
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Audun Asdal

A Low Power Parallel RISC-V
Processor in 22nm FDSOI Technology
for Medical Ultrasound

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Trond Ytterdal
June 2022

M
as

te
r’s

 th
es

is

Audun Asdal

A Low Power Parallel RISC-V Processor
in 22nm FDSOI Technology for Medical
Ultrasound

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Trond Ytterdal
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Abstract

Medical ultrasound data is traditionally filtered in the probe using analog filters
before sending the less extensive filtered data to an external processing device. By
digitizing the signal from the ultrasound transducers, doing digital filtering and
processing directly in the probe, the programmer has access to more unfiltered data.
The big problem is the tight power budget at 3W set to keep the probe relatively cold,
lower than 40°C, while at the same time process the data from 10 000 transducers
at a 10MHz sample rate. Picorv32, an area effective RISC-V based processor, has
in this project been rebuilt as a multicore processor in order to perform this massive
processing problem. The design is synthesized in a 22nm FDSOI (Fully Depleted
Silicon On Insulator) technology to extract estimates for power and area.

The design is based on distributed memory, where each core has its own memory
block. This works very well for the primary digital filtering of the signals as the data
from each probe belongs to a single core. As there is no interconnection between the
cores implemented, problems arise when data sharing between the cores is needed.
The processor is able to do matrix multiplication at 6.9 CPI (Clocks Per Instruction)
per core, with a dynamic power estimate of 12.3µW per MIMD (Multiple Instruction
Multiple Data) core and 12.1µW per SIMD (Single Instruction Multiple Data) core
at a 10MHz clock frequency. At 500MHz the power estimates are 605µW for the
SIMD cores and 613µW for the MIMD cores. The area per core is estimated to
5800µm2 per MIMD core and 5500µm2 per SIMD core. As these power estimates
are relatively low compared to the 3W power budget even with many cores, this
type of system could prove useful in future ultrasound probes.

i

Sammendrag

I medisinsk ultralyd blir signalene tradisjonelt filtrert relativt kraftig med analoge
filtre i proben før de sendes videre til en ekstern prosesseringsenhet. Ved å i stedet
digitalisere signalene og deretter gjøre den digitale prosesseringen internt i selve
proben vil programmereren ha tilgang til mye mer ufiltrert data. Det store problemet
med å skulle gjøre hele prosesseringen i proben er det lave effektbudsjettet p̊a knappe
3W for å holde proben under 40°C og samtidig prosessere data fra 10 000 prober med
en punktprøvingsfrekvens p̊a 10MHz. PicoRV32, en arealeffektiv RISC-V-basert
prosessor er i dette prosjektet ombygd til å støtte flere kjerner for å løse dette
problemet. Designet er syntesert i en 22nm FDSOI (Fully Depleted Silicon On
Insulator) teknologi for å estimere effekt og størrelse.

Designet er satt opp med et distribuert minne hvor hver kjerne har en egen min-
neblokk. Denne løsningen fungerer bra for å filtrere signalene fra transducerne siden
hver transducer hører til under en enkelt kjerne. Siden det ikke er noen kommu-
nikasjon mellom kjernene, blir det problemer n̊ar det trengs data fra flere kjerner.
Prosessoren kjører matrisemultiplikasjon p̊a 6.9 CPI (Clocks Per Instruction) per
kjerne med en dynamisk effekt p̊a 12.3µW per MIMD (Multiple Instruction Multi-
ple Data) kjerne og 12.1µW per SIMD (Single Instruction Multiple Data) kjerne ved
en klokkefrekvens p̊a 10MHz. Ved 500MHz klokkefrekvens bruker de henholdsvis 613
og 605µW per kjerne. Areale per kjerne er estimert til 5800µm2 per MIMD kjerne
og 5500µm2 per SIMD kjerne. Siden disse effektestimatene er relativt lave i forhold
til budsjettet p̊a 3W selv med mange kjerner vil denne type system være interessant
i fremtidige ultralydprober.

ii

Table of Contents

1 Introduction 1

1.1 Ultrasound Processing . 1

1.2 Existing Technology . 3

1.2.1 Handheld Probes . 3

1.2.2 Traditional Ultrasound Systems 3

1.2.3 RISC-V . 3

1.2.4 Custom Hardware Implementation 4

1.3 The Goal . 4

1.4 Overview of the Report . 4

2 Theory 5

2.1 Ultrasound Beamforming . 5

2.2 Low Level . 7

2.2.1 Power in Digital Circuits . 7

2.2.2 Clock Gating . 9

2.2.3 Power Gating . 10

2.2.4 Voltage Threshold . 11

2.2.5 22nm FDSOI . 11

2.3 High Level . 12

2.3.1 Multiprocessing . 12

2.3.2 SIMD . 12

2.3.3 MIMD . 13

2.3.4 Distributed vs Shared Memory 14

iii

2.3.5 Interconnects . 15

2.3.6 RISC-V . 15

3 Implementation 16

3.1 Data Rate and Power Budget . 16

3.2 PicoRV32 . 18

3.3 SLVT (Super Low Voltage Threshold) 20

3.4 Implemented Versions . 21

3.5 Tool Stack . 21

3.5.1 RISC-V Toolchain . 21

3.5.2 Synopsys VCS . 21

3.5.3 GTKWave . 22

3.5.4 Synopsys DC . 22

3.5.5 Synopsys PT . 22

4 Results and Discussion 23

4.1 Area . 23

4.2 Slack . 26

4.3 Power . 27

4.4 Further Discussion . 31

5 Conclusion 33

5.1 Future Work . 34

Bibliography 35

A Table of All Data 37

iv

List of Figures

1.1 A simplified overview of an ultrasound transducer array. 1

1.2 Block overview of a traditional ultrasound processing. Analog prepro-
cessing to reduce the data rate across the cable to the main processing. 2

1.3 By moving the processing into the probe, all original data is available
to the processor. 2

2.1 A simple beamforming array with different distances x and y to two
transducers. 5

2.2 Plane waves reaching a transducer array at an angle θ. 6

2.3 The currents contributing to the static power dissipation in CMOS. . 8

2.4 A latched AND clock gating block. 9

2.5 Power gating with a footer switch and a header switch respectively. . 10

2.7 A simple overview of a SIMD processor with one control unit and
several processing elements PE. 13

2.8 A simple distributed memory MIMD CPU with several processing
elements/cores. 14

3.1 A block overview of the PicoRV32 RISC-V processor with instruction
decoder, control unit and a processing element as well as accelerators
for multiplication and division. 18

3.2 PicoRV32 modified with several SIMD cores. 19

3.3 The MIMD solution of the PicoRV32. Each MIMD block may have
several SIMD cores. 19

4.1 Area per MIMD and SIMD core. 23

4.2 The average area for each core depending on the number of cores in
the design. 24

4.3 Area per SIMD core as a function of clock frequency. 25

v

4.4 Slack as a function of clock frequency for SIMD cores. 26

4.5 Slack as a factor of the clock period for SIMD cores, as a function of
the clock frequency. 27

4.6 Dynamic power divided by the number of cores. 28

4.7 Dynamic power as a function of frequency for SIMD cores. 29

4.8 Power per frequency for one core divided into dynamic and static power. 29

4.9 Dynamic energy per clock cycle divided by the number of cores for
the different number of SIMD cores and clock frequency. 30

4.10 Total energy per clock cycle for different number of SIMD cores and
frequency. 31

vi

List of Tables

3.1 Limitations and parameters of the ultrasound probe. 16

3.2 The power and area results from 28nm synthesis on the single core
PicoRV32. For LL and LR. 20

3.3 Variables tested in the design. 21

A.1 Table of all configurations with results. 38

vii

Chapter 1

Introduction

1.1 Ultrasound Processing

Ultrasound is an immensely useful tool in order to observe underneath the skin of a
patient without harm. The basic idea is quite simple. One or more transducers sends
an ultrasound signal into the tissue, that is, a sound wave with a higher frequency
than what a human ear can hear. A part of this wave will be reflected by different
parts of the tissue, back to the transducer(s). A simple diagram of an ultrasound
transducer array with eight transducers in a row is shown in figure 1.1. Reflections
happen where the density of the tissue changes [1].

Tr
an

sd
uc

er
s

Transmission

Reflection

Figure 1.1: A simplified overview of an ultrasound transducer array.

Here we see how a signal is transmitted by transducer number four from the top,
and how the signal is reflected as it hits an entity. By processing the reflected signal
hitting each transducer, one may find the position of this entity, as well as the speed
by finding the doppler shift of the transmitted signal [2]. This is the basic idea of
ultrasound imaging, but as the tissue is vastly more complex than a single entity
in vacuum, and the transducer array could consist of thousands of transducers in
several dimensions, ultrasound imagery is not that simple.

Traditionally, ultrasound processing needs a lot of computing power from an external
rack. Given the small size of an ultrasound probe, this massive computation has been
mostly done in a later stage, outside the probe. In order to be able to transfer data

1

from the probe to this processor, a fat cable between the probe and the processing
unit is needed. But the amount of data produced by the probe is still too large, and
some analog preprocessing is done in the probe to drastically reduce the amount
of data transferred. The problem with this technique is that the original data is
altered. Depending on the loss in the analog preprocessing, the processor outside
the probe has limited data to create the image [3].

In figure 1.2 we see how ultrasound systems are traditionally built. Some analog
preprocessing is done in the probe, while a lot of data is sent across a large cable to
be processed in a dedicated machine. This powerful processor can be reprogrammed
and changed in order to create different images, which makes this approach quite
flexible [3].

 Probe

Analog processing

in probe

Digital processingADC
Image

Fat cable
Transducer

Figure 1.2: Block overview of a traditional ultrasound processing. Analog prepro-
cessing to reduce the data rate across the cable to the main processing.

As technology scales, more and more processing can fit inside the probe, and at
some point most of the processing could be done internally in the probe. By doing
the processing in the probe itself, the loss in the preprocessor is not needed, and
all the original data is present for the internal processor. This solution is shown in
figure 1.3.

 Probe

ADC Digital Processor

More processing/image
Transducer

Figure 1.3: By moving the processing into the probe, all original data is available
to the processor.

A probe with all processing internally is most wanted, creating the final image
directly. This way the digital signal processing programmers have all the original
data at their fingertips. There is also no need for sending the data large distances.
By having all the data available for processing in the probe, the imaging could have
better quality, while also reducing energy and cost. The problems, however, are the
strict energy and area limitations in the probe. A probe used for medical ultrasound
imaging has strict temperature demands, so as not to inflict burns on the patient.
This in turn implies a strict power limitation [4].

