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Abstract

There has been a trend of decreasing scaling of process technology for a long time. As
technology size decreases, the complexity increases, and the size of chips become bigger.
The clock frequency has not increased at the same rate. Instead, the focus has been on
multi-core systems and parallelism. These two factors combined have led to a bottleneck in
interconnects. The solution to this bottleneck has for a long time been to increase the width
of parallel buses. This solution has led to severe routing congestion for chips of extreme
parallelism, such as GPUs. Routing congestion leads to higher power consumption and
increased area usage.

This thesis explores the possibility of solving this routing congestion problem by reducing
the lines on the bus. This is done by researching the wave-pipelining scheme and serializer-
deserializer (SerDes) solutions. It is expected that a SerDes solution, with the extra logic
needed to implement such a solution, will increase power consumption. The question is
by how much, and if it is an acceptable amount for low-power and battery-powered chips
compared to the area saved by utilizing such a solution.

The thesis presents a solution capable of a five-to-one reduction of data lines on the
bus while keeping the same throughput as a parallel solution. A simple power analysis was
conducted on the proposed solution and a parallel solution, which did not include power
consumption from the lines on the bus. This power analysis showed an increase of 3.95 times
in power consumption for the proposed solution compared to a parallel solution. However,
it is expected that a reduction in the number of lines will have a positive impact on power
consumption for the proposed solution. The proposed solution shows a reduction of lines on
the bus by approximately 50%. Additionally, there is a 17.94% reduction in routing length.
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Abstrakt

Det har lenge vært en trend med minkende størrelse på prosess teknologi. Men når teknologien
blir mindre, øker kompleksiteten og størrelsen på chipene. Klokkefrekvensen har ikke økt med
samme tempo. Istedenfor har fokuset vært på multi-kjerne systemer, og parallellisering. Disse
to faktorene kombinert har ført til en bottleneck i interconnectene. Denne bottlenecken har
lenge blitt løst ved å øke bredden på de parallelle bussene. For chiper med brede parallelle
busser, som GPUer, har dette ført til at ledningsstiene på chipen kommer i konflikt med
hverandre. Videre fører dette til høyere strømforbruk, og areal brukt på chipen.

Denne masteroppgaven prøver å løse disse problemene ved å redusere antallet ledningsstier
på chipen. Dette kan gjøres ved bruk av wave-pipeline prinsipper, og serialisering-deserialiser-
ingskretser (SerDes). På grunn av økt størrelse på kretsene ved bruk av SerDes er det
forventet at strømforbruket vil gå noe opp. Spørsmålet er hvor mye, og er det akseptabelt
for low-power og batteridrevne chiper.

En løsning som kan redusere antall ledninger med fem til en blir presentert. I tillegg
holder løsningen samme ytelse som en parallell løsning. En enkel strømanalyse, som ikke tok
ledningene på bussen med i beregningene, ble gjennomført. Denne strømanalysen viste en
økning på 3.95 ganger i strømforbruk. Det er forventet at en reduksjon av ledninger vil gi en
reduksjon i strømforbruk for løsningen, sammenlignet med en parallell løsning. I tillegg har
løsningen en reduksjon i antall ledninger på omtrent 50%, og en reduksjon i rutelengde på
17.94%.
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Chapter 1

Introduction

This chapter starts with an overview, followed by a description and the motivation for the
problem. The design targets and requirements are then presented. Lastly, an overview of the
thesis can be found.

1.1 Overview
With the rapidly improving process technology scaling for System on a Chip (SoC) Integrated
Circuits (IC) designs, an increasing need for higher logic- and memory density on the chip
has emerged [1]. Additionally, SoC IC designs are becoming increasingly larger, with a higher
number of modules per chip [2]. While this has been happening, the maximum clock frequency
of the system clock has remained steady, and the focus has instead been on parallelism. An
example of this phenomenon is the Central Processing Unit (CPU) module on the SoC [3].
For a long time, the focus for increasing the performance of the CPU was on higher maximum
clock frequency. Then the focus shifted to multiple cores for boosting the performance [4].
Because of this shift in focus, the maximum clock frequency stagnated. This shift also meant
that the CPU designs could be smaller and simpler, while instructions were executed in
parallel, with a lower average clock frequency, which gave a lower power consumption for the
chips [5].

While this shift in focus had many positive effects on the chips, there are some notable
negative effects. With the high-speed parallel transmission, there is a potential timing
problem between the data lines in the parallel transmission that can cause errors. This timing
problem is caused by skew between the data lines [6]. Additionally, while the transistors have
scaled down in size, the pad area has not scaled down at the same rate. The reason for
this is due to thermal and mechanical bridging issues. This can cause the area to be wasted
by the pads, as they take up more space relative to the transistors [7]. Secondly, with a
high number of parallel units, the demand for interconnect bandwidth on the chips is higher
for both computational and storage units, with the issue being amplified in certain highly
parallel chips such as the Graphics Processing Units (GPU). This has led to a bottleneck
in interconnects, which for a long time has been solved by increasing parallelism [8]. With
an increasing demand for higher bandwidth, this increasing parallelism leads to issues of its
own.

1.2 Description
Increasing the bandwidth of the buses by increasing the width of the buses has for a long
time been an adequate solution. With the parallel width of the buses becoming extreme,

1



2 CHAPTER 1. INTRODUCTION

it is apparent that this is not a lasting solution [9]. With the parallelism of interconnects
becoming extreme, the routing congestion also increases. This routing congestion leads to
higher power consumption, lower data rates, and larger area usage due to the high amounts
of parallel wires with repeaters. In this thesis, routing congestion is, as in the literature,
defined as a scenario where the routing resources in parts of the design exceed the routing
supply [10].

1.3 Motivation

With a parallel to how the CPU design shifted from single-core to multi-core, the focus of
interconnects must now shift to serial solutions to rectify the routing congestion issues [2].
This thesis is a continuation of a report that utilized a time-multiplexing scheme to do this.
In practice this means that the solution works at a higher clock rate than the system clock.
While this solution can be used to solve the routing congestion issues, there are issues related
to the higher power consumption of the multiple clock trees that other solution does not have.
While the main focus is to reduce routing congestion, low power consumption is desired. The
reason for this is that the solution should be viable for SoCs in low-power or battery-powered
systems. In this thesis, wave-pipelining is explored as a means to reduce the number of wires
in the interconnects. Additionally, a proposed solution that utilizes wave-pipelining with a
Serializer-Deserializer (SerDes) scheme is described.

1.4 Reliability Questions

While there are papers describing similar approaches to what is done in this thesis, there are
none, to the author’s knowledge, that try to prove the reliability of such designs in regard to a
larger SoC design. Certainly not as an IP solution for widespread use across technology nodes.
This is the main contribution of this thesis. Though the solutions described in this thesis
might have the potential of becoming the industry standard for on-chip interconnects, there
are timing uncertainties that need to be addressed. This leads to the question; can a wave-
pipeline SerDes be implemented so that it can be reliably used across multiple technology
nodes? Additionally, there are questions to be asked in regard to how technology-dependent
the proposed solution in this thesis is. Can the proposed solution be ported across technology
nodes? Or is such a solution too reliant on the characteristics of the standard cell library
used for the implementation to do so?

1.5 Requirements and Specifications

One of the main goals of this thesis is to determine the cost of area and power consumption
compared to the reduction in wires and repeaters on the bus. Any solution that tries to reduce
the wires on the bus will have a higher power consumption than a parallel counterpart, with
the wires and buffers not considered. The reason for this higher power consumption is that it
requires additional logic to implement. It is important to note that the different approaches
to how a solution is implemented can have a major impact on just how much higher the power
consumption is. For the proposed solution in this thesis, there are certain requirements and
specifications:

– The solution should not have reduced performance compared to a fully parallel coun-
terpart.
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– The solution must provide at least four-to-one data per line performance, per system
clock.

– The solution must be scalable, with a minimum width of 64 bits and at least up to a
width of 2048 bits.

– The implementation must be done using the Hardware Description Language (HDL),
SystemVerilog.

– The implementation must only use standard cell library cells, no custom logic, or analog
blocks.

– The solution should only use a system clock as the reference clock and be mesochronous
in nature.

– The solution must be scan test compatible.

1.6 Outline
The report is structured as follows: In Chapter 2, the required background knowledge is
introduced, in addition to two example solutions that could be used to reduce the routing
congestion. Chapter 3 presents the proposed solution, including its control signals, starting
with an overview of the proposed solution, followed by an in-depth presentation of the
modules in the system. In Chapter 4 the results for the proposed solution are presented
and discussed, focusing on performance, power, and area. Additionally, this chapter includes
the methodology for the proposed solution and discussions regarding important design choices
made for the proposed solution. Lastly, the conclusion and discussions surrounding future
work, can be found in Chapter 5.





Chapter 2

Background

In order to understand how the proposed solution works, some background information is
needed. In this chapter, this background information is presented. This includes principles,
important designs, and examples.

Firstly, section 2.1 is an introduction to the serializer-deserializer scheme. Section 2.2
introduces the concept of wave-pipelining. Both of these sections help with the general
knowledge needed for the proposed solution. Section 2.3 introduces and explains general
information about standard cell libraries. This is done because an implementation must only
utilize standard cell library cells, as mentioned in Chapter 1.5. Additionally, information
about standard cell libraries is required for a discussion point, found in Chapter 4.5. In
section 2.4, mesochronous systems are defined, and mesochronous signaling is presented.
This includes three mesochronous signaling schemes. Delay elements and Digitally Controlled
Delay Lines are presented in section 2.5. This is a vital part of wave-pipelining. Section 2.6
is about serializer-deserializer schemes that utilize wave-pipelining. This is followed by two
examples of how such a scheme could be implemented, which aim to help with understanding
how wave-pipeline SerDes works. In section 2.7, the timing for a wave-pipeline serializer-
deserializer is presented. Section 2.8 introduces buffering schemes. In section 2.9, the concept
of timing calibration is presented, in addition to an example. Lastly, in section 2.10, design
for testability and scan chains are introduced.

2.1 Serializer-Deserializer
A SerDes is a composition of blocks or modules used in high-speed systems at speeds up to
the gigabit range. A SerDes can be used in systems with limited inputs and outputs, or with
routing congestion caused by extreme parallelism to reduce the number of lines on the bus
[11]. A SerDes typically consists of two blocks. Firstly, a Parallel In Serial Out (PISO) block,
also called serializer, is connected to the parallel data on the input, and outputs the data in
serial. The second block is the Serial In Parallel Out (SIPO) block, also called deserializer,
which inputs the serial data from the PISO, and outputs parallel data. Figure 2.1a depicts
the typical blocks of a SerDes and how they are connected, while Figure 2.1b shows the bit
flow of the SerDes. Note that the direction of the transmission is important for the output to
match the input. The PISO acts as a multiplexer circuit that converts the parallel data into
serial data. The SIPO acts the opposite. For a high-speed SerDes the speed of transmission
is typically increased in the PISO block, as more than one bit is transmitted on the serial line,
compared to only one bit in a parallel line for each clock cycle [11]. On the other side of the
transmission line, the SIPO converts the data from the serial output of the transmission line
and back to parallel [7]. There are many possibilities of how these SerDes blocks can be made.

5
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(a) Typical modules of a SerDes, and how they are
connected

(b) Bit flow of a typical SerDes

Figure 2.1: An overview of the modules and
bitflow for a Serializer-Deserializer

Maybe the simplest of these SerDes blocks
is the shift register-based solution, which
shifts the bits out onto a serial line.
Many of the existing SerDes solutions share
the same problem of requiring the system
clock to serialize the data by which the
performance of the SerDes is slow as a
result. An example of this was implemented
by the author in an earlier work [12].
This work implements a time-multiplexed
solution utilizing multiple clocks of different
phases to speed up the serialization. While
the time-multiplexed solution gave results
with a performance matching a parallel
solution, it did so with higher power
consumption. This thesis will focus on
SerDes implemented using wave-pipelining,
which has the potential of lowering the
power consumption when compared to the
time-multiplexed solution at the cost of
higher complexity. Wave-pipelining will be introduced in Chapter 2.2.2.

2.2 Pipelining and Wave-Pipelining

This section serves to introduce pipelining and wave-pipelining, and the differences between
them.

2.2.1 Pipelining

Pipelining, hereafter called traditional pipelining, is a way of processing data, typically used
in processors [13]. Traditional pipelining resembles the assembly line of a car factory, where
a new part of the car gets added for each step. This means that the assembly of the next
car can start as soon as the current car moves along down the assembly line, which will
make better use of the available resources. The time it takes to assemble a single car might
be the same, or even take longer, called latency in computing. But if there is a car under
assembly on each step of the assembly line, the output of cars that are completely assembled
is increased after the first car, called throughput in computing.

Figure 2.2: A simple pipelining scheme

Figure 2.2 shows how the pipeline scheme can be implemented in hardware. Each
stage, which contains unique combinatorial logic, is separated by either register or latches,
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functioning as a buffer. The latency is defined by the fact that any single input needs to go
through all the stages to reach the output. On the other hand, a new input can be processed
one clock cycle after the first one, and so on, making it so that new output is available for
each clock cycle after the first one, giving a high throughput. The only requirement for a
simple scheme like this to work is that the combinatorial logic between the registers does not
induce more delay than what is available in a single clock cycle and that the setup and hold
time for the registers are not violated [14].

Ideally, a traditional pipeline is synchronized so that each stage takes the same amount
of time. This synchronization would make the signals flow through the system at a constant
speed, with a constant delay between them. As the stages generally do not have the
same propagation delay, buffers between the stages are needed. Traditional pipelining is
constrained by the frequency of the clock as the signals of the different stages need to be
sampled by the registers that separate the stages. For a pipeline that is isolated with a
different clock domain than the rest of the system, the clock frequency might be constrained
by the stage with the longest propagation path, also called the critical path. Because of
this, every other stage, except the stage containing the critical path, must stay in a wait
state while the stage containing the critical path finishes processing, as the frequency of the
pipeline is dictated by the critical path.

The logic in a traditional pipeline circuit can not be shared between the stages. This
means that traditional pipelines typically require more resources when compared to systems
that can reuse parts of the circuit, making the area overhead higher. There is a second
factor that causes the area overhead to be increased. This factor is the registers needed for
the synchronization between the steps, and it is typically more of them in high-performance
pipelines. Additionally, the power consumption is typically also higher. This is mainly due to
the synchronization registers or latches in addition to the increased clock buffer area required
to drive the clock used for the synchronizers. Another problem with the traditional pipeline
is the latency that can not easily be reduced without modifying the functionality of the
pipeline. The latency is defined by both the clock frequency of the system and the number
of stages in the pipeline. With a high number of stages in the pipeline, the latency is also
increased. In theory, each pipeline step can be reduced into small sub-blocks, which enables
the clock frequency to be increased. However, this does not work in practice past a certain
point, as the setup, hold, and propagation time for the registers can not be reduced [15].
These constraints cause a diminishing return as the constraints become the dominating part
compared to the critical path of the pipeline. Additionally, the needed extra registers in this
scenario require the clock network to be expanded, which increases the power consumption
and area requirements further. Additionally, the increased clock skew from routing can
become an issue with the higher number of clocked registers.

A number of the traditional pipeline problems are related to the synchronization steps
between the stages. They increase the area required, leads to a higher power consumption
due to the clock tree having to drive many registers, and have a higher latency due to the
registers. But what if these synchronizers could be omitted?

2.2.2 Wave-pipelining

Wave-pipelining is based on the same principles as the traditional pipeline, with a key
difference: The synchronization between the steps does not contain registers. Instead, logic
gates are used as storage elements, where the propagation delay is the most important
variable. This can be seen in Figure 2.3, where the delay elements are these storage elements.
Delay elements will be introduced in Section 2.5. As the register are no longer a part of
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the pipeline, the setup, hold, and propagation delay of the registers are no longer a factor
when the pipeline stages are reduced to smaller sub-blocks. Additionally, as the registers are
removed, so is the clock network used for clocking the registers, and with that, the power
consumption is reduced.

Figure 2.3: A simple wave-pipelining scheme

As the delay properties of the registers are not a concern for wave-pipelining, its creator,
L. Cotten, called it maximum rate pipelining [16]. Wave-pipelining is based on an observation
that the rate at which the signal can propagate through a circuit does not depend on the
longest delay path, but the difference between the longest and the shortest path delays [17].
Based on this observation, a circuit can be made that makes use of propagation delay so that
multiple signals that belong to different cycles of the clock can propagate through the circuit
simultaneously.

Wave-pipelining requires much consideration for timing. As there are multiple signals
propagating through the pipeline, which can be seen as waves, it is important that the
different signals never interfere with each other while propagating through the pipeline. For
this to be possible, a constructive skew is needed. A constructive skew is a skew intentionally
created between two signals. Additionally, the elements that the wave-pipeline consists of
are also important. Different elements have different propagation delays, which must be
accounted for when constructing a wave-pipeline. Knowledge of technology and process to
be used, is important for the propagation delay. The reason for this is that the propagation
delay for two otherwise identical cells in two different process technologies can be widely
different.

While no registers are needed between the stages in the wave-pipeline, there is still a need
for registers at the input and the output. The constructive clock-skew is the skew between
the input and the output registers and is depicted using the symbol ∆. Dmin and Dmax

respectively depict the minimum and maximum propagation delay in the combinatorial logic
between the input and output registers. In addition, there are the uncontrollable factors:

– Ts - setup time

– Th - hold time

– DR - propagation delay through a register

– ∆CK - the worst-case uncontrolled clock skew at a register.

