NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Master’s thesis

Department of Computer Science

Sindre Amdal Stephansen

The Challenges of porting Inferno to
RISC-V

Master’s thesis in Computer Science
Supervisor: Michael Engel

August 2021

@ NTNU

Norwegian University of
Science and Technology

Sindre Amdal Stephansen

The Challenges of porting Inferno to
RISC-V

Master’s thesis in Computer Science
Supervisor: Michael Engel
August 2021

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Contents

(1__Introduction| 4
|2 Background)| 4
2.1 Plan9l e 4
B2 Tnfernal oo 5
2.3 RISC-VI o oo e 5
2.3.1 ISA extensionsl 5
2.3.2 Privilege levels| o 6
2.3.3 CSR - Control and Status Register| 6
2.3.4 SBI - RISC-V Supervisor Binary Intertace| 6
...................................... 7

[3 Implementation| 7
8.1 RISC-V compiler| 7
[3.2 _Architecture-specific code structure|. oL 8
B3 Choosing a platform] v v o e 9
3.4 Platform-specific code structure]. 0oL 9
8.41 Headerfiles] 9
B8.42 Functions L 10
[3.4.3 The configuration file| 11
B44 ThemKkAld 12
.. 12
8.6 Address space| Lo e 12
8.7 Using CSRs| o o 12
8.8 Handling traps| 14
1 interfacel Lo Lo 14

8.9 Clock and timersl L 14
BI9T Timersin RISC-V] e 14
8.9.2 Timers in Infernol.o 15
13.9.3 Implementing the interface| o 0. 15
BIOUART e e 15
3. 11 VIRTIOl e e 16
3.11.1 The VIRTIO communication protocol| 16
3.11.2 VIRTIO library|. o 17
BILS3TGPU. . . . 18
3.11.4 Input] 18
BILS Blockdevicdo vt 18

8.12 Graphical output| 19
.13 Initializing the system|o Lo 20
B8.14 Interactive shelll o 20
.. 22
13.16 The Just-in-time compiler| L o 24
8.16.1 The Dis instruction setl 25
8.16.2 The structure of the virtual machinel 25
13.16.3 The structure of the JI'T compilers| 25
13.16.4 Implementing the JI'T' for RISC-V| 26
3.16.5 Testing the JI'T|. o o 27

5 _Conclusion
(6 Future workl

|7 Acknowledgments|

|8 Bibliography|

APP Cl

|A_/os/virtriscv/virtriscy|

IB_ /os/virtriscv/mkfile|

|IC /os/virtriscv/main.c|
ID /os/virtriscv/sdvirtblk.c|

[/libinterp/comp-riscv.c|

27
27
28
29
30
30

31

32

32

33

35

36

39

41

44

47

Abstract

The RISC-V processor architecture is rapidly rising in popularity, and there will probably
be an explosion of smaller RISC-V computers in the coming years, as sensors, in appliances,
and more. Because these kinds of computers do not always have the resources to run an
operating system like Linux, the Inferno operating system is an alternative, which, with its
networked and distributed nature, could be a perfect match for these kinds of systems.

In this thesis I begin to port Inferno to RISC-V, and identify the challenges of both
porting and using the operating system.

The first major challenge was to get the system to a stage where it could boot and handle
simple input and output. The second challenge was to make the system more usable by
implementing drivers. The last challenge was to implement a Just-in-time compiler, to make
the system more responsive.

While not fully usable yet, I have made significant progress in porting Inferno. The
operating system boots and launches an interactive shell, in which the user can execute
commands. It can output to both a serial port and a screen. I have implemented a
Just-In-Time compiler, but there are some bugs which cause complicated programs to crash.

This forms the foundation from which a port of Inferno to real hardware can be built.

Sammendrag

Prosessorarkitekturen RISC-V blir stadig mer populeer, og det vil sannsynligvis bli en
eksplosjon av sma RISC-V maskiner de neste arene, som sensorer, i hvitevarer, og mer. Siden
disse typene datamaskiner ikke alltid har ressursene til & kjgre operativsystemer som f.eks.
Linux er operativsystemet Inferno et alternativ. Infernos distribuerte og nettverksorienterte
design kan passe utmerket for disse typene systemer.

I denne oppgaven begynner jeg pa & tilpasse Inferno til & kjgre pa RISC-V, og identifiserer
utfordringene med & tilpasse og bruke operativsystemet.

Den fgrste store utfordringen var & fa systemet til et punkt der det kunne starte opp og
héndtere enkel kommunikasjon, i form av tekst. Den andre utfordringen var & gjgre systemet
brukbart ved & implementere enhetsdrivere. Den siste utfordringen var & implementere en
Just-in-Time kompilator, for & gjgre systemet mer responsivt.

Selv om operativsystemet ikke er helt brukbart enna har jeg gjort store framskritt.
Operativsystemet starter opp og viser en kommandolinje der brukeren kan utfgre kommandoer.
Tekst kan printes bade til en seriell port og til en skjerm. Jeg har implementert en Just-in-Time
kompilator, men det er noen problemer som far kompliserte programmer til & krasje.

Dette prosjektet danner grunnlaget for & bruke Inferno p4 RISC-V maskiner.

1 Introduction

The RISC-V platform is gaining ground in research as well as industrial projects. However, system
software support so far is mostly focusing on the well-known large open source operating systems
(Linux, BSD) or very tiny embedded real-time kernels. The large systems have now grown too
big for many applications on restricted hardware platforms, e.g. running on a small FPGA-based
system, whereas the traditional real-time operating systems suffer from a lack of useful network
integration, memory protection, or orthogonal concepts of files and file systems, which makes
their use in networked settings (IoT, Cloud) more challenging.

Thus, the idea of this project is to cover the middle ground by porting the open source Inferno
operating system from Bell Labs to RISC-V. This system is already highly portable, but a RISC-V
port is missing. Inferno is especially interesting since it is well documented and the low complexity
of the system (compared to e.g. Linux) makes it very suitable to work on in the context of a
student project.

During this project I started the work to create a port of Inferno to RISC-V, running under
QEMU. I managed to get it to compile, print and receive input through UART. It enables and
handles traps, schedules processes, starts the virtual machine, and launches an interactive shell
which the user can execute commands from. I started to implement a Just-in-Time compiler, but
there are bugs which causes crashes with complex programs.

The source code of the project is available at https://github.com/kalkins/inferno-os/
tree/riscv. The code for the Just-in-Time compiler is at a separate branch, at https://github!
com/kalkins/inferno-os/tree/riscv-jit.

This report is structured as follows: Section [2] gives an overview over the technologies used
in this project. Section [3] goes through the development step by step. Section [covers major
problems I encountered, and how I dealt with them. Section [5| summarizes the current state of
the port. Section [6] discusses what remains in order to have a working port, and how this port
could be used in practice.

2 Background

2.1 Plan9

Plan9 from Bell Labs, commonly shortened to Plan9, is a distributed operating system designed
to solve some of the problems with UNIX-based workstations |18]. The operating system is
designed to be distributed over a network of smaller workstations, giving each the full power of
the network. Instead of maintaining UNIX compatibility, Plan9 kept the ideas that worked and
redesigned the rest. Plan9 has a new suite of compilers, new libraries, and polished suite of tools.

Plan9 is built around the UNIX concept that everything is a file, and extends it. Most system
resources are represented as files in the filesystem, and the files from other computers on the
network are seamlessly available in the same filesystem. Because of this each machine can be
responsible for a class of services which are made available through files, and any computer on
the network can use those services as if they were hosted locally.

Plan9 also incorporated a concept of per-process name spaces, which means that each process
has their own view of the filesystem. This is used, for example, by the graphical interface: When
a process wants to display something on screen it writes to the /dev/bitblt file. The window
system process can replace this file in the name space of its subprocesses and therefore intercept
all writes. When the subprocess writes to /dev/bitblt, believing that it writes to the whole
screen, the window system receives the request, translates the coordinates to within the window

https://github.com/kalkins/inferno-os/tree/riscv
https://github.com/kalkins/inferno-os/tree/riscv
https://github.com/kalkins/inferno-os/tree/riscv-jit
https://github.com/kalkins/inferno-os/tree/riscv-jit

given to the subprocess, and writes to the /dev/bitblt file in its own name space. This provides
a simple way to encapsulate processes and build nested structures.

2.2 Inferno

Inferno is a distributed operating system based on Plan9 which focuses on portability and
versatility, intended to be used for phones, TVs, and personal computers [8]. Inferno applications
are written in the Limbo language and are compiled to byte-code which runs on a virtual machine,
called Dis. The virtual machine was designed to be close to modern processor architectures at the
time, and to make Just-in-time compilation fast and easy. The designers of the virtual machine
claim that the JIT compiled code is 30-50% slower than native C [26].

2.3 RISC-V

At the time of writing the dominating ISAs, x86 for personal computers and servers, and ARM
for embedded systems and phones, are proprietary. For x86 this has resulted in there being only
two CPU manufacturers for mid- to high-end systems. For ARM, manufacturers must pay a
licensing fee to use the design, which increases manufacturing cost, and there is little room for
adapting the design to the rest of the hardware [1]. These designs are also often held back by the
requirement of backwards-compatibility.

RISC-V, on the other hand, is a modern, free, open-source instruction-set architecture, which
means that anyone can design a processor that fits the specification without paying licensing fees,
and the design can be adapted to the hardware. Small embedded devices may implement the ISA
in a cheap, straight-forward way, while desktop devices can use advanced techniques to get as
much performance as possible.

The full ISA specification can be found in Waterman and Asanovié¢ |22, 23].

2.3.1 ISA extensions

One of the most interesting things about RISC-V is that the instruction-set is modular. The
specification defines a few base ISAs, and several extensions that may or may not be dependent
on other extensions. This allows hardware manufacturers to implement only the functionality
that is needed, keeping the hardware simple for embedded devices, while allowing power and
functionality to higher-end devices.

The width of registers is defined by XLEN, which is set by the base ISA. Most computational
instructions are defined by this value, and therefore automatically use the available width on the
platform. Platforms may allow XLEN to be changed at runtime.

The most basic ISA is RV32I, which uses XLEN=32, 32 registers, and defines common instruc-
tions like addition, move, load, store and branches. RV64I is another base ISA which builds on
RV32I by keeping the instructions but changing XLEN to 64 and defining new instructions for
32-bit values. RV128I similarly changes XLEN to 128 and adds instructions for 64-bit values.
RV32E, a base ISA with 16 registers designed for embedded systems, is currently in a draft stage.

The fact that the value of XLEN changes how instructions behave means that a program
compiled for RV32I can be loaded on a 64-bit or 128-bit system and use the whole register width
automatically. This can cause problems if the developer designs the code around 32-bit registers,
especially if the code is designed to overflow. However, if the developer designs the code to
work on both 32-bit and 64-bit platforms the full available width can be utilized without having
separate versions for each value of XLEN.

Instruction-set extensions can be added to any base ISA in any configuration, as long as
their dependencies are also included. The most notable extension is perhaps the F extension

which adds 32 registers for single-precision floats, and instructions to handle them. The D and Q
extensions build upon this the same way as RV641 and RV128I, adding support for double and
quad precision floats. There is also the M extension for multiplication and division, A for atomic
instructions, and C for compressed instructions, which provides shorter variants of common
instructions.

2.3.2 Privilege levels

The RISC-V specification defines multiple privilege levels, commonly called modes, in which code
can be executed. The current mode determines which privileged instructions are available and
how traps are handled. A higher mode can fully control a lower mode, providing security and
functionality to operating systems and hypervisors.

Code running in a mode can make it impossible for code in lower modes to know which mode
they are running in. When the lower code tries to do an operation that requires a higher privilege
level, the upper code can emulate the operation.

There are three modes currently defined:

e Machine mode is the only mandatory mode defined by the specification, and it is the highest
possible mode with full access to the platform. However, if only machine mode is available
none of the benefits of privilege modes are available.

e User mode is an optional mode, and is always the lowest mode. It is used to run insecure
user code, with higher modes granting protection.

e Supervisor mode is an optional mode that can be added between machine mode and user
mode. It can be used for running operating systems with the bootloader in machine mode,
the OS in supervisor mode, and user applications in user mode.

2.3.3 CSR - Control and Status Register

The RISC-V Zicsr extension defines a separate address space that can contain 4096 Control and
Status registers (CSRs), and the instructions to use them [22, Chapter 9]. At the time of writing,
over 200 CSRs have been defined.

The CSRs are divided into machine mode, supervisor mode and user mode and can be used
to read platform information or enable and handle traps, timers, memory protection and virtual
address translation for the different modes. CSRs also include information about XLEN and
available extensions, so software can adapt to the platform at runtime.

When referring to a CSR independent of mode I use the format xstatus, which refers to
mstatus, sstatus, and ustatus.

For the full list and description of CSRs, see Waterman and Asanovi¢ |23, Chapter 2, 3.1, 4.1].

2.3.4 SBI - RISC-V Supervisor Binary Interface

The Supervisor Binary Interface (SBI) is a standardized interface between software running in
supervisor mode, usually operating systems or unikernels, and software running in higher modes,
usually bootloaders or hypervisors. The SBI interface abstracts platform specific functionality, so
that programs can be ported to all RISC-V implementations.

The SBI specification currently defines several extensions which the bootloader can offer, like
setting timers, sending messages between harts, controlling a hart’s state, performance monitoring
and resetting the system. Earlier versions of the specification defined functions for reading and
writing to a console, but these are now deprecated.

SBI functions are called using a standardized calling convention, which is a hybrid of the
RISC-V and Linux calling conventions. Like the standard RISC-V convention, the registers a0 to
a7 are used for arguments, but like in Linux the a7 register is used for the ID of the extension
that is called. Register a6 can be used for the ID of the function, if the extensions has multiple
functions. The call itself is made with an ECALL instruction, which causes an exception in the
higher modes. The return value is placed into al, with a0 indicating whether an error occurred.

The specification is still a draft in version 0.3, but it has been implemented by some bootloaders
(see section [3.5). It can be found in Dabbelt and Patra [5].

2.3.5 Traps

Traps cause the currently executed code to be stopped, and control is transferred to a trap
handler, usually in a higher mode. In RISC-V interrupts are traps that are used as notifications
from instructions or devices. Exceptions are errors and environment calls.

Traps are an essential part of operating systems, for system calls, process scheduling, and error
handling. In RISC-V traps are layered by mode: First, traps from any mode are sent to machine
mode. The program running in machine mode can, before the trap, choose to delegate some or all
traps occurring in supervisor or user mode to the program running in supervisor mode. Likewise,
user mode traps can be delegated to the program running in user mode from supervisor mode.

Each mode has separate CSRs for enabling and handling traps. There are three classes of
interrupts: software interrupts, timer interrupts, and external interrupts. After enabling these,
interrupts also have to be enabled globally for the current mode y in the ystatus CSR. Exceptions
can not be disabled, only delegated to a lower mode. When a trap is triggered and sent or
delegated to mode y the trap handler at the address stored in ytvec is called. The specific cause
of the trap is stored in the ycause CSR.

3 Implementation

3.1 RISC-V compiler

Before I could write any code for the port, I had to find a compiler which was compatible with
the Plan9/Inferno compiler architecture, and could compile to RISC-V. Luckily, Richard Miller
had already developed and published a RISC-V compiler for Plan9 by the time I started this
project. The compiler source can be found in Miller [16].

I began the project by integrating Richard Miller’s compiler into Inferno. Plan9 and Inferno
have quite similar compiler structure, so this was easy to do. I came across some bugs in the
compiler which I fixed as best I could.

After the compiler was integrated I started writing the architecture-specific code necessary for
kernel and virtual machine functions, as described in section [3.2]

However, halfway through the project Richard Miller announced that he was working on a new
improved compiler, with 64-bit support and more ISA extensions. This new compiler solved all
the issues I was having with the old compiler. Richard Miller even added the architecture-specific
code for Inferno, which replaced some of my attempts. See section [3.2] for more details. The
compiler source can be found in Miller [17]. The compiler was later merged into the Inferno
codebase [15].

This new compiler supports both the RV32I and RV64I base extensions, and the I, M, A,
F, D, and C ISA extensions. Of these extensions only C, for compressed instructions, can be
disabled. For the rest, if the platform does not support them the instructions either have to be
avoided, or they can cause traps and be emulated in software.

For this project I used the 32-bit compiler because Inferno is a 32-bit operating system.

3.2 Architecture-specific code structure

Some architecture-specific code is necessary for the kernel and Dis virtual machine to run on the
hardware. Some of these files were provided by Richard Miller as part of his new compiler, and
some I have implemented myself. Most implementations are similar to that of other architectures.

e Inferno/riscv/include
These are architecture-specific header files which are used across the kernel.

— 1ib9.h
This file includes other header files.

— u.h
This file defines type aliases and floating point configuration constants.

— ureg.h
This file defines the Ureg struct, which is used to store register values.

e libinterp
This folder contains code for the Dis virtual machine. See section

— comp-riscv.c
This file contains the implementation of the JIT compiler for RISC-V.

— das-riscv.c
This file contains the implementation of a RISC-V disassembler, which is used to debug
the JIT compiler.

e libkern
This folder contains code for kernel libraries. These files were provided by Richard Miller.

— mkfile-riscv
Specifies source files for the architecture.

— frexp-riscv.c
This file provides functions for double-precision floats.

— getfcr-riscv.s
This file provides functions for reading and writing to the floating-point control and
status register.

— memmove-riscv.s, memset-riscv.s, and strchr-riscv.c
These files implement the POSIX functions memmove, memset, and strchr for the
architecture.

— vlop-riscv.c and vlrt-riscv.c
These files defines functions for arithmetic operations on integers longer than the
platform bit width.

e utils/libmach
These files were provided by Richard Miller. The files with an i in the name are for RV32I,
and those with a j in the name are for RV641.

— uregi.h and uregj.h
These files define the Ureg struct, which is used to store register state.

—i.cand j.c
These files define the RISC-V registers and address space.

— idb.c and jdb.c
These files define a RISC-V specific debugger interface.

— iobj.c and jobj.c
These files provide functions used by the iar utility to help it recognize RISC-V object
files.

3.3 Choosing a platform

Before any platform-specific code could be written, a platform had to be chosen. There are a few
physical RISC-V processors available, but physical hardware can be hard to debug.

Instead, I chose to use QEMU. QEMU is a machine emulator which supports many architec-
tures, and can emulate existing physical platforms [3]. It has support for the RV32I and RV641
base ISAs with all current ISA extensions, and machine, supervisor, and user mode. QEMU also
has integrated GDB support, to make debugging easier, and it can emulate many input, storage,
networking, and graphical devices.

3.4 Platform-specific code structure

The platform-specific code lives in os/<platform>, which is os/gemuriscv in this case. This
code handles initialization of hardware, and provides functions that the rest of the kernel can use,
hiding implementation details behind a common interface.

Because of the standardized nature of RISC-V, most of this code can be used for any RISC-V
platform. However, at the moment only the QEMU platform has been added, so the code lives in
that folder.

Most of the information about platform porting of Inferno comes from a series of blogposts by
LynxLine Labs [10].

3.4.1 Header files

The kernel code often includes specific header files, expecting them to be defined in the platform-
specific folder and provided to them through the linker. This means that the code is able to
adapt better to the platform, but also that a lot of functions have to be defined before a minimal
version of the kernel can be compiled.

Here is a list of the header files that had to be added to compile the kernel, and a description
of what they provide:

e mem.h
This file defines the memory map of the platform, usually with macros. For more details
see section

e dat.h
This file defines platform-specific data structures like locks, labels, and machine configuration.

e fns.h
This file defines most platform-specific functions that other parts of the kernel need.

3.4.2 Functions

The common part of the Inferno kernel declares and uses several functions which are not
implemented, which have to be implemented by the platform-specific part of the kernel. Here is
an overview over those functions, and what they do:

e int setlabel(Labelx*) and void gotolabel(Labelx)
These functions handle labels, which contain a program counter and a stack pointer.
setlabel returns a label with the current program counter and stack pointer values, while
gotolabel writes the stack pointer to the stack pointer register and jumps to the address
in the labels program counter.

e ulong getcallerpc(void*)
This function returns the address of the instruction that called the function.

e int _tas(intx*)
This function does a test-and-set, which is a simple atomic operation: It writes a 1 to the
given address, and returns the previous value at that address. This can be used to create
locks: When a 0 is returned the lock has been acquired, and a 0 can be written to release
the lock. The RISC-V A extension includes an atomic swap instruction which makes this
implementation very easy.

e int splhi(void), int spllo(void), void splx(int), void splxpc(int), and int islo(void)
These functions enable, disable, or toggle interrupts [14]. islo returns non-zero if interrupts
are enabled. These can be implemented by setting, clearing, or toggling the supervisor
mode interrupts in sstatus.

e void kprocchild(Proc*, void (*)(void*), void*)
This function configures a kernel process with a stack.

e int segflush(void#, ulong)
This function flushes a region to memory and invalidates the region in the instruction cache.

e void idlehands(void)
This function is called when process runner has nothing to do. It does not have to do
anything.

e void setpanic(void)
This function is called to prepare for a panic, if necessary.

e void dumpstack(void)
This function dumps debug information about the stack to the user. It is only meant to
help with debugging, and can be empty.

e Timer* addclockOlink(void (%) (void), int)
This function sets a given function to be called after a given delay.

e void clockcheck(void)
This function is called to reset the watchdog timer, if necessary.

e void FPinit(void), void FPsave(void*), and void FPrestore(voidx)
These functions are called from the Dis virtual machine to enable or disable floating point
operations.

e void exit(int), void reboot(void), and void halt(void)
These functions respectively shut down, reboot, and send the system into an infinite loop.

10

3.4.3 The configuration file

Each platform must have a configuration file, which describes which parts of the OS should be
compiled, global configuration variables, and which files and folders should be included in the
filesystem. By convention the file has the same name as the platform, without a file extension,
so for this platform the configuration file is os/virtriscv/virtriscv. The file uses a specific
format, and is parsed by a script before compilation. It is divided into sections, where the section
name is at the baseline and the contents are indented, one entry per line.

The configuration file is parsed once to import the mkfile dependencies, once to generate a C
file which defines the global variables and links device drivers, and once to generate an assembly
file and a header file with the contents of the filesystem.

The following sections are common in the configuration files:

dev

This sections defines device drivers source files to include from the /os/port/ directory
with the dev prefix.

ip

This section defines C files to include from /os/ip/, which contain the network stack.
1ib

This section defines libraries to include. These are whole directories at the root level with
the 1ib prefix, which are compiled into libraries and linked into the binary.

misc
This section defines C files to include from the platform directory.

mod
This section defines Limbo module definitions to include from module/.

port
This section defines C files to include from os/port/.

code
This section consists of C code which declares configuration variables, like enabling the JIT
compiler.

init

This section has only one entry, which defines the initial program to run in the virtual
machine. This program will usually set up the system, then start either the shell or the
window manager. The entry is the basename of the Limbo program in the os/init/ folder.
The Limbo program will be added as a mkfile dependency, and compiled when changed.

root

This section defines the filesystem that is included in the binary. Each line specifies a path.
If the path ends in a slash it represents a folder which should be present in the filesystem,
but does not exist in the local filesystem. If the path does not end with a slash, the file
with that path relative to the project root folder is copied into the filesystem, with that
path. For example, if the Inferno project root is /usr/inferno, and the line /dis/cd.dis
is in the root section, the file /usr/inferno/dis/cd.dis will be copied from the local
filesystem to /dis/cd.dis in the filesystem in the binary.

