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ABSTRACT

Analog-to-digital converters (ADCs) are important in many applications. Recently, a new type of
converter has been emerging called control-bounded converters. It offers a different perspective to
the ADC process. This framework is less restrictive, making new and interesting implementations
possible. There is a lack of data on the associated digital filter as this conversion concept is
very recent. This thesis will try to rectify that by exploring digital filter implementations for a
single-input system.

Three implementations will be presented in this thesis. A batch implementation using recursive
calculations for both the lookahead and lookback. A finite impulse response (FIR) implementation
which directly calculates the result from lookup tables. And a hybrid between these, using recursive
calculations for the lookback and lookup tables for the lookahead. Additionally, a variation of each
implementation will be presented. An implementation that downsamples in two stages will try to
reduce the area of the implementations with recursions. And an approach using duplicate circuits
will attempt to further lower the power consumption of the FIR implementation.

The area and power consumption of these implementations will be explored. The thesis will
attempt to establish trends over different parameters of the control-bounded system. Parameters
such as filter depth, downsampling rate, system order, and clock frequency.

In general, this thesis will show the FIR implementation having the most favorable scaling. It will
achieve 313pyW dynamic power consumption with 60dB signal-noise ratio and 40MS/s. The thesis
will show that the FIR implementation is best suited for this application in most cases. There will
also be shown a few cases where the hybrid implementation may be better.
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SAMMENDRAG

Analog-til-digital omformere (ADC) er viktige i mange applikasjoner. Nylig har en ny type om-
former vokst frem, kalt kontrollbegrenset (control-bounded) omforming. Den tilbyr et annerledes
perspektiv av ADC prosessen. Dette rammeverket er mindre begrensende, noe som gjgr nye og
interessante implementasjoner mulige. Det mangler informasjon om det tilhgrende digitale filteret
ettersom denne metoden for omforming er sa ny. Denne oppgaven vil prgve a lindre denne mangelen
ved & utforske digitale filter implementasjoner for et enkeltinngangs system.

Tre implementasjoner vil bli presentert i denne oppgaven. En batch implementasjon som bruker
rekursive kalkulasjoner bade for framoverblikk og bakoverblikk. En avgrenset impuls respons (FIR)
implementasjon som beregner resultatet direkte, basert pa oppslagstabeller. Og en hybrid mellom
disse, hvor rekursive kalkulasjoner bruker i bakoverblikket og oppslagstabeller brukes til foroverb-
likket. I tillegg vil en variasjon av hver implementasjon bli presentert. En implementasjon hvor
nedsampling skjer i to steg som vil prgve a redusere arealet til implementasjonene med rekurs-
joner. Og en fremgangsmate som bruker kopier av kretsen i et forsgk pa a senke kraftbruken til
FIR implementasjonen ytterligere.

Arealet og kraftbruken til disse implementasjonene vil bli utforsket. Oppgaven vil prgve a etablere
trender over forskjellige parametre i det kontrollbegrensede systemet. Parametre som: filter dypde,
nedsamplingsrate, systemorden, og klokkefrekvens.

Generelt vil denne oppgaven vise at FIR implementasjonen har den mest gunstige veksten. Den
vil oppna en dynamisk kraftbruk pa 313pW med 60dB signal-stgy rate og 40MS/s. Oppgaven vil
vise at FIR implementasjonen passer best til denne applikasjonen i de fleste tilfeller. Det vil ogsa
bli vist et par tilfeller hvor hybrid implementasjonen kan veere bedre.
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1 Introduction

These days we are surrounded by digital systems, but all of them must interact with an analog
world. Converters between the analog and digital domains will remain important. There are many
applications with different needs, and many approaches used to achieve them.

One application is ultrasound imaging which requires fairly fast conversion, typically in the range
of 10MS/s to 40MS/s. The converter’s precision will affect the quality of images. At the same
time, since this is an imaging application it will have many converters placed close together. This
means an increase in power consumed by a converter will be a massive increase for the chip as a
whole. So a low power converter is desired.

A new approach for analog to digital conversion has been emerging, called control-bounded con-
version. Which inverts the approach used by conventional ADCs. This gives more freedom for
analog design, creating a lot of room for innovation. While the analog part of the converter may
see a lot of interesting new solutions it will still need a digital filter.

There is a lack of data on the power consumption of this digital filter since the approach is so new.
Therefore this thesis aims to establish a foundation to better know what to expect from the filter.
While ultrasound imaging is the application being worked against, a general foundation of data
for this converter is desired.

1.1 Related Work

Dr. Malmberg’s dissertation on control-bounded conversion is the primary source for the theoretical
foundation of this approach [1]. It describes an overview of this method, as well as how it was
derived. And also how it compares to conventional sample-based ADCs. Some implementations of
the analog system are described, and a description of a control-bounded digital-to-analog converter
(DAC) is included. But, most important for this thesis is the description of the estimation filter’s
task and function.

Fredrik Feyling has been working on realizing the analog system and digital control on a transistor
level [2]. That thesis describes design challenges encountered when designing an implementation
of the analog portion of a leapfrog system. It also expands on the theory by analyzing the several
non-idealities not previously accounted for. The analog system parameters used in this thesis were
chosen by Feyling.

The author of this thesis has been working with the digital estimation filter during two other
projects prior to this work. First in a project using high-level synthesis (HLS) to attempt im-
plementing the batch estimator [3]. Which gave the first draft of the batch architecture, and the
experience highlighted some issues with the HLS flow.

Then in [4], the three basic estimator architectures were implemented in a 28nm CMOS technology
using SystemVerilog, where the top-level designs largely remain unchanged. That project estab-
lished some trends in power and area. However, these power estimations were inaccurate, and they
only showed trends across filter depth and downsampling rate (DSR). The results indicated that
the finite impulse response (FIR) implementation had the lowest total power consumption in all
configurations tested.

1.2 Scope

The goal of this thesis is to provide trends in power consumption and area for the digital estimation
filter of a control-bounded ADC. This shows which parameters are most important when optimizing
the estimator. Thus, the trends hopefully provide insight that can be used to form a basis for design
decisions. Only implementations for a single-in-single-out (SISO) ADC are evaluated.

This thesis builds upon the previous work done by improving the accuracy of the estimates. Which




makes the results more reliable. It also fixes some errors in the implementations which were limiting
the signal-noise ratio (SNR) and giving incorrect simulation results after synthesis.

Another way this thesis builds upon previous work is by providing trends across a wider variety
of parameters. Trends in power consumption and area are established across filter depth, DSR,
control-vector size, frequency, and technology node.

Three architectures of the digital estimation filter have already been implemented: A FIR archi-
tecture, a batch architecture, and a hybrid architecture. These have been described in an earlier
work [4], but are included so this thesis serve as a comprehensive document. The figures have been
revised to be more accurate to their current implementation, and the descriptions are rewritten.
This work also implements a version of each architecture with an extra clock domain, with the goal
of reducing their size or power consumption. In the batch- and hybrid architectures the new clock
domain is used to reduce the size of the recursive calculations by downsampling in two stages. In
the FIR implementation the new clock domain is used to further reduce the clock frequency in
the calculation circuit. This is done by adding copies of the circuit and pushing their results out
sequentially, this is called the staggered architecture.

These implementations are synthesized primarily in a 22nm CMOS FDSOI technology which is
commercially available, but also uses a 28nm technology to see the differences between these tech-
nology nodes. The numbers presented in this thesis have been estimated from synthesized netlists
using Synopsys Primetime, which is a power signoff tool. These estimations include parasitics by
running the synthesis tool in topographical mode, so it performs an approximate place and route
(PnR) and can extract capacitances and resistances of wires.

The estimation filter implementations were written in SystemVerilog, and are parameterized to be
flexible. They can be found on GitHub [5].

Memory modules are outside the scope of this thesis. Therefore the random access memory (RAM)
modules used in the batch implementations are only simulated, but then excluded from the rest of
the design flow. This does mean that estimates for the batch implementations are slightly lower
than they really would be.

1.3 Specifications

Table 1.1: Specifications

Parameter 22nm 28nm
Supply voltage 0.59V 0.8V
Analog system 4. order leapfrog
Clock frequency 240MHz
Sample rate 40MS/s
SNR > 60dB
Sample bit-width 12 bits
Power Consumption < 100pnW

The target application of this work is ultra-sound imaging. This means the signal bandwidth is
5MHz. It would be a noisy environment so the sample rate out from the ADC is higher than the
Nyquist rate, using 40MS/s. Although, the work attempts to establish general trends by deviating
from these parameters.

1.4 Outline

The thesis starts by summarizing theory that is useful to understand the rest of the sections. It
gives a brief overview of how the control-bounded converter functions, and an explanation of the




estimation filter. There is a brief description of delta-sigma converters to compare with the control-
bounded. As well as other theory that is useful to be aware of when interpreting the presented
results.

Then, in section 3 a high-level description of all estimation filter implementations are included. It
should provide a thorough explanation of how these architectures work.

Before the results are presented, there is a summary of the toolchain used to obtain them. Then
the results are presented and discussed.

Finally, it concludes that the FIR implementation usually will be best for systems with a single
input. But a hybrid implementation gave the best result for the specifications used. There is also
a summary of the trends seen in each architecture.

