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Summary 

Fault diagnosis is among the most crucial steps in maintenance strategies to sustain 

the health of machine tools. Traditionally, fault diagnosis was performed based on 

engineers' vast expertise and technical understanding. However, advances in 

Machine Learning (ML) theories have decreased the role of human specialists in 

machine fault diagnosis, introducing Intelligent Fault Diagnosis (IFD). IFD 

approaches have obtained significant attention in academic and industrial 

applications due to their accuracy and velocity in recognizing machines' health states 

automatically. This research presents a novel fault identification process that uses an 

Extra Tree classification algorithm to classify manufacturing process defects with a 

feature selection approach based on feature importance. This approach is evaluated 

and compared against multiple machine learning algorithms, including tree-based 

methods, artificial neural networks, and traditional algorithms such as the Support 

Vector Machines (SVM). The assessment results confirm that the proposed 

algorithm can achieve an accuracy of above 99% in the classification task and 

significantly improve training time and computational resource efficiency. The 

proposed algorithm also enables researchers to analyze the causality of each fault 

based on the influential features. Further instructions to continue this line of research 

are correspondingly presented to enhance the proposed approach by using novel 

transfer learning and generative approaches. 

 

Keywords: Intelligent Fault Diagnosis (IFD), Fault identification, Machines, 

Machine learning, Deep learning 
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1 Introduction 

1.1 Background 

Failure of machine parts directly influences the machine's operation and can possibly 

endanger people's lives and result in significant financial losses. This emphasizes the 

need for industrial facility maintenance. Maintenance is essential for ensuring the 

availability and durability of manufacturing equipment, as well as product quality 

[1], [2]. Consequently, it is essential to identify and analyze machine components' 

health accurately. Effective problem identification is essential for increasing 

machine safety and reliability while lowering operating and maintenance costs [3]. 

However, considering fault diagnosis is a real-time technique involving one or more 

human specialists to examine machine performance, this sort of maintenance is 

impracticable in today's industrial facilities [4]. Model-based diagnosis techniques 

have been developed to solve this challenge by detecting abnormal actions and 

isolating problems using a model that specifies the nominal behavior of a dynamic 

system. On the other hand, data-driven diagnosis algorithms work only on system 

measurements and require relatively minimal system expertise to detect and identify 

system flaws [5]. Artificial intelligence (AI) approaches have quickly risen in 

academic and industrial areas as a burgeoning subject and a feasible alternative for 
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defect diagnostics among data-driven methodologies. The potential for Intelligent 

Fault Diagnosis (IFD) [6] to give intuitive conclusions without requiring a high 

degree of professional competence has piqued interest in recent years. Rather than 

depending on engineers' expertise and ability, these approaches use Machine 

Learning (ML) theories to generate machine diagnostic awareness from acquired 

data adaptively. IFD plans to develop diagnosis models that automatically establish 

a link between obtained data and machine health. Machine learning theories and 

expanded architectures are required for the advancement of IFD approaches [7]. 

Deep learning algorithms have also been used to diagnose faults intelligently and 

succeeded due to the availability of more efficient paradigms and more data [8].  

Traditional machine learning approaches were frequently employed in IFD research 

from its beginning until the 2010s. Machine learning research extends to the 1950s, 

and artificial intelligence has seen a rise in popularity since the 1980s [9], [10]. 

Classic concepts, including Artificial Neural Networks (ANN) and Support Vector 

Machines (SVM), were established around this time. As a result of these notions, 

intelligent fault diagnosis emerged [6]. In these procedures, the fault indications 

were extracted artificially from the acquired data. Such fault indications were 

artificially derived from the obtained data using these procedures. The sensitive 

features were then used to build diagnosis algorithms that could automatically detect 

equipment health [6], [8]. With the help of traditional machine learning, the 

diagnosis models began to create a relation between the selected variables and the 

health conditions of machines. This reduced the need for human intervention in fault 

identification and ushered in the era of artificial intelligence. The primary 

mechanisms of machine defect diagnosis are sensor signal collection, feature 

extraction and selection, and fault classification [1]. Sensor signal acquisition is the 
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process of collecting sensor data while the equipment is running. Time-frequency 

analysis has traditionally derived characteristics from original sensor data in the 

frequency and time domains. The recovered attributes are used to train machine 

learning models to create fault predictions in the final fault classification step [1], 

[11]. 

Traditional fault diagnosis procedures, however, have certain disadvantages. 

Traditional error diagnosis systems, for instance, rely on manually picked 

parameters. As a result, if these manually selected features are not appropriate for 

the job, fault classification performance may deteriorate significantly. Furthermore, 

handmade features are task-specific for diverse classification tasks, implying that 

characteristics useful in creating accurate predictions in one circumstance are 

ineffectual in another. It is challenging to develop a set of features that can accurately 

predict outcomes in a range of situations [1], [12]. Deep learning (DL) techniques 

effectively overcome the above-mentioned limits due to their extensive feature 

learning capabilities. Deep learning has proven to be helpful in a variety of scientific 

and technical domains, including natural language processing [13], computer vision 

[14], and speech recognition [15]. DL approaches, on the other hand, are powerful 

enough to address challenges that are not restricted to the field of computer science 

[16]. Deep architectures with multiple hidden layers may learn hierarchical 

representations directly from raw data. Deep neural networks are built up of several 

layers of connected nodes, each one improving and refining the prediction or 

categorization. Deep architectures can use model training to automatically develop 

discriminative representations that will aid them in making correct predictions in 

subsequent classification stages based on the training data [12], [16], [17]. Deep 

learning methodologies have altered numerous disciplines of study, including IFD, 
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for more than a decade. Although IFD was able to identify machine health without 

the need for human fault evaluation, feature extraction before the deep learning age 

still depended significantly on human labor [12], [18]. Furthermore, traditional 

machine learning theories do not apply to the ever-growing datasets due to restricted 

generalization performance, reducing diagnostic precision and effectiveness [17]. 

Convolutional Neural Networks (CNN) [19] and Recurrent Neural Networks (RNN) 

[20] are two subsets of deep architectures that have gotten a great deal of interest for 

processing pictures and datasets with time continuity. These designs have also been 

used in IFD investigations to handle signals and other forms of imaging data, as well 

as to capture long-term data relationships [21], [22]. 

Although deep learning models have been successful in implementing machine fault 

diagnostic tasks, they still have some disadvantages [1]. First, the number of free 

parameters in DL models grows as the number of hidden neurons and layers 

increases. Creating such large networks from scratch usually demands a substantial 

amount of labeled data as well as a significant amount of computation and effort. 

Adjusting the architecture, activation functions, dropout, learning rates, and other 

hyperparameters has a substantial influence on performance and is a time-consuming 

procedure [23]. Transfer learning (TL) is a potential technique for overcoming the 

difficulties of training a deep architecture from the ground up [24]. Instead of fully 

training a neural network with the random initialization, a deep neural network that 

has been trained with enough labeled data in another application is utilized and fine-

tuned for the job at hand. Transfer learning's primary goal is to apply what the model 

has learned in one context to a different but similar problem [22], [23]. Researchers 

may use a variety of pre-trained models to adapt to new fields, such as ResNet [25], 

VGG-19 [26], and Inception [27], for image classification tasks and Word2vec [28] 
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for textual analysis. To address data insufficiency difficulties, several researchers in 

IFD have begun to produce studies employing transfer learning techniques or 

approaches such as Generative Adversarial Networks (GAN). These approaches 

should provide models that can transfer diagnosis data from one or more diagnosis 

tasks to other related but separate issues [29]. As a result, transfer-learning theories 

are expected to overcome the problem of a lack of labeled instances, allowing IFD 

to be employed in a broader range of engineering scenarios. Furthermore, generative 

models, such as GANs [30] and Bayesian networks [5], may assist in producing large 

datasets by collecting a small number of samples, giving the necessary data to train 

a robust IFD model. 

These three artificial intelligence-based techniques for intelligent fault diagnostics 

are depicted in Figure 1. The critical phases of each strategy and their benefits and 

drawbacks are illustrated, resulting in the use of next-generation approaches. 

 

Figure 1-1. An overview of the three principal AI-based IFD approaches and their advantages 

and drawbacks 
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1.2 Objectives 

The primary objective of this thesis is to propose a machine learning-based model 

to classify faults based on input data. This model must be robust enough to diagnose 

faults efficiently in the operational environment, but it is trained and tested on the 

PHM mechanical faults dataset for validation purposes. The proposed classification 

method in this thesis is based on an Extra Tree classifier, and the results are 

compared against several other machine learning and deep learning techniques.   

This study also aims to summarize modern data-driven research works and 

equipment fault diagnostics' growth from theoretical and empirical perspectives. 

Furthermore, this thesis examines state-of-the-art approaches to overcome typical 

restrictions and introduces current trending topics in this domain and classic machine 

learning and current deep learning methods for autonomous IFD. 

The following tasks are accomplished to achieve this research's primary objective: 

1) Acquired the PHM dataset, preprocessed it, and divided it into three sets of 

training, validation, and test.  

2) Built the Extra Tree machine learning classification model receiving the 

training dataset for completing the training process.  

3) Organized a suitable evaluation process with appropriate metrics to assess the 

model's performance.  

4) The model parameters were fine-tuned to achieve the best set of evaluation 

metrics.  

5) The proposed method's results were compared with other approaches, such as 

an optimized deep learning architecture. 
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6) Classification results in each class were also analyzed to examine the model 

performance thoroughly. 

1.3 Outline 

The remainder of this thesis is organized in the following manner. Traditional 

machine learning methods and their use cases in IFD studies, the role of deep neural 

networks and their popular architectures in this domain, the current restrictions and 

limitations in performing intelligent fault diagnosis, and feasible solutions such as 

transfer learning methods are discussed in Section 2. Section 3 presents the proposed 

methodology in detail and analyzes different components such as the workflow and 

implementation tools. Section 4 presents and examines the experiment's findings and 

compares the proposed method against a variety of machine learning and deep 

learning models to analyze their performance on the PHM challenge dataset. Finally, 

section 5 sums up this experiment, recommends further stages of this study, and 

examines the IFD's future directions. 
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2 Theory 

2.1 Fault Diagnosis  

Due to increased requirements for mechanical systems that deliver superior 

performance, safety, and reliability, machinery fault diagnostics are becoming 

increasingly important in process monitoring. Mechanical systems, such as those 

seen in wind turbines, airplanes, high-speed trains, and industrial machinery, have 

been developed due to advances in science and technology. Meanwhile, engineers 

must devise methods to ensure the performance of these systems, verifying that they 

can perform the essential functions for a specific amount of time under the stipulated 

conditions. Monitoring machine operating conditions, defining whether an abnormal 

condition or fault occurs in machines or components, determining the original cause 

of abnormal conditions or faults, assessing their severity, and predicting the 

remaining useful life or trends of abnormal conditions are just a few of these 

functions. One of the essential strategies for continuous maintenance is machinery 

fault identification, which may assist in preventing abnormal event progression, 

decreasing downtime, anticipating residual life, and reducing productivity loss. As 

a result, severe system failures and disasters can be avoided. 
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The critical components of mechanical equipment would inevitably generate 

different faults because of complex and severe conditions, including high 

temperature, high speed, and heavy load. Machine faults also occur and lead to 

severe outcomes even in sophisticated machine systems. Machinery fault diagnosis 

techniques involve 

• observing a mechanical system over a while using occasionally sampled 

measures from an array of sensors, 

• extracting fault-sensitive characteristics from these measurements, 

• performing statistical analysis of these attributes to determine the current 

system health state, and 

• forecasting the remaining useful life and direction of the defect. 

For example, Engine Health Management (EHM) is a collection of capabilities to 

create customized designs that best meet the needs of individual users. An EHM 

system in the F135 engine provides real-time data to maintainers on the ground, 

drastically reducing troubleshooting and replacement time by as much as 94% over 

other legacy engines. 

Various fault diagnostic approaches are employed in real environments to acquire 

meaningful data from specific physical assets. Vibration, electric current, 

temperature, and pressure, as well as environmental data, are all examples of 

machine condition monitoring data. Sensor data is pre-processed before being used 

for further investigation. Background noise, human influences, and sensor failures 

must be removed, and suitable characteristics must be computed, identified, or 

extracted for further fault identification. After obtaining a number of features, 

feature-selection methods must be used to choose the most effective characteristics 
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to aid the problem detection process. In this subsection, feature extraction techniques 

are introduced, as well as methods for diagnosing faults based on the extracted 

features. 

2.1.1 Feature extraction approaches 

Before knowledge can be gathered, data must be converted into information for 

proper defect identification. Fault condition indicators (features) are retrieved or 

chosen from the collected signals to transform waveform data into information. The 

common properties of reliable features are measurement at a low cost, 

comprehensible in physical terms, adequately definable in mathematical terms, 

unaffected by insignificant variables, and unrelated to other domain attributes. 

Various signal processing strategies have been employed to extract important feature 

information and interpret signal waveform data for further problem diagnostics in 

motors once the spectrum data has been acquired. 

2.1.1.1 Time-domain feature 

Time-domain approaches are based on the waveform signal's statistically distinctive 

behavior throughout time. The signal's root mean square (RMS) and crest factor (CF) 

are the most conspicuous and essential aspects of a time-domain analysis. Variance, 

standard deviation, kurtosis, and skewness are the most commonly utilized 

attributes. These characteristics are based on signal sample distributions with time 

series random variables, often known as moments or instants. Because any signal 

change might influence the probability density function (PDF) and change the 

cumulate behavior, the PDF can be broken down into components in most 

constituent moments. As a result, monitoring this situation can yield valuable 

diagnostic information. 
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Demodulation and adaptive noise cancellation and filter-based and stochastic 

approaches are some alternative time-domain feature extraction techniques. One of 

the flaws of the time-domain feature extraction approach is the absence of 

observable fault symptoms, especially when a defect is still in its early stages. When 

extracting short-duration characteristics from a signal, this approach may be 

beneficial. 

2.1.1.2 Frequency-domain feature 

Frequency-domain characteristics can compensate for the limitations of a time-

domain analysis. The knowledge that a periodic waveform signal causes a localized 

problem, together with characteristic frequency points and features, is used in 

frequency-domain approaches. Since various faults have distinct frequency domain 

spectrums, some changes in frequency-domain parameters may signal the existence 

of faults when frequency-domain characteristics are employed for fault symptom 

identification. Frequency-domain parameters can also detect machine defects and 

breakdowns early on. As a result, such indices can be employed in fault diagnosis 

procedures. 

In frequency domains, the fast Fourier transform (FFT) is one of the most often 

utilized methods. A signal may be quickly transformed into the frequency domain 

using the FFT, a fast technique for discrete Fourier transform (DFT). If analyzing a 

signal in the time domain is challenging, it is much easier to convert and analyze it 

in the frequency domain. Several types of frequency filters, side-band structure 

analysis, demodulation, and descriptive representation methods are frequently 

employed to improve spectrum analysis results. Different forms of frequency spectra 

have been produced, such as power spectrum and high-order spectrum. A DFT is the 
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most common approach for generating a power spectrum, but other methods, such 

as the maximum entropy methodology, can also be utilized. 

2.1.1.3 Time-frequency domain 

When the signal is non-stationary, time-frequency approaches may explain 

machinery fault characteristics in both the time and frequency domains. The time 

and frequency distributions representing the signal's energy in two dimensions are 

used in the classic time-frequency approach. When a signal is non-stationary, the 

most widely utilized distribution approach is the short-time Fourier transform 

(STFT). The STFT is a more advanced version of the Fourier transform (FT). The 

target signal is divided into small windows using this method. To create succinct 

non-stationary signals, the width of the window function is chosen, then multiplied 

and shifted with the signal segment. FT is applied to each segment following the 

same technique to determine the signal's STFT. This graph depicts the frequency 

spectrum's shifting behavior as a function of time. At all relevant frequency points, 

STFT provides a consistent resolution. 

Wavelet transform is another novel time-frequency domain approach that addresses 

the drawbacks of STFT. This method may also be used to analyze a signal with 

temporal values in a non-stationary condition. At various frequency levels, the 

wavelet transform gives multi-resolution. 

2.1.2 Fault diagnostic methods 

Several fault diagnosis approaches have been utilized for single and multiple 

problem diagnosis in industrial machinery systems. Signal-based, model-based, 

knowledge-based, and hybrid approaches are the four basic categories. 
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2.1.2.1 Signal-based methods 

Signal processing, a branch of electrical engineering that models and analyzes data 

representations of physical events as well as data generated across multiple 

disciplines, enables modern technology that the world relies on in daily lives–

including computers, radios, video devices, cell phones, and smart connected 

devices. As a consequence, signal processing is fundamental to the modern 

environment. It is where biotechnology, entertainment, and social interactions 

collide, and it improves the capacity to interact and exchange data. The science 

underpinning today's digital lives is signal processing. 

For fault diagnosis, signal-based approaches rely heavily on signal processing 

technologies. Typically, these methods need pre-determined circumferences. 

Signals are influenced by their characteristics. An unexpected condition may occur 

when the signal or characteristics travel outside their bounds. Many signal analysis-

based approaches are available, including vibration analysis, MCSA, axial flow 

(AF), torque analysis, noise monitoring, and impedance of inverse sequences. 

Vibration levels rise when mechanical problems occur in high-speed rotating 

equipment. The radial forces caused by the air-gap field are the most significant 

sources of vibration and noise in electric devices. Vibration monitoring is a cost-

effective and time-saving method of obtaining condition indicators for machine 

health management. The best way for defect diagnosis is vibration-based 

diagnostics. However, this requires costly accelerometers and accompanying wiring. 

This restricts its usage in various applications, particularly in tiny machines where 

cost is a key consideration when selecting a condition monitoring approach. 
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Moreover, when the diagnosis is based on numerous motors working in tandem with 

much noise, this constraint becomes much more complicated. 

Some studies examined multi-motor fault detection approaches employing vibration 

analysis when motors function in isolation from the system. For feature extraction, 

several signal processing methods were applied. Many of these research works 

employed artificial neural networks to compare particular time and frequency 

domain characteristics. However, they never observed the diverse behavioral 

situations of many motors running on the same power line simultaneously. 

2.1.2.2 Model-based methods 

Limit or trend checking of certain observable output variables are the traditional 

procedures in fault identification. Model-based fault-detection approaches were 

created utilizing input and output signals and dynamic process models since they do 

not provide a deeper understanding and frequently do not allow a problem diagnosis. 

Parameter estimation, parity equations, and state observers are examples of these 

approaches. Signal model techniques have also been developed. The objective is to 

produce various symptoms that distinguish between nominal and defective 

conditions. Following fault diagnostic processes based on various symptoms, the 

fault is determined using classification or inference methods. 

The dynamic system model is typically used in model-based fault diagnostic 

procedures. The actual system and model output benefit the industrial system's 

model-based procedures. A comparison may be performed between the simulation 

and actual data outputs, allowing the status of a motor to be determined through 

visualization. Physical modeling, system identification, and parameter estimate 

approaches may be utilized to create dynamic models. The most severe flaw in 
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model-based techniques is that the correctness of the produced model accurately 

represents the diagnosis system's behavior. When a system is functioning in a noisy 

environment, it is impossible to acquire information from the monitoring process, 

resulting in modeling uncertainty. In most research, model-based approaches have 

been utilized to gather the dynamic response of systems under normal and fault 

situations, but on motors separated from systems.  