The exception is the file /osinit.dis, which is copied from the location specified in the
init section.

11

This section is mostly used to include essential programs and utilities in the binary. The
rest of the programs, and other files, should be on a filesystem that is mounted after boot.

The full configuration file for this project is included in appendix [A]

3.4.4 The mkfile

The mkfile defines the build process for the platform. It specifies the target architecture, the
name of the configuration file, the platform specific header and source files (which are usually not
included in the configuration file), and how the resulting binary is compiled and linked. The full
mkfile is included in appendix

3.5 OpenSBI

OpenSBl is a bootloader developed by the RISC-V foundation which supports SBI and is included
by default by QEMU when using the virt machine type. It initializes the machine, switches to
supervisor mode, and jumps to a specified address, 0x80400000, where a binary can be placed to
be executed. By passing that address to the linker with the -T0x80400000 flag and exporting to
ELF with the -H5 flag, the resulting ELF can be passed to QEMU and will be loaded correctly
and started by OpenSBIL.

For this project calls to OpenSBI will only be used to request timers, because RISC-V timers
can only be set from M mode, and to shut down the system. The legacy SBI supported console
I/0, but this feature is deprecated, and I only used it for debugging other I/O methods.

3.6 Address space

In QEMU RAM starts at address 0x80000000, with the size being defined by the -m command-line
parameter. OpenSBI is loaded in at address 0x80000000-0x8001ffff, and expect the kernel
code to be loaded at address 0x80400000.

There is little documentation about the address space in Inferno, and other implementations
are not fully consistent, but it seems like the kernel uses the space below where the kernel code is
loaded in, while the user-space uses the space above the kernel. I gave the kernel 8 KiB of stack
space from the kernel start at 0x80400000 and downwards. The space from the end of the kernel
binary until the end of memory is used for pages for processes. Because the size of RAM can
be varied with QEMU, I assume that 128 MiB is available, and the OS will not use more than
that. Though Inferno normally does not need that much RAM to run, memory overflow bugs are
common during the initial porting process, so it is advantageous to start of with larger RAM
sizes. In the future, it might be possible to determine RAM size at runtime and adapt to that.

Supervisor mode does support virtual memory, but I have not used that functionality yet.
Because all user processes in Inferno run in a virtual machine, hardware virtual memory is not
necessary. However, it would be a useful security measure.

3.7 Using CSRs

Control and Status registers, as mentioned in Section [2.3.3] are used to handle traps, and therefore
are vital to an operating system.

The problem with CSRs are that the instructions to operate on them encode both the operation
and CSR address. That means that it is impossible to make a generalized function that can do
any operation on any CSR at runtime, because the operation and address must be known at
compile-time. Instead, separate functions have to be defined for each operation for each CSR.

12

Some compilers, like GCC, allow these to be implemented in C using inline assembly, but the
Plan9 C compiler does not support this, so the functions have to be written in assembly.

Because writing four basically identical functions for a large set of CSR is a boring task,
an automatic solution was needed. I created the script generate-csr.sh which reads a file
csrregs.h which contains definitions of CSRs on the form shown in listing [T} The script reads
the CSR names and writes function declarations to csr.h and implementations to csr.s, as
shown in listing [2| and [3] These functions return signed numbers because some CSRs have a flag
at the MSB position, and the code can check if the CSR value is less than 0 to check the flag
regardless of the data width. For example, xcause uses the MSB to indicate whether the trap
was caused by an interrupt, so the code can simply check whether xcause is less than 0 to see if
the trap was caused by an error or an interrupt.

When including all currently defined CSRs the resulting code is around 4000 lines (1000 lines
of function declarations and 3000 lines of assembly), which compiles to around 3 kilobytes, or 2%
of the whole binary. Of course not all CSRs are needed, so the size can be reduced by commenting
out sections of csrregs.h.

#define CSR_ustatus 0x000
#define CSR_uie 0x004
#define CSR_utvec 0x005

Listing 1: A snippet from csrregs.h

long csr_read_ustatus(void);
long csr_write_ustatus(long) ;
long csr_set_ustatus(long);
long csr_clear_ustatus(long);

Listing 2: A snippet from csr.h

TEXT csr_read_ustatus(SB), $-4
CSRRS CSR(CSR_ustatus), RO, RS
RET

TEXT csr_write_ustatus(SB), $-4
CSRRW CSR(CSR_ustatus), R8, RS
RET

TEXT csr_set_ustatus(SB), $-4
CSRRS CSR(CSR_ustatus), R8, R8
RET

TEXT csr_clear_ustatus(SB), $-4

CSRRC CSR(CSR_ustatus), R8, R8
RET

Listing 3: A snippet from csr.s

13

3.8 Handling traps

OpenSBI delegates most traps to supervisor mode, and starts the kernel in supervisor mode.
Enabling interrupts when in supervisor mode requires writing the trap handler address to stvec,
setting the sie bit in sstatus, and setting the bits corresponding to the desired traps in the
sie CSR. The trap handler must save all registers, and restore them before returning, to avoid
corrupting the state of the interrupted code. Another trap can occur while a trap is being handled,
so the registers and stack have to be treated carefully.

QEMU has a separate layer for hardware interrupts through a platform level interrupts
controller (PLIC) |4]. This controller is mapped at 0x0c000000, and handles UART and disk
interrupts. Interrupts for those devices are marked as external in the xcause CSR, and the PLIC
has to be queried to get the exact cause. For UART interrupts are triggered when the input
buffer starts being filled or the output buffer is empty.

3.8.1 Listener interface

I implemented a trap listener interface based on the one in the pc port, which allows various parts
of the operating system to add and remove trap listeners at any time. There can be multiple
listeners for each trap. PLIC interrupts are separated into a separate bus, selected with the tbdf
argument (name kept for consistency with the pc port).

The interface consists of the following functions:

e void intrenable(long irq, void (*f) (Ureg+*, voidx), void* a,
int tbdf, char *name)
This function enables a trap listener with the given interrupt request number (irq) and bus
(tbdf). If it is the only listener for a maskable interrupt, the interrupt is unmasked.

e int intrdisable(int irq, void (*f) (Ureg *, void *), void *a,
int tbdf, char *name)
This function disables a trap listener with the given interrupt request number (irq) and bus
(tbdf). If it is the only listener for a maskable interrupt, the interrupt is masked.

3.9 Clock and timers
3.9.1 Timers in RISC-V

The RISC-V specification defines a standard way of reading wall-clock time and setting timers.
The platform should implement a machine mode accessible memory-mapped register, mtime,
which ticks up at a fixed rate, though the rate might be different for each platform. There should
also be a memory-mapped mtimecmp register. A timer interrupt should happen when the value
of mtime is greater than the value of mtimecmp |23, Chapter 3.1.10].

These registers are not accessible from supervisor or user mode. Instead, the current time can
be read from the time and timeh CSRs. These can be implemented to point to mtime, or the
request can be intercepted and handled in machine mode.

The RISC-V specification does not define a way for lower privilege levels to set timers, instead
leaving it up to the machine mode software to define a method for this. The SBI specification
defines a method for this with the void sbi_set_timer(uint64_t stime_value) in the Timer
extension, which allows software in supervisor mode to request a timer interrupt at a given time

l-

14

3.9.2 Timers in Inferno

Inferno implements most of the functionality for multiplexed timers on a single native timer. The
following functions are left to be implemented in the platform-specific code:

e uvlong fastticks(uvlong *hz)
This function returns the current value of the real-time clock, and writes the period of the
clock to hz.

e void timerset(uvlong next)
This function sets a timer interrupt to trigger when the real-time clock reaches the value of
next.

e void clockcheck(void)
It is unclear what this function does. It is only called when busy-waiting for locks, and in
some platform-specific drivers. All platforms implement it as an empty function. Some
implementation comments mention that the function is used to reset watchdog timers.

e void delay(int milliseconds) and void microdelay(int microsecond)
These functions busy-waits for a given number of milli- or microseconds.

3.9.3 Implementing the interface

There does not seem to be a standardized way to find the clock period, but through testing I
found that the period in QEMU is 10000000 Hz. I later verified this in the QEMU source code
|19} include/hw /intc/sifive clint.h, line 57].

In addition to the required functions I implemented the following functions:

e void clockinit(void)
This function enables timer interrupts and calls timerset to set a timer infinitely far in
the future. It is called during setup before any timers are set.

e void clockintr(Ureg *ureg, voidx)
This is the handler for timer interrupts. It sets a new timer infinitely far in the future, and
calls timerintr function in Inferno.

During testing, I discovered that setting a timer to -1 through SBI immediately caused a
timer interrupt, even though the SBI documentation specifies that this is a method to set a timer
infinitely far in the future. Through testing, I discovered that setting timers higher than 26!
sometimes immediately triggers the timer interrupt. As a temporary workaround, I used the
value 20 as infinity, as that is over 3000 years in the future. See section for more details.

3.10 UART

The serial port is an essential way for an operating system to communicate with the outside. In
QEMU all output from the operating system through the serial port is printed to the screen, and
anything the user types in the terminal QEMU is running in is sent through the serial port to
the operating system.

QEMU emulates the 16550a UART to handle serial port communication. The UART has
eight byte-wide registers which are mapped to the memory addresses 0x10000000-0x10000007.
The pc port of Inferno includes a driver for the 8250 UART line, which supports the 16550a. The

15

driver needed a little configuration for finding the UART port and setting up interrupts, but it
mostly worked right out-of-the-box.

The UART port is set up by calling i8250console during system initialization, which sets up
the FIFO, and configures the UART to use 9600 baud, 8 data bits, 1 stop bit, and no parity. For
use with QEMU the configuration has little impact, as the whole system is emulated.

3.11 VIRTIO

While UART is useful for basic input and output, other devices are necessary for a fully usable
system. QEMU can emulate a large variety of such devices, which gave me the choice of which
drivers I wanted to implement. While the codebase for Inferno includes drivers for several devices
I chose not to use them because they are old, possibly unstable, and might have compatibility
problems with QEMU.

Instead, I chose to use VIRTIO |21] devices, because VIRTIO uses the same communication
protocol for all types of devices, which eases driver development. VIRTIO also performs better
than other drivers on QEMU, because it reduces the layers of abstraction between the host and
guest systems. The disadvantage of VIRTIO is that it is not implemented on real hardware, and
the drivers are therefore only usable for testing or running virtualized systems.

QEMU supports VIRTIO over PCI or memory-mapped 10 (MMIO). While the pc port
includes a PCI driver which could be adapted for the RISC-V port, I instead decided to use
MMIO because of the simplicity of using such an interface. This requires that the VIRTIO
addresses and irq numbers are configured at compile-time.

3.11.1 The VIRTIO communication protocol

For VIRTIO over MMIO all VIRTIO devices have a predefined address region. For QEMU these
addresses are 0x10001000, 0x10002000, up to 0x10008000, which gives a maximum of 8 VIRTIO
devices. The memory region for each device starts with a set of device registers, which are used
to negotiate device features, setup interrupts, and give the device pointer to the communication
queues. After the registers there is a device-specific configuration space, which usually contains
information about the device.

Data is sent between the driver and the device using Virtqueues. Each type of device has a
different number of virtqueues for different purposes. This implementation uses Split Virtqueues,
which separates the buffers the device should read from, and the buffers it should write to. A
split virtqueue consists of three ring buffers: the Descriptor table containing pointers to buffers
and metadata, the Available Ring with indexes of descriptors the device should handle, and the
Used Ring with indexes of descriptors which the device has handled. Often the driver needs to
send data and get a response, for which it allocates one descriptor and buffer pair for the device
to read, and another pair for the device to write the response to, and sends them together in a
descriptor chain. The driver is responsible for allocating the virtqueue and all buffers. The driver
usually deallocates the associated buffer after a response.

The VIRTIO specification often describes messages as a single structure. However, such
structures do not have to be sent by a single descriptor, but can be split up. The device will look
at the size of each buffer associated with a descriptor, and reassemble the structure from there.
This allows a structure to contain both read-only and write-only fields, as they can be split into
descriptors that specify if the device can read or write. Structures can also contain arrays of
undefined length, usually for large data transfers. These arrays do not need to be contiguous
with the rest of the structure as long as they are referred to by a separate descriptor |21, Chapter
2.6.4].

16

3.11.2 VIRTIO library

Because VIRTIO uses a common communication protocol for all devices, I implemented a library
which handles this communication, to make each driver simpler. The library provides flexible
interrupt handling by letting response handlers be set per message, in addition to setting a
default response handler for each VIRTIO queue. It uses the platform-specific header files and
the interrupt listener functionality described in section |3.8

The library has the following interface:

void virtio_init(void);
This function is called during system initialization, and it checks that VIRTIO is available,
and collects an internal list of the available devices.

virtio_dev *virtio_get_device(int type);
This function returns the first unused device of the given type, which corresponds to the
Device ID in the VIRTIO specification.

int virtio_setup(virtio_dev *dev, char *name,

virtq_dev_specific_init virtq_init, le64 features);

This function resets, configures, and initialized a VIRTIO device. virtq_init is called at
right time in the negotiation process to allocate the queues needed for the device. features
is the feature flags the driver supports. Only the features which both the device and driver
supports are enabled.

void virtio_disable(virtio_dev *dev);

This function resets a VIRTIO device.

void virtio_enable_interrupt(virtio_dev *dev,

virtio_config_change_handler config_change_handler);

This function enables interrupts for a VIRTIO device. config_change_handler is the
listener for device configuration changes.

void virtio_disable_interrupt(virtio_dev *dev);
This function disables interrupts for a VIRTIO device.

int virtq_alloc(virtio_dev *dev, uint queueldx, ulong size);
This function allocates a VIRTIO queue with a given index and size for a VIRTIO device.

int virtq_add_desc_chain(virtq *queue, virtq_intr_handler handler,

void *handler_data, uint num, ...);

This function adds a descriptor chain to the given VIRTIO queue. handler is the response
handler for the chain. handler_data is a value that will be passed to the handler. num is
the number of descriptors in the chain. For each descriptor there should be three sequential
arguments, the address, the size, and a flag indicating whether the descriptor is writable by
the device.

void virtq_free_chain(virtq *queue, virtq_desc *head);
This function will free a previously allocated chain, as long as each descriptor was allocated
separately.

void virtq_make_available(virtq *queue);
This function will make all current descriptor chains in a queue visible to the device.

17

e void virtq_notify(virtio_dev *dev, int queuenum, int notify_response,
int avail_idx);
This function will send a notification to the device of the descriptors in the available ring
up to index avail_id.

e virtq_used_elem *virtq_get_next_used(virtq *queue);
This function returns the next element in the used ring.

3.11.3 GPU

The VIRTIO GPU device uses one or multiple framebuffers to transmit display data from the
driver to the device. The device has a copy of the framebuffer, called a resource, in its own
memory. To set up a framebuffer the driver has to request the device to create a resource, then
allocate the framebuffer and request that the framebuffer is connected to the resource, then
request the device to use the resource for a given scanout (screen). When the screen should be
updated the driver must send a message that a region of the framebuffer is invalidated, then
request that the device flushes the region of the resource to the screen |21, Chapter 5.7].

At first, I implemented the driver to invalidate and flush the framebuffer for every write.
However, this resulted in a lot of small updates, which were visibly slow. Instead, I implemented
an update queue, and a timer which drains the queue and flushes each region. Updates which are
close together are merged, to reduce the number of messages sent to the device.

3.11.4 Input

The VIRTIO input device represents all kinds of input devices, like keyboards, mice, joysticks
etc. Unlike other kinds of devices the input device does not need to be polled, but writes to the
next available descriptor whenever an event occurs. The driver allocates all descriptors during
initialization, but does not deallocate them after use because they will simply be overwritten the
next time the device gets to that index in the descriptor table.

Each input event consists of a type, a code, and a value, conforming to the evdev interface
used by the Linux kernel |21, Chapter 5.8]. The evdev interface is described in Torvalds |20,
Version 5.12.10, Documentation /input/event-codes.rst]. A full list of the key codes is available in
Torvalds |20, Version 5.12.10, include/uapi/linux/input-event-codes.h].

Keyboard drivers in Inferno only interact with the rest of the operating system by adding
the typed characters to the keyboard queue kbdg. This means that each driver has to keep track
of modifier keys, and has to define the keymap. The pc port includes a keyboard driver which
supports evdev events, so I used that driver with small modifications to work with VIRTIO. This
driver uses the standard US keymap.

I started to implement a mouse driver, which uses the same device type as the keyboard but
sends different events and key codes. However, because the window manager is not available (see
section there is limited use for it, and it is harder to test.

3.11.5 Block device

The VIRTIO block device represents a hard drive, which is usually backed by a file in the host
file system. The device is fairly straight-forward to use, the metadata like block size and capacity
is given in the device configuration space. Read and write requests are sent on the same format,
containing a sector number to start from and an array of data to read from or write to, depending
on the operation. The device responds by writing a status code to the end of the request structure.

18

In Inferno storage device drivers are represented by a SDifc structure which contains the
name and function pointers to the standard storage device functions, or nil if the function is not
defined for that device.

I implemented the following storage device functions for this driver:

e SDev* pnp(void)
This function discovers, sets up, and returns a linked list of all storage devices on this
interface.

e SDev* id(SDevx*)
This function gives each storage device in the given linked list a unique name. I used the
naming scheme "virtblkX", where X is an incrementing number.

e int enable(SDev*)
This function enables interrupts from the given device. Returns 1 if successful, otherwise
returns 0.

e int disable(SDev*)
This function disables interrupts from the given device. Returns 1 if successful, otherwise
returns 0.

e int verify(SDunit*)
This function performs the equivalent of an SCSI inquiry command. Returns 1 if successful,
otherwise returns 0.

e int online(SDunit*)
This function retrieves the storage device block size and storage capacity. Return 1 if
successful, otherwise returns 0.

e long bio(SDunit* unit, int lun, int write, void* data, long nb, long bno)
This function performs a read or write request to or from the buffer data, starting at block
bno until block bno+nb. Returns the number of bytes read or written. Because the function
can not return the number of bytes until the operation is finished, the function is blocking.
The function name probably means "buffered I/O", as it is linked to the Limbo library
Bufio [11].

It is worth mentioning that there is an alternative to bio in the int rio(SDreg+*) function.
I decided not to implement this yet because SDreq seems to be based on SCSI, and bio seemed
much easier to implement. From reading other implementations of rio I am not sure how it is
supposed to work, but the name might mean "raw I/0".

The full driver implementation is included in appendix

3.12 Graphical output

In addition to the GPU driver there has to be an interface between Inferno and the driver which
implements screen functions used in Inferno. For this I used the screen.h and screen.c files
from Richard Miller’s port of Plan9 to Raspberry Pi, modified for Inferno by Lab 18, we have a
screen! |13]. This interface is designed for a framebuffer, so it was easily adapted to the VIRTIO
GPU driver.

With these files in place a border is drawn around the screen when Inferno starts. All printed
text, expect that printed only to UART with iprint, is displayed on the screen. User input is
printed as the user types in it. When the text reaches the bottom the window is scrolled down,
to keep the most recent text in view.

19

3.13 Initializing the system

When QEMU starts it first gives control to OpenSBI, running in machine mode. OpenSBI sets
up the machine, then calls the kernel in supervisor mode at address 0x80400000. The function
at that address is called _start (), which is shown in listing

The Plan9 assembler usually inserts a function prologue which allocates x+4 bytes stack space
automatically, based on the $x parameter, and stores the link register. An epilogue is inserted to
load the link register and reset the stack. However, because the stack pointer is not initialized
yet the first function has to be declared with $-4, which prevents the assembler from inserting a
prologue and epilogue.

The _start () function sets up the registers for the rest of the kernel. It sets the stack pointer,
register R2, to a predefined address from mem.h. It also uses a pseudoinstruction to set the static
base, which is the address at the start of the kernel, to register R3 for relative addressing. After
the registers are initialized it calls main(), which continues the initialization from C code.

#include "mem.h'"

TEXT _start(SB), $-4
/* set static base */
MOVW $setSB(SB), R3

/* set stack pointer */
MOVW $(MACHADDRHMACHSIZE-4), R2

/* call main */
JAL R1, main(SB)

Listing 4: The _start() function

The main() function first initializes the memory for the kernel [12]|. First the bss section,
used for static variables and located after the kernel binary, is cleared. Then the memory pool,
located after the bss section until the end of memory, has to be defined for the kernel to know
which portions it can use. Currently, the size of the memory is not checked at runtime, so the
emulator has to be started with at least the same amount of memory as the kernel expects, which
is currently 128 MiB.

After the memory is initialized, traps are enabled and timers are initialized. Then the print
queue and device drivers, like UART, input, and GPU, are initialized. Then the screen is
initialized, and the OS information is printed.

Finally, user processes and the VM are initialized, and the Dis binary /osinit.dis is executed.

The main() function is shown in listing 5] The full main.c file is included in appendix [C}

3.14 Interactive shell

Starting the interactive shell is the baseline for a usable Inferno installation. For the shell to be
available, the Dis file for the shell itself and all programs which should be available from the shell
must be included in the root section of the platform configuration file. The shell is started from
the Dis init file, by loading the shell module and spawning a shell instance in a new thread. If
shell commands should be executed during initialization, they can be executed directly using the
shell module. The init code necessary to start the shell is included in listing [} A screenshot of
the system after starting the shell and running the 1s command is shown in figure

20

void

main() {
// Clear bss
memset (edata, 0, end-edata);
memset(m, 0, sizeof (Mach));

// Inittalize the memory pool
confinit();

xinit () ;

poolinit();

poolsizeinit();

// Enable traps and timers
trapinit();
clockinit();

// Set up UART and the print queue
printinit();
18250console();

// Set up VIRTIO drivers
virtio_init(Q);

input_init();

// Initialize the screen
screeninit();

print ("\nRISC-V QEMU\n");
print ("Inferno 0S %s Vita Nuova\n\n", VERSION);

// Start processes
procinit();
links();
chandevreset () ;

eve = strdup("inferno");

userinit();
schedinit();

Listing 5: The main() function

21

The next step up from the interactive shell is to start the window manager. However, the
wm requires so many smaller programs to be included that it is unsuited to be compiled in the
binary, and should be provided using a harddrive. However, as will be discussed in section [3.15]
this is not possible yet.

implement Init;

include "sys.m";

sys: Sys;

print: import sys;
include "sh.m";

sh: Sh;
include "draw.m";

draw: Draw;

Context: import draw;

Bootpreadlen: con 128;

Init: module

{
init: fn();

};

init ()

{
sys = load Sys Sys->PATH;
sh = load Sh Sh->PATH;
sys->bind ("#i", "/dev", sys->MREPL); # draw device
sys->bind ("#c", "/dev", sys->MAFTER); # console device
sys->bind ("#S", "/dev", sys->MAFTER); # storage devices
spawn sh->init(nil, "sh" :: "-i" :: nil);

}

Listing 6: The Limbo code to start the interactive shell

3.15 Filesystem

As mentioned in [3.4.3] a simple filesystem is included in the binary to provide the programs
needed to initialize the system. However, this filesystem is read-only, and while it is possible
to cram in all the available Limbo programs, the binary quickly becomes unreasonably large.
Instead, a separate filesystem should be mounted to provide the rest of the Limbo programs, and
user-modifiable files. This could be done over the network to another computer using the 9P
protocol, but for this project I used a harddrive utilizing the VIRTIO block device driver, as
described in BIT.5

The harddrive QEMU presents to the driver is backed by a file in the host filesystem, where 1
allocated a partition usable for Inferno. First I tried using the kfs filesystem native to Plan9 and

22

RISC-V QEMU
Inferno 0S Fourth Edition (20151010) Vita Nuova

Starting inito()

Initial Dis: "fosinit.dis”
init: starting shell

.

fonts
icons
1ib
locale
man
module

n

net
osinit.dis
prog
services
tmp

usr

Figure 1: The system after starting the shell and running a command.