The appendix contains several additional plots that were deemed redundant or less important. A
snippet of python code used to generate the analog system, and a failed implementation from the
previous work [4] are also included.




2 Theory

2.1 Number representations

This thesis will be dealing with fractional (or real) numbers. To represent these in binary there
are two common choices: fixed-point, and floating-point representation. These formats have been
explained in many books on digital arithmetics, for example in [6] and [7].

The fixed-point format is widely used in hardware implementations. In this format, an integer is
mapped such that some or all the least significant bits (LSBs) represent the fractional part of the
number. That is, it uses a fixed position for the radix point which is chosen during the design
phase.

The main advantage of the floating-point representation is its dynamic range. That is the difference
between the largest and smallest numbers that can be represented in this format. This is achieved
by letting the radix point move, or "float”, according to the most significant digits of the number
being represented. This does come at the cost of complexity, as extra logic is needed to move the
radix point. Also, since some of the bits are used to set the radix position it is said [6] to have
lower precision.

y = (—1)Sign x signi ficand x gezponent—bias (2.1)

The fields of a floating-point number are explained in [6]: Sign, exponent, and mantissa. Where
the sign is a single bit noting whether the number is positive or negative. The mantissa is the
fractional part of the significand, which includes an implicit bit in the most significant position.
The significand is typically normalized to always have a magnitude between 1 and 2. The exponent
tells what position the radix point currently is in. It is stored as a biased, unsigned number where
the bias of an n-bit exponent is 2"~! — 1. When the exponent is zero it means the number is in the
subnormal range. This means the significand’s implicit bit is 0, leading to the significand being
less than 1. Equation 2.1 shows how these fields relate to the number being represented.

Comparing these two representations, floating-point arithmetic is more complex than fixed-point.
A floating-point addition requires control logic and barrel shifters to align the radix point of the
two numbers and handle special conditions. This generally leads to higher area cost in hardware
implementations, which can be prohibitive. As stated in [7] the size of a fixed-point multiplier
is viewed to be N times larger than an adder, where N is the word size. Meanwhile, the area of
an adder and multiplier in floating-point are nearly the same. This means the ratio of adder and
multiplier operations will impact the size difference between using these two representations. The
dynamic range needed in the application would also be important for the choice of representation.
As a fixed-point representation may need significantly wider data paths to cover the same range a
floating-point number would.

Earlier work [4] on control-bounded converters has concluded that the dynamic range needed does
not warrant the use of floating-point representation. Therefore this thesis will primarily use fixed-
point representation.

2.1.1 Rounding

Often there will be a need to reduce the number of mantissa bits in the data, this happens in mul-
tiplications and conversions between formats. When truncating a fixed-point number the default
behavior is to always round down (toward —oo). This introduces an offset error on the produced
result, due to an asymmetry in the rounding of positive and negative numbers, which is discussed
in [8]. This offset will appear in power spectral density (PSD) plots as a low-frequency noise signal.

There are different rounding schemes used to mitigate this effect, the simplest of which is ”"round
half up”. In that rounding scheme, a fixed number is added before the data is truncated, leading
to data being rounded to the nearest number. For example, when converting from the format




Q4.4 to Q4.0 (4 fraction bits rounded to an integer) the added number would be 0.5. If the data’s
fraction is larger than 0.5 the carry bit will spill into the new range. As stated in [8] there is still
one situation where the numbers are not symmetrical, but it removes most offset introduced by
rounding.

Rounding in floating-point does not encounter the same issue since it uses a sign-and-magnitude
representation instead of a complementary one. This means truncating the floating-point mantissa
will not have problems with symmetry, but it will still benefit from using the "round half up”
scheme.

2.2 Oversampling and downsampling

As explained by the theory [9]: Oversampling occurs when the signals of interest are bandlimited
to fo while the sample rate is at f,, where f; > 2fy and 2fj is the Nyquist rate. That is, the signal
is sampled at a much higher frequency than is required to capture its content. The oversampling
rate (OSR) is defined as equation 2.2.

[s

OSR =
2fo

(2.2)

Downsampling is also explained in [9], it typically occurs in discrete-time signal processing and
is the process of reducing the rate of data. This thesis refers to the DSR, which is the ratio
of the incoming sample rate divided by the outgoing rate. It is performed simply by removing
samples, it will keep one out of every DSR incoming samples. The incoming signal has to be
band-limited to half the frequency of the outgoing rate. Otherwise, aliasing will move noise to the
signal band. If the incoming data is not band-limited a digital low-pass filter will be necessary
before downsampling.

2.3 CMOS power considerations

A collection of low power techniques and considerations can be found in [10]. It says that the
power consumption of a CMOS circuit can be placed in three categories: switching, leakage (or
static), and short-circuit. This thesis will collectively refer to the switching and short-circuit power
as dynamic power.

The short-circuit power is caused by both transistors in a complementary pair being open during
a state transition. This is affected by the transition time of a gate input. That is, a network with
high capacitance will cause increased leakage power in the cells connected to it.

Leakage power is the power consumption of a gate in a steady state. Which is caused by various
effects such as sub-threshold currents, and diode leakage. The leakage power in a circuit generally
increases exponentially with both lower threshold voltage and higher temperature. This is discussed
extensively in [10]. Naturally, the leakage power also increases with the number of gates in a circuit.

Pow =CxVEpx Ax f (2.3)

Switching power is caused by the charging and discharging of capacitances in a network. This can
be described with equation 2.3, from [10]. In this equation C is the capacitance, Vpp is the supply
voltage, A is the activity factor (the switching probability), and f is the frequency. This shows
that the supply voltage has a quadratic relation to power consumption, while the other factors are
linear.

Many methods exist to reduce the power consumption of a circuit, targeting the various mechanisms
outlined above. Lowering the supply voltage is a way to reduce all three categories of power
consumption, but a side-effect of this is the circuit becoming slower. That’s where multiple supply
voltages are useful; Allowing the use of a high voltage in sections requiring high performance, and




a low voltage for low-performance sections. Another way to reduce power is by reducing the size
of gates. This will reduce its parasitic capacitance, but again, reduces its speed. There are also
different ways to implement the same logic function, where one may be faster than another, but
less power efficient. This is not a comprehensive list, additional methods are discussed in [10].

Slack is a measure often used in digital circuits. It is the difference between the required arrival
time and estimated arrival time for a data path. The synthesis tool will calculate the slack for
every network of the design and can use it to optimize the power consumption. A positive slack
means the design can tolerate becoming slower. The synthesis tool will use this to automatically
adjust the gate sizes and implementation of logic.

2.4 Delta-Sigma conversion

A well-known ADC strategy is delta-sigma conversion, which is an oversampling converter. Figure
2.1 shows what a continuous-time delta-sigma ADC may look like with a first-order modulator.
The modulator consists of a differential adder (delta) between the input signal and feedback, a
low-pass filter or integrator (sigma), and a quantization and sampling step. The quantization noise
power is considered constant, so oversampling will spread it over a wider band leaving less noise
power in the signal band. Additionally, the feedback loop means the quantization noise will be
high-pass filtered by the integrator. This improves the quantization noise in a first-order system
by 9dB per doubling of OSR, as stated in [9]. There are higher-order systems that further improve
this noise filtering, such as a multi-stage noise shaping (MASH) delta-sigma architecture, interested
readers are referred to [9].

The result of this process is that the bit-stream s[k] can be used to generate a sample with more
bits of precision than the quantizer has. The final step of the conversion is the decimation filter,
which calculates a weighted average value for this bit-stream, and downsamples the data.

ult] s[K] afk]

"\ [ P st > Dec >

t /1
! DAC|e————

N

Figure 2.1: Continuous-time delta sigma ADC with a first order modulator

2.5 Control-bounded conversion

The control-bounded converter uses a different approach for the conversion task compared to
conventional sampling converters. A sampling converter generally seeks to acquire an approximate
value s[k] for the input u[t], which is an inherently lossy process due to the quantization of the
value. Whereas a control-bounded converter seeks the input uft] based on an observed state s[k].
That is, the problem being solved is inverted. The dissertation of Dr. Hampus Malmberg [1] is
the primary source of this theoretical framework.

A control-bounded converter primarily consists of three parts, as explained in [1]: An analog
system, a digital control, and a digital estimation filter. The analog system is also known as the
preconditioning filter, its task is amplifying the wanted signal characteristics while suppressing
unwanted characteristics. The digital control stabilizes the analog system by counteracting its
growth via the feedback loop. The estimation filter calculates the estimated sample based on the
digital control states.
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Figure 2.2: Control-bounded ADC overview

Figure 2.2 shows an overview of what a control-bounded filter could look like. It is drawn to
resemble the delta-sigma converter in figure 2.1. Where the digital control (DC) in this figure
could be implemented as a DAC, and the analog system (AS) could be an integrator or low-pass
filter.

One key difference between the two is the perception of signal s[k]. In the delta-sigma converter,
this is considered a quantized and sampled version of the measured signal. Whereas the control-
bounded converter only views this as the control signal which stabilized the analog system, and
is only indirectly related to the measured signal. As stated in [1], this leads to a fundamentally
different approach for the digital post-filtering step.