Model-based techniques are usually split into two sections: residual generation and 

decision-making. The residual results are used to guide the decision-making process. 

It uses independent models in both stages of fault diagnosis, which might be data-

based, knowledge-based, or a combination of both analytical models. Residuals are 

often created using a model and pre-defined process outputs in a fault diagnostics 

system. However, residuals can also be generated using alternative approaches that 

estimate model parameter characteristics from process measurements. 

2.1.2.3 Knowledge-based methods 

Expert knowledge and expertise may be successfully used in knowledge-based fault 

detection approaches to make decisions. In other disciplines, researchers would 

model the link between the problem phenomena and the cause while creating the 

fault ontology and then apply ontology reasoning technology to diagnosis. However, 

there is generally an ambiguous link between the fault phenomena of the equipment 

to be inspected and the source of the issue during the actual fault diagnostic 

procedure. Knowledge-based model solutions often use a human brain-like 

understanding of the process for machine fault detection. The human professional 

specialist in real-time fault diagnostic procedures might be an engineer who applies 

and runs the diagnosis process and is well-versed in the strategies and techniques for 
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diagnosing numerous motor defects. When the signal is in a dynamic state, 

knowledge-based approaches rely on engineers' experience to detect the malfunction 

in a motor system. When signals are in complex form, these strategies can be highly 

beneficial in reducing the percentage of uncertainty. 

Many studies based on various methodologies have been reported in the study field 

of defect diagnostics utilizing isolated induction motors. Due to its strong pattern 

recognition capacity and ability to recognize fuzzy and indefinite inputs, the artificial 

neural network (ANN) is possibly the most widely utilized artificial intelligence 

approach in motor status monitoring and problem diagnostics. The following 

qualities of ANN make it suitable for a wide range of applications in information 

fusion and problem diagnostics: neural networks have the potential to learn new 

things in the same manner that humans do. The learning process is carried out by 

altering the weight values among the neurons regularly. A neural network can also 

be a system with several inputs and outputs. This structure depicts how neural 

networks can deal with complex multi-object situations, such as numerous machine 

defects. The input is processed in parallel by the neural network, similar to how 

humans handle complex information. This unique property suggests that neural 

networks may spontaneously merge data from several sources simultaneously. A 

collection of weights is used to store the information in a trained neural network in 

a distributed manner. This is similar to how information is preserved in human 

memory. Furthermore, a neural network has a high level of fault tolerance. Its 

parallel structure and distributed information storage mechanism are primarily 

responsible for this characteristic. Therefore, the literature describes ANN as a 

knowledge-based approach for diagnosing single and multiple motor faults. 
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Diagnoses are made in these investigations by mapping different fault symptoms in 

a single motor to arrive at a diagnosis choice. 

2.1.2.4 Hybrid methods 

Since each technique of fault identification has its own set of limitations, combining 

numerous ways may be a helpful strategy. Several authors have proposed combining 

techniques like neuro-fuzzy, neural network and Bayesian interface, and DS theory 

with an expert system. A hybrid system termed generic integrated intelligent system 

architecture was suggested for equipment monitoring, problem detection, and 

maintenance. Different AI approaches, such as fuzzy logic and neural networks, 

were included in the system. 

Hybrid techniques that use neural networks to assess an engine's internal health and 

generic algorithms to identify and quantify sensor bias can also be developed. By 

mixing generic methods inside the application, such a technique can employ neural 

networks' non-linear approximation capacity and improve the system's robustness in 

assessing uncertainty. 

2.2 Artificial Intelligence 

Artificial intelligence (AI) is the imitation of human understanding in robots that 

have been trained to think and act like humans. The phrase may also refer to any 

machine demonstrating human-like characteristics like learning and problem-

solving. The capacity of artificial intelligence to rationalize and execute actions that 

have the highest likelihood of reaching a particular objective is its ideal feature. 

Machine learning is a subset of artificial intelligence that refers to the idea that 

computer systems can learn from and adapt to new data without human intervention. 
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Deep learning techniques allow for this autonomous learning by absorbing large 

volumes of unstructured data, including text, photos, and video. Artificial 

intelligence has a variety of uses. The technology may be used in multiple businesses 

and areas. In the healthcare business, AI is being studied and used for administering 

pharmaceuticals and various treatments in patients, as well as surgical operations in 

the operating room.  

2.2.1 Machine Learning 

Among all AI applications, Machine Learning (ML) is the key component. The 

premise of machine learning is that a computer program can learn and adapt to new 

data without the need for human involvement. Machine learning is a branch of 

artificial intelligence that maintains a computer's built-in algorithms up to date 

despite global economic fluctuations. Various business areas are dealing with 

massive volumes of data in various forms gathered from various sources. Because 

of the advancement of technology, particularly increased processing capabilities and 

cloud storage, vast amounts of data, known as big data, are becoming more readily 

available and accessible. Companies and governments recognize the enormous 

insights obtained from analyzing big data but often lack the resources and time to go 

through its vast amounts of data. As a result, several businesses employ artificial 

intelligence technologies to acquire, analyze, communicate, and exchange important 

information from data sets. Machine learning is a type of AI that is increasingly 

being used for big data processing. 

Computers can solve complex scientific equations and mathematical problems in 

milliseconds, which is a fraction of the time it takes us to solve the same problems. 

They have, however, shown a lack of precision when completing our daily 
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behaviors, which are done naturally and spontaneously. As a result, many scientific 

publications are devoted to various ways of allowing computers to learn. Learning 

is how we ask about our environment, and robots may do the same. The machine 

learning method is divided into three sections: first, the algorithm calculates a pattern 

to model the data based on the inputs and output values supplied to the model. 

Following that, an error function is used to evaluate the model's performance. These 

metrics are used to calculate the accuracy or inaccuracy of the model's predictions. 

Finally, the model is tweaked to enhance accuracy while reducing error. The 

parameters are tweaked to minimize the discrepancy between the actual results and 

the model's predictions. The machine learning algorithm repeats this assessment and 

optimization process, which updates itself until a certain accuracy threshold is met.  

We utilize codes in various programming languages to express how the machine 

functions in a conventional program. On the other hand, in machine learning 

programming, we merely create software capable of learning rules by itself to solve 

the given task. Computers can solve more complex problems with the information 

gained via this learning process. Machine Learning approaches may tackle various 

issues with less effort than traditional programming, which would typically need 

thousands of lines of code. As a result, machine learning allows us to take advantage 

of the computing capabilities of machines in a variety of ways. 

Supervised and Unsupervised Learning are two types of machine learning 

algorithms [31]. Supervised machine learning algorithms may apply their learning 

to new data and estimate future occurrences using labeled examples. Based on a 

given training dataset, the learning algorithm constructs an inferred function to 

provide predictions about the output values. After sufficient training, the system will 

be able to provide objectives for each new input. The learning algorithm may also 
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compare its output to the correct, intended output and detect errors, allowing the 

model to be modified as needed. Classification and regression based on the specified 

outputs for each set of input features are examples of supervised machine learning 

tasks [24], [32]. Unsupervised machine learning approaches, on the other hand, are 

used when the training data is not categorized or labeled. Unsupervised learning is 

the study of how computers may infer a function from unlabeled data to explain 

hidden patterns. The system does not determine the correct output; instead, it studies 

the input and uses datasets to infer hidden structures from unlabeled data. Clustering, 

anomaly detection, and data dimensionality reduction are some of the most well-

known unsupervised learning problems [24], [33].  

To achieve their purpose, machine learning algorithms require training data. When 

the algorithm wants to evaluate its performance, it will look at the training data, 

classify the inputs and outputs, and re-analyze it. At the same time, the machine 

learning algorithm may analyze both training and validation data. Validation data is 

a distinct set of information [24], [31]. As long as the datasets are kept separate 

throughout the training and testing phase, a data scientist can cut off a piece of the 

training dataset for validation, also known as holdout validation. This is a test against 

a dataset entirely different from the one used to train the model. This sort of analysis 

is used to make sure the model is not underfitting or overfitting. Overfitting occurs 

when an algorithm can make fair judgments based on the training data but cannot 

properly adjust new data predictions. On the other hand, underfitting occurs when a 

model is not sophisticated enough to make correct predictions against both training 

and new data. After the validation process, data scientists can tweak 

hyperparameters like learning rate, input features, and hidden layers to lessen the 

risk of underfitting [17], [34]. A different approach for validating ML-based models 
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is cross-validation. Cross-validation is a resampling approach used to test machine 

learning models on a limited data set. The algorithm has only one parameter, k, 

which determines how many groups a given data sample should be split into. As a 

result, k-fold cross-validation is a common name for this procedure [31]. When a 

precise value for k is specified, it may be substituted for k in the model's reference, 

for example, k=10 for 10-fold cross-validation. Cross-validation is an approach 

utilized in machine learning to evaluate a machine learning model's performance on 

new datasets [35]. Moreover, there are various approaches to prevent models from 

overfitting the training data besides validation. For instance, dropout is a strategy for 

removing neurons from a neural network or ignoring them during training. In other 

words, distinct neurons are temporarily removed from the network. Throughout the 

training phase, dropout changes the notion of learning all of the network's weights 

to learning only a subset of the network's weights [36]. 

2.2.2 Feature engineering 

Data handling and data preprocessing measures conducted before training models 

impact model performance in machine learning. Feature engineering can improve 

the accuracy of the same models since their data is more relevant than when all 

characteristics are supplied to the models. As a result, feature engineering can 

increase the model's overall performance. It is essential when outstanding outcomes 

are required for most forecasting activities. Nonetheless, mastering this process is 

difficult due to the fact that different types of data and datasets necessitate distinct 

feature engineering methodologies. The difficulties of engineering features are the 

primary motivation for researching algorithms that can learn features and build them 

automatically. While learning features may automate various jobs, feature 
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engineering is still one of the most effective ways to execute correctly under 

pressure. Feature learning methods identify the most important common patterns 

that distinguish classes and extract them automatically in a regression or 

classification procedure. Feature learning is the process of automatically engineering 

features using algorithms. Convolutional layers, for example, are useful in deep 

learning for extracting significant features from pictures and passing them to the next 

layer, which establishes a hierarchy of non-linear qualities that increases complexity. 

The final layers then use all of the characteristics that have been generated for 

regression or classification. 

Feature selection is a subset of feature engineering, which refers to the process of 

independently selecting needed features. Selecting the most important independent 

elements that are more related to the dependent features aids in developing a 

dependable model. There are three types of algorithms for making feature selection: 

filter methods, wrapper methods, and embedding techniques. 

Filter-based approaches assign each characteristic a score based on a statistical 

metric. The characteristics are assessed and based on their score, they are either kept 

or removed from the dataset. Frequently, the approaches are univariate and analyze 

the feature alone or concerning the dependent variable. Filter techniques include the 

Chi-squared test, information gain, and correlation coefficient scores. Wrapper 

strategies treat feature selection as a search problem in which multiple combinations 

are created, evaluated, and compared to one another. A predictive model evaluates 

a collection of features and assigns a score based on how accurate the model is. A 

systematic search, such as a best-first search, a stochastic search (e.g., a random hill-

climbing algorithm), or heuristics (e.g., forward and backward passes) to add and 

delete features are all options. A wrapper technique is an example of a recursive 
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feature reduction procedure. While the model is being developed, embedded 

approaches determine which characteristics contribute the most to its validity. The 

most common type of embedded feature selection technique is regularization. 

Regularization methods, also known as penalization methods, place additional 

restrictions on a predictive algorithm (for example, a regression algorithm) in order 

to bias the model toward reduced complexity (fewer coefficients). Regularization 

methods include LASSO, Elastic Net, and Ridge Regression. 

2.2.3 Neural Networks and Deep Learning Architectures  

Artificial neural networks were created as a result of attempts to construct artificial 

intelligence utilizing biological neural networks (ANNs). Multiple layers of neurons 

linked to each other can make up a neural network. A network of linked neurons can 

do complex tasks, and the more neurons in the network, the more complex the 

activities may be performed. When they are created, all artificial neurons have 

specified weights and thresholds, and they link to other neurons. If a neuron's output 

exceeds a certain threshold, it is triggered and sends data to the next layer of the 

network. Deep learning techniques are defined as ANNs, which are mathematical 

frameworks for learning representations from data and comprise many neurons 

grouped in various layers. More specifically, an ANN can be considered a deep 

learning algorithm with more than three learnable layers. 

On the other hand, a fundamental neural network is defined as a neural network with 

only two or three learning layers. Deep learning algorithms are taught to recognize 

feature hierarchies, in which lower-level characteristics combine to produce features 

at higher levels. In recent years, deep learning's progress has been accelerated as 

more vast datasets, and higher computer resources have been available. The learning 
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is done automatically by exposure to large training sets in modern deep learning 

architectures, including multiple succeeding layers. 

Deep learning has transformed AI-based solutions in several domains, including 

computer vision and image recognition, speech recognition, natural language 

processing, and recommender systems research. It has also played a crucial part in a 

variety of industrial goods, such as virtual assistants and chatbots, and has had a 

significant impact on healthcare, advertising, entertainment, and a variety of other 

enterprises. Deep learning, for example, formulates the key components of 

autonomous driving and allows automobiles to learn and experiment with them in a 

safe setting. Many E-commerce websites, such as Amazon and eBay, utilize deep 

learning-based models to make recommendations that accurately forecast customers' 

wants based on prior visits and recommend movies, TV series, and music on 

entertainment platforms, including Netflix and Spotify. These models can impact a 

variety of topics in healthcare, including medical imaging and genomic analysis 

utilizing GPU-accelerated computation. Algorithms can learn the relationships 

between words, map them into a different language, and build machine translation 

systems properly. Modern language models may also generate text to describe 

settings, summarize articles, and converse with humans. These are only a few of the 

uses of cutting-edge deep learning architectures, and their importance in our daily 

lives is growing rapidly as more complicated models become available. 

The remainder of this subsection defines the terminologies and concepts employed 

in neural networks and deep learning. In subsequent chapters, some more generic 

principles utilized in all machine learning algorithms will also be described for 

reference. 
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2.2.3.1 Neurons 

Neurons are mathematical functions in an artificial neural network (ANN) that 

reflect functionality comparable to a biological neuron. A neuron gets several inputs, 

calculates the weighted average, and then sends this amount via a nonlinear function, 

commonly referred to as an activation function. The output of a neuron can be used 

as input by other neurons in another layer. The same procedure of computing the 

inputs' weighted sum and transformation via activation function might be repeated 

in other neurons. It is worth noting that these calculations are based on matrices and 

involve multiplying a vector of input states by a weight matrix. When a neuron 

receives two inputs, each input is assigned a weight. These weights are generated 

randomly and modified during the model's training phase. As a result, the primary 

purpose of model training is to find the optimal weights for the network's neurons. 

After the training is finished, the neural network gives greater weight to more 

significant inputs than those deemed less necessary. When the weight of a neuron is 

set to zero, that neuron's particular feature is negligible and does not influence the 

final output. 

A linear component, referred to as the bias, is added to the input in addition to the 

weights of a neuron. The bias is applied to the outcome after the weight 

multiplication with the input, and it is used to alter the multiplied input's range. The 

product is provided to the neuron's activation function as the input transformation's 

last linear component. 

2.2.3.2 Activation functions 

An artificial neural network simulates the stages used by the brain to accept external 

stimuli, interpret the data, and provide an output, much as the brain does. When the 



 

 

26 

 

tasks at hand get more complicated, multiple neurons communicate to provide more 

precise outputs. As previously stated, artificial neurons are distinguished by their 

weight, bias, and activation functions. The weights and biases in the neurons perform 

a linear transformation depending on their inputs, and then an activation function is 

applied to the findings from the previous phase. The output of the activation function 

then travels to the next hidden layer, where the process is repeated. Forward 

propagation is the name given to the process of data transfer within a neural network. 

At the end of each training cycle, neural networks go through a back-propagation 

phase. 

The model's error is determined using the product from forwarding propagation in 

this process, comprehensively covered in the following chapters. The weights and 

biases of the neurons are adjusted depending on this error value. However, because 

the model lacks an activation function, it can only perform a linear conversion on 

the input data using the weights and biases. Although these changes make the neural 

network simpler, they also make it less powerful, disabling it from learning complex 

patterns from the input data. As a result, the neuron's inputs are transformed using 

nonlinear transformation functions. The artificial neural network's non-linearity is 

introduced through an activation function. Many types of activation functions with 

distinct mathematical equations are employed in deep learning implementations. 

2.2.3.3 Neural network layers 

A neural network comprises neurons that are grouped into layers, as previously 

stated. There are three different types of layers: Each network has an input layer that 

receives the neural network's initial data. One or more hidden layers follow an input 

layer, the intermediary levels between the input and output where all calculations 



 

 

27 

 

are done. Finally, there is an output layer in the layer that generates outcomes for 

each given set of inputs. Each neuron in a fully-connected network is linked to all 

nodes in the layer above it and the layer below it. The weight of a neuron may be 

thought of as the influence of that node on the next layer's node. It is worth noting 

that the neurons in the hidden layers and the output layer are the only ones with 

activation functions, whereas the nodes in the input layer do not. 

2.2.3.4 Cost function 

A cost function (also known as a loss function) determines how well an algorithm 

models the training dataset. The goal of the training phase is usually to reduce the 

quantity produced by the cost function. The loss function returns a more significant 

value if the predictions are completely incorrect and a smaller value if they are 

reasonably accurate. The cost function indicates whether the model is improving or 

not throughout the fine-tuning phases of the method to enhance the model. 

Regression cost functions, binary classification cost functions, and multi-class 

classification cost functions are the three types of cost functions established based 

on the situation at hand. The most common regression functions are Mean Error 

(ME), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean 

Absolute Error (MAE). Cost functions such as hinge loss, squared hinge loss, and 

binary cross-entropy are used for binary classification tasks. The most frequent 

functions for optimizing multi-class classification issues are multi-Class Cross-

Entropy Loss, Kullback Leibler Divergence Loss, and Sparse Multi-Class Cross-

Entropy Loss. 

The degree of inaccuracy between the actual and anticipated values is quantified 

using cost functions, which offer this qualification as a single number. Cost functions 
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may be created in a variety of methods depending on the situation, and their goal is 

to decrease or maximize costs. The returned result is usually referred to as loss, cost, 

or error if the cost function is designed to be minimized. The goal of the optimization 

procedure is to find the optimal model parameter values such that the cost function 

returns the smallest possible number in this scenario. If the cost function is 

maximized, the value of the cost function is referred to as a reward. The objective, 

in this case, is to identify parameter values for which the reward is as high as 

achievable. 

2.2.3.5 Epochs 

The number of epochs is a model hyperparameter that specifies how many iterations 

the learning algorithm performs throughout the training dataset. Every sample in the 

training dataset has the opportunity to alter the intrinsic weights and biases of the 

neurons throughout an epoch. There can be one or multiple batches in a period. 