2

1.2 Existing Technology

1.2.1 Handheld Probes

A number of handheld devices are already on the market and are possible to buy
for the general consumer. Still, there are limitations to these probes. For one, the
image quality is inferior to the larger systems. The processing power in the probe
itself just isn’t good enough for top-quality imaging. The biggest problem, however,
seems to be the temperature. These smaller handheld probes do a lot of processing
in the probe, and thus dissipate heat. This results in the probe overheating and
limits the time it can be used. The probes turn off when the temperature is too
high, and cannot be used again until they have cooled down [5].

1.2.2 Traditional Ultrasound Systems

The alternative is the more traditional systems. These have all the processing power
and cooling needed, as well as the flexibility of reprogramming the system. The
problem with these systems is, as mentioned, the bottleneck that is the cable. A lot
of data is lost in order to be able to send it to the main processing unit across this
cable. These systems are also large and expensive, too expensive for all doctors to
have access to such a system.

1.2.3 RISC-V

One way of creating a flexible processing element for the probe is to use a processor.
The relatively new open source instruction set RISC-V [6] could be ideal for this. An
advantage of the instruction set being open source is the many open source imple-
mentations available. This makes it possible to choose a low-power implementation
as a base for the design.

One implementation of a massively parallel risc-v based processor is the GRVI (Gray
Risc-V Implementation)[7]. This implementation is used to accelerate the connec-
tion between the main processor and accelerators connected to it. It is implemented
on a Xilinx FPGA, with 400 cores. This implementation uses as little as 13W run-
ning full-speed. In order to communicate between the cores, a NoC (Network on
Chip) is created. A simple two-dimensional router is used, which will not accept
data until the router has the capacity. This solution is shown to work adequately as
long as the traffic over the router remains quite low compared to the theoretically
possible throughput.

3

1.2.4 Custom Hardware Implementation

Another possibility is to create a custom hardware implementation. This solution
would be tailor-made to the probe, and would not be possible to change much after
production. However, the solution would probably be more energy efficient, as no
unneeded circuits would lie dormant. The choice between custom hardware or a more
general processor is a tradeoff between power and flexibility with the possibility to
change and update the probe continuously.

1.3 The Goal

By minimizing the power consumption of the image processing, it could be possible
to bring the image quality of the high-end large ultrasound systems into the small
probe. The image quality could even be improved, as no preprocessing is needed
for sending across a cable. This means all the data is available to the programmer,
uncompressed. With more data, the programmer may pick and choose more freely,
and this may result in even better ultrasound images.

As it would be a huge advantage to be able to change the processing algorithm
of the probe continuously, it seems the best solution is processor-based rather than
custom hardware. This solution will probably consume more power, but if the power
is low enough, the result will be a way more versatile probe. A probe that can be
programmed with specific algorithms to fit the task as well as possible.

1.4 Overview of the Report

The rest of the report starts with a theory chapter, explaining the needed theory.
We will here take a look at ultrasound technology before moving over to digital
circuits at a low level, with a specific interest in power consumption. Further, we
will take a look into parallel processing, and how to modify a RISC-V core to enable
it.

The next chapter concerns the multicore RISC-V implementation, and how the
single core processor has become a multicore one. This chapter also shows how the
processor is tested and explains some limitations of the project. Then comes the
results and discussion, where results will be discussed as it is presented. Here as
well, with a strong emphasis on power and area. Then a more general discussion
part, before moving over to a conclusion and future work for the project.

4

Chapter 2

Theory

2.1 Ultrasound Beamforming

As seen in figure 1.1 in the introduction, the reflected sound wave may be received
by several of the transducers in an array. But the distance from the entity to each
transducer is not the same when the transducers are located in a plane. This is where
beamforming comes into play. A simple beamforming setup is shown in figure 2.1
under.

Tr
an

sd
uc
er
s

x

y

Figure 2.1: A simple beamforming array with different distances x and y to two
transducers.

From this figure, which shows a linear one-dimensional array with eight transducers,
we see how the distance x to the topmost transducer is longer than the distance y. In
order to be able to sum these signals in phase, the signal traveling along y will have
to be delayed before summing the two signals. However, as the distance between
the transducer elements is much smaller than the distance from the probe to the
point of interest, the reflected signal may be simplified to be a plane wave reaching
the probe, as shown in figure 2.2 [8].

5

M-1 1 0. . .

SourcePlane

w
ave

θ

d

δ

Figure 2.2: Plane waves reaching a transducer array at an angle θ.

The distance d is shown in (2.1) [8].

d = (M − 1)δ · cos(θ) (2.1)

As seen in figure 2.2, δ is the distance between the equally distanced M transducers,
and θ is the incident angle of the plane wave. To find the time delay for the plane
wave to travel the distance d, the only additional information needed is the speed
of sound c (2.2).

t =
(M − 1)δ · cos(θ)

c
(2.2)

With a known sampling frequency Fs of the array, one may now add a delayed
sample from transducer 0 with a sample from transducer M-1 in order to perform
beamforming at a specific angle θ. The connection between time delay t and the
number of samples n is given by (2.3) [9]. T is alternatively the sample period. By
using several transducers, the accuracy improves further.

t = nT =
n

Fs

(2.3)

As previously mentioned, the idea behind beamforming is quite simple, yet when
using an array with several dimensions, and thousands of transducers, the calcula-
tions become quite heavy. What is needed to perform beamforming is the ability to
sum weighted samples from different transducers at different delays.

Further on we will look at what is needed to implement such a system capable of
individually setting the wight and delay of each sample before summing them.

6

2.2 Low Level

2.2.1 Power in Digital Circuits

The power dissipated in a digital circuit is divided into two main groups as shown
in (2.4) [10]. These two parts are the dynamic and the static power respectively.
The dynamic power is the power dissipated as a result of switching in the circuit
and will contribute most in periods when the circuit has a high toggle rate.

Static power is the power dissipated simply from having the circuit turned on, that
is, from sources such as resistive coupling between the power source and ground,
and quantum mechanical tunneling. In nanometer technologies, leakage power con-
tributes to about a third of the total power dissipation in a typical design [10].

Ptotal = Pdyn + Pstatic (2.4)

The dynamic power can be further divided as in (2.5).

Pdyn = αfCV 2
DD (2.5)

Here, α is the activity factor of the circuit, how much of the circuit is toggling at
a given time. C is the total output capacitance of the circuit, and f is the clock
frequency of the circuit. VDD is the supply voltage [10].

From equation 2.5 we see how lowering any of the factors will result in lower dynamic
power. In addition, as the frequency is proportional to the voltage needed, a change
of the clock frequency will also alter the needed voltage. And vice versa, a lowering
of the supply voltage limits the highest possible clock frequency [10, 11].

The static power dissipation has the form we see in (2.6).

Pstatic = (Isub + Igate + Ijunct + Icontention) · VDD (2.6)

We see how there are several components contributing to the static power dissipa-
tion, depending on where the current flow goes. The one common denominator is
the supply voltage VDD. The currents are shown in figure 2.3. In CMOS (Com-
plementary Metal Oxide Semiconductor) technology there is no contention current
[10].

7

Source
Gate

Drain

Bulk

Igate

IsubIjunct Ijunct

Figure 2.3: The currents contributing to the static power dissipation in CMOS.

The subthreshold leakage Isub flows across the transistor from source to drain when
the transistor is supposed to be off. Some current will still flow, and this current in-
creases drastically with the temperature. When the transistor is in the subthreshold
region, the Vgs voltage swing is not particularly high, and the transistor will have
a higher subthreshold leakage current as it cannot turn the transistor completely
off. A higher source voltage or lower bulk voltage may reduce this leakage. FDSOI
technology has a relatively low subthreshold leakage due to its sharp subthreshold
rolloff [10].

Gate leakage is the current leakage from gate to bulk. When the dielectric insulation
between the gate and bulk shrinks with technology, the dielectric becomes extremely
thin. So thin in fact, that charge carriers tunnel through it, resulting in the Igate
leakage current. Naturally, this current depends on the area and thickness of the
dielectric, as well as the voltage across the gate. Finally, the Ijunct current is the
current from the source or drain to the base. As these are reverse biased diode
connections, this current is almost negligible in FDSOI technology [10].

In both static and dynamic power dissipation the supply voltage plays a big role in
the power consumption of the circuit. As the clock frequency is closely connected
with the supply voltage, the clock frequency dictates how low the supply voltage
can be set. Additionally, the area of the design plays a big role, especially for the
static power consumption. A larger area often means more power. We will now look
into some techniques for lowering the power consumption of a digital circuit.

8

2.2.2 Clock Gating

One simple way of limiting the dynamic power dissipation as seen in (2.5) is to
lower the activity factor α. This can be done by inserting clock gates into the
circuit. These gates, as shown in figure 2.4, stop the clock from reaching parts of
the circuit using a control signal [12].

D Q

Q

CTRL

CLK
GATED CLK

D Q

Q

Figure 2.4: A latched AND clock gating block.

The latch ensures no glitches can pass the gate, causing errors and excessive switch-
ing in the gated signal [12]. This solution of gating the clock to a part of the circuit
works on the α factor from (2.5). When the clock gate stops the clock from ad-
vancing, this factor becomes zero in this gated sub-circuit and no dynamic power is
dissipated.

Another benefit of clock gating is in the clock tree itself. The clock tree has a huge
fanout and several buffers to feed this large wire. The clock is ultimately a wire.
And as it is fanned out, it becomes huge and has a large capacitance. By gating the
clock, this fanout is limited in certain areas, lowering the total capacitance of the
active clock net.

9

2.2.3 Power Gating

As seen in (2.6), the static power consumption is closely connected with the supply
voltage VDD. Hence, by lowering the voltage as much as possible, the static power
will be minimized. If, however, a part of the design is inactive for a longer period of
time, the power supply to this whole part may be turned off. This is called power
gating and is shown in figure 2.5 [10].

VDD

Circuit block

Circuit block

VDD

CTRL

CTRL

Figure 2.5: Power gating with a footer switch and a header switch respectively.

As seen in the figure, one may gate either the ground connection or the power
supply. Several power gating transistors may be used in parallel in order to reduce
the resistance and draw more current to a larger circuit block. The size and number
of power gating transistors is a tradeoff between delay in the circuit block and the
leakage power when in sleep mode when the power is gated. One problem with
power gating is that the gated registers will lose their power and therefore lose their
stored information. This may be solved using state retention registers that can hold
their value for an extended period of time, even without a power supply connected.
Alternatively one may only reduce the supply voltage and not turn it completely
off. Then the registers could hold their values even in this half sleep mode. The
start-up time from sleep to active would then be shortened as well, as the circuit
is already half powered. The price of only lowering the voltage is of course more
leakage current than a full power off [10].

