
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Sina Yousefi - candidate no:10010

A Data-Driven Approach for Fault
Classification of a Manufacturing
Process

Master’s thesis in RAMS Engineering
Supervisor: Professor Shen Yin
May 2022

M
as

te
r’s

 th
es

is

Sina Yousefi - candidate no:10010

A Data-Driven Approach for Fault
Classification of a Manufacturing
Process

Master’s thesis in RAMS Engineering
Supervisor: Professor Shen Yin
May 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

i

Summary

Fault diagnosis is among the most crucial steps in maintenance strategies to sustain

the health of machine tools. Traditionally, fault diagnosis was performed based on

engineers' vast expertise and technical understanding. However, advances in

Machine Learning (ML) theories have decreased the role of human specialists in

machine fault diagnosis, introducing Intelligent Fault Diagnosis (IFD). IFD

approaches have obtained significant attention in academic and industrial

applications due to their accuracy and velocity in recognizing machines' health states

automatically. This research presents a novel fault identification process that uses an

Extra Tree classification algorithm to classify manufacturing process defects with a

feature selection approach based on feature importance. This approach is evaluated

and compared against multiple machine learning algorithms, including tree-based

methods, artificial neural networks, and traditional algorithms such as the Support

Vector Machines (SVM). The assessment results confirm that the proposed

algorithm can achieve an accuracy of above 99% in the classification task and

significantly improve training time and computational resource efficiency. The

proposed algorithm also enables researchers to analyze the causality of each fault

based on the influential features. Further instructions to continue this line of research

are correspondingly presented to enhance the proposed approach by using novel

transfer learning and generative approaches.

Keywords: Intelligent Fault Diagnosis (IFD), Fault identification, Machines,

Machine learning, Deep learning

ii

Preface

We would like to extend our gratitude to our supervisor, Professor Shen Yin, for his

constant mentoring and guidance throughout the project. In addition, the support and

constant feedback of the Ph.D. student Muhammad Gibran Alfarizi have played a

major role in completing this project, and therefore, we want to thank them for being

of great help with their broad knowledge of machine learning.

Trondheim, May 2022

Sina Yousefi

iii

Table of Contents

Summary .. i

Preface ... ii

Table of Contents ... iii

List of Tables .. vii

List of Figures .. viii

Abbreviations ... ix

1 Introduction .. 1

1.1 Background.. 1

1.2 Objectives .. 6

1.3 Outline ... 7

2 Theory .. 8

2.1 Fault Diagnosis .. 8

2.1.1 Feature extraction approaches ...10

2.1.2 Fault diagnostic methods ...12

2.2 Artificial Intelligence ..17

2.2.1 Machine Learning ..18

2.2.2 Feature engineering ..21

2.2.3 Neural Networks and Deep Learning Architectures23

iv

2.3 Intelligent Fault Diagnosis (IFD) ..29

2.3.1 Data collection ...30

2.3.2 Feature extraction...31

2.3.3 ML-based intelligent fault diagnosis ...32

2.3.4 Deep Learning for IFD ..42

2.3.5 Transfer learning and generative models ...56

3 Methodology ..63

3.1 Workflow ...63

3.2 Software ...64

3.2.1 Python ..64

3.2.2 Jupyter Notebook ...65

3.2.3 Google Colab ...65

3.3 Dataset ...66

3.4 Data Pre-processing ...67

3.5 Feature Importance ..68

3.5.1 SHAP Feature Importance ...70

3.6 Proposed Algorithm ..71

3.7 Baseline Algorithms ..73

3.7.1 XGBoost ..73

3.7.2 CATBoost ..75

3.7.3 Hist Gradient Boosting Classifier ..76

v

3.7.4 Deep Neural Network ..78

4 Results and Discussion ..82

4.1 Evaluation Criteria ..82

4.1.1 Accuracy ..83

4.1.2 Precision and Recall ...84

4.1.3 F1 Score ...85

4.1.4 Kappa ...86

4.1.5 ROC ...86

4.1.6 Matthew’s correlation coefficient (MCC) ...87

4.2 Evaluation Results ...88

4.2.1 Training Process Results ..89

4.2.2 Final Results ...93

4.2.3 Root Cause Analysis ..94

4.3 Discussion..99

5 Conclusion and Recommendations ..102

5.1 Conclusion ...102

5.2 Recommendations ...103

Bibliography ...106

Appendix ..122

Data Pre-Processing Steps ...122

Model Implementations ...126

vi

Extra Tree Classifier ..126

XGBoost ...127

CATBoost ..128

Hist Gradient Boosting ..129

Deep Neural Network ..130

vii

List of Tables

Table 4-1 Simple confusion matrix for a binary classification ... 84

Table 4-2 Detailed overall comparison between the tree-based algorithms' performance before

(initial) and after (final) the feature importance process. ... 91

viii

List of Figures

Figure 1-1. An overview of the three principal AI-based IFD approaches and their advantages

and drawbacks .. 5

Figure 3-1 An Extra Tree classifier's visual workflow representation [112]Error! Bookmark not

defined.

Figure 3-2 Summary of the deep neural network architecture and trainable parameters. 79

Figure 3-3 An example of the training process showing the loss function and accuracy results on

the validation set in each epoch. ... 81

Figure 4-1 Comparison between the tree-based algorithms' performance before (initial) and after

(final) the feature importance process. .. 89

Figure 4-2 Comparison between the tree-based algorithms' execution time before (initial) and

after (final) the feature importance process. ... 91

Figure 4-3 Evaluation results of the different training iterations of the deep neural network 92

Figure 4-4 A comparison between the implementations on the PHM challenge's dataset among

all models and regarding all metrics. .. 93

Figure 4-5 Training time comparison between the implementations (seconds) 94

Figure 4-6 Violin plot of the effects of humidity on fault classes on the PHM dataset................ 95

Figure 4-7 Comparison between cases where CPU temperature caused a fault (class 3) and value

distributions where it caused no fault (class 0) ... 96

Figure 4-8 Effects of pressure on the third fault class compared to little or no effects on the other

classes. .. 97

Figure 4-9 Top-5 most influential features in faulty classes based on the SHAP feature

importance... 98

Figure 4-10 Test results on five popular machine learning approaches for the PHM dataset. ... 100

Figure 4-11 The confusion matrix resulted from the Extra Tree classification on the test set. The

primary diagonal shows the correct classification of each defect... 101

ix

Abbreviations

AE Auto-Encoders

AI Artificial intelligence

ANN Artificial Neural Networks

BN Bayesian Networks

BPTT Backpropagation Through Time

BRNN Bidirectional Recurrent Neural Networks

CART Classification And Regression Tree

CNN Convolutional Neural Networks

DBN Deep Belief Network

DL Deep Learning

DT Decision Tree

EGB Extreme Gradient Boosting

FCNN Fully-Connected Neural Networks

GA Genetic Algorithms

GAN Generative Adversarial Networks

GRU Gated Recurrent Units

IFD Intelligent Fault Diagnosis

IMF Intrinsic Mode Functions

KNN K-Nearest Neighbors

LSTM Long Short-Term Memory

ML Machine Learning

MLP Multi-Layer Perceptron

PCA Principal Component Analysis

RF Random Forest

RMSE Root Mean Squared Error

RNN Recurrent Neural Networks

x

RUL Remaining Useful Life

SVC Support Vector Classifier

SVM Support Vector Machines

TL Transfer Learning

1

1 Introduction

1.1 Background

Failure of machine parts directly influences the machine's operation and can possibly

endanger people's lives and result in significant financial losses. This emphasizes the

need for industrial facility maintenance. Maintenance is essential for ensuring the

availability and durability of manufacturing equipment, as well as product quality

[1], [2]. Consequently, it is essential to identify and analyze machine components'

health accurately. Effective problem identification is essential for increasing

machine safety and reliability while lowering operating and maintenance costs [3].

However, considering fault diagnosis is a real-time technique involving one or more

human specialists to examine machine performance, this sort of maintenance is

impracticable in today's industrial facilities [4]. Model-based diagnosis techniques

have been developed to solve this challenge by detecting abnormal actions and

isolating problems using a model that specifies the nominal behavior of a dynamic

system. On the other hand, data-driven diagnosis algorithms work only on system

measurements and require relatively minimal system expertise to detect and identify

system flaws [5]. Artificial intelligence (AI) approaches have quickly risen in

academic and industrial areas as a burgeoning subject and a feasible alternative for

Chapter 1

2

defect diagnostics among data-driven methodologies. The potential for Intelligent

Fault Diagnosis (IFD) [6] to give intuitive conclusions without requiring a high

degree of professional competence has piqued interest in recent years. Rather than

depending on engineers' expertise and ability, these approaches use Machine

Learning (ML) theories to generate machine diagnostic awareness from acquired

data adaptively. IFD plans to develop diagnosis models that automatically establish

a link between obtained data and machine health. Machine learning theories and

expanded architectures are required for the advancement of IFD approaches [7].

Deep learning algorithms have also been used to diagnose faults intelligently and

succeeded due to the availability of more efficient paradigms and more data [8].

Traditional machine learning approaches were frequently employed in IFD research

from its beginning until the 2010s. Machine learning research extends to the 1950s,

and artificial intelligence has seen a rise in popularity since the 1980s [9], [10].

Classic concepts, including Artificial Neural Networks (ANN) and Support Vector

Machines (SVM), were established around this time. As a result of these notions,

intelligent fault diagnosis emerged [6]. In these procedures, the fault indications

were extracted artificially from the acquired data. Such fault indications were

artificially derived from the obtained data using these procedures. The sensitive

features were then used to build diagnosis algorithms that could automatically detect

equipment health [6], [8]. With the help of traditional machine learning, the

diagnosis models began to create a relation between the selected variables and the

health conditions of machines. This reduced the need for human intervention in fault

identification and ushered in the era of artificial intelligence. The primary

mechanisms of machine defect diagnosis are sensor signal collection, feature

extraction and selection, and fault classification [1]. Sensor signal acquisition is the

3

process of collecting sensor data while the equipment is running. Time-frequency

analysis has traditionally derived characteristics from original sensor data in the

frequency and time domains. The recovered attributes are used to train machine

learning models to create fault predictions in the final fault classification step [1],

[11].

Traditional fault diagnosis procedures, however, have certain disadvantages.

Traditional error diagnosis systems, for instance, rely on manually picked

parameters. As a result, if these manually selected features are not appropriate for

the job, fault classification performance may deteriorate significantly. Furthermore,

handmade features are task-specific for diverse classification tasks, implying that

characteristics useful in creating accurate predictions in one circumstance are

ineffectual in another. It is challenging to develop a set of features that can accurately

predict outcomes in a range of situations [1], [12]. Deep learning (DL) techniques

effectively overcome the above-mentioned limits due to their extensive feature

learning capabilities. Deep learning has proven to be helpful in a variety of scientific

and technical domains, including natural language processing [13], computer vision

[14], and speech recognition [15]. DL approaches, on the other hand, are powerful

enough to address challenges that are not restricted to the field of computer science

[16]. Deep architectures with multiple hidden layers may learn hierarchical

representations directly from raw data. Deep neural networks are built up of several

layers of connected nodes, each one improving and refining the prediction or

categorization. Deep architectures can use model training to automatically develop

discriminative representations that will aid them in making correct predictions in

subsequent classification stages based on the training data [12], [16], [17]. Deep

learning methodologies have altered numerous disciplines of study, including IFD,

4

for more than a decade. Although IFD was able to identify machine health without

the need for human fault evaluation, feature extraction before the deep learning age

still depended significantly on human labor [12], [18]. Furthermore, traditional

machine learning theories do not apply to the ever-growing datasets due to restricted

generalization performance, reducing diagnostic precision and effectiveness [17].

Convolutional Neural Networks (CNN) [19] and Recurrent Neural Networks (RNN)

[20] are two subsets of deep architectures that have gotten a great deal of interest for

processing pictures and datasets with time continuity. These designs have also been

used in IFD investigations to handle signals and other forms of imaging data, as well

as to capture long-term data relationships [21], [22].

Although deep learning models have been successful in implementing machine fault

diagnostic tasks, they still have some disadvantages [1]. First, the number of free

parameters in DL models grows as the number of hidden neurons and layers

increases. Creating such large networks from scratch usually demands a substantial

amount of labeled data as well as a significant amount of computation and effort.

Adjusting the architecture, activation functions, dropout, learning rates, and other

hyperparameters has a substantial influence on performance and is a time-consuming

procedure [23]. Transfer learning (TL) is a potential technique for overcoming the

difficulties of training a deep architecture from the ground up [24]. Instead of fully

training a neural network with the random initialization, a deep neural network that

has been trained with enough labeled data in another application is utilized and fine-

tuned for the job at hand. Transfer learning's primary goal is to apply what the model

has learned in one context to a different but similar problem [22], [23]. Researchers

may use a variety of pre-trained models to adapt to new fields, such as ResNet [25],

VGG-19 [26], and Inception [27], for image classification tasks and Word2vec [28]

5

for textual analysis. To address data insufficiency difficulties, several researchers in

IFD have begun to produce studies employing transfer learning techniques or

approaches such as Generative Adversarial Networks (GAN). These approaches

should provide models that can transfer diagnosis data from one or more diagnosis

tasks to other related but separate issues [29]. As a result, transfer-learning theories

are expected to overcome the problem of a lack of labeled instances, allowing IFD

to be employed in a broader range of engineering scenarios. Furthermore, generative

models, such as GANs [30] and Bayesian networks [5], may assist in producing large

datasets by collecting a small number of samples, giving the necessary data to train

a robust IFD model.

These three artificial intelligence-based techniques for intelligent fault diagnostics

are depicted in Figure 1. The critical phases of each strategy and their benefits and

drawbacks are illustrated, resulting in the use of next-generation approaches.

Figure 1-1. An overview of the three principal AI-based IFD approaches and their advantages

and drawbacks

6

1.2 Objectives

The primary objective of this thesis is to propose a machine learning-based model

to classify faults based on input data. This model must be robust enough to diagnose

faults efficiently in the operational environment, but it is trained and tested on the

PHM mechanical faults dataset for validation purposes. The proposed classification

method in this thesis is based on an Extra Tree classifier, and the results are

compared against several other machine learning and deep learning techniques.

This study also aims to summarize modern data-driven research works and

equipment fault diagnostics' growth from theoretical and empirical perspectives.

Furthermore, this thesis examines state-of-the-art approaches to overcome typical

restrictions and introduces current trending topics in this domain and classic machine

learning and current deep learning methods for autonomous IFD.

The following tasks are accomplished to achieve this research's primary objective:

1) Acquired the PHM dataset, preprocessed it, and divided it into three sets of

training, validation, and test.

2) Built the Extra Tree machine learning classification model receiving the

training dataset for completing the training process.

3) Organized a suitable evaluation process with appropriate metrics to assess the

model's performance.

4) The model parameters were fine-tuned to achieve the best set of evaluation

metrics.

5) The proposed method's results were compared with other approaches, such as

an optimized deep learning architecture.

7

6) Classification results in each class were also analyzed to examine the model

performance thoroughly.

1.3 Outline

The remainder of this thesis is organized in the following manner. Traditional

machine learning methods and their use cases in IFD studies, the role of deep neural

networks and their popular architectures in this domain, the current restrictions and

limitations in performing intelligent fault diagnosis, and feasible solutions such as

transfer learning methods are discussed in Section 2. Section 3 presents the proposed

methodology in detail and analyzes different components such as the workflow and

implementation tools. Section 4 presents and examines the experiment's findings and

compares the proposed method against a variety of machine learning and deep

learning models to analyze their performance on the PHM challenge dataset. Finally,

section 5 sums up this experiment, recommends further stages of this study, and

examines the IFD's future directions.