Another point is that the signals in figure 2.2 are usually vectors. Which means it is closer to a
MASH architecture than the first order delta-sigma pictured in figure 2.1. In fact it is stated in [1]
that control-bounded ADCs can be considered a generalization of the MASH delta-sigma concept,
with a less restrictive design space.

From [1] the analog systems (AS) can be implemented as a chain of integrators or low-pass filters.
Other architectures are also proposed, such as the chain of oscillators architecture. There is also
the leapfrog architecture where the integrator chain has feedback across nodes, and the Hadamard
architecture which seeks to reduce the impact of component mismatch. That is to say: there is a
lot of possibility in the analog design space for control-bounded converters.

This thesis may refer to the number of analog states and digital states, which is the width of the
vectors y[t] and s[k] respectively. The number of analog states may also be called the system order
N, and reflects the number of elements in the analog system’s chain. The number of digital states
M is the total number of control signals, it will typically be the system order multiplied by the
quantization depth. This thesis has only evaluated systems using 1-bit quantizers, meaning M =
N.

2.5.1 Estimation filter

As stated, the function of the estimation filter is to calculate the value of the sample estimate. It
does so using the control vectors to estimate the trajectory of each state in the analog system, and
uses these states to find what the measured signal is. In an ideal control-bounded conversion, the
algorithm will converge at an analog value of the measured signal as the considered time window
extends to infinity [1]. This means the estimate is not affected by quantization. Instead, it will be
limited by other factors such as the precision used in the calculations, the depth (time window) of
the filter, or the conversion error.

Some figures of the control-bounded converter have an imaginary connection of the analog state
observation y[t] to the estimation filter. This signifies that the filter uses the control vectors to
reconstruct the internal state trajectories of the analog system. It uses these states to calculate
what the measured signal uft] has to be.

However, the estimation filter does not have perfect knowledge of the analog states, which leads




to a conversion error. This error can be quantified as a linear mapping of the remainder in the
analog states after a control period. The quality of the results depend on the size of the estimated
state trajectories compared to this error. That is, as the state trajectories become larger than this
error the results become more accurate, which is explained in [1].

There is a lot of complicated math behind the function of the estimation filter. However, knowledge
of how the algorithm is derived is not necessary as a set of linear formulas has been presented in
[1]. The standard formulas use matrix operations, which would lead to an exponential increase
in complexity as the system order rises. Therefore the parallel version of the formulas have been
used. With this set of equations, the calculation of each state trajectory is independent and the
complexity rises linearly.
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These equations describe the recursive calculations forming the basis of this conversion. Equation
2.4 is the forward recursion, which starts calculating at the oldest control vector and proceeds
forward in time toward the newest vector. The backward recursion in equation 2.5 does the
opposite, starting at the newest vector and going backward in time. How these recursive results
relate to the final sample is seen in equation 2.6.

All quantities in these equations are scalar, with complex values. Luckily, the imaginary com-
ponents cancel each other, resulting in an estimate that is purely real. The index k refers to the
discrete-time of each factor. Index 1 discerns which input is being calculated, but this thesis has
only evaluated single input systems. Index n refers to the analog s‘gte, as a set of recursions

= —=
are needed for each state trajectory being calculated. The functions f,(x) and f,(x) map the
contribution of a control vector toward each state trajectory. The function is simply a constant
value related to each bit of the control vector.

Appendix A shows how all constants were generated using a python package.

2.5.2 FIR estimation

alk] =S huslk+ 0]+ 3 Baslk — 12] (2.7)
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The estimator can be implemented as a FIR filter, which can be described by equation 2.7. In this
description L1 is the lookahead length, or the window length toward the future control vectors. L2
is the lookback length, describing the window length for past vectors.

This FIR estimator uses the coefficients % and E} to calculate the estimate. They are vector values
that, similar to the f functions of the recursive equations, map a constant contribution for each bit
of the control vector. However, this is the total contribution toward the final estimate. Meaning it
neither needs complex arithmetic nor separate calculations for each state trajectory, it calculates
the result directly from a window of control vectors.




2.5.3 Hybrid estimation
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Another alternative for the implementation of the estimation filter is a hybrid between the FIR
and recursive approaches. Equation 2.8 shows this approach. Implementing the forward recursions
in hardware is simple, but the backward recursions are not trivially implemented since they go
backward in time. The hybrid approach avoids this issue by using a FIR lookahead instead.

2.5.4 Downsampling
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Equations 2.9 and 2.10 show the downsampled version of the recursive calculations. The DSR in
these equations is noted by the factor R, which is an integer value.

These equations show that the estimation needs every control vector to form an accurate estimate.
This means no information can be removed before the estimate is calculated. Instead, a lumped
calculation is performed where several vector contributions are added in parallel. Doing this makes
it possible to reduce the frequency of the calculation so the power consumption can be reduced.

K1 K2
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The formula for a downsampled FIR implementation is shown in equation 2.11. In this case, the
calculation needs no change. The only difference is that the window of control vectors is moved
DSR positions each time.

Using the downsampling methods outlined above won’t remove any information from the time
domain before the estimation step is performed. This means no aliasing should occur in the
estimation step. However, the samples produced may show aliasing if the reconstructed signal is
not band-limited to half the sample rate.

The specifications used in this thesis have an output sample rate 4 times higher than the Nyquist
rate, and 8 times higher than the analog system’s filter frequency. This gives the analog system a
margin for suppressing out-of-band components. The thesis has assumed that no digital anti-alias
filtering would be necessary.




3 Implementations of the digital estimator

3.1 Common modules

3.1.1 Clock divider

Clkin
Binary < CkOut
™ Counter DSR/2 >
Reset
Rst =
DSR-1

Figure 3.1: Clock divider implementation

The clock divider is used to generate the slower clocks in each architecture. It divides the frequency
of a clock by an integer value. Which is implemented using a counter so it can divide the frequency
by an arbitrary integer. The output is high when the counter value is less than DSR/2, which
means the positive clock edge occurs when the counter is reset to 0. This reset signal is set when
the counter reaches DSR-1, and it is synchronous to ensure that it switches at the correct time.

The clock pulses out from this module are not symmetrical when odd an DSR is used, therefore
only the positive edge from it is used. A register on the output synchronizes the new clock to the
input clock, this makes the timings between clock domains more predictable and avoids glitches
from the combinational logic.

3.1.2 Valid counter

Reset

|

Increment Binary =Valid
Counter "| Delay

Clock
» Valid

Figure 3.2: Valid counter implementation, figure from [4]

This counter keeps track of the time since a reset occurred, so it can decide when the output samples
are valid. The number of clock cycles required before results are valid depends on filter length or
batch size. Therefore ”Valid Delay” is decided during compilation of the code. The counter uses
the same clock signal as the output of each architecture to minimize its activity. When the valid
signal is set high this module will gate off its own clock, stopping all dynamic power.
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3.1.3 LUT

Table 3.1: The table contents of a 3-bit LUT, table from [4]

input output
Ob1ll | fo+ fi+ /o
0b110 fo+fi—fo

0b00L | o~ fi T Jo
0b000 | —fo — f1 — fo

Lookup tables (LUTs) are used to convert the control vectors into numbers used to calculate the
sample values. As seen in table 3.1 each bit in the control vector has a constant number associated
with it. That bit being high or low determines whether its constant is added or subtracted from
the total contribution. These tables are dynamically generated during compilation. The synthesis
tool will implement them as logic since all its values are constant.

In[23:18]
el LUT

In[17:12]
—> LUT

In[23:0]
— Output
In[11:6]
EEEE——

LUT

In[5:0]
— LUT

Figure 3.3: A 24-bit LUT split into four 6-bit LUTs, figure from [4]

A large LUT will be split into several small LUTs and summed to reduce the area. Since the size of
a single LUT increases exponentially with input bits. The optimal size depends on the numerical
format used due to the different complexity of their adders. Floating-point LUTs have a higher
optimal point than fixed-point does. The fixed-point implementations use 4-bit LUTSs, while the
floating-point implementations use 6-bits.

3.1.4 Output Formatter

The output of all estimation filters implemented is a 12-bit fixed-point number. However, most of
these implementations use a different format internally to achieve the desired SNR. There are also
some implementations using floating-point numbers, which need to be converted.

When fixed-point numbers are used converting the output is fairly simple. The formatter module
rounds to the closest value by adding a bias value, then truncates the value. This is also known as
a "round half up” scheme. Section 2.1.1 explains why this is necessary.
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Figure 3.4: A hardware implementation of floating-point to fixed-point conversion

Changing from floating-point to fixed-point numbers is more complicated, as seen in figure 3.4. This
converter checks if the number is sub-normal by checking if the exponent is zero, this determines
whether the implied bit of the mantissa should be one or zero. Then a barrel shifter moves the
radix point of the number to a constant position. The number is then truncated using the ”round
half up” scheme, doing so while the number is unsigned avoids any symmetry issues. Finally, the
sign of the floating-point determines if the number is positive or negative.

The implementations use an unsigned value for its final output, while they use signed values
internally. Converting from a signed to an unsigned fixed-point number is the very last step in
each implementation. Since the signed numbers are represented with 2-complement this conversion
can be done simply by inverting the most significant bit (MSB).