10

2.2.4 Voltage Threshold

The voltage threshold in a transistor used in digital design determines the needed
voltage on the gate for the transistor to switch state [10]. A lower voltage threshold
means the transistor turns on faster when running at the same supply voltage. This
makes the lower threshold voltage transistors better when speed is needed, as they
can switch faster. This is illustrated in figure 2.6. Here we see how the transition
curve Vi reaches the low voltage threshold Vt1 much faster than the high voltage
threshold Vt2.

Figure 2.6: Input voltage Vi of a transistor with two possible voltage thresholds Vt1
and Vt2.

This comes at a price, though. A low voltage threshold means the transistor leaks
more current when it’s supposed to be turned off, compared with a high voltage
threshold transistor [10].

Another advantage of low-threshold transistors is the possibility for a lower supply
voltage. Instead of speeding up the circuit, one could instead lower the supply
voltage of the design. As seen in (2.5) and (2.6), lowering the supply voltage could
drastically reduce both dynamic and static power consumption.

2.2.5 22nm FDSOI

FDSOI (Fully Depleted Silicon On Insulator) is a type of CMOS technology. One
big difference between the FDSOI technology compared to standard CMOS, is the
possibility to control the bulk voltage. By controlling the bulk, the voltage threshold
of the transistor is altered, making it possible to reduce the voltage threshold when
speed is needed, and use a higher voltage threshold to reduce leakage when the

11

circuit is running slowly or in sleep. For standard CMOS the voltage threshold has
to be decided when creating the circuit, while for FDSOI it may be done dynamically
in this way [13].

2.3 High Level

2.3.1 Multiprocessing

When processing data that is not highly dependent on intermediate answers from
other data, we may choose to parallelize the processing. From (2.5) about dynamic
power dissipation in digital circuits we see how the power is proportional to the
clock frequency. The clock frequency is in turn dependent on the supply voltage.
If we choose to divide a data processing problem into two parts we may be able
to use only half the clock frequency and still process the same amount of data in
the same time period. Additionally, with a circuit running half the clock frequency,
the supply voltage may be lowered as well, saving additional power. There is one
catch, however. The area of two parallel processors would be about twice the size
of a single processor core. Still, we see from (2.5) that the dynamic power could
be lowered if the frequency and supply voltage together decreases more than the
capacitance increases.

2.3.2 SIMD

Traditionally, a processor has one processing unit, and one stream of data to process.
With the arrival of multicore systems, processors may now be divided into four
groups based on Flynn’s taxonomy [14]. Firstly, we have the traditional SISD (Single
Instruction Single Data) processor, which is the single core capable of processing a
single instruction at a time. The second type, MISD (Multiple Instruction Single
Data) has no real-world use case, and remains a theoretical group only. The two
remaining groups contain the used multiprocessor types.

These are SIMD (Single Instruction Multiple Data) and MIMD (Multiple Instruction
Multiple Data). SIMD processors share the same instructions and perform, as the
name indicates, the same instructions in each core in parallel. The only difference
between the cores is the data they are processing. This type of parallelism is great
when having the need to process a lot of different data in the same way. For instance
vector multiplication

c[i] = a[i] · b[i]

would benefit from using a SIMD processor. The entire array with length L would
be processed in a single instruction if the number of processing units N ≥ L. If
the array is longer than the number of processors, the processor simply starts with
the N first elements and then goes on. If some of the processing elements does not

12

have data to process however, these will be in idle mode and not computing. When
processing a problem that cannot be parallelized, only one processing element will
be active, and all others idle. This has a great impact on the efficiency of the system
if the problem at hand cannot be processed in parallel. A simple block diagram of
a SIMD processor is shown in figure 2.7 [14]. We see how all the cores have the
same control logic while each processing element is working on a separate part of
the memory.

Control unit

 Memory

Memory 0

Memory 1

Memory 2

Memory n

PE 0

PE 1

PE 2

PE n

Control
bus

Data
buses

... ...

Figure 2.7: A simple overview of a SIMD processor with one control unit and several
processing elements PE.

2.3.3 MIMD

MIMD processors, as SIMD processors, work simultaneously on different data, but
here the instructions may differ as well. This makes MIMD processors the most
flexible of the classes in Flynn’s taxonomy. The cores may work on entirely different
problems at the same time. The drawback with MIMD processors is the area and
power consumption, as well as the troublesome programming. As each core in a
MIMD processor needs its own control unit, it will not be as area or power efficient
when working on problems that could be executed efficiently on SIMD processors.
When working with different instructions, however, MIMD processors are more ef-
ficient [14]. A simple block overview of a MIMD processor is shown in figure 2.8.

13

 Memory

Memory 0

Memory 1

Memory 2

Memory n

PE 0
with control logic

PE 1
with control logic

PE 2
with control logic

PE n
with control logic

Data
buses

... ...

Communication
Bus

Figure 2.8: A simple distributed memory MIMD CPU with several processing ele-
ments/cores.

2.3.4 Distributed vs Shared Memory

MIMD processors may be divided further, depending on the memory system of the
processor. There are two main alternatives, as well as the possibility of combining
the two. These two alternatives are shared memory and distributed memory. Shared
memory means there is a single block of memory that is shared between the cores
of the processor. This solution ensures that all the cores have access to all the data,
but it may be quite slow, at least when the number of cores grows. This is because
a lot of cores will try to access the memory at the same time [14].

The second solution is distributed memory where each core has its own private
memory close to the core. This solution is far more efficient if each core only needs
data from its own memory location. For a core to read the memory ”belonging to”
another core, however, the latency will be higher as the second core will have to
read it before sending it to the first core [14].

The third alternative is a combination of the two. The cores may be divided into
larger groups where each group has a shared memory as well as interconnects into
the other groups’ memory. This is a tradeoff between latency when loading from
the close-by memory, the latency when loading from far-away memory, and the hit
rate of both of these.

14

2.3.5 Interconnects

When using MIMD processors, the cores need to have some sort of interconnect in
order to synchronize and share data. There are numerous ways of designing this
interconnect between the cores, depending on speed requirements, power budget,
and how much data will be sent between them. A faster interconnect, like a hy-
percube or a direct connection between all cores are alternatives when a lot of data
transfer between the cores is needed. This will on the other hand use a lot of area
and power when the design has many cores. A smaller interconnect, for instance a
single common bus, would have a much smaller area and power need. This, on the
other hand, cannot transfer nearly as much data. As mentioned, it comes down to
a tradeoff between power and area vs throughput of the interconnect [15].

2.3.6 RISC-V

RISC-V is an open-source instruction set [6]. This means that all the instructions are
known to whoever wants to read them, and anyone may implement their own RISC-
V based implementation free of charge. This has resulted in numerous open-source
implementations as well, in different flavors. Some are simplified implementations
for teaching computer architecture, some are optimized for the highest possible clock
speed, and some are optimized for the smallest area.

The instruction set was developed at Berkley university, as a successor to the former
RISC-IV. While the former RISC-implementations from Berkley are mostly used for
research, this last version has become complete enough to use commercially as well.

One advantage of using RISC-V, besides the open-source instruction set, is the
division into several subsets of the instruction set. One may choose to create an
implementation with only a small subset of the instructions. The smallest subset for
instance is the RISC-V32E, which only has integer operations and only 16 registers
in the core [16]. This possibility to use only some of the instruction set as well as
the programming tools having the same reduced instruction set possibilities makes it
possible to cherry-pick only the needed instructions, leaving out the rest. By leaving
out unneeded instructions from the core entirely the design might have a smaller
area, resulting in a lower power dissipation as well as a lower manufacturing cost.

Beamforming Processor

As previously mentioned, beamforming takes in signals from several transducers and
processes them. Then the different intermediate results are summed. This signal
processing may be done on a parallel processor, either MIMD or SIMD. For the first
part, before the intermediate result, each core will not need any information from
other cores, which makes this type of processing ideal with a distributed memory
system. The last bit where the intermediate results are summed, however, will need
data from several different cores. This might not work as well with a distributed
memory as it would with shared memory.

15

Chapter 3

Implementation

3.1 Data Rate and Power Budget

The ultrasound probe this processor design is a part of has some specific limitations
and parameters as shown in table 3.1.

Table 3.1: Limitations and parameters of the ultrasound probe.

Parameter Value
Max temperature 40°C
Max average power 3 W

Sample rate 10 MHz
Sample resolution 12 bits
Number of channels 10 000

Burst time 300 - 400µs

The first limitation is the maximum temperature of 40°C. This limitation comes
from the fact that the probe will be used in medical ultrasound. Because of this
limitation, the probe cannot be too hot as it would damage the skin of the patient.
From the strict temperature limitation, the power limitation is set. For the probe
to keep cool enough, the total power budget of the complete probe is 3W. As such
a small probe in many cases would be battery powered, this also adds to the tight
power budget of the probe. These 3W is the power budget for the whole probe and
not only the processor. The power budget of the processor would then need to be
considerably lower than these 3W.

Next, we have the vast amount of data from the transducers. The probe will have
10 000 transducers running in parallel, sending ultrasound pulses and receiving them.
Each of these transducers has a data rate of 10MHz, at a 12 bits resolution. The
bandwidth combined will be as follows:

10 000channels · 12bits · 10MHz = 1.2Tbps

16

This data rate is the new data into the processor. Additionally, a number of the
last samples have to be saved for some time to be able to perform the beamforming.
From (2.2) we find the maximum time delay from one transducer to the next. The
exact size of the final ultrasound probe is not set, but it might be in the order of
5cm in a 100*100 transducer array. As the maximum time delay is at an angle θ = 0
to the transducer plane, the equations are simplified, and we get:

t =
0.05m · cos(0)

343m/s
= 146µs ≈ 1500samples

By limiting the probe to perform beamforming within a π
4
angle, the number of

samples to save drastically decrease:

t =
0.05m · cos(π

4
)

343m/s
= 103µs ≈ 1000samples

By implementing more efficient beamforming algorithms than using the whole array
at a time, the number of samples to be saved intermediately could be lowered even
more. For instance, by doing beamforming in sub-arrays first only one value from
each sub-array will need to be saved before being added to the result from the
other sub-arrays. As these sub-arrays are physically smaller than the whole array,
each sub-array does not need as many intermediately saved samples to be able to
beamform at the same angles.

To store this amount of data, a fair amount of power will be consumed. Especially
with the tight power budget given, being able to process all this data could prove
tricky.

17

3.2 PicoRV32

The open source RISC-V implementation PicoRV32 is chosen as the base for the
parallel microprocessor. This implementation has a very low area per core, which is
ideal when a large number of cores is needed. In order to allow this small area, the
implementation is quite bare-bones. It supports the RV32IMC instruction set, yet
only RV32IM is used in this multi-core implementation [16]. It has no cache and
also no pipelining. It typically has about 3-6 CPI (Clock cycles Per Instruction) as
a result of the lack of pipelining and cache. From an implementation on a Xilinx
FPGA, its area is measured to 2123 LUTs (Look Up Table), while other RISC-
V implementations in the evaluation have 13062 (Freedom) and 14616 (Pulpino
RI5CY). This tiny size is the reason why this implementation is chosen [17].