Epochs represent the total number of loops over the whole training dataset. There is 

another nested loop within the loop mentioned above that iterates over each batch of 

examples, with each batch having the same number of samples as the batch size. The 

batch size refers to the number of instances supplied to the model before it is 

updated, while the epoch refers to the total number of runs made over the whole 

training dataset. The number of epochs can be adjusted to any integer number 

between one and infinity. Historically, this number has been considerable, typically 

in the hundreds or thousands. This permits the method to run indefinitely until the 

model's error is reduced to an acceptable level. The method can continue for as long 

as desired. It can be terminated by using criteria other than a pre-defined number of 

epochs to end it—criteria such as a lack of change in the loss function's error over 
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time. Allowing the model to train on the training set and stopping training when 

performance on the validation set begins to deteriorate is a reasonable compromise. 

Early stopping is a practical and extensively used approach for training neural 

networks. 

When training an extensive neural network, the model reaches a point where it stops 

generalizing and begins to learn the statistical noise in the training set. Overfitting is 

the term used in the machine learning field to describe this occurrence. Overfitting 

the training data raises generalization errors and reduces the model's ability to predict 

new data. The goal is to train the neural network long enough to learn the mapping 

of inputs to output data while avoiding overfitting the training data by training it too 

long. After each epoch, the model is evaluated on a holdout validation set in order 

to implement early halting during training. The training phase is terminated if the 

model's performance on the validation set begins to deteriorate, for example, if the 

loss increases or the accuracy declines. 

2.3 Intelligent Fault Diagnosis (IFD) 

Manual fault diagnosis and signal processing methods were once used to help 

determine which sorts of equipment problems existed and where they originated. 

These solutions, however, rely mainly on specialized knowledge, which most 

maintainers lack in an engineering environment. As a result, today's industrial 

applications choose fault diagnostic systems that can automatically identify machine 

health conditions [37]. Using machine learning, intelligent fault detection is 

expected to achieve this aim. In the past, IFD employed traditional machine learning 

algorithms such as Support Vector Machines to identify machine issues. The 
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diagnostic approach is divided into three phases: data gathering, artificial feature 

extraction, and health status recognition [38]. This section begins with an 

introduction of machine learning-based fault detection before delving more into each 

of the three phases. The type of information provided and the application domain 

determine which machine learning method is used in fault diagnosis. The following 

section discusses the data collecting method for IFD purposes as well as the many 

types of data that may be collected. 

2.3.1 Data collection 

During the data collection stage, sensors are mounted on devices to collect data 

continually. As sensor technology has evolved, many sensors such as 

accelerometers, currents, vibration, temperature, acoustic emission, and built-in 

encoders have been used for mechanical condition monitoring [39], [40]. Many 

researchers have used intelligent fault detection approaches to identify problem 

kinds by analyzing vibration signals collected by sensors in a variety of scenarios. 

Machine vibration signals are raw temporal signals containing valuable and 

ineffective information. Standard signal processing approaches for obtaining 

representative features from raw data include time-domain statistical analysis and 

wavelet transformation [22]. The signal-to-noise ratio is typically poor because 

vibration data is frequently hampered by transmission route and ambient noise. 

Other sensors, such as infrared imaging, can be used to get around this; for example, 

infrared imaging can give a non-contact measuring approach. Acoustic emission 

data may also be used to detect early bearing and gear problems and deformation, 

especially while running at low speeds. Diagnostics for electric-driven machine 

failures rely significantly on current data. This sort of data can be acquired using 
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only a current transformer, and it has nothing to do with equipment functioning [41], 

[42]. Researchers also discovered that data from multiple sensors contain 

complementary information that may be used to increase diagnostic accuracy when 

compared to data from a single sensor [22]. 

2.3.2 Feature extraction 

Extracting essential features from the data gathered during the data collecting phase 

is the next stage in constructing an intelligent fault detection system using typical 

machine learning models. The feature extraction stage seeks to produce 

representative features from the recorded signals using signal processing methods 

such as time-domain statistical analysis, Fourier spectral analysis, and wavelet 

transformation [43]. These characteristics may describe mechanical health concerns, 

but they may also contain irrelevant or sensitive data that influence diagnosis 

outcomes and computational efficiency. Consequently, sensitive features are 

identified using dimension reduction techniques such as principal component 

analysis (PCA), feature discriminant analysis, and distance evaluation approach. 

This stage extracts several common properties from the obtained data, such as time-

domain and time–frequency-domain features [41], [44]. These features include 

health information that represents the health of the equipment. 

Following that, a feature selection procedure reduces duplicate data and improves 

diagnosis outcomes. Filters, wrappers, and embedded-based techniques are common 

ways of detecting sensitive aspects associated with machine health states. Wrapper 

techniques approach feature selection as a search issue involving numerous options' 

creation, evaluation, and comparison. A recursive feature removal technique is an 

example of a wrapper technique. Filter-based methods provide a score for each 
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attribute based on a statistical criterion. The methodologies are frequently univariate, 

analyzing the feature alone or concerning the dependent variable. The Chi-squared 

test, information gain, and correlation coefficient scores are examples of filter 

approaches. Embedded techniques determine which attributes contribute the most to 

the model's validity while being built. Regularization is the most common type of 

embedded feature selection approach [31], [45]. 

2.3.3 ML-based intelligent fault diagnosis 

A brief review of IFD strategies that use machine learning models is provided in this 

section. When faced with unlabeled input samples, the models are trained on labeled 

data to determine machine health conditions. The diagnostic models are initially 

trained using labeled samples to achieve this purpose. For categorizing distinct types 

of defects, the bulk of the techniques employed in IFD research is supervised 

learning algorithms. On the other hand, some studies use unsupervised methods to 

minimize the size of their obtained datasets and make feature selections on their 

own. The rest of this section is divided into sections depending on the different types 

of algorithms and how they are used in IFD research. 

2.3.3.1 Artificial Neural Networks (ANNs) 

The designs of Artificial Neural Networks (ANNs) are a branch of machine learning 

(ML) that are at the heart of deep learning approaches. The human brain inspires 

their name and construction, and they function similarly to how real neurons interact 

with one another. A neural network comprises an input layer, one or more hidden 

layers, and an output layer. Each node is linked to the others and has its weight and 

threshold [18]. Neural networks use training data to learn and improve their accuracy 

over time. Once fine-tuned for accuracy, these learning algorithms become 
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formidable tools in computer science and artificial intelligence, allowing us to 

categorize and cluster data swiftly. Voice recognition and visual recognition 

activities can take minutes rather than hours when compared to manual identification 

by human professionals [24]. 

Although deep learning architectures have been used in the majority of IFD research 

utilizing ANNs, there have been occurrences of shallow neural networks being used 

to identify defects based on input data. These studies are classified as classic 

machine learning approaches, and they are studied in this area, whereas publications 

that use current deep neural networks are examined in the following sections. 

Bernieri et al. for example, conducted research. For example, Bernieri et al.'s [46] 

research were one of the first to use ANNs for dynamic online problem diagnosis. 

They demonstrated that artificial neural networks could help with system 

identification and flaw detection in applications that need a fast response time. 

Another advantage of using neural networks, according to this article, is that they 

are a general approach for nonlinear dynamic system applications that would 

otherwise need ad-hoc solutions. ANNs were used in numerous current approaches 

to model systems, identify problems, predict defect prognosis, and estimate the 

machines' remaining usable life, according to Tung et al. [2]. (RUL). The majority 

of ANN strategies were single-step forward time series forecasting models, 

suggesting that deep neural networks were not being employed when this research 

was published, i.e., in 2009. Lei et al. [43] proposed a two-stage learning technique 

for intelligent machine failure detection. It is based on the idea of unsupervised 

feature learning and uses artificial neural networks to learn features from raw data. 

In the method's initial learning phase, sparse filtering, an unsupervised two-layer 

neural network, is used to extract features from mechanical vibration data 
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dynamically. SoftMax regression is used in the second stage to identify health 

conditions based on learned features. Mostefa Khelil et al. [10] developed an 

intelligent system that can detect and distinguish three recurrent events in a PV array, 

including healthy and short circuit failures and string disconnection, using artificial 

neural networks. The built model has a simple learning curve and only uses four 

inputs. On a small grid-connected PV generator (PVG), experimental validation of 

the proposed IFD was done, demonstrating that this approach can adequately 

identify and categorize existing faults with over 98 percent accuracy. 

2.3.3.2 Support Vector Machine (SVM) 

One of supervised machine learning models for solving classification issues are 

support vector machines. The goal of the support vector machine algorithm is to find 

a hyperplane in N-dimensional space (where N is the number of features) that 

separates data points. There are numerous hyperplanes from which to pick to divide 

the classes of data points. The aim is to find a plane with the highest significant 

margin or distance between data points from all classifications. [31], [47]. 

Hyperplanes are decision boundaries that help categorize data. Different categories 

can be applied to data points on each side of the hyperplanes. Maximizing the margin 

distance provides some reinforcement, making the following data points simpler to 

categorize. The margin of the classifier is improved by using these support vectors. 

These are the considerations that will aid in the creation of the SVM [32], [48]. 

The first attempts to employ SVM for machine status monitoring and problem 

diagnosis were made in the late 1990s. With various kernel functions and cross-

validation, SVM-based fault diagnostic approaches were later recommended in 

several research works, demonstrating better fault detection capabilities over 
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standard machine learning algorithms [49]. For instance, Samanta [50] extracted 

features from vibration signals from a spinning machine with standard and 

problematic gears. The obtained features were provided as inputs to both ANN-

based and SVM-based classifiers. To increase the number of nodes in the hidden 

layer and the input feature selection in SVMs, genetic algorithms (GA) were applied. 

The findings showed that in the majority of circumstances, SVM outperforms ANN 

in terms of classification accuracy. Sugumaran et al. [51] used a Decision Tree to 

pick the best qualities from a sample group for classification and the Proximal 

Support Vector Machine (PSVM) to categorize flaws based on statistical data in 

another investigation efficiently. PSVM and SVM were used to extract and 

categorize statistical features, and the results were compared. Zhang et al. [52] 

proposed using ensemble empirical mode decomposition to decompose the vibration 

signal into a set of intrinsic mode functions (IMFs) when a bearing has faults. The 

first five IMFs' permutation entropy (PE) values (IMF-PE) are computed to reveal 

the multi-scale intrinsic features of the motor bearing's vibration signal. Support 

vector machines (SVM) optimized by inter-cluster distance are then used to classify 

the fault type and severity (ICDSVM). Vibration analysis, acoustic approaches, and 

SVM-based pipeline leakage detection were all examined by Datta et al. [53]. In this 

study, the benefits and drawbacks of each technique are outlined, and all approaches 

are evaluated based on their applicability. On the other hand, acoustic reflectometry 

is the most effective technique since it can identify obstacles and leaks in pipes as 

small as 1% of their diameter. The most current research on machine learning models 

for wind turbine status monitoring was described by Stetco et al. [54]. The majority 

of models uses a dataset called SCADA or simulated data, with classification 

accounting for around two-thirds of the techniques and regression accounting for the 
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rest. This study's most often utilized techniques were neural networks, support vector 

machines, and decision trees. SVMs, according to the data, are among the best 

acceptable models in most situations, with over 90% accuracy. 

2.3.3.3 Decision Tree (DT) 

The supervised learning algorithms family includes the Decision Tree (DT) 

algorithm. Unlike other supervised learning algorithms, the decision tree technique 

may be used to address regression and classification problems. The goal of using a 

Decision Tree is to create a training model that can predict the class or value of the 

target variable. As the name indicates, a DT uses a tree-like flowchart to depict the 

predictions that arise from feature-based divides  [55]. A root node initiates the 

process, which concludes with a leaf decision. When utilizing Decision Trees to 

forecast a record's class label, we start at the top of the tree. A decision-tree-based 

model is an effective supervised methodology for applying classification algorithms 

in high-dimensional data [54].  

For fault identification, security evaluation, and system control in power systems, 

DT models have been employed in a number of studies. Because the decision tree is 

simple to understand and grasp, its accuracy in flaw identification may be 

demonstrated using both testing data and expert knowledge [56]. [57], for example, 

describes a defect detection and categorization system based on decision trees. As 

characteristics in the training and test sets, widely available data from solar 

photovoltaic (PV) systems are used, including PV array voltage, operating 

temperature, and irradiance. The trained DT models showed excellent defect 

detection and classification accuracy in experiments. In another study by Yan et al. 

[56], used the classification and regression tree (CART) approach for decision tree 
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induction as a data-driven diagnosis tool for AHUs. The method comprised a steady-

state detector and a regression model to increase the diagnostic technique's 

interpretability. This approach was shown to have excellent diagnostic performance, 

with an average F-measure of 0.97. 

In their most basic form, decision trees are algorithms that are easy to perceive and 

understand. On the other hand, these models may be overly simple for issues with 

more complicated aspects. As a result, several tree-based algorithms have been 

developed to improve accuracy while preserving processing efficiency [4]. 

Ensemble approaches, in which many decision trees are combined to obtain better 

prediction performance than a single decision tree, are gaining popularity. The main 

principle behind the ensemble model is that a group of weak learners join forces to 

create a strong learner. The most common methods for creating ensemble decision 

trees are boosting and bagging. The XGBoost and Random Forest (RF) algorithms, 

which are often used in IFD investigations, are explained in the following 

subsections as examples of such approaches. 

2.3.3.3.1 Extreme Gradient Boosting (XGBoost) 

The gradient boosting decision-tree-based ensemble machine learning technique 

XGBoost, or eXtreme Gradient Boosting, is a gradient boosting decision-tree-based 

ensemble machine learning approach. XGBoost refers to the technological goal of 

pushing boosted tree algorithms' computing resources to their limits [58]. In 

applications involving small-to-medium structured/tabular data, a decision tree-

based method can outperform more complicated models such as ANNs. The 

algorithm's implementation was created to reduce computing time and memory 

requirements. One of the design aims was to maximize available resources 
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throughout the model's training phase. The two main reasons for using XGBoost 

models are execution speed and model performance [47].  

When large datasets are unavailable, and the input characteristics are not in the form 

of pictures, Extreme Gradient Boosting may be a feasible option. As a result, specific 

IFD research articles have used this strategy while working with structured and 

numerical datasets. For example, Zhang et al. [59] introduced a novel technique 

based on signal processing using an XGB algorithm that only utilizes phase voltage 

and current data. There are three fault identification results to classify within this 

study: no-fault, zero-line fault, and ground fault. The XGBoost technique was 

developed by combining preprocessed data with wavelet analysis to extract features 

with an accuracy of above 90%. In another study, Wu et al. [60] presented an XGB-

based technique to improve identification accuracy in power transformer failure 

diagnostics. The proposed technique produces a hybrid diagnostic network by 

merging an improved genetic algorithm (IGA) with the XGBoost. Compared to other 

approaches like support vector machines, this strategy dramatically improves 

diagnostic accuracy. As a result, the proposed approach is presented as a feasible 

option for detecting various forms of transformer defects. 

2.3.3.3.2 Random Forests (RF) 

Another tree-based machine learning technique that may be used for regression and 

classification is Random Forest. It also does well in dimensional reduction methods, 

missing values, outlier values, and other essential data exploration operations. It is 

an ensemble learning method that combines many weak models to create a more 

robust model. [61]. Random Forest creates many trees to categorize a new object 

based on the available attributes. Each tree generates a categorization for that class, 
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referred to as a "vote." When it comes to regression, the forest chooses the 

classification that receives the most votes (across all trees in the forest) and averages 

the outputs from different trees. The Random Forest algorithm is a bagging ensemble 

technique extension. Instead of using all features to build trees, RF uses a random 

subset of data and a random selection of features to train the model [47], [62]. 

Random Forest classifications, like XGBoost, are both accurate and efficient in 

terms of computation, and the results are understandable. As a result, random forest 

classifiers are well-suited to industrial contexts, where large datasets are not always 

accessible for training diagnostic models. Cerrada et al. [4] devised a reliable 

approach for identifying multi-class faults in spur gears. The diagnostic system uses 

evolutionary algorithms for feature selection and a random forest classifier in a 

supervised context. The approach is verified using actual vibration signals by 

analyzing different fault classes: an incipient fault under varied load and velocity 

conditions. Patel and Giri [42] also utilized a random forest classifier to diagnose 

multi-class mechanical problems in induction motor bearings. An accelerometer 

sensor was used to collect vibration signals from the bearings, and their values were 

obtained as statistical features to feed into the RF model. According to the findings, 

in terms of performance and accuracy in identifying bearing problems, this technique 

surpasses existing designs such as ANNs. Random forests have also been used to 

identify non-mechanical faults. Puggini et al. [63], for example, developed an 

unsupervised random forest approach to identify damaged wafers based on chemical 

fingerprints obtained during the plasma etching process.  
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2.3.3.4 K-Nearest Neighbors (KNN) 

In order to generate predictions for new data, the KNN algorithm uses a majority 

voting method. The k-closest records from the training dataset are identified for each 

new record. The fundamental closest neighbor (NN) technique predicts 

categorization or regression for each random occurrence [64]. The value of the target 

property of the nearby records is used to construct a forecast for the new record. The 

usual range of values is a few dozens to a few hundred. The KNN algorithm can 

compete with the most accurate models since it offers perfect predictions. As a result, 

the KNN approach may be employed in situations requiring high accuracy, but a 

human-readable model is not required  [47]. 

Data distribution has little bearing on fault identification for machine components 

using classification algorithms like k-nearest neighbor (KNN). Both healthy and 

flawed reference data are required for classification algorithms, which are frequently 

unavailable. KNN is a method for calculating the health index based on the distance 

between the test and reference data [65]. This approach has been used in several 

academic papers to detect and categorize problems. For example, Tian et al. [65] 

suggested employing KNN to identify bearing faults and monitor bearing 

degeneration in electric motors. Spectral kurtosis (SK) and cross-correlation are used 

to derive fault features that indicate discrete faults. Using principal component 

analysis (PCA) and a semi-supervised KNN distance metric, these attributes are 

combined to create a health index. A KNN was used in another study by Naik and 

Koley [66] to solve a supervised classification challenge. Using K-nearest neighbor, 

this paper proposes a fault detection and classification approach for AC/DC 

transmission lines using a doubly-fed induction generator (DFIG). The suggested 

KNN-based approach has been tested in various fault scenarios with varying fault 



 

 

41 

 

resistance, fault inception angle, and fault location. In all cases tested, the proposed 

technique achieves a fault detection and classification accuracy of 100. 

2.3.3.5 Bayesian Networks (BN) 

The Bayesian Network (BN) is a popular probabilistic graphical model that solves a 

range of uncertainty problems using probabilistic information representation and 

inference. BN allows specifying exponentially more significant probability 

distributions using a polynomial of probabilities. Localized tests, which are 

exclusively concerned with variables and their immediate causes, ensure that 

Bayesian models are consistent and comprehensive [47], [67]. 