23

Inferno, but I had trouble finding Linux tools for it on the host side. It is possible to run Inferno
hosted under Linux to format the partition, however that was a very cumbersome process. In
addition, when mounting the filesystem in Inferno running on RISC-V, the kfs driver constantly
had to check the filesystem, and froze when trying to mount it.

Instead, I used the FAT filesystem, which Linux fully supports. Inferno has a driver for FAT32,
however it is uncertain how well all the features and extensions of the filesystem is supported.

After creating and partitioning the harddrive file, I mounted it on the host system and copied
over the entire /dis/ folder with all the compiled Limbo programs. I then added the command
line parameters shown in listing [7] to QEMU to use the file as the harddrive, accessible as a
VIRTIO block device. The drive is detected by the driver at boot, and is available in Inferno under
/dev/virtblk00/. However, the partitions are not detected or represented by files automatically.
To do that, the £disk tool has to read the partition table and write the configuration to the
disk control file. Because the partition type is FAT, the partition file will automatically be
/dev/virtblk00/dos. Then the partition file must be mounted using the dossrv tool. Finally,
the dis folder on the harddrive has to be bound to /dis, so all the program files are where they
are expected. The full commands to achieve this is listed in listing [8] To reduce the number of
manual commands during system setup, these commands are executed in the init file, before the
shell is started.

Unfortunately the filesystem is read very slowly, because the block device driver is asked to
read small sequential blocks. In addition, the system freezes halfway through reading files from
the filesystem, like when using the kfs filesystem. However, it is unclear if this bug is in the block
device driver, the filesystem driver, or some other program.

-drive if=none,format=raw,file=hdd.img,id=hdd -device
< virtio-blk-device,scsi=off,drive=hdd

Listing 7: The flags passed to QEMU to set up the hard drive with the VIRTTO block device

driver.

disk/fdisk -p /dev/virtblk00/data > /dev/virtblk00/ctl
dossrv -f /dev/virtblk00/dos -m /n/local
bind /n/local/dis /dis

Listing 8: The Inferno shell commands to set up and mount the filesystem on a harddrive

3.16 The Just-in-time compiler

A Just-in-time (JIT) compiler dynamically translates one set of instructions to instructions native
to the processor it is running on, at runtime |2]. This approach sacrifices some time and memory
to compile the program, but the result will run faster than when using an interpreter. How fast
the JIT compiles, and how fast the resulting code runs, depends on the similarity between the
instruction sets, and which optimizations the JIT performs.

The Inferno OS includes a framework for JIT compilers which compile Dis programs to native
instructions. As all user space programs are Dis programs in Inferno, a JIT compiler is essential
to get a responsive system.

24

3.16.1 The Dis instruction set

The Dis virtual machine uses an instruction set modeled after CISC-processors, providing three-
operand memory-to-memory instructions. The authors compare this approach to that of the
Java stack-based virtual machine, and notes that the memory-to-memory approach is closer to
common processors and makes the JIT compiler more efficient on non stack-based processors |26].

The instructions are organized into modules, which are loaded and compiled to native code
separately. Each module has a data segment, and each function gets allocated a frame for local
variables. The instructions can access values in the module data or function frame, or indirectly
access values whose addresses are stored in one of those locations.

The instruction set has instructions for various datatypes, including 8-bit unsigned integers, 32
and 64-bit signed integers, 64-bit double precision floating-point, UTF-8 encoded strings, pointers,
memory, and memory containing pointers.

The virtual machine uses reference-counted garbage collection [26]. As a result of this, pointers
have to be handled using special instructions, to ensure that the garbage collector tracks every
instance of the pointer. This includes instructions which allocate memory, so that task is moved
from the programmer to the virtual machine [7].

The virtual machine has a few registers, to store the program counter, module data pointer,
function frame pointer etc., but the registers are not directly accessible through the instruction
set.

3.16.2 The structure of the virtual machine

The Dis virtual machine defines a C struct for the virtual registers, which is used by the interpreter
and the compiled instructions. When moving between the interpreter and compiled code, or from
the interpreter to an instruction handler, the normal C calling convention is disregarded, and the
virtual registers are used instead. The handler for each instruction is separate from the rest of
the interpreter, so the compiled code can call a handler in isolation if there is an instruction that
is too complex or too infrequent to implement in the JIT compiler.

When reaching the entry point of each module the virtual machine will check whether the
module has been compiled yet, execute it if it has, or try to compile it if it has not. If the
compilation fails it uses the interpreter as a fallback. It seems to be possible to set the MUSTCOMPILE
or DONTCOMPILE flags in the Dis binary to either force the module to be compiled, or be handled
by the interpreter [6]. However, it does not seem like these flags are used by the Limbo compiler.

The Inferno JIT compilers are very simplistic compilers. They use a mixed code approach [2],
but the decision to use native or interpreted code is done per instruction based on complexity,
not based on how frequently a section is executed. After the first compilation, Inferno does not
call the JIT compiler again for the same module, so no further optimizations are possible.

3.16.3 The structure of the JIT compilers

The only public function of a JIT compiler is the compile function, which is called when a new
module should be compiled. However, the existing JIT compilers seem to follow the same basic
structure.

The compilation is done in two passes. In the first pass each compiled Dis instruction is
overwritten by the next one so that the total size and offsets are known for the second pass.

The JIT compiler will try to optimize the compiled instructions based on the information in
the instruction, like in the size of the datatype, or by calculating based on the immediate value.

There are many Dis instructions which are complex or not supported by the native instruction-
set. These are often delegated to the interpreter by loading the operators into the virtual registers

25

and calling the handler function for that instruction.

The JIT compilers often add macros, which are basically functions, to reduce code duplication
of sections which are general and is not optimized at compile time. These macros are placed after
each module.

3.16.4 Implementing the JIT for RISC-V

The best way to implement a new JIT compiler would be to start by delegating all instructions to
the interpreter, then implementing one instruction at a time. However, I did not understand the
way the Dis JIT compilers usually worked when I started this, so I did not see that possibility.
Instead, I decided to look through the code of another JIT compiler line by line, and copy or
translate each line as I understood what it did. This means that my JIT compiler implements
roughly the same instructions as the one I based the code on. I mostly based my code on the
ARM JIT compiler, because I am most familiar with ARM assembly. However, while ARM
and RISC-V are RISC architectures, their instruction sets are quite different, so translating was
sometimes hard. I sometimes used the MIPS JIT compiler as a second reference because the
instruction set it much closer to RISC-V, but the structure and naming convention made the
code hard to read.

The JIT compiler has to be careful how it allocates registers. RISC-V usually has 32 registers,
however the Plan9 compiler only uses the first 16 to be more compatible with compressed
instructions and the planned RV32E instruction set, which only has 16 registers. I decided to use
the same restriction for the JIT compiler. Three registers have to be permanently reserved for the
current frame pointer, module pointer, and pointer to the virtual registers, five registers are used
for storing values for a single Dis instruction, one register is used for constructing 32-bit numbers
from immediate values, and one register is used to store the address when loading double indirect
operands. Finally, one register is used to store H, the Dis value for invalid pointers. Keeping H
in a register simplifies comparing values to H, since it otherwise would have to be loaded into a
register each time.

The JIT compiler starts by compiling a module preamble, which sets up the fixed registers,
then jumps to the first compiled instruction. Then the first pass is compiled, each instruction
overwriting the last, storing the compiled size of each Dis instruction. Then the buffer for the
second pass is allocated based on the sizes, and the second pass then writes into the allocated
buffer. Finally, initializers and destructors for each datatype is compiled.

The current implementation of the JIT compiler assumes that the M and D RISC-V extensions
are supported by the processor. Arithmetic operations on 64-bit integers are emulated using
32-bit integers instead. Arithmetic operations for 32- and 64-bit integers and 64-bit floating-point
numbers is implemented, and have undergone some simple test cases.

The conversion between 64-bit integers and 64-bit floats was initially delegated to the in-
terpreter, however this uncovered an issue with the C compiler. When casting a float to an
integer in C, the compiler will round the value by adding 0.5 or -0.5, depending on the sign,
and then convert it in software, rounding down to the closest integer. However, the C compiler
seems to expect that some registers hold float constants, like 0.5, but because I did not know
about this these registers have not been set up, and the registers default to NaN. For the JIT
compiler I stepped around these problems by handling more of the conversion in assembly. For
conversions from floating-point to 64-bit integer I handle the rounding in assembly, then call the
_d2v function, which uses bit manipulation to handle the rest of the conversion. For conversions
from 64-bit integers to floating-point I translated the algorithm in the _v2d function to assembly,
then optimized it to eliminate branches and reduce the number of instructions. The result is that
these operations have been implemented using short and efficient assembly code, and the problem

26

with the C compiler has been circumvented.

When writing the code I added comments to explain the logic and exactly what was happening
in the generated instructions, both to make it easier for me to come back to, and for future
readers looking to understand the JIT compilers.

The full implementation of the RISC-V JIT compiler is included in appendix [E]

3.16.5 Testing the JIT

The JIT compiler can be enabled by setting the cflag global variable in the configuration file
higher than 0. The virtual machine will then try to compile all Dis modules before executing
them. Of course, in a 2.5k line JIT compiler implemented in one go there was bound to be bugs.
The first test run crashed with an illegal access exception, so I started working on ways to ease
the debugging process, to more easily fix this and future bugs.

The most important debugging tool for the JIT compiler is the disassembler. While not
required for the JIT compiler to work, it is common to implement a disassembler a separate
file. For RISC-V I implemented the disassembler in the file /libinterp/das-riscv.c. The
disassembler simply takes a pointer to the start of the compiled instructions, and the number of
instructions, and prints out the address and assembly for each instruction. I used the standard
RISC-V assembly syntax instead of the Plan9 assembly syntax, because it closely resembles how
the instructions are laid down in the JIT compiler code. The JIT compiler calls the disassembler
for each instruction after pass 2, prefaced with information about the associated Dis instruction.
This makes it easy to follow the flow of the program, and check that the fields of the Dis instruction
were used correctly.

Sometimes it can be useful to isolate the compiled code for a Dis instruction, to verify that
it is correct despite other Dis instruction implementations which have bugs. In such cases it is
useful to make all other Dis instructions use the interpreter handler during testing.

One easy way to check the logic of the compiled program is to insert an illegal instruction.
This causes an exception, and the exception handler prints out the contents of the registers.
For this I created the macro CRASH() which inserts a 32-bit 0, which is an illegal instruction in
RISC-V. I have used this to check values loaded from memory, and to check which path of a
branch was taken.

Sometimes the compiled code calls to C code, which crashes on illegal pointers. The stack
trace will often track back to the calling compiled code, but not further because the compiled
code does not use the stack. In these cases the called C code can be modified to print the contents
of the virtual registers, which contains the PC of the associated Dis instruction, and arguments
to the called function.

There have been many bugs in the JIT compiler, including illegal memory accesses, incorrect
jump and branch offsets, mistranslations from ARM assembly, etc. Currently, the JIT compiler
can correctly compile a simple print and if-statements. However, when trying to start the full
shell the program crashes because of an index error. Further work is required to fix all the bugs
and make the JIT compiler fully usable.

4 Roadblocks
4.1 Debugging

Debugging is an important part of any software development process, and even more so with
something as complex as an operating system. However, operating systems are harder to debug
because they lack the inherent framework that applications running inside operating systems

27

have. Especially in the early stages of development it is hard to get any debugging information
out from the system.

Normal print-debugging can not be used until the system has established a communication
channel with the outside, normally through UART, or SBI if the bootloader supports it. It is
possible to print to the screen once that is set up, but the screen updates slower, and might not
update at all during crashes. In addition, because the graphical pipeline is more complicated
than the serial pipeline, trying to print to the screen can trigger bugs and even crash or freeze
the system. Therefore, all debug printing is done through UART, while all other prints go both
through UART and to the screen.

One alternative is GDB. Normally GDB is a very useful tool, and it is supported by QEMU,
so it can debug from the very first instruction. However, most of the functionality of GDB is not
available when running Inferno because of incompatibility with the Plan9 compilers. Plan9 and
Inferno have their own symbol table format, which GDB does not support, and even if it could,
the symbol table does not include enough information about types and line numbers to be usable.
The result is that GDB can be used to debug, but it can not link the instructions in the binary
to the source code. It can only be used to show a disassembly at the current location, show the
value of registers, and set breakpoints at addresses. Passing the -a flag to the linker causes it to
print the Plan9 assembly for the whole binary, including addresses, which can be used to figure
out where to set breakpoints. However, because Plan9 assembly is different from the style used in
GDB, and it includes many pseudoinstruction, figuring out which part is currently executing and
finding bugs is very hard, and requires a lot of cross-referencing.

Inferno includes a debugger, called Acid |24} 9], which can debug the kernel |25], and which can
be used from the host system through a serial port connection. To do this with QEMU, the serial
port has to be exposed as a virtual tty using the -serial pty flag to QEMU. Then Acid has to
be executed on the host system, with the command acid -R <pty path> <0S binary path>.
However, the OS does not seem to respond to the messages sent by Acid, instead interpreting
them as normal user input. This might be because the UART driver or some other step in the
pipeline does not correctly identify the Acid control sequence.

The current debugging situation is not ideal, and it means that a lot of time is required to
debug even the smallest bugs. The best solution would be to make the linker output contain
enough debugging information for GDB to use, but that would require major alterations to the
code and structure of the compiler and linker. With UART working, debugging by printing has
become a simpler alternative for most situations, at least to find where the bug is.

When debugging the JIT compiler, the debugging methods I use for C does not work as well.
The method I have used the most is to insert an illegal instruction as a breakpoint, which causes
the trap handler to print information about the registers and the stack. While less flexible than
other methods, it is very easy and fast to add and remove the illegal instructions, and to recompile
and test. I sometimes use GDB, but that requires setting a breakpoint after each module is
compiled, then looking through the disassembled instructions generated by the JIT and find the
right address to break on. This makes it a lot more cumbersome to do rapid incremental testing.
Inserting debug print statements into the compiled instruction stream is technically possible, but
requires a lot of extra code and setup to make efficiently usable in assembly. However, because
the compiled code often calls the interpreter, print statements can be inserted into the C code of
the interpreter.

4.2 Lack of documentation

While Inferno (or rather Plan9) does have good documentation in general, the documentaion
relevant to porting, such as documentation of the kernel functions, compilers, and utilities, are at

28

best a minimal description of behavior, not a full guide.

For example, the documentation for the assembler explains addressing modes, function defini-
tions, and calling conventions, but does not list the available instructions. Because Plan9/Inferno
uses an assembly syntax that is meant to be similar for all platforms, but therefore is very different
from more common assembly dialects, it is very hard to be sure what the assembly code actually
does. I have had to read through the lexer and parser code on several occasions to figure out
what an instruction does or how it should be used.

In addition, there is basically no official documentation for porting Inferno to new architectures
or platforms. That means that I usually have to read through the code for other platforms, and
develop incrementally, figuring out what I need to implement based on the errors I receive. This
can be quite difficult because the compiler has vague error messages, and sometimes does not
refer to the error location.

The result of this is that this project was very slow and time-consuming compared to how
much code I had to write.

4.3 Floating-point problems

As mentioned in section [3.16.4] I came across some problems with the Plan9 C-compiler when
performing floating-point arithmetic, because it assumes that certain registers hold common
double-precision constants. While I discovered this while working on the JIT compiler, this
problem affects all double-precision floating-point operations that uses the values the compiler
assume are in registers.

Looking through the source code, it seems like this approach is fairly common, though it is
not present in the x86 and ARM compilers. The registers the RISC-V compiler expects are listed
in table[I] Floating-point constants that are not in this list are either constructed from other
constants, or put into the data segment by the linker, and loaded when needed.

To solve this I added a function that is called during system initialization, which loads these
values into the registers. With this change, double-precision floating point operations work as
expected in C and when using the interpreter.

Because double-precision values can not be used for single-precision operations, and vice
versa, separate constants are needed for single-precision operations. Because double-precision is
the primary Dis floating-point type, and single-precision is only included for compatibility [7],
single-precision values are not given permanent registers, and are always loaded from memory.

However, there seems to be a problem with the single-precision constants. All single-precision
constants I have tested have had the hexadecimal representation 0x000001f4. After digging
around in the compiler code I discovered that when the linker writes the constant to the data
segment, it is read from memory as if it was the highest four bytes of a double-precision value.
However, because the value is stored in a four byte single-precision value, the read overflows. See
listing [0] This bug is not present in the other compilers, and once found it was easy to fix.

Table 1: The floating-point constant register the compiler expects.
FP register Value

28 0.0
29 0.5
30 1.0
31 2.0

29

fl = ieeedtof (p->to.ieee);

cast = (char*)&fl;

for(; i<c; i++) {
buf.dbuf [1] = cast[fnuxi8[i+4]]; // Original version
buf.dbuf[1] = cast[fnuxid[il]; // Fized wversion
1++;

Listing 9: The bugged code from utils/il/asm.c that writes single-precision floating-point
constants to the data section.

4.4 Random crashes

The OS seems to have several bugs that trigger at random, which are hard to track down and fix.

Because these issues usually appear right after booting, and less than half the time, I have not

made them a priority to fix, and instead just try to start the OS again. However, they are serious

problems that have to be fixed before Inferno on RISC-V can be used for any real-world purpose.
Here is a list of the issues that I know of:

e There is a problem with the memory management functions that crashes the system. The
likelihood of it triggering seems to scale with the number of allocations that are requested.
From my testing, the problem seems to be a buffer overflow which overwrites the heap
metadata, causing a crash when the memory management functions walks the heap. The
source of this overflow will be hard to determine.

e Once in a while, right after starting, QEMU reports an illegal memory access and crashes,
before the OS got far enough to print. It might even be a problem with OpenSBI. This
should be easy to debug with GDB, however it rarely happens, so one has to set up GDB
and run QEMU again and again until it happens. Print-debugging would have to be done
through SBI as the crash happens before the UART driver is set up.

e Very rarely the system seems to freeze at boot, without printing anything and without any
error messages from QEMU. This might be because of a loop that does not end properly,
but it’s hard to determine because of the same difficulties with debugging as the issue above.

4.5 The timer bug

As mentioned in section [3.9.3] setting timer interrupts infinitely far in the future did not work
as expected. While this does not affect programs which sets new timers continuously, like an
operating system scheduling processes, it can cause problems for programs which only occasionally
set timers.

I decided to test this by writing a small program that only set the timer, to reduce the number
of possible errors. I discovered that this problem exists for both 32-bit and 64-bit RISC-V, and
both when running in S mode and setting timers through OpenSBI, and when running in M
mode and setting the timers directly. This means that the problem lies in QEMU. After looking
through the QEMU source code I found the function sifive_clint_write_timecmp in the file
/hw/intc/sifive_clint.c, which handles setting timers for all RISC-V platforms in QEMU.
The function is listed in listing

The first issue is on line 63, which converts the number of ticks until the next timer to
nanoseconds. For the virtual RISC-V target, NANOSECONDS_PER_SECOND/timebase_freq is 100,

30

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

60

61

62

63

64

65

which is then multiplied with diff, causing an overflow. This is not really a problem if the timer
is set to -1, because the result is still close to -1, but if only the most significant bit is set it will
overflow to zero, causing an immediate interrupt.

The second problem is that timer_mod, which is the general function for setting timers for all
QEMU platforms, takes a signed 64-bit integer as its second argument. A bit further down the
chain, in timer_mod_ns_locked, this value is set to 0 if it was below 0.

These two problems combined mean that if the number of ticks until the next timer, multiplied
with 100, has the most significant bit set, a timer interrupt is triggered immediately.

This bug has been reported to the QEMU developers.

/*
¥ Called when timecmp is written to update the {EMU timer or immediately
* trigger timer interrupt tf mtimecmp <= current timer value.
*/
static void sifive_clint_write_timecmp(RISCVCPU *cpu, uint64_t value,
uint32_t timebase_freq)
{
uint64_t next;
uint64_t diff;

uint64_t rtc_r = cpu_riscv_read_rtc(timebase_freq);

cpu->env.timecmp = value;
if (cpu->env.timecmp <= rtc_r) {
/% if we're setting an MTIMECMP wvalue in the '"past"”,
immediately raise the timer interrupt */
riscv_cpu_update_mip(cpu, MIP_MTIP, BOOL_TO_MASK(1));
return;

}

/* otherwise, set up the future timer interrupt */

riscv_cpu_update_mip(cpu, MIP_MTIP, BOOL_TO_MASK(0));

diff = cpu->env.timecmp - rtc_r;

/* back to ns (note args switched in muldiv64) */

next = gemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq);

timer_mod(cpu—>env.timer, next) ;

Listing 10: The implementation of the timer handling for RISC-V in QEMU.

5 Conclusion

Through this project I have investigated and tried to solve the challenges of porting the Inferno
operating system to RISC-V, including setting up the boot process, programming trap handling,
some important drivers, and a Just-In-Time compiler. T have not investigated the challenges of
actual hardware platforms, but I believe that porting Inferno to such devices, with the necessary
capabilities, should be easy after the groundwork I have done here.

31

At the end of this project I have created a port of Inferno to RISC-V which can print and
receive input, output to a screen, run user processes in an interpreter, and mount a harddrive. In
addition, I have started the work on a JIT compiler, which can compile arithmetic and function
call instructions correctly.

6 Future work

There is still a lot of work to do for Inferno to be fully usable on RISC-V. The crashes mentioned in
section [£:4] have to be fixed, the block-device driver has to be improved to increase the performance,
and prevent the freeze mentioned in section [3.15] More drivers have to be implemented, especially
for real hardware. In addition, the JIT compiler has to be fully tested and fixed to increase the
performance of the system. Multi-core support can also be added to increase performance.

After these issues are fixed, and the system has been ported to real hardware, it can be tested
on a network of embedded devices. This will show whether Inferno on RISC-V is practical and
competitive for the IoT market.

7 Acknowledgments

I would like to thank my supervisor, Michael Engel, for his help and advice through this project.
I would also like to thank Richard Miller, who wrote the Plan9 RISC-V compiler, without
which this project would not have gotten as far.