The PicoRV32 processor may be divided into several submodules as seen in figure 3.1
[17]. Here we see the whole PicoRV32, connected to an external memory through a
simple bus. This bus is connected to a memory interface inside the PicoRV32. It
has an instruction decoder that decodes the read data when reading instructions.
The decoded instruction is forwarded into the core, here called picorv32 core. This
core processes data, and may also have some accelerators instantiated to speed up
commonly used instructions. These accelerators are communicated with through
the pico coprocessor interface pcpi. As seen in the figure, the multiplication and
division accelerators are enabled in the project. The division accelerator, and the
multiplication accelerator especially, are enabled because digital signal processing
performs a lot of these instructions.

 picorv32

Memory

pcpi_mul

pcpi_div

 picorv32_core

Memory
interface

Instruction decoder

Figure 3.1: A block overview of the PicoRV32 RISC-V processor with instruction
decoder, control unit and a processing element as well as accelerators for multipli-
cation and division.

In order to process the vast 1.2Tbps of data from the ultrasound probes, more than
one core is needed. As discussed in section 2.3.1 about multiprocessing, two common
ways of doing multiprocessing are using MIMD or SIMD cores. As the ultrasound
processing is massively parallel, and all the data will be processed in the same way,
SIMD cores would work on this problem. MIMD cores, as they work independently
from each other, will also work, but might add some control overhead. We will look
into both approaches, and see how they compare. A block of the SIMD solution is

18

shown in figure 3.2.

 picorv32_SIMD

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

Memory

 picorv32_core

 control unit

Memory
interface

Instruction
decoder

 picorv32_core
 picorv32_core

 picorv32_core
 picorv32_core

 picorv32_core
 picorv32_core

 picorv32_core
 picorv32_core

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory,

memory

mapped input

Figure 3.2: PicoRV32 modified with several SIMD cores.

The MIMD solution is shown in figure 3.3. Here we see how each MIMD processor
can have several SIMD cores. They will additionally need some interconnection for
synchronization and exchange of data, compared to the SIMD processor.

 picorv32_MIMD

 picorv32_multicore

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

Memory

 picorv32_core

 control unit

Memory
interface

Instruction
decoder

 picorv32_core
 picorv32_core

 picorv32_core

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

memory

mapped input

 picorv32_multicore

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

Memory

 picorv32_core

 control unit

Memory
interface

Instruction
decoder

 picorv32_core
 picorv32_core

 picorv32_core

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

memory

mapped input

 picorv32_multicore

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

Memory

 picorv32_core

 control unit

Memory
interface

Instruction
decoder

 picorv32_core
 picorv32_core

 picorv32_core

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

memory

mapped input

 picorv32_SIMD

pcpi_mul

pcpi_div

pcpi_mul

pcpi_div

Memory

 picorv32_core

 control unit

Memory
interface

Instruction
decoder

 picorv32_core
 picorv32_core

 picorv32_core

Memory

could be memory

mapped input
Memory

could be memory

mapped input

Memory

could be memory

mapped input
Memory

memory

mapped input

Figure 3.3: The MIMD solution of the PicoRV32. Each MIMD block may have
several SIMD cores.

As we see from figure 3.3, these interconnects between the MIMD cores are not
implemented, and is a part of the future work for the project. The single MIMD
cores will mostly need data from one part of the memory, as one core will process data
from a given number of transducers before combining the results with other cores.
As the cores only read data from the transducers ”belonging” to them, a distributed
memory system is used, where each core will have a number of transducers each.

19

As there is no interconnection network as of now, the cores then have no way of
combining this data that is processed in each core.

Therefore, the program for testing the implemented versions does not run a beam-
forming algorithm, but instead runs matrix multiplication. This is done with differ-
ent data for each core, both for the SIMD and the MIMD solution.

The implemented versions are synthesized in a 22nm FDSOI technology in the SS
(Slow Slow) corner running at 0.59V. This corner is used to ensure adequate slack
for all corners. The power estimates are done at the TT (Typical Typical) corner
at 0.65V to get the most typical power estimates.

3.3 SLVT (Super Low Voltage Threshold)

For the implementation of the design an SLVT 22nm FDSOI library is used. This
might not seem the obvious choice for a low-power and relatively slow system such
as this one, as we have seen from section 2.2.4. SLVT libraries are generally good
for two things, speed or low supply voltage. When using an SLVT library for a
relatively slow design running at a ”normal” supply voltage, the design will have a
lot of leakage current.

There is one simple reason to use the SLVT library, though, there is no other option.
This FDSOI technology is strictly confidential, and only the SLVT library is available
for the designer at this time. In order to find out if it is possible to get reasonable
estimates for dynamic power and area, a test was done using another technology,
namely a 28nm FDSOI technology. The same design (the single core PicoRV32) was
synthesized in both LL (Low voltage threshold) and LR (Regular voltage threshold).
We see the result from this test in table 3.2.

Table 3.2: The power and area results from 28nm synthesis on the single core
PicoRV32. For LL and LR.

Configuration Dynamic Power Static Power Area
28nm LR 7.13µW 23.9nW 7227(µm)2

28nm LL 7.09µW 720nW 6700(µm)2

Here we see how the static power is a lot higher for the LR library, while the
dynamic power and area are relatively similar between the two libraries. As the
dynamic power and the area are so similar between LL and LR, the conclusion is
drawn that it is possible to use the 22nm FDSOI SLVT library for area and dynamic
power estimation, while not taking the static power consumption into account. This
leakage power would be lowered when using a higher-VT library. Therefore the
22nm SLVT library is used, but only dynamic power and area are seen as good
estimates.

20

3.4 Implemented Versions

To test different versions of the system and see how the power and area vary, many
variations are implemented and tested. Three parameters are varied, as shown in
table 3.3.

Table 3.3: Variables tested in the design.

Variable Range
SIMD Cores 1, 2, 4, 8, 16, 32, 64, 128, 256
MIMD Cores 1, 2, 4, 8, 16, 32, 64, 128, 256

Clock frequency [MHz] 10, 20, 50, 100, 200, 500

As the area increases with every added core, the design soon becomes too large
to synthesize in an acceptable period of time, therefore only configurations with a
maximum core count of 256 cores were tested. For instance 4 MIMD cores, each
consisting of 64 SIMD cores. The highest numbers of MIMD and SIMD cores are
therefore not tested simultaneously.

As we will see from the results, power and area estimates for higher core count could
quite easily be extrapolated from these results.

3.5 Tool Stack

3.5.1 RISC-V Toolchain

The riscv-toolchain is installed and configured to work with the riscv32im extension,
as this is used in the configuration of PicoRV32. In the toolchain, gcc is used to
compile C and assembly code to run on the simulated design. After creating the
binary file, this is converted to hexadecimal values readable to the verilog testbench
for the PicoRV32.

3.5.2 Synopsys VCS

Synopsys VCS (Verilog Compiler and Simulator) is used for simulation and verifi-
cation of the design. It compiles RTL (Register Transfer Level) Verilog code, and
together with a testbench it simulates and verifies the system. In this particular
case, with the design being a processor, the verification is done by running a com-
piled C-code on the simulated processor as discussed above. This is an effective
way of creating stimuli for the design compared to manually setting input values.
Additionally, this makes it possible for the core to print out messages through VCS,
making it easier to see what the core is doing than looking into the waveforms. VCS
may additionally dump waveforms to file, so that the power estimation of the system
may become more accurate as discussed in section 3.5.5 later [18].

21

3.5.3 GTKWave

GTKWave is used in the debugging process. It reads waveform files created by
VCS, so that all the signals inside the design are visible to the designer. This can
help to discover the smallest problems, but might also be too full of details as the
information base when dealing with a whole CPU is huge. One neat feature is the
ability to show bus signals as hexadecimal values instead of bits, which makes them
a lot more readable [19].

3.5.4 Synopsys DC

Synopsys DC (Design Compiler) compiles the verilog RTL code to a single gate level
verilog file. This is done by using a library file for the 22nm FDSOI technology. As
this technology file has the physical implementation of all the blocks used in the
design, the first physical estimates are found when synthesizing the design using
Synopsys DC. These estimates include an estimate for the power, timing and area
among others. Yet DC does not know anything about the activity of the design
when operating, it just adds a default switching of every input net. This makes
the power estimate somewhat less accurate than what could be possible using an
activity file. DC performs some optimization to the design as well, like removing
registers that do not drive any nets and removing other unused parts of the design.
DC also inserts clock gating cells, stopping the clock from propagating to parts of
the design that do not need the clock signal. These modifications could sometimes
result in some alterations to the function of the circuit. Therefore a post-synthesis
simulation is also in place. That is, running VCS again, but using the gate level
netlist instead of the RTL [20].

3.5.5 Synopsys PT

Synopsys PT (PrimeTime) is used to get more accurate estimates for the timing
and power consumption of the circuit. PT runs on the synthesized netlist, combined
with the library files containing the physical characteristics of the cells. By adding
a waveforms file from the VCD run, the power estimates become more accurate for
those scenarios run in the simulation. Here it is also possible to run several scenarios,
for example one where the design is running as fast as possible, and another where it
is sleeping. Then PrimeTime can estimate the power consumption in the scenarios,
giving a better overview of the different run modes [21].

22

Chapter 4

Results and Discussion

4.1 Area

The first results we will look into are the area estimates. In figure 4.1 we see how
the area is approximately linear to the number of cores in the design. In the figure,
the number of SIMD cores is at the x-axis, with a different line for each number
of MIMD cores. As the clock frequency does not much alter the size of the design,
only the area for the 10MHz implementations are shown. All results are shown in
appendix A.

Figure 4.1: Area per MIMD and SIMD core.

23

The results only contain estimates for when the total number of cores is a maximum
of 256, with one exception with 256 MIMD cores, each with 2 SIMD cores. The
reason for this limitation at 256 cores, is the synthesis time. As the size of the
design increases, so does the duration of the synthesis. As the area is very close to
linear, it seems that in order to get an initial estimate of a design with a greater
number of cores, one may extrapolate the data from these results.

From figure 4.1 it looks like the size of the design does not differ much between
using SIMD cores or MIMD cores. As the SIMD cores share one instruction decoder
between them while MIMD cores have one each, it would be natural for the SIMD
cores to be somewhat smaller than the MIMD cores. This small difference is seen
in figure 4.2.

Figure 4.2: The average area for each core depending on the number of cores in the
design.