For the correct operation of a wave-pipeline system, the timing for the clocking of the
output register is critical. The register must be sampled after the data has propagated
through and the last data has arrived but before the first data bit of the next clock cycle
arrives. This will be further elaborated on in Chapter 2.7. Equation 2.1 is the equation
for TL, which is the time the data must be sampled by the output register relative to the
input register. In this equation, N is the number of clock cycles after the data is sampled by
the input register, and TCK is the clock period. This equation can be used to calculate the
constructive clock skew based on the total propagation delay of the combinatorial logic in
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the wave-pipeline. The equation is also important to make sure the data has arrived at the
output register before any value is sampled. Even though N indicates that a wave-pipeline
can handle data signals propagating for multiple clock cycles, in this thesis, it is assumed
that N is kept at a value of one. This means that no data signals should propagate through
the wave-pipeline for longer than one clock period. The reason for this restriction is the
lowered complexity. Additionally, the longer the propagation path through the wave pipeline
is, the higher the possibility for variations are. This is due to differences in propagation delay
through a logic gate caused by differences such as if the data bit is zero or one. This will be
further elaborated in Chapter 2.5.2.

TL = N · TCK + ∆ (2.1)

It is also important that the data is sampled before the next wave of data arrives so that
each wave of data in the wave-pipeline does not interfere with each other. This is shown
with the lower bound of TL in Equation 2.2. Here, DR is the propagation delay of the
input register, as it is sampled at the start of the wave-pipeline. The lower bound is the
lowest time a signal can propagate through the wave-pipeline without interfering with the
next wave. Note that the only variable in the equation is the total propagation through the
wave-pipeline, which means it is important to make sure the total propagation is lower than
the maximum propagation to avoid interference between the different waves at the output of
the wave-pipeline.

TL > Dmax + DR + TS + ∆CK (2.2)

At the other end of the spectrum is the upper bound of TL. The upper bound is the
lowest amount of time a signal can propagate through the wave-pipeline without interfering
with the last signal. This scenario is shown in Equation 2.3. Here, the additional hold time
Th is added for the output register. The uncontrollable clock-skew, ∆CK, is added to both
Equation 2.2 and Equation 2.3 because it impacts when the clock edge arrives at the output
register, and with that, when the output register samples the data.

TL < Tck + Dr + Dmin − (∆CK − Th) (2.3)

When combining the formula for clocking the latest data and the earliest data, we get Cotton’s
maximum rate pipelining condition, which can be seen in Equation 2.4. This equation
determines the lowest possible clock period for the wave-pipeline. (Dmax − Dmin) shows
how the minimum clock period is determined by the difference in path delays as stated
earlier in the section, and (Ts + Th + 2∆CK) is a clocking overhead from the two registers
at the input and output.

Tck > (Dmax − Dmin) + Ts + Th + 2∆CK (2.4)

The equation above can be used to make sure that the waves do not interfere with each
other at the output of the wave-pipeline. But waves must not collide in transit either, meaning
that the first wave must never arrive at a node before the last wave has propagated through.
Equation 2.5 shows the constrain, which can be used to make sure the different waves in the
wave-pipeline hold a distance in delay all the way through the wave-pipeline. In this equation,
x is defined as the output of a logic gate in the wave-pipeline, and Tsx is the minimum time
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that the node must be stable so that the signal can propagate correctly through the gate. Note
that Tsx is equivalent to (Ts + Th), and (dmax(x) − dmin(x)) is equivalent to (Dmax − Dmin)
in the maximum rate pipelining condition shown in Equation 2.4.

TCK => dmax(x) − dmin(x) + Tsx + ∆CK (2.5)

The previous conditions and equations can be used to find a minimum clock period for
any number M of waves. With two additional parameters, Tmin and Tmax, which is the
minimum and maximum propagation delay for all the logic gates. With Equation 2.6 and
Equation 2.7, it is possible to get a two-sided constraint of the clock period which can be
seen in Equation 2.8. It should be noted that if the M variable is constrained to a value of
one, the lower bound for Tck disappears, and there is only an upper bound left. This would
make the wave-pipeline equal to a traditional pipeline.

Tmin = Dr + Dmin − ∆CK − Th − ∆ (2.6)

Tmax = Dr + Dmax + Ts + ∆CK − ∆ (2.7)

Tmax

M
< Tck <

Tmin

M − 1 (2.8)

2.3 Standard Cell Library
Standard Cell Libraries are used in semiconductor design of Application-specific Integrated
Circuits (ASICs). They are used as libraries with, for the most part, digital components that
can be used to implement a bigger design [18]. One of the advantages of using standard cell
libraries is the abstraction level it provides. A designer does not have to think in terms of
transistors, but rather logic representations of basic building blocks, such as NAND-gates
or full adders. Another advantage of standard cell libraries is that it makes it possible to
split the design into two parts: a logical functionality part and a physical implementation
part. This makes it possible for two different designers to both focus on and specialize in
each part. Some additional advantages of using standard cell libraries are that the design
time is much lower, with a lower risk because the libraries used are extensively tested. There
are also some disadvantages of standard cell libraries. Firstly, designs can not be customized
at the transistor level. This means that the transistors of the design cannot be designed
optimally for any specific use case. Secondly, the standard cell library approach might not
be economical as all masks used to produce the design has to be produced aswell [19].

Standard cell libraries do not use fully custom layouts but are instead arranged in standard
cells in neat rows [20]. Examples of these layouts are inverters, logic gates, and even half and
full adders. Standard cells are made based on a set of rules:

– The height of any cell must be constant, and be of one or more predetermined heights.

– It must have the voltage source in a metal line on top and the ground in a metal line
at the bottom.

– P-well needs to cover the top half of the standard cell.

– Inputs and outputs need to be provided in the metal layer.
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All the rules are in place to make sure that it is easier to use the cells when physical
implementation is done. The first rule makes sure that the cells line up in neat lines when
arranged in rows. This rule also makes it easier to make complete metal lines at the top and
bottom of the line of cells for the voltage source and ground, respectively, when considering
rule number two [19]. Note that this does not mean that the height is only predetermined, as
the height of a single row. The height can also be, for example, double height, where the cell
takes up a height equal to two rows. Rule number three is not as set in stone as the other
rules, where the P-well does not always have to cover the top half, but it does need to cover
the same proportions in all the cells consistently. The last rule makes it easier to connect
the output of one standard cell to the input of the next, simplifying the routing between the
standard cells.

More complex logic cells than simple combinatorial logic cells such as NAND-gates exist.
There are both more complex combinatorial logic cells, which consists of multiple logic
gates, and sequential cells such as flip-flops and latches. Some examples of more complex
combinatorial cells are the AND-OR INVERT (AOI) and the full adder mentioned above.
Which cells the library consists of is dependent on the library itself, but normally all libraries
contain the most important or most used cells. The sequential cells exist in configurations
with different inputs and outputs, such as positive and negative edge triggering, resets,
non-inverted and inverted outputs, and enable. Another important factor in standard cells is
drive strength. Each cell has multiple versions with different output stages of various sizes.
If a cell has a larger output stage, the cell can drive more logic and typically has a lower
propagation delay, while a smaller drive strength requires less area and has lower leakage.

As the standard cell libraries are typically optimized for speed, specialized cells used for
clocking exist that are optimized for minimal skew instead. This does not only include the
clock buffers, which generally is the only logic that should be used on clock nets, but also
integrated clock gates, used for clock gating. In addition to standard cells, some special cell
types can be used. One of these cells is called a filler cell and is used to fill the space between
two cells. These cells ensure continuity in the connection of the power supply and ground
lines at the top and bottom of each cell row. Another type of cell is called level shifter cells.
These cells are used to pass signals between voltage domains.

Figure 2.4: A simple layout of standard cells

The standard cell mini layouts are arranged in a larger layout, as can be seen in Figure
2.4. This layout makes it easier for the designer, as it enables them to utilize an HDL to
specify the circuit, while synthesis tools translate this specification into the layout. Including
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picking standard cells, place in rows, and connecting them to the design to provide the
specified functionality. The wider the standard cell is, the more complex it is.

Each standard cell contains multiple files with information about different aspects of the
cell:

– .V file containing a Verilog description of the cell, used for simulations.

– .gds file containing the layout of the cell.

– .lef file containing an abstract of the cell.

– .spi or .cdl file which contains a netlist for transistor-level simulations. This can be
both with parasitics and without.

– .lib file which contains timing, area, and power characterization.

All the information that can be found in these files combined, defines the functionality of
the cell. The timing characterization that can be found in the .lib file consists of propagation
delay, rise time, and fall time. Note that the library contains separate files for the different
process corners. Standard cells are composited into libraries that specify which standard cells
the tools have available to make up the specified circuit. Standard cell libraries are typically
vendor-specific, meaning they are related to whoever is fabricating the chip. The .lib file
containing the timing, area, and power characterization, will be most useful for this thesis.

2.4 Mesochronous Systems and Signaling

In a mesochronous system, even though all the clocks have the same frequency, signal events
happen with a constant but unknown phase relative to the system clock [21]. This can impose
some difficulties when designing such a circuit if the only clocking scheme in the circuit is a
global clock. If the circuit, such as in this thesis, consists of a transmitter and receiver side,
and no effort was made to synchronize the two parts relative to each other, sampling on the
receiver side would probably yield the wrong result. If this is not the case, it might not be
stable over time as temperatures changes and the different components of the delay change.
Because of this, it is important to find a stable solution. There are a few ways to solve it,
and this section aims to introduce some of the best solutions.

2.4.1 Asynchronous Signaling

The first solution is a fully asynchronous handshake system consisting of request and ac-
knowledge [22]. The request and acknowledge signals would accompany each transmission,
making the system much more robust to timing uncertainties. A handshake occurs when
both the request and the acknowledge signals are high simultaneously.

For an asynchronous signaling scheme to work, there would have to be two separate wires
in addition to the data wires on the bus. If the goal of this thesis was to reduce the number of
wires on the bus at all costs, this solution would not be feasible. However, while it is important
to reduce the number of wires on the bus, a SerDes solution has to be reliable. The signaling
scheme is an important part of this reliability, which will be elaborated on further later in
the thesis. While the asynchronous signaling scheme is robust to timing uncertainties, which
increases the reliability, the scheme has added delay and power consumption caused by the
two wires and the handshaking between them. The added delay is caused by the need for the
acknowledge signal to be rerouted back to the source and can potentially cause the latency
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to increase. There is a different approach where only a single wire is added to the bus. The
problem with this is that the wire would have to be bidirectional, adding complexity and
problems, such as how to fine-tune the synchronization between the two wires when both the
transmitter and receiver can not communicate on the wire at the same time. Note that it
became apparent early in the research that this would not be a viable solution, and because
of this no deeper research was conducted on the solution.

2.4.2 Receiver Clock Generation
Another solution is to generate the clock in the receiver, and by that, no additional infor-
mation has to be transmitted other than the data. In one of these solutions, which is called
Pausible-clocked systems, a locally generated clock is made typically using a ring oscillator
[22]. The advantage of this is that it can be calibrated based on process variations so that
the receiver can operate on a slightly different clock frequency than the transmitter. A big
disadvantage is that the generation of the clock in the receiver adds substantial overhead in
both area and power consumption. This solution also adds complexity to the system.

2.4.3 Source-synchronous Signaling
Source-synchronous signaling is used in many existing systems. This solution works by adding
a timing signal which is transmitted from the serializer to the deserializer in either a separate
wire or injected into the data wire. There are multiple ways a source-synchronous signaling
scheme can be implemented. In this section, a few of these solutions will be explored.

Pilot Bit Signaling

With pilot bit signaling, the clocking signal is injected into the data stream. A famous
example of a system utilizing pilot bit signaling is the Universal Asynchronous Receiver-
Transmitter (UART) [23]. Figure 2.5 depicts how this is done. An important part of detecting
the idle bit is that the line is high when idle, while the pilot bit is low. This means that
detection of the pilot bit happens at the falling edge of the data line. This is then used to
synchronize the clocks and signal the receiver that the data with a predetermined number of
bits is coming.

Figure 2.5: How the start and stop bits are injected in the UART protocol

An advantage of the pilot bit signaling is that it enables high-performing data links. The
solution is robust with respect to hard-to-control delays such as process variation and noise,
as the pilot bit is sent on the same line as the data. This means that the delay for the data
bits on the serial line is shared with the pilot bit. A disadvantage of this scheme is that the
pilot bit takes up valuable space on the data line that could be used to send additional data
instead. There must also be circuitry in the receiver that can trigger based on this signal,
and this might be hard when the length of the data pulse is short at higher clock frequencies.
This will be revisited in Chapter 4.
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Separate Synchronization Line

This scheme is similar to the pilot bit signaling scheme. The biggest difference is that the
clock signal is sent on a separate wire on the bus [24]. While it adds an extra wire, it also
enables additional data bits to be sent in a single frame. Another positive effect of sending
the clock signal on a separate wire is that it enables finer tuning for the timing of when the
bit arrives in the receiver compared to the data bits. This effect makes it easier to design
circuitry on the receiver end that reacts to the clock signal, which lowers the complexity of
the design. There is also a point to consider; when the clock signal should be received in the
deserializer compared to the data bits. If it is received at the same time as the first data
bit, there would be a longer period to receive the clock bit and react to it, as the rest of the
data bits arrive in the deserializer. For this to be possible, it is important that the delay
for the separate synchronization line is equal to the delay of the serial line for the data bits.
However, if it is received at the same time as the last data bit, no processing is necessary,
and there would only need to be a reaction when the clock signal arrives. This sets a limit on
possible methods that can be used to process the clock signal, as there is less time to process
it.

2.5 Delay Elements
One of the most important modules in a wave-pipeline system is the delay elements. The
delay elements are used to distance signals in time on the data line by delaying the signals
using propagation delay [25]. Figure 2.6a shows the inputs and outputs of a delay element,
and Figure 2.6b shows the timing for a delay element. The simplest form that delay elements
can be implemented is by chaining an even number of inverters. How many inverters the
delay element consists of decides how long the generated delay is. Delay elements do not
have any functionality apart from adding the extra propagation delay, meaning that the
logical functionality is the same on the input as the output, with the only difference being
the added delay. In this section, different ways delay elements can be implemented are
presented. Additionally, important delay properties that affect how the delay elements work
are presented.

(a) The input/output of a delay element (b) The timing for a delay element

Figure 2.6: The input/output and the timing of a delay element

2.5.1 Digitally Controlled Delay Lines (DCDL)
Digitally Controlled Delay Lines (DCDL) is a type of delay circuit that utilize a select signal
to determine the delay path, and with that, making the delay programmable [26]. What
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makes the DCDL special is that the delay can be adjusted in run-time or even while actively
used. Multiple DCDL designs exist [27]. This section will introduce some of these DCDL
solutions.

Inverter Based Digitally Controlled Delay Lines

The simplest of these solutions is inverter-based and can be seen in Figure 2.7 [27]. This
solution is made using pairs of inverters, chained, that output into multiplexers, where
for each pair of inverters, the delay increases by 2 · Dinverter. The select signal for the
multiplexers is used to determine how much delay is generated in the DCDL. This solution
works best for situations where high resolution is desired, meaning the delta delay between
the different steps should be small. The reason for this is that the inverters typically have
a lower propagation delay when compared to other logic gates that are used in other DCDL
designs. This difference also means that if a high delay is necessary, there would have to be
many pairs of inverters to do so. The inverter-based DCDL also has a potential glitching
problem. Glitching can occur when the select signal for the multiplexer’s switches. This
might be a problem if it is important to be able to switch the delay while the signal is high.
Glitching is here defined as an unwanted pulse at the output of the DCDL. Note that this is
not the only solution that will be presented with this potential problem. There are also some
problems with this solution related to jittering, which will be further presented in section
2.5.2.

Figure 2.7: Inverter based DCDL. The figure is adapted from D. Preethi [27]

NAND-Based Digitally Controlled Delay Lines

The NAND-based DCDL can be seen in Figure 2.8 [27]. The initial step consists of two
NAND-gates connected in serial and a load balancing NAND-gate. Each step after the
first one consists of three NAND-gates in serial in addition to a NAND-gate used for load
balancing. The last step called the end step in Figure 2.8, is set up to make sure that the
signal that leads to the output is correct for all select signals. This includes the case where
the select signals, S0-S2, is zero.

Dtotal = (2 · Dnand) + ((n − 1) · 2 · Dnand) (2.9)

NAND-gates typically have a higher propagation delay than an inverter which gives lower
resolution than inverters. This means that the DCDL design is more suited in situations
where the delay needed is higher. The first step gives a propagation delay of 2 · Dnand, while
each incremental step gives an added delay of 2 · Dnand, where Dnand is the propagation
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delay for a NAND-gate. The total delay for each step can be seen in Equation 2.9, where
n is the step number. An example is for step 2, where n would be two, and the total delay
would be 4 · Dnand.

Select signals are used to decide the active delay path. However, these select signals can
cause glitching. If the select signal is changed while the input is active, there is a risk that
the output can be driven by multiple delay paths, which causes glitching. The next solution
solves this problem.

Figure 2.8: NAND-based glitchy DCDL. The figure is adapted from D. Preethi [27]

Glitchless NAND-Based Solution

The glitchless NAND-based solution was developed by De Caro [28] to remove the glitching
problem. The glitching problem is removed by adding a NAND-gate with an extra control
bit Ti, as can be seen in Figure 2.9. This also comes with the extra condition of Si = 0 for
i < c and Si = 1 for i ≥ c, Ti = 1 for i ̸= c+1 and Tc+1 = 0, where c is the total control input
value. These rules dictate that the S signal should be low for all stages before the active
stage, high for the active stage, and the rest of the stages. Additionally, the T signal should
be high for all the stages, except for the next step after the step currently in use. Control
logic is needed to make a delay between the two sets of control signals to make sure glitching
can not occur in any situation.

Figure 2.9: Glitchless NAND-based DCDL. The figure is adapted from De Caro [28].
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Dtotal = (3 · Dnand) + ((n − 1) · 2 · Dnand) (2.10)

Note that there is an odd number of NAND-gates for all the delay paths. The odd number
of NAND-gates causes the output to be inverted compared to the input. This inverting
issue is fixed by inserting an inverter at the output, as can be seen in Figure 2.9. Unlike
the glitchy NAND-based DCDL, the first step of the glitchless solution gives a propagation
delay of 3 · Dnand, with the total delay as can be seen in Equation 2.10. Like for the
glitchy NAND-based DCDL, n is the step number. The increased propagation delay gives a
higher minimum delay but the same delay resolution as the glitchy solution. Additionally,
the glitchless solution adds an extra load balancing NAND-gate, increasing the NAND-gate
count by two for each step compared to a glitchy solution.