3.2 FIR estimator

S =P

A 4 ™
»  LUT
—

LUT

L

Figure 3.5: FIR implementation, figure from [4]

The FIR architecture is the simplest of these implementations and is depicted in figure 3.5. It
consists of a shift-register, and two LUTs. Control vectors are pushed into the shift-register which
forms the time window being evaluated. One LUT is for the lookahead part of the calculation, the
other for the lookback, and these partial results are summed to form the estimated value.

12



3.2.1 Downsampling

By downsampling, the design will produce estimates at a reduced rate. This architecture does
so by collecting several control vectors in a small shift-register, then pushing them to the main
shift-register. The only part of this design running at the main clock frequency is the input shift-
register. Doing this reduces the activity in the main shift-register and its connected LUTs, which
reduces the power consumption of this filter.

3.2.2 Staggered

S —>

LUT

1 T L LUt - u

Figure 3.6: FIR staggered implementation

Since frequency is closely related to power consumption it may be worth reducing it further. To
calculate samples at a lower rate than samples are output the filter would need duplicates of
the calculation circuit, which is shown in figure 3.6. This will naturally increase the size of the
estimator. But most of the shift-register is shared between these duplicates. The greatest benefit
of this would be seen in a multi-voltage system where the supply voltage could be reduced in the
duplicate circuits.

To minimize the switching activity this architecture collects control vectors for each duplicate in
the input register, then pushes all of them to the main shift-register. The results from each circuit
are shifted out at the final sample rate. This means the clock frequency of the calculation circuits
and main shift-register is the output frequency divided by the number of duplicates.

3.3 Batch estimator

This architecture uses recursive calculations both for the forward and backward mean. It is a
direct implementation of the equations from section 2.5.1. To use recursive calculations for the
backward mean it must handle the control vectors and samples in batches.

13
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Figure 3.7: Batch implementation with system order N

Figure 3.7 shows this implementation. The control vector
S is placed in a RAM module, where it will be read three
times during the estimation process. Each analog state
trajectory (noted by N) has three recursive calculations:
The forward recursion is at the bottom and handles con-
trol vectors forward in time, that is from oldest to new-
est. In the middle, the backward recursion is shown going
backward in time, from newest to oldest. The backward
recursion needs a starting point to avoid abrupt edges
when batches are changed. This is the purpose of the
topmost recursion, the lookahead. It performs the same
calculation as the backward recursion, only on a future

Calculate
Lookahead

. . Calculat
batch. Each analog state trajectory has a weighted con- ;eztﬁse

tribution toward the result, as decided by the factors W}
and Wy. All these contributions are summed before be-
ing saved to the RAM modules for the partial results.

Figure 3.8: The batch cycle, figure from
The recursive calculations use complex numbers, up until  [4]

factor Wy, or Wy. After that point, the imaginary part is

discarded and only real arithmetic follows. This can be

done because the imaginary parts will become zero when all partial results are summed.

Each batch of control vectors in the first RAM module goes through the four cycles shown in
figure 3.8. These cycles occur in parallel to provide constant throughput of results. Therefore,
this RAM module has room for four batches and has three read ports and one write port. When
control vectors are read they will first be in the ”load input” step, where they are saved in the
RAM. During the next step, they will be used to calculate the lookahead value. The following
step is ”idle”, here the calculation step uses the result from the lookahead to calculate the next
batch. Finally, the calculation step will calculate the forward and backward recursions for this set
of vectors.

This batch logic is implemented by interleaving the batches in the memory. Where the two LSBs
of the address indicate the cycle. There are two counters keeping track of the batch progress, one
counting up and the other counting down. The one counting up is used to assign the MSBs of the
address for the input loading and forward recursion. The other counter is used for the address of
the lookahead step and backward recursion. Each memory port has a 2-bit counter to determine
which batch is currently at this step of the cycle. This all results in the access pattern shown in
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figure 3.9. The left side of the figure shows which cycle each memory location belongs to, and the
right side illustrates the two first clock cycles k of a batch.

Lookahead D-1 == | o0kahead rec [k=0]
Idle D-2
Calculate D-3 — Backward rec [k=0]
Load Vector D-4
D-5 = = = = | ookahead rec [k=1]
D-6
D-7 F = — = » Backward rec [k=1]
D-8
7
6
5 === Forwardrec [k=1]
4 - - - - Vector load [k=1]
Lookahead 3
Idle 2
Calculate 1 —— Forward rec [k=0]
Load Vector 0 4—— \ector load [k=0]

Figure 3.9: Access pattern in a control-vector memory of size D, figure from [4]

When the system transitions between two batches the lookahead recursion will transfer its final
result to the backward recursion. At the same time, the lookahead recursion’s memory is discarded
to reset it without downtime. This transition can not occur when the cycle changes, because the
results from the LUTs are delayed. Therefore the transfer must be delayed such that the last
vector contribution of that batch has been processed by the recursion.

When the system enters the reset state its valid counter will indicate when the results are valid,
just as the FIR implementation does. Additionally, the calculation recursions will remain cleared
until new control vectors reach them to prevent random data from being saved. This should let
the recursions converge on an accurate estimate faster when a reset occurs.

D-1 In [k=0]— D-1
D-2 D-2
D-3 In[k=1] = = D-3
D-4 D-4
3 = = Out [k=1] 3
In [k=1] = - 2 2 = = Out [k=1]
1 — Out [k=0] 1
In [k=0] —>} 0 0 — Out [k=0]
(a) Forward memory (b) Backward memory

Figure 3.10: Access patterns in estimate memory, figure from [4]

The memories for partial estimates from the forward and backward recursions are separate, and
they each have one read and one write port. The partial estimates are also interleaved in the
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memory, this time using 1 LSB. Since the backward recursion works backward in time the order of
its estimates must be reversed to form the final sample. This access pattern can be seen in figure
3.10b. The forward estimates use the access pattern shown in figure 3.10a.

The input and output addresses are swapped at every batch transition. These addresses are based
on the same counters used by the control vector RAM. However, they have to be delayed to account
for the delay in the calculation path to ensure the batches transition seamlessly. The forward results
also must be delayed by one additional clock cycle to correspond with the formulas.

Table 3.2: Required size of memories

Memory Size
Control-Vector 4 x batchsize * controlvectorsize
Backward estimate | 2 * batchsize x (outputsize +1)/DSR
Forward estimate | 2 x batchsize * (outputsize +1)/DSR

Table 3.2 shows the minimum size of each memory. The implementations used the same size for
the forward and backward estimate memories, as this made the control logic simpler. However,
the forward memory can technically be reduced to half this size by writing directly after the result
is read.

To minimize the size of the partial estimate memories the results were formatted before being
saved. One extra bit should be saved as there is one addition remaining before the result is final.
Otherwise, this reduction may introduce unwanted noise.

3.3.1 Downsampling

T

Sk = fi'k

Figure 3.11: The forward recursion with a DSR=4, figure from [4]

Control-vector S is loaded in a shift-register, this combines them in a larger vector. This allows the
rest of the circuit to run at a lower frequency. However, to form an accurate estimate the recursive
calculations need the information from every vector. Therefore they are handled in parallel, which
increases the size of these LUTs. To ensure the vector’s contribution is correct the loop-factor A is
multiplied with a power depending on the time offset of each vector. The recursive loop then uses
the loop-factor to the power of DSR. One example of this can be seen in figure 3.11.

To ensure no batches overlap or have gaps the batch size is rounded up to the nearest multiple
of DSR. The memory required for the partial estimates naturally shrinks as DSR increases. Since
the number of estimates from a batch is divided by DSR.
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Another consequence of downsampling is the data ports in the RAM for control vectors becoming
wider. This allows the RAM to operate with the reduced clock frequency. Its total size is not
changed, which leads to the address space becoming smaller.

3.3.2 Two-stage downsampling

LUT
- [

RAMOL | Siow Giosk T :
i N=1.2... E
5 RAM 5
\ » LUT 1
: (w E
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E N=1.2... y ¥ E
! RAM E
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Figure 3.12: Batch two-stage implementation with system order N

By adding another clock domain the size of the LUTs can be reduced. Since the LUT size for
the recursions scale with DSR, using a lower DSR will reduce their size. Figure 3.12 shows the
clock domains in this architecture. The transition from the master clock to a slower ”fast clock”
is identical to the regular architecture. Then another downsampling occurs after the recursions
to achieve the correct sample rate for the output. The frequency of the recursions will increase
compared to the regular architecture, but it can prevent excessive growth.

The fast frequency is DSR; times slower than the master frequency, and the slow frequency is
DSR, times slower than the fast frequency. Both of these transitions must be integer relations.
The total DSR is the product of these two DSRs. This means some DSR values will have more
possible combinations than others.

3.4 Hybrid estimator

The hybrid architecture combines the lookahead from the FIR architecture and the forward re-
cursion from the batch architecture. This removes the need for batch logic while providing an
infinite lookback. This leads to this architecture usually having a higher SNR than the pure FIR
architecture, and its shift-register is half as big. It does however need a recursive calculation for
each analog state in the system, leading to the size scaling with DSR.

Just like the batch implementation, this implementation uses complex arithmetic in the recursion
until the state trajectories are multiplied with factor W. It also determines when the recursion
should start calculating by using the valid counter.