We see here how the area per core is smaller for the SIMD cores than for the MIMD
cores when the number of cores gets higher. As mentioned, this is because the
SIMD cores share the instruction decoder between themselves, whereas the MIMD
cores have one each. The MIMD cores also reduce slightly in size when the number
increases. There might be some small part of the core that can be shared between
them as well, for instance some of the input ports to the design. The reduction
in average size is much bigger for the SIMD cores, as expected. The results in the
figure are again estimated at a clock frequency of 10MHz.

24

Figure 4.3 shows the area per core over frequency. Only the SIMD cores are shown,
as these vary much more than the MIMD cores. We see how the area per core stays
almost the same for each number of cores, but increases when the clock frequency
is set to 500MHz. This shows how the synthesized design is roughly the same for
all the lower frequencies.

Figure 4.3: Area per SIMD core as a function of clock frequency.

When the clock frequency reaches 500MHz the design starts to change. This might
seem strange, but has a natural explanation. This is namely where we start to
have timing problems. We will discuss this more in the next section, but for lower
frequencies we have no timing problems whatsoever, while at 500MHz the initial
synthesized design has negative slack. The synthesis tool then changes the netlist
to use other blocks in order to further speed up the design. These blocks are larger
than what is needed at the lower clock frequencies, resulting in a larger area at
500MHz.

25

4.2 Slack

As mentioned, timing issues start at around 500MHz. In figure 4.4 we see how the
slack is almost as high as the clock period for the lower frequencies. At around
100MHz we see that the slack is closer to half the clock period, and at 200MHz the
designs with the highest number of cores become dangerously close to zero slack.

Figure 4.4: Slack as a function of clock frequency for SIMD cores.

In figure 4.5 we see more clearly what happens, especially at higher frequencies.
This figure shows the slack as a factor of the clock period.

Here we see how at low frequencies the slack is almost the whole clock period. The
slack becomes a smaller and smaller part of the clock period until it drops almost
to zero at 200MHz for the designs with more cores. At 500MHz it is close to zero
for any number of SIMD cores. Yet as discussed in the area section, the synthesis
tool handles this and creates a larger design in order to fix the timing problems. We
have seen in figure 4.3 how the area increases at the highest frequencies as a result
of this.

An even higher frequency would make the design area even larger, but there is a
limit to what the synthesis tool can do. Eventually, the frequency would become too
high for the design in this technology, and changes would have to be made either to
the design or in the choice of technology in order to further speed up the clock.

26

Figure 4.5: Slack as a factor of the clock period for SIMD cores, as a function of the
clock frequency.

4.3 Power

As mentioned in section 2.2.4 about voltage threshold, only the SLVT (Super Low
Voltage Threshold) libraries are available for this design. This results in a faster
circuit, yet with a lot more leakage current. Therefore, as mentioned, the dynamic
power will be the main point of interest, while the leakage not so much.

As a 28nm FDSOI technology library was also available, a small test was done,
showing that the dynamic power stays approximately the same between different
voltage threshold libraries in 28nm, while the leakage power is very much different.
This assumption that the dynamic power stays mostly the same across different
voltage thresholds is why it is believed that the dynamic power results in 22nm are
still good estimates even when using a ”wrong” voltage threshold library for this
design, especially at the lowest clock frequencies.

Figure 4.6 shows the dynamic power divided by the number of cores for MIMD and
SIMD processors. Much like the area per core, we see here how the SIMD cores do
not need as much power as they share the instruction decoder.

27

Figure 4.6: Dynamic power divided by the number of cores.

One curious observation is the fact that when going from 128 cores to 256, the power
per core grows for both MIMD and SIMD cores. The difference is small, but still
there. One reason might be the longer wires needed in such a large design. When
the number of cores increases, the design uses a larger area, and the common nets
between the cores become longer. These are nets from the instruction decoder for
the SIMD cores, and also nets such as the clock.

Another reason could be that the synthesis tool does not perform as much optimiza-
tion. As the synthesis time becomes larger with every core, the synthesis time for
256 cores might be so long that it skips some of the fine-tuning done when fewer
cores are instantiated to save time, and therefore ends up with a slightly less power
efficient design.

In figure 4.7 we see how the dynamic power rises with a higher clock frequency.
From (2.5) we know that the dynamic power is proportional to the clock frequency
of the system and we see this connection in these results as well. This figure only
shows a variation of SIMD cores, as we have seen from figure 4.6 how the SIMD and
MIMD based designs are very close in power consumption.

28

Figure 4.7: Dynamic power as a function of frequency for SIMD cores.

In figure 4.8 we see the power consumption of a single core divided into the dynamic
power and the static leakage power. The total power is also shown.

Figure 4.8: Power per frequency for one core divided into dynamic and static power.

From this figure we see why the SLVT library is not the best library to use with
this design at low frequencies. That is, at 10MHz the leakage power contributes to
about 90% of the total power consumption. As mentioned in section 2.2.1, the best
tradeoff between speed and leakage for a design is where the leakage power is in the

29

same range as the dynamic power. Running this design at 10MHz, the SLVT is not
a good fit. The SLVT is a fast, but leaky, library. A slower library with less leakage
would fit much better for these slow clock frequencies.

When the clock frequency increases, on the other hand, the dynamic power con-
sumption increases much more than the static power. The static power stays almost
the same over frequency, as found in (2.6). At a frequency slightly below 100MHz,
the dynamic power outgrows the static power, as it continues to rise with the fre-
quency. This high-frequency area is where the SLVT, as a fast technology, has its
rightful place. Here the dynamic power is what contributes most to the total power,
and not the leakage current just wasting energy. As the slack is still positive, but
just barely, at 500MHz, this might be around the highest frequency this design can
run with this specific SLVT library. A mix of libraries could however lower the power
consumption further, using the SLVT library where speed is of utmost importance
while using slower libraries in parts of the design where high speed is not needed.

Figure 4.9: Dynamic energy per clock cycle divided by the number of cores for the
different number of SIMD cores and clock frequency.

In figure 4.9 we see the dynamic energy of a single clock cycle divided by the number
of cores. Here we see how the dynamic energy is approximately the same per cycle
independent of clock frequency. We also see how the designs with more cores tend
to use less energy per cycle per core. As we have seen from figure 4.6, the dynamic
energy per core is less when many cores are instantiated, as they share some of the
same logic. Something seems to happen at 200MHz. Here the dynamic energy is
estimated to be quite a bit higher than at the other frequencies. Why this happens
remains a mystery, but a couple of guesses could be made. Firstly, it could be some
sort of resonance frequency in some nets, resulting in a higher voltage swing, and
thus a higher energy consumption. Alternatively, it could be the power estimation
tool having trouble at this exact frequency for some obscure reason, which gives this

30

result. Either way, it is believed to be a mistake in one way or another.

If we instead take look at the total energy divided by the number of cores per cycle,
we get figure 4.10. Again we see how multiple cores tend to consume a bit less energy
per core than fewer cores. Across frequency, however, the energy varies much more.
As the leakage power stays about the same no matter the clock frequency, more
energy is consumed per cycle at a lower clock frequency. From this figure, a higher
clock frequency is definitely more energy efficient.

Figure 4.10: Total energy per clock cycle for different number of SIMD cores and
frequency.

By changing the used library to a library with a higher voltage threshold the leakage
current could be reduced for the lower frequencies, and the figure might have had a
flatter graph. Another possibility is to lower the supply voltage of the entire design.
The slack is high at the low frequencies and the leakage power is high, so lowering
the supply voltage would be possible without timing problems.

4.4 Further Discussion

For the timing results, the design is run at 0.59V in the SS corner and the power
at 0.65V in the TT corner. As the slack is way above what is needed for the slow
frequencies, the voltage could be lowered further. Unfortunately, this is the lowest
voltage available for the technology. With the slack at 10MHz, it could be possible
to run the design at voltages as low as 0.3 or 0.4V. This would significantly lower
both the dynamic and static power consumption, while still doing all the same work
in the same time period.

The CPI (Clocks Per Instruction) is measured to be 6.9 on average per core when

31

running matrix multiplication. This includes both reading the instruction, fetching
data, executing and writing back the results. However as the matrix multiplication
is rather different than a beamforming algorithm, it is hard to say anything about
the frequency and the number of cores needed to perform beamforming.

As mentioned, the design is tested by running matrix multiplication and is not
capable of running a multicore beamforming algorithm in its current state. To be
able to do beamforming if will need interconnects between the cores for sending
data and synchronization. The memory setup is a distributed memory and the
data from one core cannot be read by another. By implementing a network for
communication between the cores it would be possible to exchange the needed data.
Another solution could be a shared memory where all the cores (or cores belonging
to a group) could all read and write, but this solution introduces new problems with
read and write latency, as well as issues with data consistency.

In the design, only the actual processor is synthesized and used for power estimation.
The memory is currently a part of the testbench and does not contribute to the power
or area estimates. By adding memory and also the needed interconnection between
the cores, both the power and area estimates will increase. Yet it makes no sense
to implement the memory in this fast SLVT library, as the implementation of a
low-area low-energy memory is a problem in itself, and would not be a good match
for this library. The memory is therefore left out of the power and area estimates.

A clean way of reading input data from the transducers is mapping them to addresses
in the memory, so-called memory-mapped I/O. This makes the input data ”look like”
any other data in the memory, except it is read-only. The cores will read from the
memory address belonging to the transducer it needs, and get the sample from the
transducer. A FIFO (First In, First Out) array could be mapped into the memory,
so that the N last samples are available to the processor. This way, reading a delayed
sample will be an easy task.

A simple but powerful improvement to the cores would be the ability to vectorize
the data into two 16 bit parts. As the transducer data is only 12 bits wide while
being processed on a 32-bit processor, the high bits are not used in the calculations.
An improvement would be the ability to process two values at the same time. One
sample would use the lower 16 bits, while the other uses the high 16 bits. This
would double the throughput without any major changes to the core, processing
two samples at the time period previously used to only process one.

A final, yet important possibility is sleep mode for the processor. As the transducers
have a burst period of 300-400µs, the processor could be disabled and power gated
between these bursts. This would reduce the leakage power significantly in these
periods and thus contribute to a lower total power consumption. As it takes some
time to wake from sleep mode, the periods where the processor is in sleep mode
would have to be significantly long in order to save energy. If not, the extra power
used to put it into and out of sleep mode would be more than the saved energy.
If the period between the burst is not long enough, the time when the probe is on
while not scanning a patient certainly is. In these periods between ultrasound scans
when the image processing is not needed at all, the processor should have a sleep
mode enabled to save power.

32

Chapter 5

Conclusion

In this project, the PicoRV32, a low area RISC-V-based processor, has been modified
to have several SIMD cores divided into one or more MIMD cores. The processor
is created with processing ultrasound transducer data from 10 000 transducers in
parallel at a 10MHz sample rate in mind. As the processor will be internally in the
ultrasound probe, there are strict temperature and power limitations at 40°C and
3W respectively for the whole probe.