2.5.2 Delay Uncertainty in DCDLs

All the DCDLs introduced above has uncertainties or uncontrollable delay variations. First
off, it should be mentioned that there is a reason why all the DCDLs above contain inverting
gates such as inverters and NAND-gates. The reason for this is that there is an inherent
difference between the rise-time and fall-time for the different cell elements. This difference
means that if the DCDLs contained non-inverting gates such as an AND-gate, there would
be an accumulating delay difference between a high and a low bit, which would be worse the
higher the number of steps in the DCDL is. Instead, with an inverting gate, the logic value
for the bit would invert for each element in the DCDL averaging the rise-time and fall-time.

Another uncontrollable delay variation comes from the difference between the two most
extreme process corners, slow-slow and fast-fast. These two corners are marked SS and FF
in Figure 2.10. A difference of 48% in propagation delay in a NAND-gate between these two
corners is not unrealistic. Note that this value is based on a standard cell library the author
of this thesis had access to and is not representative of every standard cell library for all
processes.

Figure 2.10: Process corner model
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2.6 Wave-pipeline SerDes

The wave-pipeline SerDes combines the principles of wave-pipelining and the SerDes. The
general idea is to release several bits on the serial line with a delay between them and, by
that, transmit each bit as a wave on the serial bus [29]. This delay is controlled and generated
using delay elements, such as DCDLs, as described in section 2.5.1. Wave-pipeline SerDes
can be implemented in multiple ways. This section will explore two of these solutions and
present some of the positive and negative aspects of these solutions.

2.6.1 XOR Based Solution

This solution is based on an earlier design by the author [12], but instead of multi-phase

Figure 2.11: The serializer of the XOR based
Wave-pipeline SerDes

clocking, the design utilizes DCDLs. The
serializer for the design can be seen in
Figure 2.11. Note that the figure only
shows the data path. At the start of a
transmission, a pilot bit is transmitted on
the serial line. After the first bit, which
is the output of Reg A, has propagated
through DCDL1, it is transmitted on the
serial line. This same principle continues
with the rest of the bits until the line is
pulled down through the PullDown register.
The propagation delay of the DCDLs decides
how long each bit is transmitted, as all
the registers are clocked by the same clock.
This also means that the DCDL decides
the width for each of the data bits. This
is done by having a linear increase in
the propagation delay through the different
DCDLs, meaning DCDL2 should have about
double the propagation delay compared to
DCDL1, etc. Note that each bit has an extra
XOR-gate that the signal must propagate
through, which decreases the delay path
needed in the DCDL element for that specific
bit.

The advantage of this solution is that it
can be implemented by only using standard
cell logic libraries, which is a requirement for
the solution of this thesis. A disadvantage of this solution is that the XOR-gates have internal
switching, which leads to higher power consumption. The design is also hard to modify. An
example could be if an implementation of the XOR-based solution is made without a pilot
bit, with another clock synchronization scheme. Note that this design as shown in Figure
2.11 has not been tested.

2.6.2 Multiplexer Based Solution

This solution, called Wave-Front Train (WAFT), as proposed by S. Lee et al., utilize mul-
tiplexers to implement a wave-pipeline SerDes [30]. WAFT is a four-to-one SerDes, capable
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of 2 Gb/s data transfer rate, according to the inventors. The serializer of the solution can
be seen in Figure 2.12a, and the deserializer can be seen in Figure 2.12b. The four parallel
bits of data D3-D0 are connected to one of the inputs of the multiplexer. The multiplexer
closest to the serial line in the serializer is used to set the serial line to ground when the
serializer is disabled. The multiplexer that inputs D3 sets the serial line to ground at the
end of the transfer. When the EN signal is low, the parallel data is loaded into the circuit
through their respective multiplexer and further through the DCDLs before it stops at the
input of the next multiplexer. An example of this is D3 propagating through Mux5 and
stopping at input one of Mux4 at Node 4, which can be seen in Figure 2.12a. A pilot signal
is sent at the head of the data packet. This pilot signal is used to stop the propagation of
the data bits at the end of the path in the deserializer. When the EN signal is asserted, the
data bits start to propagate through the circuit as waves with a distance of DDCDL + Dmux

delay between them. The signal keeps propagating until it reaches the deserializer and the
pilot signal reaches the end of the deserializer. When this happens, the multiplexer for the
individual bits in the deserializer loops back to itself, making it a latch that holds the value
at the output, marked with Q3-Q0. Note that the DCDL at the end of the deserializer should
have a significantly lower delay path than the rest, as it is there to calibrate the pilot bit
compared to the data bits.

(a) Serializer for the Wave-Front Train.

(b) Deserializer for the Wave-Front Train.

Figure 2.12: The Wave-Front Train solution. The figure is Adapted from S. Lee et al. [30].

There is a difference between rise-time and fall-time for multiplexers, like with DCDLs
as mentioned in 2.5.2. To compensate for this delay difference, the DCDLs are implemented
with an even number of inverters. This leads to the polarity of the propagating signal to
invert at every DCDL, averaging the rise and fall times. This is a much-used technique in
phase interpolation. An important aspect that the WAFT depends on is that the delay for the
serializer and deserializer is identical. If they are not, there is a high risk that the difference
leads to jittering at the deserializer, causing a degradation of the performance. WAFT is also
sensitive to supply voltage variations. With big variations in the supply voltage, there is a
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risk of severe performance degradation in the deserializer. The solution for this degradation
is to adaptively control the supply voltage based on what is needed for the given bandwidth.

2.7 Timing for a Wave-pipeline Serializer-Deserializer
Transmission of data is completed in a single clock period, as defined in section 2.2.2. This
means that each bit of the serial data must operate at a much higher frequency than the
clock. This is affected by how many bits the transmission includes. More bits lead to shorter
time per bit, while fewer bits give a higher time per bit. Figure 2.13 shows the timing for the
four data bits and the pilot bit for the WAFT solution. At the rising edge of the clock, when
the enable signal is asserted, the respective nodes already hold the value of the data bits. It
is not before the signal from the last node has propagated that the value changes. Each bit
can be followed through the serializer, from the first node following the respective data bits
parallel input until it reaches the serial line. Note that the figure does not show the delay
through the multiplexers, which is the reason that Node 0 is the same as the serial line. In
reality, there is propagation delay through the multiplexers and not just the DCDLs. This
will be further discussed in Chapter 4.

In Figure 2.13, it can be seen that with any given clock frequency, the time for any
additional data bits on the serial line must be taken from the preexisting bits. By taking
time from the preexisting bits, the pulse width for each bit is shorter, given the assumption
that the transmission should be finished in a single clock cycle. On the other hand, the
maximum bandwidth for a wave-pipeline SerDes is dictated by the minimum pulse width
that can be transmitted. While in theory, this is only dictated by the rise- and fall time, in
reality, there are multiple constraints categorized under timing uncertainties.

The three important variations of process-, voltage-, and temperature (PVT) can have

Figure 2.13: The timing for the pilot and data
bits in the WAFT solution

an impact on any electrical circuit [31]. This
especially impacts a circuit that is timing
sensitive such as a wave-pipeline SerDes.
These variations are extensively tested for in
any circuit, even down to corner cases. This
testing is done to make sure that the circuit
works as expected with high variations in
these three variables.

Process variations, mentioned in section
2.5.2, are caused by unintentional differences
in physical size and other properties of
otherwise identical cells. The cause of
these variations is minor changes under
fabrication, such as line edge roughness
and gate thickness fluctuation [32]. As a
chip typically consists of many transistors,
the likelihood of process variations is high.
Process variations impact the propagation
delay of any cell. This is the reason process
variation is considered in this thesis.

The second variation, called voltage
variations, is the variation of the source voltage of the chip. The delay of a cell is dependent
on the saturation current. In turn, the saturation current is dependent on the supply voltage.
This dependency means that when the supply voltage varies, the delay of the cell is affected.
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The last of the variations, temperature variation, generally consists of two temperature
variations. The first of the two temperature variations are due to the local density on the
chip [33]. As the density of components, and the switching activity of these components,
varies throughout the chip, the local temperature naturally also changes. In higher-density
areas and high switching areas, the temperature is higher than in lower-density areas and
low switching areas. The second temperature variation comes from the fluctuation of the
temperature due to switching in each cycle. Both of these temperature variations directly
impact the delay of the cell.

Timing uncertainties can generally be split into two categories, Static- and dynamic timing
uncertainty. Static timing uncertainty refers to uncertainty due to variations in mean timing
caused by slowly varying or one-time effects. An example of static timing uncertainty is
the uncertainty caused by process variation. Dynamic timing uncertainty is cycle-to-cycle
variations or variations that last for a short period of time [34]. An example of dynamic timing
uncertainty is delay changes due to temperature or voltage variations. Timing uncertainties
can be classified in one of two ways, skew, or jitter [35]. Skew refers to uncertainty in the
relative timing between two signals, often defined as the timing difference between a data
signal and its corresponding clock edge, called clock skew. Jitter refers to unwanted variations
within a periodic signal from cycle to cycle.

One of the biggest consequences timing uncertainties can have on a wave-pipeline SerDes is
related to the functionality and the solution’s reliability. If the design is not robust, high static
uncertainty can cause the wave-pipeline SerDes to never output the correct data, rendering
it useless. While if there is high dynamic uncertainty, the output of the wave-pipeline SerDes
might, in the worst case, be correct a fraction of the time.

2.8 Multiple Buffering
As wave-pipeline SerDes heavily relies on propagation for its functionality, there is a funda-
mental issue that needs to be solved; how can both the serializer and deserializer be reset
and ready for a new transmission without reducing the throughput? A solution to this
is by using buffers [36]. In this thesis, multiple buffering refers to multiple instances of
specific components in both the serializer and deserializer that can be used in parallel for
transmissions. Note that only one of these can be used at a time, as there is still only one
serial line. An example of how double buffering could be implemented for the WAFT

Figure 2.14: Example of how a double buffer could be implemented for the WAFT SerDes
solution
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solution can be seen in 2.14. There are two sets of multiplexers that both input the serial data.
A multiplexer is added to the output of the serializer, which connects the two buffers to the
serial line. This multiplexer is used to control which of the two buffers outputs the serial data
onto the serial line. Additionally, there are two EN signals, one for each, so that the buffer
not transmitting does not start a transmission when the other buffer is transmitting. This
solution is not a perfect solution, as the two buffers have a set of DCDLs each, increasing the
timing uncertainty for the solution. For a wave-pipeline deserializer with double buffering, it
can be seen as a cycle where one of the buffers receives the data while the other one resets.

2.9 Timing Calibration
With the high number of delay variations caused by the PVT variations, it is important
to consider delay calibration for a delay-sensitive solution such as the wave-pipeline SerDes
for higher reliability for the proposed solution [37]. Delay calibration, in this sense, means
the possibility of calibrating the solution so that it works as intended for all corner cases,
with both static and dynamic variations. In a worst-case scenario, a wave-pipeline solution
might not give the correct output at all if the delay is too high or too low in the DCDLs,
as a wave-pipeline SerDes is highly dependent on precise delay to function as intended. A
delay calibration scheme could be utilized both for initial calibration with the main purpose of
rectifying static variations and periodic calibration against dynamic variations to increase the
reliability of the solution. Additionally, another possible way of calibrating is by focusing on
the variations in source voltage. Both methods will be further elaborated on in this section.

Figure 2.15: Example of autobaud when the transmitter has a lower baud rate than the
receiver

The first of the calibration schemes introduced here is the timing calibration scheme used
for baud rate solutions, such as the UART solution, named Automatic baud rate detection
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(autobaud) [38]. autobaud is a process by which a receiver device can be calibrated by
determining the speed of transmission. This is achieved by having a prearranged value that
is received using a predetermined baud rate at the receiver, with an unknown baud rate at
the transmitter. An example of this can be seen in Figure 2.15. Based on the exact sampled
value, it can be determined which baud rate the receiver is using. In this example, the value
0x0D is sent from the transmitter, with a sampling baud rate of 9600 in the receiver. If the
receiver samples the same value, it is known that the receiver and the transmitter are already
using the same baud rate. The same system can be used to determine if the transmitter is
using a lower baud rate. The reason for this is that the width of the pulse for each bit is wide
enough that they can be sampled multiple times, and as the baud rate of the transmission is
constant relative to the baud rate of the receiver, the sampled value is the same each time,
for each baud rate. In this example, if the received value is 0xE6, it can be determined that
the baud rate of the transmitter is 4800, and if the received value is 0x78 the baud rate of
the transmitter is 2400. Note that in Figure 2.15 the colors indicate how much of the original
data is sampled for the different baud rates. E.g., the blue part of the example with a baud
rate of 9600 matches the sampled data for the example with a baud rate of 4800, and the
red part in the example with a baud rate of 4800 matches the sampled value of the example
with a baud rate of 2400.

Figure 2.16: Example of autobaud when the transmitter has a higher baud rate than the
receiver

Of course, the example above only works for baud rates lower than 9600. But how can
autobaud detect baud rates that are higher than 9600? For the example above, the solution
depends on the fact that the incoming data has a wider pulse width and that each bit can
be sampled multiple times. But turned the other way, if the pulse width of the incoming
data is narrower than what is possible to sample, scenarios where the sampling happens just
as the serial line switches from one to zero, or vice versa, can occur. With autobaud this is
solved by looking at which potential values the different cases for a given baud rate can have.
This means that if the baud rate of the transmitter is 19200, there are three points at which
the sampling happens while the serial line switches, which gives eight potential values that
indicate the baud rate. In this example these eight values are: 0xF0, 0xF1, 0xF4, 0xF5,
0xF8, 0xF9, 0xFC, and 0xFD. Figure 2.16 shows a visualization of this.

The autobaud scheme can not be used the exact way described above for the proposed
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solution in this thesis. The reason for this is that the proposed solution does not utilize baud
rates as predetermined steps but should be possible to use at all clock frequencies. But the
autobaud scheme can still be useful regarding the proposed solution. It can be used as a
baseline or inspiration for a calibration scheme for the proposed solution. One of the most
useful takeaways from the autobaud scheme is that changes are only done in the receiver,
while the transmitter remains the same. This will be further elaborated on in Chapter 3.4.

While a timing calibration scheme does cover the three variables in PVT, it is not the
only way to perform calibration. As the source voltage variations have the biggest impact of
the three variations, it makes sense to focus on these variations [30]. This is what S. Lee et
al., the creators of the WAFT focus on. According to them, the voltage variations have a big
impact, with a 10% variation of the source voltage in either direction can cause up to 30%
jitter for the WAFT deserializer. This is solved by introducing adaptive voltage generation.
The voltage generator limits the variations in the supply voltage and smooths it out. Voltage
calibration will be further discussed in Chapter 4.5.

2.10 Design for Testability
Testing the functionality of a design is important. If testing of the design is not considered in
the design phase, faulty chips might make it to the market. The most common approach to
testing digital circuits is to toggle every internal node of the circuit and observe the effect this
has. The difficulty of toggling any internal node in the design through the circuit’s inputs
is called controllability. In the same manner, the difficulty of observing any internal node is
called observability [39].

Design for Testability (DFT) is a way for engineers to test a design [40]. By considering
testing earlier in the design flow, it is possible to make the design more testable while spending
less time doing so. To fully test a design, one would have to be able to control and observe
the internal logic of the design. In this thesis, the focus will be on scan chains, which can
be utilized to achieve high controllability and observability for the design [41]. Scan chains
work by adding a boundary-scan cell that includes a multiplexer and latches to each pin of
the design. This collection of boundary-scan cells is then configured into a parallel-in and
parallel-out shift register that can be observed. The input part of this shift register can then
be loaded with values individually or shifted in through a dedicated input called test data in.
Similarly, for the output part of the shift register, the data could either be sampled parallel
on separate pins or through a serial shift output pin, called test data out. It is important to
note that the boundary-scan cells do not contribute to the normal functionality of the circuit.
Scan-chains will be talked about further in Chapter 3.6.



Chapter 3

Implementation

In this chapter, the proposed solution is presented. The presentation starts by introducing
the overview of the proposed solution and continues by introducing the different modules of
the design in detail.

3.1 Proposed Solution

The proposed solution is a SerDes that utilizes wave-pipelining principles for the serialization
process. The solution is capable of a five-to-one reduction of data wires on the bus and is
scalable. This scalability is possible because the solution is split into a configurable number
of serializer and deserializer units capable of transmitting five bits per clock cycle. Figure 3.1
shows an overview of the proposed solution. The serializer input consists of five bits of parallel
data in addition to a Transmitter Valid (TxValid) and a Transmitter Ready (TxReady) signal
used for handshaking. Additionally, the system clock and active-low reset inputs to the
serializer. The outputs of the serializer consist of the serial line, a synchronization line
named xck, and a set of ready and valid signals. The deserializer inputs the serial line and
xck signal from the serializer and outputs the five bits of parallel data in addition to a Receiver
Valid (RxValid) signal and a ready signal that is sent to the serializer. The deserializer inputs
a Receiver Ready (RxReady) signal, a valid signal from the serializer, a clocking signal, and
an active-low reset. Note that the handshaking protocol used for the proposed solution is
based on the AMBA AXI handshaking protocol [42]. The handshaking signals will be more
thoroughly introduced in section 3.3.3.

Figure 3.1: Overview of the proposed solution

The design is capable of backpressure, meaning that when the transmitter has data to
send that the receiver is not ready to receive, the proposed solution can hold said data for
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as long as necessary until the receiver is ready. Additionally, the proposed solution has low
latency and is capable of transmitting five bits of data per unit every clock cycle.

As the solution is made up of units that can input up to five bits of data each, a custom
parallel width input and output is possible. An example of this is 64 bits. For 64 bits of
parallel data, there would be 12 serializer units of five bits each, in addition to a unit number
13 that inputs 4 bits. The deserializer would mirror the serializer.