8

2 Theory

2.1 Fault Diagnosis

Due to increased requirements for mechanical systems that deliver superior

performance, safety, and reliability, machinery fault diagnostics are becoming

increasingly important in process monitoring. Mechanical systems, such as those

seen in wind turbines, airplanes, high-speed trains, and industrial machinery, have

been developed due to advances in science and technology. Meanwhile, engineers

must devise methods to ensure the performance of these systems, verifying that they

can perform the essential functions for a specific amount of time under the stipulated

conditions. Monitoring machine operating conditions, defining whether an abnormal

condition or fault occurs in machines or components, determining the original cause

of abnormal conditions or faults, assessing their severity, and predicting the

remaining useful life or trends of abnormal conditions are just a few of these

functions. One of the essential strategies for continuous maintenance is machinery

fault identification, which may assist in preventing abnormal event progression,

decreasing downtime, anticipating residual life, and reducing productivity loss. As

a result, severe system failures and disasters can be avoided.

Chapter 2

9

The critical components of mechanical equipment would inevitably generate

different faults because of complex and severe conditions, including high

temperature, high speed, and heavy load. Machine faults also occur and lead to

severe outcomes even in sophisticated machine systems. Machinery fault diagnosis

techniques involve

• observing a mechanical system over a while using occasionally sampled

measures from an array of sensors,

• extracting fault-sensitive characteristics from these measurements,

• performing statistical analysis of these attributes to determine the current

system health state, and

• forecasting the remaining useful life and direction of the defect.

For example, Engine Health Management (EHM) is a collection of capabilities to

create customized designs that best meet the needs of individual users. An EHM

system in the F135 engine provides real-time data to maintainers on the ground,

drastically reducing troubleshooting and replacement time by as much as 94% over

other legacy engines.

Various fault diagnostic approaches are employed in real environments to acquire

meaningful data from specific physical assets. Vibration, electric current,

temperature, and pressure, as well as environmental data, are all examples of

machine condition monitoring data. Sensor data is pre-processed before being used

for further investigation. Background noise, human influences, and sensor failures

must be removed, and suitable characteristics must be computed, identified, or

extracted for further fault identification. After obtaining a number of features,

feature-selection methods must be used to choose the most effective characteristics

10

to aid the problem detection process. In this subsection, feature extraction techniques

are introduced, as well as methods for diagnosing faults based on the extracted

features.

2.1.1 Feature extraction approaches

Before knowledge can be gathered, data must be converted into information for

proper defect identification. Fault condition indicators (features) are retrieved or

chosen from the collected signals to transform waveform data into information. The

common properties of reliable features are measurement at a low cost,

comprehensible in physical terms, adequately definable in mathematical terms,

unaffected by insignificant variables, and unrelated to other domain attributes.

Various signal processing strategies have been employed to extract important feature

information and interpret signal waveform data for further problem diagnostics in

motors once the spectrum data has been acquired.

2.1.1.1 Time-domain feature

Time-domain approaches are based on the waveform signal's statistically distinctive

behavior throughout time. The signal's root mean square (RMS) and crest factor (CF)

are the most conspicuous and essential aspects of a time-domain analysis. Variance,

standard deviation, kurtosis, and skewness are the most commonly utilized

attributes. These characteristics are based on signal sample distributions with time

series random variables, often known as moments or instants. Because any signal

change might influence the probability density function (PDF) and change the

cumulate behavior, the PDF can be broken down into components in most

constituent moments. As a result, monitoring this situation can yield valuable

diagnostic information.

11

Demodulation and adaptive noise cancellation and filter-based and stochastic

approaches are some alternative time-domain feature extraction techniques. One of

the flaws of the time-domain feature extraction approach is the absence of

observable fault symptoms, especially when a defect is still in its early stages. When

extracting short-duration characteristics from a signal, this approach may be

beneficial.

2.1.1.2 Frequency-domain feature

Frequency-domain characteristics can compensate for the limitations of a time-

domain analysis. The knowledge that a periodic waveform signal causes a localized

problem, together with characteristic frequency points and features, is used in

frequency-domain approaches. Since various faults have distinct frequency domain

spectrums, some changes in frequency-domain parameters may signal the existence

of faults when frequency-domain characteristics are employed for fault symptom

identification. Frequency-domain parameters can also detect machine defects and

breakdowns early on. As a result, such indices can be employed in fault diagnosis

procedures.

In frequency domains, the fast Fourier transform (FFT) is one of the most often

utilized methods. A signal may be quickly transformed into the frequency domain

using the FFT, a fast technique for discrete Fourier transform (DFT). If analyzing a

signal in the time domain is challenging, it is much easier to convert and analyze it

in the frequency domain. Several types of frequency filters, side-band structure

analysis, demodulation, and descriptive representation methods are frequently

employed to improve spectrum analysis results. Different forms of frequency spectra

have been produced, such as power spectrum and high-order spectrum. A DFT is the

12

most common approach for generating a power spectrum, but other methods, such

as the maximum entropy methodology, can also be utilized.

2.1.1.3 Time-frequency domain

When the signal is non-stationary, time-frequency approaches may explain

machinery fault characteristics in both the time and frequency domains. The time

and frequency distributions representing the signal's energy in two dimensions are

used in the classic time-frequency approach. When a signal is non-stationary, the

most widely utilized distribution approach is the short-time Fourier transform

(STFT). The STFT is a more advanced version of the Fourier transform (FT). The

target signal is divided into small windows using this method. To create succinct

non-stationary signals, the width of the window function is chosen, then multiplied

and shifted with the signal segment. FT is applied to each segment following the

same technique to determine the signal's STFT. This graph depicts the frequency

spectrum's shifting behavior as a function of time. At all relevant frequency points,

STFT provides a consistent resolution.

Wavelet transform is another novel time-frequency domain approach that addresses

the drawbacks of STFT. This method may also be used to analyze a signal with

temporal values in a non-stationary condition. At various frequency levels, the

wavelet transform gives multi-resolution.

2.1.2 Fault diagnostic methods

Several fault diagnosis approaches have been utilized for single and multiple

problem diagnosis in industrial machinery systems. Signal-based, model-based,

knowledge-based, and hybrid approaches are the four basic categories.

13

2.1.2.1 Signal-based methods

Signal processing, a branch of electrical engineering that models and analyzes data

representations of physical events as well as data generated across multiple

disciplines, enables modern technology that the world relies on in daily lives–

including computers, radios, video devices, cell phones, and smart connected

devices. As a consequence, signal processing is fundamental to the modern

environment. It is where biotechnology, entertainment, and social interactions

collide, and it improves the capacity to interact and exchange data. The science

underpinning today's digital lives is signal processing.

For fault diagnosis, signal-based approaches rely heavily on signal processing

technologies. Typically, these methods need pre-determined circumferences.

Signals are influenced by their characteristics. An unexpected condition may occur

when the signal or characteristics travel outside their bounds. Many signal analysis-

based approaches are available, including vibration analysis, MCSA, axial flow

(AF), torque analysis, noise monitoring, and impedance of inverse sequences.

Vibration levels rise when mechanical problems occur in high-speed rotating

equipment. The radial forces caused by the air-gap field are the most significant

sources of vibration and noise in electric devices. Vibration monitoring is a cost-

effective and time-saving method of obtaining condition indicators for machine

health management. The best way for defect diagnosis is vibration-based

diagnostics. However, this requires costly accelerometers and accompanying wiring.

This restricts its usage in various applications, particularly in tiny machines where

cost is a key consideration when selecting a condition monitoring approach.

14

Moreover, when the diagnosis is based on numerous motors working in tandem with

much noise, this constraint becomes much more complicated.

Some studies examined multi-motor fault detection approaches employing vibration

analysis when motors function in isolation from the system. For feature extraction,

several signal processing methods were applied. Many of these research works

employed artificial neural networks to compare particular time and frequency

domain characteristics. However, they never observed the diverse behavioral

situations of many motors running on the same power line simultaneously.

2.1.2.2 Model-based methods

Limit or trend checking of certain observable output variables are the traditional

procedures in fault identification. Model-based fault-detection approaches were

created utilizing input and output signals and dynamic process models since they do

not provide a deeper understanding and frequently do not allow a problem diagnosis.

Parameter estimation, parity equations, and state observers are examples of these

approaches. Signal model techniques have also been developed. The objective is to

produce various symptoms that distinguish between nominal and defective

conditions. Following fault diagnostic processes based on various symptoms, the

fault is determined using classification or inference methods.

The dynamic system model is typically used in model-based fault diagnostic

procedures. The actual system and model output benefit the industrial system's

model-based procedures. A comparison may be performed between the simulation

and actual data outputs, allowing the status of a motor to be determined through

visualization. Physical modeling, system identification, and parameter estimate

approaches may be utilized to create dynamic models. The most severe flaw in

15

model-based techniques is that the correctness of the produced model accurately

represents the diagnosis system's behavior. When a system is functioning in a noisy

environment, it is impossible to acquire information from the monitoring process,

resulting in modeling uncertainty. In most research, model-based approaches have

been utilized to gather the dynamic response of systems under normal and fault

situations, but on motors separated from systems.

Model-based techniques are usually split into two sections: residual generation and

decision-making. The residual results are used to guide the decision-making process.

It uses independent models in both stages of fault diagnosis, which might be data-

based, knowledge-based, or a combination of both analytical models. Residuals are

often created using a model and pre-defined process outputs in a fault diagnostics

system. However, residuals can also be generated using alternative approaches that

estimate model parameter characteristics from process measurements.

2.1.2.3 Knowledge-based methods

Expert knowledge and expertise may be successfully used in knowledge-based fault

detection approaches to make decisions. In other disciplines, researchers would

model the link between the problem phenomena and the cause while creating the

fault ontology and then apply ontology reasoning technology to diagnosis. However,

there is generally an ambiguous link between the fault phenomena of the equipment

to be inspected and the source of the issue during the actual fault diagnostic

procedure. Knowledge-based model solutions often use a human brain-like

understanding of the process for machine fault detection. The human professional

specialist in real-time fault diagnostic procedures might be an engineer who applies

and runs the diagnosis process and is well-versed in the strategies and techniques for

16

diagnosing numerous motor defects. When the signal is in a dynamic state,

knowledge-based approaches rely on engineers' experience to detect the malfunction

in a motor system. When signals are in complex form, these strategies can be highly

beneficial in reducing the percentage of uncertainty.

Many studies based on various methodologies have been reported in the study field

of defect diagnostics utilizing isolated induction motors. Due to its strong pattern

recognition capacity and ability to recognize fuzzy and indefinite inputs, the artificial

neural network (ANN) is possibly the most widely utilized artificial intelligence

approach in motor status monitoring and problem diagnostics. The following

qualities of ANN make it suitable for a wide range of applications in information

fusion and problem diagnostics: neural networks have the potential to learn new

things in the same manner that humans do. The learning process is carried out by

altering the weight values among the neurons regularly. A neural network can also

be a system with several inputs and outputs. This structure depicts how neural

networks can deal with complex multi-object situations, such as numerous machine

defects. The input is processed in parallel by the neural network, similar to how

humans handle complex information. This unique property suggests that neural

networks may spontaneously merge data from several sources simultaneously. A

collection of weights is used to store the information in a trained neural network in

a distributed manner. This is similar to how information is preserved in human

memory. Furthermore, a neural network has a high level of fault tolerance. Its

parallel structure and distributed information storage mechanism are primarily

responsible for this characteristic. Therefore, the literature describes ANN as a

knowledge-based approach for diagnosing single and multiple motor faults.

17

Diagnoses are made in these investigations by mapping different fault symptoms in

a single motor to arrive at a diagnosis choice.

2.1.2.4 Hybrid methods

Since each technique of fault identification has its own set of limitations, combining

numerous ways may be a helpful strategy. Several authors have proposed combining

techniques like neuro-fuzzy, neural network and Bayesian interface, and DS theory

with an expert system. A hybrid system termed generic integrated intelligent system

architecture was suggested for equipment monitoring, problem detection, and

maintenance. Different AI approaches, such as fuzzy logic and neural networks,

were included in the system.

Hybrid techniques that use neural networks to assess an engine's internal health and

generic algorithms to identify and quantify sensor bias can also be developed. By

mixing generic methods inside the application, such a technique can employ neural

networks' non-linear approximation capacity and improve the system's robustness in

assessing uncertainty.

2.2 Artificial Intelligence

Artificial intelligence (AI) is the imitation of human understanding in robots that

have been trained to think and act like humans. The phrase may also refer to any

machine demonstrating human-like characteristics like learning and problem-

solving. The capacity of artificial intelligence to rationalize and execute actions that

have the highest likelihood of reaching a particular objective is its ideal feature.

Machine learning is a subset of artificial intelligence that refers to the idea that

computer systems can learn from and adapt to new data without human intervention.

18

Deep learning techniques allow for this autonomous learning by absorbing large

volumes of unstructured data, including text, photos, and video. Artificial

intelligence has a variety of uses. The technology may be used in multiple businesses

and areas. In the healthcare business, AI is being studied and used for administering

pharmaceuticals and various treatments in patients, as well as surgical operations in

the operating room.

2.2.1 Machine Learning

Among all AI applications, Machine Learning (ML) is the key component. The

premise of machine learning is that a computer program can learn and adapt to new

data without the need for human involvement. Machine learning is a branch of

artificial intelligence that maintains a computer's built-in algorithms up to date

despite global economic fluctuations. Various business areas are dealing with

massive volumes of data in various forms gathered from various sources. Because

of the advancement of technology, particularly increased processing capabilities and

cloud storage, vast amounts of data, known as big data, are becoming more readily

available and accessible. Companies and governments recognize the enormous

insights obtained from analyzing big data but often lack the resources and time to go

through its vast amounts of data. As a result, several businesses employ artificial

intelligence technologies to acquire, analyze, communicate, and exchange important

information from data sets. Machine learning is a type of AI that is increasingly

being used for big data processing.

Computers can solve complex scientific equations and mathematical problems in

milliseconds, which is a fraction of the time it takes us to solve the same problems.

They have, however, shown a lack of precision when completing our daily

19

behaviors, which are done naturally and spontaneously. As a result, many scientific

publications are devoted to various ways of allowing computers to learn. Learning

is how we ask about our environment, and robots may do the same. The machine

learning method is divided into three sections: first, the algorithm calculates a pattern

to model the data based on the inputs and output values supplied to the model.

Following that, an error function is used to evaluate the model's performance. These

metrics are used to calculate the accuracy or inaccuracy of the model's predictions.

Finally, the model is tweaked to enhance accuracy while reducing error. The

parameters are tweaked to minimize the discrepancy between the actual results and

the model's predictions. The machine learning algorithm repeats this assessment and

optimization process, which updates itself until a certain accuracy threshold is met.

We utilize codes in various programming languages to express how the machine

functions in a conventional program. On the other hand, in machine learning

programming, we merely create software capable of learning rules by itself to solve

the given task. Computers can solve more complex problems with the information

gained via this learning process. Machine Learning approaches may tackle various

issues with less effort than traditional programming, which would typically need

thousands of lines of code. As a result, machine learning allows us to take advantage

of the computing capabilities of machines in a variety of ways.

Supervised and Unsupervised Learning are two types of machine learning

algorithms [31]. Supervised machine learning algorithms may apply their learning

to new data and estimate future occurrences using labeled examples. Based on a

given training dataset, the learning algorithm constructs an inferred function to

provide predictions about the output values. After sufficient training, the system will

be able to provide objectives for each new input. The learning algorithm may also

20

compare its output to the correct, intended output and detect errors, allowing the

model to be modified as needed. Classification and regression based on the specified

outputs for each set of input features are examples of supervised machine learning

tasks [24], [32]. Unsupervised machine learning approaches, on the other hand, are

used when the training data is not categorized or labeled. Unsupervised learning is

the study of how computers may infer a function from unlabeled data to explain

hidden patterns. The system does not determine the correct output; instead, it studies

the input and uses datasets to infer hidden structures from unlabeled data. Clustering,

anomaly detection, and data dimensionality reduction are some of the most well-

known unsupervised learning problems [24], [33].