The delay of the lookahead and lookback is not the same. Typically the lookahead delay is longer
since the LUT is much larger. To compensate for this the lookback can read control vectors from
an earlier point in the shift-register. That way the corresponding partial results can be added
without inserting registers to delay them.
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Figure 3.13: Hybrid implementation with system order N

3.4.1 Downsampling

Naturally, this architecture combines the methods used in both FIR and batch architectures to
downsample. Where several control vectors are pushed to the shift-register at a slower rate. And
the recursive calculations handle several vectors in parallel.

3.4.2 Two-stage downsampling

:

N LUT

Fast clock

Figure 3.14: Hybrid two-stage implementation with system order N

Two-stage downsampling in the hybrid architecture only affects the lookback calculation. Its clock
domains are shown in figure 3.14. The main shift-register still runs at the lowest frequency to
minimize switching activity. The frequency is increased only in the recursions, so it uses another
shift-register to split the control vector into smaller collections of vectors.
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4 Results and Discussion

4.1 Toolchain

This toolchain was used to provide a compromise between the time used to generate a result, and
the accuracy of said result. Since it was used on hundreds of configurations running PnR would be
too time-consuming. Therefore a method of estimating power from a synthesized netlist was used.

The analog system was simulated using a python toolkit, an excerpt of the script used can be found
in appendix A. A leapfrog system was used where a 1MHz sine wave was applied to its input. All
filter constants were written to a System Verilog file since formatting text in python is simpler than
importing data in SystemVerilog. Having a separate file for the constants makes changing the
analog system simple. These constants were placed in a SystemVerilog package so they can be
imported to any scope needed. This also means the constants could be defined as ”localparam”,
which unlike ”const” means the tools will consider them constant. Therefore they can be used to
set parameters in a module. The control-vector stimuli were written to a comma-separated file,
which can be read by the testbench.

The first step in the toolchain is register transfer level (RTL) simulation, which is done using
Synopsys VCS. Here the functionality of the design is tested. The testbench used is as simplistic
as it can be, only reading in stimuli and writing out sample results. It also generates a switching
activity dump file of the design. The results from RTL simulations are plotted with a python
script, where the PSD is plotted and SNR is calculated as well.

The second step is synthesis, which is done using Synopsys DC. It is performed in topographical
mode, which means an approximate PnR is performed. This makes extracting parasitics for the
wires possible, so the resistance and capacitance of all networks are calculated. This step generates
the design’s netlist, and the area estimate used in these results. Synthesis is performed using the
SS corner of the technology library, this should give a worst-case scenario for timing.

This synthesis flow is mostly a standard topographical flow, but there are some special timing
constraints used for the clock-dividers. For the clock-divider outputs, a ”create_generated_clock”
constraint is used where the clock division rate is set. This ensures the tools handle this network
as a clock network and not as generic logic.

Finally, the power consumption was estimated using Primetime by Synopsys. Here the switching
activity from RTL simulation and the design netlist and parasitics from synthesis were read. It
also reads the technology library to use its info about the cells used.

At this step, the TT corner of the library was used to get a typical power consumption. Although,
the library used was an "ultra-low threshold” library, which means it is extra fast and has a
higher leakage current than the regular version. The application in this thesis does not need this
high speed, so the library only leads to a higher static power than necessary. And it was not
characterized at room temperature with the supply voltage used. Therefore the results will mostly
focus on dynamic power, as this does not change as much. The worst-case leakage is used whenever
it is included, which is the 125C node.

PnR was not a focus of this thesis. The scripts necessary to perform it on the 22nm technology were
not ready. One PnR was run with the 28nm technology since the scripts were ready from a previous
project. This was done because running an analog simulation on the netlist would be interesting
to compare with the generated estimations. The results from that analog simulation showed the
design using half as much dynamic power, which may be caused by the analog simulation not
accounting for parasitics. When plotting the results from this simulation there appear to be some
errors severely reducing the SNR, which can be seen in appendix C. It was theorized that it was
a problem with negative slack as the synthesis was performed with the wrong clock frequency, but
fixing that bug did not improve the simulation. Finding the cause of this discrepancy between
digital and analog simulations ended up as future work.
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4.2 SNR

Architectures - SNR vs depth
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Figure 4.1: Basic architectures - SNR swept across filter-depth

As seen in figure 4.1 the SNR of the FIR and hybrid architectures increase in waves as the filter
depth rises. While the batch architecture rises more linearly. The figure also shows that the
batch size needs to be larger than the filter depth of the other architectures to get the same SNR.
The plot also shows the hybrid implementation’s SNR generally higher than the FIR’s. The FIR
implementation crosses 60dB at a depth of 96, the hybrid implementation at 72, and the batch
implementation at 160.

The SNR of the Hybrid and batch implementations are converging at a lower value than the FIR
implementation does. This may be caused by the rounding mode used in the multiplication module,
which always rounds down (toward —oco). However, a simulation using the floating-point version
of the batch implementation proved this false. The floating-point version should not have these
rounding errors, but was still limited to the same SNR. It is not caused by an error in the transition
between batches either, since the hybrid version is affected. There appears to be a minor error
either in the implementation of these recursions, or in the constants they are using. Or possibly
in one of the format conversions of these architectures.

Figure 4.2a shows a plot of the SNR achieved by the FIR architecture across different filter depths.
It shows that the SNR improves in waves as the filter depth increases. The plot also shows different
system orders n. With a higher system order the peaks in SNR are more frequent. And with lower
order, the SNR rises quicker while having a lower maximum. None of these configurations can
reach more than 74dB due to the quantization noise caused by the number of bits the final results
are limited to.

In figure 4.2b a sweep of SNR across the number of mantissa bits was performed. It shows that
the SNR rises linearly, then flattens as it approaches its maximum. Across most of this range the
different system orders are parallel, with approximately -2dB per increase in order.

A plot of SNR in a sweep of batch size is seen in figure 4.3a. In this architecture, the SNR does
not have the valleys seen in the FIR architecture. And similar to the trend seen in figure 4.2a, a

20



FIR fixedpoint - SNR vs depth FIR fixedpoint - SNR vs mantissa bits
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Figure 4.3: Batch fixed-point - SNR using system order 2, 3, 4, and 5

lower system order leads to a quicker rise in SNR. This plot also shows the batch implementation
having a spike in SNR when the batch size is a multiple of 120. It is likely caused by the test-signal
being 240 samples long, so the batch transitions can align with the zero crossing of the signal.

In figure 4.3b a plot of SNR across number of mantissa bits was made with the batch implement-
ation. It shows that the SNR of the batch architecture has a steep increase, likely due to the
recursions multiplying any errors. The system order has a much larger impact on the number of
bits needed in the batch architecture than the FIR. It also requires more integer bits, which means
a higher dynamic range is required in the recursions. The theory states that the state trajectories
become larger when the results improve. This data supports that trend as the implementations
requiring the lowest range are also limited to the lowest SNR.

Low precision causes an overswing in all implementations, which can lead to results overflowing.
The FIR implementation is most impacted by filter depth, but the batch and hybrid implementa-
tions are most impacted by mantissa bits. Some examples of this can be seen in appendix B.

The hybrid implementation’s trends follow the FIR trends for lookahead depth, but follow batch
trends for mantissa bits. These figures are found in appendix D.
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4.3 Filter depth
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Figure 4.4: Basic architectures - Dynamic power swept across SNR

Figure 4.4a shows the dynamic power compared to the SNR achieved by these configurations. In
practice, it is a sweep of filter depth or batch size normalized to the SNR achieved, because this
gives a fairer comparison. The individual filter depth plots can be found in appendix E. This figure
shows that the FIR implementation starts with lowest power, but grows fastest. Above 60dB SNR
the hybrid implementation has lowest power. This is not a surprise since it should grow at half the
rate FIR does. The estimates of the batch implementation do not include the RAM modules, so it
only includes the control- and calculation logic. Which have no significant scaling with batch size.
The batch implementation does however have the highest power consumption across the tested
range. The RAM modules should increase in size linearly as batch size increases, their power
consumption will come on top of the trend shown for the batch implementation.

However, the FIR implementation has the lowest power consumption across the entire range when
DSR is increased, as seen in figure 4.4b. Its power consumption is still rising fastest, but the SNR
required to surpass it is higher.

These results indicate that the FIR implementation is favored when the required SNR is low, or
the DSR used is high. But there may be cases with higher SNR and low DSR where the hybrid or
batch implementations use less power.

4.4 System order

Figure 4.5 plots how the architecture’s dynamic power scale with the system order n. Increasing
the system order will increase the number of bits in the control vectors, and also the number of
analog state trajectories in the system. Every result gathered has used one digital control per
analog state.

The figure shows the FIR implementation scaling mildly. The number of input bits in its LUTs
would increase linearly, but since the filter coefficients are considered constant and nominal the
synthesis tool can optimize the logic. This leads to the dynamic power flattening with high system
orders. In contrast, the batch architecture scales faster. This is because the number of recursions
needed increases in addition to the LUTs growing larger, resulting in a quadratic rise. Likewise,
the lookback of the hybrid requires more recursions, while the lookahead scales linearly. Leading
to the hybrid implementation’s growth being between the other two; approximately a third of the
rate batch scales plus half the rate FIR scales.

