/small size, artistic
traits). A separation of deformation and texture would open up more possibilities for
training few-shot font style transfer models. The goal with this research question is to
find a mapping that with the input of a glyph image x and a reference image c can
either:

• Output the glyph image x with the same deformation as the reference image c.

• Output the glyph image x with the same texture as the reference image c.

1.3. Contributions
This thesis makes the following contributions:

1. Proposes a simple yet effective few-shot font style transfer model, few-shot font
style transfer with Extraction of Partial Style (EPS-Font). This solves few-shot
font style transfer by treating the style reference images as partial style reference
images.

2. Showcases the effect of Deep Metric Learning for few-shot font style transfer.

3. Proposes a modification that can be applied to a few-shot font style transfer model
to separate deformation and texture prediction.

4. Presents a detailed overview of the fundamentals and state-of-the-art for font gen-
eration.

1.4. Thesis Structure
The remainder of this thesis is structured as follows:

• Chapter 2 covers basic knowledge of neural networks and essential knowledge for
understanding state-of-the-art few-shot font style transfer methods.

• Chapter 3 gives an overview of previous work in font style transfer, in addition to
state-of-the-art methods that are related to the proposed method.

• Chapter 4 describes the proposed method, few-shot font style transfer with Extrac-
tion of Partial Style (EPS-Font) and the proposed modification for few-shot font
style transfer, named Deformation and Texture Separation (DTS).

• Chapter 5 describes how the experiments will be evaluated and the setup for each
experiment, and then presents the experimental results.

• Chapter 6 discusses the results of the experiments and merits of the work conducted
as well as limitations.

• Chapter 7 discusses the main contributions made to the field and discusses where
to extend or improve this work.

3





2. Background Theory
This chapter will cover essential knowledge for few-shot font style transfer. Section 2.1
describes the basics of neural networks. Section 2.2 describes CNN, a class of neural net-
work that is most commonly applied to analyze visual imagery. Sections 2.3-2.6 describe
generative adversarial network (GAN), a framework for training a neural network at be-
ing ”realistic” by tasking it with tricking another neural network, and other theory that
relate to GAN. Section 2.7 describes style transfer, a technique that transfers the style of
a set of images onto a content image. Section 2.8 describes image-to-image translation,
a task of translating images from one domain to another. Section 2.9 describes Deep
Metric Learning, a group of techniques that aim to establish similarity or dissimilarity
between embeddings based on their semantic data.

Sections 2.1-2.2 and Section 2.7 are rewritten and Figure 2.3 is reused from the spe-
cialization project mentioned in the preface. Section 2.3 is rewritten from the report in
TDT12 mentioned in the preface.

2.1. Artificial Neural Network
Artificial neural networks (ANN) is a computing system inspired by biological neural
networks, taking inspiration from the way neurons communicate and are connected in
a biological brain. The simplest form of ANN can be delineated in the form of a single
formula (Equation 2.1)(Russell and Norvig, 2010). The term x is the set of input values
{x1, x2...xn}, w is the set of corresponding weights {w1, w2...wn}, b is the bias and ŷ is
the output value.

ŷ =
n∑

i=1
wixi + b (2.1)

In order for an ANN to learn, it modifies the weights and bias. Weights decide how
much each input value contributes to the output value. The bias is a value added or
subtracted from the output value. The goal of an ANN is to modify the weights and
bias to create a function that maps the input x to the target output y. An optimization
technique commonly used to train ANNs is gradient descent (Russell and Norvig, 2010).

Gradient descent Gradient descent is an optimization algorithm which iteratively
minimizes some function using the direction of steepest descend, the negative gradient
(Russell and Norvig, 2010). To do gradient descent, a calculation of the loss is required.
A common way to calculate loss is to use the squared loss function based on the predicted

5



2. Background Theory

output ŷ and the target output y defined as L = (ŷ − y)2. Then calculate the negative
gradient, the change of value which decreases this loss the most. For the squared loss
function that is ∂L

∂ŷ = 2(ŷ−y). Next modify weights and bias using the negative gradients.
A good example to visualize gradient descent is a 2D hill (Figure 2.1). The green arrows
showcase the direction of the slope (the negative gradient) each ball is laying on. If ball
A or B follow the direction of their slope until it reaches a flat surface, it reaches a global
minimum. If ball C follows the direction of its slope until it reaches a flat surface, it
reaches a local minimum.

Figure 2.1.: Example of gradient descent in 2D

Activation function Sometimes it can be beneficial to control the range of the output
value. To do so, one would use an activation function. For instance, if you make a neural
network that were to predict the likelihood of some event, the outputted number should
be limited between 0 and 1. For this scenario, one could use the sigmoid activation
function, which maps R → (0, 1) and is defined as S(x) = 1

1+e−x (Russell and Norvig,
2010). The most widely-used activation function, since 2017, is Rectified Linear Unit
(ReLU) (Ramachandran et al., 2018), which is defined as f(x) = x+ = max(0, x).

Multiple layers In order to allow for more complex function approximations, extra
layers can be included between the input and output layer which are called hidden layers
(Russell and Norvig, 2010). When an ANN has hidden layers, it is also called a deep
neural network (DNN). An example of a complex function that a DNN can perform
which an ANN is unable to is exclusive disjunction, a logical operation that is true if
and only if its arguments are different. An example of a DNN is shown in Figure 2.2. To
train a DNN, you calculate the gradients in a backward manner, starting from the output

6



2.1. Artificial Neural Network

neuron. This is because the gradient from one layer can be reused in the computation
of the gradient for the previous layer, and allows for efficient computation of gradients.
This algorithm for training a DNN is called backpropagation (Russell and Norvig, 2010).

Figure 2.2.: Example of a neural network

Normalization Normalization is a common machine learning technique which stand-
ardizes a data distribution. This is commonly used between layers in a neural network,
as it is useful for preventing the distribution from shifting between layers. Shifts in
distribution are problematic for the training, as they could constantly need to be adjus-
ted for every layer, which would essentially become a forever moving target. A typical
normalization technique is batch normalization, introduced by Ioffe and Szegedy (2015).
Batch normalization alleviates domain shifts, and addresses the issue of gradients that
explode or vanish, as normalizing activations throughout the networks prevent small
changes from amplifying to large and suboptimal changes. The batch normalization
standardizes the data distribution for each feature channel (Huang and Belongie, 2017):

BN(x) = γ

(
x− µ(x)

σ(x)

)
+ β, (2.2)

where γ and β are affine parameters learned from data, {µ(x), σ(x)} are the mean and
the standard deviation of the data distribution across batch size and spatial dimensions
for each feature channel:

µc(x) = 1
NHW

N∑
n=1

H∑
h=1

W∑
w=1

xnchw (2.3)

7



2. Background Theory

σc(x) =

√√√√ 1
NHW

N∑
n=1

H∑
h=1

W∑
w=1

(xnchw − µc(x))2 + ϵ, (2.4)

where ϵ is some small value to prevent division by zero in Equation 2.2.

2.2. Convolutional Neural Network
Convolutional neural network (CNN) is a class of neural networks, commonly applied
to images (He et al., 2016; Isola et al., 2017; Huang and Belongie, 2017; Zhang et al.,
2019; Brock et al., 2018). CNN reduces the number of parameters necessary to train
by reusing its weights at different spatial locations and makes better use of spatial and
temporal properties (Burkov, 2019).

CNN uses a kernel, which are weights organized in a h× w spatial dimension, where
h is the height of the kernel, and w is the width. The kernel is propagated throughout
the image in a overlapping fashion, starting from the top-left corner (Burkov, 2019).
The output generated is often referred to as a feature map (Goodfellow et al., 2016).
In the first layers of a CNN, the feature map will consist of simple shapes like edges
and lines. The deeper layers will combine the earlier shapes to create more advanced
shapes, for example a circle, faces and different textures. Since there is a bigger variety
of advanced shapes compared to simple shapes, the deeper layers typically have a bigger
size of features (called depth) per location in the feature map.

2.3. Generative Adversarial Network
Generative adversarial network (GAN) is a machine learning framework designed by
Goodfellow et al. (2014). GAN consists of two neural networks, a generator G and
a discriminator D, that compete against each other in a ”game”. G has the task of
generating a plausible instance given the dataset, for instance an image, while D has
the task of classifying whether an instance is from the dataset (not generated by G)
(Goodfellow et al., 2014). An overview of the general GAN architecture is shown in
Figure 2.3.

In order for G to diversify its outputs, it is given a noise vector z. A generated instance
can therefore be represented as G(z). D(y) represents D’s classification of an instance y.
D’s task is to maximize log(D(y)) when y is from the dataset, and minimize log(D(y))
when y is generated from G. G’s task is to minimize log(1 − D(G(z))), ”tricking” the
discriminator. The objective function becomes (Goodfellow et al., 2014):

min
G

max
D

V (D, G) = Ey[log D(y)] + Ez[log(1−D(G(z)))] (2.5)

A benefit of using GAN is that it makes it possible to train the model without any
ground truth. For instance, a GAN made to generate faces could generate the face of a
person that has never existed. However, even in situations where there are ground truths,
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Figure 2.3.: Example of a standard GAN architecture

GAN is still useful as it encourages the model to generate realistic and sharp instances
to fool the discriminator. An example of a good use case for GAN for training with
ground truth images is training a model with both GAN and L1 loss. L1 loss is known
to be good at low frequency details, but also cause blurry results(Pathak et al., 2016;
Zhang et al., 2016), because it averages all plausible outputs. However, blurry images
will be easily recognized by the discriminator. Therefore, the generator is trained by
the discriminator to product realistic and sharp outputs. An example that can be hard
to learn with L1 loss, but without GAN, is patterns that look seemingly random, like
grass, freckles, or hair straws.