To achieve their purpose, machine learning algorithms require training data. When

the algorithm wants to evaluate its performance, it will look at the training data,

classify the inputs and outputs, and re-analyze it. At the same time, the machine

learning algorithm may analyze both training and validation data. Validation data is

a distinct set of information [24], [31]. As long as the datasets are kept separate

throughout the training and testing phase, a data scientist can cut off a piece of the

training dataset for validation, also known as holdout validation. This is a test against

a dataset entirely different from the one used to train the model. This sort of analysis

is used to make sure the model is not underfitting or overfitting. Overfitting occurs

when an algorithm can make fair judgments based on the training data but cannot

properly adjust new data predictions. On the other hand, underfitting occurs when a

model is not sophisticated enough to make correct predictions against both training

and new data. After the validation process, data scientists can tweak

hyperparameters like learning rate, input features, and hidden layers to lessen the

risk of underfitting [17], [34]. A different approach for validating ML-based models

21

is cross-validation. Cross-validation is a resampling approach used to test machine

learning models on a limited data set. The algorithm has only one parameter, k,

which determines how many groups a given data sample should be split into. As a

result, k-fold cross-validation is a common name for this procedure [31]. When a

precise value for k is specified, it may be substituted for k in the model's reference,

for example, k=10 for 10-fold cross-validation. Cross-validation is an approach

utilized in machine learning to evaluate a machine learning model's performance on

new datasets [35]. Moreover, there are various approaches to prevent models from

overfitting the training data besides validation. For instance, dropout is a strategy for

removing neurons from a neural network or ignoring them during training. In other

words, distinct neurons are temporarily removed from the network. Throughout the

training phase, dropout changes the notion of learning all of the network's weights

to learning only a subset of the network's weights [36].

2.2.2 Feature engineering

Data handling and data preprocessing measures conducted before training models

impact model performance in machine learning. Feature engineering can improve

the accuracy of the same models since their data is more relevant than when all

characteristics are supplied to the models. As a result, feature engineering can

increase the model's overall performance. It is essential when outstanding outcomes

are required for most forecasting activities. Nonetheless, mastering this process is

difficult due to the fact that different types of data and datasets necessitate distinct

feature engineering methodologies. The difficulties of engineering features are the

primary motivation for researching algorithms that can learn features and build them

automatically. While learning features may automate various jobs, feature

22

engineering is still one of the most effective ways to execute correctly under

pressure. Feature learning methods identify the most important common patterns

that distinguish classes and extract them automatically in a regression or

classification procedure. Feature learning is the process of automatically engineering

features using algorithms. Convolutional layers, for example, are useful in deep

learning for extracting significant features from pictures and passing them to the next

layer, which establishes a hierarchy of non-linear qualities that increases complexity.

The final layers then use all of the characteristics that have been generated for

regression or classification.

Feature selection is a subset of feature engineering, which refers to the process of

independently selecting needed features. Selecting the most important independent

elements that are more related to the dependent features aids in developing a

dependable model. There are three types of algorithms for making feature selection:

filter methods, wrapper methods, and embedding techniques.

Filter-based approaches assign each characteristic a score based on a statistical

metric. The characteristics are assessed and based on their score, they are either kept

or removed from the dataset. Frequently, the approaches are univariate and analyze

the feature alone or concerning the dependent variable. Filter techniques include the

Chi-squared test, information gain, and correlation coefficient scores. Wrapper

strategies treat feature selection as a search problem in which multiple combinations

are created, evaluated, and compared to one another. A predictive model evaluates

a collection of features and assigns a score based on how accurate the model is. A

systematic search, such as a best-first search, a stochastic search (e.g., a random hill-

climbing algorithm), or heuristics (e.g., forward and backward passes) to add and

delete features are all options. A wrapper technique is an example of a recursive

23

feature reduction procedure. While the model is being developed, embedded

approaches determine which characteristics contribute the most to its validity. The

most common type of embedded feature selection technique is regularization.

Regularization methods, also known as penalization methods, place additional

restrictions on a predictive algorithm (for example, a regression algorithm) in order

to bias the model toward reduced complexity (fewer coefficients). Regularization

methods include LASSO, Elastic Net, and Ridge Regression.

2.2.3 Neural Networks and Deep Learning Architectures

Artificial neural networks were created as a result of attempts to construct artificial

intelligence utilizing biological neural networks (ANNs). Multiple layers of neurons

linked to each other can make up a neural network. A network of linked neurons can

do complex tasks, and the more neurons in the network, the more complex the

activities may be performed. When they are created, all artificial neurons have

specified weights and thresholds, and they link to other neurons. If a neuron's output

exceeds a certain threshold, it is triggered and sends data to the next layer of the

network. Deep learning techniques are defined as ANNs, which are mathematical

frameworks for learning representations from data and comprise many neurons

grouped in various layers. More specifically, an ANN can be considered a deep

learning algorithm with more than three learnable layers.

On the other hand, a fundamental neural network is defined as a neural network with

only two or three learning layers. Deep learning algorithms are taught to recognize

feature hierarchies, in which lower-level characteristics combine to produce features

at higher levels. In recent years, deep learning's progress has been accelerated as

more vast datasets, and higher computer resources have been available. The learning

24

is done automatically by exposure to large training sets in modern deep learning

architectures, including multiple succeeding layers.

Deep learning has transformed AI-based solutions in several domains, including

computer vision and image recognition, speech recognition, natural language

processing, and recommender systems research. It has also played a crucial part in a

variety of industrial goods, such as virtual assistants and chatbots, and has had a

significant impact on healthcare, advertising, entertainment, and a variety of other

enterprises. Deep learning, for example, formulates the key components of

autonomous driving and allows automobiles to learn and experiment with them in a

safe setting. Many E-commerce websites, such as Amazon and eBay, utilize deep

learning-based models to make recommendations that accurately forecast customers'

wants based on prior visits and recommend movies, TV series, and music on

entertainment platforms, including Netflix and Spotify. These models can impact a

variety of topics in healthcare, including medical imaging and genomic analysis

utilizing GPU-accelerated computation. Algorithms can learn the relationships

between words, map them into a different language, and build machine translation

systems properly. Modern language models may also generate text to describe

settings, summarize articles, and converse with humans. These are only a few of the

uses of cutting-edge deep learning architectures, and their importance in our daily

lives is growing rapidly as more complicated models become available.

The remainder of this subsection defines the terminologies and concepts employed

in neural networks and deep learning. In subsequent chapters, some more generic

principles utilized in all machine learning algorithms will also be described for

reference.

25

2.2.3.1 Neurons

Neurons are mathematical functions in an artificial neural network (ANN) that

reflect functionality comparable to a biological neuron. A neuron gets several inputs,

calculates the weighted average, and then sends this amount via a nonlinear function,

commonly referred to as an activation function. The output of a neuron can be used

as input by other neurons in another layer. The same procedure of computing the

inputs' weighted sum and transformation via activation function might be repeated

in other neurons. It is worth noting that these calculations are based on matrices and

involve multiplying a vector of input states by a weight matrix. When a neuron

receives two inputs, each input is assigned a weight. These weights are generated

randomly and modified during the model's training phase. As a result, the primary

purpose of model training is to find the optimal weights for the network's neurons.

After the training is finished, the neural network gives greater weight to more

significant inputs than those deemed less necessary. When the weight of a neuron is

set to zero, that neuron's particular feature is negligible and does not influence the

final output.

A linear component, referred to as the bias, is added to the input in addition to the

weights of a neuron. The bias is applied to the outcome after the weight

multiplication with the input, and it is used to alter the multiplied input's range. The

product is provided to the neuron's activation function as the input transformation's

last linear component.

2.2.3.2 Activation functions

An artificial neural network simulates the stages used by the brain to accept external

stimuli, interpret the data, and provide an output, much as the brain does. When the

26

tasks at hand get more complicated, multiple neurons communicate to provide more

precise outputs. As previously stated, artificial neurons are distinguished by their

weight, bias, and activation functions. The weights and biases in the neurons perform

a linear transformation depending on their inputs, and then an activation function is

applied to the findings from the previous phase. The output of the activation function

then travels to the next hidden layer, where the process is repeated. Forward

propagation is the name given to the process of data transfer within a neural network.

At the end of each training cycle, neural networks go through a back-propagation

phase.

The model's error is determined using the product from forwarding propagation in

this process, comprehensively covered in the following chapters. The weights and

biases of the neurons are adjusted depending on this error value. However, because

the model lacks an activation function, it can only perform a linear conversion on

the input data using the weights and biases. Although these changes make the neural

network simpler, they also make it less powerful, disabling it from learning complex

patterns from the input data. As a result, the neuron's inputs are transformed using

nonlinear transformation functions. The artificial neural network's non-linearity is

introduced through an activation function. Many types of activation functions with

distinct mathematical equations are employed in deep learning implementations.

2.2.3.3 Neural network layers

A neural network comprises neurons that are grouped into layers, as previously

stated. There are three different types of layers: Each network has an input layer that

receives the neural network's initial data. One or more hidden layers follow an input

layer, the intermediary levels between the input and output where all calculations

27

are done. Finally, there is an output layer in the layer that generates outcomes for

each given set of inputs. Each neuron in a fully-connected network is linked to all

nodes in the layer above it and the layer below it. The weight of a neuron may be

thought of as the influence of that node on the next layer's node. It is worth noting

that the neurons in the hidden layers and the output layer are the only ones with

activation functions, whereas the nodes in the input layer do not.

2.2.3.4 Cost function

A cost function (also known as a loss function) determines how well an algorithm

models the training dataset. The goal of the training phase is usually to reduce the

quantity produced by the cost function. The loss function returns a more significant

value if the predictions are completely incorrect and a smaller value if they are

reasonably accurate. The cost function indicates whether the model is improving or

not throughout the fine-tuning phases of the method to enhance the model.

Regression cost functions, binary classification cost functions, and multi-class

classification cost functions are the three types of cost functions established based

on the situation at hand. The most common regression functions are Mean Error

(ME), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean

Absolute Error (MAE). Cost functions such as hinge loss, squared hinge loss, and

binary cross-entropy are used for binary classification tasks. The most frequent

functions for optimizing multi-class classification issues are multi-Class Cross-

Entropy Loss, Kullback Leibler Divergence Loss, and Sparse Multi-Class Cross-

Entropy Loss.

The degree of inaccuracy between the actual and anticipated values is quantified

using cost functions, which offer this qualification as a single number. Cost functions

28

may be created in a variety of methods depending on the situation, and their goal is

to decrease or maximize costs. The returned result is usually referred to as loss, cost,

or error if the cost function is designed to be minimized. The goal of the optimization

procedure is to find the optimal model parameter values such that the cost function

returns the smallest possible number in this scenario. If the cost function is

maximized, the value of the cost function is referred to as a reward. The objective,

in this case, is to identify parameter values for which the reward is as high as

achievable.

2.2.3.5 Epochs

The number of epochs is a model hyperparameter that specifies how many iterations

the learning algorithm performs throughout the training dataset. Every sample in the

training dataset has the opportunity to alter the intrinsic weights and biases of the

neurons throughout an epoch. There can be one or multiple batches in a period.

Epochs represent the total number of loops over the whole training dataset. There is

another nested loop within the loop mentioned above that iterates over each batch of

examples, with each batch having the same number of samples as the batch size. The

batch size refers to the number of instances supplied to the model before it is

updated, while the epoch refers to the total number of runs made over the whole

training dataset. The number of epochs can be adjusted to any integer number

between one and infinity. Historically, this number has been considerable, typically

in the hundreds or thousands. This permits the method to run indefinitely until the

model's error is reduced to an acceptable level. The method can continue for as long

as desired. It can be terminated by using criteria other than a pre-defined number of

epochs to end it—criteria such as a lack of change in the loss function's error over

29

time. Allowing the model to train on the training set and stopping training when

performance on the validation set begins to deteriorate is a reasonable compromise.

Early stopping is a practical and extensively used approach for training neural

networks.

When training an extensive neural network, the model reaches a point where it stops

generalizing and begins to learn the statistical noise in the training set. Overfitting is

the term used in the machine learning field to describe this occurrence. Overfitting

the training data raises generalization errors and reduces the model's ability to predict

new data. The goal is to train the neural network long enough to learn the mapping

of inputs to output data while avoiding overfitting the training data by training it too

long. After each epoch, the model is evaluated on a holdout validation set in order

to implement early halting during training. The training phase is terminated if the

model's performance on the validation set begins to deteriorate, for example, if the

loss increases or the accuracy declines.

2.3 Intelligent Fault Diagnosis (IFD)

Manual fault diagnosis and signal processing methods were once used to help

determine which sorts of equipment problems existed and where they originated.

These solutions, however, rely mainly on specialized knowledge, which most

maintainers lack in an engineering environment. As a result, today's industrial

applications choose fault diagnostic systems that can automatically identify machine

health conditions [37]. Using machine learning, intelligent fault detection is

expected to achieve this aim. In the past, IFD employed traditional machine learning

algorithms such as Support Vector Machines to identify machine issues. The

30

diagnostic approach is divided into three phases: data gathering, artificial feature

extraction, and health status recognition [38]. This section begins with an

introduction of machine learning-based fault detection before delving more into each

of the three phases. The type of information provided and the application domain

determine which machine learning method is used in fault diagnosis. The following

section discusses the data collecting method for IFD purposes as well as the many

types of data that may be collected.

2.3.1 Data collection

During the data collection stage, sensors are mounted on devices to collect data

continually. As sensor technology has evolved, many sensors such as

accelerometers, currents, vibration, temperature, acoustic emission, and built-in

encoders have been used for mechanical condition monitoring [39], [40]. Many

researchers have used intelligent fault detection approaches to identify problem

kinds by analyzing vibration signals collected by sensors in a variety of scenarios.

Machine vibration signals are raw temporal signals containing valuable and

ineffective information. Standard signal processing approaches for obtaining

representative features from raw data include time-domain statistical analysis and

wavelet transformation [22]. The signal-to-noise ratio is typically poor because

vibration data is frequently hampered by transmission route and ambient noise.

Other sensors, such as infrared imaging, can be used to get around this; for example,

infrared imaging can give a non-contact measuring approach. Acoustic emission

data may also be used to detect early bearing and gear problems and deformation,

especially while running at low speeds. Diagnostics for electric-driven machine

failures rely significantly on current data. This sort of data can be acquired using

31

only a current transformer, and it has nothing to do with equipment functioning [41],

[42]. Researchers also discovered that data from multiple sensors contain

complementary information that may be used to increase diagnostic accuracy when

compared to data from a single sensor [22].

2.3.2 Feature extraction

Extracting essential features from the data gathered during the data collecting phase

is the next stage in constructing an intelligent fault detection system using typical

machine learning models. The feature extraction stage seeks to produce

representative features from the recorded signals using signal processing methods

such as time-domain statistical analysis, Fourier spectral analysis, and wavelet

transformation [43]. These characteristics may describe mechanical health concerns,

but they may also contain irrelevant or sensitive data that influence diagnosis

outcomes and computational efficiency. Consequently, sensitive features are

identified using dimension reduction techniques such as principal component

analysis (PCA), feature discriminant analysis, and distance evaluation approach.

This stage extracts several common properties from the obtained data, such as time-

domain and time–frequency-domain features [41], [44]. These features include

health information that represents the health of the equipment.

Following that, a feature selection procedure reduces duplicate data and improves

diagnosis outcomes. Filters, wrappers, and embedded-based techniques are common

ways of detecting sensitive aspects associated with machine health states. Wrapper

techniques approach feature selection as a search issue involving numerous options'

creation, evaluation, and comparison. A recursive feature removal technique is an

example of a wrapper technique. Filter-based methods provide a score for each

32

attribute based on a statistical criterion. The methodologies are frequently univariate,

analyzing the feature alone or concerning the dependent variable. The Chi-squared

test, information gain, and correlation coefficient scores are examples of filter

approaches. Embedded techniques determine which attributes contribute the most to

the model's validity while being built. Regularization is the most common type of

embedded feature selection approach [31], [45].