3.1.1 The Connection Between the Serializer and Deserializer

The connection between the serializer and deserializer can be seen in Figure 3.2. Each of the
serializer and deserializer units contains three buffers. Control logic decides which buffers
are assigned to transmit the serial data. This works the same for both the serializer and
deserializer, though the control logic is separate and not dependent on each other for the two
parts. The reason three buffers are used is that this enables the buffers to inhabit different
states that cycles for each clock cycle. These three states are: Transmit, offload, and reset.
For the transmit state, a new transmission of data between the serializer and deserializer is
done. The offload state is the offloading of the data from the deserializer to the output of
the proposed solution. And finally, in the reset state, the buffer module resets in preparation
for the transmit state. Note that these are not states in a Finite State Machine (FSM), but
rather names used to describe the functionality of the different buffers at any given clock
cycle.

The source code for the buffering system can be seen in Appendix B.2 for the serializer,
and in Appendix C.2 for the deserializer.

Note that this is a simplification of the connection and that the figure is only meant to
show a simplified visualization of the connection. What is contained in the buffers, and the
control logic for them will be explained in more detail later in this chapter.

Figure 3.2: A simplified view of the serializer- and deserializer units

3.2 Data Path

The section will describe the datapath for the proposed solution. This is done module by
module, starting with the serializer, then the deserializer, and finally the DCDL. The data
path for the proposed solution is based on the WAFT solution made by S. Lee Et al., as
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mentioned in 2.6.2. This choice is discussed in Chapter 4. Additionally, the source code for
the serializer data path can be found in Appendix B.3, and the source code for the deserializer
data path can be found in Appendix C.3.

3.2.1 Serializer

The data path of the serializer consists of five registers with an enable input, six two-input
multiplexers, and five DCDLs. The proposed serializer can be seen in Figure 3.3. The five
bits of parallel input are marked as D4 to D0 and are the input of the five registers, Reg 4
to Reg 0. The output of the five registers is then connected to input zero of their respective
multiplexer. This makes it so that when the select signal, named sel_in, is low, and the
serializer is not transmitting data, the five data bits propagates through the first multiplexer
but stop at the next multiplexer, as the select signal for the multiplexers is zero. The serial
line is connected to ground when the serializer is idle through Mux0. When the sel_in signal
is set high, the multiplexer closest to the serial line switches, and the first bit is transmitted.
The sel_in signal also propagates through the first DCDL and switches the select signal of
Mux1, which causes the second data bit to get transferred on the serial line. This pattern
continues for each of the data bits until the last bit has been transmitted, and the serial line
is set to ground through input one of Mux5. Additionally, the sel[4] signal is transmitted
as the clock synchronization signal xck to the deserializer. This makes it so that the clock
synchronization signal is sent at the same time as the last bit on the serial line.

Figure 3.3: The data path for the serializer in the proposed solution

The biggest change, when compared to the WAFT solution, is that the DCDLs have
been moved to the select line for the multiplexers instead of on the data line between the
multiplexers. The reason for this is that the clock signal xck can be timed so that it leaves
the serializer at the same time as the last bit, which is D4. The xck signal is also the second
change compared to the WAFT solution, which instead utilizes a pilot bit, as described in
Chapter 2.6.2. These changes will be further discussed in Chapter 4. Note that, depending
on how many parallel bits the input of the serializer consists of the number of serial data
modules that can be found in the design varies. Each of the modules is capable of serializing
five bits of data, as mentioned in the overview above.

3.2.2 Deserializer

The deserializer of the proposed solution, which can be seen in Figure 3.4, consists of five
registers with enable, five active high latches, six DCDLs, and an SR AND-OR latch. Note
that the SR-latch module and the circuitry around it are simplified in this figure and are
explained in more detail in Section 3.2.2. Here, the DCDLs are placed on the serial line as
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a separation between the nodes that connect the serial line to the latches, which are called
RxNode4 to RxNode0 in the figure. An extra DCDL is added to the input of both the serial
line and the xck input, which are used to calibrate the xck to the last bit of the transmitted
data. The DCDLs are needed on both the lines so that the calibration can be done both
ways. This means two scenarios. The first scenario where the xck signal is early compared to
the last bit of the transmission, or the second scenario where the last bit of the transmitted
data is early compared to the xck signal. Note that this only calibrates the data bits with
respect to xck and that it does not calibrate the timing between the data bits.

Figure 3.4: The data path for the deserializer in the proposed solution

In addition to the DCDL for calibration, the serial line is connected in serial through four
DCDLs. These DCDLs separate the nodes where the output latches are connected. When
the last bit of the transmission reaches RxNode4, the xck signal reaches the SR AND-OR
latch, which sets the enable signal for the output latches high, sampling and holding the
input value at the rising edge of the enable signal. At the same time, the enable for the five
output registers is set high, and the value from the output latches is sampled by the output
registers.

One of the biggest differences between the proposed solution and the WAFT solution
is that the latching method of feedback signals on multiplexers from the WAFT solution is
replaced with active high latches. This will be further discussed in Chapter 4.

SR-latch

Figure 3.5 shows the SR-latch and the circuitry surrounding it. While the correct term for
this circuitry is SR AND-OR latch, for simplicity it will be called SR-latch in this thesis. The
set signal, named S here, is connected to the xck signal that comes from the serializer through
a DCDL, as mentioned in the section above. This means that, with a small propagation delay
from the logic gates in the SR-latch, the output is set high as soon as the xck signal arrives
at the S input of the latch. This causes an enable signal, named EN to be set high, which
is used to enable the latches that can be seen in Figure 3.4, named Latch0 to Latch4. This
locks the output of the latches with the value on the input at the time the EN signal was set.
The EN signal is also connected to the enable signal for the parallel output registers in the
deserializer, causing them to start sampling on the positive clock edge of clk. Additionally,
the output of the SR-latch. called sel, is the input of a delayed reset block, which is also
clocked by clk. The delayed reset block is used to delay the signal by two clock pulses. This
block contains a counter that is set to zero when idle, and starts incrementally counting up
when the sel signal is set high. When this counter reaches a value of two, the output of the
block is set high. This output is connected to the reset input, named R, of the SR-latch. This
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causes the output of the SR-latch to reset back to zero, which, in turn, causes the counter to
reset to zero.

Figure 3.1 shows the truth table for the SR-latch. When both inputs S and R are low,
the output of the SR-latch does not change. When the set signal S is set high, the output
of the SR-latch, named Q, is set high, and when the reset signal R is set high, Q is set low.
Note that Q is set low regardless of what S is when R is set high, as the R signal has priority

Figure 3.5: The SR AND-OR latch used in the deserializer and the circuitry surrounding it

the S signal for this type of SR-latch. The fact that the Q signal does not change when both

Table 3.1: The truth table for the
SR AND-OR latch

S R Q
0 0 NO CHANGE
1 0 1
x 1 0

over the S and R signal is low is important for the
functionality of the SR latch with respect to the
deserializer. As the SR latch only needs the positive
edge of the xck signal to trigger, the length of the pulse
is not important, within reason, for the functionality
of the deserializer. On the other hand, as the R signal
has priority over the S signal, if the xck signal for any
reason is high for a long period, the functionality of the
deserializer is not compromised by this either, as the Q
signal is set low regardless of what the S signal is.

How the clock signal is received is one of the biggest issues with the proposed solution. As
mentioned in Chapter 2.4.3, the width of the clock signal must be wide enough to be reliably
detected. At the same time, the timing of the clock signal in relation to the data is sensitive
and needs to be precise. There exist certain scenarios where the input register for the sel
signal for the counter in the delayed reset block, shown in Figure 3.5, can enter a metastable
state. This meta stable state would then, in the worst case, cause the sel signal to remain
high for one clock cycle longer than intended. The situation where the metastable state can
be an issue is if the xck signal enters the SR-latch and propagates through it inside the setup
time of the register, causing the sampling value to be an unknown value between zero and
one. If this value is closer to zero, the sel_reset signal remains low for an additional clock
cycle. This lasts until the input register can input the right value. This, as stated above, can
cause the sel signal, and with that, the EN signal, to remain high for a clock cycle longer
than intended. This issue can be caused by certain clock frequencies of the system clock, in
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addition to the length of the wire between the serializer and the deserializer, as this dictates
the propagation delay for the signal before it reaches the SR-latch. This might be a challenge
for certain high-speed systems, which is worth keeping in mind. The source code for the
SR-latch can be found in Appendix C.5, and the control signals in the delayed reset block
can be found in Appendix C.3.

3.2.3 Digitally Controlled Delay Lines (DCDL)

The DCDL configuration chosen for the proposed solution is identical to the design introduced
in Chapter 2.5.1, and can be seen in Figure 2.8. The DCDLs used in the serializer and
deserializer are identical, but unlike for the WAFT solution, for the proposed solution, the
DCDLs are not mirrored. This means that they are not placed at the same spot in the
serializer and deserializer but rather on the select signal for the multiplexers in the serializer
and the serial data line in the deserializer. This is not a problem here, as the DCDLs in the
serializer affect the delay of the serial data as if they were on the serial line. The DCDL
solution was implemented to be customizable, meaning that the number of steps can easily
be changed for how many are needed for any given system clock and library. The number
of select signals dynamically changes with the need as more steps are added or taken away.
As mentioned in Chapter 2.5.1, the chosen DCDL scheme has a potential for glitching, this
will be further discussed in Chapter 4. The source code for the DCDL module can be seen
in Appendix D.

3.3 Control Signals

In this section, the control signals for both the serializer and deserializer are presented. This
includes select signals for the buffers, the handshake signals, and the calibration scheme.
Source code for the serializer control signals can be found in Appendix B.4 and the source
code for the deserializer control signals can be found in Appendix C.4.

3.3.1 Control Signals for the Serializer

The control circuitry for the serializer is significantly larger than for the deserializer. One
of the biggest contributors to this is the FSM which does most of the controlling of the
transmissions. The reason for this is that the serializer is the module that controls whether
a transmission should happen based on handshake signals from the deserializer and the
transmitter. The FSM for the proposed solution is to a high degree inspired by the FSM in
the xor-based solution mentioned in Chapter 2.6.1.

There are three states in the state machine: Idle, wait, and transfer. The idle state
functions as a state in which the design waits for any incoming parallel data from the
transmitter. The second state, called wait, is entered when the receiver initiates a wait
state. This state enables backpressure. The last state, transfer, is the state in which the
design transfers data. If the FSM stays in the transfer state, a new transmission is started
each clock cycle of the system clock. The state diagram for the FSM can be seen in Figure
3.6. The state of the FSM switches based on the two inputs TxValid signal, which is the
valid signal from the transmitter, and the DesSer_Ready signal, which is the ready signal
sent from the deserializer to the serializer. If TxValid is set low, and the FSM is not in
the idle state, the state is changed to idle on the next clock cycle, regardless of which of
the two other states it is currently in. This is because TxValid being set low indicates that
the transmitter does not have data to send. If the DesSer_Ready signal is low while the
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TxValid signal is changed to high, it means that the transmitter is ready to send data while
the receiver is not ready to receive the data. This causes the FSM to change state to wait,
where it stays until one of two scenarios. The first of these scenarios is that the receiver
is ready and the DesSer_Ready signal is set high. This causes the FSM to change state to
transfer. In the second scenario the transmission is stopped by the transmitter setting the
TxValid signal low. This causes the FSM to change state to idle. Similarly, if the FSM is in
the transfer state, and the DesSer_Ready signal is set low, the FSM changes the state to the
wait state. The outputs of the FSM include the enable signal for the parallel input of the
serializer, the TxReady signal, and a SerDes_Valid signal which is sent to the deserializer
for the handshake.

Figure 3.6: The Finite State Machine for the control signals of the serializer

The buffer selection is done using a counter that count from zero to two and is reset zero.
As there is minimal switching when the serializer is idle, the counter keeps cycling through
these three values. This is also true while the FSM is in the transfer state, as this means that
data is continuously transmitted. When the FSM is in the wait state, the counter is paused.
The reason for this is that the data which is waiting to be transmitted is held in the parallel
input registers of one of the three buffers, causing a need to track which of the three buffers
holds the data. When the state switches from wait to transfer, the counting resumes. This
counter value is used for two things. Firstly, to set one of three select signals, called sel, high.
This signal is the select signal that is sent to one of the three buffers for the multiplexers and
is the signal that propagates through DCDLs, as shown in Figure 3.3. Secondly, the counter
value is used directly as a select signal for an output multiplexer that decides which of the
three buffers gets to transmit data on the serial line and the clocking synchronization line.



32 CHAPTER 3. IMPLEMENTATION

Lastly, the xck signal is derived from the select signal after it has propagated through
all the DCDLs. This makes it so that the signal is in time with the last bit of the data
transmission before it leaves the serializer.

3.3.2 Control Signals for the Deserializer

The control signals for the deserializer are generally significantly simpler than the control
signal for the serializer. This is due to the deserializer mostly being passive, which means it,
for the most part, only reacts to incoming signals from either the serializer or the receiver.

The RxReady signal, which is the ready signal from the receiver to the deserializer, is
directly connected to the DesSer_Ready signal, which is the ready signal from the deserializer
to the serializer. There are two reasons for this. The first reason for the direct connection
is that the deserializer should not receive data if the receiver is not ready to offload it. The
second reason is to reduce as much delay between the receiver and the serializer as possible.
The RxValid signal is derived from the SerDes_Valid signal, which is the valid signal from
the serializer to the deserializer. This is done through a register that is clocked by the system
clock. This is done so that the transmitting data, which takes a clock cycle, has time to reach
the deserializer before the RxValid signal is set high.

There is also a counter in the deserializer, like in the serializer. The counter works the
same way as the counter in the serializer; the counter counts from zero to two before it
resets to zero. There is a signal that stops the counter if either the RxReady signal or the
SerDes_Valid signal is low. This is used to stop unnecessary switching when the deserializer
is idle, reducing the power consumption. Note that the reduction of power consumption from
this is minor. But compared to the serializer, the control logic for the stop signal is limited to
a single NAND-gate, which makes it worth it. The counter controls a one-hot signal, named
ser_sel. The ser_sel signal controls the active buffer for each clock cycle. This is done by
deciding which of the three buffers gets the serial data input line and the xck signal using
AND-gates as shown on the left side in Figure 3.7. Two sets consisting of three and-gates,
one for the serial data input and one for the xck input, has the ser_sel one hot signal as
the second input with one of the three inputs for each of three and-gates. The output of
these two sets of three AND-gates is sent into one deserializer module each. This leads to
the buffer that inputs the SerialDatan signal and xckn signal for the currently active one-hot
signal, ser_sel, being the only buffer receiving these two signals, with the select signal being
one-hot. This means that only one of the three buffers receives the SerialDatan signal and
the xckn signal at a time. Another positive effect is that the two non-active buffers receive a
logical zero as input on both these inputs. For the serial data input, this means that there
is no need for a reset signal in the deserializer module, as the logical zero output from the
AND-gate can propagate through the deserializer and reset it when the deserializer module
should be reset.

Additionally, the ser_sel signal is used to determine which of the parallel data outputs
are to be connected to the output of the design. On the output, the ser_sel signal is shifted
compared to the input so that the buffer containing the data from the last transfer is connected
to the output. If this shift was not there, the wrong data would be outputted. This is done
using multiplexers as shown on the right side in figure 3.7. A set of five parallel data lines is
outputted from each of the three buffers and sent through a set of five multiplexers that use
the same ser_sel signals as the select signal. The output of the multiplexers is connected
directly to the designated spot in the RxData vector, meaning the output for bit zero is
connected to RxData[0], which is the output for the proposed solution.



3.4. CALIBRATION 33

Figure 3.7: How the deserializer buffer input and output are selected

3.3.3 Handshake

As stated at the start of this chapter, the handshake protocol is based on the AMBA AXI
protocol [42]. This protocol is the same as the one used in the project preceding this thesis
[12].

The protocol consists of a valid signal and a ready signal. The valid signal indicates that
valid data is ready to be sent, while the ready signal indicates that the data is ready to be
received. This means that the valid signal is always sent from a transmitter to a receiver, and
the ready signal is always sent from a receiver to a transmitter. When both the ready and the
valid signals are high, a transmission starts. This scenario is called a handshake. Similarly,
a beat defines a clock cycle where a handshake occurs. In the proposed solution, handshake
signals are used between the transmitter and the serializer, the serializer and deserializer,
and the deserializer and receiver.

A transmission is defined as a single transfer of data. If a transmission is started, it must
be finished. Additionally, if the valid signal remains high, transmissions continue for as long
as the ready signal is high or until the valid signal is set low. Both the valid signal and the
ready signal can be set high regardless of what the other signal is at any time. If the ready
signal is set low, backpressure occurs, and the data for the next transmission must be held
in the serializer until the ready signal is set high again. Lastly, the ending of transmission is
indicated by the valid signal being set low.

3.4 Calibration

As mentioned in Chapter 2.9, calibration of the deserializer in a wave-pipeline SerDes is
important for reliability of the solution. The main focus in this chapter will be on how a
timing calibration scheme can be implemented.

The proposed solution does not rely on a baud rate system with increments to determine
the speed of the system, like the autobaud system. This means that the autobaud scheme can
not be directly used for the proposed solution. Instead, a solution inspired by the autobaud
scheme will be presented. As the autobaud system is made to be used to synchronize the
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baud rate of a serializer to the deserializer, there is a fundamental difference between the
proposed solution and a solution that would employ autobaud. For the proposed solution
of this thesis, the frequency is known when the system is synthesized. A calibration scheme
for the proposed solution would rather be used for small-scale calibration rather than for big
changes like what was explained with the examples in Chapter 2.9. This difference should be
evident in how the calibration scheme is implemented for the proposed solution in contrast
with how it would be implemented for a system utilizing baud rate with bigger incremental
changes.

Firstly, keeping the serializer unchanged while changing the delay values for the deserial-
izer is a principle that can be used for the proposed solution, like with the autobaud system.
This principle makes it so that the delay of the serializer can be used as a constant reference
while the deserializer is adjusted to match it. Secondly, transmitting a given value that can
be used as an identifier in the deserializer could also be used for the proposed solution.