In order to do this processing, a SIMD version and a MIMD version has been
implemented and tested for 1 to 256 cores each, as well as clock frequency from
10MHz to 500MHz. As no interconnection between the cores is implemented, the
test program runs matrix multiplication. The area estimates are approximately
5500µm2 for each SIMD core and 5800µm2 for the MIMD cores due to the fact that
the SIMD cores share some parts of the logic.

The SIMD cores have a dynamic power dissipation of approximately 12.1µW per
core while dissipating almost 12.3µW per core for the MIMD cores at 10MHz. At
500MHz the dynamic power dissipation is 605µW per SIMD core and 613µW for
each MIMD core.

As there is a lot of slack in the design, a higher voltage threshold or a lower supply
voltage would be beneficial in order to save more power. Still, as the power dissi-
pation for the design is relatively small compared to the 3W power budget for the
entire probe it seems such a system could be useful in the next generation ultrasound
probes.

33

5.1 Future Work

First and foremost, the design needs a NoC (Network on Chip) to be able to com-
municate between the cores. Without this, the different cores cannot pass data
between them to perform a beamforming algorithm. Beamforming is dependent on
data from several of the cores, and this is needed to pass the data.

With the NoC in place, the next improvement would be for the processor to perform
an actual beamforming algorithm. This would give us better results of how much
power is needed for this kind of computation. From these results, it would be possible
to draw a conclusion as to how many cores are needed in such a system in order to
perform the beamforming algorithm in time.

Another improvement would be to try and synthesize the design at a high voltage
threshold. For the lower range of the tested frequencies, a high threshold library
would give much better estimates for the static power consumption of the design.
And for the higher frequency tests as well, it would be interesting to see how much
of the design actually needs the speed an SLVT library brings, and how much of it
could run just as good at a high voltage threshold library.

Sleep mode would also help drastically on the power consumption, and should ab-
solutely be implemented into the design. After implementing a sleep mode it would
be interesting to see how much power is saved by going into sleep. This would give a
much more accurate estimate of how much the final power dissipation of the design
would be.

Finally, the memory block would have to be implemented into the design. When
the memory block is also present in the design, the final estimates for power and
area could be found. After adding the memory into the design, further tweaks of
the design would be in the software running on the processor.

34

Bibliography

[1] Libertario Demi. Practical guide to ultrasound beam forming: Beam pattern
and image reconstruction analysis. Applied sciences, 8(9):1544, 2018. ISSN
2076-3417.

[2] Murtaza Ali, Dave Magee, and Udayan Dasgupta. Signal processing overview of
ultrasound systems for medical imaging. SPRAB12, Texas Instruments, Texas,
2008.

[3] Holger Hewener, Christoph Risser, Selina Barry-Hummel, Heinrich Fonfara,
Marc Fournelle, and Steffen Tretbar. Integrated 1024 channel ultrasound beam-
former for ultrasound research. In 2020 IEEE International Ultrasonics Sym-
posium (IUS), pages 1–4, 2020. doi: 10.1109/IUS46767.2020.9251700.

[4] Claire Doody, Hazel Starritt, and Francis Duck. Prediction of the temperature
rise at the surface of clinical ultrasound transducers. BMUS Bulletin, 11(3):
26–28, 2003. doi: 10.1177/1742271X0301100307. URL https://doi.org/10.

1177/1742271X0301100307.

[5] Yanick Baribeau, Aidan Sharkey, Omar Chaudhary, Santiago Krumm, Huma
Fatima, Feroze Mahmood, and Robina Matyal. Handheld point-of-care ultra-
sound probes: The new generation of pocus. Journal of cardiothoracic and
vascular anesthesia, 34(11):3139–3145, 2020. ISSN 1053-0770.

[6] 2022. URL https://riscv.org/.

[7] Jan Gray. Grvi phalanx: A massively parallel risc-v fpga accelerator ac-
celerator. In 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 17–20, 2016. doi:
10.1109/FCCM.2016.12.

[8] Jacob Benesty. Fundamentals of differential beamforming, 2016.

[9] John G. Proakis and Dimitris G. Monolakis. Digital signal processing, chapter 1.
Pearson Prentice Hall, Upper Saddle River, N.J, 4th ed. edition, 2007. ISBN
0131873741.

[10] Neil H.EWeste and David M. Harris. Integrated circuit design. Pearson, Boston,
Mass, 4th ed. edition, 2011. ISBN 9780321696946.

[11] Paul Horowitz. The art of electronics, chapter 10. Cambridge University Press,
New York, 3rd ed. edition, 2015. ISBN 9780521809269.

35

https://doi.org/10.1177/1742271X0301100307
https://doi.org/10.1177/1742271X0301100307
https://riscv.org/

[12] A Amara and P Royannez. Vhdl for low power. In C Piguet, editor, Low-Power
CMOS Circuits: Technology, Logic Design and CAD Tools, chapter 11. CRC
Press, 1st ed. edition, 2006. doi: https://doi.org/10.1201/9781315220710.

[13] Kangguo Cheng and Ali Khakifirooz. Fully depleted soi (fdsoi) technology.
Science China. Information sciences, 59(6):1–15, 2016. ISSN 1674-733X.

[14] Peter S Pacheco. An introduction to parallel programming, 2011.

[15] L. Ciminiera, C. Demartini, and A. Serra. Interconnection networks for mimd
machines. In Jürg D. Becker and Ignaz Eisele, editors, WOPPLOT 83 Par-
allel Processing: Logic, Organization, and Technology, pages 110–131, Berlin,
Heidelberg, 1984. Springer Berlin Heidelberg. ISBN 978-3-540-38803-6.

[16] 2019. URL https://riscv.org/technical/specifications/.

[17] Roland Höller, Dominic Haselberger, Dominik Ballek, Peter Rössler, Markus
Krapfenbauer, and Martin Linauer. Open-source risc-v processor ip cores for
fpgas — overview and evaluation. In 2019 8th Mediterranean Conference on
Embedded Computing (MECO), pages 1–6, 2019. doi: 10.1109/MECO.2019.
8760205.

[18] 2022. URL https://www.synopsys.com/verification/simulation/vcs.

html.

[19] 2022. URL http://gtkwave.sourceforge.net/.

[20] 2022. URL https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/dc-ultra.html.

[21] 2022. URL https://www.synopsys.com/implementation-and-signoff/

signoff/primetime.html.

36

https://riscv.org/technical/specifications/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.synopsys.com/verification/simulation/vcs.html
http://gtkwave.sourceforge.net/
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/dc-ultra.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html
https://www.synopsys.com/implementation-and-signoff/signoff/primetime.html

Appendix A

Table of All Data

37

Table A.1: Table of all configurations with results.

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S1 M1 ck10MHz 5845 8383 97018 1.135 11.16 101.5 113.8
S1 M1 ck20MHz 5845 8383 47132 2.269 22.31 101.5 126.1
S1 M1 ck50MHz 5847 8351 17315 5.673 55.78 102.9 164.3
S1 M1 ck100MHz 5847 8351 7315 11.35 111.6 102.9 225.8
S1 M1 ck200MHz 5847 8352 2210 22.69 246.2 102.9 371.7
S1 M1 ck500MHz 5961 8635 0.12 56.91 557.5 106.1 720.5
S1 M2 ck10MHz 11628 16737 96901 2.269 22.3 202.3 226.9
S1 M2 ck20MHz 11628 16739 46901 4.538 44.6 202.4 251.5
S1 M2 ck50MHz 11633 16668 17090 11.34 111.5 205.0 327.8
S1 M2 ck100MHz 11633 16669 7090 22.69 223.0 205.0 450.7
S1 M2 ck200MHz 11633 16668 2090 45.38 492.1 205.0 742.4
S1 M2 ck500MHz 11861 17202 0.12 113.8 1115 211.1 1440
S1 M4 ck10MHz 23196 33445 96901 4.538 44.58 404.0 453.1
S1 M4 ck20MHz 23196 33449 46901 9.075 89.16 404.0 502.2
S1 M4 ck50MHz 23206 33302 17090 22.69 222.9 409.2 654.9
S1 M4 ck100MHz 23206 33302 7090 45.38 445.8 409.2 900.4
S1 M4 ck200MHz 23206 33303 2090 90.75 983.8 409.2 1484
S1 M4 ck500MHz 23674 34285 0.44 227.7 2231 421.0 2879
S1 M8 ck10MHz 46320 66734 96901 9.07 89.15 808.0 906.2
S1 M8 ck20MHz 46320 66742 46901 18.14 178.3 808.0 1003
S1 M8 ck50MHz 46339 66444 17090 45.35 445.8 818.5 1310
S1 M8 ck100MHz 46339 66444 7090 90.7 891.5 818.5 1801
S1 M8 ck200MHz 46340 66446 2090 181.4 1967 818.5 2967
S1 M8 ck500MHz 47366 68535 0.31 454.9 4460 844.5 5760
S1 M16 ck10MHz 92599 133584 96897 18.14 178.3 1616 1813
S1 M16 ck20MHz 92599 133600 46897 36.28 356.6 1617 2009
S1 M16 ck50MHz 92639 132994 17089 90.69 891.5 1637 2620
S1 M16 ck100MHz 92638 132994 7090 181.4 1783 1637 3602
S1 M16 ck200MHz 92638 132993 2090 362.8 3934 1637 5935
S1 M16 ck500MHz 94759 136821 2.89 909.9 8921 1690 11500
S1 M32 ck10MHz 185082 266935 96897 36.29 356.6 3229 3621