2.4. Conditional Generative Adversarial Network
GANs are able to generate a realistic face given the noise input z, but the user does not
have any control over characteristics of the face generated (e.g. hair color or gender). In
order to be able to control these characteristics in the output, one can use conditional
GANs (cGAN). Instead of mapping z → y, an additional condition x is applied to the
input, like a class label or image for inpainting (Isola et al., 2017). This results in the
mapping {x, z} → y. With this change, the objective function becomes (Mirza and
Osindero, 2014):

min
G

max
D

V (D, G) = Ex,y[log D(x, y)] + Ex,z[log(1−D(G(x, z)))] (2.6)

2.5. Hinge Loss
Hinge loss is a loss function which was introduced by Gentile and Warmuth (1998). It
has earlier shown to be of great use for classification (Rosasco et al., 2004), however it
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has not been notable in the field of GAN until recently. Presumably, the introductions
of hinge loss in many recent state-of-the-art techniques featuring GAN (Miyato et al.,
2018; Zhang et al., 2019; Brock et al., 2018) has now made it prominent in the field. The
hinge version of the adversarial loss is defined as follows (Zhang et al., 2019):

LD =− Ex,y[−1 + D(x, y)]+
− Ex,z[−1−D(x, G(x, z))]+

LG =− Ex,z[D(x, G(x, z))]
(2.7)

2.6. Fréchet Inception Distance
To evaluate the results of generated images, one can use the Fréchet Inception Distance
(FID) score (Heusel et al., 2017). The score tells the similarity between real data x and
generated data x̂, with lower scores meaning they are more similar. The way the FID
score is calculated is by propagating the real data and the generated data through the
Inception-v3 model (Szegedy et al., 2016) and then calculate the mean µ and covariance
matrix Σ of the features of the embeddings, specifically one of the deepest embeddings.
Embeddings are outputs from layers before the output layer in neural networks. Next
the mean and covariance matrix are assumed to follow a multidimensional Gaussian, so
Fréchet Distance is used to calculate the difference between these Gaussians by (Heusel
et al., 2017):

FID(x, x̂) = ||µx − µx̂||22 + Tr (Σx + Σx̂ − 2(ΣxΣx̂)1/2) (2.8)

where Tr is the sum of the elements in the diagonal. The authors of ”GANs Trained by
a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium”, Heusel et al.
(2017), which proposes the FID score, recommend using a minimum sample size of 10,000
for calculating the FID.1

2.7. Style Transfer
Style transfer aims to learn to transfer the style from one image to another. Gatys
et al. (2016) performed style transfer by training a CNN at making an individual feature
space representation for the style and the content of an image. Then by using the style
representation s of an image, and content representation c of another image, you could
synthesise an image with content c and style s, as a result performing style transfer.

Font style transfer Font style transfer is a technique for performing font generation.
The task of font style transfer can be defined with the same mapping as for style transfer,
{c, s} → x, that is generating a target image x given the content of c and the style of
s. However, for style transfer the style is often regarded as a set of colors and texture
(Gatys et al., 2016; Johnson et al., 2016; Chen and Schmidt, 2016), while for font style

1https://github.com/bioinf-jku/TTUR
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transfer the style is more abstract. For instance, a font style can differ from another
by stroke, shape or decorations. Therefore, style transfer methods can not be directly
applied to font style transfer.

2.8. Image-to-image Translation
Image-to-image translation is the task of translating images from one domain to another,
given sufficient training data. For instance, translating a grayscale image to colored
image. Isola et al. (2017) proposed pix2pix, a popular image-to-image model which
introduced cGAN to the field. They trained the cGAN by using input-output pairs
{x, y}, where the generator G was tasked at mapping x → y, while the discriminator
D was tasked at differentiating between y and the output of G. Isola et al. (2017)
made a number of changes to the cGAN architecture. The generator was changed from
an encoder-decoder structure to a U-Net structure (Ronneberger et al., 2015) and the
discriminator architecture was changed to what they named ”PatchGAN”. The U-Net
structure adds connections between layers of the encoder and the decoder, making them
able to share low-mid level features. This is highly useful for image-to-image, as in
many problems, the input and output share low level information. For instance, the
location of prominent edges. The PatchGAN discriminator discriminates between real
and fake local patches, as opposed to the whole image. This exposed the discriminator
to only mid-high frequency details, making it encourage sharp and realistic images, even
if incorrect.

2.9. Deep Metric Learning
Deep Metric Learning (DML) is a machine learning approach where the goal is to learn
a representation function f(x) that maps data x into a feature space RD, whereas data
that are semantically similar are metrically close in RD, while data that are semantic-
ally different are metrically distant in RD (Hermans et al., 2017; Xuan et al., 2020).
Analogously, DML aims at optimizing the embedding itself, rather than an interme-
diate bottleneck layer. To achieve this, a distance metric function D(x, y) is used to
measure the distance between between two embeddings f(x) and f(y). Then gradients
that either decrease or increase this distance are made depending on their semantic data
and the DML method used (Schroff et al., 2015). Examples of some standard distance
metrics are Euclidean distance, city block distance and cosine similarity. It is common
to normalize these features when computing the similarity as it makes the comparison
intuitive and efficient (Xuan et al., 2020).
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In the early work on font generation, methods mainly relied on shape modeling of outlines
and interpolation (Suveeranont and Igarashi, 2010; Campbell and Kautz, 2014), these
got good result but were easily overwhelmed when performing on font styles with more
low-level handcrafted features (graphic, geometric).

With the introduction of deep neural networks (DNN) (Krizhevsky et al., 2012), it
was doable to confront the low-level features. DNN is further described in Section 2.1.
Upchurch et al. (2016) used DNN in order to separate the content and style represent-
ation of characters, which could then be used for transferring font styles. While this
improved the state-of-the-art, there were still problems with blurry or garbled glyphs
that did not match the style in all respects (Upchurch et al., 2016).

Generative adversarial network (GAN) has made a considerable impact in font gen-
eration. GAN has the potency of DNN at learning low-level handcrafted features, but
also the property at making images less distinguishable from the training dataset, which
results in a substantial reduction in blurry glyph or garbled glyph generation. GAN is
further described in Section 2.3. Yuchen (2017) was able to get impressive results with
his zi2zi model, which was built by extending the pix2pix model, which is a well-known
image-to-image translation model that utilizes GAN. The Image-to-image translation
and the pix2pix model is described in Section 2.8. However, the zi2zi model requires
hundreds of glyphs with coherent style in order to fully work. This is in many cases
unpractical. Section 3.2 describes the zi2zi model.

Few-shot font generation on the other hand relies only on a few samples to generate
an entire font library. This presents the possibility of real-time practicability, and re-
duces the number of samples required to generate full font libraries. Azadi et al. (2018)
proposed the first few-shot font generation method, Multi-conditional Generative Ad-
versarial Network for Image Synthesis (MC-GAN). However, MC-GAN’s input content
is limited to 26 Latin capital letters, and attempting to scale to handle larger writing
system such as Chinese will likely be impossible. Section 3.2 describes MC-GAN. One
of the most recent state-of-the-art font generation models is Multiple Localized Experts
(MX-Font). This model utilizes multiple encoders which attends to different local con-
cepts for a given character. Section 3.3 describes MX-Font. Font generation is usually
performed within the same language (Zhang et al., 2018b; Zhu et al., 2020; Gao et al.,
2019; Park et al., 2021b). However, recently Li et al. (2021) proposed an end-to-end solu-
tion to cross language font generation. This model is called Few-Shot Font Style Transfer
Between Different Languages (FTransGAN). Section 3.4 describes FTransGAN. Lastly,
Section 3.5 describes a proposed framework for improving the style feature extraction of
font generation models with the use of Deep Metric Learning.
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The introduction to this chapter is rewritten from the specialization project mentioned
in the preface.

3.1. Zi2zi
Zi2zi (Yuchen, 2017) is a follow-up project to the earlier project called Rewrite. Rewrite
is a font generation model that addresses the font generation process as a style transfer
problem, and makes use of deep neural network. However, there are some issues with
Rewrite (Yuchen, 2017):

• The generated images are oftentimes blurry

• Fails under more stylized fonts

• Limited to learn and output only one target font style at a time

Yuchen (2017) attempts at solving these problems with the zi2zi model. The model
borrows the generator and discriminator directly from the pix2pix UNET model (Isola
et al., 2017). The encoder is trained at mapping a font glyph image x to an embedded
space representation, further referred to as character embedding. An approach such as
this one, where a higher dimensional space X is mapped into a lower dimensional space Y
making an injective map f : X− > Y is called low-dimensional embedding (Russell and
Norvig, 2010). Low-dimensional embedding makes it possible for the encoder to discover
suitable internal representation of the data, while simultaneously learning how to extract
the characteristics of the character. The input to the decoder is a concatenation of
the character embedding and a category embedding, which represents the style. This
category embedding is a non-trainable gaussian noise z that is unique to each font. The
target output of the decoder is a font glyph image y that is the same character as the
character embedding and that also represents the style of the category embedding. An
overview of this architecture is shown in Figure 3.1.

To achieve this, multiple losses are utilized. We define f as the encoder and g as
the decoder of the generator G, which inherently gives us G = g ◦ f . Additionally, d
is a distance function such as mean squared error, P (C|X) describes the probability
distribution over the class labels given by D and s describes the set of font glyph images
in the dataset. The objective function is:

G∗ = arg min
G

max
D

LcGAN − αLC + βLL1 + γLCONST + δLT V (3.1)

for some weights α, β, γ, δ, where:

LcGAN = Ex,y[log(D(x, y))] + Ex,z[1−D(x, G(x, z))]
LL1 = Ex,y,z[||y −G(x, z)||1]

(3.2)

LcGAN and LL1 are directly retained from the pix2pix model, which is described in Sec-
tion 2.8. LcGAN encourages the model at producing images that cannot be distinguished
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Figure 3.1.: Overview of Zi2Zi’s architecture (reused with permission from Tian Yuchen)

from ”real” images, therefore making the output more realistic and sharp. LcGAN is de-
scribed further in Section 2.3 and 2.4. LL1 tasks the generator at making the generated
images closer to ground truth, punishing deviations by mean absolute error. While L2
which uses mean squared error is an option, L1 is preferred as it encourages less blurring
(Isola et al., 2017).

LC = Ey[log P (C = c|y)] + Ex,z[log P (C = c|G(x, z))] (3.3)

LC is derived from the AC-GAN model (Odena et al., 2017). This loss penalizes gener-
ated images where the style deviates from the provided targets, by making the discrim-
inator predict the style of the generated characters, therefore preserving the style itself.
This loss is subtracted instead of being added, as the goal for the generator and the dis-
criminator is to maximize LC ; maximizing the chance of the discriminator recognizing
the style of the generated image.

LCONST =
∑
x∈s

d(f(x), f(G(x, z)) (3.4)

LCONST is derived from DTN network (Taigman et al., 2016). This loss follows the idea
that the character embedding of the input of G should match the character embedding
of the output of G, as they are of the same character.