The size of the LUTSs also depend on other factors. In the FIR implementation the size is determined

22



Architectures - Dynamic power vs system order, DSR=6

—— top=FIR_Fxp, int=0, mant=14, depth=96
1200 top=Batch_Fxp, int=9, mant=15, depth=160
—— top=Hybrid_Fxp, int=9, mant=16, depth=72
1050
900
750

600

450

power_dynamic_125c [pW]

300

150

Figure 4.5: Basic architectures - Dynamic power swept across system order

by filter depth multiplied by control vector size. For the batch implementation, it is DSR multiplied
by the control vector size. Different filter depths and DSRs will alter the rate of growth, but the
trends should still look the same.

The area and total power show similar trends, their plots can be seen in appendix F.

Table 4.1: Optimized implementations with SNR above 60dB at 40MS/s, comparing system order
4 with order 3 and 6

Architecture | System order | Format | Depth | Area | Dynamic power | Total power

3 Q0.14 96 6887 2621W 1.34mW

FIR 4 Q0.14 96 8677 313pW 1.66mW

6 Q0.14 96 10587 346uW 1.99mW

3 Q7.12 124 11404 2851W 2.06mW

Batch 4 Q9.15 160 30050 788pW 5.46mW

6 Q15.22 292 103892 3.04mW 18.8mW

3 Q7.14 76 7358 227TuW 1.39mW

Hybrid 4 Q9.16 72 | 14630 A1pW 2.72mW

6 Q15.24 72 50938 1.32mW 9.29mW

As mentioned in section 4.2 changing the system order will also change the dynamic range required
for the calculations. Table 4.1 shows a set of optimized configurations which all achieve 60dB
SNR. A larger batch size was needed when system order increases, which means the lookahead-,
and backward recursion needed more vectors to converge on a good estimate. However, the length
of the FIR filter and the hybrid’s lookahead did not require change. Although, section 4.2 shows
that increasing the system order does reduce SNR in the FIR implementation as well. Increasing
it further would require a deeper filter. The number of bits needed in the batch and hybrid
implementations rises with system order, where a hybrid filter in a sixth-order system needs 40
bits. This secondary scaling exacerbates the trends shown in figure 4.5. Which works in the favor
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of the batch and hybrid implementations when system order is reduced. The table shows a hybrid
filter in a third-order system having the lowest dynamic power.

These results show that all implementations are most efficient with a low system order. However,
the FIR implementation changes less than the other implementations, making it more efficient
when a high system order is used. When a low system order is used the hybrid implementation
may be more efficient.

4.5 DSR
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Figure 4.6: Basic architectures - Dynamic power swept across downsampling rate

Figure 4.6 shows a sweep over a range of DSRs using a configuration capable of 60dB SNR for
each base implementation. The trend shown is that dynamic power sinks in all implementations
as DSR is increased. The batch implementation seems to plateau above DSR=5, it is likely that
its increased size is offsetting the effects of a lower frequency.

The total power consumption for the previous sweep is shown in figure 4.7. In the FIR architecture
the power is still sinking since its area is barely changing. On the other hand, the batch architec-
ture’s power is rising with DSR, due to its LUTs becoming larger. However, the leakage power is
very high with the technology node and temperature used here, so the effect of increased area is
extra drastic. In the middle is the hybrid implementation which initially sinks, then rises above
DSR=5 when the lookback size starts dominating the power estimates.

A plot of the area from this sweep is found in appendix G.

These results indicate that the FIR implementation is preferred when the DSR is high. Especially
when the leakage power is expected to be high.
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Figure 4.7: Basic architectures - Total power swept across downsampling rate
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4.6 Clock Frequency

Figure 4.8 shows the dynamic power consumption when the master clock frequency is changed.
The output sample rate is kept at a constant 40MS/s in all these results, which means the DSR is
adjusted in tandem with the frequency.

What the plot shows is that the power consumption of the batch- and hybrid architectures increase
with a higher OSR, while the FIR architecture is not sensitive to this. Which is due to the area of
both the batch and hybrid implementations scaling with DSR. In this case, the frequency of the
recursions is not being reduced, leading to the dynamic power rising. The FIR implementation
remains mostly unchanged across this plot, only the small input register becomes larger and runs
faster. Therefore, it only has a slight increase in power consumption.

Plots of the total power consumption and area can be found in appendix H.

For a given application where the sample rate is set, this data suggests the OSR will not matter
when using the FIR implementation. And a low OSR is preferred when the batch- or hybrid
implementation is used.

However, the analog system changes when a higher frequency is used, giving different filter con-
stants. This leads to the recursions needing a greater dynamic range at higher frequencies, and
the FIR implementation needing a deeper filter. Which leads to an additional increase in area and
power for all implementation.

Table 4.2: Optimized implementations with SNR, above 60dB, comparing clock frequencies with
40MS/s output sample rate

Architecture | Frequency | Format | Depth | Area | Dynamic power | Total power
FIR 240MHz Q0.14 96 8677 313pW 1.66mW
960MHz Q0.14 184 11562 528pW 2.32mW
Batch 240MHz Q9.15 160 30050 788nW 5.46mW
960MHz | Q17.24 628 126978 4.91mW 23.3mW
Hybrid 240MHz Q9.16 72 14630 411pW 2.72mW
960MHz | Q17.19 96 30068 1.29mW 6.0mW

Table 4.2 shows configurations needed to achieve 60dB SNR with a clock frequency of 240MHz
and 960MHz. The FIR filter depth nearly had to be doubled. The batch implementation needed
17 more bits in its data paths, and the batch size had to be four times as large. The Hybrid
implementation needs 11 more bits and a slight increase in filter depth. This means that all
implementations are more efficient when the frequency of the analog system is lower. Still, the
FIR implementation has the smallest change of these implementations.

4.7 Technology node

To show the effect of using different technology nodes these plots were created. Figure 4.9a shows
dynamic power swept across DSR using both the 22nm and the 28nm nodes. And figure 4.9b
shows a similar sweep across filter depth. In these plots, the power consumption using the 28nm
node is between two and three times higher than using the 22nm node.

All architectures show this trend, the plots for the other architectures can be found in appendix I.
Even though this data can’t be used to extrapolate power consumption in newer technology nodes
it shows an improvement by scaling the technology node down.
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4.8 Two-stage downsampling

These results from the architectures with two-stage downsampling use a scatter-plot to show all
possible combinations. Each point is marked with the two DSRs used where the first number is
downsampling before recursions, and the second number is downsampling after. For example 72/3”
means the DSR before the recursion is two, and the DSR after is three. There is also a line plot
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Figure 4.9: FIR fixed-point - Dynamic power in 22nm and 28nm technology nodes
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Figure 4.10 shows the dynamic power consumption in the two-stage batch architecture compared
to the regular batch architecture. The dynamic power is lowest when all the downsampling occurs
before the recursions. Possibly because the logic becomes larger and the synthesis tool can perform
more optimizations, and the reduced clock frequency should also contribute to this trend.
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Figure 4.11: Batch Two-stage DSR - Total power

On the other hand, the total power is lowest when downsampling occurs entirely after the recur-
sions, as seen in figure 4.11. The increased size when the recursions are downsampled increases
the leakage power more than the dynamic power is reduced. But it also shows that downsampling
after the recursions has no significant impact on power consumption in the batch architecture.
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Figure 4.12: Hybrid Two-stage DSR - Dynamic power

A plot of the dynamic power in the hybrid architecture with two-stage downsampling is seen in
figure 4.12. The trend is the same as the batch version, where downsampling early leads to the
lowest dynamic power. It also shows that the regular hybrid implementation has lower dynamic
power consumption than the two-stage. This is likely because the two-stage needs an additional
clock divider and shift-register.

The total power consumption of the two-stage hybrid architecture is also lowest when downsampling
late, shown in figure 4.13. This architecture does benefit from downsampling after the recursion
because it reduces the frequency of the lookahead.

Plots of the area are found in appendix J.

The libraries used have excessive leakage power, so the effects of leakage power are overstated
in these plots. Additionally, the temperature used in the estimations was 125 degrees celsius,
giving the worst-case scenario for leakage. But, these two-stage architectures do fulfill their goal
of reducing the size of these implementations. As seen in these plots a reduced area is beneficial if
high leakage current is expected.

4.9 Staggered

Figure 4.14 shows the staggered FIR architecture with two, and three copies, compared with the
standard version. The plot shows that there is no significant difference in dynamic power when
DSR is higher than two. This means there is a lot of positive slack, so the synthesis tool can not
optimize the design further. Resulting in no room for simplification in the staggered version. It
does also show that two copies had the lowest power when there was no downsampling.

The synthesis tool reported 4ns slack in the critical path when DSR was 6, which is a lot when the
clock period is 4.16ns. This critical path was located in the clock divider in all versions. When
there was no downsampling the slack was 3.6ns in the staggered version with 2 copies, and 2.7ns in
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the regular FIR. This means the staggered implementation can improve power consumption when
slack is constrained.
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Figure 4.15: FIR staggered - Dynamic power vs Clock frequency

To better see the possible benefit of the staggered architecture a sweep across clock frequency was
performed without downsampling, as seen in figure 4.15. This plot shows that the dynamic power
of the regular version grows faster than both staggered configurations. Above 720MHz the regular
FIR is using the most power, and the staggered version with two copies remain the lowest across
the range.