Figure 3.8 shows a visualization of a calibration scheme for the proposed solution with
these two ideas combined. The figure shows the received data for three scenarios. The five-bit

Figure 3.8: A visualization of an example
of how a calibration scheme could be
implemented for the proposed solution

value sent from the serializer in this example
is 11011. In scenario one, the data received
in the deserializer matches the value sent
from the serializer, and no adjustments are
needed. In scenario two, the value received
is shifted by one bit to the left. This shifting
means that the delay in the deserializer is
too low, and the DCDL delay path for the
deserializer should be longer to make up
for it. In scenario three, the data received
in the deserializer is shifted one bit to the
right compared to the data sent from the
serializer. In this scenario, the delay in the
deserializer is too high, and the DCDL delay
path for the deserializer should be shorter.
Note that this is only one of many ways the
calibration scheme could be implemented,
and it is not without shortcomings. The
biggest shortcoming is that the calibration
scheme only works for small changes. If the
delay in the deserializer is much higher or lower than the serializer, the received data could
consist of five zeros. This happens because the serial line is grounded through Mux0 while
idle, and grounded through Mux5 after the transmission is completed, as shown in Figure
3.3. Note that if there is only a single 1 in the sampled value in the deserializer, the course of
action can be determined. But these shortcomings do not mean that this calibration solution
is not usable with the complete proposed solution. As mentioned earlier in this section,
the frequency of the system clock is known at the time of synthesis. This means that the
calibration solution should only ever be needed for small increments of calibration.

There are some additional questions that need to be answered about the calibration
scheme. One of which is: When should the calibration be done? The first and maybe most
obvious answer to this question is initialization. At start-up, the variations due to PVT are
unknown. This is mainly due to process variation, which can have a major impact on the
total delay variation. A timing calibration done at initialization would negate the impact of
the static variations on the proposed solution, only leaving the dynamic variations. As for
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the dynamic variations, there are two ways calibration can be done. First of which is at reset.
If the reset signal is set, a timing calibration is triggered. The problem with a reset-triggered
timing calibration is that it would require something or someone to set the reset signal,
which would be avoided with the second solution. The second solution is to trigger a timing
calibration at a given interval. An example of this is that a timing calibration is triggered after
every n transmission, where n is the number of transmissions between each timing calibration.
This would require a control system that keeps track of how many transmissions have occurred
since the last calibration, which takes up area, and increases the power consumption, but it
would be working with no outside influence. How many transmissions there are between the
calibrations can be decided based on the frequency on the system clock, which process node
the proposed solution is running on, or similar metrics to optimize the calibration for the
specific design of the proposed solution.

The second question is how to communicate between the serializer and deserializer when
the calibration is starting. As a calibration transmission should not be outputted from the
deserializer, the RxReady signal is irrelevant for calibration. This means that a calibration
transmission can be initiated at any time, as long as a normal transmission is not currently
transmitted. Additionally, the deserializer does not have to transmit anything to the serializer
in regards to the calibration, but the deserializer does have to be notified that the calibration
transmission is not a normal transmission. The simplest way to do this is to start the
transmission without setting the SerDes_Valid signal. This idea works because the latches
in the deserializer are controlled by the xck signal that is sent from the serializer, in addition
to the fact that the deserializer should always be ready because there is no need to output
anything from it to the receiver.

3.5 Timing for the Proposed Solution

In this section, the timing for the proposed solution is presented. This includes timing for the
five individual bits and how and why they are affected by different aspects such as frequency
and timing uncertainty. Additionally, an example using an imaginary standard cell library is
conducted to find the number of DCDL steps needed for this example.

The delay path for D0 between the input register and output register can be seen in
Figure 3.9. D0 is the bit closest to the serial line, which means that the delay path for D0 in
the serializer, is the shortest. In turn, the delay path of D0 in the deserializer is the longest,
as it is the only bit that has a delay path through all five DCDLs in the deserializer. In
total, the propagation of D0 consists of one multiplexer, five DCDLs, and a latch. While
D0 does propagate through Mux1, this happens before the transmission starts, which is the
reason why it is not included. Equation 3.1 shows the total propagation delay for a data bit
in the proposed solution. n is the bit number of the individual bit, e.g., n is zero for D0, n is
one for D1, etc. It should be noted that the propagation through the multiplexers is slightly
different as the signal propagates from input 0 to the output and input 1 to the output of the
multiplexers. But for this equation, the propagation delay is simplified to be equal for both.
There is a slight difference in the propagation delay for the 5 data bits. This is due to the
multiplexers in the serializer that does not have a mirrored counterpart in the deserializer.
This means that the DCDLs in the deserializer need to account for this by having added
delay equal to Dmux, when compared to the DCDLs in the serializer. Equation 3.1 does
not show this. Additionally, each bit must propagate through four DCDLs in addition to
a small DCDLs used for calibration, named DDCDLcal. The DDCDLcal can be found in the
deserializer between the serial line and RxNode4, and can be seen in Figure 3.4. Dtotal is also
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the minimum time before the latch can be locked after a transmission start. This means if it
is locked before this time, the data will not be sampled.

Dtotal = (n + 1) · Dmux + 5 · DDCDL + DDCDLcal (3.1)

Figure 3.9: The delay path for D0 from the input register to the output register with the
delay path marked in red

With an example system clock frequency of 1 GHz, equations for the total delay for each
of the five bits can be made. It is, however, important to note that these equations are
dependent on the standard cell library used for the implementation. Here in this example,
an imaginary library will be used. Firstly, a clock frequency of 1 GHz gives a period of 1 ns.
This means that with a requirement that the transmission should finish in a clock cycle, the
total propagation delay for the five data bits should not exceed 1 ns. This means that the
total pulse width for each bit can not be higher than 200 ps. This works out as each of the
five bits has to propagate through the system with a near-constant delay separating them.
Additionally, the different bits need to propagate through multiplexers. D4 must propagate
through six multiplexers, D3 through five multiplexers, etc. D0 has the fewest multiplexers
to propagate through, with only two multiplexers. The difference that this causes must be
added to the DCDLs in the deserializer as mentioned above. With this added difference, it
is assumed in the equation that each bit propagates through six multiplexers. Additionally,
each bit must propagate through a latch to reach the input of their respective register. But
note that this is not important in regards to the transmission as the latch samples the value
and is seen as the end of the propagation path, while the register samples the value on the
next clock cycle. This assumption can be seen in Equation 3.2.

Dtotal = 6 · Dmux + 5 · DDCDL + DDCDLcal (3.2)

In this example, the propagation delay for a multiplexer, Dmux is 9.5 ps, and the prop-
agation delay of a NAND-gate is 3.8 ps. The DCDLs used for calibration is assumed to be
small, with only a single step. Note that this is just a choice made for this example, and
that this calibration DCDL can be adjusted to any value just as the other DCDLs. DDCDL

can be found using Equation 2.9. The total propagation delay for the multiplexers in this
example is 57 ps, and the propagation delay for the calibration DCDLs is 7.6. The results of
this inserted in Equation 3.2 can be seen in Equation 3.3. Note that Dtotal = 1000 ps is the
max propagation delay, mentioned above. This leads to a total delay per DCDL of 187.08ps,
which can be seen in Equation 3.4. This total DCDL delay is also the bit width for each bit,
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as this is the propagation delay of the DCDLs on the select line in the serializer. Inserting
this value as the total propagation delay for a DCDL in Equation 2.9 and solving for n gives
a result of n = 23.6, which can be seen in Equation 3.5. This result gives a total steps per
DCDL of 24 steps, as steps in the DCDL can only be full steps.

1000ps = 57ps + 5 · DDCDL + 7.6ps (3.3)

DDCDL = 1000ps − (57ps + 7.6ps)
5 = 187.08ps (3.4)

n = 187.08ps − 7.6ps

7.6ps
+ 1 = 24.6 (3.5)

3.6 Design for Testability in the Proposed Solution
The proposed solution is also made with DFT in mind. More precisely, it is made with scan
chains in mind. For the proposed solution, there are clear input points for boundary-scan
cells, which can give a high testing coverage, and with that, high observability. An example
of such a point is the serial data and the xck output line for the serializer. Connecting the
scan chain at this point gives access to observe the complete transmission and the xck signal.
In the deserializer, the output of the latches can be similarly observed using boundary-scan
cells.





Chapter 4

Results and Discussion

This chapter starts by presenting the methodology for the proposed solution. The results
from both simulation, synthesis and routing follow. Additionally, discussions regarding both
design choices, the results, and general discussion about the proposed solution are found in
this chapter.

4.1 Methodology

This section focuses on the methodology for the proposed solution. This includes some
decisions made in regards to the methodology, in addition to important information needed
to recreate the proposed solution.

(a) Serializer as a sub-module of the transmitter, and deserializer as a sub-module of the receiver,
connecting the two using a serial link.

(b) Placing the proposed design in a sub-module separate from the transmitter and receiver.

Figure 4.1: Alternative ways to connect the modules in the proposed solution.

39
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One of the first considerations to make in this thesis was the module setup for the proposed
solution in regards to the preexisting transmitter and receiver. Two alternative solutions will
be discussed here. Both solutions can be seen in Figure 4.1. The first of which, as can be
seen in 4.1a, splits the SerDes into two sub-modules: Serializer and deserializer. These two
modules are then inserted in the transmitter and receiver in their respective places, with
a serial link connecting the serializer in the transmitter to the deserializer in the receiver.
For the second solution, which can be seen in 4.1b, the proposed solution is packaged as a
separate sub-module of the system with an interface to the transmitter and the receiver. For
the solution of this thesis, version b was selected. The reason for this choice is to make it easier
to package and implement the solution in the system. It is also easier to make changes to and
testing of the proposed solution when it is contained in the system as a separate entity. It is
also possibly a more intuitive packaging option that is easier to navigate. Another positive
side effect of this choice is the possibility of making the solution into an IP-block. There are
some routing concerns related to the packaging choice, but that is outside the scope of this
thesis.

The module hierarchy of the proposed solution can be seen in Figure 4.2. In relation to
Figure 4.1, serdes.sv is the serdes top module, and the two modules serializer_wavepipe.sv and
deserializer_wavepipe.sv are the Serializer and Deserializer modules respectively. The serial-
izer_wavepipe module and the deserializer_wavepipe module both contain two sub-modules:
A control module and a data module. The data modules are named Serializer_multi_buf
for the serializer and Deserializer_multi_buf for the deserializer. These two modules are
the modules that act as entities that can be multiplied for any number of parallel inputs, as
explained in Chapter 3. These modules also contain the three datapath buffers, which in turn
contain the DCDL sub-modules for the serializer and the DCDL and SR_latch sub-modules
for the deserializer. A note here is that the control module for both the serializer and
deserializer are shared between the three data path buffers, which is done for lower power
consumption and area usage, and works for this solution as the three buffers never transmit
data simultaneously.

Figure 4.2: The modules of the proposed solution
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The proposed solution was implemented using the HDL SystemVerilog, as this was a
requirement for the thesis. The solution was simulated using Xilinx Vivado’s integrated
simulation tools, while Cadence Genus was used for synthesis. The standard cell library used
for the synthesis is a 28 nm process. Due to confidentiality, no more information about the
library can be provided in this thesis. Tool Command Language (tcl) scripts were set up for
the synthesis of the design, which, for the most part, simplified the synthesis. tcl scripts,
in regards to synthesis, are simple scripts containing the different console commands used
to run the synthesis. The synthesis of the proposed solution was a bigger part of the thesis
than first anticipated. The main reason for this is the DCDLs. Any synthesis tools will try
to optimize the design while maintaining the logic function of the circuit. This means that
any delay element, as described in Chapter 2.5, that does not have any logical functionality,
will be optimized to a wire, making it so that delay elements are not synthesizable out of
the box. In turn, when the delay elements are optimized away, some of the logic connected
to the delay elements might not drive any primary outputs, which also causes the synthesis
tools to optimize the circuit removing these parts too. Figure 4.3 shows a console message
about this optimization. In this case, the DCDLs in the deserializer has been removed, which
causes the output registers to be removed because there is nothing connected to the D input
of the registers.

Figure 4.3: Synthesis console message about optimization of logic due to optimized delay
elements

To solve these problems, the synthesis tool, in this case, Cadence Genus, needs to be
notified that the delay elements should be preserved or that they should not be touched. The

Figure 4.4: The different design objects, as
seen from the synthesis tool with an example
Verilog code

synthesis tools provide multiple ways this
can potentially be done, which will be
discussed here. In Figure 4.4 different
design objects can be seen. Design objects
are identifiable objects in the design that
can be manipulated using attributes during
synthesis. However, the focus of this thesis
will be on attributes related to preserving
design objects. Preserving design objects
prevents the synthesis tool from replacing
or modifying the design object during
optimization. First off is an attribute named
set_dont_touch_network, which is mainly
used to set the don’t touch attribute on
clock networks and the buffers on the clock
network. The attribute can only be set on
clocks, ports, and pins. While the attribute was extensively researched for this thesis, no
way of using it to preserve DCDLs was found. The problem is that the attribute can only be
set on design objects that have been mapped by the synthesis tool in the generic synthesis
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step, which comes after the optimization step, in which the DCDLs are removed. The second
solution named set_dont_touch works similarly with the exception that it is more general,
as it can set the don’t touch attribute on cells, nets, designs, and library cells. While the
set_dont_touch attribute shares the same problem as the set_dont_touch_network attribute
for cells, nets, and designs, it does not share the problems for library cells. This means that it
is possible to use this attribute to preserve library cells. But to be able to preserve a library
cell, one must first instantiate the library cell. And to be able to do so before optimization,
the instantiation must be done by hand. Hand instantiation means inserting the library
cell into the design by hand. Hand instantiation can be done by instantiating a cell in the
design that is connected to a specific cell in the standard cell library, which in the case of
the proposed solution is a NAND-gate cell. The source code for this module can be found
in Appendix D.2. The set_dont_touch can then be set on the library cell, preventing the
optimization. Note that for the attribute to affect the optimization, the command must be
inserted between the elaboration step, and the generic synthesis step.

The proposed solution also contains combinatorial loops, which can cause trouble in
relation to the synthesis tools. The reason for this is that for the timing analysis, the start of
the loop can not be determined, as it would normally be defined as the output of a register
or latch. For the case of Cadence Genus, the combinatorial loops are disabled using loop
breakers, which break the circuit and interfere with the functionality of the solution. The
loop breakers have no impact on the optimization of the circuit, and with a single command,
the loop breakers can be disabled. For the proposed solution, this was done at the end of the
synthesis.

4.2 Important Design Choices

In this section, important design choices that were made for the proposed solution are
presented and discussed. This includes clock signaling, the choice of DCDL scheme, how the
buffering system was implemented, the calibration scheme, and other miscellaneous choices
that were made for the proposed solution.

4.2.1 Choice of Mesochronous Clock Scheme

The choice of mesochronous clock scheme was between the two types described in Chapter
2.4. The first scheme, called receiver clock generation, described in section 2.4.2, can be a
robust solution. This solution was not chosen because the clock generation circuitry would
add to the area of the proposed solution while also giving a significant increase in power
consumption. This leaves the source-synchronous clock scheme, as described in section 2.4.3.
There are two ways of implementing a source-synchronous scheme. The first is the pilot
bit signaling solution, which looks the best at first glance as it requires no additional wires
on the bus while working similarly compared to the scheme that utilize a separate clock
line. However, if the pilot bit signaling scheme were to be chosen, there is a hurdle that
needs to be overcome in regards to the proposed solution. As the pilot bit is inserted in the
data transmission, and the total width of transmission is dictated by the clock frequency, as
described in Chapter 3.5, the width of the pilot bit pulse can become so narrow that there
is no way of consistently detecting in the deserializer, without added significant complexity,
area, and power consumption for the proposed solution. Additionally, the pilot bit is inserted
on the serial lines, which means that it is taking up time from the serial line that could
be used for an additional data bit. This means that with the reduction of units needed, as
each unit can transmit an addition bit, the total number of wires is limited with a separate
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clock line scheme. Note that does not mean that there are fewer total lines than for a pilot
bit scheme, but fewer than if the number of data bits stay the same. Because of these two
reasons, the separate clock line scheme is favored for the proposed solution, and both reasons
have a major impact on the proposed solution. This is also the reason the separate clock line
scheme was chosen for the proposed solution.

4.2.2 Choice of DCDL

There are many ways of implementing DCDLs. Three of these solutions were introduced in
Chapter 2.5. In this section, the choice between these three solutions is explained.

As stated in Chapter 2.5.1, the propagation delay through an inverter is typically low.
This means that the number of inverter pairs needed for the total delay is high. Additionally,
the leakage power of an inverter is high compared to a NAND-gate, based on the library the
author of this thesis had access to. The reason for this is that the propagation delay to power
consumption ratio is higher for an inverter, compared to a NAND-gate. As there is a higher
total number of inverters in an inverter-based solution, than NAND-gates in the NAND-based
solution, the total power consumption from leakage power is higher for the inverter-based
solution. Similarly, while the area of a single inverter is lower than a NAND-gate, the increase
in the total number of inverters needed compared to a NAND-based solution leads to a higher
area for the inverter-based solution. When these points are added, a NAND-based solution
is the better choice for the DCDLs in the proposed solution.

It should also be noted that the reason that the solutions presented in Chapter 2.5 is
either based on inverters or NAND-gates is that they both invert the signal and take up a
smaller area when compared to gates such as AND-gates. As described in Chapter 2.5.2, the
fact that the elements invert the signal between the stages is important as there is a difference
in rise-time and fall-time for the gates. When the signal is inverted between each stage, this
difference between rise-time and fall-time is averaged, and it does not matter if the input is
a one or a zero.