For decades, BNs have been investigated and used in fault diagnostics as part of 

data-driven techniques. To construct BN-based fault detection models, a vast amount 

of historical data is utilized, and backward analysis utilizing various methodologies 

is performed to identify [5]. Muralidharan et al.'s research [68] is an outstanding 

example of using Bayesian Networks in IFD investigations. This work shows how 

to use discrete wavelet features extracted from vibration signals of healthy and 

problematic centrifugal pump components to diagnose defects using the Naive 

Bayes and Bayes net methods. Feature extraction, categorization, and classification 

comparison are the three essential processes in this technique. In order to discover 

the best wavelet for diagnosing centrifugal pump malfunctions, the classification 

accuracies of several discrete wavelet families were calculated and compared. Zhao 

et al. [69] introduced a Diagnostic Bayesian Networks (DBNs)-based approach for 

diagnosing 28 flaws in air handling units (AHUs), which covers the majority of 

common problems. The DBNs were built using data from three AHU fault detection 

and diagnosis (FDD) investigations, including a thorough examination of AHU FDD 
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techniques and fault patterns. According to the findings, the DBN-based method 

efficiently finds faults even when diagnostic information is confusing and restricted. 

2.3.4 Deep Learning for IFD 

Deep learning is a machine learning subclass that uses three or more neural network 

layers. A deep neural network is computer software that uses intricate algorithms to 

generate predictions and fix data faults. These neural networks are designed to 

replicate the function of the human brain by allowing it to learn from massive 

amounts of data. Additional hidden layers can help with DL model accuracy 

optimization and refining. Deep learning is being utilized to solve a number of 

issues, including digital assistants, voice-activated devices, and credit card fraud 

protection [17], [18]. The difference between standard machine learning and current 

deep learning is that deep neural networks analyze data differently. The word "deep" 

refers to the definition and arrangement of numerous attributes derived from the 

model's input data in these models. Deep learning may also be used to ingest and 

analyze unstructured data like text and photographs. This paradigm automates 

feature extraction to some extent, decreasing the requirement for human knowledge. 

While a machine learning expert develops a feature hierarchy by hand, deep learning 

algorithms can identify which features are necessary to complete the task at hand 

[33], [70]. 

Deep neural networks, as previously said, are made up of several layers of linked 

nodes, each of which improves and refines the prediction or categorization. The 

forward flow of calculations begun by the input data via the network is referred to 

as forward propagation. After that, backpropagation is used, which is a method that 

evaluates errors in predictions using methods like gradient descent and then updates 
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the function's weights and biases by traveling back through all of the layers [33], 

[71]. To function correctly, a neural network requires a precise set of parameters. 

The number of hidden layers, number of neurons in each layer, each layer's 

activation function, optimization algorithm, loss function, and ways to avoid 

underfitting or overfitting the network are architectural and computational factors. 

In the deep learning literature, these structural parameters are referred to as Hyper-

parameters. To set the hyper-parameters, experience and a lot of trial and error are 

required. It is not straightforward to set hyper-parameters like learning rate, batch 

size, momentum, and weight decay [17], [36]. To fine-tune the network using the 

training data, most DL-based approaches go through numerous rounds of 

hyperparameter tweaking depending on the outcomes of prior rounds. As a result, 

applying deep learning models to each problem can be difficult and time-consuming, 

requiring a significant amount of work to achieve satisfying results. However, 

because the results frequently outperform non-DL approaches, using deep neural 

networks in a variety of situations for more desirable outcomes is efficient [16]. 

The feature extraction phase is not included in implementing deep learning models, 

despite the fact that data collection methods for getting the datasets necessary for 

deep learning architectures are still required [72]. As a result, using deep neural 

networks for IFD research necessitates obtaining large volumes of data to train the 

model and passing that data to the appropriate DL model. The remainder of this 

section delves into these two phases and the techniques and architectures used in the 

research publications that use deep learning to identify machine faults intelligently. 



 

 

44 

 

2.3.4.1 Big data collection 

Big data is described as data that is so large, rapid, or intricate that it is difficult or 

impossible to process using traditional methods [73]. Obtaining and storing large 

amounts of data for analytics has a long history. The idea of big data acquired 

significant traction in the early 2000s when industry professionals established the 

now-mainstream definition of big data as the five V's (Volume, Variety, Veracity, 

Value, and Velocity). Big data analytics can help in decision-making, modeling and 

forecasting future occurrences, and improving business intelligence [17], [41]. 

In today's sector, most industrial activities follow Big Data features. For example, 

most manufacturing operations are performed by a group of machines, and fault 

diagnosis is usually centered on machine groups. As a result, throughout the long-

term operation of various pieces of equipment, the monitoring system should 

continually gather data. As a result, the amount of information gathered tends to 

increase (Volume) [31]. Furthermore, while the monitoring system may capture a 

large quantity of data, only a tiny fraction of that data is relevant and has the 

appropriate value. Furthermore, multi-source sensors are used to collect various sorts 

of data. A monitoring system, for example, may include vibration and speed data 

from a condition monitoring system as well as some control parameters from 

supervisory control, showing a wide range of data [37]. Finally, the development of 

sensor technologies and data transmission has made it simpler to gather enormous 

volumes of data-carrying real-time information while also making it easier to 

monitor data streams adequately. This emphasizes the importance of data gathering 

systems that can sustain high Velocity [4]. 
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2.3.4.2 DL-based intelligent fault diagnosis 

Deep learning-based diagnosis systems learn features from input data and use them 

to detect machine health conditions. By learning feature hierarchies using features 

from higher levels of the hierarchy formed by the composition of lower-level 

features, deep learning algorithms have the potential to address the inadequacies 

mentioned above in present intelligent defect detection systems. [40]. By applying 

non-linear operations, these models leverage hierarchical networks such as multi-

layered Auto-Encoders, CNN, and RNN to discover significant characteristics [74]–

[76]. Through these non-linear transformations, deep learning-based techniques may 

adaptively acquire representation information from input signals and estimate 

sophisticated non-linear functions with a small error. The model learns to associate 

these traits with other classes in succeeding layers and provides the model's output. 

The output layer determines the machine's health and the sort of problem it may be 

experiencing [77]. Because of its high capacity for multi-class classification, an 

ANN-based classifier is the architecture of choice in most applications. The 

Backpropagation approach is used to update the training parameters of the diagnostic 

models after each round of training, and the error between the actual output and the 

target is minimized during this phase [18].  

Fully-connected (FC) neural networks, also known as Dense neural networks, are 

the most often utilized forms of NNs in deep learning research and are still employed 

in most DL models. All nodes (neurons) in one layer are linked to the neurons in the 

next layer in this arrangement. DNN networks are deep learning workhorses that are 

used in tens of thousands of applications [18], [33]. On the other hand, fully-

connected models cannot excel at all tasks, albeit they have been shown to produce 

superior outcomes when describing more complicated functions. Researchers have 
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also shown that a deeper network with the same number of neurons may learn more 

complex functions than a shallower network and that the layered structure of such 

networks can aid in their learning ability [16].  

On the other hand, such networks need a lot of processing power and are prone to 

overfitting. As a result, while these networks are exceptionally broadly applicable 

due to their flexibility, they perform poorer than special-purpose networks tailored 

to a particular area's structure [70]. As a result, the majority of fault detection 

research articles include a fully-connected structure as part of their suggested 

solution, while FC-only networks are not used in the majority of studies. Another 

reason is that IFD datasets frequently contain signals and temporal data, which 

convolutional or recurrent neural networks are better at anticipating. However, 

researchers such as [78], [79] used an autoencoder to reduce dimensionality and 

passed the information to a fully-connected network to categorize the problems. The 

rest of the researchers used FC layers in conjunction with the other designs described 

in the rest of this section. 

2.3.4.2.1 Auto-Encoders (AE) 

An autoencoder (AE) is an unsupervised learning method for learning 

representations that use neural networks. Due to a network bottleneck, autoencoders 

are neural network designs that produce a compressed knowledge representation of 

the original input. An autoencoder's purpose is to train the network to capture 

essential bits of the input in order to build a lower-dimensional representation 

(encoding) for higher-dimensional data, which is commonly used to reduce 

dimensionality [17]. If the data has any structure (for example, correlations between 

input properties), that structure can be learned and exploited to drive the input 
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through the network's bottleneck. This network may be trained using the 

reconstruction error, which measures the differences between our initial input and 

the subsequent reconstruction [72]. A key element of network architecture is the 

presence of an information bottleneck. Our network may quickly learn to memorize 

the input values and send them via the network if there is no bottleneck. A bottleneck 

limits the quantity of data that can pass through the network, resulting in input data 

compression. Creating an autoencoder architecture is difficult to ensure that the 

compressed data accurately replicates the original input [80]. As a result, the 

research community has developed several autoencoder designs that can accomplish 

the encoding task in various scenarios. For example, given a corrupted form of data 

as input, a denoising autoencoder (DA) is trained to reconstruct/denoise the clean 

input x from its damaged sample. The most commonly used noise is dropout 

noise/binary masking noise, which randomly sets a fraction of the input attributes to 

zero. Several DAs may be stacked to create a deep network capable of learning 

representations by feeding the outputs of each layer as inputs to the next layer. 

Because autoencoders, particularly stacked denoising auto-encoders (SDA), may be 

trained unsupervised, they can provide an effective pre-training solution by 

initializing the weights of a deep neural network (DNN) to train the model [76]. 

Getting the model to acquire a meaningful and generalizable latent space 

representation is typically the most challenging component of dealing with these 

autoencoders [17], [81]. 

Autoencoders and their common modifications have been employed in machine fault 

diagnosis in various publications. Many researchers used AE versions to learn 

properties from sensor data automatically and subsequently fulfill machine diagnosis 

tasks [76]. For example, Sun et al. [79] used a sparse auto-encoder (SAE) to extract 
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features from a deep neural network approach for identifying induction motor 

defects. According to research, the SAE-based DNN outperforms ordinary neural 

networks in a machine error simulator. Jia et al. [78] devised another intelligent 

technique that uses a mix of fully-connected neural networks and an autoencoder to 

minimize the dimensionality of information to overcome the drawbacks of previous 

intelligent diagnosis systems [81]. The recommended approach is validated using 

data from rolling element bearings and planetary gearboxes. Compared to earlier 

techniques in this area, the results show that it adaptively mines accessible fault 

characteristics from observed signals and enhances diagnosis accuracy. 

Furthermore, Lu et al. presented the stacked denoising autoencoder (SDA), a deep 

feature learning approach that proved successful and trustworthy for IFD situations. 

SDA has long been a popular way of obtaining the promised benefits of deep 

architecture-based robust feature representations. The technique is acceptable in 

health state identifications for signals containing ambient noise and working 

condition fluctuations. In another study, Chen et al. [82] introduced a new multi-

sensor data fusion strategy to improve fault diagnosis reliability. The proposed 

technique uses multiple two-layer sparse autoencoder (SAE) neural networks for 

feature fusion. Deep belief networks (DBN) for classification are trained using fused 

feature vectors considered machine health indicators. According to experimental 

data, SAE-DBN's proposed technique outperformed traditional fusion approaches in 

identifying machine running conditions. 

2.3.4.2.2 Convolutional Neural Networks (CNN) 

Convolutional neural networks, or CNNs, a form of artificial neural network 

prominent in computer vision, are gaining traction in a variety of domains, including 
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facial recognition, climate forecasting, and medical image processing [14]. During 

the backpropagation phase, CNN employs numerous building blocks such as 

convolution, pooling, and fully connected layers to learn spatial hierarchies of 

characteristics automatically and adaptively. Convolution and pooling layers operate 

together to extract features, whereas FC layers transfer retrieved characteristics into 

final outputs for tasks like classification [17]. A convolution layer is a component of 

CNN that consists of a series of mathematical operations such as convolution, a type 

of linear operation. In digital photographs, pixel values are stored in a 2D grid, and 

at each image point, a tiny grid of parameters known as a kernel, an optimizable 

feature extractor, is applied. CNNs are ideal for image processing since features can 

emerge everywhere in the picture. As one layer feeds its output into the next, 

extracted properties can grow hierarchically and become increasingly sophisticated 

[83].  A pooling layer reduces the number of learnable parameters by performing a 

conventional down-sampling operation on the feature maps, lowering their in-plane 

dimensionality and introducing translation invariance to minor shifts and distortions. 

Although filter size, stride, and padding are hyperparameters in pooling operations, 

similar to convolution operations, the pooling layers do not contain any learnable 

parameters. The most common pooling procedure is max pooling, which chooses 

patches from input feature maps, outputs the highest significant value in each patch, 

and discards the rest [3], [76]. The activation function of the last FC layer is 

frequently different from the others. The activity function requires choosing a 

suitable operation for the job chosen. The SoftMax function converts target class 

probabilities to actual output values from the final fully linked layer. Each value 

ranges from 0 to 1, and the sum of all values equals 1, which is an activation function 

used in multi-class classification issues [17], [84].  
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In a range of computer vision applications where the input data is often 2D, CNN 

models have proven useful. However, CNNs cannot handle one-dimensional signals 

like vibration data, which is used to diagnose machine problems. Researchers used 

three alternative techniques to create a CNN-based diagnostic model and obtain 

optimal performance [14], [85]. Signal processing techniques such as the wavelet 

packet, continuous wavelet transform, and dual-tree complex wavelet transforms are 

used to preprocess the one-dimensional input data in order to move the signals to the 

2D time-frequency domain. CNN then processes the monitoring data using a two-

dimensional time-frequency model [8], [86]. In the IFD study, there are several 

examples of CNNs being used as the classifier module. The following are some of 

the most important studies in this category: 

For example, by claiming that gearbox vibration signals are vulnerable to the 

existence of a defect, Chen et al. [75] developed a convolutional neural network 

implementation of a deep learning technique for defect detection and classification 

in gearboxes. There are 12 different combinations of fundamental condition patterns 

in each test case, for a total of 20 test cases with different combinations of condition 

patterns. The accuracy gained by calculating Root Mean Squared Error (RMSE) 

shows that the proposed technique is highly reliable and effective in identifying 

industrial reciprocating equipment defects. Furthermore, vibration patterns change 

due to machine state faults, vibration analysis is a well-established method for 

rotating equipment condition monitoring. Before their research, Janssens et al. [87] 

discovered that automatic fault detection depended mainly on manually-engineered 

aspects such as the raceway's ball pass frequencies. They identified successful 

bearing fault detection characteristics from the data alone. This research looked at 

various bearing issues, including outer-raceway flaws, lubrication degradation, 
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healthy bearings, and rotor imbalance. The CNN-based feature-learning method 

outperformed the standard feature-engineering technique, which relies on manually 

constructed features and a random forest classifier. Gua et al. [3] proposed an 

upgraded algorithm-based hierarchical, learning rate adaptable CNN. The bearing-

fault data samples were collected from a test rig and utilized to validate the model's 

validity. The approach provided good accuracy in terms of error pattern recognition 

and fault size estimate. Furthermore, according to the comparison, the upgraded 

algorithm is well suited to the fault-diagnosis model, and the recommended strategy 

outperforms other current techniques. Jing et al. [8] constructed a CNN that can learn 

feature representations from vibration signal frequency data, claiming that only a 

few research studies have employed deep learning in feature learning for mechanical 

diagnostics. They examined how well feature learning from raw data, frequency 

spectrum, and mixed time-frequency data was performed. Data from the PHM 2009 

gearbox challenge and a planetary gearbox test rig were used to illustrate the 

effectiveness of the proposed technique. In another study, Wen et al. [85] propose a 

new CNN for defect identification based on LeNet-5. When tested on three well-

known datasets: the motor bearing dataset, self-priming centrifugal pump dataset, 

and axial piston hydraulic pump dataset, the recommended approach achieved a 

prediction accuracy of 99.79 percent, 99.481 percent, and 100 percent. These results 

have outperformed traditional methods like SVM and deep belief networks. Several 

other studies, such as [12], [88], [89], examined gearboxes and rolling bearings using 

CNN-only models for feature extraction and classification. Compared to traditional 

algorithms like ANNs and SVMs, these strategies enhanced classification 

performance on target datasets. For predicting the remaining usable life of machine 

parts and their current health status, similar methodologies are used [90]. 
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Wang et al. describe the use of CNN-based hidden Markov models (CNN–HMMs) 

to categorize multi-faults in mechanical systems in order to enhance feature learning 

[91]. The average classification accuracy ratios for two data series with acceptable 

error rate reductions are 98.125 percent and 98 percent, respectively. Another study 

uses cognitive computing theory to explore the benefits of image recognition and 

visual perception in bearing issue diagnoses [86]. In the temporal dimension, this 

CNN model reduces learning calculation needs. Identifying the essential features of 

bearings allows this model to operate in ambient noise with a high degree of 

invariance. The CNN model's efficacy for fault classification of rolling bearings was 

determined through contrast testing and analysis. Recent publications have proposed 

innovative techniques such as Deep Convolutional Neural Networks with Wide 

First-Layer Kernels have been proposed in recent publications (WDCNN). For 

instance, Zhang et al. [39] proposed a WDCNN that takes raw vibration signals as 

input and augments them to acquire extra information. Using large kernels in the 

first convolutional layer, this model collects features and suppresses high-frequency 

noise. Based on the frequency characteristics of standard signals, WDCNN 

outperforms the state-of-the-art DNN model under different working loads and noisy 

environmental conditions. Recent CNN-based defect detection algorithms, on the 

other hand, typically use transfer learning since such models require vast datasets to 

be trained from scratch, which would take a long time and a lot of computing power. 

The fourth section of this article will go over these works. 

2.3.4.2.3 Recurrent Neural Networks (RNN) 

A recurrent neural network (RNN) is an artificial neural network that works with 

data in time series or sequences. Language translation, speech recognition, natural 
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language processing, and picture captioning are examples of temporal or ordinal 

issues used by these DL methods. Ordinary feedforward neural networks are 

designed to handle data that are unconnected to each other [17], [20]. The neural 

network must be adjusted to account for these dependencies if the data is organized 

in a sequence where one data point relies on the previous data point. RNNs have a 

memory notion that allows them to remember the states or information from 

previous inputs to create the sequence's subsequent output [28], [92]. The fact that 

recurrent networks' parameters are shared across all network levels distinguishes 

them even more. Each node in a feedforward network has a different weight, but 

each recurrent neural network layer has the same weight. RNNs determine gradients 

using the backpropagation through time (BPTT) approach, which differs from 

ordinary backpropagation in that it is specialized in sequence data. The model trains 

itself by computing errors from its output layer to its input layer in traditional 

backpropagation, similar to BPTT. These calculations allow us to change and fit the 

model's parameters precisely. BPTT differs from typical techniques in that it totals 

mistakes at each time step, whereas feedforward networks do not require this [33], 

[74]. RNNs frequently run into two problems during this procedure: expanding 

gradients and disappearing gradients. These issues are defined by the magnitude of 

the gradient, which is the gradient of the loss function along the error curve [17], 

[20]. RNN variants, including Long short-term memory (LSTM) [93], Gated 

recurrent units (GRUs) [94], and Bidirectional recurrent neural networks (BRNN) 

[17], are developed to overcome these issues. 