2.3.3 ML-based intelligent fault diagnosis

A brief review of IFD strategies that use machine learning models is provided in this

section. When faced with unlabeled input samples, the models are trained on labeled

data to determine machine health conditions. The diagnostic models are initially

trained using labeled samples to achieve this purpose. For categorizing distinct types

of defects, the bulk of the techniques employed in IFD research is supervised

learning algorithms. On the other hand, some studies use unsupervised methods to

minimize the size of their obtained datasets and make feature selections on their

own. The rest of this section is divided into sections depending on the different types

of algorithms and how they are used in IFD research.

2.3.3.1 Artificial Neural Networks (ANNs)

The designs of Artificial Neural Networks (ANNs) are a branch of machine learning

(ML) that are at the heart of deep learning approaches. The human brain inspires

their name and construction, and they function similarly to how real neurons interact

with one another. A neural network comprises an input layer, one or more hidden

layers, and an output layer. Each node is linked to the others and has its weight and

threshold [18]. Neural networks use training data to learn and improve their accuracy

over time. Once fine-tuned for accuracy, these learning algorithms become

33

formidable tools in computer science and artificial intelligence, allowing us to

categorize and cluster data swiftly. Voice recognition and visual recognition

activities can take minutes rather than hours when compared to manual identification

by human professionals [24].

Although deep learning architectures have been used in the majority of IFD research

utilizing ANNs, there have been occurrences of shallow neural networks being used

to identify defects based on input data. These studies are classified as classic

machine learning approaches, and they are studied in this area, whereas publications

that use current deep neural networks are examined in the following sections.

Bernieri et al. for example, conducted research. For example, Bernieri et al.'s [46]

research were one of the first to use ANNs for dynamic online problem diagnosis.

They demonstrated that artificial neural networks could help with system

identification and flaw detection in applications that need a fast response time.

Another advantage of using neural networks, according to this article, is that they

are a general approach for nonlinear dynamic system applications that would

otherwise need ad-hoc solutions. ANNs were used in numerous current approaches

to model systems, identify problems, predict defect prognosis, and estimate the

machines' remaining usable life, according to Tung et al. [2]. (RUL). The majority

of ANN strategies were single-step forward time series forecasting models,

suggesting that deep neural networks were not being employed when this research

was published, i.e., in 2009. Lei et al. [43] proposed a two-stage learning technique

for intelligent machine failure detection. It is based on the idea of unsupervised

feature learning and uses artificial neural networks to learn features from raw data.

In the method's initial learning phase, sparse filtering, an unsupervised two-layer

neural network, is used to extract features from mechanical vibration data

34

dynamically. SoftMax regression is used in the second stage to identify health

conditions based on learned features. Mostefa Khelil et al. [10] developed an

intelligent system that can detect and distinguish three recurrent events in a PV array,

including healthy and short circuit failures and string disconnection, using artificial

neural networks. The built model has a simple learning curve and only uses four

inputs. On a small grid-connected PV generator (PVG), experimental validation of

the proposed IFD was done, demonstrating that this approach can adequately

identify and categorize existing faults with over 98 percent accuracy.

2.3.3.2 Support Vector Machine (SVM)

One of supervised machine learning models for solving classification issues are

support vector machines. The goal of the support vector machine algorithm is to find

a hyperplane in N-dimensional space (where N is the number of features) that

separates data points. There are numerous hyperplanes from which to pick to divide

the classes of data points. The aim is to find a plane with the highest significant

margin or distance between data points from all classifications. [31], [47].

Hyperplanes are decision boundaries that help categorize data. Different categories

can be applied to data points on each side of the hyperplanes. Maximizing the margin

distance provides some reinforcement, making the following data points simpler to

categorize. The margin of the classifier is improved by using these support vectors.

These are the considerations that will aid in the creation of the SVM [32], [48].

The first attempts to employ SVM for machine status monitoring and problem

diagnosis were made in the late 1990s. With various kernel functions and cross-

validation, SVM-based fault diagnostic approaches were later recommended in

several research works, demonstrating better fault detection capabilities over

35

standard machine learning algorithms [49]. For instance, Samanta [50] extracted

features from vibration signals from a spinning machine with standard and

problematic gears. The obtained features were provided as inputs to both ANN-

based and SVM-based classifiers. To increase the number of nodes in the hidden

layer and the input feature selection in SVMs, genetic algorithms (GA) were applied.

The findings showed that in the majority of circumstances, SVM outperforms ANN

in terms of classification accuracy. Sugumaran et al. [51] used a Decision Tree to

pick the best qualities from a sample group for classification and the Proximal

Support Vector Machine (PSVM) to categorize flaws based on statistical data in

another investigation efficiently. PSVM and SVM were used to extract and

categorize statistical features, and the results were compared. Zhang et al. [52]

proposed using ensemble empirical mode decomposition to decompose the vibration

signal into a set of intrinsic mode functions (IMFs) when a bearing has faults. The

first five IMFs' permutation entropy (PE) values (IMF-PE) are computed to reveal

the multi-scale intrinsic features of the motor bearing's vibration signal. Support

vector machines (SVM) optimized by inter-cluster distance are then used to classify

the fault type and severity (ICDSVM). Vibration analysis, acoustic approaches, and

SVM-based pipeline leakage detection were all examined by Datta et al. [53]. In this

study, the benefits and drawbacks of each technique are outlined, and all approaches

are evaluated based on their applicability. On the other hand, acoustic reflectometry

is the most effective technique since it can identify obstacles and leaks in pipes as

small as 1% of their diameter. The most current research on machine learning models

for wind turbine status monitoring was described by Stetco et al. [54]. The majority

of models uses a dataset called SCADA or simulated data, with classification

accounting for around two-thirds of the techniques and regression accounting for the

36

rest. This study's most often utilized techniques were neural networks, support vector

machines, and decision trees. SVMs, according to the data, are among the best

acceptable models in most situations, with over 90% accuracy.

2.3.3.3 Decision Tree (DT)

The supervised learning algorithms family includes the Decision Tree (DT)

algorithm. Unlike other supervised learning algorithms, the decision tree technique

may be used to address regression and classification problems. The goal of using a

Decision Tree is to create a training model that can predict the class or value of the

target variable. As the name indicates, a DT uses a tree-like flowchart to depict the

predictions that arise from feature-based divides [55]. A root node initiates the

process, which concludes with a leaf decision. When utilizing Decision Trees to

forecast a record's class label, we start at the top of the tree. A decision-tree-based

model is an effective supervised methodology for applying classification algorithms

in high-dimensional data [54].

For fault identification, security evaluation, and system control in power systems,

DT models have been employed in a number of studies. Because the decision tree is

simple to understand and grasp, its accuracy in flaw identification may be

demonstrated using both testing data and expert knowledge [56]. [57], for example,

describes a defect detection and categorization system based on decision trees. As

characteristics in the training and test sets, widely available data from solar

photovoltaic (PV) systems are used, including PV array voltage, operating

temperature, and irradiance. The trained DT models showed excellent defect

detection and classification accuracy in experiments. In another study by Yan et al.

[56], used the classification and regression tree (CART) approach for decision tree

37

induction as a data-driven diagnosis tool for AHUs. The method comprised a steady-

state detector and a regression model to increase the diagnostic technique's

interpretability. This approach was shown to have excellent diagnostic performance,

with an average F-measure of 0.97.

In their most basic form, decision trees are algorithms that are easy to perceive and

understand. On the other hand, these models may be overly simple for issues with

more complicated aspects. As a result, several tree-based algorithms have been

developed to improve accuracy while preserving processing efficiency [4].

Ensemble approaches, in which many decision trees are combined to obtain better

prediction performance than a single decision tree, are gaining popularity. The main

principle behind the ensemble model is that a group of weak learners join forces to

create a strong learner. The most common methods for creating ensemble decision

trees are boosting and bagging. The XGBoost and Random Forest (RF) algorithms,

which are often used in IFD investigations, are explained in the following

subsections as examples of such approaches.

2.3.3.3.1 Extreme Gradient Boosting (XGBoost)

The gradient boosting decision-tree-based ensemble machine learning technique

XGBoost, or eXtreme Gradient Boosting, is a gradient boosting decision-tree-based

ensemble machine learning approach. XGBoost refers to the technological goal of

pushing boosted tree algorithms' computing resources to their limits [58]. In

applications involving small-to-medium structured/tabular data, a decision tree-

based method can outperform more complicated models such as ANNs. The

algorithm's implementation was created to reduce computing time and memory

requirements. One of the design aims was to maximize available resources

38

throughout the model's training phase. The two main reasons for using XGBoost

models are execution speed and model performance [47].

When large datasets are unavailable, and the input characteristics are not in the form

of pictures, Extreme Gradient Boosting may be a feasible option. As a result, specific

IFD research articles have used this strategy while working with structured and

numerical datasets. For example, Zhang et al. [59] introduced a novel technique

based on signal processing using an XGB algorithm that only utilizes phase voltage

and current data. There are three fault identification results to classify within this

study: no-fault, zero-line fault, and ground fault. The XGBoost technique was

developed by combining preprocessed data with wavelet analysis to extract features

with an accuracy of above 90%. In another study, Wu et al. [60] presented an XGB-

based technique to improve identification accuracy in power transformer failure

diagnostics. The proposed technique produces a hybrid diagnostic network by

merging an improved genetic algorithm (IGA) with the XGBoost. Compared to other

approaches like support vector machines, this strategy dramatically improves

diagnostic accuracy. As a result, the proposed approach is presented as a feasible

option for detecting various forms of transformer defects.

2.3.3.3.2 Random Forests (RF)

Another tree-based machine learning technique that may be used for regression and

classification is Random Forest. It also does well in dimensional reduction methods,

missing values, outlier values, and other essential data exploration operations. It is

an ensemble learning method that combines many weak models to create a more

robust model. [61]. Random Forest creates many trees to categorize a new object

based on the available attributes. Each tree generates a categorization for that class,

39

referred to as a "vote." When it comes to regression, the forest chooses the

classification that receives the most votes (across all trees in the forest) and averages

the outputs from different trees. The Random Forest algorithm is a bagging ensemble

technique extension. Instead of using all features to build trees, RF uses a random

subset of data and a random selection of features to train the model [47], [62].

Random Forest classifications, like XGBoost, are both accurate and efficient in

terms of computation, and the results are understandable. As a result, random forest

classifiers are well-suited to industrial contexts, where large datasets are not always

accessible for training diagnostic models. Cerrada et al. [4] devised a reliable

approach for identifying multi-class faults in spur gears. The diagnostic system uses

evolutionary algorithms for feature selection and a random forest classifier in a

supervised context. The approach is verified using actual vibration signals by

analyzing different fault classes: an incipient fault under varied load and velocity

conditions. Patel and Giri [42] also utilized a random forest classifier to diagnose

multi-class mechanical problems in induction motor bearings. An accelerometer

sensor was used to collect vibration signals from the bearings, and their values were

obtained as statistical features to feed into the RF model. According to the findings,

in terms of performance and accuracy in identifying bearing problems, this technique

surpasses existing designs such as ANNs. Random forests have also been used to

identify non-mechanical faults. Puggini et al. [63], for example, developed an

unsupervised random forest approach to identify damaged wafers based on chemical

fingerprints obtained during the plasma etching process.

40

2.3.3.4 K-Nearest Neighbors (KNN)

In order to generate predictions for new data, the KNN algorithm uses a majority

voting method. The k-closest records from the training dataset are identified for each

new record. The fundamental closest neighbor (NN) technique predicts

categorization or regression for each random occurrence [64]. The value of the target

property of the nearby records is used to construct a forecast for the new record. The

usual range of values is a few dozens to a few hundred. The KNN algorithm can

compete with the most accurate models since it offers perfect predictions. As a result,

the KNN approach may be employed in situations requiring high accuracy, but a

human-readable model is not required [47].

Data distribution has little bearing on fault identification for machine components

using classification algorithms like k-nearest neighbor (KNN). Both healthy and

flawed reference data are required for classification algorithms, which are frequently

unavailable. KNN is a method for calculating the health index based on the distance

between the test and reference data [65]. This approach has been used in several

academic papers to detect and categorize problems. For example, Tian et al. [65]

suggested employing KNN to identify bearing faults and monitor bearing

degeneration in electric motors. Spectral kurtosis (SK) and cross-correlation are used

to derive fault features that indicate discrete faults. Using principal component

analysis (PCA) and a semi-supervised KNN distance metric, these attributes are

combined to create a health index. A KNN was used in another study by Naik and

Koley [66] to solve a supervised classification challenge. Using K-nearest neighbor,

this paper proposes a fault detection and classification approach for AC/DC

transmission lines using a doubly-fed induction generator (DFIG). The suggested

KNN-based approach has been tested in various fault scenarios with varying fault

41

resistance, fault inception angle, and fault location. In all cases tested, the proposed

technique achieves a fault detection and classification accuracy of 100.

2.3.3.5 Bayesian Networks (BN)

The Bayesian Network (BN) is a popular probabilistic graphical model that solves a

range of uncertainty problems using probabilistic information representation and

inference. BN allows specifying exponentially more significant probability

distributions using a polynomial of probabilities. Localized tests, which are

exclusively concerned with variables and their immediate causes, ensure that

Bayesian models are consistent and comprehensive [47], [67].

For decades, BNs have been investigated and used in fault diagnostics as part of

data-driven techniques. To construct BN-based fault detection models, a vast amount

of historical data is utilized, and backward analysis utilizing various methodologies

is performed to identify [5]. Muralidharan et al.'s research [68] is an outstanding

example of using Bayesian Networks in IFD investigations. This work shows how

to use discrete wavelet features extracted from vibration signals of healthy and

problematic centrifugal pump components to diagnose defects using the Naive

Bayes and Bayes net methods. Feature extraction, categorization, and classification

comparison are the three essential processes in this technique. In order to discover

the best wavelet for diagnosing centrifugal pump malfunctions, the classification

accuracies of several discrete wavelet families were calculated and compared. Zhao

et al. [69] introduced a Diagnostic Bayesian Networks (DBNs)-based approach for

diagnosing 28 flaws in air handling units (AHUs), which covers the majority of

common problems. The DBNs were built using data from three AHU fault detection

and diagnosis (FDD) investigations, including a thorough examination of AHU FDD

42

techniques and fault patterns. According to the findings, the DBN-based method

efficiently finds faults even when diagnostic information is confusing and restricted.

2.3.4 Deep Learning for IFD

Deep learning is a machine learning subclass that uses three or more neural network

layers. A deep neural network is computer software that uses intricate algorithms to

generate predictions and fix data faults. These neural networks are designed to

replicate the function of the human brain by allowing it to learn from massive

amounts of data. Additional hidden layers can help with DL model accuracy

optimization and refining. Deep learning is being utilized to solve a number of

issues, including digital assistants, voice-activated devices, and credit card fraud

protection [17], [18]. The difference between standard machine learning and current

deep learning is that deep neural networks analyze data differently. The word "deep"

refers to the definition and arrangement of numerous attributes derived from the

model's input data in these models. Deep learning may also be used to ingest and

analyze unstructured data like text and photographs. This paradigm automates

feature extraction to some extent, decreasing the requirement for human knowledge.

While a machine learning expert develops a feature hierarchy by hand, deep learning

algorithms can identify which features are necessary to complete the task at hand

[33], [70].

Deep neural networks, as previously said, are made up of several layers of linked

nodes, each of which improves and refines the prediction or categorization. The

forward flow of calculations begun by the input data via the network is referred to

as forward propagation. After that, backpropagation is used, which is a method that

evaluates errors in predictions using methods like gradient descent and then updates

43

the function's weights and biases by traveling back through all of the layers [33],

[71]. To function correctly, a neural network requires a precise set of parameters.

The number of hidden layers, number of neurons in each layer, each layer's

activation function, optimization algorithm, loss function, and ways to avoid

underfitting or overfitting the network are architectural and computational factors.

In the deep learning literature, these structural parameters are referred to as Hyper-

parameters. To set the hyper-parameters, experience and a lot of trial and error are

required. It is not straightforward to set hyper-parameters like learning rate, batch

size, momentum, and weight decay [17], [36]. To fine-tune the network using the

training data, most DL-based approaches go through numerous rounds of

hyperparameter tweaking depending on the outcomes of prior rounds. As a result,

applying deep learning models to each problem can be difficult and time-consuming,

requiring a significant amount of work to achieve satisfying results. However,

because the results frequently outperform non-DL approaches, using deep neural

networks in a variety of situations for more desirable outcomes is efficient [16].