32

(1]

2]
13l

4]

5]

[6]
7]
18]
19]

[10]
[11]

12)
13]
14
[15]
16]
17]
18]

[19]
[20]

Bibliography

Krste Asanovié¢ and David A Patterson. “Instruction sets should be free: The case for RISC-V”.
In: EECS Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2014-146
(2014).

John Aycock. “A brief history of just-in-time”. In: ACM Computing Surveys (CSUR) 35.2
(2003), pp. 97-113.

Fabrice Bellard. “QEMU, a fast and portable dynamic translator.” In: USENIX Annual
Technical Conference, FREENIX Track. Vol. 41. 2005, p. 46.

Palmer Dabbelt, Drew Barbier, and Abner Chang, eds. RISC-V Platform-Level Interrupt
Controller Specification. RISC-V Foundation. Mar. 2020. URL: https://github. com/
riscv/riscv-plic-spec/blob/master/riscv-plic.adoc (visited on 12/08/2020).

Palmer Dabbelt and Atish Patra, eds. RISC-V Supervisor Binary Interface Specification.
RISC-V Foundation. Sept. 2020. URL: https://github.com/riscv/riscv-sbi-doc/
blob/master/riscv-sbi.adoc| (visited on 12/08,/2020).

Dis object file. Vita Nuova Limited. URL: http://www.vitanuova.com/inferno/man/6/
dis.html (visited on 07/18/2021).

Dis Virtual Machine Specification. Lucent Technologies Inc, Vita Nuova Limited. Sept. 2000.
URL: http://www.vitanuova.com/inferno/papers/asm.pdf| (visited on 06/05/2021).

Sean Dorward et al. The Inferno Operating System. Lucent Technologies, Bell Labs. 1997.
URL: http://www.vitanuova.com/inferno/papers/bltj.pdf (visited on 12/08,/2020).

Tad Hunt. Acid Reference Manual. Vita Nuova, Lucent Technologies. 2000. URL: http:
//www .vitanuova.com/inferno/papers/acid.pdf (visited on 08/01/2021).

Inferno OS.2014. URL: http://lynxline.com/category/inferno/ (visited on 12/08,/2020).

Brian W. Kernighan. A Descent into Limbo. Vita Nuova, Bell Labs. 2005. URL: http://doc.
cat-v.org/inferno/4th_edition/limbo_language/descent (visited on 08/01/2021).

Lab 10, Bss, memory pools, malloc. 2013. URL: http://lynxline.com/lab-10-bss-
menpools-malloc/| (visited on 12,/08/2020).

Lab 18, we have a screen! 2013. URL: http://lynxline.com/lab-18-we-have-a-screen/
(visited on 06/15/2021).

Lab 9, coding assembler part. 2013. URL: http : //lynxline . com/ lab - 9 - coding -
assembler-part/ (visited on 12/08/2020).

Richard Miller. Nov. 9, 2020. URL: https://bitbucket . org/inferno- os/inferno -
os/pull-requests/8§| (visited on 07/30/2021).

Richard Miller. Mar. 3, 2021. URL: https://9p.1io/sources/contrib/miller/riscv-
0ld.tar| (visited on 07/30,/2021).

Richard Miller. May 28, 2021. URL: https://9p.1io/sources/contrib/miller/riscv.tar
(visited on 07/30/2021).

Rob Pike et al. Plan 9 from Bell Labs. Bell Labs. URL: http://9p.1i0/sys/doc/9.html
(visited on 12/08/2020).

QFEMU. URL: https://gitlab.com/gemu-project/qemu (visited on 07/30/2021).
Linus Torvalds, ed. Linux Kernel. URL: kernel.org| (visited on 06/05/2021).

33

https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://github.com/riscv/riscv-plic-spec/blob/master/riscv-plic.adoc
https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.adoc
https://github.com/riscv/riscv-sbi-doc/blob/master/riscv-sbi.adoc
http://www.vitanuova.com/inferno/man/6/dis.html
http://www.vitanuova.com/inferno/man/6/dis.html
http://www.vitanuova.com/inferno/papers/asm.pdf
http://www.vitanuova.com/inferno/papers/bltj.pdf
http://www.vitanuova.com/inferno/papers/acid.pdf
http://www.vitanuova.com/inferno/papers/acid.pdf
http://lynxline.com/category/inferno/
http://doc.cat-v.org/inferno/4th_edition/limbo_language/descent
http://doc.cat-v.org/inferno/4th_edition/limbo_language/descent
http://lynxline.com/lab-10-bss-menpools-malloc/
http://lynxline.com/lab-10-bss-menpools-malloc/
http://lynxline.com/lab-18-we-have-a-screen/
http://lynxline.com/lab-9-coding-assembler-part/
http://lynxline.com/lab-9-coding-assembler-part/
https://bitbucket.org/inferno-os/inferno-os/pull-requests/8
https://bitbucket.org/inferno-os/inferno-os/pull-requests/8
https://9p.io/sources/contrib/miller/riscv-old.tar
https://9p.io/sources/contrib/miller/riscv-old.tar
https://9p.io/sources/contrib/miller/riscv.tar
http://9p.io/sys/doc/9.html
https://gitlab.com/qemu-project/qemu
kernel.org

[21]
22]
23]
[24]
[25]

[26]

Virtual I/O Device (VIRTIO) Version 1.1. Oasis Open. Apr. 2019. URL: https://docs)|
oasis-open.org/virtio/virtio/vl.1/virtio-v1.1.pdf (visited on 06/05/2021).

The RISC-V Instruction Set Manual, Volume I: User-Level ISA, Document Version 2019121.
Tech. rep. RISC-V Foundation, Dec. 2019.

The RISC-V Instruction Set Manual, Volume II: Privileged Architecture, Document Version
20190608- Priv-MSU-Ratified. Tech. rep. RISC-V Foundation, June 2019.

Phil Winterbottom. Acid: A Debugger Built From A Language. 1995. URL: http://doc.cat-
v.org/plan_9/2nd_edition/papers/acid/| (visited on 12/08,/2020).

Phil Winterbottom. Native Kernel Debugging with Acid. URL: http://doc.cat-v.org/
inferno/4th_edition/kernel_debugging/| (visited on 06/05/2021).

Phil Winterbottom and Rob Pike. The design of the Inferno virtal machine. Lucent Tech-
nologies, Bell Labs. URL: http://www.vitanuova.com/inferno/papers/hotchips.pdf
(visited on 06/05/2021).

34

https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.pdf
https://docs.oasis-open.org/virtio/virtio/v1.1/virtio-v1.1.pdf
http://doc.cat-v.org/plan_9/2nd_edition/papers/acid/
http://doc.cat-v.org/plan_9/2nd_edition/papers/acid/
http://doc.cat-v.org/inferno/4th_edition/kernel_debugging/
http://doc.cat-v.org/inferno/4th_edition/kernel_debugging/
http://www.vitanuova.com/inferno/papers/hotchips.pdf

Appendices

35

A /Jos/virtriscv/virtriscv

1 dev

2 root

3 cons

4 env

5 mnt

6 pipe

7 prog

8 srv

9 dup

10 uart

11 sd

12

13 pointer
14 draw screen
15 pointer
16

17 ip bootp ip ipv6 ipaux iproute arp netlog ptclbsum iprouter plan9 nullmedium pktmedium netaux
18

19 ip

20 tcp

21 udp

22 ipifc

23 icmp

24 icmp6

25 ipmux

26

27 1ib

28 interp
29 math

30 draw

31 memlayer
32 memdraw
33 tk

34 sec

35 kern

36

37 misc

38 uarti8250
39 sdvirtblk
40

41 mod

42 sys

43 draw

44 tk

45 math

46

47 port

48 alarm

19 alloc

50 allocb
51 chan

52 dev

53 dial

54 dis

55 discall
56 exception
57 exportfs
58 inferno
59 latinl
60 nocache
61 nodynld
62 parse

63 pegrp

64 print

65 proc

66 qio

67 qlock

68 random
69 sysfile
70 taslock
71 xalloc
72

73 code

74 int kernel_pool_pcnt = 10;

36

75
76
77
78
79
80
81
82

85

137

150

init

root

int main_pool_pcnt = 40;
int heap_pool_pcnt = 20;
int image_pool_pcnt = 40;
int cflag=0;

int swcursor=1;

int consoleprint=1;

virtriscvinit
/chan /
/dev /
/dis

/1ib /
/env /

/fd /
/net /
/prog /

/n /
/n/local /
/n/dos /
/tmp /
/dis/1ib
/dis/disk

/osinit.dis
/dis/sh.dis
/dis/tiny/sh.dis
/dis/ls.dis
/dis/mc.dis

/dis/lc

/dis/ps.dis
/dis/ns.dis
/dis/cat.dis
/dis/bind.dis
/dis/mount.dis
/dis/mntgen.dis
/dis/listen.dis
/dis/export.dis
/dis/unmount.dis
/dis/sleep.dis
/dis/pwd.dis
/dis/echo.dis
/dis/cd.dis
/dis/netstat.dis
/dis/styxlisten.dis
/dis/time.dis
/dis/lib/arg.dis
/dis/1lib/auth.dis
/dis/1ib/lock.dis
/dis/lib/rand.dis
/dis/lib/random.dis
/dis/1lib/dial.dis
/dis/lib/bufio.dis
/dis/1lib/timers.dis
/dis/lib/string.dis
/dis/lib/filepat.dis
/dis/lib/readdir.dis
/dis/lib/workdir.dis
/dis/1lib/daytime.dis
/dis/lib/nametree.dis
/dis/lib/styxservers.dis

disk support

/usr /
/usr/inferno /
/dis/dd.dis
/dis/fs.dis
/dis/dossrv.dis
/dis/1lib/fslib.dis
/dis/lib/fsproto.dis
/dis/1lib/fsfilter.dis
/dis/zeros.dis
/dis/disk
/dis/disk/calc.tab.dis
/dis/disk/fdisk.dis
/dis/disk/format.dis

37

152
153
154
155
156
157

159

/dis/disk/ftl.dis
/dis/disk/kfs.dis
/dis/disk/kfscmd.dis
/dis/disk/mbr.dis
/dis/disk/mkext.dis
/dis/disk/mkfs.dis
/dis/disk/pedit.dis
/dis/disk/prep.dis
/dis/1ib/disks.dis
/dis/lib/styx.dis

misc
/dis/math/sieve.dis

structure

/boot /
/man /
/fonts /
/icons /
/module /
/locale /
/services /

38

B /os/virtriscv/mkfile

-*-makefile-*-

../../mkconfig

#Configurable parameters

CONF=virtriscv #default configuration
CONFLIST=virtriscv

© 0 N e U A W N e

SYSTARG=$0STARG
OBJTYPE=riscv
INSTALLDIR=$RO0T/Inferno/$0BJTYPE/bin #path of directory where kernel is installed

o e
N o= O

LOADADDR=0x80400000

==
oW

15 k$RUDT/mkfiles/mkfile—$SYSTARG—$OBJTYPE1 #set wvars based on target system
16

17 KI| [BSHELLNAME |. . /port/mkdevlist] $CONF

18

19 HFILES=\

20 mem.h\

21 dat.h\

22 fns.h\

23 io.h\

24

25 0BJ=\

26 load.$0\

27 clock.$0\

28 portclock.$0\
29 mul64fract.$0\
30 tod.$0\

31 plic.$0\

32 sbi.$0\

33 inb.$0\

34 dump . $0\

35 csr.$0\

36 trap.$0\

37 intr.$0\

38 virtio.$0\

39 input.$0\

40 kbd. $0\

41 mouse. $0\

12 gpu. $0\

43 archvirtriscv.$0\
44 main.$0\

15 $RISCVOBJI\

16 $IP\

a7 $DEVS\

48 $ETHERS\

49 $LINKS\

50 $PORT\

51 $MISC\

52 $OTHERS\

53 $CONF . root.$0\

54
55 ~ LIBNAMES=${LIBS:%=1ib%.a}

56 LIBDIRS=$LIBS

57

58 CFLAGS=-wFV -I$RO0T/Inferno/$0BJTYPE/include -I$RO0T/include -I$RO0T/libinterp
50 KERNDATE="{$NDATE}

60

61 default:V: i$CONF

62

63 i$CONF: $0BJ $CONF.c $CONF.root.h $LIBNAMES

64 $CC $CFLAGS -DKERNDATE=$KERNDATE $CONF.c

65 $LD -1 -o $target -H5 -T$LOADADDR $0BJ $CONF.$0 $LIBFILES
66

67 install:V: i$CONF

68 cp i$CONF $INSTALLDIR/i$CONF

69

70 [K../port/portmkfile

71

72 trap.$0: csr.h

73

74 main.$0: $ROOT/Inferno/$0BJTYPE/include/ureg.h csr.h

39

75
76
77
78
79
80
81
82

csr.h csr.s: generate_csr.sh csrregs.h

sh generate_csr.sh csrregs.h

csr.$0: csr.h csr.s

devuart.$0:
$CC $CFLAGS

../port/devuart.c ../port/uart.h
../port/devuart.c

40

© 0 N e U A W N e

NN NN Y000 000 0 o0 9 o g g oo oot oot ot A A A AR R R R A R WO W W W W W W W W NNNNNNNNNNR B R e e E R e e
AW N B O ©® N6 A @0 HE O © 0N O O AN RO ©E N O OA DN RO O OO OA RN SO © OO0 OA N RO ®© LN O AW N - O

C /Jos/virtriscv/main.c

#include "u.h"

#include "../port/lib.h"
#include "dat.h"

#include "mem.h"

#include "fns.h"

#include "../port/uart.h"
#include "sbi.h"

#include "virtio.h"
#include "version.h"

#define MAXCONF 32

Conf conf;
Mach #m = (Mach*)MACHADDR;
Proc *up = 0;

char *confname [MAXCONF] ;
char *confval [MAXCONF];
int nconf;

extern int main_pool_pcnt;
extern int heap_pool_pcnt;
extern int image_pool_pcnt;

extern freginit(void);

/* Unimplemented functions */
void fpinit(void) {}

void FPsave(void*) {}

void FPrestore(void*) {}

int segflush(void*, ulong) { return 0; }
void idlehands(void) { return; %}

void setpanic(void) { return; }

int

pcmspecial (char *idstr, ISAConf *isa)
{

return -1;

}
void
exit(int panic)
{
if (panic) {
iprint ("PANIC\n");
}
SBI_SHUTDOWN() ;
for (53);
}
void
reboot (void)
{
spllo();
print ("Rebooting\n");
(*(volatile unsigned char*)(0x0000)) = 1;
}
void
halt(void)
{
spllo();
print ("CPU halted\n");
while (1) {
wait_for_interrupt();
}
}
void
addconf (char #*name, char *val)
{

if (nconf >= MAXCONF)
return;

41

confname [nconf] = name;

confval [nconf] = val;
nconf++;
}
char*
getconf (char *name)
{
int i;
for(i = 0; i < nconf; i++)

if (cistrcmp(confname[i], name) == 0)
return confvall[i];

return O;

}
void
confinit(void)
{
ulong base;
conf.topofmem = 128+MiB + RAMBOOT;
base = PGROUND((ulong)end);
conf.base0 = base;
conf .npagel = 0;
conf .npage0 = (conf.topofmem - base)/BY2PG;
conf .npage = conf.npage0 + conf.npagel;
conf.ialloc = (((conf.npage*(main_pool_pcnt))/100)/2)*BY2PG;
conf .nproc = 100 + ((conf.npage*BY2PG)/MB)*5;
conf .nmach = MAXMACH;
print("Conf: top=0x%lux, npage0=0x}lux, ialloc=0x%lux, nproc=0x%lux\n",
conf.topofmem, conf.npageO,
conf.ialloc, conf.nproc);
}
void
poolsizeinit(void)
{
u64int nb;
nb = conf.npage*BY2PG;
poolsize(mainmem, (nb*main_pool_pcnt)/100, 0);
poolsize(heapmem, (nb*heap_pool_pcnt)/100, 0);
poolsize (imagmem, (nb*image_pool_pcnt)/100, 1);
}
void
init0(void)
{

Osenv *0;

char

buf [2+KNAMELEN] ;

up->nerrlab = 0;

print("Starting init0()\n");
spllo();

if (waserror())

panic("init0 %r");

0 = up->env;

o->pgrp->slash = namec("#/", Atodir, 0, 0);
cnameclose (o->pgrp->slash->name) ;
o->pgrp->slash->name = newcname("/");
o->pgrp->dot = cclone(o->pgrp->slash);

chandevinit();

if (!waserror()){

ksetenv("cputype", "riscv", 0);
snprint (buf, sizeof(buf), "riscv s"
ksetenv("terminal", buf, 0);
poperror();

, conffile);

42

152 poperror() ;

153

154 disinit("/osinit.dis");
155}

156

157 void
158 userinit(void)

159 {

160 Proc *p;

161 Osenv *0;

162

163 p = newproc();

164 0 = p->env;

165

166 o->fgrp = newfgrp(nil);
167 o->pgrp = newpgrp();

168 o->egrp = newegrp();

169 kstrdup(&o->user, eve);
170

171 strcpy(p->text, "interp");
172

173 p->fpstate = FPINIT;

174

175 p->sched.pc = (ulong)initO;
176 p->sched.sp = (ulong)p->kstack+KSTACK-8;
177

178 ready (p) ;

179}

180

181 int

182 main() {

183 char input;

184

185 memset (edata, 0, end-edata);
186 memset(m, 0, sizeof(Mach));
187

188 freginit();

189 confinit();

190 xinit Q) ;

191 poolinit();

192 poolsizeinit();

193

194 trapinit();

195 clockinit();

196 printinit();

197 i8250console();

198 serwrite = uartputs;

199 virtio_init(Q);

200 input_init();

201 screeninit();

202

203 print ("\nRISC-V QEMU\n");
204 print("Inferno 0S %s Vita Nuova\n\n", VERSION);
205

206 procinit();

207 links();

208 chandevreset () ;

209

210 eve = strdup("inferno");
211

212 userinit();

213 schedinit () ;

214

215 halt();

216 return 0;

D /os/virtriscv/sdvirtblk.c

1 #include "u.h"

2 #include "../port/lib.h"
3 #include "mem.h"

4 #include "dat.h"

5 #include "fns.h"

6 #include "4o0.h"

7 #include "virtio.h"

8

9 #include "../port/sd.h"
10

-
o

extern SDifc sdvirtblkifc;

=
w N

SDev *head;

[
S

15 static int
16 blk_virtq_init(virtio_dev *dev)

17 o

18 if (dev->queues == 0) {

19 dev->queues = malloc(sizeof (virtq));

20 dev->numqueues = 1;

21

22 if (dev->queues == 0) {

23 panic("Virtio blk: Could not allocate queues. Malloc failed\n");
24 }

25

26 if (virtq_alloc(dev, 0, 0) !'= 0) {

27 panic("Virtio blk: Failed to create event queue");
28 return -1;

29 }

30

31 dev->queues [0] .default_handler = nil;

32 dev->queues[0] .default_handler_data = dev;
33 }

34

35 return O;

36

37

38 static int

39 blk_enable(SDev* sdev)

0 o

41 virtio_enable_interrupt(sdev->ctlr, nil);

42

43 return 1;

44}

45

46 static int

47 blk_disable(SDev* sdev)

a8 o

49 virtio_disable_interrupt(sdev->ctlr);

50

51 return 1;

52}

53

54 static SDevx*

55 blk_pnp(void)

56 {

57 virtio_dev *dev;

58 SDev *sdev;

59 SDev **next;

60

61 for (next = &head; #*next != 0; *next = (*next)->next) {}
62

63 while ((dev = virtio_get_device(VIRTIO_DEV_BLOCK)) != 0) {
64 int err = virtio_setup(dev, "BLK", blk_virtq_init, VIRTIO_F_ANY_LAYOUT
65 | VIRTIO_F_RING_INDIRECT_DESC | VIRTIO_F_RING_EVENT_IDX
66 | VIRTIO_BLK_F_RO | VIRTIO_BLK_F_SIZE_MAX | VIRTIO_BLK_F_SEG_MAX);
67

68 switch (err) {

69 case 0:

70 sdev = malloc(sizeof (SDev));

71 sdev->ctlr = dev;

72 sdev->ifc = &sdvirtblkifc;

73 sdev->nunit = 1;

74

44

}

*next = sdev;
next = &sdev->next;

blk_enable(sdev);

break;

case -1:
iprint("Virtio blk rejected features\n");
break;

case -2:
iprint("Virtio blk queue error\n");
break;

default:
iprint("Virtio blk unknown error during setup %d\n"
break;

}

}

return head;

static SDevx*
blk_id (SDev* sdev)

{

}

char name[16];
virtio_dev *dev;
static char idno[16] = "0123456789";

for (int i = 0; sdev != nil; sdev = sdev->next) {
if (sdev->ifc == &sdvirtblkifc) {
sdev->idno = idno[i++];

, err);

snprint (name, sizeof (name), "virtblkyc", sdev->idno);

kstrdup(&sdev->name, name) ;
}

return nil;

static int
blk_verify(SDunit *unit)

{

}

virtio_dev *dev = unit->dev->ctlr;

snprint ((void*) &unit->inquiry[8], sizeof (unit->inquiry)-8,

"VIRTIO port %d Block Device", dev->index);
unit->inquiry[4] = sizeof (unit->inquiry)-4;

return 1;

static int
blk_online(SDunit *unit)

{

}

virtio_dev *dev = (virtio_dev*) unit->dev->ctlr;

virtio_blk_config *config = (virtio_blk_config+) &dev->regs->config;

if (dev->features & VIRTIO_BLK_F_BLK_SIZE) {
unit->secsize = config->blk_size;

} else {
unit->secsize = 512;

}
unit->sectors = config->capacity;

return 1;

static long

blk_bio(SDunit* unit, int lun, int write, void* data, long nb, long bno)

{

ulong len = nb * unit->secsize;
virtio_dev *dev = (virtio_dev*) unit->dev->ctlr;

virtio_blk_config *config = (virtio_blk_config+*) &dev->regs->config;

45

151 virtio_blk_req *req;

152 uchar *status;

153

154 if (write && dev->features & VIRTIO_BLK_F_R0O) {

155 // The drive is read-only

156 iprint ("VIRTIO block write of read only device\n");

157 return -1;

158 } else if (bno + nb > config->capacity) {

159 // Out of bounds

160 iprint ("VIRTIO block device %s out of bounds\n", write 7 "Write" : "Read");

161 return -1;

162 }

163

164 req = malloc(sizeof (¥req));

165 req->type = write 7 VIRTIO_BLK_T_OUT : VIRTIO_BLK_T_IN;

166 req->sector = (bno * unit->secsize) / 512; // VIRTIO always uses sectors of 512, though the device might
— not

167 status = &req->status;

168 *status = 255;

169

170 virtqg_add_desc_chain(&dev->queues[0], nil, nil, 3,

171 req, VIRTIO_BLK_HDR_SIZE, O,

172 data, len, write 7 0 : 1,

173 status, VIRTIO_BLK_STATUS_SIZE, 1);

174

175 virtq_make_available(&dev->queues[0]);

176 virtq_notify(dev, 0, 0, -1);