LT V (ŷ) =
∑
i,j

(
(ŷi,j+1 − ŷi,j)2 + (ŷi+1,j − ŷi,j)2

) 1
2 (3.5)
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LT V is an anisotropic total variation loss, and is added to smooth the resulting image,
removing noise and making the image overall more pleasing to look at. ŷi,j denotes the
pixel value at position {i, j} and ŷ = [ŷi,j ] = G(x, z). This loss is regarded as optional by
Yuchen (2017) for various reasons, one of them being that smoothing makes the resulting
image less sharp.

The strategy to train the model for generating a font is done in a two-step process.
First, train the model at many fonts, teaching the generator how to extract character
structural information. Next, the layers of the encoder is frozen and the decoder is fine-
tuned. The reason the decoder is fine-tuned (while the encoder is not) is that each style
embedding is unique to every font, therefore one would no longer need the other fonts
for this part of the training. The encoder, on the other hand, needs to see multiple of
the same character to build a proper character embedding of the character.

The results of Zi2Zi are quite impressive. While Yuchen (2017) did not directly com-
pare his model to the state-of-the-art, it is quite noticeable it achieved state-of-the-art
performance just by the examples of his results and the recognition of his work from
multiple papers (Park et al., 2021b; Li et al., 2021; Xi et al., 2020; Xie et al., 2021).

3.2. MC-GAN
Azadi et al. (2018) proposed the first end-to-end solution for few-shot font generation
with Multi-conditional Generative Adversarial Network for Image Synthesis (MC-GAN).
The solution is specifically designed to predict ornamented glyphs ranging from the letter
A to Z. It does so using a novel stacked cGAN architecture called GlyphNet to predict
glyph shapes, and a novel ornamentation network called OrnaNet to predict color and
texture of the final glyphs.

The first network, the GlyphNet, generates all 26 glyphs given a few example glyphs.
The size of the glyphs are 64×64, and each glyph is stacked on top of the other, resulting
in the input and output dimension B × 26 × 64 × 64. The reason that the glyphs are
stacked on top of each other, instead of a basic tiling, is because that would fail to
capture correlations as no convolution field would realistically be able overlap all glyphs,
even at the lowest depth.

As mentioned in Section 2.4, the adversary between generator and discriminator for
a regular cGAN can be formulated as:

LcGAN (G, D) = Ex,y[log D(x, y)] + Ex,z[log(1−D(x, G(x, z)))] (3.6)

MC-GAN uses a similar approach as loss functions for GlyphNet, but makes some
necessary changes to fit the task. Firstly, as there is already natural occurrence of noise
brought by the random selection of example glyphs, the z value used to generate noise
is considered redundant and therefore discarded. Secondly, MC-GAN adopts the least
squared loss function, changing the GAN to a LSGAN (Mao et al., 2017). A description
of the GAN loss function can be found in Section 2.3. LSGAN is used instead of GAN,
as it produces higher quality results and is more stable (Mao et al., 2017). Thirdly, the
loss function is split into a local and global loss function. This is done to include the
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PatchGAN architecture, which contributes to making the generated images sharp and
realistic. The PatchGAN architecture is described further in Section 2.8. Lastly, the L1
loss is added to penalize deviations of generated images G1(x1) from their ground truth
y1. The loss function is,

L(G1) = λLL1(G1) + LLSGAN (G1, D1)
= λEx1,y1 [||y1 −G1(x1)||1]
+ Ex1,y1][(D1(y1)− 1)2]
+ Ex1 [D1(G1(x1))2],

(3.7)

where LLSGAN (G1, D1) = Llocal
LSGAN (G1, D1) + Lglobal

LSGAN (G1, D1).
For training, their 10K font data set is used. In each training iteration a few random

subsets of y glyphs are used, while the others are whited out, as x.
The second network, OrnaNet, is trained to generate style and ornamentation to the

glyphs generated from GlyphNet. All 26 glyphs are generated, including the observed
glyphs, as it lets the OrnaNet generate high quality stylized letters even if the generated
glyphs were to be coarse and differentiate considerably from the observed glyphs. To
generate the observed glyphs, a leave-one-out approach is used. A prediction from
GlyphNet is done where all but one observed glyph is used as input. Then the one
observed glyph that was retracted is picked from the output and stored. This process is
repeated for each observed glyph. Afterwards, these stored observed glyph predictions
are combined with an output from GlyphNet where all observed glyphs are used as input.
As OrnaNet predicts colored images, it uses the input and output dimension B × 3 ×
26 × 64 × 64. For this reason, the images generated from GlyphNet must be converted
from grayscale to colored as well, which is done through a reshape transformation and
gray-scale channel repetition, represented by T .

The loss function for OrnaNet is similar to GlyphNet, but a mean square error loss
between binary masks of the input and output is included as well. The binary masks is
obtained by passing images through a sigmoid function, indicated as σ. This is done to
achieve clean sharp outlines in the color images. The loss function is,

L(G2) = LLSGAN (G2, D2) + λ1LL1(G2) + λ2LMSE(G2)
= Ex2,y2 [(D2(y2)− 1)2]
+ Ex2 [D2(G2(x2))2]
+ Ex2,y2 [λ1||y2 −G2(x2)||1
+ λ2(σ(y2)− σ(G2(x2)))2],

(3.8)

where x2 = T (G1(x1)) and LLSGAN (G2, D2) = Llocal
LSGAN (G2, D2) + Lglobal

LSGAN (G2, D2).
To evaluate the model, Azadi et al. (2018) compared MC-GAN to the patch based

synthesis method by Yang et al. (2017). Overall users preferred the prediction from
MC-GAN 80.0% of the time.

While the results of MC-GAN are impressive, it still has some limitations for practical
usage; the input content is limited to 26 Latin capital letters, and attempting to scale this
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to handle larger writing system such as Chinese will likely be impossible. Additionally,
the amount of parameters are extremely large as all letters are passed in one forward
pass. This increases the storage requirements drastically.

3.3. MX-Font
One of the more recent font generation models is Multiple Localized Experts Few-shot
Font Generation Network (MX-Font) (Park et al., 2021b). MX-Font utilizes a stack of
encoders called multiple localized experts where each expert attends to different local
concepts for the given character. The experts each compute a local content feature and
local style feature which are thereafter combined to form the generated glyph. MX-
font uses a component and a style feature classifier, a generator and a discriminator, in
addition to the multiple localized experts. An overview of the architecture is shown in
Figure 3.2.

Figure 3.2.: Overview of MX-Font (reused with permission from Song Park).
The experts Ei encode the input image to local features fi (green box). The
local content feature fci and local style feature fsi are then computed from
fi. Afterwards, the features are combined and passed to the generator G to
generate the target image (yellow box).

Chinese characters can be described as a combination of components. One example is
’ 智’, that can be decomposed to the components ’ 矢’, ’ 口’ and ’ 日’. The reason MX-
Font utilizes several experts is to take advantage of this decomposition; by labeling each
character with a component label Uc, which contains the components of the character,
and by delegating the task of predicting the features of the components to separate
encoders. The experts Ei each produce fs,i and fc,i by first generating a feature fi =
Ei(x) ∈ Rd×w×h where d is a feature dimension and {w, h} are the spatial dimension.
Then multiplying fi with two linear weights Wi,c, Wi,s ∈ Rd×d , a local content feature
fc,i = W ⊤

i,cfi and a local style feature fs,i = W ⊤
i,sfi are computed (Park et al., 2021b).

The delegation is done by the component classifier CLsu and style classifier CLss.
The component classifier CLsu produces a prediction probability pi = CLsu(fc,i), where
pi = [pi0, ..., pim], pij is the confidence scalar value of the component j and m the number
of components in Uc. These confidence scalar values are then used to map experts Ei to
different components uj . The goal for expert-component matching is to find the set of
confidence scalar values that fulfill the criteria:

• The number of total allocations is max(k, m)
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• Each expert and component are allocated

• The sum of predictions is maximized

An example of a delegation is shown in Figure 3.3. This expert-component matching is
reformulated as a Weighted Bipartite B-Matching problem, and solved using the Hun-
garian algorithm (Kuhn, 1955). More details about the problem reformulation can be
found in the MX-Font paper (Park et al., 2021b).

The style classifier Clss predicts the style label by Clss(fs,i). As the target style labels
are the same for each expert, no matching problem is necessary for this classifier.

For training, n = 3 glyphs that share the same content label c (but random styles)
and n glyphs that share the same style label s (but random content) are fetched. The
generator then generates a glyph with the same content label as c and the same style
label as s. This is process is done in parallel for 8 different glyphs, creating a mini batch
size of 24.

The full objective function of MX-Font is:

LD = LD
adv,

LG = LG
adv + λL1LL1 + Lfm

Lexp =
k∑

i=1
[Ls,i + Lc,i + Lindp,i + Lindpexp,i]

(3.9)

LD
adv and LG

adv are the hinge generative adversarial losses, which are described in Section
2.5. LL1 tasks the generator at making the generated images closer to ground truth,
punishing deviations by mean absolute error:

LL1 = Ex,y[||y −G(x)||1] (3.10)

where x = {c, s} and y is the target image. Lfm is the feature matching loss, formulated
as follows:

Lfm = Ex,y[
L−1∑
l=1
||Dl(y)−Dl(G(x))||1] (3.11)

where L is the number of layers in the discriminator D and Dl denotes the output of l-th
layer of D. The losses Ls,i and Lc,i utilize cross entropy loss to train the experts at pre-
dicting the correct style and component labels respectively, and attempt at maximizing
the entropy of the outputs of the classifiers given the same input, to make the features
disentangled and not correlated. Lindp,i and Lindpexp,i use Hilbert-Schmidt Independence
Criterion (Gretton et al., 2005) of style features, content features and local features to
make certain they are independent from another. More detail about Lexp can be found
in the MX-Font paper (Park et al., 2021b).

Because Korean characters can be decomposed to components in a similar way as
Chinese characters, Park et al. (2021b) were able to compare their model both on Chinese
characters and cross language, using Chinese characters for style reference and Korean
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characters for component reference. Using only Chinese characters, MX-Font received
less score on LPIPS (Zhang et al., 2018a) and Fréchet inception distance (FID) (Heusel
et al., 2017), than their previous model LF-Font (Park et al., 2021a). LPIPS measures
perceptual dissimilarity between the ground truth and the generated glyphs, while FID
measures the similarity of generated images to real ones using the Inception-v3 model.
Accuracy and user score were divided on scores based on content, style and both. MX-
Font scored the highest on all accuracy and user scores other than the user score based
on context. For cross language prediction MX-Font outperformed all other models on
LPIPS, FID, all accuracy scores and all user scores.