38

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S1 M32 ck20MHz 185082 266966 46897 72.59 713.1 3228 4014
S1 M32 ck50MHz 185152 265895 17088 181.5 1783 3270 5235
S1 M32 ck100MHz 185152 265897 7089 362.9 3566 3270 7199
S1 M32 ck200MHz 185152 265896 2088 725.9 7868 3270 11900
S1 M32 ck500MHz 188797 275014 0.0 1823 17800 3360 23000
S1 M64 ck10MHz 370200 534272 96897 72.56 713.1 6463 7249
S1 M64 ck20MHz 370203 534350 46897 145.1 1426 6464 8035
S1 M64 ck50MHz 370342 532239 17085 363.0 3567 6547 10500
S1 M64 ck100MHz 370340 532233 7085 725.6 7132 6547 14400
S1 M64 ck200MHz 370343 532242 2085 1451 15699 6547 23700
S1 M64 ck500MHz 377771 550989 0.01 3639 35600 6727 46000
S1 M128 ck10MHz 740416 1068406 96900 145.1 1426 12900 14500
S1 M128 ck20MHz 740419 1068554 46897 290.2 2853 12900 16100
S1 M128 ck50MHz 740413 1068517 16897 725.5 7131 12900 20800
S1 M128 ck100MHz 740413 1068518 6897 1451 14300 12900 28600
S1 M128 ck200MHz 740418 1068546 1897 2902 31500 12900 47300
S1 M128 ck500MHz 755243 1100904 0.03 7282 71300 13400 92000
S1 M256 ck10MHz 1480993 2138320 97173 290.2 2853 25900 29000
S1 M256 ck20MHz 1480996 2138336 47170 580.4 5705 25900 32099
S1 M256 ck50MHz 1481010 2138378 17132 1451 14300 25900 41600
S1 M256 ck100MHz 1481006 2138363 7132 2902 28500 25900 57300
S1 M256 ck200MHz 1481191 2138746 2132 5804 62900 25900 94600
S1 M256 ck500MHz 1515290 2219875 0.0 14600 142400 27000 183900
S2 M1 ck10MHz 11310 16260 97007 2.267 22.11 196.4 220.7
S2 M1 ck20MHz 11310 16262 47007 4.534 44.23 196.4 245.1
S2 M1 ck50MHz 11317 16157 17315 11.33 110.6 199.0 320.9
S2 M1 ck100MHz 11317 16158 7210 22.67 221.1 199.0 442.8
S2 M1 ck200MHz 11317 16158 2210 45.34 487.5 199.0 731.9
S2 M1 ck500MHz 11547 16817 0.3 113.7 1106 205.5 1426
S2 M2 ck10MHz 22558 32489 96901 4.533 44.22 392.0 440.7
S2 M2 ck20MHz 22558 32495 46901 9.067 88.43 392.0 489.5
S2 M2 ck50MHz 22573 32278 17090 22.67 221.1 397.2 641.0
S2 M2 ck100MHz 22573 32279 7090 45.33 442.2 397.3 884.8

39

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S2 M2 ck200MHz 22573 32279 2090 90.67 974.8 397.2 1463
S2 M2 ck500MHz 23032 33444 0.01 227.4 2212 409.5 2849
S2 M4 ck10MHz 45045 64821 96901 9.065 88.43 783.1 880.6
S2 M4 ck20MHz 45045 64828 46901 18.13 176.9 783.1 978.1
S2 M4 ck50MHz 45074 64394 17090 45.33 442.1 793.7 1281
S2 M4 ck100MHz 45074 64397 7090 90.76 884.8 793.7 1769
S2 M4 ck200MHz 45074 64396 2090 181.3 1949 793.6 2924
S2 M4 ck500MHz 46082 66964 1.26 454.6 4424 820.8 5700
S2 M8 ck10MHz 90032 129731 96897 18.13 176.8 1566 1761
S2 M8 ck20MHz 90032 129749 46897 36.26 353.7 1566 1955
S2 M8 ck50MHz 90089 128890 17090 90.64 884.2 1587 2562
S2 M8 ck100MHz 90089 128888 7090 181.3 1768 1587 3537
S2 M8 ck200MHz 90089 128888 2090 362.6 3898 1587 5848
S2 M8 ck500MHz 91973 134184 0.08 909.0 8846 1637 11400
S2 M16 ck10MHz 179983 259137 96897 36.26 353.7 3130 3520
S2 M16 ck20MHz 179983 259173 46897 72.52 707.4 3130 3909
S2 M16 ck50MHz 180089 257612 17090 181.3 1768 3172 5122
S2 M16 ck100MHz 180088 257612 7090 362.5 3537 3172 7071
S2 M16 ck200MHz 180089 257613 2090 725.2 7797 3172 11700
S2 M16 ck500MHz 183120 265226 0.05 1819 17700 3257 22700
S2 M32 ck10MHz 359931 518469 96897 72.54 707.3 6260 7040
S2 M32 ck20MHz 359931 518534 46897 145.1 1415 6260 7820
S2 M32 ck50MHz 360143 515367 17085 362.8 3537 6345 10200
S2 M32 ck100MHz 360143 515366 7085 725.3 7073 6345 14100
S2 M32 ck200MHz 360143 515370 2085 1451 15600 6344 23400
S2 M32 ck500MHz 366089 529812 0.02 3638 35300 6506 45500
S2 M64 ck10MHz 719898 1037549 96900 145.0 1415 12500 14100
S2 M64 ck20MHz 719896 1037680 46900 290.1 2829 12500 15600
S2 M64 ck50MHz 719895 1037696 16897 725.2 7074 12500 20300
S2 M64 ck100MHz 719901 1037738 6897 1450 14100 12500 28100
S2 M64 ck200MHz 719903 1037746 1897 2901 31200 12500 46600
S2 M64 ck500MHz 733745 1067065 0.0 7277 70700 13000 91000
S2 M128 ck10MHz 1440043 2075278 97126 290.0 2829 25100 28200

40

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S2 M128 ck20MHz 1440049 2075416 47126 580.1 5659 25100 31300
S2 M128 ck50MHz 1440049 2075421 17126 1450 14100 25100 40700
S2 M128 ck100MHz 1440056 2075453 7126 2900 28300 25100 56300
S2 M128 ck200MHz 1440046 2075433 2126 5802 62400 25100 93200
S2 M128 ck500MHz 1472884 2143493 0.0 14500 141300 26200 182000
S2 M256 ck10MHz 2881241 4159350 97126 580.1 5658 50100 56400
S4 M1 ck10MHz 22234 31910 97004 4.551 44.05 385.7 434.3
S4 M1 ck20MHz 22234 31915 47004 9.102 88.1 385.7 482.9
S4 M1 ck50MHz 22251 31677 17193 22.76 220.2 391.0 634.0
S4 M1 ck100MHz 22251 31676 7193 45.51 440.5 391.0 877.0
S4 M1 ck200MHz 22251 31676 2193 91.02 970.0 391.0 1452
S4 M1 ck500MHz 22711 33223 0.06 228.4 2205 403.7 2837
S4 M2 ck10MHz 44408 63793 96901 9.102 88.09 770.6 867.8
S4 M2 ck20MHz 44408 63801 46901 18.2 176.2 770.7 965.0
S4 M2 ck50MHz 44441 63321 17090 45.51 440.4 781.2 1267
S4 M2 ck100MHz 44441 63318 7090 91.02 880.9 781.2 1753
S4 M2 ck200MHz 44441 63319 2090 182.0 1940 781.2 2903
S4 M2 ck500MHz 45339 66186 0.03 456.6 4407 806.0 5669
S4 M4 ck10MHz 88730 127364 96898 18.21 176.2 1540 1735
S4 M4 ck20MHz 88730 127381 46898 36.41 352.4 1540 1929
S4 M4 ck50MHz 88793 126419 17090 91.02 880.9 1562 2533
S4 M4 ck100MHz 88793 126414 7090 182.0 1762 1562 3505
S4 M4 ck200MHz 88794 126417 2090 364.1 3879 1562 5805
S4 M4 ck500MHz 90873 131361 0.4 912.8 8814 1619 11300
S4 M8 ck10MHz 177397 254762 96897 36.4 352.3 3080 3469
S4 M8 ck20MHz 177397 254796 46897 72.81 704.7 3080 3858
S4 M8 ck50MHz 177516 253005 17090 182.0 1762 3123 5066
S4 M8 ck100MHz 177515 253003 7085 364.2 3524 3123 7011
S4 M8 ck200MHz 177515 253003 2086 728.2 7759 3123 11600
S4 M8 ck500MHz 180497 257564 0.2 1826 17600 3210 22600
S4 M16 ck10MHz 354713 509288 96897 72.49 704.4 6161 6938
S4 M16 ck20MHz 354713 509351 46897 145.0 1409 6161 7715
S4 M16 ck50MHz 354954 505759 17078 362.4 3522 6246 10100

41

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S4 M16 ck100MHz 354955 505759 7089 724.9 7044 6246 14000
S4 M16 ck200MHz 354954 505755 2089 1450 15500 6246 23200
S4 M16 ck500MHz 360931 514672 0.01 3635 35200 6418 45200
S4 M32 ck10MHz 709473 1019027 96897 145.6 1409 12300 13900
S4 M32 ck20MHz 709472 1019147 46900 291.3 2819 12300 15400
S4 M32 ck50MHz 709476 1019175 16897 728.2 7047 12300 20100
S4 M32 ck100MHz 709477 1019180 6897 1456 14100 12300 27900
S4 M32 ck200MHz 709476 1019172 1897 2913 31000 12300 46300
S4 M32 ck500MHz 724183 1039650 0.02 7306 70400 12900 90600
S4 M64 ck10MHz 1419321 2039762 96976 291.3 2819 24700 27800
S4 M64 ck20MHz 1419319 2039938 46978 582.5 5637 24700 30900
S4 M64 ck50MHz 1419322 2039991 16978 1456 14100 24700 40200
S4 M64 ck100MHz 1419320 2039993 6978 2913 28200 24700 55800
S4 M64 ck200MHz 1419318 2039980 1978 5825 62100 24700 92500
S4 M64 ck500MHz 1447122 2094657 0.0 14600 140800 25700 181200
S8 M1 ck10MHz 44079 63276 96446 9.102 87.89 764.6 861.6
S8 M1 ck20MHz 44079 63289 46499 18.21 175.8 764.6 958.6
S8 M1 ck50MHz 44114 62784 16592 45.51 439.4 775.2 1260
S8 M1 ck100MHz 44113 62781 6586 91.02 878.9 775.2 1745
S8 M1 ck200MHz 44113 62780 1586 182.0 1935 775.2 2892
S8 M1 ck500MHz 45119 63993 0.07 456.8 4398 802.6 5658
S8 M2 ck10MHz 88077 126243 96498 18.21 175.8 1528 1722
S8 M2 ck20MHz 88077 126265 46489 36.41 351.6 1529 1917
S8 M2 ck50MHz 88146 125257 16598 91.03 878.9 1550 2520
S8 M2 ck100MHz 88146 125258 6586 182.1 1758 1550 3490
S8 M2 ck200MHz 88145 125257 1586 364.1 3870 1550 5784
S8 M2 ck500MHz 90062 127696 0.03 913.6 8795 1601 11300
S8 M4 ck10MHz 176096 252487 96498 36.41 351.6 3056 3444
S8 M4 ck20MHz 176096 252521 46447 72.83 703.2 3056 3832
S8 M4 ck50MHz 176225 250611 16586 182.1 1758 3099 5039
S8 M4 ck100MHz 176225 250610 6586 364.1 3516 3099 6979
S8 M4 ck200MHz 176225 250613 1586 728.2 7739 3099 11600
S8 M4 ck500MHz 179044 250671 0.01 1827 17600 3185 22600