The feature extraction phase is not included in implementing deep learning models,

despite the fact that data collection methods for getting the datasets necessary for

deep learning architectures are still required [72]. As a result, using deep neural

networks for IFD research necessitates obtaining large volumes of data to train the

model and passing that data to the appropriate DL model. The remainder of this

section delves into these two phases and the techniques and architectures used in the

research publications that use deep learning to identify machine faults intelligently.

44

2.3.4.1 Big data collection

Big data is described as data that is so large, rapid, or intricate that it is difficult or

impossible to process using traditional methods [73]. Obtaining and storing large

amounts of data for analytics has a long history. The idea of big data acquired

significant traction in the early 2000s when industry professionals established the

now-mainstream definition of big data as the five V's (Volume, Variety, Veracity,

Value, and Velocity). Big data analytics can help in decision-making, modeling and

forecasting future occurrences, and improving business intelligence [17], [41].

In today's sector, most industrial activities follow Big Data features. For example,

most manufacturing operations are performed by a group of machines, and fault

diagnosis is usually centered on machine groups. As a result, throughout the long-

term operation of various pieces of equipment, the monitoring system should

continually gather data. As a result, the amount of information gathered tends to

increase (Volume) [31]. Furthermore, while the monitoring system may capture a

large quantity of data, only a tiny fraction of that data is relevant and has the

appropriate value. Furthermore, multi-source sensors are used to collect various sorts

of data. A monitoring system, for example, may include vibration and speed data

from a condition monitoring system as well as some control parameters from

supervisory control, showing a wide range of data [37]. Finally, the development of

sensor technologies and data transmission has made it simpler to gather enormous

volumes of data-carrying real-time information while also making it easier to

monitor data streams adequately. This emphasizes the importance of data gathering

systems that can sustain high Velocity [4].

45

2.3.4.2 DL-based intelligent fault diagnosis

Deep learning-based diagnosis systems learn features from input data and use them

to detect machine health conditions. By learning feature hierarchies using features

from higher levels of the hierarchy formed by the composition of lower-level

features, deep learning algorithms have the potential to address the inadequacies

mentioned above in present intelligent defect detection systems. [40]. By applying

non-linear operations, these models leverage hierarchical networks such as multi-

layered Auto-Encoders, CNN, and RNN to discover significant characteristics [74]–

[76]. Through these non-linear transformations, deep learning-based techniques may

adaptively acquire representation information from input signals and estimate

sophisticated non-linear functions with a small error. The model learns to associate

these traits with other classes in succeeding layers and provides the model's output.

The output layer determines the machine's health and the sort of problem it may be

experiencing [77]. Because of its high capacity for multi-class classification, an

ANN-based classifier is the architecture of choice in most applications. The

Backpropagation approach is used to update the training parameters of the diagnostic

models after each round of training, and the error between the actual output and the

target is minimized during this phase [18].

Fully-connected (FC) neural networks, also known as Dense neural networks, are

the most often utilized forms of NNs in deep learning research and are still employed

in most DL models. All nodes (neurons) in one layer are linked to the neurons in the

next layer in this arrangement. DNN networks are deep learning workhorses that are

used in tens of thousands of applications [18], [33]. On the other hand, fully-

connected models cannot excel at all tasks, albeit they have been shown to produce

superior outcomes when describing more complicated functions. Researchers have

46

also shown that a deeper network with the same number of neurons may learn more

complex functions than a shallower network and that the layered structure of such

networks can aid in their learning ability [16].

On the other hand, such networks need a lot of processing power and are prone to

overfitting. As a result, while these networks are exceptionally broadly applicable

due to their flexibility, they perform poorer than special-purpose networks tailored

to a particular area's structure [70]. As a result, the majority of fault detection

research articles include a fully-connected structure as part of their suggested

solution, while FC-only networks are not used in the majority of studies. Another

reason is that IFD datasets frequently contain signals and temporal data, which

convolutional or recurrent neural networks are better at anticipating. However,

researchers such as [78], [79] used an autoencoder to reduce dimensionality and

passed the information to a fully-connected network to categorize the problems. The

rest of the researchers used FC layers in conjunction with the other designs described

in the rest of this section.

2.3.4.2.1 Auto-Encoders (AE)

An autoencoder (AE) is an unsupervised learning method for learning

representations that use neural networks. Due to a network bottleneck, autoencoders

are neural network designs that produce a compressed knowledge representation of

the original input. An autoencoder's purpose is to train the network to capture

essential bits of the input in order to build a lower-dimensional representation

(encoding) for higher-dimensional data, which is commonly used to reduce

dimensionality [17]. If the data has any structure (for example, correlations between

input properties), that structure can be learned and exploited to drive the input

47

through the network's bottleneck. This network may be trained using the

reconstruction error, which measures the differences between our initial input and

the subsequent reconstruction [72]. A key element of network architecture is the

presence of an information bottleneck. Our network may quickly learn to memorize

the input values and send them via the network if there is no bottleneck. A bottleneck

limits the quantity of data that can pass through the network, resulting in input data

compression. Creating an autoencoder architecture is difficult to ensure that the

compressed data accurately replicates the original input [80]. As a result, the

research community has developed several autoencoder designs that can accomplish

the encoding task in various scenarios. For example, given a corrupted form of data

as input, a denoising autoencoder (DA) is trained to reconstruct/denoise the clean

input x from its damaged sample. The most commonly used noise is dropout

noise/binary masking noise, which randomly sets a fraction of the input attributes to

zero. Several DAs may be stacked to create a deep network capable of learning

representations by feeding the outputs of each layer as inputs to the next layer.

Because autoencoders, particularly stacked denoising auto-encoders (SDA), may be

trained unsupervised, they can provide an effective pre-training solution by

initializing the weights of a deep neural network (DNN) to train the model [76].

Getting the model to acquire a meaningful and generalizable latent space

representation is typically the most challenging component of dealing with these

autoencoders [17], [81].

Autoencoders and their common modifications have been employed in machine fault

diagnosis in various publications. Many researchers used AE versions to learn

properties from sensor data automatically and subsequently fulfill machine diagnosis

tasks [76]. For example, Sun et al. [79] used a sparse auto-encoder (SAE) to extract

48

features from a deep neural network approach for identifying induction motor

defects. According to research, the SAE-based DNN outperforms ordinary neural

networks in a machine error simulator. Jia et al. [78] devised another intelligent

technique that uses a mix of fully-connected neural networks and an autoencoder to

minimize the dimensionality of information to overcome the drawbacks of previous

intelligent diagnosis systems [81]. The recommended approach is validated using

data from rolling element bearings and planetary gearboxes. Compared to earlier

techniques in this area, the results show that it adaptively mines accessible fault

characteristics from observed signals and enhances diagnosis accuracy.

Furthermore, Lu et al. presented the stacked denoising autoencoder (SDA), a deep

feature learning approach that proved successful and trustworthy for IFD situations.

SDA has long been a popular way of obtaining the promised benefits of deep

architecture-based robust feature representations. The technique is acceptable in

health state identifications for signals containing ambient noise and working

condition fluctuations. In another study, Chen et al. [82] introduced a new multi-

sensor data fusion strategy to improve fault diagnosis reliability. The proposed

technique uses multiple two-layer sparse autoencoder (SAE) neural networks for

feature fusion. Deep belief networks (DBN) for classification are trained using fused

feature vectors considered machine health indicators. According to experimental

data, SAE-DBN's proposed technique outperformed traditional fusion approaches in

identifying machine running conditions.

2.3.4.2.2 Convolutional Neural Networks (CNN)

Convolutional neural networks, or CNNs, a form of artificial neural network

prominent in computer vision, are gaining traction in a variety of domains, including

49

facial recognition, climate forecasting, and medical image processing [14]. During

the backpropagation phase, CNN employs numerous building blocks such as

convolution, pooling, and fully connected layers to learn spatial hierarchies of

characteristics automatically and adaptively. Convolution and pooling layers operate

together to extract features, whereas FC layers transfer retrieved characteristics into

final outputs for tasks like classification [17]. A convolution layer is a component of

CNN that consists of a series of mathematical operations such as convolution, a type

of linear operation. In digital photographs, pixel values are stored in a 2D grid, and

at each image point, a tiny grid of parameters known as a kernel, an optimizable

feature extractor, is applied. CNNs are ideal for image processing since features can

emerge everywhere in the picture. As one layer feeds its output into the next,

extracted properties can grow hierarchically and become increasingly sophisticated

[83]. A pooling layer reduces the number of learnable parameters by performing a

conventional down-sampling operation on the feature maps, lowering their in-plane

dimensionality and introducing translation invariance to minor shifts and distortions.

Although filter size, stride, and padding are hyperparameters in pooling operations,

similar to convolution operations, the pooling layers do not contain any learnable

parameters. The most common pooling procedure is max pooling, which chooses

patches from input feature maps, outputs the highest significant value in each patch,

and discards the rest [3], [76]. The activation function of the last FC layer is

frequently different from the others. The activity function requires choosing a

suitable operation for the job chosen. The SoftMax function converts target class

probabilities to actual output values from the final fully linked layer. Each value

ranges from 0 to 1, and the sum of all values equals 1, which is an activation function

used in multi-class classification issues [17], [84].

50

In a range of computer vision applications where the input data is often 2D, CNN

models have proven useful. However, CNNs cannot handle one-dimensional signals

like vibration data, which is used to diagnose machine problems. Researchers used

three alternative techniques to create a CNN-based diagnostic model and obtain

optimal performance [14], [85]. Signal processing techniques such as the wavelet

packet, continuous wavelet transform, and dual-tree complex wavelet transforms are

used to preprocess the one-dimensional input data in order to move the signals to the

2D time-frequency domain. CNN then processes the monitoring data using a two-

dimensional time-frequency model [8], [86]. In the IFD study, there are several

examples of CNNs being used as the classifier module. The following are some of

the most important studies in this category:

For example, by claiming that gearbox vibration signals are vulnerable to the

existence of a defect, Chen et al. [75] developed a convolutional neural network

implementation of a deep learning technique for defect detection and classification

in gearboxes. There are 12 different combinations of fundamental condition patterns

in each test case, for a total of 20 test cases with different combinations of condition

patterns. The accuracy gained by calculating Root Mean Squared Error (RMSE)

shows that the proposed technique is highly reliable and effective in identifying

industrial reciprocating equipment defects. Furthermore, vibration patterns change

due to machine state faults, vibration analysis is a well-established method for

rotating equipment condition monitoring. Before their research, Janssens et al. [87]

discovered that automatic fault detection depended mainly on manually-engineered

aspects such as the raceway's ball pass frequencies. They identified successful

bearing fault detection characteristics from the data alone. This research looked at

various bearing issues, including outer-raceway flaws, lubrication degradation,

51

healthy bearings, and rotor imbalance. The CNN-based feature-learning method

outperformed the standard feature-engineering technique, which relies on manually

constructed features and a random forest classifier. Gua et al. [3] proposed an

upgraded algorithm-based hierarchical, learning rate adaptable CNN. The bearing-

fault data samples were collected from a test rig and utilized to validate the model's

validity. The approach provided good accuracy in terms of error pattern recognition

and fault size estimate. Furthermore, according to the comparison, the upgraded

algorithm is well suited to the fault-diagnosis model, and the recommended strategy

outperforms other current techniques. Jing et al. [8] constructed a CNN that can learn

feature representations from vibration signal frequency data, claiming that only a

few research studies have employed deep learning in feature learning for mechanical

diagnostics. They examined how well feature learning from raw data, frequency

spectrum, and mixed time-frequency data was performed. Data from the PHM 2009

gearbox challenge and a planetary gearbox test rig were used to illustrate the

effectiveness of the proposed technique. In another study, Wen et al. [85] propose a

new CNN for defect identification based on LeNet-5. When tested on three well-

known datasets: the motor bearing dataset, self-priming centrifugal pump dataset,

and axial piston hydraulic pump dataset, the recommended approach achieved a

prediction accuracy of 99.79 percent, 99.481 percent, and 100 percent. These results

have outperformed traditional methods like SVM and deep belief networks. Several

other studies, such as [12], [88], [89], examined gearboxes and rolling bearings using

CNN-only models for feature extraction and classification. Compared to traditional

algorithms like ANNs and SVMs, these strategies enhanced classification

performance on target datasets. For predicting the remaining usable life of machine

parts and their current health status, similar methodologies are used [90].

52

Wang et al. describe the use of CNN-based hidden Markov models (CNN–HMMs)

to categorize multi-faults in mechanical systems in order to enhance feature learning

[91]. The average classification accuracy ratios for two data series with acceptable

error rate reductions are 98.125 percent and 98 percent, respectively. Another study

uses cognitive computing theory to explore the benefits of image recognition and

visual perception in bearing issue diagnoses [86]. In the temporal dimension, this

CNN model reduces learning calculation needs. Identifying the essential features of

bearings allows this model to operate in ambient noise with a high degree of

invariance. The CNN model's efficacy for fault classification of rolling bearings was

determined through contrast testing and analysis. Recent publications have proposed

innovative techniques such as Deep Convolutional Neural Networks with Wide

First-Layer Kernels have been proposed in recent publications (WDCNN). For

instance, Zhang et al. [39] proposed a WDCNN that takes raw vibration signals as

input and augments them to acquire extra information. Using large kernels in the

first convolutional layer, this model collects features and suppresses high-frequency

noise. Based on the frequency characteristics of standard signals, WDCNN

outperforms the state-of-the-art DNN model under different working loads and noisy

environmental conditions. Recent CNN-based defect detection algorithms, on the

other hand, typically use transfer learning since such models require vast datasets to

be trained from scratch, which would take a long time and a lot of computing power.

The fourth section of this article will go over these works.

2.3.4.2.3 Recurrent Neural Networks (RNN)

A recurrent neural network (RNN) is an artificial neural network that works with

data in time series or sequences. Language translation, speech recognition, natural

53

language processing, and picture captioning are examples of temporal or ordinal

issues used by these DL methods. Ordinary feedforward neural networks are

designed to handle data that are unconnected to each other [17], [20]. The neural

network must be adjusted to account for these dependencies if the data is organized

in a sequence where one data point relies on the previous data point. RNNs have a

memory notion that allows them to remember the states or information from

previous inputs to create the sequence's subsequent output [28], [92]. The fact that

recurrent networks' parameters are shared across all network levels distinguishes

them even more. Each node in a feedforward network has a different weight, but

each recurrent neural network layer has the same weight. RNNs determine gradients

using the backpropagation through time (BPTT) approach, which differs from

ordinary backpropagation in that it is specialized in sequence data. The model trains

itself by computing errors from its output layer to its input layer in traditional

backpropagation, similar to BPTT. These calculations allow us to change and fit the

model's parameters precisely. BPTT differs from typical techniques in that it totals

mistakes at each time step, whereas feedforward networks do not require this [33],

[74]. RNNs frequently run into two problems during this procedure: expanding

gradients and disappearing gradients. These issues are defined by the magnitude of

the gradient, which is the gradient of the loss function along the error curve [17],

[20]. RNN variants, including Long short-term memory (LSTM) [93], Gated

recurrent units (GRUs) [94], and Bidirectional recurrent neural networks (BRNN)

[17], are developed to overcome these issues.