Figure 3.3.: An example of localized experts (reused with permission from
Song Park). The number of experts is three (E1, E2, E3) and the number
of target components is four (u1,...,u4). The red edges illustrate the optimal
solution for expert-component matching.

3.4. FTransGAN

Few-Shot Font Style Transfer Between Different Languages (FTransGAN) is a font gen-
eration method proposed by Li et al. (2021) that is the first to apply an end-to-end
solution to cross language font generation. This method introduces two novel modules,
Context-aware Attention Network and Layer Attention Network that capture both local
and global style features simultaneously through usage of the attention mechanism.

This model uses a generator G and two discriminators Dcontent and Dstyle. The gen-
erator takes in the inputs c and s, where c is a glyph image with a standard style (e.g.,
Microsoft YaHei) and the same content as the target image, and s is a set of glyph
images s = {s1, ...sk} all with the same style and different content as the target image
y. The task of the generator is to extract a content feature representation from c, and
a style feature representation from s. The generator consists of a content encoder, style
encoder and decoder. The content encoder extracts the content representation from the
given font glyph image, while the style encoder extracts the style representation from
the given font glyph images. The content encoder architecture consists of three convo-
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lutional layers. The style encoder architecture reuses the content encoder architecture,
and adds two convolutional layers, three Context-aware Attention Network and a Layer
Attention Network.

The Context-aware Attention Network are utilized at three receptive fields, 13x13,
21x21, 37x37. The shallower layers see local features, while the deeper layers can see
almost the entire image. The input is a feature map with a size of C ×H ×W given by
the last convolutional layer, where C, H, W denote the number of channels, height and
width respectively. Each region of the feature map is denoted as {vr, r = 1, 2, ..., H×W}
(Li et al., 2021). A Self Attention layer generate the context information of the feature
map from each region by:

hr = SA(vr). (3.12)
This is then further incorporated to a latent representation with:

ur = tanh(Wchr + bc). (3.13)

Here, ur describes the context information by latent variables. This context information
is not limited to the receptive fields of the layer but also the contextual information
from other regions. A context vector uc is trained with the entire model and employed
to assign each region an attention score based on the context information. This is done
as all regions are not believed to have the same contribution. These scores are then
normalized by a softmax layer and used in a weighted sum to obtain a feature vector f .
Specifically,

ar = softmax(uT
r uc), (3.14)

f =
∑

H×W

arvr. (3.15)

As there are three parallel Context-aware Attention Networks, f1, f2, f3 are obtained.
The Layer Attention Network takes in four inputs; feature mask fm given by the last

convolutional layer, and the feature vectors f1, f2, f3. An one-layer neural network is
utilized to assign each feature vector a score depending on the feature mask. This score
determines how much each Context-aware Attention Network contributes to the style
representation. Specifically,

w1, w2, w3 = softmax(tanh(W1fm + bl)), (3.16)

zj =
3∑

i=1
wifi, (3.17)

where w1, w2, w3 are three normalized scores given by a neural network, z is the weighted
sum of three feature vectors, and zj denotes the style representation of the j-th style
image. As the style encoder accepts K style images, the final latent code z is the mean
of all vectors zj :

z = 1
K

K∑
j=1

zj . (3.18)
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This vector z is C-dimensional vector, but the content representation is C × H ×W ,
therefore it is copied H ×W times to match the size of the content representation. The
output from this operation is the style representation.

The discriminators have almost the same architecture; only the input dimension differs.
Dcontent receives a concatenation of the content image and the generated image, and
checks whether they are the same character. Dstyle receives a concatenation of the style
images and the generated images, and checks whether they are of the same style. The
PatchGAN architecture is utilized for the discriminator, as it contributes to making the
generated images sharp and realistic. The PatchGAN architecture is described further
in Section 2.8.

The objective function for FTransGAN is:

L = λL1LL1 + λsLstyle + λcLcontent (3.19)

where λL1, λs, λc are three weights for balancing these terms. For higher quality results
and to stabilize GAN training, both Lcontent and Lstyle use hinge generative adversarial
loss as opposed to the standard cGAN loss. Section 2.5 describes the hinge loss and
Section 2.3-2.4 described the standard cGAN loss. L1 loss tasks the generator at making
the images closer to the ground truth, punishing deviations by mean absolute error:

LL1 = Ex,y[||y −G(x)||1], (3.20)

where x = {c, s} and y is the target image. While this font generation model was the
first to apply an end-to-end solution to cross language font generation, it was still able to
compare its results to two other models EMD (Zhang et al., 2018b) and DFS (Zhu et al.,
2020), as these models could be modified for cross language font generation. FTransGAN
was able to achieve state-of-the-art results compared to the other models, and in a user
preference survey the users preferred their model 80.3% of the times.

3.5. Few-Shot Font Generation with Deep Metric Learning
Aoki et al. (2021) proposed a framework for few-shot font style transfer for extracting
better style features using Deep Metric Learning (DML). A description of DML can be
found in Section 2.9.

The framework is a network which consists of 3 layers: L2 normalization, fully connec-
ted layer and softmax. The framework is implemented as a parallel network alongside a
few-shot font generation model that retrieves the style features as input during training
and tries to predict the class label. The loss in this prediction is then backpropagated
to the style encoder, which encourages the style encoder to make the class of each style
features easier to classify. The DML method used is the L2-constrained softmax loss
proposed by Ranjan et al. (2017) because of its robustness and learning stability. The
L2-constrained softmax loss for their framework is expressed as:

Ldml(xi) = − log
exp (W ⊤

ci
xi + bci)/τ∑

j exp (W ⊤
j xi + bj)/τ

(3.21)
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where xi is the L2-normalized style feature embedding for the i-th sample. ci is the font
class label corresponding to xi. W and b are the weights and bias for the fully connected
layer.

To verify the effectiveness of this framework, Aoki et al. (2021) tested it on AGIS-Net
(Gao et al., 2019) and EMD (Zhang et al., 2018b). The test results showed that the
framework is able to improve the results for both models, especially for cases where the
style reference glyphs are considerably limited.
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4. Method
In this chapter, the novel few-shot font style transfer with Extraction of Partial Style
(EPS-Font) is presented. Section 4.1 gives an overview of EPS-Font. Sections 4.2-4.3
describe the architectural choices, that relate to RQ1. Section 4.4 describes the object-
ive function for training the method. Section 4.5 describes how to apply Deep Metric
Learning to the method, and answers RQ2. Section 4.6 discusses a modification of
EPS-Font made to answer RQ3. This modification is referred to as Deformation and
Texture Separation (DTS). Figure 4.2 and Figure 4.3 are reproduced from the report in
TDT12 mentioned in the preface.

4.1. Model
The task of a few-shot font style transfer is to predict the target image x, given the
content image c and a few reference style images s. For font style transfer, the content
corresponds to the character of the glyph image, while the style corresponds to the font
of the glyph image. The content image should be of the same content as x, but be of
a standard style, for instance Microsoft Yahei. The style images s are a set of images
{s1, s2...sK} which share the same style as x, but are of different content.

Similar to the most recent font style transfer methods, this model disentangles the
content and style features from glyph images (Gao et al., 2019; Park et al., 2021b; Li
et al., 2021; Xie et al., 2021). This will be the job of the generator G, which consists of
a content encoder, a style encoder and a decoder. The encoders extract the content and
style representation, respectively. The combination of these representations will then be
fed to a decoder, which generates the target image. Two discriminators, content discrim-
inator and style discriminator, will be utilized to train the generator G. Since multiple
encoders with different roles are utilized by the generator G, multiple discriminators are
beneficial to validate the effect each encoder has on the generated image. The decoder
and discriminators are borrowed from Li et al. (2021)’s few shot style transfer between
different languages (FTransGAN). FTransGAN is described in Section 3.4.

4.2. Generator
The content encoder consists of three convolutional layers, each followed by batch nor-
malization (BN) and Rectified Linear Unit (ReLU). BN and ReLU are described in
Section 2.1 and Section 2.1, respectively. The style encoder consists of six convolutional
layers, likewise followed by BN and ReLU, and an upsample layer. The style encoder
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has deliberately more convolutional layers than the content encoder. This is done for
three reasons:

• The amount of style images in a dataset is usually very large. For instance, 3.1M
glyph images are used in the dataset used by Park et al. (2021b) in their paper
proposing Multiple Localized Experts Few-shot Font Generation Network (MX-
Font). While the amount of content images is usually small in comparison. In
the experiments conducted in Chapter 5, approximately 1000 glyph images are
used to represent content. As the style encoder has the task of differentiating
and representing more images than the content encoder, it is fitting that the style
encoder has more convolutional layers to make up for this difference.

• For typical style transfer, the style is defined as a set of texture and color, and it is
typical to use the same amount, or one more, of convolutional layers for the style
encoder as the content encoder (Huang and Belongie, 2017; Gatys et al., 2016;
Johnson et al., 2016; Chandran et al., 2021). However, for font style transfer the
style also consists of deformation, which is referred to as the difference of shape
(e.g. cursive, big/small size, artistic traits), which must also be transferred.

• The style information is globally present for typical style transfer, while for font
style transfer, it is only partially present, as it is tied to the content. For instance,
the style is less prominent in the image shown in Figure 4.1a than the style image
shown in Figure 4.1b. Therefore, the style images serve as partial style reference.

(a) Style image of ” 一” (b) Style image of ” 三”

Figure 4.1.: Style images example.

The final convolutional layer of the style encoder reduces the spatial dimension of the
input from 4×4 to 1×1. This is essentially used to obtain all features, and combine them
to make a style feature which characterizes the font. This output is then upsampled to
the spatial dimension w×h, where {w, h} is the spatial dimension of the content features,
to cover the content feature. These two final layers alleviate the issue of style images
only serving as partial style reference, as the upsampling distributes the style information
evenly throughout the spatial dimension. An overview of this architecture is shown in
Figure 4.2. As you can notice in the architecture, an alteration is applied to the network
when LSC is used. This will be described in Section 4.5.
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Figure 4.2.: Architecture of the encoders of EPS-Font. An encode layer consists of
a convolutional layer followed by BN and ReLU. Two of the K style images’
embeddings are stored for the calculation of LSC .