RNN-based algorithms can deal with data sequences of varying lengths and capture 

long-term relationships in signals received from machines. They integrate model 

training and representation learning into a single neural network, needing no 
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additional domain knowledge. Furthermore, these structures may allow for 

discovering previously undiscovered structures, allowing the model's generalization 

capabilities to be improved [76]. To improve their performance, these architectures 

are frequently combined with other models like autoencoders or CNNs [95]. An IFD 

approach based on a Gated Recurrent Unit (GRU)-based denoising autoencoder was 

suggested by Liu et al. [74]. This method predicts various rolling bearing vibration 

levels based on the preceding period for the next period. These GRU-based non-

linear predictive denoising autoencoders (GRU-NP-DAEs) have good 

generalization capability and are trained for each defect type. Experiments show that 

the suggested approach has a high degree of resiliency and accuracy in 

categorization. Zhao et al. [95] used a combination of recurrent and convolutional 

neural networks to solve the fault classification problem. Convolutional Bi-

directional Long Short-Term Memory (CBLSTM) networks are used in this study 

to deal with basic sensory information. To forecast the target value, stacked FC and 

linear regression layers are built on top of bi-directional LSTMs. Our model 

surpasses numerous state-of-the-art baseline techniques, and it can forecast based on 

real-world raw data, according to the results of the testing. However, robust RNNs 

are used as the only classifier module to detect equipment faults in certain 

circumstances. For example, Rafique et al. [21] suggested a novel deep learning 

approach based on Long short-term memory (LSTM) networks for defect detection 

and classification in electrical power transmission networks. The approach uses 

LSTM units that work directly on the operational data rather than on features to 

generate an end-to-end model based on the temporal sequence of the power system's 

operational data. End-to-end learning speeds up decision-making by learning 

directly from labeled datasets and eliminates the need for complex feature extraction. 
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The proposed approach has shown a quick reaction in time performance and is 

adaptable to operational scenarios. 

2.3.4.2.4 Deep Belief Networks (DBN) 

The Deep Belief Network (DBN) is a form of Deep Neural Network that learns a 

deep network structure layer by layer using layers of Restricted Boltzmann 

Machines (RBMs) placed on top of each other. DBNs were initially proposed as 

generative models, and they may be used to tackle unsupervised learning challenges 

by reducing feature dimensionality. They may also be used to create classification 

or regression models in supervised learning applications [33]. Layer-by-layer 

training and fine-tuning are the two steps of DBN training. Fine-tuning refers to 

applying error back-propagation methods to fine-tune the parameters of the DBN 

after the unsupervised training is done [6]. Because of its benefits, such as rapid 

inference and the ability to represent deeper and higher-order network topologies, 

this structure has recently gained appeal in machine learning [76]. As a result of 

these advantages, various DBN application examples in fault diagnostic research are 

shown below: 

Tamilselvan et al. [38], for example, describe a novel multi-sensor health detection 

system based on deep belief networks. The proposed technique is based on DBN 

state classification and is a multi-sensor health diagnostic methodology with a three-

step framework. Aircraft engines and electric power transformers have both been 

diagnosed using this technology. To demonstrate the use of the suggested 

methodology, benchmark concerns and two engineering health diagnosis 

applications are employed. Gan et al. [6] conducted another study for the hierarchical 

identification of mechanical systems, in which they constructed a unique 
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hierarchical diagnostic network (HDN) by collecting deep belief networks (DBNs) 

in each layer. The deeper layer in HDN categorizes the output from the preceding 

layer more thoroughly and gives representative characteristics for specific tasks. A 

two-layer HDN is developed for a two-stage diagnosis with the wavelet packet 

energy feature. The trials show that HDN is highly reliable for multi-stage diagnosis 

and that it can overcome the overlapping problem caused by noise and other 

disruptions. 

2.3.5 Transfer learning and generative models 

So far, we have discussed how machine learning and deep learning have transformed 

IFD research by allowing models to discover faults without the need for human 

specialists automatically. However, in the age of deep learning, these models require 

large datasets to perform well and operate correctly in real-world scenarios. The 

problems that DL models are designed to detect are rare compared to fault-free 

scenarios. As a result, deep learning models cannot complete most IFD tasks due to 

a lack of data. Modern deep learning research for discovering machine flaws focuses 

on approaches that can help even when there is insufficient labeled data. Transfer 

learning or generative models are commonly used to leverage pre-trained models for 

new challenges or to produce extra data based on previous datasets. These methods 

are widely regarded as the future of deep learning in many fields, and they are the 

most widely used approaches to furthering intelligent defect detection research. This 

section looks at these tactics and how they have been used in IFD research. 

2.3.5.1 Transfer learning 

The practice of improving learning in a new activity by transferring information 

from a previously mastered related task is known as transfer learning (TL). While 
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most machine learning algorithms are developed to solve specific problems, the 

development of algorithms that allow for transfer learning is a hot issue in the 

machine learning field. [24]. The goal of transfer learning is to increase learning in 

the target task by using knowledge from the source task. Transfer approaches are 

frequently reliant on the machine learning algorithms used to learn the tasks and 

might be considered extensions of such algorithms [45]. Inductive learning entails 

using well-known classification and inference techniques like neural networks, 

Bayesian networks, and Markov Logic Networks to make new discoveries [96]. For 

instance, training neural networks consume many resources because of the models' 

complexity. Transfer learning is used to improve the efficiency of the process and 

reduce the number of resources required. Any transferable knowledge or 

characteristics may be transported between networks to speed up the construction of 

new models. Building such a network necessitates applying knowledge across many 

jobs or contexts. Transferred knowledge is generally confined to broad processes or 

tasks that may be used in a variety of settings [97]. Transfer learning may also be 

employed in computer vision applications, such as recognizing and categorizing 

picture subjects using machine learning algorithms trained on large datasets of 

images. Transfer learning will be used in this case to apply the reusable 

characteristics of a computer vision algorithm to a new model. The exact models 

produced from vast training datasets may be adapted to smaller collections of photos 

with the help of TL. This entails translating the model's more general capabilities, 

such as detecting the borders of objects in photographs. After then, the model's more 

specific layer, which identifies various objects or forms, may be trained. The model's 

parameters will need to be fine-tuned and optimized, but the model's core 

functionality will have been developed through transfer learning [17], [30], [97]. 
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There are three main ways that transfer might aid models in learning more 

successfully. In contrast to an ignorant agent's first performance, the first 

performance is accomplished in the target task using just transmitted knowledge 

before any subsequent learning. The second consideration is the time it takes to fully 

comprehend the target task utilizing transferred information versus learning it from 

scratch. The third component is the difference between the ultimate performance 

level reached in the target task and without transfer [7], [96]. 

Using transfer learning approaches, large-scale machine learning models will be 

adjusted for individual activities and situations. Transfer learning will help spread 

machine learning models across new sectors and businesses [17]. As a result, TL 

approaches are being used in various applications, such as intelligent defect 

detection. They are regarded as one of the critical components in the future of deep 

learning research [98]. IFD is expected to go beyond academic research and into 

engineering. In this situation, it is possible to simulate various problems and obtain 

adequate labeled data from laboratory-used bearings. The diagnostic models 

developed with them may be used to diagnose bearing issues in engineering contexts 

if the diagnosis information could be reused. Transfer learning accomplishes the aim 

mentioned earlier by allowing information from one or more diagnosis tasks to be 

used in different but related actions [29], [99]. 

Many research publications have presented defect diagnostic methods based on 

transfer learning in recent years. For example, Lu et al. [7] proposed a domain-

adaptable deep neural network model that used transfer learning while 

simultaneously boosting the original data's representative information, resulting in 

high classification accuracy in the target domain. They presented many methods for 

identifying the appropriate hyperparameters for the transferred model. The Deep 
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Adaptation in Fault Diagnosis (DAFD) model is proposed in this paper to solve 

cross-domain learning issues in fault diagnosis. DAFD's purpose is to learn 

transferable features that bridge the cross-domain gap while maintaining the 

recognized information in the original data. The utility and reliability of both the 

recommended model and the exploring approaches for the parameters in this study 

were shown by experimental findings on real-world datasets. The DAFD model may 

include existing deep neural network architectures such as DBN and CNN. A deep 

transfer learning model called DTL was created by Wen and Gao [99] in another 

study for fault diagnosis. To extract raw data properties, this technique uses a three-

layer sparse auto-encoder and the highest mean discrepancy term to minimize the 

discrepancy penalty between training and testing data features. The proposed TL 

model was tested using the well-known motor bearing dataset from Case Western 

Reserve University. In most investigations, DTL achieved higher prediction 

accuracies than DL, indicating a considerable improvement. DTL outperforms other 

algorithms, including DBN, sparse filters, SVMs, and ANNs, with a prediction 

accuracy of 99.82 percent. Transfer learning was also employed by Shao et al. [1] to 

develop a new deep learning IFD methodology that is more accurate and faster to 

train than previous approaches. Using a Wavelet transformation, raw sensor data 

was transformed into images in order to get moment distributions, and lower-level 

properties were recovered using a pre-trained network. The annotated time-

frequency images were then used to fine-tune the neural network architecture at a 

higher level using the annotated time-frequency images. This paper creates a 

machine defect detection pipeline and tests it on three mechanical datasets: induction 

motors, gearboxes, and bearings, to show its usefulness and universality. The 

majority of datasets show test accuracy close to 100%. Gua et al. [23] proposed the 
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deep convolutional transfer learning network (DCTLN) in another study. The two 

components that make up this technique are condition recognition and domain 

adaptation. The condition detection module uses a one-dimensional neural network, 

which automatically learns properties and detects machine health conditions. The 

domain adaptation module supports the 1-D CNN in learning domain-invariant 

features by increasing domain recognition errors and decreasing probability 

distribution distance. Six transfer fault diagnosis tests were conducted to confirm the 

effectiveness of the proposed approach. Ultimately, Yang et al. [100] suggested a 

feature-based transfer neural network (FTNN) predict the health states of bearings 

in real-world machines using diagnostic knowledge from bearings in laboratory 

machines (BLMs) (BRMs). In order to extract movable properties from natural 

vibration data from BLMs and BRMs, the suggested approach uses a CNN. Then, to 

restrict the parameters of CNN, regularization terms of multi-layer domain 

adaptation and pseudo-label learning are created to reduce the distribution 

discrepancy and among-class distance of the obtained transferable features. The 

proposed method can learn transferable features that may be utilized to connect BLM 

and BRM data. As a result, it is more accurate in diagnosing BRMs than earlier 

approaches. 

2.3.5.2 Generative models 

A generative model describes how a dataset is created in terms of a probabilistic 

model. By sampling from this model, users may generate new data [17]. Assuming 

that a collection of dog images exists, we can build a model that can construct a new 

image of a dog that has never existed but appears legitimate since the model has 

learned the general rules that influence a dog's look. This is the kind of issue that 
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generative modeling can help with [30]. The main goal is to create a model that can 

generate distinct sets of characteristics that appear to be created using the same 

principles as the original data. Furthermore, a generative model must be probabilistic 

rather than deterministic. If our model is merely a fixed computation, such as finding 

the average value of each pixel in the dataset, it is not generative. In this method, the 

model consistently produces the same outcome. To change the individual samples 

generated by the model, a stochastic (random) element must be incorporated [30], 

[101]. To put it another way, we can think that some unknown probability 

distribution explains why some inputs are more likely to be found in the training 

dataset than others. Our objective is to build a model that looks as close to this 

distribution as feasible, then sample from it to generate new, distinct observations 

that seem like they came from the original training set [98]. 

To understand why generative modeling may be regarded as the next frontier for 

machine learning, we must first evaluate why discriminative modeling has been the 

driving force behind the majority of developments in machine learning approaches 

over the preceding decades. While discriminative modeling has provided the 

majority of the motivation for machine learning successes, innovative deep learning 

applications to generative modeling difficulties have resulted in many exciting 

discoveries in the field in recent years [30]. From an academic viewpoint, progress 

in discriminative modeling is arguably easier to evaluate because performance data 

can be compared to specific high-profile classification tasks to determine the current 

best-in-class approach. Generic models are notoriously difficult to evaluate, 

especially when the quality of the output is primarily subjective. As a result, much 

work has been put into training discriminative models to attain human performance 

in various photo and text classification tasks in recent years [102], [103].  
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In recent years, IFD researchers have been particularly interested in a sort of 

generative model known as Generative Adversarial Networks, or GANs [30]. GANs 

are an intelligent way to train a generative model by framing the issue as a supervised 

technique with two different sub-models: the generator model, which is taught to 

produce new instances, and the discriminator model, which attempts to categorize 

examples as genuine or fraudulent (generated) [17], [104]. Both models are trained 

in an adversarial zero-sum situation until the discriminator model is misled around 

half of the time, suggesting that the generator model offers believable examples. 

This section examines two research publications to introduce the most prominent 

IFD efforts that use generative adversarial networks. Firstly, Yin et al. [104] 

proposed a data generation method based on the Wasserstein generative and 

convolutional neural network (WG-CNN), which used a generator and discriminator 

for confronting training, grew a small sample set into a high-quality dataset and used 

a 1D-CNN to learn sample properties and categorize different fault classes. With 

100 percent classification accuracy, the proposed approach delivers an obvious and 

satisfactory fault diagnostic impact for few-shot learning. This method also works 

effectively in a variety of loud environments. Pan et al. [98] present a semi-

supervised multi-scale convolutional GAN for bearing fault diagnostics with 

sufficient unlabeled data for training. The discriminator is a multi-scale 1D-CNN, 

while the generator is a multi-scale deconvolutional neural network. The model is 

trained using an adversarial approach. The proposed method was tested on three 

datasets, with classification accuracy averaging 100 percent, 99.28 percent, and 

96.58 percent, respectively. According to the results, when the labeled data is 

insufficient, the suggested model adequately finds bearing problems. 
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3 Methodology 

3.1 Workflow 

The proposed methodology of the current thesis is split into four main steps, 

including the data pre-processing, estimating features' importance, ML-based model 

development, and model assessment based on evaluation criteria. The first three 

steps are explained in this section as well as the utilized dataset, while the next 

section is dedicated to the fourth step for a thorough examination of the results and 

discussion.  

The PHM's dataset is chosen as the fault detection source in machinery, taken from 

a challenge of the same name. The attendees are invited to solve a classification issue 

for a genuine manufacturing line employing state-of-the-art algorithms and models 

in this challenge. The dataset is first pre-processed to handle missing parts and is 

reorganized for the ML models to be interpretable. Through multiple rounds of 

machine learning training and testing, PHM's features are analyzed and narrowed 

down to more influencing ones in the feature importance procedure. Thereafter, the 

final model is trained based on the processed dataset, and other algorithms are also 

implemented for comparison. Multiple evaluation criteria are described for 
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comparison objectives, and finally, it is discussed how the proposed model 

outperforms similar algorithms. 

3.2 Software 

3.2.1 Python 

Python is a dynamically semantic, interpreted, object-oriented high-level 

programming language. Its high-level built-in data structures, together with dynamic 

typing and dynamic binding, make it ideal for Rapid Application Development and 

as a scripting or glue language for connecting existing components. Python's 

concise, easy-to-learn syntax promotes readability, which lowers software 

maintenance costs. Modules and packages are supported by Python, which facilitates 

program modularity and code reuse. The Python interpreter and its substantial 

standard library are free to download and distribute in source or binary form for all 

major platforms [71]. Python version 3.7.6 is utilized in this research to implement 

the proposed method and the baseline algorithms. Numerous Python libraries are 

also utilized in the implementation process. For instance, the Keras library running 

on the TensorFlow backend is employed for deep learning purposes, which features 

frequently used neural-network building elements, including layers, activation 

functions, and optimizers. Numpy is another Python library that supports massive, 

multi-dimensional arrays and matrices and a wide variety of high-level mathematical 

functions to manipulate such arrays. Pandas is a data manipulation and analysis 

software package that couples with the Numpy library and is utilized for data storage 

and processing. It includes data structures and methods for manipulating numerical 

tables and time series [71]. In Python, Scikit-learn (Sklearn) is among the most 
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efficient and robust machine learning packages. It uses a Python consistency 

interface to provide swift tools for machine learning and statistical modeling, such 

as classification, regression, clustering, and dimensionality reduction. This library is 

the basis of ML implementations of the proposed method and several other baselines 

and pre-processing algorithms [32]. 

3.2.2 Jupyter Notebook 

The Jupyter Notebook App is a web-based server-client application for editing and 

executing notebook papers. The Jupyter Notebook App can be run locally on a 

computer without internet access or remotely on a server and accessible through the 

internet. The Jupyter Notebook App contains a "Dashboard" (Notebook Dashboard), 

a "control panel" that shows local files and allows opening notebook papers or 

shutting down their kernels, in addition to displaying, editing, and running notebook 

documents. The Jupyter Notebook is an excellent tool for generating and 

interactively presenting data science projects. The notebooks combine graphics, 

narrative writing, mathematical calculations, and other rich media with code and 

output in a single document. To put it another way, it provides a single page where 

code can be run, the results can be seen, and explanations, formulae, and charts can 

be added to make work more precise, repeatable, and shared [17], [71]. Jupyter 

Notebook version 6.0.3 is used in this research. 

3.2.3 Google Colab 

Google Colab was created to give anyone who requires GPUs or TPUs to build a 

machine learning or deep learning model free access to them. Google Colab may be 

thought of as a more advanced version of Jupyter Notebook. Colab notebooks let 

users blend executable code and rich text, as well as graphics, HTML, LaTeX, and 
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more, in a single document. Colab notebooks are saved in Google Drive accounts 

when created. They can be quickly shared on Colab notebooks with coworkers or 

acquaintances, enabling them to provide comments or make changes [105]. A free 

version of Colab Notebooks was utilized for deep learning implementations of the 

baseline algorithms. 

3.3 Dataset 

In this experiment, the dataset from the PHM challenge1 [106] is used to test machine 

learning architectures. This dataset has been given exclusive access to extensive 

datasets created from a real-world industrial testbed (CSEM) in collaboration with 

the Swiss Center for Electronics and Microtechnology. Conveyor belt motors, an 

infrared camera, and robotic arms are all part of the system, allowing for continuous 

electrical components testing. Data was gathered in error-free working environments 

and under controlled conditions using a variety of seeded flaws with the assistance 

of subject experts. A faulty system in this case study might result in components 

being rejected needlessly, the testing tempo decreasing, or the testing phase 

switching. 

The experimental dataset contains 50 signals, each describing the evolution of a 

variable of interest across time. Depending on the experiment, it might take one to 

three hours. Environment monitoring signals (such as temperature and humidity), 

machine health monitoring signals (such as pressure and vacuum), and other 

variables such as ProcessMemoryConsumption and CPUTemperature are all 

                                           
1 https://phm-europe.org/data-challenge 
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examples. Each signal is associated with fields that define different signal attributes 

collected from that signal using the automated data acquisition approach [106]. 

3.4 Data Pre-processing  

The process of converting raw data into a comprehensible format is known as data 

preprocessing. Machine learning algorithms cannot deal with raw data; thus, this is 

a critical stage in data mining, and it is required to ensure the data is of satisfactory 

quality [107].  

In this research, the pre-processing includes multiple stages. Firstly, some valueless 

columns are deleted based on the researchers' experience. These data columns are 

useless for the fault classification task and only provide variables set in the data 

collection phase. Next, the NaN (Not a Number) values are handled by replacing 

them with zero. While such data points can be filled with other values such as the 

mean, minimum, and median of their columns, zero can be a suitable choice in this 

case. Since these values are not recorded, they should not influence the results much, 

and therefore, replacing them with zero is the most reasonable alternative. It is 

noteworthy that missing values are a regular occurrence in many real-world datasets 

and can skew the results or degrade the model's accuracy in machine learning models 

if they remain unhandled. Therefore, such data points should be deleted entirely or 

regulated with predefined values to maintain the model's performance [47]. 