RNN-based algorithms can deal with data sequences of varying lengths and capture

long-term relationships in signals received from machines. They integrate model

training and representation learning into a single neural network, needing no

54

additional domain knowledge. Furthermore, these structures may allow for

discovering previously undiscovered structures, allowing the model's generalization

capabilities to be improved [76]. To improve their performance, these architectures

are frequently combined with other models like autoencoders or CNNs [95]. An IFD

approach based on a Gated Recurrent Unit (GRU)-based denoising autoencoder was

suggested by Liu et al. [74]. This method predicts various rolling bearing vibration

levels based on the preceding period for the next period. These GRU-based non-

linear predictive denoising autoencoders (GRU-NP-DAEs) have good

generalization capability and are trained for each defect type. Experiments show that

the suggested approach has a high degree of resiliency and accuracy in

categorization. Zhao et al. [95] used a combination of recurrent and convolutional

neural networks to solve the fault classification problem. Convolutional Bi-

directional Long Short-Term Memory (CBLSTM) networks are used in this study

to deal with basic sensory information. To forecast the target value, stacked FC and

linear regression layers are built on top of bi-directional LSTMs. Our model

surpasses numerous state-of-the-art baseline techniques, and it can forecast based on

real-world raw data, according to the results of the testing. However, robust RNNs

are used as the only classifier module to detect equipment faults in certain

circumstances. For example, Rafique et al. [21] suggested a novel deep learning

approach based on Long short-term memory (LSTM) networks for defect detection

and classification in electrical power transmission networks. The approach uses

LSTM units that work directly on the operational data rather than on features to

generate an end-to-end model based on the temporal sequence of the power system's

operational data. End-to-end learning speeds up decision-making by learning

directly from labeled datasets and eliminates the need for complex feature extraction.

55

The proposed approach has shown a quick reaction in time performance and is

adaptable to operational scenarios.

2.3.4.2.4 Deep Belief Networks (DBN)

The Deep Belief Network (DBN) is a form of Deep Neural Network that learns a

deep network structure layer by layer using layers of Restricted Boltzmann

Machines (RBMs) placed on top of each other. DBNs were initially proposed as

generative models, and they may be used to tackle unsupervised learning challenges

by reducing feature dimensionality. They may also be used to create classification

or regression models in supervised learning applications [33]. Layer-by-layer

training and fine-tuning are the two steps of DBN training. Fine-tuning refers to

applying error back-propagation methods to fine-tune the parameters of the DBN

after the unsupervised training is done [6]. Because of its benefits, such as rapid

inference and the ability to represent deeper and higher-order network topologies,

this structure has recently gained appeal in machine learning [76]. As a result of

these advantages, various DBN application examples in fault diagnostic research are

shown below:

Tamilselvan et al. [38], for example, describe a novel multi-sensor health detection

system based on deep belief networks. The proposed technique is based on DBN

state classification and is a multi-sensor health diagnostic methodology with a three-

step framework. Aircraft engines and electric power transformers have both been

diagnosed using this technology. To demonstrate the use of the suggested

methodology, benchmark concerns and two engineering health diagnosis

applications are employed. Gan et al. [6] conducted another study for the hierarchical

identification of mechanical systems, in which they constructed a unique

56

hierarchical diagnostic network (HDN) by collecting deep belief networks (DBNs)

in each layer. The deeper layer in HDN categorizes the output from the preceding

layer more thoroughly and gives representative characteristics for specific tasks. A

two-layer HDN is developed for a two-stage diagnosis with the wavelet packet

energy feature. The trials show that HDN is highly reliable for multi-stage diagnosis

and that it can overcome the overlapping problem caused by noise and other

disruptions.

2.3.5 Transfer learning and generative models

So far, we have discussed how machine learning and deep learning have transformed

IFD research by allowing models to discover faults without the need for human

specialists automatically. However, in the age of deep learning, these models require

large datasets to perform well and operate correctly in real-world scenarios. The

problems that DL models are designed to detect are rare compared to fault-free

scenarios. As a result, deep learning models cannot complete most IFD tasks due to

a lack of data. Modern deep learning research for discovering machine flaws focuses

on approaches that can help even when there is insufficient labeled data. Transfer

learning or generative models are commonly used to leverage pre-trained models for

new challenges or to produce extra data based on previous datasets. These methods

are widely regarded as the future of deep learning in many fields, and they are the

most widely used approaches to furthering intelligent defect detection research. This

section looks at these tactics and how they have been used in IFD research.

2.3.5.1 Transfer learning

The practice of improving learning in a new activity by transferring information

from a previously mastered related task is known as transfer learning (TL). While

57

most machine learning algorithms are developed to solve specific problems, the

development of algorithms that allow for transfer learning is a hot issue in the

machine learning field. [24]. The goal of transfer learning is to increase learning in

the target task by using knowledge from the source task. Transfer approaches are

frequently reliant on the machine learning algorithms used to learn the tasks and

might be considered extensions of such algorithms [45]. Inductive learning entails

using well-known classification and inference techniques like neural networks,

Bayesian networks, and Markov Logic Networks to make new discoveries [96]. For

instance, training neural networks consume many resources because of the models'

complexity. Transfer learning is used to improve the efficiency of the process and

reduce the number of resources required. Any transferable knowledge or

characteristics may be transported between networks to speed up the construction of

new models. Building such a network necessitates applying knowledge across many

jobs or contexts. Transferred knowledge is generally confined to broad processes or

tasks that may be used in a variety of settings [97]. Transfer learning may also be

employed in computer vision applications, such as recognizing and categorizing

picture subjects using machine learning algorithms trained on large datasets of

images. Transfer learning will be used in this case to apply the reusable

characteristics of a computer vision algorithm to a new model. The exact models

produced from vast training datasets may be adapted to smaller collections of photos

with the help of TL. This entails translating the model's more general capabilities,

such as detecting the borders of objects in photographs. After then, the model's more

specific layer, which identifies various objects or forms, may be trained. The model's

parameters will need to be fine-tuned and optimized, but the model's core

functionality will have been developed through transfer learning [17], [30], [97].

58

There are three main ways that transfer might aid models in learning more

successfully. In contrast to an ignorant agent's first performance, the first

performance is accomplished in the target task using just transmitted knowledge

before any subsequent learning. The second consideration is the time it takes to fully

comprehend the target task utilizing transferred information versus learning it from

scratch. The third component is the difference between the ultimate performance

level reached in the target task and without transfer [7], [96].

Using transfer learning approaches, large-scale machine learning models will be

adjusted for individual activities and situations. Transfer learning will help spread

machine learning models across new sectors and businesses [17]. As a result, TL

approaches are being used in various applications, such as intelligent defect

detection. They are regarded as one of the critical components in the future of deep

learning research [98]. IFD is expected to go beyond academic research and into

engineering. In this situation, it is possible to simulate various problems and obtain

adequate labeled data from laboratory-used bearings. The diagnostic models

developed with them may be used to diagnose bearing issues in engineering contexts

if the diagnosis information could be reused. Transfer learning accomplishes the aim

mentioned earlier by allowing information from one or more diagnosis tasks to be

used in different but related actions [29], [99].

Many research publications have presented defect diagnostic methods based on

transfer learning in recent years. For example, Lu et al. [7] proposed a domain-

adaptable deep neural network model that used transfer learning while

simultaneously boosting the original data's representative information, resulting in

high classification accuracy in the target domain. They presented many methods for

identifying the appropriate hyperparameters for the transferred model. The Deep

59

Adaptation in Fault Diagnosis (DAFD) model is proposed in this paper to solve

cross-domain learning issues in fault diagnosis. DAFD's purpose is to learn

transferable features that bridge the cross-domain gap while maintaining the

recognized information in the original data. The utility and reliability of both the

recommended model and the exploring approaches for the parameters in this study

were shown by experimental findings on real-world datasets. The DAFD model may

include existing deep neural network architectures such as DBN and CNN. A deep

transfer learning model called DTL was created by Wen and Gao [99] in another

study for fault diagnosis. To extract raw data properties, this technique uses a three-

layer sparse auto-encoder and the highest mean discrepancy term to minimize the

discrepancy penalty between training and testing data features. The proposed TL

model was tested using the well-known motor bearing dataset from Case Western

Reserve University. In most investigations, DTL achieved higher prediction

accuracies than DL, indicating a considerable improvement. DTL outperforms other

algorithms, including DBN, sparse filters, SVMs, and ANNs, with a prediction

accuracy of 99.82 percent. Transfer learning was also employed by Shao et al. [1] to

develop a new deep learning IFD methodology that is more accurate and faster to

train than previous approaches. Using a Wavelet transformation, raw sensor data

was transformed into images in order to get moment distributions, and lower-level

properties were recovered using a pre-trained network. The annotated time-

frequency images were then used to fine-tune the neural network architecture at a

higher level using the annotated time-frequency images. This paper creates a

machine defect detection pipeline and tests it on three mechanical datasets: induction

motors, gearboxes, and bearings, to show its usefulness and universality. The

majority of datasets show test accuracy close to 100%. Gua et al. [23] proposed the

60

deep convolutional transfer learning network (DCTLN) in another study. The two

components that make up this technique are condition recognition and domain

adaptation. The condition detection module uses a one-dimensional neural network,

which automatically learns properties and detects machine health conditions. The

domain adaptation module supports the 1-D CNN in learning domain-invariant

features by increasing domain recognition errors and decreasing probability

distribution distance. Six transfer fault diagnosis tests were conducted to confirm the

effectiveness of the proposed approach. Ultimately, Yang et al. [100] suggested a

feature-based transfer neural network (FTNN) predict the health states of bearings

in real-world machines using diagnostic knowledge from bearings in laboratory

machines (BLMs) (BRMs). In order to extract movable properties from natural

vibration data from BLMs and BRMs, the suggested approach uses a CNN. Then, to

restrict the parameters of CNN, regularization terms of multi-layer domain

adaptation and pseudo-label learning are created to reduce the distribution

discrepancy and among-class distance of the obtained transferable features. The

proposed method can learn transferable features that may be utilized to connect BLM

and BRM data. As a result, it is more accurate in diagnosing BRMs than earlier

approaches.

2.3.5.2 Generative models

A generative model describes how a dataset is created in terms of a probabilistic

model. By sampling from this model, users may generate new data [17]. Assuming

that a collection of dog images exists, we can build a model that can construct a new

image of a dog that has never existed but appears legitimate since the model has

learned the general rules that influence a dog's look. This is the kind of issue that

61

generative modeling can help with [30]. The main goal is to create a model that can

generate distinct sets of characteristics that appear to be created using the same

principles as the original data. Furthermore, a generative model must be probabilistic

rather than deterministic. If our model is merely a fixed computation, such as finding

the average value of each pixel in the dataset, it is not generative. In this method, the

model consistently produces the same outcome. To change the individual samples

generated by the model, a stochastic (random) element must be incorporated [30],

[101]. To put it another way, we can think that some unknown probability

distribution explains why some inputs are more likely to be found in the training

dataset than others. Our objective is to build a model that looks as close to this

distribution as feasible, then sample from it to generate new, distinct observations

that seem like they came from the original training set [98].

To understand why generative modeling may be regarded as the next frontier for

machine learning, we must first evaluate why discriminative modeling has been the

driving force behind the majority of developments in machine learning approaches

over the preceding decades. While discriminative modeling has provided the

majority of the motivation for machine learning successes, innovative deep learning

applications to generative modeling difficulties have resulted in many exciting

discoveries in the field in recent years [30]. From an academic viewpoint, progress

in discriminative modeling is arguably easier to evaluate because performance data

can be compared to specific high-profile classification tasks to determine the current

best-in-class approach. Generic models are notoriously difficult to evaluate,

especially when the quality of the output is primarily subjective. As a result, much

work has been put into training discriminative models to attain human performance

in various photo and text classification tasks in recent years [102], [103].

62

In recent years, IFD researchers have been particularly interested in a sort of

generative model known as Generative Adversarial Networks, or GANs [30]. GANs

are an intelligent way to train a generative model by framing the issue as a supervised

technique with two different sub-models: the generator model, which is taught to

produce new instances, and the discriminator model, which attempts to categorize

examples as genuine or fraudulent (generated) [17], [104]. Both models are trained

in an adversarial zero-sum situation until the discriminator model is misled around

half of the time, suggesting that the generator model offers believable examples.

This section examines two research publications to introduce the most prominent

IFD efforts that use generative adversarial networks. Firstly, Yin et al. [104]

proposed a data generation method based on the Wasserstein generative and

convolutional neural network (WG-CNN), which used a generator and discriminator

for confronting training, grew a small sample set into a high-quality dataset and used

a 1D-CNN to learn sample properties and categorize different fault classes. With

100 percent classification accuracy, the proposed approach delivers an obvious and

satisfactory fault diagnostic impact for few-shot learning. This method also works

effectively in a variety of loud environments. Pan et al. [98] present a semi-

supervised multi-scale convolutional GAN for bearing fault diagnostics with

sufficient unlabeled data for training. The discriminator is a multi-scale 1D-CNN,

while the generator is a multi-scale deconvolutional neural network. The model is

trained using an adversarial approach. The proposed method was tested on three

datasets, with classification accuracy averaging 100 percent, 99.28 percent, and

96.58 percent, respectively. According to the results, when the labeled data is

insufficient, the suggested model adequately finds bearing problems.

63

3 Methodology

3.1 Workflow

The proposed methodology of the current thesis is split into four main steps,

including the data pre-processing, estimating features' importance, ML-based model

development, and model assessment based on evaluation criteria. The first three

steps are explained in this section as well as the utilized dataset, while the next

section is dedicated to the fourth step for a thorough examination of the results and

discussion.

The PHM's dataset is chosen as the fault detection source in machinery, taken from

a challenge of the same name. The attendees are invited to solve a classification issue

for a genuine manufacturing line employing state-of-the-art algorithms and models

in this challenge. The dataset is first pre-processed to handle missing parts and is

reorganized for the ML models to be interpretable. Through multiple rounds of

machine learning training and testing, PHM's features are analyzed and narrowed

down to more influencing ones in the feature importance procedure. Thereafter, the

final model is trained based on the processed dataset, and other algorithms are also

implemented for comparison. Multiple evaluation criteria are described for

Chapter 3

64

comparison objectives, and finally, it is discussed how the proposed model

outperforms similar algorithms.

3.2 Software

3.2.1 Python

Python is a dynamically semantic, interpreted, object-oriented high-level

programming language. Its high-level built-in data structures, together with dynamic

typing and dynamic binding, make it ideal for Rapid Application Development and

as a scripting or glue language for connecting existing components. Python's

concise, easy-to-learn syntax promotes readability, which lowers software

maintenance costs. Modules and packages are supported by Python, which facilitates

program modularity and code reuse. The Python interpreter and its substantial

standard library are free to download and distribute in source or binary form for all

major platforms [71]. Python version 3.7.6 is utilized in this research to implement

the proposed method and the baseline algorithms. Numerous Python libraries are

also utilized in the implementation process. For instance, the Keras library running

on the TensorFlow backend is employed for deep learning purposes, which features

frequently used neural-network building elements, including layers, activation

functions, and optimizers. Numpy is another Python library that supports massive,

multi-dimensional arrays and matrices and a wide variety of high-level mathematical

functions to manipulate such arrays. Pandas is a data manipulation and analysis

software package that couples with the Numpy library and is utilized for data storage

and processing. It includes data structures and methods for manipulating numerical

tables and time series [71]. In Python, Scikit-learn (Sklearn) is among the most

65

efficient and robust machine learning packages. It uses a Python consistency

interface to provide swift tools for machine learning and statistical modeling, such

as classification, regression, clustering, and dimensionality reduction. This library is

the basis of ML implementations of the proposed method and several other baselines

and pre-processing algorithms [32].

3.2.2 Jupyter Notebook

The Jupyter Notebook App is a web-based server-client application for editing and

executing notebook papers. The Jupyter Notebook App can be run locally on a

computer without internet access or remotely on a server and accessible through the

internet. The Jupyter Notebook App contains a "Dashboard" (Notebook Dashboard),

a "control panel" that shows local files and allows opening notebook papers or

shutting down their kernels, in addition to displaying, editing, and running notebook

documents. The Jupyter Notebook is an excellent tool for generating and

interactively presenting data science projects. The notebooks combine graphics,

narrative writing, mathematical calculations, and other rich media with code and

output in a single document. To put it another way, it provides a single page where

code can be run, the results can be seen, and explanations, formulae, and charts can

be added to make work more precise, repeatable, and shared [17], [71]. Jupyter

Notebook version 6.0.3 is used in this research.