177

178 // Block until the drive responds

179 while (*status == 255) {}

180

181 switch (*status) {

182 case VIRTIO_BLK_S_OK:

183 free(req);

184 return len;

185 break;

186 case VIRTIO_BLK_S_IOERR:

187 iprint ("VIRTIO block device IO error\n");

188 break;

189 case VIRTIO_BLK_S_UNSUPP:

190 iprint ("VIRTIO block device unsupported operation\n");

191 break;

192 default:

193 iprint ("VIRTIO block device returned %d\n", status);

194 error ("Unknown VIRTIO block device return code\n");

195 }

196

197 free(req);

198 return -1;

199}

200

201 SDifc sdvirtblkifc = {

202 "virtblk", /* name */

203

204 blk_pnp, /* pnp */

205 nil, /* legacy */

206 blk_id, /* id */

207 blk_enable, /* enable */

208 blk_disable, /* disable */

209

210 blk_verify, /* verify */

211 blk_online, /* online */

212 nil, /* rio */

213 nil, /* rctl */

214 nil, /* wetl */

215

216 blk_bio, /* bio */

217 };

46

© 0 N e U oA W N e

NN NN YN0 0 o oo oo o orgn oot Gt A R R R R R A A R A W W W W W W oW oW W W NNNNNDNNNNNE R R B B R e e
N N T = T - < B o e B R < B o B S L A S T T = = B B (o < R N o e B N < N N = R N L A U C R S =}

E /libinterp/comp-riscv.c

#include "lib9.h"
#include "isa.h"
#include "interp.h"
#include "ratse.h"”

/*
* JIT compiler to RISC-V
* Assumes that processor supports at least rv32mfd.
*
* Note that the operand order is different than the JIT compilers
* for other architectures, both for instructions and functions.
* The general order is rd, Ts, imm. The exception is store instructions,
* which goes against the instruction operand ordering by having the source
* register first.
*/
enum {
RO =0,
R1 =1,
R2 =2,
R3 =3,
R4 =4,
R5 =5,
R6 =6,
R7 =17,
R8 =8,
R9 =9,
R10 = 10,
R11 =11,
R12 =12,
R13 = 13,
R14 = 14,
R15 = 15,
Rlink =1,
Rsp =2,
Rarg = 8,

// Temporary registers
Rtmp =4, // Used for building constants and other single-instruction values
Rta =5, // Used for intermediate addresses for double indirect

// Permanent registers
Rh =6, // Contains H, which s used to check if wvalues are invalid

// Registers for storing arguments and other mid-term values

RAO =8,

RA1 =9,

RA2 = 10,

RA3 =11,

RA4 =12,

Rfp = 13, // Frame pointer

Rmp = 14, // Module pointer

Rreg = 15, // Pointer to the REG struct

// Floating-point registers

FO =0,

F1 =1,

F2 =2,

F3 = 3,

F4 =4,

F5 = 5,

F6 =6,

// Opcodes

0P = 51, // 00110011
OPimm = 19, // 0b0010011
OPfp = 83, // 0b1010011
OPlui = 55, // 0b0110111
OPauipc = 23, // 0b0010111
OPjal = 111, // 0b1101111
OPjalr = 103, // 0b1100111
OPbranch = 99, // 01100011

47

116

118

OPload = 3, //
OPloadfp =7, //
OPstore = 35, //
OPstorefp = 39, //
OPmiscmem = 15, //
OPsystem = 115, //
OPamo = 47, //
OPmadd = 67, //
OPnmadd =79, //
OPmsub =71, //
0Pnmsub =75, //

// Rounding modes

060000011
060000111
060100011
0b0100111
0b0001111
0b1110011
0b0101111
061000011
0b1001111
0b1000111
0b1001011

RNE = 0, // Round to nearest, ties to even

RTZ =1, // Round towards zero

RDN = 2, // Round doun

RUP = 3, // Round up

RMM = 4, // Round to nearest, ties to maz magnitude
RDYN =7, // Use default

RM = RDYN, // Default rounding mode

// Flags to mem

Ldw = 1, // Load 32-bit word

Ldh, // Load 16-bit half-word (with sign-eztension)
Ldb, // Load 8-bit byte (with sign-exztension)
Ldhu, // Load 16-bit unsiged half-word

Ldbu, // Load 8-bit unsigned byte

Lds, // Load 32-bit single-precision float
Ldd, // Load 64-bit double-precision float
Stw, // Store 32-bit word

Sth, // Store 16-bit half-word

Stb, // Store 8-bit byte

Sts, // Store 32-bit single-precision float
Std, // Store 64-bit double-precision float
Laddr, // Special flag for operand functions

// Moves the address of the operand to a register

// Flags to branch
EQ = 1,

NE,

LT,

LE,

eT,

GE,

// Flags to punt

SRCOP = (1<<0),
DSTOP = (i<<1),
WRTPC = (1<<2),
TCHECK = (1<<3),
NEWPC = (1<<4),
DBRAN = (1<<5),

THREOP = (1<<6),

// The index of each macro
MacFRP = 0,
MacRET,
MacCASE,
MacCOLR,
MacMCAL,
MacFRAM,
MacMFRA,
MacRELQ,
NMACRO

};

// Masks for the high and low portions of immidiate values

#define IMMSIGNED Oz FFFFF800
#define IMMH 0xFFFFF000
#define IMML 0z00000FFF

// Check if a immidiate has to be split over multiple instructions

#define SPLITIMM(imm)
— § IMMSIGNED) != IMMSIGNED))

((((((ulong) (imm)) & IMMSIGNED) != 0)) &8 ((((ulong)(imm))

48

152

153
154
155
156

158
159
160

161
162

163
164
165
166

168

169
170

171

172

173

174

176
177
178
179
180
181

183
184
185
186
187
188

190
191
192
193
194
195

197
198
199
200
201
202

204
205
206
207
208
209

211
212
213
214
215
216

#define
— 0))
#define

// Ezxtract bits of immidiate

SPLITH(imm)
& IMMH)
SPLITL (imm)

// Ezamples:

// imm[11:5] -> IMM(imm, 11, 5)
// imm[11:0] -> IMM(imm, 11, 0)
// imm[11] -> IMM(imm, 11, 11)

#define
— 1))

// A1l RISC-V instruction encoding variants. Set up with LSB on the left and MSB on the right, opposite to the

IMM(imm, to, from)

< tables in the RISC-V specification

#define
#define
#define
— 10,
#define
#define

— (IMM(imm, 10, 1)<<21) [(IMM(imm, 20, 20)<<30))

#define Rtype(op, funct3, funct?, rd, rsi, rs2)

Iimm(<mm)
Simm(imm)
Bimm(imm)
5)<<25) | (IMM(imm, 12,
Uimm(imm)
Jimm (imm)

12)<<30))

— ((rs2)<<20) | ((funct7)<<25))

#define R{type(op, funct3, funct2, rd, rsi1, 7s2, rs3)
— ((rs2)<<20) | ((funct2)<<25) | ((rs3)<<27))

#define Itype(op, funct3, rd, rsi, imm)
< Iimm(imm))
#define Stype(op, funct3, rsi, rs2, imm)
— Simm(imm))
#define Btype(op, funct3, rsl, rs2, imm)
< Bimm(imm))

#define
#define

/* Macros for laying down RISC-V instructions. Uses the

Utype(op, rd, imm)
Jtype(op, rd, imm)

// Upper immediate instructions

#define
#define

// Jump
#define
#define

LUI(dest, imm)
AUIPC(dest, imm)

wnstructions
JAL (dest, offset)
JALR(dest, base, offset)

// Branch instructions

#define
#define
#define
#define
#define
#define

// Load
#define
#define
#define
#define
#define

BEQ(srcl, src2, offset)
BNE(srcl, src2, offset)
BLT(srcl, src2, offset)
BGE(srcl, src2, offset)
BLTU(srcl, src2, offset)
BGEU(srcl, src2, offset)

instructions
LB(dest, base, imm)
LH(dest, base, imm)
LW(dest, base, imm)
LBU(dest, base, imm)
LHU(dest, base, imm)

// Store instructions

#define
#define
#define

SB(src, base, imm)
SH(src, base, imm)
SW(src, base, imm)

// Arithmetic immediate instructions

#define
#define
#define
#define
#define
#define

#define

ADDI(dest, src, imm)
SLTI(dest, src, imm)
SLTIU(dest, src, imm)
XORI(dest, src, imm)
ORI(dest, src, imm)

ANDI(dest, src, tmm)

SLLI(dest, src, shamt)

((((ulong) (imm)) + ((((ulong)(imm)) & (1<<11)) ? (1<<12) :

(((ulong) (imm)) & IMML)

((((ulong) (imm)) >> (from)) & ((1 << ((to)-(from)+1)) -

(INM (imm, 11,

((IMM (imm, 11, 11)<<7) | (IMM(imm, 4, 1)<<8) [(IMM(imm,

((IMM(imm, 31,
((IMM(imm, 19,

gen((op) | ((rd)<<7) | ((funct3)<<12) | ((rs1)<<15) |

-

gen((op)

-

gen((op)

-

gen((op)

-

gen((op)

-~

gen((op)
gen((op)

-

0)<<20)
((IMM (imm, 4, 0)<<7) [(IMM(imm, 11, 5)<<25))

12)<<12))
12)<<12) | (IMM(imm, 11,

values, like imm[11:5]. Basically shifts to the right and masks

((rd)<<7) | Uimm(imm))
((rd)<<7) | Jimm(imm))

11)<<20) |

((rd)<<7) | ((funct3)<<12) | ((rs1)<<15) |
((rd)<<7) | ((funct3)<<12) | ((rs1)<<15) |
((funct3)<<12) | ((rs1)<<15) | ((rs2)<<20) |

((funct3)<<12) | ((rs1)<<15) | ((rs2)<<20) |

instruction name from the specification */

Utype(OPlut, dest, imm)
Utype(OPauipc, dest, imm)

Jtype(OPjal, dest, offset)

Itype(OPjalr, 0, dest, base, offset)

Btype (0Pbranch,
Btype (0Pbranch,
Btype (0Pbranch,
Btype (0Pbranch,
Btype (OPbranch,
Btype (0Pbranch,

Itype(OPload,
Itype(OPload,
Itype(OPload,
Itype(OPload,
Itype(OPload,

Stype(OPstore, 0, base, src,
Stype(OPstore, 1, base, src,
Stype(0OPstore, 2, base, src,

Itype(OPimm,
Itype(OPimm,
Itype(OPimm,
Itype(OPimm,
Itype (OPimm,
Itype(OPimm,

Itype(OPimm,

49

QLo WD

-

QLS A D
N

dest,
dest,
dest,
dest,
dest,

dest,
dest,
dest,
dest,
dest,
dest,

dest,

, srcl,
srcl,
srcl,
srcl,
, srcl,
, srcl,

base,
base,
base,
base,
base,

sre,
sre,
sre,
sre,
sre,
src,

src,

srce,
src2,
srce,
srec2,
src2,
sre2,

imm)
imm)
imm)
imm)
imm)
imm)

offset)
offset)
offset)
offset)
offset)
offset)

4mm)
imm)
<mm)
mm)
imm)

4mm)
imm)
4mm)

shamt)

#define
#define

// Arithmetic register instructions

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

// The M extension for multiplication and division

#define
#define
#define
#define
#define
#define
#define
#define

// The F extension for single-precision floating-point.

#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define

#define
#define

#define
#define
#define

#define

#define
#define
#define
#define

// The D eztension for double-precision floating-point

#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define

SRLI(dest, src, shamt)
SRAI(dest, src, shamt)

ADD(dest, srcl, src2)
SUB(dest, srcl, src2)
SLL(dest, srcl, src2)
SLT(dest, srcl, src2)
SLTU(dest, srcl, src2)
XO0R(dest, srcl, src2)
SRL (dest, srcl, src2)
SRA(dest, srcl, src2)
OR(dest, srcl, src2)

AND(dest, srcl, src2)

MUL (dest, srcl, src2)
MULH(dest, srcl, src2)
MNULHSU(dest, srcl, srcl)
MULHU(dest, srcl, src2)
DIV(dest, srcl, src2)
DIVU(dest, srcl, src2)
REM(dest, srcl, src2)
REMU(dest, srcl, src2)

FLW (dest, base, offset)
FSW(src, base, offset)

FMADDS (rm, dest, srcl, src2, src3)
FMSUBS (rm, dest, srcl, src2, src3)
FNMADDS (rm, dest, srcl, src2, src3)
FNMSUBS (rm, dest, srcl, src2, src3)

FADDS (rm, dest, srcl, src2)
FSUBS (rm, dest, srcl, src2)
FMULS (rm, dest, srcl, src2)
FDIVS(rm, dest, srcl, src2)
FSQRTS (rm, dest, src)

FSGNJS (dest, srcl, src2)
FSGNJNS (dest, srcl, src2)
FSGNJXS(dest, srcl, src2)

FMINS (dest, srcl, src2)
FMAXS(dest, srcl, src2)

FMVXW(dest, src)
FMVWX (rm, dest, src)

FEQS(dest, srcl, src2)
FLTS(dest, srcl, src2)
FLES(dest, srcl, src2)

FCLASSS (dest, src)

FCVTWS (rm, dest, src)
FCVTWUS (rm, dest, src)
FCVTSW(rm, dest, src)
FCVTSWU(rm, dest, src)

FLD(dest, base, offset)
FSD(src, base, offset)

FMADDD (rm, dest, srcl, src2, src3)
FMSUBD (rm, dest, srcl, src2, srcd)
FNMADDD (rm, dest, srcl, src2, src3)
FNMSUBD (rm, dest, srcl, src2, src3)

FADDD (rm, dest, srcl, src2)
FSUBD (rm, dest, srcl, src2)
FMULD (rm, dest, srcl, src2)
FDIVD(rm, dest, srcl, src2)
FSQRTD (rm, dest, src)

Itype(OPimm,
Itype(OPimm,

Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,
Rtype (0P,

N O™ WD RO

Rtype (0P, 0
Rtype (0P, 1
Rtype (0P, 2
Rtype (0P, 3
Rtype(OP, 4
5
6
”

Rtype (0P,
Rtype (0P,
Rtype (0P,

>

5, dest, src, shamt)

5, dest, src, shamt | (1<<10))

0, dest, srcl, src2)
(1<<5), dest, srcl, src2)
0, dest, srcl, src2)
0, dest, srcl, src2)
0, dest, srcl, src2)
0, dest, srcl, src2)
0, dest, srcl, src2)
(1<<5), dest, srcl, src2)
0, dest, srcl, src2)
0, dest, srcl, src2)

dest, srcl, src2)
dest, srcl, src2)
dest, srcl, src2)
dest, srcl, src2)
dest, srcl, src2)
dest, srcl, src2)
dest, srcl, src2)
dest, srcl, src2)

N N N e T S

rm is the rounding mode
Itype(OPloadfp, 2, dest, base, offset)
Stype(OPstorefp, 2, base, src, offset)

R{type(0Pmadd, rm, 0, dest, srcl, src2, src3)
R4type(0Pmsub, rm, 0, dest, srcl, src2, src3)
R{type(0Pnmadd, ™m, 0, dest, srcl, src2, src3)
R4type(0Pnmsudb, vm, 0, dest, srcl, src2,

Rtype(0Pfp,
Rtype (0Pfp,
Rtype (OPfp,
Rtype (0Pfp,
Rtype (OPfp,

Rtype (0Pfp,
Rtype(0Pfp,
Rtype(0Pfp,

Rtype(0Pfp,
Rtype(OPfp,

Rtype(0Pfp,
Rtype(0Pfp,

Rtype(0Pfp,
Rtype (0Pfp,
Rtype (OPfp,

Rtype (0Pfp,

Rtype (0Pfp,
Rtype(0Pfp,
Rtype(0Pfp,
Rtype(OPfp,

rm, 0, dest, srcl, src2)
rm, 1<<2, dest, srcl, src2)
rm, 1<<3, dest, srcl, src2)
rm, 3<<2, dest, srcl, src2)
rm, 11<<2, dest, src, 0)

0, 1<<4, dest, srcl, src2)
1, 1<<4, dest, srcl, src2)
2, 1<<4, dest, srcl, src2)

0, 5<<2, dest, srcl, src2)
1, 5<<2, dest, srcl, src2)

0, 7<<4, dest, src, 0)
0, 15<<3, dest, src, 0)

2, 5<<4, dest, srcl, src2)
1, 5<<4, dest, srcl, src2)
0, 5<<4, dest, srcl, src2)

1, 7<<4, dest, src, 0)

rm, 3<<5, dest, src, 0)
rm, 3<<5, dest, src, 1)
rm, 13<<3, dest, src, 0)
rm, 13<<3, dest, src, 1)

Itype(OPloadfp, 3, dest, base, offset)
Stype(0Pstorefp, 3, base, src, offset)

srcd)

R4type(0Pmadd, rm, 1, dest, srcl, src2, src3)

R{type(0Pmsub, rm, 1

dest, srcl, src2,

R4type(0OPnmadd, rm, 1, dest, srcl, src2,
1

R{type(0Pnmsudb, Tm,

Rtype (0Pfp,
Rtype(0Pfp,
Rtype (0Pfp,
Rtype(0Pfp,
Rtype (0Pfp,

50

, dest, srcl, src2,

rm, 1, dest, srcl, src2)
rm, 5, dest, srcl, src2)
rm, 9, dest, srcl, src2)
rm, 13, dest, srcl, src2)
rm, 45, dest, src, 0)

sred)
sred)
sre3)

294
295
296
297
298
299

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

335
336
337
338
339
340

342
343
344
345
346
347

349
350
351
352
353
354

356
357
358
359
360
361

363
364
365
366
367
368

#define FSGNJD(dest, srcl, src2) Rtype(O0Pfp, 0, 17, dest,
#define FSGNJND(dest, srcl, src2) Rtype(0Pfp, 1, 17, dest,
#define FSGNJXD(dest, srcl, src2) Rtype(OPfp, 2, 17, dest,
#define FMIND(dest, srcl, src2) Rtype(O0Pfp, 0, 21, dest,
#define FMAXD(dest, srcl, src2) Rtype(O0Pfp, 1, 21, dest,
#define FEQD(dest, srcl, src2) Rtype(O0Pfp, 2, 81, dest,
#define FLTD(dest, srcl, src2) Rtype(0Pfp, 1, 81, dest,
#define FLED(dest, srcl, src2) Rtype(OPfp, 0, 81, dest,
#define FCLASSD(dest, src) Rtype(0Pfp, 1, 113, dest,
#define FCVTSD(rm, dest, src) Rtype (0Pfp, rm, 32, dest,
#define FCVIDS(rm, dest, src) Rtype(O0Pfp, rm, 32, dest,
#define FCVTWD(rm, dest, src) Rtype (0Pfp, rm, 97, dest,

#define FCVTWUD(rm, dest, src)
#define FCVIDW(rm, dest, src)
#define FCVIDWU(rm, dest, src)

Rtype(0Pfp, rm,
Rtype(0Pfp, rm,
Rtype(0Pfp, rm,

// Pseudoinstructions
#define MOV(rd, rs)
#define NOT(rd, 7s)
#define NEG(rd, Ts)

ADDI(rd, rs, 0)
XO0RI(rd, s, -1)
SUB(rd, RO, rs)

#define BEQZ(rs, offset) BEQ(rs, RO, offset)
#define BNEZ(rs, offset) BNE(rs, RO, offset)
#define BLEZ(rs, offset) BGE(RO, rs, offset)
#define BGEZ(rs, offset) BGE(rs, RO, offset)
#define BLTZ(rs, offset) BLT(rs, RO, offset)
#define BGTZ(rs, offset) BLT(RO, rs, offset)

#define BGT(rsl, rs2, offset)
#define BLE(rsl, rs2, offset)

BLT(rs2, rs1, offset)
BGE(rs2, rsl, offset)

#define BGTU(rs1, rs2, offset) BLTU(rs2, rsl, offset)
#define BLEU(rs1, rs2, offset) BGEU(rs2, rs1, offset)
#define JUMP(offset) JAL (RO, offset)
#define JL(offset) JAL(R1, offset)
#define JR(rs, offset) JALR (RO, rs, offset)
#define JRL(rs, offset) JALR(R1, rs, offset)

/* Helper macros */

// Used to look up the address of an array element relative to base
#define I4d(s, o) (ulong) (basets[o])

// The offset from the current code address to the pointer
#define OFF(ptr) ((ulong) (ptr) - (ulong) (code))

// Call a function at the given address
#define CALL (o)

// Return from a function
#define RETURN JR(Rlink, 0)
// Call a macro. Takes the macro idz as the argument
#define CALLMAC(idz) CALL(IA(macro, idz))
// Jump to a specific address
#define JABS(ptr)

// Jump to a Dis address
#define JDIS(pc) JABS(IA(patch, pc))

// Jump to an address in the dst field of an instruction

#define JDST (%) JDIS((i->d.ins - mod->prog))

srcl,
srcl,
srcl,

srcl,
srcl,

srcl,
srcl,
srcl,

sTrc,
src,

sre,
sre,

97, dest, src,
105, dest, src,
105, dest, src,

(LUI(Rtmp, SPLITH(o0)), JRL(Rtmp, SPLITL(0)))

(LUI(Rtmp, SPLITH(ptr)), JR(Rtmp, SPLITL(ptr)))

// Set the offset of a branch instruction at address ptr to the current code address
// The order is opposite from OFF because it is used where the branch should jump to,

// not where it jumps from
#define PATCHBRANCH(ptr)

// Gets the address of a PC relative to the base
#define RELPC(pc) (ulong) (baset(pc))

51

*ptr [= Bimm((ulong) (code) - (ulong)(ptr))

src2)
src2)
src2)

src2)
src2)

src2)
src2)
src2)

0)

1)
0)
0)
1)
0)
1)

// Throw an error if the register is 0
#define NOTNIL(r) (BNE(r, RO, 12), LUI(Rtmp, nullity), JRL(Rtmp, nullity))

// Array bounds check. Throws an error if the indez is out of bounds
#define BCK(rindex, rsize) (BLTU(rindez, rsize, 8), /*CALL(bounds)*/ CRASH())

// Cause an immediate illegal instruction exception, which should
// cause a register dump, stack trace, and a halt.