As it has been established why the choice between inverters and NAND-gates ended with
NAND-gates, the last choice made was between the glitchy NAND-based solution, and the
glitchless type, as presented in Chapter 2.5.1. The first difference is that the glitchless solution
does not have the potential issue of having multiple delay paths connected to the output at
the same time, which can introduce glitching. To stop this potential glitching problem,
additional NAND-gates, with an extra set of select signals, are inserted to block the signal
from propagating through the wrong step when switching occurs. The extra NAND-gates
that are inserted add to the delay of the DCDL, while also adding to the total area for
the DCDLs when compared to the glitchy solution. Additionally, the power consumption is
increased as there are extra NAND-gates with leakage power and internal power.

The glitching issue for the glitchy NAND-gate is only a problem if the DCDL is actively
in use when the select signal changes. This means that there is no danger of glitching for
the proposed solution, as the select signal never changes while there is an active signal. This
reason makes the glitchless solution obsolete if the reason it was chosen is that it is glitchless.
However, as the propagation delay of cells is dependent on the standard cell library it comes
from or the process technology of the library, the glitchless solution might be a good solution
if the desired total delay of the DCDL is high or if the resolution of the DCDL steps is
desired to be higher. The glitchy DCDL was chosen based on the propagation delay of the
NAND-gate in the library the author had access to, in addition to the fact that glitching is
not an issue for the proposed solution. But do note that the glitchless solution might be a
good solution for some standard cell libraries.
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4.2.3 Choice of Buffer Scheme
In this section, choices related to the buffer scheme are discussed. This includes control signal
choices and choices related to what the buffers consist of.

There were initial concerns regarding the looping counters for selecting the active buffer.
This concern was related to the counters continuously counting. The reason for this concern
was the potential high switching activity that could unnecessarily increase the power con-
sumption of the solution. Using AND-gates for the input, as shown in Figure 3.7, removed
any such concerns. The reason is that it meant that, outside of the switching related to
the counter itself, no extra switching activity happens. Outside of enabling functionality,
such as backpressure mentioned in Chapter 3.3.1, there is no need to be able to stop the
counters. This fact simplifies the control signals. With the simplified control logic, the
power consumption is reduced compared to what would have been with a more complex
counter-system. This reduction negates the increased power consumption from the counter
to some degree compared to a more complex counter.

As stated at the start of this section, the second choice regarding the buffer scheme is
related to what the buffers consist of. Some of the parts, as introduced in Chapter 3.2, can be
implemented in different ways as either shared between the three buffers or individually for
each buffer. An example of a part of the buffer that could be shared but is not in the proposed
solution is the input register in the serializer. There are multiple such examples for both the
serializer and the deserializer. As the proposed solution is not a fully optimized design, these
examples could be used to improve the solution in regards to both power consumption and
area utilization. Do note, however, that the DCDLs can not be shared between the buffers
for either the serializer or the deserializer. The reason they can not be shared is that the
signal going through the DCDLs needs to be able to propagate back when reset, as described
in Chapter 2.8.

4.2.4 Other Design Choices
In chapter 2.6, two examples of how a wave-pipeline SerDes can be implemented was ex-
plained: The XOR-based solution and the WAFT solution, where the XOR-based solution
is a modified version of a solution made by the author of this thesis. A choice was made
in regards to which of these two solutions could provide the best baseline for the proposed
solution in this thesis. In the end, the WAFT solution was chosen. The reason for this is the 15
XOR-gates in the XOR-based design, which typically has a higher internal power consumption
from internal switching. Additionally, using the standard cell library the author had access
to, it was estimated that the area required for the XOR-based solution is significantly higher,
due to the size of the XOR-gates. Additionally, as stated in Chapter 2.6.1, The XOR-based
solution is hard to modify. An example of this is switching from pilot bit signaling to a
separate synchronization line, which would cause the whole data path for the XOR-based
solution needing to be redesigned. These reasons combined made it clear that the WAFT
solution is a better baseline for the proposed solution and is the reason that it was chosen.
The WAFT solution utilizes multiplexers in the deserializer as latches. This design choice
was not made for the proposed solution as multiplexers connected with a feedback line causes
issues in synthesis due to the loopbreakers mentioned in section 4.1.

4.3 Simulation Results
In this section, the simulation results are presented. This includes examples of different
transmission scenarios. Simulations, as stated in section 4.1, were done using the integrated
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simulation tools of Xilinx Vivado. Smaller testbenches were made for some of the modules.
This includes the Serializer_wavepipe, and Deserializer_wavepipe modules, in addition to
the DCDL module. These testbenches were made to prove the behavioral functionality of the
sub-modules, so that the debugging would be easier for the fully assembled design. A bigger
testbench were made for the complete implementation. This testbench inputs random 64-bit
values, at the parallel input, and is set up with different scenarios for RxReady and TxValid.
The three most notable combinations are:

– The start of a transmission, where both RxReady and TxValid are low.

– The start of a transmission, where TxValid is low, but RxReady is high.

– The pausing of a transmission, where TxValid is high, but RxReady is low.

Additionally, an assertion was made that checks the input from the previous clock cycle
against the current output, as these two values should match. If there is not a match, there is
an error counter accumulating once each time the values do not match. The DCDLs can not
be modeled with the desired delay in the behavioral simulations. The delay was simulated
using the time operator #, which is not synthesizable but can be used to model time in
simulations. The code snippet below shows an example of how this can be done. This code
works by assigning sel[1] the value of sel[0] 1ns after the value of sel[0] changes.

1 assign #1ns sel[1] = sel[0];

In Figure 4.5, a transmission for the proposed solution can be seen. The transmission
starts at the first clock cycle that the four handshaking signals, TxValid, TxReady, RxValid,
RxReady, are high simultaneously. This point is marked with the yellow line in the figure.
After the transmission has started, a new value is ready on the output each clock cycle, with
any given value having a latency of one clock cycle. Note that while it is not possible to see
the complete input and output number on the figure, due to the width of the data, the error
count is visible. There would have been a value of one added to it for each situation were the
input and output did not match.

Figure 4.5: Simulation of a transmission for the proposed solution. The figure is a screen
capture from Vivado.

In Figure 4.6, a scenario of backpressure is shown. In this situation, the RxReady signal
is set low while TxValid is still high, and the transmission is paused. The transmission is
held in a pause state in two scenarios. The first is until the RxReady signal is set high again
and the transmission resumes, which is what happens in Figure 4.6. The second scenario is
until the TxValid signal is set low, and the transmission is aborted, this scenario is not shown
in any of the figures. Note that the RxReady signal is set low on a falling edge of the clock
signal, clk, and the TxReady signal is kept high until the next rising edge of the clock. The
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reason for this, is that the check whether the RxReady signal is still high is done at the rising
edge of the clock. This means that the transmission currently happening as the RxReady
signal is set low must finish, for the data not to be lost. When the RxReady signal is set high
again after an undefined amount of time, the data held in the serializer is then transmitted,
and outputted by the deserializer. In the case of Figure 4.6, this is the value of 1322846814.
This can be seen at RxData after the transmission resumes.

Figure 4.6: Simulation of a transmission were RxReady is set low. The figure is a screen
capture from Vivado.

4.4 Results
In this section, the results for the proposed solution are presented. This includes performance,
power consumption, and area, as these results are the most important in regard to the work of
this thesis. The power consumption results come from the power estimation tools in Cadence
Genus, and the area results are gathered by inserting the proposed solution in ARM’s Mail
GPU, at a 5 nm process [43]. Which is a representative example of current GPU technology.

4.4.1 Performance
In this section, the performance of the proposed solution is presented and discussed. This
includes throughput and latency for the proposed solution, compared to a parallel solution.

The proposed solution makes it possible to complete transmission in a single clock cycle,
as presented in section 4.3. This means that the throughput is high, with new data available
on the output each clock cycle. The high throughput is made possible by the multiple
buffering scheme, as each buffer has the designated cycling states of Transmit, offload, and
reset, mentioned in Chapter 3.1.1. This means that every clock cycle a new buffer is ready
to offload data to the output of the proposed solution.

The latency for the proposed solution is dictated by the total propagation time for
transmission. As stated in Chapter 2.2.2, no transmission should last for longer than a
clock cycle. For a parallel solution, both the input side and output side of the bus contain a
register. This means that any single transmission can not take less time than a clock cycle,
as the output register must sample the bits at the rising edge of the clock. Combined, this
means that the latency for the proposed solution matches a parallel solution at one clock
cycle.

The throughput and latency for the proposed solution match a parallel solution, which is
one of the requirements listed in Chapter 1.5.

4.4.2 Power Consumption
In this section, the power consumption for the proposed solution is presented and discussed.

The power consumption for the proposed solution can be broken down into two parts.
Power consumption from the transmitter and receiver named Pps, and power consumption
due to wire channel power, named Pwire. The equation for this is shown in Equation 4.1.
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With a reduction of lines on the bus, it is expected that Pwire is lower for the proposed solution
than a fully parallel solution. On the other hand, it is expected that Pps is higher, as this
part for a fully parallel solution only consists of two sets of registers connected, compared to
the serialization and deserialization logic of the proposed solution. The author of this thesis
did not have access to tools that could estimate Pwire. Because of this, this section will focus
on Pps.

Ptotal = Pps + Pwire (4.1)

The power consumption was estimated using the cadence genus power estimation tool,
with 28 nm process. The total width of the parallel input used for the estimations are 64 bits,
which gives a total of 13 serialization, and deserialization units. The total power consumption,
as well as the power consumption of different subcategories, can be seen in Table 4.1. The
highest power consumption comes from the registers. This is due to the combination of
the number of registers, and that the registers have a higher power consumption than the
smaller cells, such as the NAND-gates used in the DCDLs. The second highest source of the
power consumption is the logic, which for the most part comes from the NAND-gates and
the multiplexers. The total power consumption for the proposed solution is 260 µW . This
includes the control logic, and logic needed for the data path.

Table 4.1: Power consumption for the proposed solution in µW

Leakage [µW ] Internal [µW ] Switching [µW ] Total [µW ] Total [%]
Register [µW ] 12.638 108.76 6.7412 128.14 49.15%
Latch [µW ] 2.2216 1.7315 0.5053 4.4585 1.72%
Logic [µW ] 45.386 14.496 35.336 95.219 36.52%
Clock [µW ] 1.0797 6.5624 25.242 32.885 12.61%

Subtotal [µW ] 61.325 131.55 67.825 260.70 100%
Total [%] 23.52% 50.46% 26.02% 100% 100%

The power consumption for a simplified parallel solution can be seen in Table 4.2. The
solution consists of two sets of registers, one on the transmitter side and one on the receiver
side, in addition to some combinatorial logic for the reset signal. As with the power estimation
for the proposed solution, the total width of the parallel data is 64 bits. The total power
consumption for the parallel solution is 66.001 µW .

Table 4.2: Power consumption for a parallel solution in µW

Leakage [µW ] Internal [µW ] Switching [µW ] Total [µW ] Total [%]
Register [µW ] 2.8781 46.494 1.6329 51.005 77.28%

Logic [µW ] 0.6542 1.7312 4.3156 6.7011 10.15%
Clock [µW ] 0 0 8.2944 8.2944 12.57%

Subtotal [µW ] 3.5323 48.226 14.243 66.001 100%
Total [%] 5.35% 73.07% 21.58% 100% 100%

When comparing the power estimations for the proposed solution with the parallel so-
lution, the power consumption for the proposed solution is 3.95 times higher than for the
parallel solution. This can be seen in the graph of Figure 4.7. It is important to reiterate
that the power consumption for the proposed solution is expected to be higher for the
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proposed solution since the power consumption due to wires and buffers are not considered.
Additionally, it is important to note that the main objective is to reduce the number of wires
on the bus, which is a trade-off when compared to the power consumption. With that being
said, it is a significant increase in power consumption, but it is important to set it in context
of a big chip. The proposed solution would be a small part of a system, and the power
consumption a small part of the total power consumption of this system. It is therefore not
an unreasonable increase in the power consumption considering the area-power trade-off.

Figure 4.7: Comparison of the power consumption between a parallel solution and the
proposed solution

Note that the power estimation results are not perfect. This is mainly due to estimations
not including the power consumption from the bus lines, Pwire, which is expected to be
significantly higher for the parallel solution compared to the proposed solution. This will
skew the results in favor of the parallel solution, as the parallel solution will have a seemingly
lower power consumption than in reality. The reason the power consumption for the bus lines
is not included is that it was not possible to measure with the tools available to the author
of this thesis. Additionally, the parallel solution is simplified, with less functionality, such as
backpressure, and clock gating. Note that the power estimations are tied to the standard cell
library that was used and that the results will differ if another library or process is used.

4.4.3 Routing

In this section, the area of the proposed solution is presented, compared to a parallel solution,
and discussed.

The proposed solution was implemented using routing tools by ARM Norway in a 5 nm
process, with a 64-bit input and output. This was done by inserting the proposed solution
as the connection of a shader core and comparing it to a parallel solution. This is shown in
Figure 4.8. The red and grey part of the figure indicates two different voltage domains, and
the connection is indicated by the yellow triangles at the bottom of the gray area. Figure
4.8a shows the connection using a parallel solution, while Figure 4.8b shows the connection
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using the proposed solution. The triangle in the proposed solution is noticeably narrower
than for a parallel solution in the figures.

The number of lines in the proposed solution is reduced by about half compared to
the parallel solution. Note that this does not include any information about the area of the
solution itself but rather the changes to routing caused by the proposed solution. Additionally,
the routing length was reduced by 17.94%. The routing length and reduction of lines are
related. With a lower number of lines, there is both a shorter total routing length, and it
can also enable the routing to be done more optimally, further shortening the routing length.
Overall, the results show a decrease in routing, which is in line with what was expected with
a reduction of five-to-one in lines that comes with the proposed solution.

(a) Connections using a parallel solution (b) Connection using the proposed solution

Figure 4.8: Connections to a shader core using a parallel solution and the proposed solution.
the connection is indicated using yellow rectangles at the bottom. Courtesy of ARM.

Routing for the proposed solution was done by ARM. The reason for this is that the
tools for doing so were not accessible to the author. Additionally, if routing would have to
be done by the author of this thesis, it would mean that he would have less time to focus
on other equally important things within the somewhat short time frame of the thesis. Due
to confidentiality, some details surrounding the routing and synthesis done by ARM can not
be shared in this thesis. A summary, written by Morten W. Lund, of everything that was
done by arm can be found in Appendix A. Here, he states that due to ARM’s conservative
synthesis flow, both the SR-latch and D-latches introduced several timing issues that they
were only partially able to solve. This is one of many details that need to be fixed before a
wave-pipeline SerDes can be production-ready. These issues made it hard for ARM to extract
either power consumption data or static timing analysis. Further, he writes that the trial
appears to be successful in regards to the area and that the added area caused by the added
logic seems to be offset by the reduction of lines and routing length. This is in line with what
can be seen in the numbers presented above.

4.5 Further Discussion

There are multiple multiplexers in the data path for the serializer which can cause an issue.
The issue is related to the rise- and fall-time of signal propagating through a multiplexer.
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For D4, as seen in Figure 3.3, this can cause a difference in propagation delay in relation to
D0, which has fewer multiplexers to propagate through. The solution to this issue is to insert
inverters on the data line between each multiplexer, which, as mentioned earlier, averages
the rise-time and the fall-time for the total propagation path. It is important, however, that
each signal is inverted an even number of times, so that the initial value for the input is equal
to the value at the output of the proposed solution. In the example presented in Chapter
2.7 it can be seen that the propagation delay of the multiplexers is a small part compared to
the propagation delay for the DCDLs. This means that the difference in rise- and fall-time
might be negligible, but it is still worth keeping in mind.

It is stated in Chapter 2.2.2 that for this thesis, it was decided that any signal should
only propagate on the serial line of a maximum of one clock cycle. The reason this choice
was made is to both simplify the wave-pipeline SerDes and to make sure that the reliability
of the proposed solution is not reduced by a high number of components that the signal
must propagate through. For the second reason, the main concern for a long propagation
path would be in regards to rise-time and fall-time differences in delay, which would have an
amplified effect in such cases. This is also one of the reasons inverters used for averaging the
rise-time and fall-time is recommended.

There is also a second talking-point regarding the multiplexers in the proposed solution.
There are, in total, six multiplexers on the data line in the serializer, while in the deserializer
there are zero. This means the serializer and the deserializer in the proposed solution are not
mirrored, which causes the propagation delay in the two parts to be different because the
multiplexers in the serializer have a propagation delay that is not in the deserializer. The
solution to this issue is to add a delay equal to the propagation delay for a multiplexer to each
of the DCDLs in the deserializer, as stated in Chapter 3.5. This can be better explained with
D4 as an example. At the start of the transmission, the D4 signal propagates through five
multiplexers in the serializer. If the propagation delay of a multiplexer is added in all four
DCDLs between RxNode4 and RxNode0 in the deserializer, the total propagation delay for
the serializer and the deserializer becomes equal, and the issue is solved for all the bits. Since
the D4 signal propagates through all the multiplexers in the serializer, it has the highest delay
in the serializer, which means it should have the lowest propagation delay in the deserializer.
On the other end, the D0 signal only propagates through a single shared multiplexer in the
serializer. However, with added delay on all four of the DCDLs in the deserializer, the total
delay is equal to the total propagation delay of the D4 signal.

The DCDL module for the proposed solution is made as modular as possible, with the
possibility of deciding the number of steps using a parameter. The reason for this is that
the number of steps needed for the proposed solution is dependent on the propagation delay
of a NAND-gate cell in the standard cell library used. Additionally, the number of steps is
also dependent on frequency of the system clock used in the design the proposed solution is
placed in. This makes it so that the number of steps for correct functionality can only be
determined based on the propagation delay and the system clock frequency for the design
the proposed solution is used in. If a wave-pipeline SerDes is implemented as an IP solution,
a DCDL step could be implemented as a library cell. This would make it easier to design the
cell with small differences in propagation delay for corner cases, and might reduce process
variations.