In the next step, the dataset is split into two parts to separate the input features and 

the corresponding outputs. The input data is also transformed with the Quantile 

Transformer function, so the characteristics are transformed into a uniform or normal 

distribution. As a result, this transformation tends to spread out the most common 



 

 

68 

 

values for a particular characteristic. It also lessens the influence of (marginal) 

outliers, making it a reliable pre-processing method. Finally, the dataset is split into 

two groups of train and test sets with an 80/20 ratio. The former set is utilized for 

training the proposed algorithm and the baselines, while the test set is not observed 

in this phase. The algorithms are then assessed based on their performance on the 

test set. 

3.5 Feature Importance  

The term "feature importance" refers to a set of strategies for allocating scores to 

input features in a predictive model, indicating the relative significance of each item 

when producing a prediction. For issues involving forecasting a numerical value, 

called regression, and problems involving predicting a class label, called 

classification, feature significance scores can be generated. The ratings are beneficial 

and may be applied to a variety of circumstances in a predictive modeling challenge, 

including better data interpretation, gaining a better knowledge of a model, and the 

reduced number of input features [108]. 

The relevance of features in a dataset may be used to get insight into it. The relative 

ratings can reveal which aspects are most important to the target and, conversely, 

which features are least important. A domain expert might analyze this and utilize it 

as a starting point for obtaining more or different data. The model may be deciphered 

using feature significance ratings. Moreover, building a model is quite different from 

comprehending the data that goes into the model. Feature importance helps to 

understand the relationship between the characteristics and the target variable. It also 

aids in determining which properties are unimportant to the model. We may lower 
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the dimensionality of the model by using the scores generated from feature 

significance while training it. Higher scores are typically maintained, whereas lower 

values are usually removed since they are unimportant to the model. This simplifies 

the model, speeds up its operation, and boosts the model's overall performance. 

Feature Importance can also help comprehend and communicate the model to other 

parties. We may identify which characteristics contribute the most to the model's 

prediction capability by computing scores for each feature [42], [45]. 

A predictive model that has been fitted to the dataset is used to generate the majority 

of essential ratings. When creating a forecast, checking the significance score offers 

insight into that specific model and which elements are essential and least significant 

to the model. For those models that support it, this is a sort of model interpretation 

that can be done. However, some models do not support feature importance 

functions and cannot be apprehended with this method [108].  

The feature importance calculations of this research are performed using scikit-

learn's built-in functions. It is noteworthy that deep learning architectures work 

similarly to a black box and do not reveal which features are more significant in their 

results. Therefore, no feature importance calculations were performed for the deep 

neural network designed as one of the baseline methods.  

The other methods, including the proposed model and the baseline approaches, were 

trained once using the entire dataset. Thereafter, feature importance functions were 

applied, and the top 15 features in their results were saved for each model. 

Subsequently, the algorithms were retrained utilizing datasets containing only the 15 

top features. It is noteworthy that the remaining attributes were different for each 

algorithm, and therefore, the importance metrics were computed per model 

separately. Examinations revealed that this retraining helps improve models' 
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performance in terms of evaluation metrics since ineffective data causes bias that 

disrupts the final results in machine learning models. 

3.5.1 SHAP Feature Importance 

The SHAP (SHapley Additive exPlanations) value is a novel feature importance 

calculation method known as a genuine game-changer in machine learning 

interpretation. Both regression and classification problems can benefit from the 

SHAP value, which works on various machine learning models, including logistic 

regression, SVM, tree-based models, and neural networks. Even if the features are 

linked, the SHAP value can assign the feature priority appropriately in a regression 

situation [109].  

SHAP's purpose is to compute the contribution of each feature to the prediction of 

an instance x in order to explain it. Shapley values are computed using the SHAP 

explanation technique based on coalitional game theory. A data instance's feature 

values operate as coalition members. Shapley values provide us with how to 

distribute the "payout" (= prediction) among the characteristics in a fair manner. For 

example, a player might be a single feature value with tabular data. A player can also 

be a collection of different feature values. Pixels, for example, can be grouped into 

superpixels, and the prediction is spread among them to describe a picture [42], 

[109].  

SHAP has been identified as a better alternative to compute feature importance after 

confirming the positive effect of the feature's importance calculation and retraining 

with a limited number of significant features. This research takes advantage of the 

SHAP library to estimate Shapley Additive Explanations values. This process is also 
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performed on all algorithms except for the deep learning baseline model and 

determines the top 15 influential features for retraining. 

3.6 Proposed Algorithm  

Initial examinations in this research have proved that tree-based machine learning 

algorithms, such as XGBoost and Random Forests, are able to outperform similar 

models. Artificial neural networks and deep learning architectures also demonstrated 

promising results with greater computational overload. Therefore, using tree-based 

algorithms is beneficial in terms of accuracy and evaluation metrics and being 

computationally optimal. Consequently, multiple tree-based machine learning 

models were trained and tested on the PHM's preprocessed dataset to discover the 

best-performing algorithm. These investigations were made to optimize the accuracy 

of the proposed method as well as the training time and hardware resources required. 

The results revealed that the Extra Tree classifier outperforms all other approaches, 

and therefore, it is selected as the proposed method presented in this thesis.  

Extra Trees (ET), or Extremely Randomized Trees, is an ensemble machine learning 

technique. It is a decision tree ensemble similar to other methods such as bootstrap 

aggregation (bagging) and random forest. The Extra Trees approach utilizes the 

training dataset to generate a considerable number of unpruned decision trees. In the 

case of regression, predictions are formed by averaging the forecast of the decision 

trees, whereas, in the case of classification, majority voting is used [110]. 

The Extra-Trees technique creates an ensemble of unpruned decision trees or 

regression trees according to the standard top-down process. Its two primary 

distinctions from previous tree-based ensemble approaches are dividing nodes at 
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random and growing trees using the entire learning sample (rather than a bootstrap 

replica). Unlike bagging and random forest, which build each decision tree using a 

bootstrap sample of the training dataset, Extra Trees fit each decision tree to the 

whole training dataset. Similar to the random forest, this technique will sample 

characteristics at each split point of a decision tree at random. Unlike a random 

forest, which chooses an ideal split point using a greedy algorithm, the ET approach 

chooses a split point at random [111], [112]. Figure 3-1 represents the workflow of 

an Extra Tree classifier.  

 

Figure 3-1 An Extra Tree classifier's visual workflow representation [112] 

The number of decision trees in the ensemble, the number of input features to choose 

and examine for each split point randomly, and the minimum number of samples 

necessary in a node to establish a new split point are the three significant 

hyperparameters to adjust in the method. K is the number of randomly picked 

characteristics at each node, and nmin is the minimum sample size for splitting a 

node. M denotes the number of trees in this ensemble. The parameters K, nmin, and 

M have diverse effects: K controls the strength of the attribute selection process, 



 

 

73 

 

nmin controls the strength of averaging output noise, and M controls the strength of 

the ensemble model aggregation's variance reduction. The algorithm's variance is 

increased by the random selection of split points, which makes the decision trees in 

the ensemble less correlated. By increasing the number of trees in the ensemble, this 

increase in variance may be mitigated [42], [110]. 

The implementation of the proposed Extra Tree algorithm is executed using the 

scikit-learn library. The parameters set for this algorithm are n_estimators=100 

which specifies the number of trees in the forest, criterion=gini, which denotes the 

function to calculate the splits' quality, and min_samples_split=2 showing the 

minimum number of samples demanded to split an inner node. The rest of the 

parameters are set to default values in this implementation. A Bayesian optimization 

algorithm enhanced these parameters for the best results on the PHM's dataset. A 

Bayesian Optimization is a systematic approach based on the Bayes Theorem for 

directing an efficient and adequate search of a global optimization issue. It works by 

creating a surrogate function, a probabilistic model of the objective function that is 

then efficiently searched with an acquisition function before candidate samples are 

picked to assess the genuine objective function. Bayesian Optimization is used to 

optimize the model's hyperparameters using the validation dataset, consisting of 

20% of the training set. 

3.7 Baseline Algorithms 

3.7.1 XGBoost 

The XGBoost algorithm has been shown to be highly versatile in many learning 

contexts, faster than gradient boosting, and allows regularization approaches. It also 
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employs parallel processing to provide faster outcomes in real-time situations. In 

comparison to deep learning architectures, it is also a good algorithm for small to 

medium datasets. 

The Python programming language and the XGBClassifier module of the "xgboost" 

library were used to create this classifier. This module aims to do a multi-class 

classification using the dataset's input parameters. It classifies the findings using a 

sigmoid function (equation 3-1), assigning a probability value in the range of 0 to 1 

for each combination of inputs and all accessible classes. According to the model, 

the input data is predicted to belong to the class with the highest probability value. 

The gbtree booster is also chosen as the classifier's booster core, and its learning rate 

is adjusted to 0.3 after several tests with different values. 

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥
        

 

Equation 3-1 

The dataset is subjected to further preprocessing and development steps. Firstly, the 

dataset is encoded and scaled using several approaches in order to determine the 

optimum form of feature representation. The AutoML python libraries are used in 

this procedure. AutoML techniques are ways for automatically and quickly finding 

a high-performing machine learning model pipeline for a predictive modeling 

challenge. The major AutoML libraries for Scikit-Learn used in this study were 

Hyperopt-Sklearn and TPOT. The results showed that encoding techniques did not 

considerably enhance classification quality, and as a result, they are not used in the 

primary implementations to minimize model time complexity. After this stage, 

influential characteristics are extracted to prepare the dataset for machine learning 

models. 
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The dataset is subjected to univariate feature selection, which uses univariate 

statistical tests to determine the best features. It may be regarded as a second round 

of preprocessing before employing a Scikit-learn estimator. Feature selection 

processes are exposed as transform method objects in Scikit-learn. One of the 

strategies employed for this study is SelectKBest, which eliminates everything 

except the K highest-scoring parts. The remaining characteristics are then 

incorporated into machine learning models to categorize faults into one of nine 

categories. 

3.7.2 CATBoost 

Yandex's CatBoost machine learning algorithm was recently open-sourced. It is 

simple to interface with deep learning frameworks such as TensorFlow from Google 

and Core ML from Apple. It can work with a variety of data formats to assist 

organizations in addressing a variety of challenges. To top it off, it has the highest 

accuracy in the industry. It is enticing in two ways: It provides robust out-of-the-box 

support for the more descriptive data formats that accompany many business 

challenges. It produces state-of-the-art outcomes without the substantial data 

training required by other machine learning approaches [113]. 

The term "CatBoost" is derived from the phrases "Category" and "Boosting." As 

previously stated, the library works well with a variety of data types, including audio, 

text, picture, and historical data. Because this library is based on the gradient 

boosting library, the name "Boost" derives from the gradient boosting machine 

learning technique. Gradient boosting is a powerful machine learning approach that 

has been used to solve a variety of commercial problems, including fraud detection, 

recommendation items, and forecasting. It can also produce excellent results with a 
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small amount of data, as opposed to DL models, which require a large amount of 

data to train from [113], [114]. 

CatBoost produces cutting-edge results that compete with any major machine 

learning algorithm in terms of performance. We may utilize CatBoost without any 

explicit pre-processing to convert categories to numbers. CatBoost translates 

categorical data to numerical values using a variety of statistics based on categorical 

characteristics and categorical and numerical features. It eliminates the need for 

intensive hyper-parameter adjustment and decreases the risk of overfitting, resulting 

in more generic models. However, it includes a variety of parameters to tweak, 

including the number of trees, learning rate, regularization, tree depth, fold size, 

bagging temperature, and others [114].  

The implementation of this model is performed using the Python programming 

language and its "catboost" library, which contains a CatBoostClassifier function. 

The parameters are all set to default values in this implementation since other sets 

of hyper-parameters showed unsatisfactory results. 

3.7.3 Hist Gradient Boosting Classifier 

As mentioned earlier, gradient boosting is a machine learning technique that uses an 

ensemble approach. Boosting is an ensemble learning technique that sequentially 

adds tree models to an ensemble. Each tree model that is introduced to the ensemble 

tries to correct the prediction mistakes generated by the tree models that are already 

available. Gradient boosting is a statistical framework that extends the capabilities 

of boosting algorithms such as AdaBoost by treating the training process as an 

additive model and allowing the use of arbitrary loss functions. As a result, for most 
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structured (e.g., tabular data) predictive modeling problems, gradient boosting 

ensembles are the preferred approach [113]. 

Although gradient boosting works effectively in reality, it might take a long time to 

train the models. This is because, unlike other ensemble models such as random 

forests, trees must be built and added sequentially, whereas ensemble members may 

be trained in parallel, utilizing multiple CPU cores. As a result, much work has gone 

into developing strategies to increase the gradient boosting training algorithm's 

efficiency. Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting 

Machines (LightGBM) are two important libraries that include numerous recent 

efficiency strategies for training gradient boosting algorithms. The creation of each 

decision tree, whose speed is limited by the number of instances (rows) and features 

(columns) in the training dataset, is one part of the training method that may be 

expedited [115]. Large datasets, such as those with tens of thousands of samples or 

more, can make tree building particularly slow since split points on each value for 

each attribute must be examined. Reducing the number of values for continuous 

input characteristics can considerably speed up the development of decision trees. 

This is accomplished by discretizing or binning values into a set of buckets. The 

number of unique values for each characteristic may be reduced from tens of 

thousands to a few hundred. This enables the decision tree to work with ordinal 

buckets (integers) rather than particular values in the training dataset. This imprecise 

approximation of the input data often has little or no influence on model skill, if any, 

and drastically speeds up the creation of the decision tree [116]. 

Furthermore, efficient data structures can be utilized to describe the binning of the 

input data; for example, histograms can be employed, and the tree construction 

method can be further tuned to make effective use of histograms in the tree 
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construction. These approaches were created in the late 1990s to speed up the 

development of single decision trees on massive datasets. However, they may also 

be utilized in decision tree ensembles, such as gradient boosting. As a result, a 

gradient boosting technique that supports "histograms" in current machine learning 

libraries is commonly referred to as histogram-based gradient boosting [117]. 

A histogram is a visual representation of the frequency of data (number of 

occurrences) over discrete time intervals called bins. The histogram approach is 

theoretically straightforward, and each bin reflects the frequency of the 

corresponding pixel value [116], [117].   

This thesis uses scikit-learn's implementation of the histogram-based gradient 

boosting algorithm. There are various parameters for fine-tuning the specialized 

algorithm to produce the best outcomes in general for all classes. Learning rate, max 

iter, max depth, and l2 regularization are essential parameters for the HBG classifier. 

Learning rate deals with shrinkage, max_iter with the number of iterations required 

to get a good result, and max_depth with multiple trees (Decision tree concepts). 

The loss function is also set to Categorical Crossentropy, which is one of the best 

choices for multi-label classification problems.   

3.7.4 Deep Neural Network 

A deep neural network is employed to perform the classification as the representative 

of deep learning methods. However, many preprocessing steps are skipped for the 

deep learning approaches, and the DL models are provided with all features to 

extract for themselves. The feature importance process is also not performed for this 

implementation since deep learning models are powerful at discovering influential 

features and ignoring the insignificant ones. As a result, the entire data frame is fed 
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to the designed neural network, trained for several epochs, and does not require the 

two-step feature extraction and retraining process performed for the other 

algorithms. Nevertheless, since random weight initializations can affect deep 

learning algorithms' results in many cases, the training process is repeated ten times 

to eliminate the effect of randomness. The models are trained separately and 

aggregated by averaging the test results on each metric. It is noteworthy that none of 

the model's hyperparameters are changed in this process. The train and test sets are 

also randomly picked with an 80/20 ratio for each training step.  

 

Figure 3-2 Summary of the deep neural network architecture and trainable parameters. 

 

The deep learning predictor used in this experiment is a Fully-Connected (FC) 

network without RNN or CNN layers. It is implemented using the Python Keras 

library and the TensorFlow deep learning engine and is built employing a Sequential 
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model architecture [118]. These architectures perform adequately in the presence of 

signals or temporal variables in the dataset; however, our dataset does not contain 

such features. Therefore, an FC neural network seems to be suitable for experimental 

purposes. This network contains seven hidden layers with more than 180 thousand 

trainable parameters and uses an output layer of 9 neurons with a SoftMax activation 

function to distinguish various classes (Equation 3-2). Figure 3-2 demonstrates a 

summary of the deep learning architecture. The hidden layers contain 50 to 300 

neurons, use the ReLU activation function (Equation 3-3), and are optimized using 

the RMSprop function with a learning rate of 0.0001 and a momentum of 0.1. A 

Sparse Categorical Crossentropy loss function is chosen for the model to calculate 

the model's error for optimization purposes. An early stopping mechanism is also 

defined with the patience of 20 epochs to monitor the loss function on the validation 

set and stop the training process if no practical improvement is achieved. Model 

checkpoints are also defined to save the best version of the model based on its 

performance on the validation set. Finally, the model is trained using the assembled 

dataset in each step, in which the training batch is also split into two parts for 

producing a separate validation set. This process can last for a maximum of 150 

epochs in cases where the early stopping mechanism does not eliminate the training. 

Figure 3-3 illustrates the training process in one of the ten principal training phases.   

 

 
𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (𝜎(𝑧)𝑖)  =  

 𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑗=1

 
 

3 Equation 3-2 

 

 𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) Equation 3-3 
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Figure 3-3 An example of the training process showing the loss function and accuracy results 

on the validation set in each epoch. 
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4 Results and Discussion 

After the implementations are done using the proposed method and the baseline 

algorithms, the evaluation procedure can assess the models' performance. In this 

section, the evaluation criteria used for such assessments are introduced, and the 

performance of each model is estimated using these metrics. Ultimately, it is 

discussed how the proposed method outperforms the baselines regarding accuracy 

measures and computational costs. 

4.1 Evaluation Criteria  

For this experiment, the preprocessed dataset in the previous section is separated 

into two sets of training and test with an 80/20 ratio. The training set is then presented 

to each model, allowing them to learn the features' attributes and map them to 

different classes. The models are not exposed to test sets until the training phase is 

completed. Following that, each model is given the test set as input and is expected 

to predict the result of each input sample based on the training data. These 

predictions are compared to the actual results for each combination of inputs, and 

the performance of each model is assessed. The evaluation metrics are common 

measures used to assess the classification execution of ML models: accuracy, 

precision, recall, the F1 score, kappa, ROC, and MATTEW.  