The content features and the combined style features are then combined and decoded
through a six residual network block, and two transposed convolutional layers, each
followed by BN and ReLU. A residual network block is a convolutional layer F(x) with
a ”shortcut connection” which forwards the input x. The output of the residual network
block is F(x) + x. Residual network blocks are shown to be easier to optimize and
give high accuracy from considerably increased depth (He et al., 2016). Transposed
convolutional are convolutional layers which upsample the spatial dimensions. Finally,
the output of the final residual network block goes through a convolutional layer and
tanh layer, outputting the generated image. An overview of this architecture is shown
in Figure 4.3.

4.3. Discriminator
The discriminators use the PatchGAN architecture, as the PatchGAN architecture con-
tributes to making the generated images sharp and realistic and has shown great res-
ults for previous font style transfer methods (Azadi et al., 2018; Li et al., 2021). The
PatchGAN architecture is described in Section 2.8.

As mentioned in Section 4.1, the proposed EPS-Font architecture makes use of multiple
discriminators to verify the effects of the encoders. The content discriminator receives
a combination of the content image c and the generated image ŷ. If their contents
do not match, the content discriminator detects this and gives corresponding losses.
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Figure 4.3.: Architecture of the decoder of EPS-Font. A decode layer consists of
a transpose convolutional layer followed by BN and ReLU.

The style discriminator receives a combination of the style images s and the generated
image ŷ. If their styles do not match, the style discriminator detects this and gives
corresponding losses. Additionally, unrealistic and blurry images will be punished by
both discriminators.

4.4. Objective Function
The objective function is:

L = λL1LL1 + λsLstyle + λcLcontent + λSCLSC , (4.1)

where λL1, λs, λc. λSC are weights for balancing these terms. For higher quality results
and to stabilize GAN training, both Lcontent and Lstyle use hinge loss versions of the
cGAN loss. Section 2.5 describes hinge loss. The cGAN loss is described in Sections
2.3-2.4. L1 loss tasks the generator at making the images closer to the ground truth:

L1 = Ex̂,x∼P (x̂,x)[||x− x̂||1]. (4.2)

LSC is the Selectively Contrastive Triplet loss proposed by Xuan et al. (2020), which is
described in Section 4.5.

4.5. Deep Metric Learning
As mentioned in Section 1.2, it is interesting to study if Deep Metric Learning (DML) can
be beneficial to few-shot font style transfer methods. A description of DML is available
in Section 2.9. To test the effectiveness of DML a method proposed by Xuan et al.
(2020) is used, which is a modification to the triplet loss.
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Triplet loss is a common approach for DML, proposed by FaceNet (Schroff et al.,
2015). Triplet loss penalizes the relative similarity between three examples: xa, xp and
xn, where xa and xp are of the same class and xn is of a different class. The goal is to
minimize the distance between xa and xp, and to maximize the distance between xa and
xn. The formula for triplet loss is (Hermans et al., 2017):

Ltri =
∑
a,p,n

ca=cp ̸=cn

[m + D(xa, xp)−D(xa, xn)], (4.3)

where D(x, y) is a distance metric function that measures the distance between f(x) and
f(y). This loss enforces that the distance between the positive pair (xa, xp) (of the same
class ca) are smaller than the distance of the negative pair (xa, xn) (of a different class
cn by at least margin m). An example of the triplet loss is shown in Figure 4.4.

Figure 4.4.: Triplet loss example. (Reproduced with permission from Florian Schroff.)

A major caveat of the triplet loss, though, is that as the dataset gets larger, the
possible number of triplets grows cubically, rendering a long enough training impractical
(Hermans et al., 2017). Additionally, as more training is performed on f , the more
triplets fulfil the margin criteria, making those triplet losses to be equal to zero.

This makes effective selections of triplets during training very important. For instance,
one could only select xn such that arg minxn D(xa, xn), in other words the hardest ex-
amples for the model. This selection strategy is called hard negative mining. However,
a variety of work shows that training on only the hard negative examples leads to bad
local minima (Schroff et al., 2015; Faghri et al., 2018; Song et al., 2016). Therefore, one
could use semi-hard negative examples instead (Schroff et al., 2015). Semi-hard negative
examples are xn where D(xa, xp) < D(xa, xn) and L > 0. These examples are further
away from the anchor than the positive example, but are still hard as the triplet does
not yet fulfil the margin criteria.
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Training with semi-hard triplets remedies the problem of bad local minima, but hard
negative examples are the cases where the model fails to capture semantic similarity,
so intuitively one would want to include these in the training in some way if possible.
Xuan et al. (2020) mention two reasons as to why triplets are hard to optimize. The
first problem is that the more similar f(xa) is to f(xn) and f(xp), the more effect of
the triplet loss’ gradients is lost during normalization. The second problem is that the
more similar f(xa) is to f(xn), the more likely it is for f(xa) to pull f(xn) with it when
f(xa) is modified to be pulled toward f(xp). More detail on why these problems occur
can be found in the paper by Xuan et al. (2020). Therefore, Xuan et al. suggest a
modification called Selectively Contrastive Triplet loss, that makes training with hard
negative examples feasible. Xuan et al. perform modification to the triplet loss as
follows:

LSC =
{
−αD(xa, xn), if D(xa, xn) < D(xa, xp)
Ltri, otherwise.

(4.4)

This modification changes the loss function so that the anchor positive pairs in triplets are
not updated when the triplet pair is too tightly clustered (when D(xa, xn) < D(xa, xp)
applies), and instead ‘focuses’ on pushing apart the hard negative examples. α is a
weight that decides how much of this modification is to be applied, where if α = 0 the
loss function would be a standard semi-hard negative mining.

To apply LSC to the architecture an extra convolutional layer, followed by BN and
ReLU is added before the last convolutional layer. The reason this convolutional layer
is included is to use embeddings from a layer that is both earlier than the last convo-
lutional layer and where the embeddings have the spatial dimension {1× 1}, which the
architecture does not have otherwise. The reason to use embeddings from a layer earlier
than the last convolutional layer is because it is expected of LL1, Lcontent and Lstyle to
pull style images that are of the same font to one point in the embedded space. If they
did not do this, the decoder would constantly be exposed to a lot of variation in the
style features, which would make it harder for the decoder to learn the style. Therefore,
it can be assumed that the embedded space of the last convolutional will not live on
a manifold. However, the ideal condition for LSC is for the style features to live on a
manifold (Schroff et al., 2015; Xuan et al., 2020). Thus, the embeddings for the LSC

should be extracted earlier than the last convolutional layer, as these embeddings can
live on a manifold.

The reason to use the embeddings from a layer with the spatial dimension {1× 1} is
because if embeddings from a layer with higher spatial dimensions (e.g., {4×4}) is used,
the embedding dimensionality would be c ∗ 4 ∗ 4, where c is the feature dimension of the
layer used. This would limit the value of c drastically. For instance, Schroff et al. (2015)
recommend using 128 dimensions for the pairwise check, which would in this scenario
make c = 128

4∗4 = 8, which is an insufficiently low feature dimension for a layer that deep.
As mentioned in Section 2.2, deeper layers should have higher feature dimensions to
learn advanced shapes.
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4.6. Deformation and Texture Separation
While the content image and the target image are of the same character, most fre-
quently the shapes between the glyphs are quite different. The target image can be
bigger/smaller, cursive, or have artistic traits. This geometric variance is a key chal-
lenge with CNNs. The limitation originates from the fixed geometric structures of CNN
modules: a convolution unit samples the input feature map at fixed locations; a pooling
layer reduces the spatial resolution at a fixed ratio; a RoI (region-of-interest) pooling
layer separates a RoI into fixed spatial bins, etc. (Dai et al., 2017).

An example of the deformation is shown in Figure 4.5. The red arrows in Figure 4.5b
describe offsets that can be used to deform Figure 4.5a to Figure 4.5c. We distinguish
between doffset and d. An example of doffset is the red arrows in Figure 4.5b, and is
represented by v × h × w, where v is a vector describing the offset and {h, w} are the
spatial dimensions. An example of d is the glyph in Figure 4.5c, and is represented by
b× h×w, where b is a single number to represent brightness. An important property of
doffset is that the positions of the offsets are given in the content image, which is a part
of the input. Therefore, only the values of the offset will need to be predicted, which
makes them bypass the previously mentioned key challenge with CNNs.

(a) Content image (b) Deformation (c) Target image

Figure 4.5.: Deformation example.

The stroke of the content image does not necessarily line up with the target image.
This is solved by using a skeleton image csk generated from the content image instead.
These skeleton images are generated by iteratively eroding the content image until only
the skeleton remains. An example of a skeleton image is shown in Figure 4.6a. Let
G = (V, E) be a graph to represent csk. Vertices v ∈ V represent all black pixels in
csk. Edges (u, v) ∈ E connect neighbor vertices. Typically, a neighbor vertex would be
defined as a vertex which is adjacent vertically, horizontally or diagonally to another
vertex. However, here a special condition must be applied, which is that a vertex that
is adjacent diagonally is only considered a neighbor if no other vertices are adjacent
to both vertices. Figure 4.7 shows why this condition is necessary and shows a way of
using edge count to identify parts of a character. The stroke can be set to csk by adding
surrounding black pixels to every v ∈ V after deforming it.
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Figure 4.6 contains an example where the character is stretched out slightly after being
deformed. This causes gaps to form between some vertices v ∈ V . As a countermeasure,
extra vertices are added in these gaps before stroke is applied.