3.2.3 Google Colab

Google Colab was created to give anyone who requires GPUs or TPUs to build a

machine learning or deep learning model free access to them. Google Colab may be

thought of as a more advanced version of Jupyter Notebook. Colab notebooks let

users blend executable code and rich text, as well as graphics, HTML, LaTeX, and

66

more, in a single document. Colab notebooks are saved in Google Drive accounts

when created. They can be quickly shared on Colab notebooks with coworkers or

acquaintances, enabling them to provide comments or make changes [105]. A free

version of Colab Notebooks was utilized for deep learning implementations of the

baseline algorithms.

3.3 Dataset

In this experiment, the dataset from the PHM challenge1 [106] is used to test machine

learning architectures. This dataset has been given exclusive access to extensive

datasets created from a real-world industrial testbed (CSEM) in collaboration with

the Swiss Center for Electronics and Microtechnology. Conveyor belt motors, an

infrared camera, and robotic arms are all part of the system, allowing for continuous

electrical components testing. Data was gathered in error-free working environments

and under controlled conditions using a variety of seeded flaws with the assistance

of subject experts. A faulty system in this case study might result in components

being rejected needlessly, the testing tempo decreasing, or the testing phase

switching.

The experimental dataset contains 50 signals, each describing the evolution of a

variable of interest across time. Depending on the experiment, it might take one to

three hours. Environment monitoring signals (such as temperature and humidity),

machine health monitoring signals (such as pressure and vacuum), and other

variables such as ProcessMemoryConsumption and CPUTemperature are all

1 https://phm-europe.org/data-challenge

67

examples. Each signal is associated with fields that define different signal attributes

collected from that signal using the automated data acquisition approach [106].

3.4 Data Pre-processing

The process of converting raw data into a comprehensible format is known as data

preprocessing. Machine learning algorithms cannot deal with raw data; thus, this is

a critical stage in data mining, and it is required to ensure the data is of satisfactory

quality [107].

In this research, the pre-processing includes multiple stages. Firstly, some valueless

columns are deleted based on the researchers' experience. These data columns are

useless for the fault classification task and only provide variables set in the data

collection phase. Next, the NaN (Not a Number) values are handled by replacing

them with zero. While such data points can be filled with other values such as the

mean, minimum, and median of their columns, zero can be a suitable choice in this

case. Since these values are not recorded, they should not influence the results much,

and therefore, replacing them with zero is the most reasonable alternative. It is

noteworthy that missing values are a regular occurrence in many real-world datasets

and can skew the results or degrade the model's accuracy in machine learning models

if they remain unhandled. Therefore, such data points should be deleted entirely or

regulated with predefined values to maintain the model's performance [47].

In the next step, the dataset is split into two parts to separate the input features and

the corresponding outputs. The input data is also transformed with the Quantile

Transformer function, so the characteristics are transformed into a uniform or normal

distribution. As a result, this transformation tends to spread out the most common

68

values for a particular characteristic. It also lessens the influence of (marginal)

outliers, making it a reliable pre-processing method. Finally, the dataset is split into

two groups of train and test sets with an 80/20 ratio. The former set is utilized for

training the proposed algorithm and the baselines, while the test set is not observed

in this phase. The algorithms are then assessed based on their performance on the

test set.

3.5 Feature Importance

The term "feature importance" refers to a set of strategies for allocating scores to

input features in a predictive model, indicating the relative significance of each item

when producing a prediction. For issues involving forecasting a numerical value,

called regression, and problems involving predicting a class label, called

classification, feature significance scores can be generated. The ratings are beneficial

and may be applied to a variety of circumstances in a predictive modeling challenge,

including better data interpretation, gaining a better knowledge of a model, and the

reduced number of input features [108].

The relevance of features in a dataset may be used to get insight into it. The relative

ratings can reveal which aspects are most important to the target and, conversely,

which features are least important. A domain expert might analyze this and utilize it

as a starting point for obtaining more or different data. The model may be deciphered

using feature significance ratings. Moreover, building a model is quite different from

comprehending the data that goes into the model. Feature importance helps to

understand the relationship between the characteristics and the target variable. It also

aids in determining which properties are unimportant to the model. We may lower

69

the dimensionality of the model by using the scores generated from feature

significance while training it. Higher scores are typically maintained, whereas lower

values are usually removed since they are unimportant to the model. This simplifies

the model, speeds up its operation, and boosts the model's overall performance.

Feature Importance can also help comprehend and communicate the model to other

parties. We may identify which characteristics contribute the most to the model's

prediction capability by computing scores for each feature [42], [45].

A predictive model that has been fitted to the dataset is used to generate the majority

of essential ratings. When creating a forecast, checking the significance score offers

insight into that specific model and which elements are essential and least significant

to the model. For those models that support it, this is a sort of model interpretation

that can be done. However, some models do not support feature importance

functions and cannot be apprehended with this method [108].

The feature importance calculations of this research are performed using scikit-

learn's built-in functions. It is noteworthy that deep learning architectures work

similarly to a black box and do not reveal which features are more significant in their

results. Therefore, no feature importance calculations were performed for the deep

neural network designed as one of the baseline methods.

The other methods, including the proposed model and the baseline approaches, were

trained once using the entire dataset. Thereafter, feature importance functions were

applied, and the top 15 features in their results were saved for each model.

Subsequently, the algorithms were retrained utilizing datasets containing only the 15

top features. It is noteworthy that the remaining attributes were different for each

algorithm, and therefore, the importance metrics were computed per model

separately. Examinations revealed that this retraining helps improve models'

70

performance in terms of evaluation metrics since ineffective data causes bias that

disrupts the final results in machine learning models.

3.5.1 SHAP Feature Importance

The SHAP (SHapley Additive exPlanations) value is a novel feature importance

calculation method known as a genuine game-changer in machine learning

interpretation. Both regression and classification problems can benefit from the

SHAP value, which works on various machine learning models, including logistic

regression, SVM, tree-based models, and neural networks. Even if the features are

linked, the SHAP value can assign the feature priority appropriately in a regression

situation [109].

SHAP's purpose is to compute the contribution of each feature to the prediction of

an instance x in order to explain it. Shapley values are computed using the SHAP

explanation technique based on coalitional game theory. A data instance's feature

values operate as coalition members. Shapley values provide us with how to

distribute the "payout" (= prediction) among the characteristics in a fair manner. For

example, a player might be a single feature value with tabular data. A player can also

be a collection of different feature values. Pixels, for example, can be grouped into

superpixels, and the prediction is spread among them to describe a picture [42],

[109].

SHAP has been identified as a better alternative to compute feature importance after

confirming the positive effect of the feature's importance calculation and retraining

with a limited number of significant features. This research takes advantage of the

SHAP library to estimate Shapley Additive Explanations values. This process is also

71

performed on all algorithms except for the deep learning baseline model and

determines the top 15 influential features for retraining.

3.6 Proposed Algorithm

Initial examinations in this research have proved that tree-based machine learning

algorithms, such as XGBoost and Random Forests, are able to outperform similar

models. Artificial neural networks and deep learning architectures also demonstrated

promising results with greater computational overload. Therefore, using tree-based

algorithms is beneficial in terms of accuracy and evaluation metrics and being

computationally optimal. Consequently, multiple tree-based machine learning

models were trained and tested on the PHM's preprocessed dataset to discover the

best-performing algorithm. These investigations were made to optimize the accuracy

of the proposed method as well as the training time and hardware resources required.

The results revealed that the Extra Tree classifier outperforms all other approaches,

and therefore, it is selected as the proposed method presented in this thesis.

Extra Trees (ET), or Extremely Randomized Trees, is an ensemble machine learning

technique. It is a decision tree ensemble similar to other methods such as bootstrap

aggregation (bagging) and random forest. The Extra Trees approach utilizes the

training dataset to generate a considerable number of unpruned decision trees. In the

case of regression, predictions are formed by averaging the forecast of the decision

trees, whereas, in the case of classification, majority voting is used [110].

The Extra-Trees technique creates an ensemble of unpruned decision trees or

regression trees according to the standard top-down process. Its two primary

distinctions from previous tree-based ensemble approaches are dividing nodes at

72

random and growing trees using the entire learning sample (rather than a bootstrap

replica). Unlike bagging and random forest, which build each decision tree using a

bootstrap sample of the training dataset, Extra Trees fit each decision tree to the

whole training dataset. Similar to the random forest, this technique will sample

characteristics at each split point of a decision tree at random. Unlike a random

forest, which chooses an ideal split point using a greedy algorithm, the ET approach

chooses a split point at random [111], [112]. Figure 3-1 represents the workflow of

an Extra Tree classifier.

Figure 3-1 An Extra Tree classifier's visual workflow representation [112]

The number of decision trees in the ensemble, the number of input features to choose

and examine for each split point randomly, and the minimum number of samples

necessary in a node to establish a new split point are the three significant

hyperparameters to adjust in the method. K is the number of randomly picked

characteristics at each node, and nmin is the minimum sample size for splitting a

node. M denotes the number of trees in this ensemble. The parameters K, nmin, and

M have diverse effects: K controls the strength of the attribute selection process,

73

nmin controls the strength of averaging output noise, and M controls the strength of

the ensemble model aggregation's variance reduction. The algorithm's variance is

increased by the random selection of split points, which makes the decision trees in

the ensemble less correlated. By increasing the number of trees in the ensemble, this

increase in variance may be mitigated [42], [110].

The implementation of the proposed Extra Tree algorithm is executed using the

scikit-learn library. The parameters set for this algorithm are n_estimators=100

which specifies the number of trees in the forest, criterion=gini, which denotes the

function to calculate the splits' quality, and min_samples_split=2 showing the

minimum number of samples demanded to split an inner node. The rest of the

parameters are set to default values in this implementation. A Bayesian optimization

algorithm enhanced these parameters for the best results on the PHM's dataset. A

Bayesian Optimization is a systematic approach based on the Bayes Theorem for

directing an efficient and adequate search of a global optimization issue. It works by

creating a surrogate function, a probabilistic model of the objective function that is

then efficiently searched with an acquisition function before candidate samples are

picked to assess the genuine objective function. Bayesian Optimization is used to

optimize the model's hyperparameters using the validation dataset, consisting of

20% of the training set.

3.7 Baseline Algorithms

3.7.1 XGBoost

The XGBoost algorithm has been shown to be highly versatile in many learning

contexts, faster than gradient boosting, and allows regularization approaches. It also

74

employs parallel processing to provide faster outcomes in real-time situations. In

comparison to deep learning architectures, it is also a good algorithm for small to

medium datasets.

The Python programming language and the XGBClassifier module of the "xgboost"

library were used to create this classifier. This module aims to do a multi-class

classification using the dataset's input parameters. It classifies the findings using a

sigmoid function (equation 3-1), assigning a probability value in the range of 0 to 1

for each combination of inputs and all accessible classes. According to the model,

the input data is predicted to belong to the class with the highest probability value.

The gbtree booster is also chosen as the classifier's booster core, and its learning rate

is adjusted to 0.3 after several tests with different values.

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1 + 𝑒−𝑥

Equation 3-1

The dataset is subjected to further preprocessing and development steps. Firstly, the

dataset is encoded and scaled using several approaches in order to determine the

optimum form of feature representation. The AutoML python libraries are used in

this procedure. AutoML techniques are ways for automatically and quickly finding

a high-performing machine learning model pipeline for a predictive modeling

challenge. The major AutoML libraries for Scikit-Learn used in this study were

Hyperopt-Sklearn and TPOT. The results showed that encoding techniques did not

considerably enhance classification quality, and as a result, they are not used in the

primary implementations to minimize model time complexity. After this stage,

influential characteristics are extracted to prepare the dataset for machine learning

models.

75

The dataset is subjected to univariate feature selection, which uses univariate

statistical tests to determine the best features. It may be regarded as a second round

of preprocessing before employing a Scikit-learn estimator. Feature selection

processes are exposed as transform method objects in Scikit-learn. One of the

strategies employed for this study is SelectKBest, which eliminates everything

except the K highest-scoring parts. The remaining characteristics are then

incorporated into machine learning models to categorize faults into one of nine

categories.

3.7.2 CATBoost

Yandex's CatBoost machine learning algorithm was recently open-sourced. It is

simple to interface with deep learning frameworks such as TensorFlow from Google

and Core ML from Apple. It can work with a variety of data formats to assist

organizations in addressing a variety of challenges. To top it off, it has the highest

accuracy in the industry. It is enticing in two ways: It provides robust out-of-the-box

support for the more descriptive data formats that accompany many business

challenges. It produces state-of-the-art outcomes without the substantial data

training required by other machine learning approaches [113].

The term "CatBoost" is derived from the phrases "Category" and "Boosting." As

previously stated, the library works well with a variety of data types, including audio,

text, picture, and historical data. Because this library is based on the gradient

boosting library, the name "Boost" derives from the gradient boosting machine

learning technique. Gradient boosting is a powerful machine learning approach that

has been used to solve a variety of commercial problems, including fraud detection,

recommendation items, and forecasting. It can also produce excellent results with a

76

small amount of data, as opposed to DL models, which require a large amount of

data to train from [113], [114].

CatBoost produces cutting-edge results that compete with any major machine

learning algorithm in terms of performance. We may utilize CatBoost without any

explicit pre-processing to convert categories to numbers. CatBoost translates

categorical data to numerical values using a variety of statistics based on categorical

characteristics and categorical and numerical features. It eliminates the need for

intensive hyper-parameter adjustment and decreases the risk of overfitting, resulting

in more generic models. However, it includes a variety of parameters to tweak,

including the number of trees, learning rate, regularization, tree depth, fold size,

bagging temperature, and others [114].

The implementation of this model is performed using the Python programming

language and its "catboost" library, which contains a CatBoostClassifier function.

The parameters are all set to default values in this implementation since other sets

of hyper-parameters showed unsatisfactory results.

3.7.3 Hist Gradient Boosting Classifier

As mentioned earlier, gradient boosting is a machine learning technique that uses an

ensemble approach. Boosting is an ensemble learning technique that sequentially

adds tree models to an ensemble. Each tree model that is introduced to the ensemble

tries to correct the prediction mistakes generated by the tree models that are already

available. Gradient boosting is a statistical framework that extends the capabilities

of boosting algorithms such as AdaBoost by treating the training process as an

additive model and allowing the use of arbitrary loss functions. As a result, for most

77

structured (e.g., tabular data) predictive modeling problems, gradient boosting

ensembles are the preferred approach [113].

Although gradient boosting works effectively in reality, it might take a long time to

train the models. This is because, unlike other ensemble models such as random

forests, trees must be built and added sequentially, whereas ensemble members may

be trained in parallel, utilizing multiple CPU cores. As a result, much work has gone

into developing strategies to increase the gradient boosting training algorithm's

efficiency. Extreme Gradient Boosting (XGBoost) and Light Gradient Boosting

Machines (LightGBM) are two important libraries that include numerous recent

efficiency strategies for training gradient boosting algorithms. The creation of each

decision tree, whose speed is limited by the number of instances (rows) and features

(columns) in the training dataset, is one part of the training method that may be

expedited [115]. Large datasets, such as those with tens of thousands of samples or

more, can make tree building particularly slow since split points on each value for

each attribute must be examined. Reducing the number of values for continuous

input characteristics can considerably speed up the development of decision trees.

This is accomplished by discretizing or binning values into a set of buckets. The

number of unique values for each characteristic may be reduced from tens of

thousands to a few hundred. This enables the decision tree to work with ordinal

buckets (integers) rather than particular values in the training dataset. This imprecise

approximation of the input data often has little or no influence on model skill, if any,

and drastically speeds up the creation of the decision tree [116].

Furthermore, efficient data structures can be utilized to describe the binning of the

input data; for example, histograms can be employed, and the tree construction

method can be further tuned to make effective use of histograms in the tree

78

construction. These approaches were created in the late 1990s to speed up the

development of single decision trees on massive datasets. However, they may also

be utilized in decision tree ensembles, such as gradient boosting. As a result, a

gradient boosting technique that supports "histograms" in current machine learning

libraries is commonly referred to as histogram-based gradient boosting [117].