// Useful for debugging register state

#define CRASH() gen(0)

static wulong* code;
static ulong* codestart;
static wulong* codeend;
static ulong* Dbase;
static ulong* patch;
static ulong codeoff;
static int pass;
static int puntpc = 1;
static Module* mod;
static wuchar* tinit;
static wulong* litpool;

static int nlit;
static ulong macro[NMACRO];
void (*comvec) (void) ;

static void macfrp(void);
static void macret (void) ;
static void maccase(void);
static void maccolr (void) ;
static void macmcal (void) ;
static void macfram(void) ;
static void macmfra(void) ;
static void macrelq(void) ;

static void movmem(Instx*) ;
static void mid(Inst*, int, int);

extern void das(ulong*, int);
extern void _d2v(vlong *y, double d);

// Float constants
double doubleO5 = 0.5;
double double4294967296 = 4294967296.0;

#define T(r) *((void**) (R.7))
// The macro table. Macros are long sequences of instructions which come up often, like calls and returns,

// so they are eztracted out into separate blocks. The calling convention is separate for each macro.
struct

{
int idx;
void (*gen) (void) ;
char* name;
} mactab[] =
{
MacFRP, macfrp, "FRP", /* decrement and free pointer */
MacRET, macret, "RET", /* return instruction */
MacCASE, maccase, "CASE", /# case instruction */
MacCOLR, maccolr, "COLR", /* increment and color pointer */
MacMCAL, macmcal, "MCAL", /* mcall bottom half */
MacFRAM, macfram, "FRAM", /* frame instruction */
MacMFRA, macmfra, "MFRA", /* punt mframe because t->initialize==0 */
MacRELQ, macrelq, "RELQ", /* reschedule */
};

/* Helper functions */

void

urk(char *s)

{
iprint ("urk: %s\n", s);
error (exCompile) ;

}

static void

52

445

447
448
449
450
451

453
454
455
456
457
458

460
461
462
463
464
465

467
468
469
470
471
472

474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492

494
495
496
497
498
499

501
502
503
504
505
506

508
509
510
511
512
513

515
516
517
518
519

gen(u32int o)

{
if (code < codestart || code >= codeend) {
iprint("gen: code out of bounds\n");
iprint("code: 0x%p\n", code);
iprint("codestart: Ox/p\n", codestart);
iprint("codeend: O0x%p\n", codeend) ;
//while (1) {}
}
*code++ = o;
}

static void
loadi(int reg, ulong val)

{
// Load a value into a register
// Check if the upper 20 bits are needed
if (SPLITIMM(val)) {
// Check if the lower 12 bits are needed
LUI(reg, SPLITH(val));
ADDI(reg, reg, SPLITL(val));
} else {
ADDI(reg, RO, val);
}
}

static void

multiply(int rd, int rs, long c)

{
// Multiply by a constant, rd = rs * c
int shamt;

if (¢ < 0) {
NEG(rd, rs);
rs = rd;
c = -c;

}

switch (c) {

case O:
MOV (rd, RO);
break;

case 1:

if (xrd !'= rs)
MOV(xd, rs);

break;
case 2:

shamt = 1;

goto shift;
case 3:

shamt = 1;

goto shiftadd;
case 4:

shamt = 2;

goto shift;
case 5:

shamt = 2;

goto shiftadd;
case 7:

shamt = 3;

goto shiftsub;
case 8:

shamt = 3;

goto shift;
case 16:

shamt = 4;

goto shift;
case 32:

shamt = 5;

goto shift;
case 64:

shamt = 6;

goto shift;
case 128:

53

521 shamt = 7;

522 goto shift;

523 case 256:

524 shamt = 8;

525 goto shift;

526 case 512:

527 shamt = 9;

528 goto shift;

529 case 1024:

530 shamt = 10;

531 goto shift;

532 shift:

533 SLLI(rd, rs, shamt);
534 break;

535 shiftadd:

536 if (xrd == rs) {

537 MOV(Rtmp, rs);
538 rs = Rtmp;
539 }

540

541 SLLI(rd, rs, shamt);
542 ADD(rd, rd, rs);

543 break;

544 shiftsub:

545 if (rd == rs) {

546 MOV (Rtmp, rs);
547 rs = Rtmp;
548 }

549

550 SLLI(rd, rs, shamt);
551 SUB(rd, rd, rs);

552 break;

553 default:

554 loadi(Rtmp, c);

555 MUL(rd, rd, Rtmp);
556 }

557 }

558

559 static void
560 mem(int type, int r, int base, long offset)

561 {

562 // Load or store data at an offset from an address in a Tegister.
563 // - type should be one of Ld* or St*.

564 // - v is the source or destination register.
565 // - base is the register with the base address.
566 // - offset is added to the value of rs to get the
567 // address to load/store from/to

568

569 if (SPLITIMM(offset)) {

570 // The offset is too long. Add the upper part of offset to rs in the tmp register,
571 // and use that as the base instead.

572 LUI(Rtmp, SPLITH(offset));

573 ADD(Rtmp, Rtmp, base);

574 base = Rtmp;

575 offset = SPLITL(offset);

576 }

577

578 switch (type) {

579 case Ldw:

580 LW(r, base, offset);

581 break;

582 case Ldh:

583 LH(r, base, offset);

584 break;

585 case Ldhu:

586 LHU(r, base, offset);

587 break;

588 case Ldb:

589 LB(r, base, offset);

590 break;

591 case Ldbu:

592 LBU(r, base, offset);

593 break;

594 case Lds:

595 FLW(r, base, offset);

596 break;

54

597 case Ldd:

598 FLD(r, base, offset);
599 break;

600 case Stw:

601 SW(r, base, offset);
602 break;

603 case Sth:

604 SH(r, base, offset);
605 break;

606 case Stb:

607 SB(r, base, offset);
608 break;

609 case Sts:

610 FSW(r, base, offset);
611 break;

612 case Std:

613 FSD(r, base, offset);
614 break;

615 case Laddr:

616 ADDI(r, base, offset);
617 break;

618 default:

619 if (cflag > 2)

620 iprint("Invalid type argument to mem: %d\n", type);
621 urk("mem") ;

622 break;

623 }

624 }

625

626 static void
627 operand(int mtype, int mode, Adr *a, int r, int 1i)

628 {

629 // Load or store the value from a src or dst operand of an instruction
630 // - mtype is the memory access type, as in mem
631 // - mode is the mode bits of the operand fields
632 // - a is the source or dest struct

633 // - v is the register to load the address into
634 int base;

635 long offset;

636

637 switch (mode) {

638 default:

639 urk ("operand") ;

640 case AIMM:

641 // Immediate walue

642 loadi(r, a->imm);

643

644 if (mtype == Laddr) {

645 mem(Stw, r, Rreg, 1i);
646 mem(Laddr, r, Rreg, 1i);
647 }

648 return;

649 case AFP:

650 // Indirect offset from FP

651 base = Rfp;

652 offset = a->ind;

653 break;

654 case AMP:

655 // Indirect offset from MP

656 base = Rmp;

657 offset = a->ind;

658 break;

659 case AIND|AFP:

660 // Double indirect from FP

661 mem(Ldw, Rta, Rfp, a->i.f);

662 base = Rta;

663 offset = a->i.s;

664 break;

665 case AIND|AMP:

666 // Double indirect from MP

667 mem(Ldw, Rta, Rmp, a->i.f);

668 base = Rta;

669 offset = a->i.s;

670 break;

671 }

672

55

674
675
676
677
678
679

681
682
683
684
685
686

688
689
690
691
692
693

695
696
697
698
699
700

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

722
723
724
725
726
727

729
730
731
732
733
734

736
737
738
739
740
741

743
744
745
746
747
748

}

mem(mtype, r, base, offset);

static void
opl(int mtype, Inst *i, int r)

{

}

// Load or store the source operand

operand (mtype, USRC(i->add), &i->s, r, O(REG, st));

static void
op3(int mtype, Inst *i, int r)

{

}

// Load or store the dest operand

operand (mtype, UDST(i->add), &i->d, r, O(REG, dt));

static void
op2(int mtype, Inst *i, int r)

{

}

// Load or store the middle operand
int ir;

switch (i->add&ARM) {

default:
return;

case AXIMM:
// Short immediate
loadi(r, (short) i->reg);

if (mtype == Laddr) {
mem(Stw, r, Rreg, O(REG, t));
mem(Laddr, r, Rreg, O(REG, t));
}
return;
case AXINF:
// Small offset from FP
ir = Rfp;
break;
case AXINM:
// Small offset from MP
ir = Rmp;
break;

}

// Load indirect
mem(mtype, r, ir, i->reg);

static void
literal(ulong imm, int roff)

{
// TODO: Why do this?
nlit++;
loadi(Rta, (ulong) litpool);
mem(Stw, Rta, Rreg, roff);
if (pass == 0)
return;
*litpool = imm;
litpool++;
}
static void
rdestroy(void)
{

}

destroy(R.s);

static void
rmcall (void)

{

// Called by the compiled code to transfer control during an mcall

Frame *f;

56

750

775
776

785

Prog *p;

if (R.dt == (ulong) H)
error (exModule) ;

f = (Frame*)R.FP;
if (f == H)

error (exModule) ;
f->mr = nil;

((void(*) (Frame*))R.dt) (f);

R.SP (uchar*)f;
R.FP = f->fp;

if (f->t == nil)
unextend (f) ;

else
freeptrs(f, £->t);

p = currun();
if (p->kill != nil)
error (p->kill);

}
static void
rmfram(void)
{
Type *t;
Frame *f;

}

uchar *nsp;

if(R.d == H)

error (exModule) ;
t = (Type*)R.s;
if(t == H)

error (exModule) ;
nsp = R.SP + t->size;
if(nsp >= R.TS) {

R.s = t;
extend();
T(d) = R.s;
return;

}

f = (Frame*)R.SP;

R.SP = nsp;

f->t = t;

f->mr = nil;
initmem(t, f);
T(d) = £;

static void
bounds (void)

{

}

error (exBounds) ;

static void
nullity(void)

{

}

error (exNilref);

static void
punt (Inst *i, int m, void (*fn)(void))

{

ulong pc;
ulong *branch;

if (m & SRCOP) {
// Save the src operand in R->s
opl(Laddr, i, RA1);
mem(Stw, RA1, Rreg, O(REG, s));

57

826 if (m & DSTOP) {

827 // Save the dst operand in R->d
828 op3(Laddr, i, RA3);

829 mem(Stw, RA3, Rreg, O(REG, d));
830 }

831

832 if (m & WRTPC) {

833 // Store the PC in R->PC

834 loadi(RAO, RELPC(patch[i - mod->prog+1]));
835 mem(Stw, RAO, Rreg, O(REG, PC));
836 }

837

838 if (m & DBRAN) {

839 // TODO: What does this do?

840 pc = patch[i->d.ins - mod->prog];
841 literal((ulong) (base+pc), O(REG, d));
842 }

843

844 if ((i->add & ARM) == AXNON) {

845 if (m & THREOP) {

846 // R->m = R->d

847 mem(Ldw, RA2, Rreg, O(REG, d));
848 mem(Stw, RA2, Rreg, O(REG, m));
849 }

850 } else {

851 // R->m = middle operand

852 op2(Laddr, i, RA2);

853 mem(Stw, RA2, Rreg, O(REG, m));
854 }

855

856 // R->FP = Rfp

857 mem(Stw, Rfp, Rreg, O(REG, FP));

858

859 CALL(fn);

860

861 loadi(Rreg, (ulong) &R);

862

863 if (m & TCHECK) {

864 mem(Ldw, RAO, Rreg, O(REG, t));
865

866 branch = code;

867 BEQZ(RAO, 0);

868

869 // If R->t != 0

870 mem(Ldw, Rlink, Rreg, O(REG, xpc)); // Rlink = R->zpc
871 RETURN;

872

873 PATCHBRANCH(branch); // endif
874 }

875

876 mem(Ldw, Rfp, Rreg, O(REG, FP));

877 mem(Ldw, Rmp, Rreg, O(REG, MP));

878

879 if (m & NEWPC) {

880 // Jump to R->PC

881 mem(Ldw, RAO, Rreg, O(REG, PC));
882 JR(RAO, 0);

883 }

884}

885

886 static void
887 movloop(uint s)

sss {

889 // Move a section of memory in a loop.

890 // s is the size of each value, and should be 1, 2, or 4.
891 // The source address should be in RA1.

892 // The destination address should be in RA2.

893 // The amount of values to transfer should be in RA3
894 // A1l registers will be altered

895

896 ulong *loop;

897

898 if (s >4 &% s == 3) {

899 // Unnatural size. Transfer byte for byte
900 s = 1;

58

935
936

}

}

loop = code;
BEQZ(RA3, 0);

switch (s8) {

case 0O:

case 1:

case 2:

case 4:

default:

}

MOV (RA3, RO);
break;

mem(Ldb, RAO,
mem(Stb, RAO,
break;

mem(Ldh, RAO,
mem(Ldh, RAO,
break;

mem(Ldw, RAO,
mem(Ldw, RAO,

break;

urk ("movloop")

ADDI(RA1, RA2, s);
ADDI(RA1, RA2, s);
ADDI(RA3, RA3, -s);

JABS (loop) ;

PATCHBRANCH (loop) ;

static void
movmem(Inst *i)

{

RAL,
RA2,

RAL,
RA2,

RAL,
RA2,

3

0);
0);

0);
0);

0);
0);

// Move a region of memory. Makes small transfers

// to a move loop for larger transfers.
// The source address should be in RA1

ulong *branch;

if ((i->add & ARM)

}

op2(Ldw, i, RA3);

branch = code;

BEQ(RA3, RO, 0);

1= AXIMM) {

// if src2 != 0
movloop(1);

// endif
PATCHBRANCH (branch) ;
return;

switch (i->reg) {

case 0:

case 4:

case 8:

default:

break;

mem(Ldw, RA2, RA1, 0);
op3(Stw, i, RA2); // Save directly, don't bother loading the address

break;

mem(Ldw, RA2,
mem(Ldw, RA3,

op3(Laddr, i,
mem(Stw, RA2,
mem(Stw, RA3,
break;

op3(Laddr, i,

if ((i->reg & 3) == 0) {
loadi(RA3, i->reg >> 2);

RAL,
RAL,

RA4) ;

RA4,
RA4,

RA2);

0);
4);

0);
4);

59

efficient, while defaulting

985

990

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

1051

}

movloop(4);

} else if ((i->reg & 1) == 0) {
loadi(RA3, i->reg >> 1);
movloop(2);

} else {
loadi(RA3, i->reg);
movloop(1);

break;

static void
movptr (Inst *i)

{

}

// Arguments:
// - RA1: The address to move from
// - op3: The address to move to

ulong *branch;

branch = code;
BEQ(RA1, Rh, 0);

// if RA1 != H
CALLMAC (MacCOLR) ; // colour if mot H
// endif

PATCHBRANCH (branch) ;

op3(Laddr, i, RA2);
NOTNIL(RA2);

mem(Ldw, RAO, RA2, 0);
mem(Stw, RA1, RA2, 0);
CALLMAC (MacFRP) ;

static void
branch(Inst *i, int mtype, int btype)

{

// Insert a branch comparing integers

// mtype should be the mtype to pass to mem to get the correct width
// btype should be a constant like EJ, NE, LT, etc

ulong *branch;

op2(mtype, i, RA1);
opl(mtype, i, RA2);

branch = code;

// Invert the condition to skip the jump

switch (btype) {

case EQ:
BNE(RA1, RA2, 0);
break;

case NE:
BEQ(RA1, RA2, 0);
break;

case GT:
BLE(RA1, RA2, 0);
break;

case LT:
BGE(RA1, RA2, 0);
break;

case LE:
BGT(RA1, RA2, 0);
break;

case GE:
BLT(RA1, RA2, 0);
break;

}

iprint ("branch: pc %d, branch to %d\n", ((ulong)i-(ulong)mod->prog), ((ulong)i->d.ins -
— (ulong)mod->prog));

60

1052 JDST(1);

1053

1054 PATCHBRANCH (branch) ;
1055)

1056

1057 static void

1058 branchl(Inst *i, int btype)

1059 o

1060 // Insert a branch comparing 64-bit integers
1061 // btype should be a constant like E{, NE, LT, etc
1062 ulong *branch;

1063

1064 opl(Laddr, i, RAO);

1065 mem(Ldw, RA1, RAO, 0);

1066 mem(Ldw, RA2, RAO, 4);

1067

1068 op2(Laddr, i, RAO);

1069 mem(Ldw, RA3, RAO, 0);

1070 mem(Ldw, RA4, RAO, 4);

1071

1072 // Set RA1 and RA2 to 1 4if the condition holds
1073 switch (btype) {

1074 case EQ:

1075 case NE:

1076 // RA1 = RA1 - RA3 == 0

1077 // RA2 = RA2 - RA4 == 0

1078 SUB(RA1, RA1, RA3);

1079 SUB(RA2, RA2, RA4);

1080 SLTU(RA1, RO, RA1);

1081 SLTU(RA2, RO, RA2);

1082 break;

1083 case LT:

1084 case GE:

1085 // RA1 = RA1 < RA3

1086 // RA2 = RA2 < R44

1087 SLT(RA1, RA1, RA3);

1088 SLT(RA2, RA2, RA4);

1089 break;

1090 case GT:

1091 case LE:

1092 // RA1 = RA3 < RA1

1093 // RA2 = RA4 < RA2

1094 SLT(RA1, RA3, RA1);

1095 SLT(RA2, RA4, RA2);

1096 break;

1097 }

1098

1099 AND(RA1, RA1, RA2);

1100

1101 // Insert the branch. Negate to skip the jump
1102 // Have to negate again for NE, GE and LE

1103 branch = code;

1104 switch (btype) {

1105 case NE:

1106 case GE:

1107 case LE:

1108 // If the negated condition holds, skip the jump
1109 BNE(RA1, RO, 0);

1110 break;

1111 default:

1112 // If the condition doesn't hold, skip the jump
1113 BEQ(RA1, RO, 0);

1114 break;

1115 }

1116

1117 JDST(i);

1118

1119 PATCHBRANCH (branch) ;

1120 X

1121

1122 static void

1123 branchfd(Inst *i, int btype)

1124 o

1125 // Insert a branch comparing double-precision floats
1126 // btype should be a constant like E, NE, LT, etc
1127 ulong *branch;

61

1128

1129 op2(Ldd, i, F1);

1130 op1(Ldd, i, F2);

1131

1132 // Float compare instructions don't branch, so the branch
1133 // instruction has to check the result
1134 switch (btype) {

1135 case EQ:

1136 case NE:

1137 FEQD(RAO, F1, F2);
1138 break;

1139 case LT:

1140 case GE:

1141 FLTD(RAO, F1, F2);
1142 break;

1143 case LE:

1144 case GT:

1145 FLED(RAO, F1, F2);
1146 break;

1147 }

1148

1149 // Branch if the result is negative, skipping the jump
1150 branch = code;

1151 switch (btype) {

1152 case NE:

1153 case GE:

1154 case GT:

1155 BNE(RAO, RO, 0);
1156 break;

1157 default:

1158 BEQ(RAO, RO, 0);
1159 break;

1160 }

1161

1162 JDST(i);

1163

1164 PATCHBRANCH (branch) ;

1165

1166

1167 /* Macros */
1168 static void
1169 macfram(void)

7o {

1171 // Allocate a mframe

1172 // Arguments:

1173 // - RA3: srcil->links[src2]->t

1174

1175 ulong *branch;

1176

1177 mem(Ldw, RA2, Rreg, O(REG, SP)); // RA2 = f = R.SP
1178 mem(Ldw, RA1, RA3, 0(Type, size)); // RA1 = srcl->links[src2]->t->size
1179 ADD(RAO, RA2, RA1); // RAO = nsp = R.SP + t->size
1180 mem(Ldw, RA1, Rreg, O(REG, TS)); // RA1 = R->TS
1181

1182 branch = code;

1183 BGEU(RAO, RA1, 0);

1184

1185 // nsp < R.TS

1186 mem(Stw, RA2, Rreg, O(REG, SP)); // R.SP = nsp

1187

1188 mem(Stw, RA3, RA2, O0(Frame, t)); // f->t = RA3
1189 mem(Stw, RO, RA2, O(Frame, mr)); // f->mr = 0

1190 mem(Ldw, Rta, RA3, 0(Type, initialize));

1191 JRL(Rta, 0); // call t->init(RA2)
1192

1193 // nsp >= R.TS; must expand

1194 PATCHBRANCH (branch) ;

1195 // Call exztend. Store registers

1196 mem(Stw, RA3, Rreg, O(REG, s));

1197 mem(Stw, Rlink, Rreg, O(REG, st));

1198 mem(Stw, Rfp, Rreg, O(REG, FP));

1199 CALL (extend) ;

1200

1201 // Restore registers

1202 loadi(Rreg, (ulong) &R);

1203 mem(Ldw, Rlink, Rreg, O(REG, st));

62

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279

}

mem(Ldw, Rfp, Rreg, O(REG, FP));
mem(Ldw, Rmp, Rreg, O(REG, MP));
mem(Ldw, RA2, Rreg, O(REG, s));
RETURN;

static void
macmfra(void)

{

}

mem(Stw, Rlink, Rreg, O(REG, st));

mem(Stw, RA3, Rreg, O(REG, s)); // Save type
mem(Stw, RAO, Rreg, O(REG, d)); // Save destination

mem(Stw, Rfp, Rreg, O(REG, FP));
CALL (rmfram) ;

loadi(Rreg, (ulong)&R);

mem(Ldw, Rlink, Rreg, O(REG, st));
mem(Ldw, Rfp, Rreg, O(REG, FP));
mem(Ldw, Rmp, Rreg, O(REG, MP));

RETURN;

static void
macmcal (void)

{

// The bottom half of a mcall instruction

// Calling convention:

// - RAO: The address of the function to jump to
// - RA2: The frame address, srcl to mcall
// - RA3: The module reference, src3 to mcall

ulong *branchl, #*branch2, *branch3;

branchl = code;
BEQ(RAO, Rh, 0);
// If RAO !'= H

mem(Ldw, RA1, RA3, 0(Modlink, prog));

branch2 = code;
BNEZ (RA1, 0);
// If m->prog == 0

mem(Stw, Rlink, Rreg, O(REG, st));
mem(Stw, RA2, Rreg, O(REG, FP));
mem(Stw, RAO, Rreg, O(REG, dt));

CALL(rmcall);

// After the call has returned
loadi(Rreg, (ulong)&R);

mem(Ldw, Rlink, Rreg, O(REG, st));
mem(Ldw, Rfp, Rreg, O(REG, FP));
mem(Ldw, Rmp, Rreg, O(REG, MP));
RETURN;

// else
PATCHBRANCH (branch1) ;
PATCHBRANCH (branch?) ;

MOV(Rfp, RA2);
mem(Stw, RA3, Rreg, O(REG, M));

// D2H(RA3)->ref++

// Load m->prog into RA1

// Store link register
// Store FP register
// Store destination address

// Load R

// Load link register
// Load FP register
// Load MP register

// If RAO ==
// If m->prog != 0

// Rfp = RA2
// R.M = RA3

ulong heapref = O(Heap, ref) - sizeof (Heap);

mem(Ldw, RA1, RA3, heapref);
ADDI(RA1, RA1, 1);
mem(Stw, RA1, RA3, heapref);

mem(Ldw, Rmp, RA3, 0(Modlink, MP));
mem(Stw, Rmp, Rreg, O(REG, MP));

// BRmp = R.M->mp
// R.MP = Rmp

mem(Ldw, RA1, RA3, 0(Modlink, compiled));

branch3 = code;

63

1280 BNEZ(RA1, 0);

1281
1282 // if M.compiled == 0

1283 mem(Stw, Rfp, Rreg, O(REG, FP)); // R.FP = Rfp

1284 mem(Stw, RAO, Rreg, O(REG, PC)); // R.PC = Rpc

1285 mem(Ldw, Rlink, Rreg, O(REG, xpc));