(a) Skeleton image (b) Deformation (c) Target image1

Figure 4.6.: Deformation example with skeleton. Notice how the skeleton is stretched
out slightly by this deformation. The green vertices in the right figure rep-
resent the extra vertices that would be added as a countermeasure for the
stretching.
1Before stroke is applied

Figure 4.7.: Example of edge counts in the skeleton image. The green vertex represents a
vertex with one neighbor, red vertices represent vertices with two neighbors
and the blue vertex represents a vertex with three or more neighbors. For
the right side instead of representing the edge count by color, a number is
displayed in each vertex. It would be appropriate for these vertices to have
an edge count of two, as they represent a curved line. This is cleared up by
the condition that is applied to the neighbor definition.
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4.6.1. Finding the deformation
The deformation itself is viewed as a free optimization problem (FOP) (Eiben and Smith,
2015). Let p ∈ P describe each black pixel in the target image y, c.stroke an estimated
value of c’s stroke, and v.move a vector describing v’s change of position that is to be
performed at the end of an optimization step. The stroke is estimated using an approach
similar to Newton’s method. This stroke estimation approach is shown in the pseudocode
in Appendix A. We denote the score as s(d) = fo(d) − λfp(d), for some weight λ. A
objective function fo reports the similarity between the deformed image d to its target
image y. A penalty function fp reports the sum of offsets for v ∈ V . The goal of the
FOP is to maximize the score s. We define T as the mapping T (csk, y) = d of this FOP.
For fo, F-score with a harmonic mean of the precision and recall, F1, is used:

PPV = TP
TP + FP

TPR = TP
TP + FN

fo = F1 = 2 ∗ PPV ∗TPR
PPV + TPR

, (4.5)

where TPR is the recall and PPV is the precision. TP, TN, FP and FN are true positive,
true negative, false positive and false negative, respectively. Figure 4.8 shows examples
of TP, TN, FP and FN. F1 is used as opposed to accuracy, as TP is valued while TN is
not. To illustrate why: If Figure 4.8b used an estimated stroke of 0, it would only consist
of green, blue and white pixels, in other words only FN and TN. This would give a pretty
high accuracy, as the number of TN is high. However, there is no similarity between the
deformed image d and the target image y, as the deformed image d would be an empty
image in this scenario. Therefore, the score should be 0. F1, however, measures the
harmonic mean between precision and recall, which both are 0 when TP = 0. Therefore,
F1 would give a score of 0 in this situation, which is the desired score.

fp is calculated the following way:

fp =
N∑

i=1

M∑
j=1

||∆(vi, vi,j)−∆start(vi, vi,j)||
N ∗M

(4.6)

where ∆(x, y) describes the relative difference in position between two vertices,
∆start(x, y) describes the relative difference in position between two vertices before de-
formation, vi is the i-th vertex of V , vi,j is the j-th vertex neighbor of vi, N is the
number of vertices in V , M is the number of neighbors of vi. Punishing offsets by fp

encourages the deformation to also maintain the shape of the character, and not only
greedily find offsets that maximize fo.

To increase fo(d), a search around each v ∈ V is done to find nearby FN pixels. The
search radius distance is denoted as αdist, and represents how far beyond c.stroke the
search is performed. For instance, c.stroke = 4 and αdist = 8 means that the search
considers each p that is between 4 and 12 distance from v. Each FN pixel found results in
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(a) Content image (b) Deformation visualization (c) Target image

Figure 4.8.: Deformation visualization example. The green pixels show d, the deform-
ation of csk. The purple pixels represent TP, where the estimated stroke
and p ∈ P overlap. The red pixels represent FP, incorrect guessed pixels
within the estimated stroke. The blue pixels represent FN, pixels which
should have been within the estimated stroke. The white pixels represent
TN, pixels which are not within the estimated stroke and are neither in P .

a vector with direction from v to p and size equal to 1− (distance−1)/(c.stroke + αdist)
being added to v.move. This will be referred to as the search method.

To decrease fp(d), the relative position and angle between each v ∈ V are utilized. At
the start of the method, the difference in position between each neighbor is saved. At
each step, a new check of the difference in position is performed, how much this value
has changed from its start value is then multiplied with a weight βpos and subtracted
from v.move. This simulates the characteristic of material elasticity, higher stretch
receiving higher penalty. Additionally, how the angle between neighbors has changed is
used as well. We denote the angle as the normalized value of the difference in position
between two vertices. The difference in angle is then multiplied with a weight βangle and
subtracted from v.move. This amount is spread to neighbor vertices to even out the
effect, the neighbors closest to the bend receiving the highest effects. This is to simulate
the characteristic of materials bending. This will be further referred to as the stiffness
method.

Let nsteps denote the amount of iterations performed by this method. Because the
search method is more computationally expensive than the stiffness method, the search
method is not performed at every step, but every αstep-th step instead.

Using random starting values for optimization problems are typically quite beneficial
for problems with local minima (Gilli and Schumann, 2010). Unfortunately, the size
of a typical font dataset for font generation is quite large. For instance, 3.1M glyph
images is used at the dataset used by Park et al. (2021b) in their paper proposing
Multiple Localized Experts Few-shot Font Generation Network (MX-Font). This makes
the running time an important issue as well. Since each individual vertex can have a
different starting value, realistically a lot of random starting values would need to be
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checked to be able to make benefit of them. Therefore, a deterministic starting value is
used instead. The starting value is calculated in a manner that csk is resized through
offset values, so that the bounding box of csk matches the bounding box of y. Intuitively,
if the bounding boxes of the glyph images matches, the more similarity there is between
them, therefore increasing fo.

Some popular methods to solve optimization problems are evolutionary algorithms or
branch and bound. These methods are less vulnerable to bad local minima, as they
enumerate a set of candidate solutions, as opposed to only one candidate solution as
in this approach. However, in Section 5.3.2, the run time to generate the font dataset
with only one candidate solution is shown to be already quite high. This suggests that
making use of candidate solutions (in terms of evolutionary algorithms, or branch and
bound) can make the run time far too excessive. Only with smaller datasets should one
consider these methods.

4.6.2. Applying DTS to few-shot font style transfer
The explanations so far have described how to find a deformation d of the content image
c that can be used to represent the shape of x. But how can this be applied to EPS-Font?

As mentioned earlier, the task of a few-shot font style transfer model is to predict the
target image y given the content image c and the style images s. This task can therefore
be formulated as P (y|c, s). This modification can be applied to a few-shot font style
transfer model by splitting the task of P (y|c, s) into two parts:

• Predict P (doffset|csk, s), where doffset describes a deformation of csk by offsets, and
csk is a skeleton image generated from the content image c.

• Predict P (y|d, s), where d is the deformation of csk after each offset in doffset are
applied.

doffset is represented by v × h × w and d is represented by b × H ×W . The difference
between the architecture used to predict P (doffset|csk, s) and P (y|d, s) is:

• The output of the decoder has 3 channels instead of 1.

• Discriminators have adjusted input channel size to match the output of the decoder.

• The content and ground truth images are different.

The reason the output of the decoder has 3 channels, while 2 would be sufficient to
represent the offset vectors, is simply because 3× h×w can be represented as a colored
image, while 2 × h × w can not. This makes it easier to troubleshoot, for instance the
output of the decoder can be visualized during training. This modification is named
Deformation and Texture Separation (DTS).
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5. Experiments and Results
In this chapter, the results of each experiment are presented. Section 5.1 describes what
experiments are conducted and how they are evaluated. Section 5.2 describes the setup
for the experiments. Section 5.3 describes the results of the experiments. The results
will be discussed in more detail in Chapter 6.

5.1. Experimental Plan
As mentioned in Section 1.2, the thesis goal is to reduce the amount of unrecogniz-
able characters generated in a font style transfer method. To check whether the goal
is achieved, experiments which aim at answering the research questions (described in
Section 1.2) are conducted. Additionally, how the method performs compared to the
state-of-the-art is tested. To evaluate each experiment, quantitative evaluations of the
experiments are performed. For the comparison of the method to the state-of-the-art in
Section 6.4, qualitative evaluations are conducted as well.

For the quantitative evaluations, five different evaluation metrics is used; Mean abso-
lute error (MAE), ResNet-50 classification of content, ResNet-50 classification of style,
Learned Perceptual Image Patch Similarity (LPIPS) and Fréchet Inception Distance
(FID). MAE gives a general indication on the performance on the model. However,
MAE is not a good indication to whether the images are easy to classify or pleasing to
look at for humans, which the job of the other metrics. Similar to other few-shot font
style transfer methods (Li et al., 2021; Park et al., 2021b), two ResNet-50 is trained, one
for classifying the content of a glyph image and one for classifying the style of a glyph
image. ResNet-50 is a strong classification model proposed by He et al. (2016). The
top-1 classification accuracy of the content and the style is reported. Lastly, LPIPS and
FID is used to measure the similarity between ground truth and generated images in a
way which correlates with human judgement (Zhang et al., 2018a; Heusel et al., 2017).

For the qualitative evaluations, user studies are conducted. The participants are
asked which generated image out of each model is the most satisfactory in terms of style
matching degree and content recognizability. One generated image is made for each font
in the test set. The qualitative evaluations will only be used when comparing the model
to the state-of-the-art. This is because the evaluation in this experiment is prioritized
over other experiments.

To answer RQ1, experiments with different approaches on content feature and style
feature extractions are performed.

To answer RQ2, experiments with different settings for applying Deep Metric Learning
are performed.
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To answer RQ3, experiments on EPS-Font modified with the proposed modification
Deformation and Texture Separation (DTS) are performed.

5.2. Experimental Setup
The dataset proposed by Li et al. (2021) is used to test the proposed method. It contains
847 gray-scale fonts (style inputs) each with approximately 1000 commonly used Chinese
characters and 52 Latin letters in the same style. The font style used for content refer-
ence is Microsoft Yahei, which is described as “A Simplified Chinese font developed by
taking advantage of ClearType technology, and it provides excellent reading experience
particularly onscreen” 1. Intuitively, it being simplified should mean that disentangling
the content features from its style features is easier, and it “providing excellent reading
experience” should mean that it will accurately represent the characters. However, pre-
vious work shows that the choice of font style for content images does not significantly
impact the final results (Zhu et al., 2020; Gao et al., 2019). 29 of the fonts are set aside
for testing.

The weights in the loss function are: λ1 = 100.0, λs = 1.0, λc = 1.0. λ1, λs and λc

are the same weights as in the pix2pix implementation. The pix2pix implementation is
described in Section 2.8. For the experiments featuring Deep Metric Learning, λSC = 10
is used. λSC is set high to make up for the difference in learning rate between these
experiments and experiments by Xuan et al. (2020), who proposed LSC . The batch
size for L1, Lcontent and Lstyle is 64, while the batch size for LSC is 512. Preferably,
one would use a higher batch size than 64 if possible (Brock et al., 2018). The batch
size for LSC can be set high because of the way it is implemented, which is described
in Section 4.5. The same configuration as used in Xuan et al. (2020)’s experiments is
used for the experiments, i.e., with m = 0.2 and α = 1. The model is trained for 20
epochs with the amount of styles K = 6 and learning rate lr = 0.0002, which is the same
parameters as Li et al. (2021)’s experiments with Few-shot Font Style Transfer between
Different Languages (FTransGAN). English glyphs are used as style reference images,
while Chinese glyphs are used for content images and ground truth.

5.3. Experimental Results
In this section, the training details of EPS-Font are presented. Afterwards, a comparison
of the effectiveness of different approaches for the encoders, the effectiveness of Deep
Metric Learning and the result of using Deformation and Texture Separation (DTS) are
given.

5.3.1. Training Details
Figure 5.1 shows the plots when running the model, and a generated example of every
5th epoch is shown in Figure 5.2.