The buffering solution used in this thesis could possibly be further optimized for area than
what has been done in this thesis. This could possibly be done, by move certain components
in each of the buffers, so that the component is shared between the three component instead
of there being three of the same components. An example of this is the input and output
registers. It might be possible that the three buffers share a single set of registers, and by
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that the number of components is reduced, and the total area is reduced.
Few calibration schemes could be found while researching for this thesis. This led to the

author looking at calibration schemes used for other communication circuits. The autobaud
scheme was the only one of these that the author deemed to have potential as inspiration for
the calibration scheme presented in Chapter 3.4. Because of this, the calibration scheme, an
essential part of the proposed solution, is a potential point for further work.

As mentioned in Chapter 2.9, timing calibration is not the only way of calibrating a wave-
pipeline SerDes. The voltage calibration method is the second way of calibration mentioned
in this thesis. While voltage variations are, according to S. Lee et al., the variable with the
biggest impact on a wave-pipeline SerDes of the three variations, it was found to be too
comprehensive for this thesis. With that being said, the claims made by S. Lee et al. are
worth further research and should be considered as future work for this thesis.





Chapter 5

Conclusion and Future Work

5.1 Conclusion
The routing congestion on the increasingly parallel on-chip interconnects in SoCs leads to
higher power consumption and area usage. In this thesis, a wave-pipeline SerDes was imple-
mented, and it was tested if it could be the solution to the routing congestion. The proposed
solution is capable of five-to-one reduction of data lines on the bus, and one transmission
per clock cycle. The proposed solution is also capable of backpressure. Without considering
the power consumption from the lines and buffers on the bus, the power consumption of the
proposed solution showed an increase of 3.95 times compared to a parallel solution. However,
it is expected that with the reduction of lines, the increase in power consumption is limited.
Additionally, the proposed solution showed a reduction of lines on the bus by approximately
50%, with a reduction of 17.94% in routing length. This is a significant decrease, which can
be expected to cause the area for the proposed solution to be lower in total. The proposed
solution fulfills all the design targets and requirements listed in Chapter 1.5.

In the introduction of the thesis, three questions were asked. The first of these questions
is: Can a wave-pipeline SerDes be implemented so that it can be reliably used across multiple
technology nodes? The author of this thesis believes it has been proved that it is possible,
provided considerations are made for PVT variations and propagation delay for the relevant
cells in the library used for the implementation. Can the proposed solution be ported to a
next-generation technology node? Or is such a solution too reliant on the characteristics of
the standard cell library used for the implementation to do so? The proposed solution proves
that it is possible, with small adjustments, to make a wave-pipeline SerDes solution that can
be ported across technology nodes, while still maintaining the reliability, provided a sufficient
calibration scheme is implemented. The solution is not reliant on any characteristics of the
standard cell library used. The exception for this is the propagation delay which, for the
DCDLs, the modularity of the DCDL module simplifies in the case of porting the design.
However, preparation is needed if the design is to be ported to a new process, in regards to
the propagation delay, which is worth keeping in mind.

The results presented in this thesis are promising. The author believes it is worth
researching to make it an IP solution for widespread use. This statement is backed by ARM
in the summary, which can be found in Appendix A. Here, they say that they think that the
wave-pipeline SerDes is a viable option to be considered in their future GPU designs. Further,
they say that they believe that the wave-pipeline SerDes solution has potential and that they
will use it as a reference in their continuous effort to improve their GPU’s performance, power
consumption and to reduce the area.

53
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5.2 Future Work
Several areas for future work have been identified throughout this thesis. These areas are
mentioned in this chapter. The first is to implement a calibration scheme. The proposed
calibration scheme in this thesis could not be implemented due to the time limitation of the
thesis. Additionally, based on the claims of S. Lee et al., power supply variations have the
biggest impact of the PVT variations [30]. It is worth looking further into voltage calibration
schemes.

Additionally, a more extensive power analysis should be done. This includes the power
consumption from the lines and buffers on the bus. While it is not the main focus of this
thesis, it is still important in regards to low-power or battery-powered chips, if the proposed
solution is ever going to be useful as an IP block.

It is also important that the proposed solution is further optimized for both area and power
consumption as it is not a perfect solution as it is now. This could be done by finding better
ways of implementation or by optimizing the buffering solution, as mentioned in Chapter 4.5.

Lastly, how to receive the clock signal in the deserializer from the serializer was identified
as the most challenging to figure out. The SR-latch solution, while it works as intended now,
might not be the best solution as to how this can be done. A point for the future is to further
research this, to try to find an even better way of doing this than what is presented here.
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Appendix A

Feedback from ARM

In this appendix, feedback on the proposed solution from ARM is presented. This feedback
regards both synthesis and routing of the proposed solution. The feedback is written by
Morten W. Lund M.Sc., which is also an advisor for the thesis.

A.1 Background
An implementation trial and an evaluation of the Wave-Pipeline (WP) SERDES solution
presented by Morten Pedersen in his master thesis have been conducted by ARM Norway.
The trial includes synthesis and physical layout of the design in conjunction with a part of an
upcoming Mali GPU by ARM. A full layout of the entire GPU was not possible due to time
constraints. However, the WP-SERDES was successfully implemented as the main interface
for one of the GPU’s “shader-core” computation blocks.

A.2 Evaluation
As expected, the WP-SERDES module(s) were not friendly to ARM’s conservative synthesis
flow. Both D-latches and SR-latches, found in the WP-SERDES, introduced several timing
issues that we were only able to partially solve for the trial. This was not a showstopper but
is one of the many small things that have to be solved before the design is “production-ready.”
Unfortunately, this did hamper our effort to extract power consumption data and do static
timing analysis. For the area of the design, the trial appears to be successful. The cost
of the added logic seems to be offset by the reduction in routing, even at a compression
ratio of 4 to 1. The total routing length is, as expected, reduced according to the reduction
of lines. This reduces the total line capacitance and, therefore, also power consumption.
Further investigation is needed to confirm that this reduction of line capacitance is enough
to compensate for the higher frequency. However, the numbers are good in our opinion.

A.3 Conclusion
Though we only managed to do a limited trial of the design, ARM still thinks the WP-
SERDES is a viable option for us to consider in future GPU designs. We still have some
design methodology challenges we need to overcome before we can do a large-scale test of the
WP-SERDES design. Regardless, we strongly believe that this solution has potential and
will use it as a reference in our continuous effort to improve our GPU’s performance, power
consumption, and reduce area.

Your efforts are greatly appreciated, and I wish you all the best in your future endeavor.
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Appendix B

Source Code for the Serializer

Here, the source code for certain serializer modules can be found. This includes the most
important modules for the serializer, such as the data module, control module, and buffering
module. In the serializer_data module, note the "only for simulation" comments at the
bottom. This is used in place of the DCDLs for simulation of the proposed solution. Here,
arrows are used to indicate line breaks for lines that are too long. In section B.1, note that
there are two possible Serializer_multi_buf modules that can be generated on line 37. This
is where the serializer units are generated. The two possibilities include a unit of five bits or
a unit of a custom number of bits for the last unit. The last unit is only generated if there
is a remainder after all the full units have been generated.

B.1 Serializer Wavepipe
1 module serializer_wavepipe
2 #(
3 parameter type TXDATA_T = logic unsigned [63:0],
4 parameter N_DCDLSteps = 20,
5 parameter int N_Ser = $size(TXDATA_T)/5,
6 // - Derived Data Types -
7 parameter int TXGROUP_SIZE = ( $size(TXDATA_T) != $bits(TXDATA_T) ) ?

$size(TXDATA_T) : 1,↪→

8 parameter int TXGROUP_MSB = TXGROUP_SIZE - 1,
9 parameter type TXVALID_T = logic unsigned [TXGROUP_MSB:0],

10 parameter logic remainder = (($size(TXDATA_T) % 5) != 0) ? 1 : 0
11 )
12 (
13 // **** Interfaces ****
14

15 // **** Outputs ****
16 output logic tx_ready,
17 output logic SerDes_Valid,
18 output logic [N_Ser:0] ser_data,
19 output logic [N_Ser:0] xck,
20

21 // **** Inputs ****
22 input logic[N_DCDLSteps-1:0] DCDL_sel,
23 input logic DesSer_Ready,
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24 input logic tx_valid,
25 input TXDATA_T tx_data,
26 // - System (Clock and Reset) -
27 input logic clk,
28 input logic reset_n
29 );
30

31 wire [2:0]sel_in;
32 wire [2:0]enable;
33 wire [1:0]ser_sel;
34

35 for (genvar g_i = 0; g_i <= N_Ser; g_i++)
36 begin
37 if (remainder == 1 && (g_i == (N_Ser))) begin
38 Serializer_multi_buf
39 #(
40 .N_DCDLSteps (N_DCDLSteps)
41 )
42 U_Ser_multi_rem
43 (
44 .tx_data

(tx_data[$size(TXDATA_T)-1:$size(TXDATA_T) -
$size(TXDATA_T)%5]),

↪→

↪→

45 .clk (clk),
46 .reset_n (reset_n),
47 // Outputs
48 .ser_data (ser_data[g_i]),
49 .xck (xck[g_i]),
50 // Inputs
51 .enable (enable),
52 .sel_in (sel_in),
53 .ser_sel (ser_sel),
54 .DCDL_sel (DCDL_sel)
55 );
56 end
57 else if(g_i < (N_Ser)) begin
58 Serializer_multi_buf
59 #(
60 .N_DCDLSteps (N_DCDLSteps)
61 )
62 U_Ser_multi
63 (
64 .tx_data (tx_data[5*g_i+:5]),
65 .clk (clk),
66 .reset_n (reset_n),
67 // Outputs
68 .ser_data (ser_data[g_i]),
69 .xck (xck[g_i]),
70 // Inputs
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71 .enable (enable),
72 .sel_in (sel_in),
73 .ser_sel (ser_sel),
74 .DCDL_sel (DCDL_sel)
75 );
76 end // end if
77 end // end for
78

79 Serializer_control
80 #(
81 .TXDATA_T (TXDATA_T),
82 .N_Ser (N_Ser)
83 )
84 U_Serializer_Control
85 (
86 .tx_ready (tx_ready),
87 .SerDes_Valid (SerDes_Valid),
88 // **** Inputs ****
89 .enable (enable),
90 .sel (sel_in),
91 .DesSer_Ready (DesSer_Ready),
92 .tx_valid (tx_valid),
93 .ser_sel (ser_sel),
94 // - System (Clock and Reset) -
95 .clk (clk),
96 .reset_n (reset_n)
97 );
98

99 endmodule
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B.2 Serializer Multi Buf

1 module Serializer_multi_buf
2 #(
3 parameter type TXDATA_T = logic unsigned [63:0],
4 parameter N_DCDLSteps = 20,
5 // - Derived Data Types -
6 parameter int TXGROUP_SIZE = ( $size(TXDATA_T) != $bits(TXDATA_T) ) ?

$size(TXDATA_T) : 1,↪→

7 parameter int TXGROUP_MSB = TXGROUP_SIZE - 1,
8 parameter type TXVALID_T = logic unsigned [TXGROUP_MSB:0],
9 parameter int N_Ser = $size(TXDATA_T)/5

10 )
11 (
12 // **** Interfaces ****
13

14 // **** Outputs ****
15 output logic ser_data,
16 output logic xck,
17

18 // **** Inputs ****
19 input logic [2:0]enable,
20 input logic [2:0]sel_in,
21 input logic [N_DCDLSteps-1:0] DCDL_sel,
22 input logic [1:0] ser_sel,
23 input logic [4:0] tx_data,
24 // - System (Clock and Reset) -
25 input logic clk,
26 input logic reset_n
27 );
28

29 logic [2:0]ser_out;
30 logic [2:0]xck_i;
31

32 // OUTPUT MUX FOR BUFFERS AND XCK
33 always@(ser_sel, ser_out, xck_i)
34 begin
35 case (ser_sel)
36 2'b00 :
37 begin
38 ser_data = ser_out[0];
39 xck = xck_i[0];
40 end
41 2'b01:
42 begin
43 ser_data = ser_out[1];
44 xck = xck_i[1];
45 end
46 2'b10:
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47 begin
48 ser_data = ser_out[2];
49 xck = xck_i[2];
50 end
51 default:
52 begin
53 ser_data = 0;
54 xck = 0;
55 end
56 endcase
57 end
58

59 for (genvar g_i = 0; g_i < 3; g_i++)
60 begin
61 serializer_data
62 #(
63 .N_DCDLSteps (N_DCDLSteps)
64 )
65 U_Ser_data
66 (
67 .tx_data (tx_data),
68 .clk (clk),
69 // Outputs
70 .ser_data (ser_out[g_i]),
71 .xck (xck_i[g_i]),
72 // Inputs
73 .sel_in (sel_in[g_i]),
74 .enable (enable[g_i]),
75 .DCDL_sel (DCDL_sel),
76 .reset_n (reset_n));
77 end
78

79 endmodule
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B.3 Serializer Data

1 // *************************************************************************
2 // MODULE
3 // serializer - Wavepipe Serial Data Link - Tx
4 // *************************************************************************
5

6 module serializer_data
7 #(
8 parameter type TXDATA_T = logic unsigned [63:0],
9 parameter N_DCDLSteps = 20,

10 // - Derived Data Types -
11 parameter int TXGROUP_SIZE = ( $size(TXDATA_T) != $bits(TXDATA_T) ) ?

$size(TXDATA_T) : 1,↪→

12 parameter int TXGROUP_MSB = TXGROUP_SIZE - 1,
13 parameter type TXVALID_T = logic unsigned [TXGROUP_MSB:0]
14 )
15 (
16 // **** Outputs ****
17 output logic ser_data,
18 output logic xck,
19

20 // **** Inputs ****
21 input logic enable,
22

23 input logic [N_DCDLSteps-1:0] DCDL_sel,
24 input logic [4:0] tx_data,
25 input logic sel_in,
26 // - System (Clock and Reset) -
27 input logic clk,
28 input logic reset_n
29 );
30

31 reg [4:0]Q;
32 reg [4:0]TxNode;
33 reg [4:0]sel;
34

35 assign xck = sel[4];
36

37 always_ff @(posedge clk)
38 begin
39 if (reset_n == 1'b0) begin
40 Q = 5'b00000;
41 end
42 else begin
43 if (enable == 1'b1)
44 Q = tx_data;
45 else
46 Q = Q;
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47 end
48 end
49

50 // Muxes
51 assign ser_data = (sel_in)?TxNode[0]:1'b0;
52 assign TxNode[0] = (sel[0])?TxNode[1]:Q[0];
53 assign TxNode[1] = (sel[1])?TxNode[2]:Q[1];
54 assign TxNode[2] = (sel[2])?TxNode[3]:Q[2];
55 assign TxNode[3] = (sel[3])?TxNode[4]:Q[3];
56 assign TxNode[4] = (sel[4])?1'b0:Q[4];
57

58 // Comment for simulation.
59 DCDL #(.Nsteps(N_DCDLSteps)) DCDL0(.data_in(sel_in), .select(DCDL_sel),

.data_out(sel[0]));↪→

60

61 for (genvar g_i = 0; g_i < 4; g_i++)
62 begin
63 DCDL #(.Nsteps(N_DCDLSteps)) DCDL1(.data_in(sel[g_i]), .select(DCDL_sel),

.data_out(sel[g_i + 1]));↪→

64 end
65

66 // ** ONLY FOR SIMULATION **
67 // Uncomment for simulation
68 // assign #1ns sel[0] = sel_in;
69 // assign #1ns sel[1] = sel[0];
70 // assign #1ns sel[2] = sel[1];
71 // assign #1ns sel[3] = sel[2];
72 // assign #1ns sel[4] = sel[3];
73

74 endmodule
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B.4 Serializer Control

1 module Serializer_control#(
2 parameter type TXDATA_T = logic unsigned [63:0],
3 parameter int N_Ser = (($size(TXDATA_T) % 5) != 0) ?

$size(TXDATA_T)/5 : $size(TXDATA_T)/5 - 1,↪→

4 parameter N_DCDLSteps = 20,
5 // - Derived Data Types -
6 parameter int TXGROUP_SIZE = ( $size(TXDATA_T) != $bits(TXDATA_T) ) ?

$size(TXDATA_T) : 1,↪→

7 parameter int TXGROUP_MSB = TXGROUP_SIZE - 1
8 )
9 (

10

11 // **** Outputs ****
12 output logic tx_ready, // Ready to Transmitter <=> SerTxReady
13 output logic SerDes_Valid, // Valid to Deserializer <=> SerDesValid
14 output logic [2:0]enable, // Enable for input registers in serializer
15 output logic [2:0]sel, // select signal for the muxes in the serializer

(the signal that is delayed) and also the clock signal sent to the
deserializer.