All these results were gathered using the same supply voltage, but this strategy works best when
the supply voltage is reduced. Using more copies means the calculation circuit is running slower.
Since supply voltage is linked to the speed of circuits it means a slower circuit can use a lower
voltage, which can reduce power consumption drastically.

The findings in figure 4.15 indicate that the staggered implementation can be more efficient when
the timing is constrained. This will be the case when the supply voltage is minimized.

4.10 Floating-point

Table 4.3: Floating-point and fixed-point implementations with SNR above 60dB, using DSR=6

Architecture Format | Depth | Area | Dynamic power | Total power
FIR fixed-point Q0.14 96 8677 313uW 1.66mW
FIR floating-point F5.10 96 51534 2.64mW 11.3mW
Batch fixed-point Q9.15 160 30050 783uW 5.46mW
Batch floating-point F6.9 160 55108 2.0mW 11.1mW
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Floating-point configurations have not been a focus in this work, as previous work [4] with these
filters indicated they required a lot more resources than fixed-point. Table 4.3 shows a collection
of floating-point and fixed-point configurations with 60dB SNR. This data shows that the floating-
point FIR is five times larger, and uses ten times more power, than its corresponding fixed-point
version. The floating-point batch architecture used less power than the FIR, but still was roughly
twice as resource intensive as its fixed-point version.

Floating-point arithmetic is more complex than fixed-point, with floating-point addition being the
most complex. This makes it harder for the synthesis tool to optimize and combine logic. Which
has a severe impact on the FIR implementation because its LUTs use many adders. The positive
side of floating-point numbers can be seen in the batch version, where the number of bits needed
to achieve the target SNR is lower than in the fixed-point version. The numbers in the recursions
benefit from an increase in dynamic range. It is possible that the batch implementation could be
more efficient if it used fixed-point arithmetic in the LUTSs, and floating-point arithmetic in the
recursion. Especially with higher system orders where the state vectors need a higher range.

4.11 Delay in implementations

The delay of each implementation can be summarized with some simple formulas, shown in table
4.4. Startup delay is the time from a reset occurs until the first valid sample is output. Throughput
delay is the delay from a sample is taken until its value is calculated during regular operation. All
these delays are given in a number of clock cycles, so to calculate the time delay it just needs to
be divided by the master clock’s frequency.

Table 4.4: Summary of delay in architectures

Architecture Startup delay Throughput delay
FIR Liot + DSRx (LUTy + 2) Ly+ DSR« (LUTy + 2)
FIR staggered Liot + DSR * (LUTy + 2 x Stagger) | Ly + DSR x (LUT,; + 2 * Stagger)
Batch 4% Lygy + DSR* (LUTy + 4)
Batch two-stage 4% Lygy + DSR*2+ DSRy x (LUT,; + 2)
Hybrid Ly + DSR* (LUTy + 2)
Hybrid two-stage

In table 4.4, Ly is the total filter length. That is, both forward- and backward length. L, is only
the lookahead length, while Ly, refers to the batch size used. LUTy is delay of the LUTs, which
is elaborated below in equation 4.1. ”Stagger” in the table refers to the number of copies used in
the staggered implementation.

Startup delay only counts clock cycles until all registers are filled with data. Since the hybrid and
batch architectures use an infinite lookback this will happen at the same pace as the throughput
delay. However, it may take longer before the lookback estimates are accurate.

The two-stage batch implementation has a slightly lower delay than the regular batch implementa-
tion. This is because the recursions are using a faster clock. The two-stage hybrid implementation
is not affected since the lookahead is constraining its delay. The staggered FIR implementation
has more delay than the regular due to its additional shift-registers.

LUTyiatn

LUTd = ZOQQ(W

)/LUTcomb (41)

The delay of a LUT is shown in equation 4.1. LUT},44_size refers to the size these LUTs are broken
down to when they are too large. The implementations have used a LUT size of 4 when fixed-point
is used, and 6 when floating-point is used. The formula finds how many layers of adders are used,
and divides it by how many layers are between each set of registers. All implementations have
used three layers of combinational adders between registers. The width of a LUT is how many bits
are on its input, which in FIR is filter length multiplied by control-vector size, and in recursions
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is DSR multiplied by control-vector size. In the hybrid implementation, the lookahead is typically
slowest, so the LUT delay is calculated the same way as FIR.

The table indicates that filter depth or batch size is the primary source of delay, and that LUTs
and DSR contribute a lesser amount of delay. It also shows that batch size has a greater impact
on delay than filter depth does.
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5 Future Work

So far the work on estimation filters has been purely theoretical, hopefully, an attempt at a physical
realization will be performed in the future. Then some real-world results could be gathered.
However, before the design is ready it has to be verified to ensure it will work as expected. There
has been performed an analog simulation on a design. A configuration of the FIR implementation
was placed and routed to be simulated on, but the results from analog simulation did not match
the results from digital simulation. That issue ended up outside the scope of this thesis but would
need to be investigated further before a physical version is made. Also, running simulations with
realistic stimuli is likely a good idea to detect potential problems. For example, the assumption
made in this thesis of no digital anti-alias filtering being necessary should be verified.

The implementations in this thesis have assumed that all filter constants were nominal, while this
won’t be the case in reality. A method of calibrating these values after fabrication should be
chosen. Making the filter constants adjustable will likely reduce the amount of optimization the
synthesis tool can do, so it will have a negative impact on power consumption. But, the extent
of calibration needed is also unknown, perhaps changing a couple of the LSBs would be enough.
This would depend on the variation in the analog system. So evaluating the amount of calibration
needed, and its impact on power consumption remains.

There are still more low-power optimizations to explore. A multiple supply voltage system would
likely improve power consumption in the staggered architecture, and in general when down-
sampling. It is possible that an estimation filter with a reduced SNR followed by a conventional
digital filter could be more efficient than just an estimation filter. And there are likely a lot of
clever optimizations to evaluate.

This thesis has only evaluated SISO architectures of the estimation filter. Meanwhile, ultrasound
imaging is a multiple-in-multiple-out (MIMO) application, so implementations for this should be
explored in the future. Also, in chapter 10.4 of [1] the possibility of resource sharing in a control-
bounded ADC with multiple inputs is mentioned. That is, an ADC with multiple inputs could
have inputs sharing analog states. This would be interesting since sharing analog states could
put the FIR implementation at a disadvantage, as it would have to replicate the entire filter per
output.

6 Conclusion

This thesis has explored implementations of estimation filters for control-bounded ADCs with
a single input. Providing estimates for power and area, which hopefully can be used to decide
parameters of the overall system in the future. While these results are still only estimated from
simulations, they should be more accurate than earlier estimates.

Three working implementations have been described, and a variation of each was proposed. The
implementations were written in SystemVerilog and are freely available on GitHub [5].

The trends shown by the FIR implementation are a large increase in both area and power with
filter depth, which is the primary factor determining SNR. When the DSR is increased the size of
this implementation shows minimal change, but its power consumption sinks. The system order
has a linear relation to size and power consumption, the rate of this change depends on the filter
depth. The FIR implementation is not sensitive to OSR as long as the output sample-rate is fixed.
Although, it will likely need a deeper filter when OSR rises, which increases its size and power
consumption.

In the batch implementation, the trends show no significant increase in size or power with batch
size/SNR, but this is because the RAM modules have been excluded from estimations. Still, its
power consumption is higher than other implementations in the tested range (less than 70dB SNR).
The size of this implementation increases when DSR is higher, while the power became lower before
plateauing. The leakage in the technology will have a great impact on this trend since the area
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is increasing. This implementation shows the largest increase in both area and power when the
system order is increased. When increasing the OSR, and keeping the output sample rate fixed,
both the power consumption and size of this implementation will increase.

The hybrid implementations’ trends are usually between the other two. Its area and power scales
slower with filter depth than FIR does, achieving the lowest power consumption above 60dB when
the DSR is one. The area of this implementation increases with DSR, but at a slower rate than
the batch implementation. The power decreased even when including the high leakage of the
estimations, but it eventually starts rising as DSR is increased further. When the system order
increases its area and power rise at a rate between the other two. With a fixed output sample rate
and increasing OSR both the area and power consumption rises.

The implementations using two-stage downsampling were made to reduce the size when down-
sampling, which they did succeed at. Whether they reduced the power consumption depends, as it
did improve the total power consumption in these estimations. However, their leakage power was
high due to the technology library and temperature used. This means the regular version will be
more efficient when low leakage is expected.

The staggered implementation aimed to reduce the power of the FIR implementation further, but
the libraries available were not characterized for low enough voltages to fully explore this. It did
show better efficiency than the regular implementation at high speeds, which indicates a potential
improvement when the voltage is lowered.

While there is still a lot of work to do in this field of ADCs, this thesis has hopefully provided some
useful information on the estimation filter’s power consumption and area. These findings indicate
that the FIR implementation is best suited for this application, achieving a dynamic power of
313pW and area of 8677um?. Alternately, the hybrid implementation in a third-order system was
lower. It achieved 227pW dynamic power with an area of 7358m?. While this power consumption
is higher than the target, it can likely be improved further by using a lower supply voltage.
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Appendix

Appendix A - A snippet of python code used to generate the analog system’s constants, and the
stimuli used in simulations.