1https://docs.microsoft.com/en-us/typography/font-list/microsoft-yahei
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(a) LL1 (b) LcontentG + LstyleG

(c) LcontentD (d) LstyleD

Figure 5.1.: Losses during training of EPS-Font.

Figure 5.2.: Example of generated images during training. Columns show ground truth,
generated image, content image and style images, respectively, from left to
right. Rows show every fifth epoch.
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5.3.2. Ablation Studies

Encoders These experiments relate to RQ1. The goal is to test how the different
approaches of extracting content feature and style features affect few-shot font style
methods in general.

As mentioned in Section 4.2, the model has deliberately a deeper style encoder than
context encoder, which differs from many font generation models (Zhang et al., 2018b;
Zhu et al., 2020; Gao et al., 2019). Additionally, the style encoder uses a convolutional
layer for downsampling the style features to a spatial dimension of {1 × 1}, then up-
samples the style features to match the spatial dimension of the content features. This
also differs from many font generation models (Zhang et al., 2018b; Zhu et al., 2020;
Gao et al., 2019; Park et al., 2021b). To test the effect of each of these choices, three
respective experiments are conducted. In Experiment 1, the same number of convolu-
tional layers on the content encoder as the style encoder is used. In Experiment 2, the
last convolutional layer and the upsample layer are removed from the style encoder. Ex-
periment 3 will test both of these changes at once, which is a typical font style transfer
architecture (Zhang et al., 2018b; Zhu et al., 2020; Gao et al., 2019). A detailed over-
view of the architecture for Experiment 1, Experiment 2 and Experiment 3 can be found
in Appendix B. Table 5.1 demonstrates the results of EPS-Font and the results of the
experiments.

Table 5.1.: Experiments testing the effect of different encoder architectures

Model Acc(C) % Acc(S) % MAE LPIPS FID

EPS-model 98.3 10.7 0.182 0.128 17.40

Exp. 1: Modified content encoder 95.0 10.5 0.302 0.130 20.62

Exp. 2: Modified style encoder 97.9 9.8 0.194 0.142 21.32

Exp. 3: Modified both encoders 94.2 9.4 0.327 0.146 24.45

Deep Metric Learning These experiments relate to RQ2. Figure 5.1 shows the LSC

and the ratio of hard negatives when running EPS-Font with λSC = 10, m = 0.2, α = 1.
The rest of the plots are shown in Appendix C. A common technique to analyze the effect
of a Deep Metric Learning is t-Distributed Stochastic Neighbor Embedding (t-SNE). T-
SNE visualizes high dimensional data as a two or three-dimensional map. Figure 5.4
shows the t-SNE for EPS-Font with λSC = 0 and EPS-Font with λSC = 10, m = 0.2,
α = 1. Table 5.2 shows runs with different settings for λSC , m and α.
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(a) LSC . (b) Ratio of hard negatives

Figure 5.3.: LSC and ratio of hard negatives during training of EPS-Font with λSC = 10,
m = 0.2, α = 1.

(a) Result with λSC = 0.
30 fonts (train)

(b) Result with λSC = 0.
29 fonts (test)

(c) Result with λSC = 10, m = 0.2,
α = 1. 30 fonts (train)

(d) Result with λSC = 10, m = 0.2,
α = 1. 29 fonts (test)

Figure 5.4.: T-SNE of style features of EPS-Font.
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Table 5.2.: Experiments testing the effect of deep metric learning

Model Settings Acc(C) % Acc(S) % MAE LPIPS FID

EPS-Font λSC = 0 98.3 10.7 0.182 0.128 17.40

EPS-Font λSC = 10, m = 0.2, α = 1 97.0 10.1 0.219 0.132 18.40

EPS-Font λSC = 10, m = 0.2, α = 0.5 97.2 10.4 0.210 0.130 18.18

EPS-Font λSC = 10, m = 0, α = 1 95.1 10.6 0.254 0.144 20.09

EPS-Font λSC = 5, m = 0.2, α = 1 97.7 10.4 0.189 0.129 18.14

EPS-Font λSC = 5, m = 0, α = 0.5 96.3 10.7 0.217 0.136 18.79

Deformation and Texture Separation These experiments relate to RQ3. This
modification is described in Section 4.6. There are two important results:

• The results of T

• The results of EPS-Font with DTS
For T , the configuration used is αdist = 8, αstep = 5, βpos = βangle = 0.5 and nsteps = 30.
To find these parameter values, grid random search was used on a subset of the dataset,
with λ = 1. Using T on all glyphs in the dataset took ∼ 7 days. Figure 5.5 shows some
examples of deformations using T .

(a) Good deformations (b) Bad deformations

Figure 5.5.: Deformation examples generated by T . The green pixels show d, the de-
formation of csk. The purple pixels show the overlap between the estimated
stroke used in T and the ground truth. The red and blue pixels show the
estimated stroke used in T and the ground truth respectively with no over-
lap.
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EPS-Font was used with the same configurations as mentioned in Section 5.1, only
the architecture was modified for P (doffset|csk, s) and P (x|d, s). Table 5.3 demonstrates
the results of this experiment.

Table 5.3.: Experiment testing the EPS-Font with Deformation and Texture Separation

Model Acc(C) % Acc(S) % MAE LPIPS FID

EPS-Font 98.3 10.7 0.182 0.128 17.40

EPS-Font /w DTS 72.5 5.2 0.361 0.193 38.51
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6. Evaluation and Discussion
In this chapter, a discussion of the experimental results in Chapter 5 are presented.
Section 6.1 discusses the experimental results of the experiments of different encoder
architectures. Section 6.2 discusses the experimental results of applying Deep Metric
Learning to few-shot font style transfer with Extraction of Partial Style (EPS-Font).
Section 6.3 discusses the experimental results of the modification Deformation and Tex-
ture Separation (DTS). Section 6.4 compares EPS-Font to the state-of-the-art.

6.1. Encoders
This discussion relates to RQ1. Using the same architecture for the content and style
encoder is tempting, as it is the easiest approach in terms of implementation and docu-
mentation. This approach is used by several font style transfer methods (Zhang et al.,
2018b; Zhu et al., 2020; Gao et al., 2019). However, this approach also has the worst
performance out of all experiments in Section 5.3.2. The results indicate that modifying
the encoders with the suggested changes in Section 4 improves the overall performance
of the generator, as each change clearly improves the overall evaluations in the exper-
iments. The first suggested change is to use less convolutional layers on the content
encoder than the style encoder. The second suggested change is to use a convolutional
layer for downsampling the style features to a spatial dimension of {1 × 1}, then up-
sample it to match the spatial dimension of the content features. The reasoning behind
these suggestions is mentioned in Section 4.

6.2. Deep Metric Learning
This discussion relates to RQ2. The experiments performed to test the effects of Deep
Metric Learning (DML) suggest that DML had negative effects when applied to EPS-
Font. DML is described in Section 2.9. The model with the best overall results is
EPS-Font with λSC = 0, where DML was not used. The results in Table 5.2 and t-SNE
in Figure 5.4 display indications as to why DML did not improve the results of EPS-Font.

Firstly, the ResNet-50 classifier has a significantly low score on predicting the style
generally in Table 5.2. This could mean that the models tested are not able to transfer
the styles properly. However, it is less likely, as the models show comparable score
to Multiple Localized Experts Few-shot Font Generation Network (MX-Font) in Park
et al. (2021b)’s paper proposing MX-Font on all other evaluations, specifically, on their
experiments on font style transfer between Chinese glyphs. Still, MX-Font scored much
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higher on style classification in their experiments. The reason for this is likely that
the dataset used in the experiments presented in Chapter 5 has more styles which are
similar to another, which makes the task of classifying the styles harder as well. One
pretty evident indication of this is that the dataset used in these experiments has almost
double the amounts of styles (847 compared to 495). A possible explanation for this is
that the more similar styles there are in a dataset, the worse DML performs for font
style transfer. This is because DML tries to force a margin between similar styles in the
embedded space. This is useful in a task like style classification, where DML is typically
used (Schroff et al., 2015; Hermans et al., 2017; Xuan et al., 2020). A misclassification
means that the output is incorrect, therefore, for style classification it is likely beneficial
that DML encourages the model to separate between similar styles in the embedded
space. However, font style transfer is not the same as style classification. For font style
transfer, even if the style encoder is unable to differentiate between two similar styles,
it could still achieve good results as long as the generated image ends up resembling
the target image. For this reason, using DML to encourage the model to separate
between similar styles in the embedded space is not necessarily as beneficial for font
style transfer. Instead, this can hurt the model’s capabilities at generalizing styles and
generating glyphs, as part of the model’s focus is instead directed at learning to separate
between similar styles.

Secondly, the t-Distributed Stochastic Neighbor Embedding (t-SNE) of EPS-Font with
λSC = 0 shows a rather ideal t-SNE. The t-SNEs are shown in Figure 5.4a and Figure
5.4b. The reason for this is that the majority of style features can be easily separated from
each other, both on the examples of the training set and on the test set. Additionally,
the style features are spread as a manifold, which indicates that the model is able to
generalize (Schroff et al., 2015). The aim of DML is to optimize the embeddings (Schroff
et al., 2015); however, when the embeddings are already rather ideal without DML, the
benefits of using DML is lessened.

As mentioned in Section 3.5, Aoki et al. (2021) showed that DML improved the overall
results in their experiments. However, their experiments differ from the experiments
conducted here. Their dataset consists of 368 fonts, which is less than half the fonts
(847) used in the experiments conducted in Chapter 5. This reduces the likelihood of
similar fonts. Additionally, they fine-tuned when testing their implementation of DML
on AGIS-Net(Gao et al., 2019). In Figure 5.4c, it is noticeable that DML made it very
easy to clearly separate the features of the training set. However, the same can not be
said in Figure 5.4d, the test set. This suggests that a model with DML generalizes worse
for unseen fonts. As Aoki et al. fine-tune the model, they do not test on unseen fonts.

6.3. Deformation and Texture Separation
This discussion relates to RQ3. The results of using EPS-Font with Deformation and
Texture Separation (DTS) is pretty evidently inferior to using EPS-Font without DTS.
This is likely because many of the deformations given by the mapping T were inaccurate,
as shown in Figure 5.5. The inaccuracy in deformations mapped from T both affected
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the model’s ability to generalize the deformation at P (doffset|csk, s), and the overall
performance of font generation at P (y|d, s).