42

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S8 M8 ck10MHz 352107 505109 96485 72.83 703.1 6110 6886
S8 M8 ck20MHz 352108 505177 46445 145.7 1406 6110 7662
S8 M8 ck50MHz 352109 505174 16446 364.2 3516 6110 9990
S8 M8 ck100MHz 352109 505183 6447 728.3 7031 6110 13900
S8 M8 ck200MHz 352108 505178 1446 1457 15500 6110 23000
S8 M8 ck500MHz 357999 502229 0.0 3658 35100 6368 45200
S8 M16 ck10MHz 704193 1009962 96444 144.9 1406 12200 13800
S8 M16 ck20MHz 704193 1010095 46446 289.9 2812 12200 15300
S8 M16 ck50MHz 704195 1010123 16413 724.7 7030 12200 20000
S8 M16 ck100MHz 704195 1010127 6410 1449 14100 12200 27700
S8 M16 ck200MHz 704194 1010121 1411 2899 31000 12200 46100
S8 M16 ck500MHz 716736 1003013 0.0 7281 70300 12700 90300
S8 M32 ck10MHz 1408749 2021994 96412 291.3 2812 24400 27600
S8 M32 ck20MHz 1408770 2022264 46415 582.6 5625 24400 30700
S8 M32 ck50MHz 1408841 2022289 16414 1456 14100 24400 40000
S8 M32 ck100MHz 1408845 2022295 6415 2913 28100 24500 55500
S8 M32 ck200MHz 1408838 2022276 1414 5826 61900 24500 92200
S8 M32 ck500MHz 1436376 2025698 0.0 14600 140600 25500 180700
S16 M1 ck10MHz 87752 125586 96364 18.21 175.6 1522 1716
S16 M1 ck20MHz 87752 125609 46366 36.41 351.2 1522 1910
S16 M1 ck50MHz 87752 125609 16366 91.03 878.0 1522 2491
S16 M1 ck100MHz 87751 125606 6362 182.4 1757 1522 3462
S16 M1 ck200MHz 87750 125599 823.27 364.1 3865 1522 5751
S16 M1 ck500MHz 89940 130282 0.06 912.9 8784 1604 11300
S16 M2 ck10MHz 175443 251322 96364 36.41 351.2 3043 3430
S16 M2 ck20MHz 175441 251361 46366 72.82 702.3 3043 3818
S16 M2 ck50MHz 175440 251364 16195 182.1 1756 3043 4981
S16 M2 ck100MHz 175442 251370 6365 364.1 3512 3043 6919
S16 M2 ck200MHz 175438 251355 818.82 728.1 7729 3043 11500
S16 M2 ck500MHz 179061 250014 0.07 1825 17500 3192 22600
S16 M4 ck10MHz 350831 502345 96193 72.81 702.3 6086 6861
S16 M4 ck20MHz 350825 502404 46365 145.6 1405 6086 7636
S16 M4 ck50MHz 350824 502412 16250 364.0 3512 6086 9961

43

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S16 M4 ck100MHz 350824 502409 5990 728.1 7023 6086 13800
S16 M4 ck200MHz 350819 502384 820.6 1456 15500 6085 23000
S16 M4 ck500MHz 358063 499503 0.01 3652 35100 6380 45100
S16 M8 ck10MHz 701624 1004766 95980 145.6 1405 12200 13700
S16 M8 ck20MHz 701613 1004884 46365 291.2 2809 12200 15300
S16 M8 ck50MHz 701615 1004919 16365 728.1 7023 12200 19900
S16 M8 ck100MHz 701616 1004926 6194 1456 14000 12200 27700
S16 M8 ck200MHz 701601 1004855 818.67 2912 30900 12200 46000
S16 M8 ck500MHz 717298 1013692 0.01 7303 70200 12700 90200
S16 M16 ck10MHz 1403530 2010567 95956 291.2 2809 24400 27500
S16 M16 ck20MHz 1403542 2010837 45617 582.5 5618 24400 30600
S16 M16 ck50MHz 1403571 2010856 16215 1456 14000 24400 39900
S16 M16 ck100MHz 1403573 2010842 5959 2912 28100 24400 55400
S16 M16 ck200MHz 1403566 2010810 787.02 5825 61800 24400 92000
S16 M16 ck500MHz 1435709 2036522 0.06 14600 140300 25600 180500
S32 M1 ck10MHz 175119 250777 95172 36.34 351.0 3036 3423
S32 M1 ck20MHz 175116 250807 45181 72.68 701.9 3036 3811
S32 M1 ck50MHz 175451 249117 15221 181.9 1755 3024 4961
S32 M1 ck100MHz 175453 249142 5202 363.9 3510 3024 6898
S32 M1 ck200MHz 175450 249123 179.62 727.8 7726 3024 11500
S32 M1 ck500MHz 178245 245043 0.25 1822 17500 3166 22500
S32 M2 ck10MHz 350186 501238 95173 72.7 702.0 6073 6847
S32 M2 ck20MHz 350182 501299 45180 145.4 1404 6073 7622
S32 M2 ck50MHz 350992 495849 15348 363.9 3510 6133 10000
S32 M2 ck100MHz 350991 495839 5343 727.8 7020 6133 13900
S32 M2 ck200MHz 350858 497901 176.2 1455 15500 6049 23000
S32 M2 ck500MHz 356949 491874 0.02 3645 35100 6343 45100
S32 M4 ck10MHz 700327 1002556 94331 145.4 1404 12100 13700
S32 M4 ck20MHz 700319 1002698 45166 290.8 2808 12100 15200
S32 M4 ck50MHz 701661 995774 15175 727.9 7020 12100 19800
S32 M4 ck100MHz 701651 995714 5151 1456 14000 12100 27600
S32 M4 ck200MHz 701652 995727 162.58 2912 30900 12100 45900
S32 M4 ck500MHz 718792 1009055 0.0 7296 70200 12800 90200

44

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S32 M8 ck10MHz 1400976 2006171 95105 290.8 2808 24300 27400
S32 M8 ck20MHz 1400978 2006454 45139 581.7 5615 24300 30500
S32 M8 ck50MHz 1403573 1992546 15133 1456 14000 24200 39700
S32 M8 ck100MHz 1403566 1992532 5122 2912 28100 24200 55200
S32 M8 ck200MHz 1403559 1992521 113.09 5824 61800 24200 91800
S32 M8 ck500MHz 1437566 2010748 0.01 14600 140300 25600 180500
S64 M1 ck10MHz 349880 500714 94344 72.58 701.7 6064 6839
S64 M1 ck20MHz 349874 500798 45179 145.2 1404 6064 7613
S64 M1 ck50MHz 350536 497494 14010 363.4 3509 6040 9912
S64 M1 ck100MHz 350536 497492 4159 726.8 7018 6040 13800
S64 M1 ck200MHz 350660 495576 49.01 1453 15500 6041 22900
S64 M1 ck500MHz 356076 488539 0.04 3643 35100 6318 45000
S64 M2 ck10MHz 699734 1001685 94342 145.2 1403 12100 13700
S64 M2 ck20MHz 699719 1001808 45243 290.4 2807 12100 15200
S64 M2 ck50MHz 701011 994947 14121 726.7 7017 12100 19800
S64 M2 ck100MHz 701020 995010 4239 1453 14000 12100 27600
S64 M2 ck200MHz 701277 991148 44.58 2907 30900 12100 45900
S64 M2 ck500MHz 717915 1001009 0.67 7286 70100 12800 90200
S64 M4 ck10MHz 1399763 2004253 94237 290.4 2807 24300 27400
S64 M4 ck20MHz 1399761 2004507 44019 580.7 5614 24300 30500
S64 M4 ck50MHz 1402229 1990703 14050 1454 14000 24200 39700
S64 M4 ck100MHz 1402242 1990767 4880 2907 28100 24200 55100
S64 M4 ck200MHz 1402853 1982215 7.86 5814 61800 24200 91800
S64 M4 ck500MHz 1436402 2003027 0.0 14600 140300 25500 180400
S128 M1 ck10MHz 699468 1001266 93462 145.0 1403 12100 13700
S128 M1 ck20MHz 699441 1001351 43322 290.1 2807 12100 15200
S128 M1 ck50MHz 700716 994472 13809 726.1 7017 12100 19800
S128 M1 ck100MHz 700960 991057 4033 1452 14000 12100 27600
S128 M1 ck200MHz 701046 992147 0.0 2905 30900 12100 45900
S128 M1 ck500MHz 717477 997898 0.0 7278 70100 12700 90100
S128 M2 ck10MHz 1399207 2003368 93133 290.1 2807 24300 27400
S128 M2 ck20MHz 1399214 2003633 42824 580.2 5613 24300 30500
S128 M2 ck50MHz 1401655 1990000 13533 1452 14000 24200 39600

45

Configuration Design Area Leaf Cell Count Critical Path Slack Net Switching Power Cell Internal Power Cell Leakage Power Total Power
µM² ps µW µW µW µW

S128 M2 ck100MHz 1402201 1981812 3815 2905 28100 24200 55100
S128 M2 ck200MHz 1402541 1983804 0.0 5809 61800 24200 91800
S128 M2 ck500MHz 1434986 1998524 -0.06 14600 140200 25500 180300
S256 M1 ck10MHz 1399401 1954970 92768 290.0 2807 24100 27200
S256 M1 ck20MHz 1399391 1955154 41094 580.0 5613 24100 30300
S256 M1 ck50MHz 1401664 1946639 11939 1450 14000 24100 39600
S256 M1 ck100MHz 1403276 1935280 4024 2900 28100 24200 55100
S256 M1 ck200MHz 1403114 1934632 44.52 5800 61800 24200 91700
S256 M1 ck500MHz 1432585 1992355 0.0 14600 140200 25400 180200

46

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
le

ct
ro

ni
c

Sy
st

em
s

Audun Asdal

A Low Power Parallel RISC-V
Processor in 22nm FDSOI Technology
for Medical Ultrasound

Master’s thesis in Electronic Systems Design and Innovation
Supervisor: Trond Ytterdal
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Ultrasound Processing
	Existing Technology
	Handheld Probes
	Traditional Ultrasound Systems
	RISC-V
	Custom Hardware Implementation

	The Goal
	Overview of the Report

	Theory
	Ultrasound Beamforming
	Low Level
	Power in Digital Circuits
	Clock Gating
	Power Gating
	Voltage Threshold
	22nm FDSOI

	High Level
	Multiprocessing
	SIMD
	MIMD
	Distributed vs Shared Memory
	Interconnects
	RISC-V

	Implementation
	Data Rate and Power Budget
	PicoRV32
	SLVT (Super Low Voltage Threshold)
	Implemented Versions
	Tool Stack
	RISC-V Toolchain
	Synopsys VCS
	GTKWave
	Synopsys DC
	Synopsys PT

	Results and Discussion
	Area
	Slack
	Power
	Further Discussion

	Conclusion
	Future Work

	Bibliography
	Table of All Data