Appendix B - A selection of plots from RTL simulation.

Appendix C - A plot of the FIR implementation after an analog simulation.

Appendix D - Plots of the SNR trends in the hybrid architecture.

Appendix E - Individual depth sweeps for each of the basic implementations.

Appendix F - Plots of total power consumption and area swept across system order.
Appendix G - An area plot of the DSR sweep

Appendix H - Area and total power plots from the frequency sweep.

Appendix I - Additional plots showing differences between 22nm and 28nm technology nodes.
Appendix J - Area plots of the two-stage downsampling architectures.

Appendix K - Area and dynamic power plots for a sweep of the number of mantissa bits.

Appendix L - A failed implementation included from a previous work [4].
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A Analog system

The analog system was simulated with the cbadc python package to generate coefficients and
stimuli for these simulations.

The following python code instantiates the analog system used in this project, and formats the
filter constants and stimuli vectors as needed. The full script can be found on GitHub [11].

import cbadc
import numpy as np

Ts = 1.0 / Fs
end_time = Ts * samples_num

ADC sampling period
Stmulation end

N =4 # Analog states
M=N # Digital states
samples_num = 24000 # Length of generated stimul<
FIR_size = 400 # Number of coefficients generated
Fs = 240e6 # ADC sampling frequency
Fc = 5e6 # Filter cut-off
amplitude = 0.95 # Input signal amplitude
Fi = 1e6 # Input signal frequency
#
#

kappa = -1.0

beta = 1.0 / (2 * Ts)

We = 2*np.pixFc

rho = -Wc**2/(4xbeta)

betaVec = beta * np.ones(N)

rhoVec = np.array([0 if i==0 else rho for i in range(N)])

gammaVec = kappa * beta * np.eye(N)

G_at_omega =

— np.linalg.norm(analog_system.transfer_function_matrix(np.array([Wc])))
eta2 = G_at_omegax**2

# Instantiate a leapfrog analog system.
analog_system = cbadc.analog_system.LeapFrog(betaVec, rhoVec, gammaVec)

# Inittalize the digital control.
digital_control = cbadc.digital_control.DigitalControl(Ts, M)

# Initialize estimator
digital_estimator = cbadc.digital_estimator.ParallelEstimator (analog_system,
— digital_control, eta2, samples_num)

# Instantiate FIR estimator

L1 = FIR_size

L2 = FIR_size

FIR_estimator = cbadc.digital_estimator.FIRFilter(analog_system, digital_control,
~ eta2, L1, L2)

# Instantiate the analog signal
analog_signal = cbadc.analog_signal.Sinusodial(amplitude, Fi)

# Instantiate the simulator.
simulator = cbadc.simulator.StateSpaceSimulator(analog_system, digital_control,
— [analog_signal], t_stop=end_time)
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a7 # Eztract filter constants

as Lf = digital_estimator.forward_a

49 Ff = digital_estimator.forward_b

so Lb = digital_estimator.backward_a

51 Fb = digital_estimator.backward_b

s2 Wf = np.reshape(digital_estimator.forward_w, M)
53 Wb = np.reshape(digital_estimator.backward_w, M)
54

s5. hl = FIR_estimator.h[0] [0:FIR_size]

s6 h2 = FIR_estimator.h[0] [FIR_size:]

ss  hb = h2

so hf = np.zeros((FIR_size, M))

6o for i in range(0, FIR_size):

61 hf[i] = h1[FIR_size-i-1]

62

63 # Format stimul<

6a tVectors = np.zeros((N, samples_num), int)

65 x =0

66 for s in simulator:

67 y =0

68 for num in s:

69 if (num == True):

70 tVectors[yl[x] = 1
71 elif (num == False):

72 tVectors[y]l [x] = -1
73 y +=1

74 x += 1

75
76 # tVectors ts saved in a .csv file
77 # filter constants are written to a .sv file in a SystemVerilog package
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B RTL simulation plots

FIR Fixed-point with format Opl4, 96 coefficients, and DSR=1
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Figure B.1: FIR fixedpoint - RTL simulation

FIR Fixed-point with format 0p8, 96 coefficients, and DSR=1
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Figure B.2: FIR fixedpoint - RTL simulation with few mantissa bits
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Figure B.3: Hybrid fixedpoint - RTL simulation with too few mantissa bits

Hybrid Fixed-point with format 9p17, 72 lookahead length, and DSR=1
1.0

0.5
0.0
—0.51

-1.0-

0 100 200 300 400 500
time k

—46
—66 4
=86 -
—106 1
=126 1
=146
—166 -
1861
—206 T T

104 10° 108 107 108

Frequency

SNR = 62.03dB

Figure B.4: Hybrid fixedpoint - RTL simulation
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Power Spectral Density (dB/Hz)
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Figure B.5: Batch fixedpoint - RTL simulation with too few mantissa bits
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Figure B.6: Batch fixedpoint - RTL simulation
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C Post PnR simulation plots
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Figure C.1: FIR fixedpoint - Spectre simulation after PnR
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D SNR plots

Hybrid fixedpoint - SNR vs depth
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Figure D.1: Hybrid fixedpoint - SNR vs Filter depth using different system orders
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Figure D.2: Hybrid fixedpoint - SNR vs Mantissa bits using different system orders
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E Depth plots

FIR fixedpoint - Dynamic power vs Depth
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Figure E.1: FIR fixedpoint - Dynamic power vs Filter depth

FIR fixedpoint - Area vs Depth
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Figure E.2: FIR fixedpoint - Area vs Filter depth
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Batch fixedpoint - Dynamic power vs Batch size
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Figure E.3: Batch fixedpoint - Dynamic power vs Filter depth

Batch fixedpoint - Area vs Batch size
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Figure E.4: Batch fixedpoint - Area vs Filter depth
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Hybrid fixedpoint - Dynamic power vs Depth
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Figure E.5: Hybrid fixedpoint - Dynamic power vs Filter depth
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Figure E.6: Hybrid fixedpoint - Area vs Filter depth
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F System order plots
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G DSR area plot
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H Frequency plots
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Figure H.1: Basic architectures - Area vs Clock frequency
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Figure H.2: Basic architectures - Total power vs Clock frequency
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I Technology node plots
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Figure 1.2: Batch fixed-point - Comparing the 22nm and 28nm technology nodes
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Hybrid fixedpoint - Technology nodes Hybrid fixedpoint - Technology nodes
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Figure 1.3: Hybrid fixed-point - Comparing the 22nm and 28nm technology nodes
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J Two-stage DSR - area plots
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K Scaling vs Mantissa bits

Architectures - Area vs mantissa bits, DSR=6
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Figure K.1: Basic architectures - Area vs Mantissa bits, DSR=6
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Figure K.2: Basic architectures - Dynamic power vs Mantissa bits, DSR=6
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L Cumulative implementation [4]

____________________________________________________________

LUT

LUT

LUT

Figure L.1: Cumulative implementation [4]

The cumulative implementation has been of interest as a resource efficient solution, but has not been
successfully implemented. Following is the motivation, idea behind it, and problems encountered.

The lookahead of the estimator can be viewed as a gliding window of samples, where one sample is
added and another removed at each step. A cumulative approach is often preferred when gliding
windows are needed in digital calculations, since it is more resource efficient than summing every
elemen(t_ at each step. The challenge of applying a cumulative approach to this estimator is the

factor \,, inside the loop.
Equation 2.5 shows the lookahead mean as an infinite recursive calculation, but in practice this

range will be finite. Thus it can be rewritten for a lookahead with length L as follows in equation
L.1. To make the direction of this recursion the exponent of the loop-factor would need to be

negative. Thus it is multiplied with a factor A L=L g0 we get equation L.2.

L
Fin = 30 Ne o Fu(slh]) (L)
k=0
L
Fon = NE 3 SE-ry F sl (L.2)

So when a sample is added to the recursion its contribution must be multiplied with the factor

S\,LL as shown in L.3. Likewise, the sample which no longer should be part of the lookahead must
be removed, leading to equation L.4.
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Finally we arrive back at a recursive formula shown in L.5. Here the scope of the lookahead is
limited to L samples, equivalent to an online implementation of the estimation filter.

T = ?;1%_1,” n ﬁ(s[k v I)) - 7;@@ —1)) (L.5)

When the direction of the lookahead recursion is reversed its loop-factor becomes larger than
1, which means any errors become magnified. When using floating-point arithmetic this is a
problem, since the exponent changing will change the precision of the number. Which makes
it really difficult to remove the exact contribution of a sample, making the lookahead recursion
unstable. Implementing this with fixed-point arithmetic would solve the issue of the precision
changing. However, the data-words would require many bits to give the necessary range. With
the analog system used in this project one of the inverted loop-factors was 21, with a lookahead
length of 150 the total multiplication applied to a sample would be 21'°°. More than 660 bits in
word-width would be needed to implement this range, which is not feasible.

Maybe this can be implemented with floating-point and some clever way to handle the rounding
errors. Maybe it is feasible with some other set of constants. Or possibly with a more exotic number
system like logarithmic number representation. But it is not as robust as the other implementations
and is currently deemed impractical.
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