However, one interesting use case of Deformation and Texture Separation (DTS) is to
use csk instead of d as input for P (x|d, s). Figure 6.1 shows an example of this use case.
This way of generating images removes the deformation of the style. Definitely, one way
to use this could be for real-time applications to improve the readability of fonts that
have strong deformations. However, a perhaps more practical usage of this is to use
this as a tool for font generation. We denote sd=0 as a style image with no deformation
generated through this method.

Figure 6.1.: Example of removing deformation from fonts using approach 1. Top three
rows show successful cases. The bottom row shows a failure case.

One way to make use of sd=0, is for splitting the task of predicting the deformation
and texture into two separate models. Learning only the texture when there is no
deformation is much easier. Gao et al. (2019) wrote in their paper which proposes
AGIS-Net, a state-of-the-art font generation model: ”The task of shape style transfer is
much tougher than texture style transfer. [...] Actually, not only the proposed model
but also all other existing approaches can not satisfactorily transfer the styles of some
fonts, in which most characters have their own unique shape style or/and local details.”.
The great results of state-of-the-art style transfer methods (Chen and Schmidt, 2016;
Johnson et al., 2016; Huang and Belongie, 2017) also indicate that learning to predict
the texture is easier when there is no deformation. Style transfer is similar to font style
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transfer, with the exception of how style is defined in each of the tasks. In style transfer,
style is defined as a set of colors and texture, while in font style transfer, stroke, shape,
decorations, etc. are also regarded as style. One way to make use of sd=0 is by using
sd=0 as ground truth for learning the texture, then mapping sd=0 → s by another model.
Learning highly artistic styles are very hard, even for state-of-the-art few-shot font style
transfer methods (Gao et al., 2019; Li et al., 2021), but with the help of sd=0 it could
be more approachable.

However, as shown in the bottom row of Figure 6.1, the model is not able to consist-
ently successfully remove the deformation. This is likely because the deformation made
by T is too inaccurate, as mentioned previously.

6.4. Comparison with the State-of-the-Art
The options of competitors are very limited as the only other font style transfer approach
that transfers between different languages is FTransGAN. Few other font generation
methods can be modified for this task. Li et al. (2021) chose EMD (Zhang et al., 2018b)
and DFS (Zhu et al., 2020) as their competitors, after excluding:

• Models that are designed for compositional scripts.

• Models that can not handle large font libraries.

• Models designed for unsupervised generation.

As FTransGAN is able to clearly demonstrate that it outperforms EMD and DFS, only
FTransGAN is compared to EPS-Font. Table 6.1 shows the result of this comparison
and Figure 6.2 shows examples of generated images from FTransGAN and EPS-Font.
The results of FTransGAN are not the results published in Li et al.’s paper, but the
results with the experimental setups described in Section 5.2. Notably, the batch size in
these experiments was lower, which is not preferred (Brock et al., 2018).

A total of 232 responses from 8 people were collected by user studies. However, none
of the participants were proficient in Chinese.

Table 6.1.: Comparison of EPS-Font and FTransGAN (Li et al., 2021)

Model User % Acc(C) % Acc(S) % MAE LPIPS FID

EPS-Font 60.8 98.3 10.7 0.182 0.128 17.40

FTransGAN 39.2 98.0 10.2 0.188 0.126 19.07
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Figure 6.2.: Generated examples from FTransGAN and EPS-Font. Both models are able
to extract the style well. However, the generated images from EPS-Font are
often sharper than the generated images from FTransGAN.
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7. Conclusion and Future Work
This chapter concludes the thesis with the contributions to the state-of-the-art and
future work. Section 7.1 describes each of the contributions to the state-of-the-art by
their related research question. Section 7.2 presents the overview of future work.

7.1. Contributions
RQ1: Using the architecture of the encoders in the outlined ‘Few-shot font style trans-
fer with Extraction of Partial Style’(EPS-Font) approach is proposed as a way to extract
content and style features in few-shot font style transfer. The results of experiments con-
ducted shows that this architecture greatly increases the overall performance compared
to using a typical architecture, which is using the same architecture for the content
encoder and style encoder. Experimental results show that EPS-Font outperforms state-
of-the-art methods in both quantitative and qualitative evaluations.

RQ2: The implementation of Deep Metric Learning was not beneficial to improve the
results of EPS-Font. A possible explanation for this is that the more similar fonts in
a dataset, the more of the focus of EPS-Font is shifted to separating these fonts in the
embedded space, rather than learning to generalize the styles.

RQ3: The proposed modification, Deformation and Texture Separation (DTS) showed
to have bad results when used for few-shot font style transfer. However, this modific-
ation enables a way of removing deformation from a style image, which has not been
accomplished before. Style images with no deformation can be beneficial for training
font style transfer methods.

7.2. Future Work
A challenge within the font style transfer field is to predict highly artistic font styles.
This is prominent in the models tested in this thesis, as shown in Figure 7.1. Prediction
of highly artistic font styles is an interesting task to look further into.

Testing out different approaches like AdaIN and U-Net, which both show great results
at preserving high frequency details (Huang and Belongie, 2017; Ronneberger et al.,
2015), can be useful to experiment on the architecture of EPS-Font.

The mapping T for the modification, Deformation and Texture Separation (DTS), was
likely too inaccurate. Finding a better way to do T would be interesting to improve DTS
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Figure 7.1.: Examples of failure cases with highly artistic font styles. The left image in
each pair is the generated image, the right image in each pair is the ground
truth.

in overall. For instance, an approach which makes use of neural networks can make T
more flexible overall. Additionally, the gradients will be maintained, which can make it
possible for the architecture used to predict P (doffset|csk, s) to be trained jointly with the
architecture used to predict P (y|d, s). These architectures are described in Chapter 4.6.

Comparing this model against more state-of-the-art models would be highly beneficial
to weight the advantages and disadvantages of state-of-the-art approaches, even if the
font style transfer experiments are not performed cross language. For instance, testing
EPS-Font against Few-shot Font Generation with Multiple Localized Experts (MX-Font)
for font style transfer of Chinese letters.
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A. Algorithms
Psuedocode for estimating the stroke in Deformation and Texture Separation.

Algorithm 1 Stroke Estimation
procedure Estimate-Stroke(csk, y) ▷ csk is the skeleton image, y is the target image

Stroke← 4
do

Strokeold ← Stroke
ŷ ← Add-Stroke-To-Skeleton(csk)
∇ ← Count-Black-Pixels(y) / Count-Black-Pixels(ŷ)
Stroke← Stroke ∗ ∇ 1

2

while |Stroke− Strokeold| > 0.25 ▷ Change in stroke must be less than 0.25
return Stroke

end procedure
procedure Count-Black-Pixels(p)

local variables: n, images are n× n
return n2 −

∑n
y=1

∑n
x=1 px,y

end procedure
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B. Architectures

Detailed overview of the architectures. Sections B.1-B.3 show the architecture of EPS-
Font. Sections B.4-B.6 show the architectures of the encoders used in Section 5.3.2.

B.1. Encoders

Operation Kernel Stride Padding Feature Normalization Activation
Convolution 7 1 3 64 BN ReLU

Content encoder Convolution 3 2 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU
Convolution 7 1 3 64 BN ReLU
Convolution 3 2 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU

Style encoder Convolution 3 2 1 512 BN ReLU
Convolution 3 2 1 1024 BN ReLU
Convolution 4 1 0 256 BN ReLU
Convolution 1 1 0 256 BN ReLU
Upsample 4 - - 256 - -

B.2. Decoder

Operation Kernel Stride Padding Feature Normalization Activation
ResBlock 3 1 1 512 BN -
ResBlock 3 1 1 512 BN -
ResBlock 3 1 1 512 BN -
ResBlock 3 1 1 512 BN -
ResBlock 3 1 1 512 BN -
ResBlock 3 1 1 512 BN -
ConvTranspose 3 2 1 256 BN ReLU
ConvTranspose 3 2 1 128 BN ReLU
Convolution 7 1 3 1 - Tanh
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B. Architectures

B.3. Discriminator

Operation Kernel Stride Padding Feature Normalization Activation
Convolution 4 2 1 64 - LeakyReLU(0.2)
Convolution 4 2 1 128 BN LeakyReLU(0.2)
Convolution 4 2 1 256 BN LeakyReLU(0.2)
Convolution 4 1 1 512 BN LeakyReLU(0.2)
Convolution 4 1 1 1 - -

B.4. Experiment 1

Operation Kernel Stride Padding Feature Normalization Activation
Convolution 7 1 3 64 BN ReLU
Convolution 3 1 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU

Content encoder Convolution 3 1 1 512 BN ReLU
Convolution 3 2 1 1024 BN ReLU
Convolution 3 1 1 256 BN ReLU
Convolution 7 1 3 64 BN ReLU
Convolution 3 2 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU

Style encoder Convolution 3 2 1 512 BN ReLU
Convolution 3 2 1 1024 BN ReLU
Convolution 4 1 0 256 BN ReLU
Convolution 1 1 0 256 BN ReLU
Upsample 4 - - 256 - -

B.5. Experiment 2

Operation Kernel Stride Padding Feature Normalization Activation
Convolution 7 1 3 64 BN ReLU

Content encoder Convolution 3 2 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU
Convolution 7 1 3 64 BN ReLU
Convolution 3 1 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU

Style encoder Convolution 3 1 1 512 BN ReLU
Convolution 3 2 1 1024 BN ReLU
Convolution 3 1 1 256 BN ReLU
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B.6. Experiment 3

B.6. Experiment 3

Operation Kernel Stride Padding Feature Normalization Activation
Convolution 7 1 3 64 BN ReLU
Convolution 3 1 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU

Content encoder Convolution 3 1 1 512 BN ReLU
Convolution 3 2 1 1024 BN ReLU
Convolution 3 1 1 256 BN ReLU
Convolution 7 1 3 64 BN ReLU
Convolution 3 1 1 128 BN ReLU
Convolution 3 2 1 256 BN ReLU

Style encoder Convolution 3 1 1 512 BN ReLU
Convolution 3 2 1 1024 BN ReLU
Convolution 3 1 1 256 BN ReLU
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C. Losses
Losses during training of EPS-Font with Deep Metric Learning. The settings used was
λSC = 10, m = 0.2, α = 1.

(a) LL1. (b) LcontentG + LstyleG..

(c) LcontentD. (d) LstyleD.

Figure C.1.: Losses during training of EPS-Font with λSC = 10, m = 0.2, α = 1.
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