1286 RETURN; // Leave it to the interpreter to handle
1287

1288 // else

1289 PATCHBRANCH (branch3) ;

1290 JR(RAO, 0); // Jump to the compiled module

1201}

1292

1293 static void
12904 maccase(void)

1205 {

1296 /*

1297 * RA1 = walue (input arg), v

1298 * RA2 = count, n

1299 * RA3 = table pointer (input arg), t

1300 * RAO = n/2, n2

1301 * R44 = pivot element t+n/2+3, 1

1302 */

1303

1304 ulong *loop, *found, *branch;

1305

1306 mem(Ldw, RA2, RA3, 0); // get count from table
1307 MOV(Rlink, RA3); // initial table pointer
1308

1309 loop = code;

1310 BLEZ(RA2, 0); // n <= 02 goto out
1311

1312 SRAI(RAO, RA2, 1); // n2 = n>>1

1313

1314 // 1 =t + n/2x3

1315 ADD(RA4, RAO, RA2); // 1 =n/2 +n
1316 ADD(RA4, RA3, RA1); // 1 +=t

1317

1318 mem(Ldw, Rta, RA4, 4); // Rta = 1[1]

1319 branch = code;

1320 BGE(RA1, Rta, 0);

1321

1322 // if v < 1[1]

1323 MOV(RA2, RAO); // n = n2

1324 JABS (1loop) ; // continue

1325

1326 // af v >= 1[1]

1327 PATCHBRANCH (branch) ;

1328 mem(Ldw, Rta, RA4, 8); // Rta = 1[2]

1329 found = code;

1330 BLT(RA1, Rta, 0); // branch to found
1331

1332 // if v >= 1[2]

1333 ADDI (RA3, RA4, 12); // t = 1+3

1334 SUB(RA2, RA2, RAO); // n -=n2

1335 ADDI(RA2, RA2, -1); // n -=1

1336

1337 JABS (loop) ; // goto loop

1338

1339 // endloop

1340

1341 // found: v >= 1[1] &8 v < 1[2]

1342 // jump to 1[3]

1343 PATCHBRANCH (found) ;

1344 JR(RA4, 12);

1345

1346 // out: Loop ended

1347 PATCHBRANCH (1oop) ;

1348 mem(Ldw, RA2, Rlink, 0); // load initial n
1349 ADD(Rtmp, RA2, RA2); // Rtmp = 2+n

1350 ADD(RA2, RA2, Rtmp); // n = 3*n

1351

1352 // goto (initial t)[n*3+1]

1353 SLLI(RA2, RA2, 2); // RA2 = n*sizeof(long)
1354 ADD(Rlink, Rlink, RA2); // Rlink = t[n*3]
1355 JR(Rlink, 4); // goto Rlink+4 = t[n*3+1]

64

1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431

}

static void
maccolr (void)

{

}

// Color a pointer

// Argquments:

// - RA1: The pointer to color
ulong *branch;

// h->ref++

mem(Ldw, RAO, RA1, O(Heap, ref) - sizeof(Heap));
ADDI(RAO, RAO, 1);

mem(Stw, RAO, RA1l, O(Heap, ref) - sizeof (Heap));

// RAO = mutator
mem(Ldw, RAO, RA1l, O(Heap, color) - sizeof (Heap)

// RA2 = h->color
loadi(RA2, (ulong) &mutator);
mem(Ldw, RA2, RA2, 0);

branch = code;
BEQ(RAO, RA2, 0);

// if h->color != mutator

// h->color = propagator
loadi(RA2, propagator);
mem(Stw, RA2, RA1, O(Heap, color) - sizeof (Heap)

// nprop = RA1
loadi(RA2, (ulong) &nprop);
mem(Stw, RA1, RA2, 0);

// endif
PATCHBRANCH (branch) ;
RETURN;

static void
macfrp(void)

{

// Destroy a pointer

// Arguments:

// - RAO: The pointer to destroy
ulong *branchl, *branch2;

branchl = code;
BEQ(RAO, Rh, 0);

// if RAO != H
mem(Ldw, RA2, RAO, O(Heap, ref) - sizeof (Heap));
ADDI(RA2, RA2, -1);

branch2 = code;
BEQ(RA2, RO, 0);

// if --h->ref != 0

mem(Stw, RA2, RAO, O(Heap, ref) - sizeof (Heap));
RETURN;

// endif

PATCHBRANCH (branch2) ;

mem(Stw, Rfp, Rreg, O(REG, FP));
mem(Stw, Rlink, Rreg, O(REG, st));
mem(Stw, RAO, Rreg, O(REG, s));
CALL(rdestroy) ;

loadi(Rreg, (ulong) &R);

mem(Ldw, Rlink, Rreg, O(REG, st));
mem(Ldw, Rfp, Rreg, O(REG, FP));
mem(Ldw, Rmp, Rreg, O(REG, MP));

// endif
PATCHBRANCH (branch1) ;

)

)

65

1432 RETURN;
1433}

1434

1435 static void
1436 macret(void)

1437 o

1438 Inst i;

1439 ulong *branchl, *branch2, *branch3, *branch4, *branchb, *branch6;
1440

1441 branchl = code;

1442 BEQ(RA1, RO, 0);

1443

1444 // if t(Rfp) != 0

1445 mem(Ldw, RAO, RA1, O(Type, destroy));

1446 branch2 = code;

1447 BEQ(RAO, RO, 0);

1448

1449 // if destroy(t(fp)) != 0

1450 mem(Ldw, RA2, Rfp, O(Frame, fp));

1451 branch3 = code;

1452 BEQ(RA2, RO, 0);

1453

1454 // if fp(Rfp) != 0

1455 mem(Ldw, RA3, Rfp, O(Frame, mr));

1456 branch4 = code;

1457 BEQ(RA3, RO, 0);

1458

1459 // if mr(Rfp) != 0

1460 mem(Ldw, RA2, Rreg, O(REG, M));

1461 mem(Ldw, RA3, RA2, O(Heap, ref) - sizeof (Heap));

1462 ADDI(RA3, RA3, -1);

1463

1464 branchb5 = code;

1465 BEQ(RA3, RO, 0);

1466

1467 // if --ref(arg) != 0

1468 mem(Stw, RA3, RA2, O(Heap, ref) - sizeof (Heap));

1469 mem(Ldw, RA1, Rfp, O(Frame, mr));

1470 mem(Stw, RA1, Rreg, O(REG, M));

1471 mem(Ldw, Rmp, RA1, 0(Modlink, MP));

1472 mem(Stw, Rmp, Rreg, O(REG, MP));

1473

1474 mem(Ldw, RA3, RA1, 0(Modlink, compiled));

1475 branch6 = code;

1476 BEQ(RA3, RO, 0);

1477

1478 // This part is a bit weird, because it should be the innermost
1479 // if-statement (in C terms), but the else of branchi also ends up here.
1480 // This could be a mistake, but it's in at least the ARM and MIPS wersion.
1481

1482 // if R.M->compiled != 0

1483 // if mr(Rfp) == 0

1484 PATCHBRANCH (branch4) ;

1485 JRL(RAO, 0); // Call destroy(t(fp))
1486

1487 mem(Stw, Rfp, Rreg, O(REG, SP)); // R->SP = Rfp

1488 mem(Ldw, RA1, Rfp, O(Frame, 1lr)); // RA1 = Rfp->lr

1489 mem(Ldw, Rfp, Rfp, O(Frame, fp)); // Rfp = Rfp->fp

1490 mem(Stw, Rfp, Rreg, O(REG, FP)); // R->FP = Rfp

1491

1492 JR(RAL, 0); // goto RA1, if compiled
1493 // does mot continue past here

1494

1495 // if R.M->compiled == 0

1496 PATCHBRANCH (branchs6) ;

1497 JRL(RAO, 0); // Call destroy(t(fp))
1498

1499 mem(Stw, Rfp, Rreg, O(REG, SP)); // R->SP = Rfp

1500 mem(Ldw, RA1, Rfp, O(Frame, 1lr)); // RA1 = Rfp->1lr

1501 mem(Ldw, Rfp, Rfp, O(Frame, fp)); // Rfp = Rfp->fp

1502 mem(Stw, RA1, Rreg, O(REG, PC)); // R.PC = RA1

1503 mem(Ldw, Rlink, Rreg, O(REG, xpc)); // Rlink = R->zpc

1504 RETURN;; // return to mec uncompiled code
1505

1506 // endif

1507 PATCHBRANCH (branch5) ;

66

1508 PATCHBRANCH (branch3) ;

1509 PATCHBRANCH (branch?2) ;

1510 PATCHBRANCH (branchi) ;

1511

1512 i.add = AXNON;

1513 punt (&i, TCHECK|NEWPC, optab[IRET]);
1514 ¥

1515

1516 static void
1517 macrelq(void)

1518 {

1519 // Store frame pointer and link register, then return to zev
1520 mem(Stw, Rfp, Rreg, O(REG, FP));

1521 mem(Stw, Rlink, Rreg, O(REG, PC));

1522 mem(Ldw, Rlink, Rreg, O(REG, xpc));

1523 RETURN;

1524}

1525

1526 /* Main compilation functions */

1527 static void

1528 comi(Type *t)

1529 o

1530 // Compile a type initializer

1531 int i, j, m, c;

1532

1533 for (i = 0; i < t->np; i++) {

1534 ¢ = t->map[il;

1535 j =1 <<5;

1536

1537 for (m = 0x80; m != 0; m >>= 1) {
1538 if (c & m)

1539 mem(Stw, Rh, RA2, j);
1540

1541 j += sizeof (WORD*) ;
1542 }

1543 }

1544

1545 RETURN;

1546 }

1547

1548 static void

1540 comd(Type *t)

1550 {

1551 // Compile a type destructor

1552 int i, j, m, c;

1553

1554 mem(Stw, Rlink, Rreg, O(REG, dt));
1555

1556 for (i = 0; i < t->np; i++) {

1557 ¢ = t->mapl[il;

1558 j =1 <<5;

1559

1560 for (m = 0x80; m '= 0; m >>= 1) {
1561 if (¢ & m) {

1562 mem(Ldw, RAO, Rfp, j);
1563 CALL (base+macro [MacFRP]) ;
1564 }

1565

1566 j += sizeof (WORD*);
1567 }

1568 }

1569

1570 mem(Ldw, Rlink, Rreg, O(REG, dt));
1571 RETURN;

1572}

1573

1574 static void

1575 typecom(Type *t)

1576

1577 // Compile a type

1578 int n;

1579 ulong *tmp, *start;

1580

1581 if (t == nil | t->initialize != 0)
1582 return;

1583

67

}

tmp = mallocz(4096*sizeof (ulong), 0);
if (tmp == nil)
error (exNomem) ;

codestart = tmp;
codeend = tmp + 4096;

iprint ("Typecom np %d, size %d\n", t->np, t->size);

code = tmp;
comi(t);

n = code - tmp;
code = tmp;
comd(t) ;

n += code - tmp;
free(tmp) ;

n *= sizeof (*code);

code = mallocz(n, 0);

if (code == nil)
return;

codestart = code;
codeend = code + n;

start = code;
t->initialize = code;
comi (t);

t->destroy = code;
comd(t) ;

segflush(start, n);

if (cflag > 3)

iprint("typ= %.8p %4d i %.8p d %.8p asm=}d\n",
t, t->size, t->initialize, t->destroy, n);

if (cflag > 6) {
das(start, code-start);

}

static void
patchex(Module *m, ulong *p)

{

}

// Apply patches for a module. p is the patch array

Handler *h;
Except *e;

for (h = m->htab; h != nil &% h->etab != nil; h++) {

h->pcl = p[h->pcil;
h->pc2 = p[h->pc2];

for (e = h->etab; e->s != nil; e++)
e->pc = ple->pc];

if (e->pc != -1)
e->pc = ple->pcl;

static void
commframe (Inst *i)

{

// Compile a mframe instruction
ulong *branchl, *branch?2;
loadi(R7, 0);

opl(Ldw, i, RAO);
branchl = code;
BEQ(RAO, Rh, 0);
// if RAO !'= H

// RA3 = src->links[src2]->frame
if ((i->add & ARM) == AXIMM) {

mem(Ldw, RA3, RAO, OA(Modlink, links) + i->reg*sizeof(Modl) + 0(Modl, frame));

} else {

68

1660 // RA1 = src->links[src2]

1661 op2(Ldw, i, RA1);

1662 multiply(RA1, RA1, sizeof(Modl));
1663 ADD(RA1, RA1, RAO);

1664

1665 // RA3 = src->links[src2]->frame
1666 mem(Ldw, RA3, RA1, 0(Modl, frame));
1667 }

1668

1669 mem(Ldw, RA1, RA3, O(Type, initialize));
1670 branch2 = code;

1671 BNEZ(RA1, 0);

1672

1673 // if frame->initialize ==

1674 op3(Laddr, i, RAO);

1675 // endif

1676

1677 // if RAO == H || frame->initialize ==
1678 PATCHBRANCH (branchl) ;

1679 loadi(Rlink, RELPC(patch[i - mod->prog + 1]));
1680 loadi(R7, 7);

1681 CALLMAC(MacMFRA) ;

1682

1683 // if frame->inititalize != 0

1684 PATCHBRANCH (branch?2) ;

1685 loadi(R7, 8);

1686 CALLMAC (MacFRAM) ;

1687 op3(Stw, i, RA2);

1688 }

1689

1690 static void
1691 commcall(Inst *i)

1692 {

1693 // Compile a mcall instruction

1694 ulong *branch;

1695

1696 op1l(Ldw, i, RA2); // RA2 = srcl = frame
1697 loadi(RAO, RELPC(patch[i - mod->prog+11)); // RA0 = pc

1698 mem(Stw, RAO, RA2, O(Frame, 1r)); // frame.lr = RA0 = pc
1699 mem(Stw, Rfp, RA2, O(Frame, fp)); // frame.fp = fp

1700 mem(Ldw, RA3, Rreg, O(REG, M)); // RA3 = R.M

1701 mem(Stw, RA3, RA2, O(Frame, mr)); // frame.mr = RA3 = R.M
1702

1703 op3(Ldw, i, RA3); // RA3 = src3 = Modlink

1704

1705 branch = code;

1706 BEQ(RA3, Rh, 0);

1707 // If RA3 != H

1708

1709 // RAO = Modlink->links[src2]->pc

1710 if ((i->add&ARM) == AXIMM) {

1711 // i->reg contains the immediate of src2, don't have to store it inm a register
1712 mem(Ldw, RAO, RA3, OA(Modlink, links) + i->reg*sizeof(Modl) + 0(Modl, u.pc));
1713 } else {

1714 op2(Ldw, i, RA1); // RA1 = src2

1715

1716 // RA1 %= sizeof(Modl)

1717 multiply(RA1, RA1l, sizeof(Modl));

1718

1719 ADDI(RA1, RA1, RA3);

1720 mem(Ldw, RAO, RA1, OA(Modlink, links) + 0(Modl, u.pc));
1721 }

1722

1723 PATCHBRANCH(branch); // endif

1724

1725 CALLMAC (MacMCAL) ;

1726}

1727

1728 static void
1720 comcase(Inst *i, int w)

730 {

1731 // Compile a case instruction
1732 int 1;

1733 WORD *t, *e;

1734

1735 if (w !'=0) {

69

1736 // Use the MacCASE macro

1737 op1(Ldw, i, RA1);

1738 op3(Laddr, i, RA3);

1739 CALLMAC(MacCASE) ;

1740 }

1741

1742 // Get a pointer to the table

1743 t = (WORD*) (mod->origmp + i->d.ind+4);

1744

1745 // Get the flag right before the table

1746 1 =t[-1];

1747

1748 /* have to take care nmot to relocate the same table twice -
1749 * the limbo compiler can duplicate a case instruction
1750 * during its folding phase

1751 */

1752

1753 if (pass == 0) {

1754 if (1 >= 0)

1755 t[-1] = -1-1; /* Mark it not done */
1756 return;

1757 }

1758

1759 if (1 >=0) { /* Check pass 2 done */
1760 return;

1761 }

1762

1763 t[-1] = -1-1; /* Set real count */
1764 e =t + t[-1]%3;

1765

1766 while (t < e) {

1767 t[2] = RELPC(patch[t[2]]);

1768 t += 3;

1769 }

1770

1771 t[0] = RELPC(patch[t[0]]);

1772}

1773

1774 static void
1775 comcasel(Inst *i)

1776 {

1777 // Same as comecase, but with double words

1778 int 1;

1779 WORD *t, *e;

1780

1781 t = (WORD*) (mod->origmp + i->d.ind + 8);

1782 1 =+t[-2];

1783

1784 if (pass == 0) {

1785 if (1 >= 0)

1786 t[-2] = -1-1; /* Mark it not dome */
1787 return;

1788 }

1789

1790 if (1 >= 0) /* Check pass 2 done */
1791 return;

1792

1793 t[-2] = -1-1; /* Set real count */
1794 e =t + t[-2]%6;

1795

1796 while (t < e) {

1797 t[4] = RELPC(patch[t[4]11);

1798 t += 6;

1799 }

1800

1801 t[0] = RELPC(patch[t[0]1);

1802}

1803

1804 static void
1805 comgoto(Inst *i)

1806 {

1807 // Compile a goto instruction

1808 WORD *t, *e;

1809

1810 opl(Ldw, i, RA1); // RA1 = src
1811 op3(Laddr, i, RAO); // RAO = #dst

70

1812 SLLI(RA1, RA1, 2); // RA1 = src*sizeof(int)

1813 ADD(RA1, RA1, RAO); // RA1 += RAO
1814 mem(Ldw, RAO, RA1, 0); // RA0 = dst[src]
1815 JR(RAO, 0); // goto dst[src]
1816

1817 if (pass == 0)

1818 return;

1819

1820 t = (WORD*) (mod->origmp+i->d.ind);

1821 e =1t + t[-1];

1822 t[-1] = 0;

1823

1824 while (t < e) {

1825 t[0] = RELPC(patch[t[0]11);

1826 t++;

1827 }

1828 }

1829

1830 static void
1831 comp(Inst *i)

1832 {

1833 // Compile a single DIS instruction

1834 char buf[64];

1835 ulong *branchl, *branch2, *loop;

1836

1837 switch (i->op) {

1838 default:

1839 snprint (buf, sizeof buf, "/s compile, no 'JD'", mod->name, i);
1840 error (buf) ;

1841 break;

1842 case IMCALL:

1843 commcall(i);

1844 break;

1845 case ISEND:

1846 case IRECV:

1847 case IALT:

1848 punt (i, SRCOP|DSTOP|TCHECK|WRTPC, optabl[i->opl);
1849 break;

1850 case ISPAWN:

1851 punt (i, SRCOP|DBRAN, optabl[i->opl);

1852 break;

1853 case IBNEC:

1854 case IBEQC:

1855 case IBLTC:

1856 case IBLEC:

1857 case IBGTC:

1858 case IBGEC:

1859 punt (i, SRCOP|DBRAN|NEWPC|WRTPC, optabl[i->opl);
1860 break;

1861 case ICASEC:

1862 comcase (i, 0);

1863 punt (i, SRCOP|DSTOP|NEWPC, optab[i->opl);
1864 break;

1865 case ICASEL:

1866 comcasel(i);

1867 punt (i, SRCOP|DSTOP|NEWPC, optab[i->opl);
1868 break;

1869 case IADDC:

1870 case IMULL:

1871 case IDIVL:

1872 case IMODL:

1873 case IMNEWZ:

1874 case ILSRW:

1875 case ILSRL:

1876 punt (i, SRCOP|DSTOP|THREOP, optabl[i->opl);
1877 break;

1878 case IMODW:

1879 opl(Ldw, i, RA1);

1880 op2(Ldw, i, RAO);

1881 REM(RAO, RAO, RA1);

1882 op3(Stw, i, RAO);

1883 break;

1884 case IMODB:

1885 op1(Ldb, i, RA1);

1886 op2(Ldb, i, RAO);

1887 REM(RAO, RAO, RA1);

71

1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963

case

case

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

case
case

case

case

case

case

case

op3(Stb, i, RAO);
break;

IDIVW:
opl(Ldw, i, RA1);
op2(Ldw, i, RAO);
DIV(RAO, RAO, RA1);
op3(Stw, i, RAO);
break;

IDIVB:
opl(Ldb, i, RA1);
op2(Ldb, i, RAO);
DIV(RAO, RAO, RA1);
op3(Stb, i, RAO);
break;

ILOAD:

INEWA:

INEWAZ:

INEW:

INEWZ:

ISLICEA:

ISLICELA:

ICONSB:

ICONSW:

ICONSL:

ICONSF:

ICONSM:

ICONSMP:

ICONSP:

IMOVMP:

THEADMP:

IHEADB:

THEADW:

IHEADL:

IINSC:

ICVTAC:

ICVTCW:

ICVTWC:

ICVTLC:

ICVTCL:

ICVTFC:

ICVTCF:

ICVTRF:

ICVTFR:

ICVTWS:

ICVTSW:

IMSPAWN:

ICVTCA:

ISLICEC:

INBALT:
punt (i, SRCOP|DSTOP, optab[i->opl);
break;

INEWCM:

INEWCMP:

punt (i, SRCOP|DSTOP|THREOP, optabl[i->op]l);

break;

IMFRAME:
commframe (i) ;
break;

ICASE:
comcase(i, 1);
break;

IGOTO:
comgoto(i);
break;

IMOVF:
op1(Ldd, i, F1);
op3(Std, i, F1);
break;

IMOVL:
opl(Laddr, i, RAO);
mem(Ldw, RA1, RAO, 0);
mem(Ldw, RA2, RAO, 4);

op3(Laddr, i, RAO);
mem(Stw, RA1, RAO, 0);
mem(Stw, RA2, RAO, 4);

72

1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039

case

case

case

case
case
case
case
case

case

case

case

case

case

case

case

case

case

break;
THEADM:
punt (i, SRCOP|DSTOP, optab[i->opl);
break;
opl(Laddr, i, RA1);
NOTNIL(RA1);

if (OA(List, data) !'= 0) {

ADDI(RA1, RA1, OA(List, data));

}

movmem (i) ;
break;
IMOVM:

punt (i, SRCOP|DSTOP|THREOP, optabl[i->op]l);

break;
opl(Laddr, i, RA1);
movmem (i) ;
break;
IFRAME:
if (UXSRC(i->add) != SRC(AIMM)) {

punt (i, SRCOP|DSTOP, optabl[i->opl);

break;
}

tinit[i->s.imm] = 1;

loadi(RA3, (ulong) mod->typel[i->s.imm]);

CALL (base+macro[MacFRAM]) ;
op3(Stw, i, RA2);
break;
INEWCB:
INEWCW:
INEWCF:
INEWCP:
INEWCL:
punt (i, DSTOP|THREOP, optabl[i->opl);
break;
IEXIT:
punt (i, 0, optab[i->opl);
break;
ICVTBW:
opl(Ldbu, i, RAO);
op3(Stw, i, RAO);
break;
ICVTWB:
opl(Ldw, i, RAO);
op3(Stb, i, RAO);
break;
ILEA:
opl(Laddr, i, RAO);
op3(Stw, i, RAO);
break;
IMOVW:
opl(Ldw, i, RAO);
op3(Stw, i, RAO);
break;
IMOVB:
opl(Ldb, i, RAO);
op3(Stb, i, RAO);
break;
ITAIL:
punt (i, SRCOP|DSTOP, optabl[i->opl);
break;
opl(Ldw, i, RAO);
NOTNIL(RAO);
mem(Ldw, RA1, RAO, O(List, tail));
movptr(i);
break;
IMQOVP:
punt (i, SRCOP|DSTOP, optabl[i->opl);
break;
opl(Ldw, i, RA1);
NOTNIL(RA1);
movptr(i);
break;
THEADP:
punt (i, SRCOP|DSTOP, optabl[i->opl);