 

Chapter 4 
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4.1.1 Accuracy 

Classification accuracy is the most frequent parameter to assess a classification 

prediction model's performance. Because a predictive model's accuracy is often high 

(over 90%), it is usual to characterize a model's performance in terms of its error 

rate. The first step in improving classification accuracy is to create a forecast for 

each sample in a test dataset using a classification model. The predicted labels are 

then compared to the known labels for the test set examples. The proportion of 

examples in the test set that was successfully predicted, divided by all predictions 

made on the test set, is used to determine accuracy [119]. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

 

Equation 4-1 

 

The confusion matrix is another valuable method of thinking about accuracy. A 

confusion matrix is a table that organizes the predictions provided by a classification 

model by class. Each column in the table reflects the anticipated class, whereas each 

row represents the actual class. The number of predictions made for a class that is 

really for that class is represented by a value in the cell. Correct predictions are 

shown by cells on the diagonal, where a predicted and anticipated class align. The 

confusion matrix reveals not just a predictive model's accuracy but also which 

classes are successfully predicted, which are wrongly forecasted, and what kind of 

errors are being produced. A two-class classification issue with negative (class 0) 

and positive (class 1) classes has the most straightforward confusion matrix [120]. 

Each cell in this form of confusion matrix has a distinct and well-known name, which 

may be stated as follows: 
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Table 4-1 Simple confusion matrix for a binary classification 

 Positive Prediction Negative Prediction 

Positive Class True Positive (TP) False Negative (FN) 

Negative Class False Positive (FP) True Negative (TN) 

 

From this confusion matrix, the classification accuracy may be computed as the total 

of accurate cells (true positives and true negatives) divided by all cells in the table. 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 

 

Equation 4-2 

While accuracy can generate a model's overall estimation, accuracy is insufficient in 

many circumstances, such as when the dataset is unbalanced, and not all classes have 

the same number of samples. In these cases, we employ alternative metrics, 

including precision, recall, and F1 score. 

4.1.2 Precision and Recall 

Precision and recall are two metrics used to measure the performance of 

categorization or information retrieval systems when they are added together. The 

percentage of relevant instances among all retrieved instances is defined as 

Precision, and the proportion of recovered occurrences among all relevant examples 

is known as recall or sensitivity. Precision and recall are both equal in a perfect 

classifier. 

More specifically, Precision is a classification model's ability to identify only 

relevant data items. It is defined as the number of true positives divided by the total 
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number of true positives + false positives. On the other hand, recall is a model's 

capacity to locate all relevant examples within a data collection. The number of true 

positives divided by the number of true positives plus the number of false negatives 

defines recall in mathematics [121], [122]. 

 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

Equation 4-3 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

 

Equation 4-4 

 

4.1.3 F1 Score 

To thoroughly assess a model's efficacy, we must examine both precision and recall. 

Unfortunately, precision and recall occasionally have conflicts. In other words, 

increasing accuracy usually decreases recall and vice versa. If the model has to recall 

everything, it will keep producing inaccurate outcomes, diminishing its precision. 

There are several instances in which both precision and recall are critical, and we do 

not wish to sacrifice one for the other. In such cases, an accumulative metric can 

solve the concerns [123].  

The F1-score takes the harmonic mean of a classifier's accuracy and recall to create 

a single measure. It is mainly used to compare the results of two different classifiers. 

Assume that classifier A has a greater recall and precision than classifier B. The F1 

scores for both classifiers may be used to identify which delivers superior results in 

this scenario. An F-score can have a maximum value of 1.0, indicating perfect 

precision and recall, and a minimum value of 0 if neither precision nor recall is zero 

[124]. A classification model's F1-score is calculated as follows: 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Equation 4-5 

4.1.4 Kappa 

Cohen's Kappa coefficient is a statistic of interrater agreement that evaluates the 

degree of agreement between two variables. It is most commonly employed with 

data that are the product of a judgment rather than a measurement. The likelihood of 

agreement is compared to what would be anticipated if the ratings were independent. 

The range values are -1 to 1, with 1 denoting total agreement and 0 denoting 

complete independence. When a statistic is negative, the agreement is poorer than 

random. However, the definition of what constitutes an acceptable kappa value is 

subjective [125], [126]. The following equation shows how kappa is calculated, in 

which observed agreement is the ratio of observed agreements and chance 

agreement is the proportion of agreements expected by chance: 

 
𝐾𝑎𝑝𝑝𝑎 =

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 −  𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 

1 −  𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 
 

 

Equation 4-6 

 

4.1.5 ROC 

Forecasting probabilities of an observation belonging to each class rather than 

explicitly predicting classes might be more flexible in a classification task. This 

flexibility stems from the way multiple thresholds may interpret probabilities, 

allowing the model's operator to trade off concerns about the model's faults, such as 

the number of false positives vs. false negatives. This is necessary when employing 

models where the cost of one error surpasses the cost of other types of errors. ROC 

Curves and Precision-Recall Curves are two diagnostic tools that aid in 
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understanding probabilistic forecasts for classification predictive modeling issues 

[126]. 

A receiver operating characteristic (ROC) curve is defined as a graph that shows 

how well a classification model performs across all classification thresholds. The 

True Positive Rate (TPR) and False Positive Rate (FPR) are plotted on this graph: 

Precision and Recall, respectively. TPR vs. FPR at various categorization criteria is 

plotted on a ROC curve. As the classification threshold is lowered, more items are 

classified as positive, increasing both False Positives and True Positives [123]. The 

roc_auc_score function from the scikit-learn library's metrics module is used to 

calculate this score in the current research, which calculates the area underneath the 

Receiver Operating Characteristic Curve (ROC AUC) from prediction scores. 

4.1.6 Matthew’s correlation coefficient (MCC) 

Accuracy and F1 scores computed on confusion matrices have been among the most 

popular adopted metrics in binary classification tasks. However, these statistical 

measures can show overoptimistic inflated results, especially on imbalanced 

datasets. The Matthews correlation coefficient (MCC), instead, is known as a more 

reliable statistical rate that produces a high score only if the prediction obtained good 

results in all of the four confusion matrix categories (true positives, false negatives, 

true negatives, and false positives), proportionally both to the size of positive 

elements and the size of harmful elements in the dataset [127].  

 
𝑀𝐶𝐶 =

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁 

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)
 

 

Equation 4-7 



 

 

88 

 

4.2 Evaluation Results  

After all implementations are complete, the evaluation process is performed using 

the criteria introduced in section 4.1. The assessment is accomplished utilizing the 

test dataset. Therefore, the models are exposed to samples they have not seen before 

and are demanded to classify them. The fault classes detected by the models are then 

compared against the ground truth for each data sample, and the evaluation metrics 

are calculated based on these two sets of values called y_true and y_prediction. It is 

noteworthy that all models go through two training phases except for the deep neural 

network. The tree-based algorithms, including the proposed Extra Tree classifier, 

experience a primary phase of training, after which SHAP feature importance is 

calculated. In the second phase, these algorithms are retrained using the top-15 

features for each class to build the final models. Their results are compared to 

demonstrate how the retraining process helped improve accuracy and decrease 

training time. On the other hand, the deep neural network goes through a different 

training procedure in which feature importance is not calculated. This model is 

trained with all features ten times, and the results are aggregated by calculating mean 

values for the predictions. This section demonstrates how each instance differs from 

the others and proves that the deep learning implementation is robust and results are 

not randomly generated. Most importantly, the proposed method is compared against 

the baselines in this section to investigate its advantages and how it outperforms the 

baseline methods. 
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4.2.1 Training Process Results  

This subsection is dedicated to the effects of the steps taken in the training process 

to enhance models' performance. Firstly, the developments throughout the feature 

importance calculations and models' retraining are investigated for the tree-based 

models. Thereafter, the deep learning performance is assessed within its numerous 

implementations. 

 

Figure 4-1 Comparison between the tree-based algorithms' performance before (initial) and 

after (final) the feature importance process. 
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4.2.1.1 Feature Importance Effects 

As mentioned earlier, the tree-based models, including the proposed algorithm, were 

trained in two phases. Figure 4-1 demonstrates the effects of the second phase of the 

training on each model. In this figure, initial values represent the evaluation metrics 

before calculating feature importance, and the final values show models' 

performance after the second phase of learning with essential attributes extracted 

from the feature importance step. It is observed that most of these models did not 

change much while training with all features compared to training with the top-15 

most influential features. However, while the rest of the algorithms experience a 

minor decline in terms of performance, the proposed method improves in all metrics. 

This proves that the proposed algorithm is a better choice for the problem at hand 

and is well-suited for this two-phase training procedure. Another significant matter 

is that the training times reduce by approximately half in most cases after the 

uninfluential features are omitted from the dataset, resulting in less training time and 

computational power required in monitoring devices. Figure 4-2 illustrates the 

training times for each algorithm with all features (initial) and with top-15 important 

features (final). Table 4-2 also summarizes all results in numerical values for 

additional proof. 
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Figure 4-2 Comparison between the tree-based algorithms' execution time before (initial) and 

after (final) the feature importance process. 

 

Table 4-2 Detailed overall comparison between the tree-based algorithms' performance before 

(initial) and after (final) the feature importance process. 

 

XGBoost 
 

CATBoost 
 

Hist Gradient Boosting Extra Trees Classifier 
 

Initial Final Initial Final Initial Final Initial Final 

Accuracy 0.9980 0.9972 0.9976 0.9960 0.9977 0.9973 0.9877 0.9955 

Precision 0.9977 0.9965 0.9977 0.9948 0.9975 0.9967 0.9946 0.9973 

Recall 0.9960 0.9953 0.9950 0.9923 0.9958 0.9951 0.9685 0.9897 

F1 Score 0.9969 0.9959 0.9964 0.9935 0.9966 0.9959 0.9812 0.9935 

Kappa 0.9962 0.9947 0.9954 0.9923 0.9956 0.9949 0.9764 0.9914 

ROC 0.9999 0.9998 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998 

Matthew’s 0.9962 0.9947 0.9954 0.9923 0.9956 0.9949 0.9766 0.9914 

Ex. Time (sec) 51.31 26.12 101.72 50.19 27.41 22.36 10.93 6.43 
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4.2.1.2 Deep Learning Procedure  

The deep neural network has also gone through multiple iterations of training. More 

specifically, the same architecture has been trained for ten separate iterations in 

which the initial weights are randomly set. Training sets and test sets have also been 

unsystematically sampled to maintain the randomness of iterations. After the model 

was trained in these steps, it was confronted with the test sets, and evaluation metrics 

were saved after each implementation. Figure 4-3 demonstrates the results of the 

five most essential metrics throughout this stage. This illustration proves that 

although the deep neural network was initialized randomly and received different 

training and test sets, it ended up with approximately the same results in terms of 

performance metrics. This process validates that the neural network was able to 

recognize the patterns related to each fault class, and its outcomes are not randomly 

generated. This proves that this model does not require the same preprocessing steps 

as the tree-based algorithms and can figure out the critical features. 

 

Figure 4-3 Evaluation results of the different training iterations of the deep neural network 
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Figure 4-4 A comparison between the implementations on the PHM challenge's dataset 

among all models and regarding all metrics. 

4.2.2 Final Results  

Figure 4-4 represents the comparison between the implementations on the PHM 

challenge's dataset between all models. The findings demonstrate that the proposed 

Extra Tree classifier performed exceptionally well on this classification task, with 

an accuracy of above 99 percent. Precision, recall, and F1 measures are also quite 

well in its case, demonstrating that the model is able to achieve a high percentage of 

total relevant outcomes precisely classified. The closeness of the Kappa value to one 

also indicates a strong correlation between the actual and predicted classes 

categorized by this model. Despite the similar results between the proposed models 
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and baseline algorithms, the proposed method performs slightly better in terms of 

precision and comparable outcomes in other metrics.  

However, the main advantage of the proposed algorithm is its short training time and 

limited resources required for training. As figure 4-5 illustrates, the proposed model 

is trained in less than 7 seconds with the enhanced dataset containing the top-15 

important features. The next best result would be dedicated to the Hist Gradient 

Boosting approach, which is 3.5 times longer than the proposed method, revealing 

that the Extra Tree algorithm provides comparable metrics in much less time. 

 

 

Figure 4-5 Training time comparison between the implementations (seconds) 

4.2.3 Root Cause Analysis  

Root cause analysis is a technique for identifying and analyzing the reasons for 

issues, deviations, and failures. This strategy identifies the root cause of a process 
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problem and groups issues with the same cause together. The report then delves into 

the elements that are producing issues. To accomplish root cause analysis, ML 

algorithms cluster the issues. The algorithms then analyze the causes affecting these 

difficulties in order to establish which elements are linked to which issues and which 

may be the root of the problem. These algorithms scan the data for apparent patterns 

and relationships. 

 

Figure 4-6 Violin plot of the effects of humidity on fault classes on the PHM dataset. 

The root causes are investigated based on the features inducing errors in each fault 

category in this research. The effects of each attribute in performing classifications 

were calculated in the feature importance phase, as discussed in section 3.5, and the 

most influential elements were diagnosed. The process of analyzing the root causes 

was performed in a class-based procedure. It is noteworthy that the analysis was 

conducted on all features, not on the top 15 selected after the feature importance 

stage. Visualizations demonstrate that defects are provoked by a limited number of 

flaws in each category, and multiple common issues appear in more than one fault. 

For instance, figure 4-6 shows a violin plot of how humidity affects all fault classes 

and can cause difficulties in mechanical environments. Temperature and Fuse Cycle 
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Durations are among the other common problems in the PHM dataset's faulty cases. 

However, different values of a single cause can influence different classes. For 

example, figure 4-7 displays the distribution of CPU temperature values in cases 

where it caused errors in class 3 versus the cases where no fault occurred in class 0. 

Yet, CPU temperature was an effective attribute in both these cases. 

 

Figure 4-7 Comparison between cases where CPU temperature caused a fault (class 3) and 

value distributions where it caused no fault (class 0) 

On the other hand, causes such as pressure are only seen in a particular class. Figure 

4-8 demonstrates how pressure affects only the third class and has little or no effect 

on other cases. Ultimately, figure 4-9 concludes this part by introducing the top-5 

features affecting the faulty classes the most. It is worth mentioning that common 
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features such as humidity and temperature are omitted from all classes except the 

ones they have the most effects on. Therefore, only unique features are taken into 

consideration for each fault class. 

 

Figure 4-8 Effects of pressure on the third fault class compared to little or no effects on the 

other classes. 
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Figure 4-9 Top-5 most influential features in faulty classes based on the SHAP feature 

importance. 

4.2.4 Fault Diagnosis  

The primary goal of this thesis was to identify faults intelligently. Now that the 

robustness of the proposed algorithm is verified, a fault diagnosis can be performed 

using this method. These results are based on the root cause analysis and the feature 

importance values calculated for each fault class. In other words, the essential signals 

in the feature importance analysis indicate the fundamental cause of an issue. More 

studies into the data are carried out to better understand the origins of the problems 

and their physical interpretation, particularly on the most significant signals. Table 

4-3 summarizes these most critical signals for each class. This table displays the 

signals causing most cases in the samples available in each class. Although some 
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signals might have large importance values, they do not trigger faults in a majority 

of circumstances. For instance, common signals such as humidity cannot be the root 

cause of any classes since they are available in all categories. The only case where 

such issues are influential is class 7, in which humidity and temperature are among 

the top difficulties causing faults. 

 

Table 4-3 Most influential signals for each class. 

Class Most Important Signals Fault Interpretation 

2 FuseCycleDuration_3 

FeederAction2_0 

the fuses have less cycle duration in this class 

3 CpuTemperature_1 

Pressure_4 

Mean CPU temperature of the control and 

data acquisition computer is above average. 

4 TotalCpuLoadNormalized_2 Higher Derivative-based trend for CPU 

5 TotalMemoryConsumption_0 

ProcessMemoryConsumption_0 

Fluctuation in number of data acquisition for 

Memory consumption. 

7 TotalMemoryConsumption_1 

Humidity_0 

Temperature_0     

Difference in environmental condition and 

memory consumption acquired value. 

9 SmartMotorSpeed_0 

SmartMotorPositionError_0 

Reduction in number of data acquired for the 

speed of the motor. 

11 SmartMotorSpeed_3 

SmartMotorPositionError_3 

DurationRobotFromFeederToTestBench_6 

Rise in the motor speed value; as a 

consequence, less duration to move from the 

feeder to the test bench. 

12 DurationRobotFromFeederToTestBench_6 Higher Frequency of the measurements for 

duration to move 

 

4.3 Discussion  

It is observed that the proposed method outperforms all baseline algorithms 

regarding the computational complexity and training time and, therefore, is desirable 

in the PHM's dataset. It also reveals the best precision among all the 
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implementations, and the rest of the metrics are quite comparable in this case. 

Although these measurements are pretty close to each other, achieving such results 

is not a trivial task, and prior experiments proved that several other algorithms are 

not able to perform desirably on this task. Figure 4-6 shows how five famous 

machine learning algorithms perform on the same dataset using the same steps on 

the PHM fault classification dataset. It is noticed that none of these algorithms, 

including the Linear Discriminant Analysis (LDA), Logistic Regression, K-Nearest 

Neighbors (KNN), AdaBoost, and the Support Vector Machine (SVM), were able to 

accomplish an accuracy higher than 95%. This is proof that choosing tree-based 

models and deep neural networks was the right preference since they all correctly 

classified more than 99% of the test samples.  

 

Figure 4-10 Test results on five popular machine learning approaches for the PHM dataset. 

The confusion matrix from the test samples classified by the proposed model also 

demonstrates the robustness of this algorithm, as seen in Figure 4-7. The primary 

diagonal in this matrix indicates the correct classifications, in which the predicted 

class is equal to the actual one. The matrix reveals that the model can classify faults 
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correctly for all cases except for 180 errors out of over 16 thousand test samples, 

confirming that the classification task is performed almost flawlessly. Ultimately, 

the final root cause analysis establishes that the proposed model does not act as a 

black box. Its results are interpretable and enable researchers to understand the 

causes and effects of each attribute on each fault in the dataset. 

 

 

Figure 4-11 The confusion matrix resulted from the Extra Tree classification on the test set. 

The primary diagonal shows the correct classification of each defect. 
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5 Conclusion and Recommendations  

5.1 Conclusion  

This research proposed an Extra Tree classifier to detect mechanical faults. The 

study is performed in multiple stages, in which different preprocessing steps and 

machine learning algorithms were examined to perform the classification task at 

hand. Experiments revealed that tree-based algorithms and deep neural networks 

could achieve the best results among all possible methods. Therefore, four 

algorithms based on the concepts of trees were picked, namely, the XGBoost, 

CATBoost, Hist Gradient Boosting, and the Extra Tree classifier. These methods 

went through several stages of data preprocessing, in which the dataset was cleaned, 

and the important features in fulfilling the desirable classification were revealed 

using the SHAP (SHapley Additive exPlanations) approach. A fully-connected deep 

learning algorithm was also designed to perform the same task without the 

preprocessing phases. Such algorithms are developed to identify essential features 

by themselves and do not require ordinary data processing methods.  