↪→

↪→

16 // output logic [N_DCDLSteps-1:0] DCDL_sel, // Select how many steps
that should be used in the DCDL, effectively adjusting the delay.↪→

17

18 // **** Inputs ****
19 input logic tx_valid, // Valid from Transmitter <=> TxSerValid
20 input logic DesSer_Ready, // Ready from Deserializer <=>

DesSerReady↪→

21 output logic [1:0] ser_sel, // Select which serializer in the multibuffer
that is connected to the serial line.↪→

22 // - System (Clock and Reset) -
23 input logic clk,
24 input logic reset_n
25 );
26

27 // **** Local Variables ****
28 parameter S_IDLE = 2'b00, S_WAIT = 2'b01, S_TRANSFER = 2'b11;
29 logic [1:0] curr_state;
30 logic [1:0] last_state;
31

32 logic unsigned [1:0] count;
33 logic unsigned [1:0] last_count;
34 logic unsigned [2:0] enable_select;
35 logic count_stop;
36 logic count_stop1;
37

38 // *** COUNTER ***
39 always @(posedge clk)
40 begin
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41 count_stop = count_stop1;
42 end
43

44 always @(posedge clk)
45 begin
46 if (count_stop == 1'b0) begin
47 last_count = count;
48 count = count;
49 end
50 else begin
51 if(count == 2'b00)begin
52 last_count = count;
53 count = 2'b01;
54 enable_select = 3'b010;
55 end
56 else if (count == 2'b01)begin
57 last_count = count;
58 count = 2'b10;
59 enable_select = 3'b100;
60 end
61 else begin
62 last_count = count;
63 count = 2'b00;
64 enable_select = 3'b001;
65 end
66 end
67 end
68

69 assign ser_sel = count;
70

71 always @ (posedge clk)
72 begin : Control
73 tx_ready = DesSer_Ready;
74 end
75

76 always @(posedge clk)
77 begin : FSM
78 if (reset_n == 0) begin
79 count_stop1 = 1'b0;
80 SerDes_Valid = 1'b0;
81 sel = 3'b0;
82 end
83 else
84 begin
85 case (curr_state)
86 S_IDLE:
87 begin
88 sel = 3'b0;
89 if (last_state != S_TRANSFER)
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90 count_stop1 = 1'b0;
91 if (tx_valid == 1'b1 && DesSer_Ready == 1'b0)
92 begin
93 SerDes_Valid = 1'b1;
94 count_stop1 = 1'b1;
95 last_state = curr_state;
96 curr_state = S_WAIT;
97 end
98 else if (tx_valid == 1'b1 && DesSer_Ready == 1'b1)
99 begin

100 SerDes_Valid = 1'b1;
101 count_stop1 = 1'b0;
102 sel[count] = 1'b1;
103 last_state = curr_state;
104 curr_state = S_TRANSFER;
105 end
106 else
107 curr_state = S_IDLE;
108 end
109 S_WAIT:
110 begin
111 sel[last_count] = 1'b0;
112 sel[count] = 1'b0;
113 if (DesSer_Ready == 1'b1)
114 begin
115 SerDes_Valid = 1'b1;
116 count_stop1 = 1'b0;
117 sel[count] = 1'b1;
118 last_state = curr_state;
119 curr_state = S_TRANSFER;
120 end
121 else
122 curr_state = S_WAIT;
123 end
124 S_TRANSFER:
125 begin
126 sel[count] = 1'b1;
127 sel[last_count] = 1'b0;
128 if (DesSer_Ready == 1'b0 && tx_valid == 1'b1)
129 begin
130 sel[count] = 1'b0;
131 count_stop1 = 1'b1;
132 last_state = curr_state;
133 curr_state = S_WAIT;
134 end
135 else if (tx_valid == 1'b0)
136 begin
137 count_stop1 = 1'b1;
138 SerDes_Valid = 1'b0;
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139 last_state = curr_state;
140 curr_state = S_IDLE;
141 end
142 else
143 curr_state = S_TRANSFER;
144 end
145 endcase
146 end // end reset
147 end //End FSM
148

149 always @(posedge clk)
150 begin
151 if (reset_n == 0) begin
152 enable = 3'b000;
153 end
154 else begin
155 case (curr_state)
156 S_IDLE:
157 begin
158 if (tx_valid == 1'b1 && DesSer_Ready == 1'b1) begin
159 enable = 3'b111;
160 end
161 else begin
162 enable = enable;
163 end
164 end
165 S_WAIT:
166 begin
167 if (last_state == S_IDLE && DesSer_Ready == 1'b0) begin
168 enable = enable_select;
169 end
170 else if (last_state == S_TRANSFER && DesSer_Ready == 1'b0) begin
171 enable = 3'b000;
172 end
173 else begin
174 enable = 3'b111;
175 end
176 end
177 S_TRANSFER:
178 begin
179 if (DesSer_Ready == 1'b0 && tx_valid == 1'b1) begin
180 enable = 3'b000;
181 end
182 else if (tx_valid == 1'b0) begin
183 enable = enable_select;
184

185 end
186 else begin
187 enable = 3'b111;
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188

189 end
190 end
191 endcase
192 end // End reset
193 end
194

195 endmodule
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Appendix C

Source Code for the Deserializer

Here, the source code for certain deserializer modules can be found. This includes the most
important modules for the deserializer, such as the data module, control module, and buffering
module. As for the serializer data module, there is a "for simulation only" comment, which
replaces the DCDLs in simulations of the complete design.

C.1 Deserializer Wavepipe
1 module deserializer_wavepipe
2 #(
3 parameter type RXDATA_T = logic unsigned [63:0],
4 parameter N_DCDLSteps = 20,
5 parameter int N_Ser = $size(RXDATA_T)/5,
6 // - Derived Data Types -
7 parameter int RXGROUP_SIZE = ( $size(RXDATA_T) != $bits(RXDATA_T) ) ?

$size(RXDATA_T) : 1,↪→

8 parameter int RXGROUP_MSB = RXGROUP_SIZE - 1,
9 parameter type RXVALID_T = logic unsigned [RXGROUP_MSB:0],

10 parameter logic remainder = (($size(RXDATA_T) % 5) != 0) ? 1 : 0
11 )
12 (
13 // **** Interfaces ****
14

15 // **** Outputs ****
16 output logic rx_valid,
17 output logic DesSer_Ready,
18 output RXDATA_T rx_data,
19

20 // **** Inputs ****
21 input logic[N_DCDLSteps-1:0] DCDL_sel,
22 input logic SerDes_Valid,
23 input logic rx_ready,
24 input logic[N_Ser:0] ser_data,
25 input logic[N_Ser:0] xck,
26

27 // - System (Clock and Reset) -
28 input logic clk,
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29 input logic reset_n
30 );
31

32 logic [2:0] ser_sel;
33

34 for (genvar g_i = 0; g_i <= N_Ser; g_i++)
35 begin
36 if (remainder == 1 && (g_i == (N_Ser))) begin
37 Deserializer_multi_buf
38 #(
39 .N_DCDLSteps (N_DCDLSteps)
40 )
41 U_des_multi_rem
42 (
43 .rx_data (rx_data[$size(RXDATA_T)-1

: ($size(RXDATA_T) - $size(RXDATA_T)%5)]),↪→

44 .clk (clk),
45 // **** Outputs ****
46 .ser_data (ser_data[N_Ser]),
47 // **** Inputs ****
48 .xck (xck[g_i]),
49 .ser_sel (ser_sel),
50 .DCDL_sel (DCDL_sel)
51 );
52 end
53 else if(g_i < (N_Ser)) begin
54 Deserializer_multi_buf
55 #(
56 .N_DCDLSteps (N_DCDLSteps)
57 )
58 U_des_multi
59 (
60 .rx_data (rx_data[5*g_i+:5]),
61 .clk (clk),
62 // **** Outputs ****
63 .ser_data (ser_data[g_i]),
64 // **** Inputs ****
65 .xck (xck[g_i]),
66 .ser_sel (ser_sel),
67 .DCDL_sel (DCDL_sel)
68 );
69 end // end if
70 end // end for
71

72 Deserializer_control
73 #(
74 .RXDATA_T (RXDATA_T),
75 .N_Ser (N_Ser)
76 )

74



77 U_Deserializer_Control
78 (
79 .rx_ready (rx_ready),
80 .SerDes_Valid (SerDes_Valid),
81 // **** Inputs ****
82 .DesSer_Ready (DesSer_Ready),
83 .rx_valid (rx_valid),
84 .ser_sel (ser_sel),
85 // - System (Clock and Reset) -
86 .clk (clk),
87 .reset_n (reset_n)
88 );
89

90 endmodule
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C.2 Deserializer Multi Buf

1 module Deserializer_multi_buf
2 #(
3 parameter type RXDATA_T = logic unsigned [63:0],
4 parameter N_DCDLSteps = 20,
5 // - Derived Data Types -
6 parameter int TXGROUP_SIZE = ( $size(RXDATA_T) != $bits(RXDATA_T) ) ?

$size(RXDATA_T) : 1,↪→

7 parameter int TXGROUP_MSB = TXGROUP_SIZE - 1,
8 parameter type TXVALID_T = logic unsigned [TXGROUP_MSB:0],
9 parameter int N_Ser = $size(RXDATA_T)/5

10 )
11 (
12 // **** Interfaces ****
13

14 // **** Outputs ****
15 input logic ser_data,
16 output logic [4:0] rx_data,
17 // **** Inputs ****
18 input logic xck,
19 input logic[N_DCDLSteps-1:0] DCDL_sel,
20 input logic[2:0] ser_sel,
21 // - System (Clock and Reset) -
22 input logic clk
23 );
24

25 logic [0:2]ser_in;
26 logic [0:2]xck_in;
27 logic [14:0] rx_data_i;
28

29

30 // OUTPUT MUX FOR BUFFERS
31

32 assign ser_in[0] = ser_data && ser_sel[0];
33 assign ser_in[1] = ser_data && ser_sel[1];
34 assign ser_in[2] = ser_data && ser_sel[2];
35

36 assign xck_in[0] = xck && ser_sel[0];
37 assign xck_in[1] = xck && ser_sel[1];
38 assign xck_in[2] = xck && ser_sel[2];
39

40 always@(ser_sel, rx_data_i)
41 begin
42 case (ser_sel)
43 3'b001 :
44 begin
45 rx_data = rx_data_i[14:10];
46 end
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47 3'b010:
48 begin
49 rx_data = rx_data_i[4:0];
50 end
51 3'b100:
52 begin
53 rx_data = rx_data_i[9:5];
54 end
55 default:
56 begin
57 rx_data = rx_data_i[4:0];
58 end
59 endcase
60 end
61

62 for (genvar g_i = 0; g_i < 3; g_i++)
63 begin
64 Deserializer_data
65 #(
66 .N_DCDLSteps (N_DCDLSteps)
67 )
68 U_Des_data
69 (
70 .rx_data (rx_data_i[5*g_i+:5]),
71 .clk (clk),
72 // Outputs
73 .ser_data (ser_in[g_i]),
74 // Inputs
75 .xck_in (xck_in[g_i]),
76 .DCDL_sel (DCDL_sel));
77 end
78

79 endmodule
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C.3 Deserializer Data

1 //
*****************************************************************************↪→

2 // MODULE
3 // serializer - Generic Serial Data Link - Tx
4 //

*****************************************************************************↪→

5

6 module Deserializer_data
7 #(
8 parameter type RXDATA_T = logic unsigned [63:0],
9 parameter N_DCDLSteps = 20,

10 // - Derived Data Types -
11 parameter int TXGROUP_SIZE = ( $size(RXDATA_T) != $bits(RXDATA_T) ) ?

$size(RXDATA_T) : 1,↪→

12 parameter int TXGROUP_MSB = TXGROUP_SIZE - 1,
13 parameter type TXVALID_T = logic unsigned [TXGROUP_MSB:0]
14 )
15 (
16 // **** Interfaces ****
17

18 // **** Outputs ****
19 output logic [4:0] rx_data,
20

21 // **** Inputs ****
22 input logic xck_in,
23 input logic ser_data,
24 input logic [N_DCDLSteps-1:0] DCDL_sel,
25

26 // - System (Clock and Reset) -
27 input logic clk,
28 input logic reset_n
29 );
30

31 reg enable;
32 logic sel;
33 logic sel_reset;
34 int count;
35

36 logic [4:0]Q;
37 logic [4:0]RxNode;
38 logic [4:0]RxNodeLatch;
39

40 assign rx_data = Q;
41

42 always_ff@(posedge clk)
43 begin
44 if (reset_n == 0)
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45 begin
46 count = 0;
47 sel_reset = 1;
48 end
49 else begin
50 if (sel == 1)
51 count++;
52 else
53 count = 0;
54 if (count >= 2)
55 sel_reset = 1;
56 else
57 sel_reset = 0;
58 end
59 end
60

61 always_comb
62 begin
63 if (sel == 1)
64 enable = 1;
65 else
66 enable = 0;
67 end
68

69 always@(posedge clk)
70 if (sel == 1'b1) begin
71 Q = RxNodeLatch;
72 end
73 else begin
74 Q = Q;
75 end
76

77 for (genvar g_j = 0; g_j < 5; g_j++)
78 begin
79 custom_latch U_latch(.q(RxNodeLatch[g_j]), .d(RxNode[g_j]), .select(sel));
80 end
81

82 SR_latch U_latch(.S(xck_in), .R(sel_reset), .Q(sel));
83

84 // Comment for simulation
85 DCDL U_DCDL0 (.data_in(ser_data), .select(DCDL_sel), .data_out(RxNode[4]));
86

87 for (genvar g_i = 1; g_i < 5; g_i++)
88 begin
89 DCDL #(.Nsteps(N_DCDLSteps)) U_DCDL4(.data_in(RxNode[g_i]),

.select(DCDL_sel), .data_out(RxNode[(g_i-1)]));↪→

90 end
91 // End comment for simulation
92
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93 // FOR SIMULATION ONLY
94 // ----------------------
95 // assign #1ns RxNode[4] = ser_data;
96 // assign #1ns RxNode[3] = RxNode[4];
97 // assign #1ns RxNode[2] = RxNode[3];
98 // assign #1ns RxNode[1] = RxNode[2];
99 // assign #1ns RxNode[0] = RxNode[1];

100 //// -----------------------
101

102 endmodule
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C.4 Deserializer Control

1 module Deserializer_control#(
2 parameter type RXDATA_T = logic unsigned [63:0],
3 parameter int N_Ser = (($size(RXDATA_T) % 5) != 0) ?

$size(RXDATA_T)/5 : $size(RXDATA_T)/5 - 1,↪→

4 parameter N_DCDLSteps = 20,
5 // - Derived Data Types -
6 parameter int RXGROUP_SIZE = ( $size(RXDATA_T) != $bits(RXDATA_T) ) ?

$size(RXDATA_T) : 1,↪→

7 parameter int RXGROUP_MSB = RXGROUP_SIZE - 1,
8 parameter type RXVALID_T = logic unsigned [RXGROUP_MSB:0]
9 )

10 (
11

12 // **** Outputs ****
13 output logic rx_valid, // Valid to

Transmitter <=> TxSerValid↪→

14 // output logic [N_DCDLSteps-1:0] DCDL_sel, // Select how many steps
that should be used in the DCDL, effectively adjusting the
delay.

↪→

↪→

15 output logic[2:0] ser_sel, // Select which serializer
in the multibuffer that is connected to the serial line.↪→

16 output logic DesSer_Ready, // Ready to
Serializer <=> DesSerReady↪→

17

18 // **** Inputs ****
19 input logic SerDes_Valid, // Valid

from Serializer <=> SerDesValid↪→

20 input logic rx_ready, // Ready to
Transmitter <=> SerTxReady↪→

21

22 // - System (Clock and Reset)
-↪→

23 input logic clk,
24 input logic reset_n
25 );
26

27 int count;
28 logic count_stop;
29

30 assign count_stop = ~(rx_ready & SerDes_Valid);
31 assign DesSer_Ready = rx_ready;
32

33 always@(count)
34 begin
35 if (count == 0) begin
36 ser_sel = 3'b001;
37 end
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38 else if (count == 1) begin
39 ser_sel = 3'b010;
40 end
41 else begin
42 ser_sel = 3'b100;
43 end
44 end
45

46 always @(posedge clk)
47 begin
48 if(count_stop == 1'b0) begin
49 if (count >= 2)
50 count = 0;
51 else
52 count++;
53 end else
54 count = count;
55 end
56

57 always @(posedge clk)
58 begin : Control
59 if (reset_n == 1'b0) begin
60 rx_valid = 1'b0;
61 end
62 else begin
63 rx_valid = SerDes_Valid;
64 end
65 end
66

67 endmodule
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C.5 SR-Latch
1 module SR_latch(
2 input S,
3 input R,
4 output reg Q
5 );
6

7 wire S_i;
8

9 assign S_i = S | Q;
10 assign Q = (~R & S_i);
11

12 endmodule
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Appendix D

Source Code for the Digitally
Controlled Delay Lines

Here, the source code for the DCDL module can be found. All the intermediate steps are
generated based on the Nsteps parameter. Note that the custom_nand reference, is a custom
block containing the specific NAND-cell used in the design. This module can be seen in
appendix D.2. Here, NAND2_CELL_NAME is a temporary name, were the name of the
NAND-cell, from a specific standard cell library is inserted. Additionally, the custom_nand
module has an ifndef that that if is chosen in simulation, and else is chosen for synthesis.
This can be used to simulate the delay in-place of the delay inserted in the serializer_data
and deserializer_data modules.

D.1 DCDL Module

1 // Comments: Naming for the steps: step1_1 = step[0][0]
2 // step2_2 = step[1][1]
3

4 module DCDL
5 #(
6 parameter Nsteps = 7
7 )
8 (
9 input logic data_in,

10 input logic [Nsteps-1:0]select,
11 output logic data_out
12 );
13

14 logic [Nsteps-1:0][1:0]step;
15 logic [Nsteps-1:0] data_outi;
16 logic [Nsteps-1:0] LB;
17

18 assign step[0][0] = data_in;
19 // First step
20 custom_nand step0(.y(step[0][1]), .a(select[0]), .b(step[0][0]));
21 custom_nand lb0(.y(LB[0]), .a(data_outi[0]), .b(step[0][1]));
22
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23 // Ending inverter
24 assign data_outi[6] = !step[6][0];
25

26 // Output
27 custom_nand nand_out(.y(data_out), .a(data_outi[0]), .b(step[0][1]));
28

29 for (genvar g_i = 1; g_i < Nsteps; g_i++)
30 begin
31 custom_nand step1_0(.y(step[g_i][0]), .a(!select[g_i-1]),

.b(step[g_i-1][0]));↪→

32 custom_nand step1_1(.y(step[g_i][1]), .a(!select[g_i]),
.b(step[g_i][0]));↪→

33 custom_nand lb1(.y(LB[g_i]), .a(data_outi[g_i]), .b(step[g_i][1]));
34 custom_nand nand_out1(.y(data_outi[g_i-1]), .a(data_outi[g_i]),

.b(step[g_i][1]));↪→

35 end
36 endmodule
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D.2 Custom NAND Module
1 module custom_nand
2 (
3 // Outputs
4 output logic y,
5 // Inputs
6 input wire a,
7 input wire b
8 );
9

10 // NAND2
11 `ifndef SYNTHESIS
12 `define DLY #1ns
13 always_comb y <= `DLY !(a & b);
14 `else // Insert NAND2 cell
15 NAND2_CELL_NAME nand2( .Z(y), .A(a), .B(b) );
16 `endif
17

18 endmodule
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