73

2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114

2115

break;

opl(Ldw, i, RAO);

NOTNIL(RAO) ;

mem(Ldw, OA(List, data), RAO, RA1);
movptr (i) ;

break;

case ILENA:

punt (i, SRCOP|DSTOP, optabl[i->opl);
break;

opl(Ldw, i, RA1);

MOV (RAO, RO);

branchl = code;
BEQ(RA1, Rh, 0);

// if src !'= H
mem(Ldw, RAO, RA1, O(Array, len));
// endif

PATCHBRANCH (branchl) ;
op3(Stw, i, RAO);
break;

case ILENC:

punt (i, SRCOP|DSTOP, optabl[i->opl);
break;

opl(Ldw, i, RA1);

MOV (RAO, RO);

branchl = code;
BEQ(RA1, Rh, 0);

// <f RA1 !'= H
mem(Ldw, RAO, RA1, O(String, len));

branch2 = code;
BGE(RAO, 0, 0);

// if string->len < 0

// RAO = abs(string->len)
NEG(RAO, RAO);

// endif

PATCHBRANCH (branch1) ;
PATCHBRANCH (branch?2) ;
op3(Stw, i, RAO);
break;

case ILENL:

punt (i, SRCOP|DSTOP, optabl[i->opl);

break;

MOV (RAO, RO); // RAO
opl(Ldw, i, RA1); // RA1

// while RA1 != H
loop = code;

BEQ(RA1, Rh, 0);

mem(Ldw, RA1, RA1, 0(List, tail)); // RAO

ADDI (RAO, RAO, 1); // RA1++

JABS (loop) ;
// endwhile

PATCHBRANCH (1oop) ;

sTrc

RAO->tail

op3(Stw, i, RAO); // return RA1

break;

case ICALL:

opl(Ldw, i, RAO);

loadi(RA1, RELPC(patch[i - mod->prog + 11));
mem(Stw, RA1, RAO, O(Frame, 1lr));

mem(Stw, Rfp, RAO, O(Frame, fp));

MOV(Rfp, RAO);

JDST(i);

break;

case IJMP:

JDST (1) ;

74

2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

case

break;
IBEQW:
branch(i,
break;
IBNEW:
branch(i,
break;
IBLTW:
branch(i,
break;
IBLEW:
branch(i,
break;
IBGTW:
branch(i,
break;
IBGEW:
branch(i,
break;
IBEQB:
branch(i,
break;
IBNEB:
branch(i,
break;
IBLTB:
branch(i,
break;
IBLEB:
branch(i,
break;
IBGTB:
branch(i,
break;
IBGEB:
branch(i,
break;
IBEQF:

Ldw, EQ);

Ldw, NE);

Ldw, LT);

Ldw, LE);

Ldw, GT);

Ldw, GE);

Ldb, EQ);

Ldb, NE);

Ldb, LT);

Ldb, LE);

Ldb, GT);

Ldb, GE);

branchfd(i, EQ);

break;
IBNEF:

branchfd(i, NE);

break;
IBLTF:

branchfd(i, LT);

break;
IBLEF:

branchfd(i, LE);

break;
IBGTF:

branchfd(i, GT);

break;
IBGEF:

branchfd(i, GE);

break;
IRET:

mem(Ldw, RA1, Rfp, O(Frame,

CALLMAC (MacRET) ;

break;
IMULW:
opl(Ldw,
op2(Ldw,
MUL (RAO,
op3(Stw,
break;
IMULB:
op1(Ldb,
op2(Ldb,
MUL (RAO,
op3(Stb,
break;
IORW:
opl(Ldw,
op2(Ldw,

i, RA1);
i, RAO);
RAO, RA1);
i, RAO);

i, RA1);
i, RAO);
RAO, RA1);
i, RAO);

i, RA1);
i, RA2);

OR(RAO, RA1, RA2);
op3(Stw, i, RAO);

(0]

2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

case

case

case

case

case

case

case

case

case

case

case

case

case

break;

IANDW:
opl(Ldw, i, RA1);
op2(Ldw, i, RA2);
AND(RAO, RA1, RA2);
op3(Stw, i, RAO);
break;

IXORW:
opl(Ldw, i, RA1);
op2(Ldw, i, RA2);
XOR(RAO, RA1, RA2);
op3(Stw, i, RAO);
break;

ISUBW:
opl(Ldw, i, RA2);
op2(Ldw, i, RA1);
SUB(RAO, RA1, RA2);
op3(Stw, i, RAO);
break;

IADDW:
opl(Ldw, i, RA1);
op2(Ldw, i, RA2);
ADD(RAO, RA1, RA2);
op3(Stw, i, RAO);
break;

ISHRW:
opl(Ldw, i, RA1);
op2(Ldw, i, RA2);
SRL(RAO, RA2, RA1);
op3(Stw, i, RAO);
break;

ISHLW:
opl(Ldw, i, RA1);
op2(Ldw, i, RA2);
SLL(RAO, RA2, RA1);
op3(Stw, i, RAO);

IORB:
opl(Ldb, i, RA1);
op2(Ldb, i, RA2);
OR(RAO, RA1, RA2);
op3(Stb, i, RAO);
break;

IANDB:
opl(Ldb, i, RA1);
op2(Ldb, i, RA2);
AND(RAO, RA1, RA2);
op3(Stb, i, RAO);
break;

IXORB:
op1(Ldb, i, RA1);
op2(Ldb, i, RA2);
XOR(RAO, RA1, RA2);
op3(Stb, i, RAO);
break;

ISUBB:
op1(Ldb, i, RA1);
op2(Ldb, i, RA2);
SUB(RAO, RA1, RA2);
op3(Stb, i, RAO);
break;

IADDB:
opl(Ldb, i, RA1);
op2(Ldb, i, RA2);
ADD(RAO, RA1, RA2);
op3(Stb, i, RAO);
break;

ISHRB:
op1(Ldb, i, RA1);
op2(Ldb, i, RA2);
SRL(RAO, RA2, RA1);
op3(Stb, i, RAO);

ISHLB:
op1(Ldb, i, RA1);
op2(Ldb, i, RA2);
SLL(RAO, RA2, RA1);
op3(Stb, i, RAO);

// Shift order is

// Shift order is

// Shift order is

// Shift order is

76

switched

switched

switched

switched

2268 case IINDC:

2269 op1l(Ldw, i, RA1); // RA1 = srcl = string

2270 NOTNIL(RA1);

2271

2272 op2(Ldw, i, RA2); // RA2 = src2 = index

2273

2274 mem(Ldw, RAO, RA1, 0(String, len)); // RAO = string->len
2275

2276 if (bflag){

2277 MOV (RA3, RAO);

2278 branchl = code;

2279 BGE(RA3, RO, 0);

2280

2281 // if string->len < 0

2282 NEG(RA3, RA3);

2283 // endif

2284

2285 PATCHBRANCH (branchi) ;

2286 BCK(RA2, RA3);

2287 }

2288

2289 ADDI(RA1, RA1, 0(String, data));

2290

2291 branch2 = code;

2202 BGE(RAO, RO, 0);

2293

2294 // if string->len < 0

2295 SLLI(RA2, RA2, 2); // indez = indez << 2; in words, not bytes
2296 // endif

2297

2298 PATCHBRANCH (branch?2) ;

2299 mem(Ldw, RA3, RA1, RA2); // RA3 = string[indez]

2300 op3(Stw, i, RA3);

2301 break;

2302 case IINDL:

2303 case IINDF:

2304 case IINDW:

2305 case IINDB:

2306 op1(Ldw, i, RA1); // RA1 = srcl = array
2307 NOTNIL(RA1);

2308 op3(Ldw, i, RA2); // RA2 = src2 = index
2309

2310 if (bflag) {

2311 mem(Ldw, RA3, RA1l, O(Array, len)); // RA3 = array->len
2312 BCK(RA2, RA3);

2313 }

2314

2315 mem(Ldw, RA1, RA1, O(Array, data)); // RA1 = array->data
2316

2317 // Modify the index to match the data width

2318 switch(i->op) {

2319 case IINDL:

2320 case IINDF:

2321 SLLI(RA2, RA2, 3);

2322 break;

2323 case IINDW:

2324 SLLI(RA2, RA2, 2);

2325 break;

2326 }

2327

2328 ADD(RA1, RA1, RA2);

2329 op2(Stw, i, RA1);

2330 break;

2331 case IINDX:

2332 opl(Ldw, i, RA1); // RA1 = srcl = array
2333 NOTNIL(RAO);

2334 op3(Ldw, i, RA2); // RA2 = src2 = index
2335

2336 if (bflag){

2337 mem(Ldw, RA3, RA1l, O(Array, len)); // RA3 = array->len
2338 BCK(RA2, RA3);

2339 }

2340

2341 mem(Ldw, RA3, RA1, O(Array, t)); // RA3 = array->t

2342 mem(Ldw, RA3, RA3, 0(Type, size)); // RA3 = array->t->size
2343 mem(Ldw, RA1, RA1, O(Array, data)); // RA1 = array->data

7

2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

case
case
case
case
case

case

MUL(RA2, RA2, RA3); // RA2 = index*size
ADD(RA1, RA1, RAO); // RA1 = array->data + index*size
op2(Stw, i, RA1);
break;
IADDL:
ISUBL:
IORL:
IANDL:
IXORL:
// The Dis instructions uses the format "src3 = src2 op srcl”,
// which is opposite to RISC-V. To make the code more intuitive the order
// is switched here, so the operations are "src3 = RA1.RA2 op RA3.RA4"

// RA1, RA2 = src2
op2(Laddr, i, RAO);
mem(Ldw, RA1, RAO, 0);
mem(Ldw, RA2, RAO, 4);

// RA3, RA4 = srcl
opl(Laddr, i, RAO);
mem(Ldw, RA3, RAO, 0);
mem(Ldw, RA4, RAO, 4);

switch (i->op) {

case IADDL:
ADD(RAO, RA1, RA3); // BRA0 = src2[31:0] + src1[31:0]
ADD(RA2, RA2, RA4); // RA2 = src2[63:32] + src1[63:32]

// Check for overflow
SLTU(RA1, RAO, RA1); // RA1 = RAO < src2[31:0] 2 1 : 0

// Add the overflow to the upper bits
ADD(RA2, RA2, RA1);

// Move the lower result to RA1
MOV(RA1, RAO);

break;

case ISUBL:
SUB(RAO, RA1, RA3); // RAO = src2[31:0] - src1[31:0]
SUB(RA2, RA2, RA4); // RA2 = src2[63:32] - src1[63:32]

// Check for underflow
SLTU(RA1, RA1, RAO); // RA1 = src2[31:0] < RAO ? 1 : 0

// 4dd the underflow to the upper bits
SUB(RA2, RA2, RA1);

// Move the lower result to RA1
MOV (RA1, RAO);
break;

case IORL:
OR(RA1, RA1, RA3);
OR(RA2, RA2, RA4);
break;

case IANDL:
AND(RA1, RA1, RA3);
AND(RA2, RA2, RA4);
break;

case IXORL:
XOR(RA1, RA1, RA3);
XOR(RA2, RA2, RA4);
break;

}

// dst = RA1, RA2
op3(Laddr, i, RAO);
mem(Stw, RA1, RAO, 0);
mem(Stw, RA2, RAO, 4);
break;

ICVTWL:
opl(Ldw, i, RA1);
op2(Laddr, i, RAO);
SRAI(RA2, RA1, 31); // Shift right 31 places to sign-eztend
mem(Stw, RA1, RAO, 0);
mem(Stw, RA2, RAO, 4);

78

2420 break;

2421 case ICVTLW:

2422 opl(Ldw, i, RAO);

2423 op3(Stw, i, RAO);

2424 break;

2425 case IBEQL:

2426 branchl(i, EQ);

2427 break;

2428 case IBNEL:

2429 branchl(i, NE);

2430 break;

2431 case IBLEL:

2432 branchl(i, LE);

2433 break;

2434 case IBGTL:

2435 branchl(i, GT);

2436 break;

2437 case IBLTL:

2438 branchl(i, LT);

2439 break;

2440 case IBGEL:

2441 branchl(i, GE);

2442 break;

2443 case ICVTFL:

2444 ADDI(Rsp, Rsp, -16);

2445

2446 opi(lLdd, i, F1); // Load the double to convert
2447 op3(Laddr, i, Rarg); // Load the destination as the first argument to _d2v
2448

2449 // Round F1 by adding 0.5 or -0.5

2450

2451 // F2 = 0.5

2452 LUI(Rta, SPLITH(&double05));

2453 mem(Ldd, F2, Rta, SPLITL(&double05));

2454

2455 FSGNJD(F2, F2, F1); // F2 = F1 >= 0 2 F2 : -F2
2456 FADDD(RM, F1, F1, F2); // F1 += F2
2457

2458 mem(Std, F1, Rsp, 8); // Store F1 as the second argument, and call _d2v
2459

2460 // Call _d2v

2461 mem(Stw, Rfp, Rreg, O(REG, FP));

2462 CALL(_d2v);

2463 loadi(Rreg, (ulong) &R);

2464 mem(Ldw, Rfp, Rreg, O(REG, FP));

2465 mem(Ldw, Rmp, Rreg, O(REG, MP));

2466

2467 ADDI(Rsp, Rsp, 16);

2468 break;

2469 case ICVTLF:

2470 opl(Laddr, i, Rta);

2471 mem(Ldw, RAO, Rta, 0);

2472 mem(Ldw, RA1, Rta, 4);

2473

2474 FCVTDWU(RM, FO, RAO); // FO0 = float(unsigned src[0:31])
2475 FCVIDW(RM, F1, RA1); // F1 = float(src[32:63])
2476

2477 // F2 = 294967296

2478 LUI(Rta, SPLITH(&double4294967296));

2479 mem(Ldd, F2, Rta, SPLITL(&double4294967296));
2480

2481 FMADDD (RM, FO, Fi, F2, FO); // FO = F1 * F2 + FO
2482

2483 // Store the result

2484 op3(Std, i, FO);

2485 break;

2486 case IDIVF:

2487 opi(Ldd, i, F1);

2488 op2(Ldd, i, F2);

2489 FDIVD(RM, F1, F2, F1);

2490 op3(Std, i, F1);

2491 break;

2492 case IMULF:

2493 op1(Ldd, i, F1);

2494 op2(Ldd, i, F2);

2495 FMULD(RM, F1, F2, F1);

79

2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571

}

case

case

case

case

case

case

case

case

case
case
case
case
case
case
case
case
case
case
case
case
case
case

case

static void
preamble(void)

{

op3(Std, i, F1);
break;

ISUBF:
opi(Ldd, i, F1);
op2(Ldd, i, F2);
FSUBD(RM, F1, F2, F1);
op3(Std, i, F1);
break;

IADDF:
opl(Ldd, i, F1);
op2(Ldd, i, F2);
FADDD(RM, F1, F2, F1);
op3(Std, i, F1);
break;

INEGF:
opl(ldd, i, F1);
FSGNJND(F1, F1, F1);
op3(Std, i, F1);
break;

ICVTIWF:
opl(Ldw, i, RAO);
FCVTDW(RM, F1, RAO);
op3(Std, i, F1);
break;

ICVTFW:
opl(Ldd, i, F1);
FCVTWD(RM, RAO, F1);
op3(Stw, i, RAO);
break;

ISHLL:
/* should do better */

punt (i, SRCOP|DSTOP|THREOP, optabl[i->opl);

break;
ISHRL:
/* should do better */

punt (i, SRCOP|DSTOP|THREOP, optabl[i->op]l);

break;
IRAISE:

punt (i, SRCOP|WRTPC|NEWPC, optab[i->opl);

break;

IMULX:
IDIVX:
ICVTXX:
IMULXO:
IDIVXO:
ICVTXXO:
IMULX1:
IDIVX1:
ICVTXX1:
ICVTFX:
ICVTXF:
IEXPW:
IEXPL:
IEXPF:

punt (i, SRCOP|DSTOP|THREOP, optabl[i->opl);

break;

ISELF:
punt (i, DSTOP, optabl[i->op]l);
break;

if (comvec)

return;

comvec = malloc(20 * sizeof (*code));
if (comvec == nil)

code

error (exNomem) ;
= (ulong*)comvec;

codestart = code;
codeend = code + 10;

loadi(Rh, (ulong) H);

80

2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647

int

loadi(Rreg, (ulong) &R);

mem(Stw, Rlink, Rreg, O(REG, xpc));
mem(Ldw, Rfp, Rreg, O(REG, FP));
mem(Ldw, Rmp, Rreg, O(REG, MP));
mem(Ldw, RAO, Rreg, O(REG, PC));
JR(RAO, 0);

if (cflag > 4) {
iprint ("preamble\n") ;
das(codestart, code-codestart);

}

segflush(comvec, ((ulong)code-(ulong)comvec) * sizeof (*code));

compile(Module *m, int size, Modlink *ml)

{

Link *1;
Modl *e;
int i, n;
ulong *s, *tmp;

iprint("compile\n");

base = nil;

patch = mallocz(size*sizeof (*patch), 0);
tinit = malloc(m->ntype*sizeof (xtinit));
tmp = mallocz(2048+*sizeof (ulong), 0);

if (patch == nil || tinit == nil || tmp == nil)
goto bad;

// Set base so that addresses are at the same order of magnitude in

base = tmp;

preamble();
codestart = tmp;
codeend = tmp + 2048;

mod = m;
n = 0;

pass = 0;
nlit = 0;

// Do the first pass

for (i = 0; i < size; i++) {
codeoff = n;
code = tmp;
comp (&m->proglil) ;
patch[i] = n;
n += code - tmp;

}

iprint("first pass used %d instructions\n", n);

// Generate macros at the end
for (i = 0; i < NMACRO; i++) {
codeoff = n;
code = tmp;
mactab[i].gen();
macro[mactab[i] .idx] = n;
n += code - tmp;

}
iprint("first pass and macros used %d instructions\n", n);

free(tmp) ;
base = mallocz((n+nlit)*sizeof (*code), 0);
codestart = base;
codeend = base + n + nlit;
if (base == nil)
goto bad;

iprint("base address: Ox/p\n", base);

iprint ("mod->prog: 0x%p\n", mod->prog);
iprint("size: %d\n", size);

81

both

passes

2648

2649 if (cflag > 3)

2650 iprint("dis=%5d %5d risc-v=%5d asm=%.8p: %s\n",
2651 size, size*sizeof(Inst), n, base, m->name);
2652

2653 // Prepare for the nezt pass

2654 pass++;

2655 nlit = 0;

2656 litpool = base + n;

2657 code = base;

2658 n = 0;

2659 codeoff = 0;

2660

2661 // Translate the instructions

2662 iprint("compile second pass\n");

2663 for (i = 0; i < size; i++) {

2664 s = code;

2665 comp (&m->proglil) ;

2666

2667 if (patch[i] !'= n) {

2668 // The previous instruction used a different number of instructions
2669 // than in the first pass, messing up the offsets
2670 if (cflag <= 4)

2671 iprint("%3d %D\n", i, &m->progli-1]);
2672 iprint ("First and second pass instruction count doesn't match\n");
2673 iprint("first pass: %lud\nsecond pass: %d\n", patch[i], n);
2674 urk("phase error");

2675 }

2676

2677 if (cflag > 4) {

2678 iprint("%3d %D\n", i, &m->proglil);

2679 das(s, code-s);

2680 }

2681

2682 n += code - s;

2683 }

2684

2685 // Insert the macros

2686 iprint ("compile second macro\n");

2687 for (i = 0; i < NMACRO; i++) {

2688 s = code;

2689 mactab[i].gen();

2690

2691 if (macrol[mactablil.idx] !'= n) {

2692 iprint("mac phase err: %lud != %d\n", macro[mactab[i].idx], n);
2693 urk("phase error");

2694 }

2695

2696 n += code - s;

2697

2698 if (cflag > 5) {

2699 iprint("%s:\n", mactab[i] .name);

2700 das(s, code-s);

2701 }

2702 }

2703

2704 iprint("compile m->ext types\n");

2705 for (1 = m->ext; l->name; 1++) {

2706 1->u.pc = (Inst*) RELPC(patch[l->u.pc - m->progl);
2707 typecom(1l->frame) ;

2708 }

2709

2710 if (ml !'= nil) {

2711 e = &ml->1inks[0];

2712

2713 iprint("compile ml->links types\n");

2714 for (i = 0; i < ml->nlinks; i++) {

2715 e->u.pc = (Inst*) RELPC(patch[e->u.pc - m->progl);
2716 typecom(e->frame) ;

2717 et+;

2718 }

2719 }

2720

2721 iprint("compile m->type types\n");

2722 for (1 = 0; i < m->ntype; i++) {

2723 if (tinit[i] !'= 0)

82

2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747

bad:

typecom(m->typel[il);
}

iprint("compile patches\n");
patchex(m, patch);
m->entry = (Inst*) RELPC(patch[mod->entry - mod->prog]);

iprint("compile done\n");
free(patch);

free(tinit);

free(m->prog) ;

m->prog = (Inst*) base;
m->compiled = 1;

segflush(base, n*sizeof (*base));
return 1;

iprint("compile failed\n");
free(patch);

free(tinit);

free(base);

free(tmp) ;

return 0;

@ NTNU

Norwegian University of
Science and Technology

	Introduction
	Background
	Plan9
	Inferno
	RISC-V
	ISA extensions
	Privilege levels
	CSR - Control and Status Register
	SBI - RISC-V Supervisor Binary Interface
	Traps

	Implementation
	RISC-V compiler
	Architecture-specific code structure
	Choosing a platform
	Platform-specific code structure
	Header files
	Functions
	The configuration file
	The mkfile

	OpenSBI
	Address space
	Using CSRs
	Handling traps
	Listener interface

	Clock and timers
	Timers in RISC-V
	Timers in Inferno
	Implementing the interface

	UART
	VIRTIO
	The VIRTIO communication protocol
	VIRTIO library
	GPU
	Input
	Block device

	Graphical output
	Initializing the system
	Interactive shell
	Filesystem
	The Just-in-time compiler
	The Dis instruction set
	The structure of the virtual machine
	The structure of the JIT compilers
	Implementing the JIT for RISC-V
	Testing the JIT

	Roadblocks
	Debugging
	Lack of documentation
	Floating-point problems
	Random crashes
	The timer bug

	Conclusion
	Future work
	Acknowledgments
	Bibliography
	Appendices
	/os/virtriscv/virtriscv
	/os/virtriscv/mkfile
	/os/virtriscv/main.c
	/os/virtriscv/sdvirtblk.c
	/libinterp/comp-riscv.c