Moreover, an evaluation process was designed to assess models' performance 

regarding various metrics. Investigations confirmed that the five chosen 

architectures could achieve accuracies larger than 99%, and their results are 
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comparable in most cases. The Extra Tree classifier is chosen as the proposed 

algorithm since it achieves the same results in much less time. Although there are 

minor differences regarding the evaluation metrics, the most important superiority 

of the proposed algorithm is its short training time and capacity to work with limited 

computational power. While accuracy and similar metrics are critical to showing the 

model's ability to detect faults, performing this task with fewer computations and in 

a swifter way is also desirable in mechanical industries where computer hardware is 

not updated regularly. While the Extra Tree classifier is trained and ready to use in 

less than 7 seconds, the deep learning model took approximately 870 seconds to 

complete the same process. Although the other tree-based baseline algorithms are 

quicker than the DL architecture, they were also unable to outperform the proposed 

method. As a result, it is confirmed that the proposed algorithm is both efficient in 

terms of computational power and robust regarding classification quality. At the end 

of this stage, a root cause analysis is conducted to explore the causality of each fault, 

revealing many of these defects are provoked by a limited number of issues such as 

humidity and temperature. This step proves that the proposed model enables the 

users to diagnose the causes of each fault occurring and does not act as a black box, 

which is another advantage compared to deep neural networks. 

5.2 Recommendations 

There are numerous paths that can be taken in order to continue this research. As 

section 2 demonstrated, the future of the Intelligent Fault Diagnosis research is 

established on a path where more data can be utilized. The largeness of datasets can 

assist with using modern deep learning architectures, and researchers have shown 

that these models can improve significantly by the growth of their training data. 
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Therefore, it is efficient to use generative models to enlarge the datasets and improve 

the amount of data the models receive. On the other hand, many research works have 

confirmed that using models’ experience with former problems can improve their 

efficiency on similar tasks. As a result, the larger datasets generated by the 

generative models can be coupled with transfer learning approaches to take 

advantage of robust models’ experiences for the IFD process. Using pre-trained 

models can also decrease the training time and amount of computational power 

required for ML-based models. 

On the other hand, unsupervised learning methods can be associated with the 

supervised approaches to improve the cause analysis and the configurations resulting 

in each fault. More specifically, clustering algorithms can be utilized to analyze data 

samples within each class and group them by the various cases of configurations that 

can cause a particular fault. This method is helpful in completing the analysis of root 

causes and will help configure faulty cases ideally. Moreover, although the Bayesian 

optimization algorithm was employed to improve the model's hyperparameters, 

more optimization can be performed using more recent algorithms and including 

more extensive parameter settings.   

Ultimately, it is known that taking advantage of such algorithms can be complicated 

and non-practical for mechanical engineers without any functional background in 

machine learning engineering. Since maintaining ML-based algorithms and 

updating them using new data acquired in the mechanical processes can be 

challenging for non-experts, using Automated Machine Learning (AutoML) 

approaches can be practical in this field. The process of automating the activities of 

applying machine learning to real-world situations is known as AutoML. Every stage 

of a machine learning process, from launching with a raw dataset to developing a 
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machine learning model suitable for deployment, could be covered in AutoML. 

Therefore, it is recommended to use such procedures in order to facilitate the 

machine learning process and decrease the challenges for mechanical experts.   
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Appendix 

Data Pre-Processing Steps  

Path1 = r'C:\Users\lenovo\Documents\PHM datasets\Totaldata' 

df_normal = pd.DataFrame() 

df_abnormal = pd.DataFrame() 

 

             

for root, dirs, files in os.walk(Path1): 

    for file in files: 

        if file.startswith('class_ 0'): 

            dft = make_array() 

            dft['Class'] = 0 

            df_normal = pd.concat([df_normal, dft], axis=0) 

        elif file.startswith('class_ 2'): 

            dft = make_array() 

            dft['Class'] = 2 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_ 3'): 

            dft = make_array() 

            dft['Class'] = 3 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_ 5'): 

            dft = make_array() 

            dft['Class'] = 5 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_ 7'): 

            dft = make_array() 

            dft['Class'] = 7 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_ 9'): 

            dft = make_array() 

            dft['Class'] = 9 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_ 4'): 
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            dft = make_array() 

            dft['Class'] = 4 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_11'): 

            dft = make_array() 

            dft['Class'] = 11 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

        elif file.startswith('class_12'): 

            dft = make_array() 

            dft['Class'] = 12 

            df_abnormal = pd.concat([df_abnormal, dft], axis=0) 

 

df_normal.to_pickle('DFnormal.pkl') 

df_abnormal.to_pickle('DFabnormal.pkl') 

 

df_normal = pd.read_pickle('DFnormal.pkl') 

df_abnormal = pd.read_pickle('DFabnormal.pkl') 

 

frames = [df_abnormal,df_normal] 

dft = pd.concat(frames) 

 

counts = dft.nunique() 

to_del = [i for i,v in enumerate(counts) if v == 1] 

print(to_del) 

 

to_del_col = [('FuseOutsideOperationalSpace',3), 

'LightBarrieActiveTaskDuration2', 'LightBarrierActiveTaskDuration1b', 

'LightBarrierPassiveTaskDuration1b' 

,'LightBarrierPassiveTaskDuration2','LightBarrierTaskDuration'] 

 

# drop useless columns 

df_normal.drop(to_del_col, axis=1, inplace=True) 

df_abnormal.drop(to_del_col, axis=1, inplace=True) 

print(df_abnormal.shape) 

print(df_normal.shape) 

dft.drop(to_del_col, axis=1, inplace=True) 

 

def nan_check(data): 

    total = data.isnull().sum().sort_values(ascending= False) 

    percent_1 = data.isnull().sum()/data.isnull().count()*100 
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    percent_2 = (np.round(percent_1,1)).sort_values(ascending = False) 

    missing_data = pd.concat([total,percent_2],axis=1,keys=['Total','%']) 

    return missing_data 

 

#How much missing value: 

dfcheckss = nan_check(dft) 

high_sorted = dfcheckss.sort_values(["Total", "%"], ascending=False) 

dist_df = high_sorted.reset_index(level=[0,1]) 

dist_df.plot(x ='Signal', y='%', kind = 'line',figsize=(30,30)) 

dist_df.head(34) 

 

to_del = [('NumberFuseDetected',5) 

,('FuseHeatSlopeOK',5) 

,('NumberFuseDetected',6) 

,('NumberFuseEstimated',5) 

,('FeederBackgroundIlluminationIntensity',5) 

,('IntensityTotalImage',5) 

,('SharpnessImage',5) 

,('NumberFuseDetected',2) 

,('NumberFuseDetected',3) 

,('NumberFuseDetected',4) 

,('SharpnessImage',2) 

,('SharpnessImage',3) 

,('SharpnessImage',4) 

,('SharpnessImage',6) 

,('IntensityTotalImage',2) 

,('IntensityTotalImage',3) 

,('IntensityTotalImage',4) 

,('IntensityTotalImage',6) 

,('FeederBackgroundIlluminationIntensity',2) 

,('FeederBackgroundIlluminationIntensity',3) 

,('FeederBackgroundIlluminationIntensity',4) 

,('FeederBackgroundIlluminationIntensity',6) 

,('NumberFuseEstimated',2) 

,('NumberFuseEstimated',3) 

,('NumberFuseEstimated',4) 

,('NumberFuseEstimated',6) 

,('FuseHeatSlopeNOK',5) 

,('FuseHeatSlopeOK',2) 

,('FuseHeatSlopeOK',3) 

,('FuseHeatSlopeOK',4) 
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,('FuseHeatSlopeOK',6) 

,('FuseHeatSlope',5) 

,('IntensityTotalThermoImage',5) 

,('TemperatureThermoCam',5)] 

 

df_normal.drop(to_del, axis=1, inplace=True) 

df_abnormal.drop(to_del, axis=1, inplace=True) 

print(df_abnormal.shape) 

print(df_normal.shape) 

 

df_abnormal = df_abnormal.fillna(0) 

df_normal = df_normal.fillna(0) 

 

frames = [df_abnormal,df_normal] 

dftotal = pd.concat(frames) 

 

# Multi index to single index: 

 

mylevels= [dftotal.columns.levels[0],['0', '1', '2', '3', '4', '5', '6', '']] 

dftotal.columns = dftotal.columns.set_levels(levels=mylevels) 

dftotal.columns = ["_".join(pair) for pair in dftotal.columns] 

dftotal.head() 

 

dfclass = dftotal['Class_'] 

dftotal1 = dftotal.copy() 

dftotal.drop('Class_', axis=1, inplace=True) 

X = dftotal.values 

y = dfclass 

 

# summarize the shape of the dataset 

print(X.shape, y.shape) 

 

dfdiag1 = dftotal1.copy() 

dfdiag = dftotal.copy() 

 

#Scaler 

from sklearn.preprocessing import QuantileTransformer 
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scaler = QuantileTransformer() 

X = scaler.fit_transform(X) 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 

random_state=1) 

 

Model Implementations  

Extra Tree Classifier 

start_time = time.time() 

model_ex = ExtraTreesClassifier().fit(X_train, y_train) 

 

score_ex = model_ex.score(X_test,y_test) 

Ypred_ex = model_ex.predict(X_test) 

recall_ex = metrics.recall_score(y_test, Ypred_ex, average = 'macro') 

precision_ex = metrics.precision_score(y_test, Ypred_ex, average = 'macro') 

f1score_ex = metrics.f1_score(y_test, Ypred_ex, average='macro') 

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_ex) 

 

y_preb_probs = model_ex.predict_proba(X_test) 

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr") 

MATT = matthews_corrcoef(y_test, Ypred_ex) 

 

print("accuracy : {}\n".format(score_ex), 

      "precision : {}\n".format(precision_ex), 

      "recall : {}\n".format(recall_ex), 

      "f1 score : {}\n".format(f1score_ex), 

      "kappa : {}\n".format(CohenKappa), 

       'ROC : {}\n'.format(ROCAUC), 

     'MATTEW  : {}\n'.format(MATT)) 

 

end_time = time.time() 

print("Execution time: ", end_time - start_time,"secs") 

 

confusion_matrix(y_test, Ypred_ex) 
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Bayesian Optimization Algorithm 

def gbm_cl_bo(max_depth, 

max_samples,min_samples_split,min_samples_leaf,max_leaf_nodes,n_jobs): 

   params_gbm = {} 

   params_gbm['max_depth'] = round(max_depth) 

   #params_gbm['max_features'] = round(max_features) 

   params_gbm['max_leaf_nodes'] = round(max_leaf_nodes) 

   params_gbm['min_samples_leaf'] = round(min_samples_leaf) 

   params_gbm['min_samples_split'] = round(min_samples_split) 

   params_gbm['max_samples'] = round(max_samples) 

   params_gbm['n_jobs'] = round(n_jobs) 

   #params_gbm['n_estimators'] = round(n_estimators) 

   scores = cross_val_score(ExtraTreesClassifier(**params_gbm), 

                            X_train, y_train, scoring='accuracy', cv=3).mean() 

   score = scores.mean() 

   return score 

# Run Bayesian Optimization 

start = time.time() 

params_gbm ={ 

   'max_depth' :(80,200), 

   'n_jobs'  :(1,5), 

   #'max_features':(2,10), 

   'min_samples_split':(2,6), 

   'max_leaf_nodes': (550,750), 

   'min_samples_leaf':(2,6), 

   #'n_estimators': (10,100), 

   'max_samples':(70,160), 

    

} 

gbm_bo = BayesianOptimization(gbm_cl_bo, params_gbm, random_state=111) 

gbm_bo.maximize(init_points=20, n_iter=4) 

print('It takes %s minutes' % ((time.time() - start)/60)) 

 

XGBoost 

start_time = time.time() 

model_xb = 

XGBClassifier(objective='multi:softmax',tree_method='approx').fit(X_train, 

y_train) 
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score_xb = model_xb.score(X_test,y_test) 

Ypred_xb = model_xb.predict(X_test) 

recall_xb = metrics.recall_score(y_test, Ypred_xb, average = 'macro') 

precision_xb = metrics.precision_score(y_test, Ypred_xb, average = 'macro') 

f1score_xb = metrics.f1_score(y_test, Ypred_xb, average='macro') 

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_xb) 

 

y_preb_probs = model_xb.predict_proba(X_test) 

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr") 

MATT = matthews_corrcoef(y_test, Ypred_xb) 

 

print("accuracy : {}\n".format(score_xb), 

      "precision : {}\n".format(precision_xb), 

      "recall : {}\n".format(recall_xb), 

      "f1 score : {}\n".format(f1score_xb), 

      "kappa : {}\n".format(CohenKappa), 

       'ROC : {}\n'.format(ROCAUC), 

     'MATTEW  : {}\n'.format(MATT)) 

 

end_time = time.time() 

print("Execution time: ", end_time - start_time,"secs") 

 

confusion_matrix(y_test, Ypred_xb) 

 

CATBoost 

start_time = time.time() 

 

model_cb = CatBoostClassifier(border_count=None, verbose=False).fit(X_train, 

y_train) 

 

score_cb = model_cb.score(X_test,y_test) 

Ypred_cb = model_cb.predict(X_test) 

recall_cb = metrics.recall_score(y_test, Ypred_cb, average = 'macro') 

precision_cb = metrics.precision_score(y_test, Ypred_cb, average = 'macro') 

f1score_cb = metrics.f1_score(y_test, Ypred_cb, average='macro') 

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_cb) 

 

y_preb_probs = model_cb.predict_proba(X_test) 
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ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr") 

MATT = matthews_corrcoef(y_test, Ypred_cb) 

 

print("accuracy : {}\n".format(score_cb), 

      "precision : {}\n".format(precision_cb), 

      "recall : {}\n".format(recall_cb), 

      "f1 score : {}\n".format(f1score_cb), 

      "kappa : {}\n".format(CohenKappa), 

       'ROC : {}\n'.format(ROCAUC), 

     'MATTEW  : {}\n'.format(MATT)) 

 

end_time = time.time() 

print("Execution time: ", end_time - start_time,"secs") 

 

confusion_matrix(y_test, Ypred_cb) 

 

Hist Gradient Boosting  

start_time = time.time() 

model_hg = 

HistGradientBoostingClassifier(loss='categorical_crossentropy').fit(X_train, 

y_train) 

 

score_hg = model_hg.score(X_test,y_test) 

Ypred_hg = model_hg.predict(X_test) 

recall_hg = metrics.recall_score(y_test, Ypred_hg, average = 'macro') 

precision_hg = metrics.precision_score(y_test, Ypred_hg, average = 'macro') 

f1score_hg = metrics.f1_score(y_test, Ypred_hg, average='macro') 

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_hg) 

 

y_preb_probs = model_hg.predict_proba(X_test) 

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr") 

MATT = matthews_corrcoef(y_test, Ypred_hg) 

 

print("accuracy : {}\n".format(score_hg), 

      "precision : {}\n".format(precision_hg), 

      "recall : {}\n".format(recall_hg), 

      "f1 score : {}\n".format(f1score_hg), 

      "kappa : {}\n".format(CohenKappa), 

       'ROC : {}\n'.format(ROCAUC), 
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     'MATTEW  : {}\n'.format(MATT)) 

 

end_time = time.time() 

print("Execution time: ", end_time - start_time,"secs") 

 

confusion_matrix(y_test, Ypred_hg) 

 

Deep Neural Network 

X = np.load("/gdrive/MyDrive/Datasets/Projects/Mechanical Faults/My 

Specialization Project/Final Data/X.npy") 

Y = np.load("/gdrive/MyDrive/Datasets/Projects/Mechanical Faults/My 

Specialization Project/Final Data/y.npy") 

 

print(X.shape) 

print(Y.shape) 

print() 

print(len(np.unique(Y))) 

print(np.unique(Y)) 

 

from sklearn.preprocessing import LabelEncoder 

X = X.astype('float32') 

Y = LabelEncoder().fit_transform(Y.astype('str')) 

 

print(len(np.unique(Y))) 

print(np.unique(Y)) 

 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

X = scaler.fit_transform(X) 

 

X_transform = X.reshape(X.shape[0], X.shape[1], 1) 

print(X.shape) 

print(X_transform.shape) 

 

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, 

random_state=1) 

 

print(X_train.shape) 

print(y_train.shape) 
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print(X_test.shape) 

print(y_test.shape) 

 

"""# Model Definition""" 

 

# Commented out IPython magic to ensure Python compatibility. 

# %cd /gdrive/MyDrive/Datasets/Projects/Mechanical Faults/Models 

 

"""## Model Implementation""" 

 

keras.backend.clear_session() 

 

model = Sequential() 

model.add(Dense(50, activation='relu')) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(200, activation='relu')) 

model.add(Dense(300, activation='relu')) 

model.add(Dense(200, activation='relu')) 

model.add(Dense(100, activation='relu')) 

model.add(Dense(50, activation='relu')) 

model.add(Dense(9, activation='softmax')) 

 

opt = RMSprop(learning_rate=0.0001, momentum=0.1, centered=False) 

 

model.compile(loss='sparse_categorical_crossentropy',  

              optimizer=opt,  

              metrics=['accuracy']) 

 

es = EarlyStopping(monitor='val_loss', verbose=1, patience=20) 

mc = ModelCheckpoint('final_model.h5', monitor='val_loss', verbose=1, 

save_best_only=True) 

 

#model.summary() 

 

history = model.fit(X_train, y_train,  

                    validation_split=0.2, 

                    batch_size=None, 

                    callbacks=[es, mc], 

                    epochs=150) 

 

plt.style.use('ggplot') 

plt.plot(history.history['accuracy']) 
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plt.plot(history.history['val_accuracy']) 

plt.title('Model Accuracy') 

plt.ylabel('Accuracy') 

plt.xlabel('Epoch') 

#plt.ylim([0, 1]) 

plt.legend(['Train', 'Validation'], loc='lower right') 

plt.show() 

 

plt.style.use('ggplot') 

plt.plot(history.history['loss']) 

plt.plot(history.history['val_loss']) 

plt.title('Model Loss (Sparse Categorical Crossentropy)') 

plt.ylabel('Sparse Categorical Crossentropy') 

plt.xlabel('Epoch') 

#plt.ylim([0, 1.5]) 

plt.legend(['Train', 'Validation'], loc='upper right') 

plt.show() 

 

"""## Model Test""" 

 

model = load_model('final_model.h5') 

 

pred = model.predict(X_test) 

eval = model.evaluate(X_test, y_test) 

 

recall_dnn = metrics.recall_score(y_test, np.argmax(pred, axis=-1), average = 

'macro') 

precision_dnn = metrics.precision_score(y_test, np.argmax(pred, axis=-1), average 

= 'macro') 

f1score_dnn = metrics.f1_score(y_test, np.argmax(pred, axis=-1), average='macro') 

CohenKappa = metrics.cohen_kappa_score(y_test, np.argmax(pred, axis=-1)) 

ROCAUC = roc_auc_score(y_test, np.argmax(pred, axis=-1, average='macro', 

multi_class="ovr"))  

MATT = matthews_corrcoef(y_test, np.argmax(pred, axis=-1)) 

 

print() 

print("accuracy  :  {}".format(round(eval[1], 7))) 

print("precision :  {}".format(round(precision_dnn, 7))) 

print("recall    :  {}".format(round(recall_dnn, 7))) 

print("f1 score  :  {}".format(round(f1score_dnn, 7))) 

print("Kappa     :  {}".format(round(CohenKappa, 7))) 

print("ROCAUC    :  {}".format(round(ROCAUC, 7))) 
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print("MATT      :  {}".format(round(MATT, 7))) 

print() 

confusion_matrix(y_test, np.argmax(pred, axis=-1)) 

 

model.summary() 
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