A histogram is a visual representation of the frequency of data (number of

occurrences) over discrete time intervals called bins. The histogram approach is

theoretically straightforward, and each bin reflects the frequency of the

corresponding pixel value [116], [117].

This thesis uses scikit-learn's implementation of the histogram-based gradient

boosting algorithm. There are various parameters for fine-tuning the specialized

algorithm to produce the best outcomes in general for all classes. Learning rate, max

iter, max depth, and l2 regularization are essential parameters for the HBG classifier.

Learning rate deals with shrinkage, max_iter with the number of iterations required

to get a good result, and max_depth with multiple trees (Decision tree concepts).

The loss function is also set to Categorical Crossentropy, which is one of the best

choices for multi-label classification problems.

3.7.4 Deep Neural Network

A deep neural network is employed to perform the classification as the representative

of deep learning methods. However, many preprocessing steps are skipped for the

deep learning approaches, and the DL models are provided with all features to

extract for themselves. The feature importance process is also not performed for this

implementation since deep learning models are powerful at discovering influential

features and ignoring the insignificant ones. As a result, the entire data frame is fed

79

to the designed neural network, trained for several epochs, and does not require the

two-step feature extraction and retraining process performed for the other

algorithms. Nevertheless, since random weight initializations can affect deep

learning algorithms' results in many cases, the training process is repeated ten times

to eliminate the effect of randomness. The models are trained separately and

aggregated by averaging the test results on each metric. It is noteworthy that none of

the model's hyperparameters are changed in this process. The train and test sets are

also randomly picked with an 80/20 ratio for each training step.

Figure 3-2 Summary of the deep neural network architecture and trainable parameters.

The deep learning predictor used in this experiment is a Fully-Connected (FC)

network without RNN or CNN layers. It is implemented using the Python Keras

library and the TensorFlow deep learning engine and is built employing a Sequential

80

model architecture [118]. These architectures perform adequately in the presence of

signals or temporal variables in the dataset; however, our dataset does not contain

such features. Therefore, an FC neural network seems to be suitable for experimental

purposes. This network contains seven hidden layers with more than 180 thousand

trainable parameters and uses an output layer of 9 neurons with a SoftMax activation

function to distinguish various classes (Equation 3-2). Figure 3-2 demonstrates a

summary of the deep learning architecture. The hidden layers contain 50 to 300

neurons, use the ReLU activation function (Equation 3-3), and are optimized using

the RMSprop function with a learning rate of 0.0001 and a momentum of 0.1. A

Sparse Categorical Crossentropy loss function is chosen for the model to calculate

the model's error for optimization purposes. An early stopping mechanism is also

defined with the patience of 20 epochs to monitor the loss function on the validation

set and stop the training process if no practical improvement is achieved. Model

checkpoints are also defined to save the best version of the model based on its

performance on the validation set. Finally, the model is trained using the assembled

dataset in each step, in which the training batch is also split into two parts for

producing a separate validation set. This process can last for a maximum of 150

epochs in cases where the early stopping mechanism does not eliminate the training.

Figure 3-3 illustrates the training process in one of the ten principal training phases.

𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (𝜎(𝑧)𝑖) =

 𝑒𝑧𝑖

∑ 𝑒𝑧𝑖𝐾
𝑗=1

3 Equation 3-2

 𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) Equation 3-3

81

Figure 3-3 An example of the training process showing the loss function and accuracy results

on the validation set in each epoch.

82

4 Results and Discussion

After the implementations are done using the proposed method and the baseline

algorithms, the evaluation procedure can assess the models' performance. In this

section, the evaluation criteria used for such assessments are introduced, and the

performance of each model is estimated using these metrics. Ultimately, it is

discussed how the proposed method outperforms the baselines regarding accuracy

measures and computational costs.

4.1 Evaluation Criteria

For this experiment, the preprocessed dataset in the previous section is separated

into two sets of training and test with an 80/20 ratio. The training set is then presented

to each model, allowing them to learn the features' attributes and map them to

different classes. The models are not exposed to test sets until the training phase is

completed. Following that, each model is given the test set as input and is expected

to predict the result of each input sample based on the training data. These

predictions are compared to the actual results for each combination of inputs, and

the performance of each model is assessed. The evaluation metrics are common

measures used to assess the classification execution of ML models: accuracy,

precision, recall, the F1 score, kappa, ROC, and MATTEW.

Chapter 4

83

4.1.1 Accuracy

Classification accuracy is the most frequent parameter to assess a classification

prediction model's performance. Because a predictive model's accuracy is often high

(over 90%), it is usual to characterize a model's performance in terms of its error

rate. The first step in improving classification accuracy is to create a forecast for

each sample in a test dataset using a classification model. The predicted labels are

then compared to the known labels for the test set examples. The proportion of

examples in the test set that was successfully predicted, divided by all predictions

made on the test set, is used to determine accuracy [119].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

Equation 4-1

The confusion matrix is another valuable method of thinking about accuracy. A

confusion matrix is a table that organizes the predictions provided by a classification

model by class. Each column in the table reflects the anticipated class, whereas each

row represents the actual class. The number of predictions made for a class that is

really for that class is represented by a value in the cell. Correct predictions are

shown by cells on the diagonal, where a predicted and anticipated class align. The

confusion matrix reveals not just a predictive model's accuracy but also which

classes are successfully predicted, which are wrongly forecasted, and what kind of

errors are being produced. A two-class classification issue with negative (class 0)

and positive (class 1) classes has the most straightforward confusion matrix [120].

Each cell in this form of confusion matrix has a distinct and well-known name, which

may be stated as follows:

84

Table 4-1 Simple confusion matrix for a binary classification

 Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)

Negative Class False Positive (FP) True Negative (TN)

From this confusion matrix, the classification accuracy may be computed as the total

of accurate cells (true positives and true negatives) divided by all cells in the table.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

Equation 4-2

While accuracy can generate a model's overall estimation, accuracy is insufficient in

many circumstances, such as when the dataset is unbalanced, and not all classes have

the same number of samples. In these cases, we employ alternative metrics,

including precision, recall, and F1 score.

4.1.2 Precision and Recall

Precision and recall are two metrics used to measure the performance of

categorization or information retrieval systems when they are added together. The

percentage of relevant instances among all retrieved instances is defined as

Precision, and the proportion of recovered occurrences among all relevant examples

is known as recall or sensitivity. Precision and recall are both equal in a perfect

classifier.

More specifically, Precision is a classification model's ability to identify only

relevant data items. It is defined as the number of true positives divided by the total

85

number of true positives + false positives. On the other hand, recall is a model's

capacity to locate all relevant examples within a data collection. The number of true

positives divided by the number of true positives plus the number of false negatives

defines recall in mathematics [121], [122].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 4-3

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 4-4

4.1.3 F1 Score

To thoroughly assess a model's efficacy, we must examine both precision and recall.

Unfortunately, precision and recall occasionally have conflicts. In other words,

increasing accuracy usually decreases recall and vice versa. If the model has to recall

everything, it will keep producing inaccurate outcomes, diminishing its precision.

There are several instances in which both precision and recall are critical, and we do

not wish to sacrifice one for the other. In such cases, an accumulative metric can

solve the concerns [123].

The F1-score takes the harmonic mean of a classifier's accuracy and recall to create

a single measure. It is mainly used to compare the results of two different classifiers.

Assume that classifier A has a greater recall and precision than classifier B. The F1

scores for both classifiers may be used to identify which delivers superior results in

this scenario. An F-score can have a maximum value of 1.0, indicating perfect

precision and recall, and a minimum value of 0 if neither precision nor recall is zero

[124]. A classification model's F1-score is calculated as follows:

86

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Equation 4-5

4.1.4 Kappa

Cohen's Kappa coefficient is a statistic of interrater agreement that evaluates the

degree of agreement between two variables. It is most commonly employed with

data that are the product of a judgment rather than a measurement. The likelihood of

agreement is compared to what would be anticipated if the ratings were independent.

The range values are -1 to 1, with 1 denoting total agreement and 0 denoting

complete independence. When a statistic is negative, the agreement is poorer than

random. However, the definition of what constitutes an acceptable kappa value is

subjective [125], [126]. The following equation shows how kappa is calculated, in

which observed agreement is the ratio of observed agreements and chance

agreement is the proportion of agreements expected by chance:

𝐾𝑎𝑝𝑝𝑎 =

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

Equation 4-6

4.1.5 ROC

Forecasting probabilities of an observation belonging to each class rather than

explicitly predicting classes might be more flexible in a classification task. This

flexibility stems from the way multiple thresholds may interpret probabilities,

allowing the model's operator to trade off concerns about the model's faults, such as

the number of false positives vs. false negatives. This is necessary when employing

models where the cost of one error surpasses the cost of other types of errors. ROC

Curves and Precision-Recall Curves are two diagnostic tools that aid in

87

understanding probabilistic forecasts for classification predictive modeling issues

[126].

A receiver operating characteristic (ROC) curve is defined as a graph that shows

how well a classification model performs across all classification thresholds. The

True Positive Rate (TPR) and False Positive Rate (FPR) are plotted on this graph:

Precision and Recall, respectively. TPR vs. FPR at various categorization criteria is

plotted on a ROC curve. As the classification threshold is lowered, more items are

classified as positive, increasing both False Positives and True Positives [123]. The

roc_auc_score function from the scikit-learn library's metrics module is used to

calculate this score in the current research, which calculates the area underneath the

Receiver Operating Characteristic Curve (ROC AUC) from prediction scores.

4.1.6 Matthew’s correlation coefficient (MCC)

Accuracy and F1 scores computed on confusion matrices have been among the most

popular adopted metrics in binary classification tasks. However, these statistical

measures can show overoptimistic inflated results, especially on imbalanced

datasets. The Matthews correlation coefficient (MCC), instead, is known as a more

reliable statistical rate that produces a high score only if the prediction obtained good

results in all of the four confusion matrix categories (true positives, false negatives,

true negatives, and false positives), proportionally both to the size of positive

elements and the size of harmful elements in the dataset [127].

𝑀𝐶𝐶 =

𝑇𝑃 ∗ 𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) ∗ (𝑇𝑃 + 𝐹𝑁) ∗ (𝑇𝑁 + 𝐹𝑃) ∗ (𝑇𝑁 + 𝐹𝑁)

Equation 4-7

88

4.2 Evaluation Results

After all implementations are complete, the evaluation process is performed using

the criteria introduced in section 4.1. The assessment is accomplished utilizing the

test dataset. Therefore, the models are exposed to samples they have not seen before

and are demanded to classify them. The fault classes detected by the models are then

compared against the ground truth for each data sample, and the evaluation metrics

are calculated based on these two sets of values called y_true and y_prediction. It is

noteworthy that all models go through two training phases except for the deep neural

network. The tree-based algorithms, including the proposed Extra Tree classifier,

experience a primary phase of training, after which SHAP feature importance is

calculated. In the second phase, these algorithms are retrained using the top-15

features for each class to build the final models. Their results are compared to

demonstrate how the retraining process helped improve accuracy and decrease

training time. On the other hand, the deep neural network goes through a different

training procedure in which feature importance is not calculated. This model is

trained with all features ten times, and the results are aggregated by calculating mean

values for the predictions. This section demonstrates how each instance differs from

the others and proves that the deep learning implementation is robust and results are

not randomly generated. Most importantly, the proposed method is compared against

the baselines in this section to investigate its advantages and how it outperforms the

baseline methods.

89

4.2.1 Training Process Results

This subsection is dedicated to the effects of the steps taken in the training process

to enhance models' performance. Firstly, the developments throughout the feature

importance calculations and models' retraining are investigated for the tree-based

models. Thereafter, the deep learning performance is assessed within its numerous

implementations.

Figure 4-1 Comparison between the tree-based algorithms' performance before (initial) and

after (final) the feature importance process.

90

4.2.1.1 Feature Importance Effects

As mentioned earlier, the tree-based models, including the proposed algorithm, were

trained in two phases. Figure 4-1 demonstrates the effects of the second phase of the

training on each model. In this figure, initial values represent the evaluation metrics

before calculating feature importance, and the final values show models'

performance after the second phase of learning with essential attributes extracted

from the feature importance step. It is observed that most of these models did not

change much while training with all features compared to training with the top-15

most influential features. However, while the rest of the algorithms experience a

minor decline in terms of performance, the proposed method improves in all metrics.

This proves that the proposed algorithm is a better choice for the problem at hand

and is well-suited for this two-phase training procedure. Another significant matter

is that the training times reduce by approximately half in most cases after the

uninfluential features are omitted from the dataset, resulting in less training time and

computational power required in monitoring devices. Figure 4-2 illustrates the

training times for each algorithm with all features (initial) and with top-15 important

features (final). Table 4-2 also summarizes all results in numerical values for

additional proof.

91

Figure 4-2 Comparison between the tree-based algorithms' execution time before (initial) and

after (final) the feature importance process.

Table 4-2 Detailed overall comparison between the tree-based algorithms' performance before

(initial) and after (final) the feature importance process.

XGBoost

CATBoost

Hist Gradient Boosting Extra Trees Classifier

Initial Final Initial Final Initial Final Initial Final

Accuracy 0.9980 0.9972 0.9976 0.9960 0.9977 0.9973 0.9877 0.9955

Precision 0.9977 0.9965 0.9977 0.9948 0.9975 0.9967 0.9946 0.9973

Recall 0.9960 0.9953 0.9950 0.9923 0.9958 0.9951 0.9685 0.9897

F1 Score 0.9969 0.9959 0.9964 0.9935 0.9966 0.9959 0.9812 0.9935

Kappa 0.9962 0.9947 0.9954 0.9923 0.9956 0.9949 0.9764 0.9914

ROC 0.9999 0.9998 0.9999 0.9998 0.9998 0.9998 0.9998 0.9998

Matthew’s 0.9962 0.9947 0.9954 0.9923 0.9956 0.9949 0.9766 0.9914

Ex. Time (sec) 51.31 26.12 101.72 50.19 27.41 22.36 10.93 6.43

92

4.2.1.2 Deep Learning Procedure

The deep neural network has also gone through multiple iterations of training. More

specifically, the same architecture has been trained for ten separate iterations in

which the initial weights are randomly set. Training sets and test sets have also been

unsystematically sampled to maintain the randomness of iterations. After the model

was trained in these steps, it was confronted with the test sets, and evaluation metrics

were saved after each implementation. Figure 4-3 demonstrates the results of the

five most essential metrics throughout this stage. This illustration proves that

although the deep neural network was initialized randomly and received different

training and test sets, it ended up with approximately the same results in terms of

performance metrics. This process validates that the neural network was able to

recognize the patterns related to each fault class, and its outcomes are not randomly

generated. This proves that this model does not require the same preprocessing steps

as the tree-based algorithms and can figure out the critical features.

Figure 4-3 Evaluation results of the different training iterations of the deep neural network

93

Figure 4-4 A comparison between the implementations on the PHM challenge's dataset

among all models and regarding all metrics.

4.2.2 Final Results

Figure 4-4 represents the comparison between the implementations on the PHM

challenge's dataset between all models. The findings demonstrate that the proposed

Extra Tree classifier performed exceptionally well on this classification task, with

an accuracy of above 99 percent. Precision, recall, and F1 measures are also quite

well in its case, demonstrating that the model is able to achieve a high percentage of

total relevant outcomes precisely classified. The closeness of the Kappa value to one

also indicates a strong correlation between the actual and predicted classes

categorized by this model. Despite the similar results between the proposed models

94

and baseline algorithms, the proposed method performs slightly better in terms of

precision and comparable outcomes in other metrics.

However, the main advantage of the proposed algorithm is its short training time and

limited resources required for training. As figure 4-5 illustrates, the proposed model

is trained in less than 7 seconds with the enhanced dataset containing the top-15

important features. The next best result would be dedicated to the Hist Gradient

Boosting approach, which is 3.5 times longer than the proposed method, revealing

that the Extra Tree algorithm provides comparable metrics in much less time.

Figure 4-5 Training time comparison between the implementations (seconds)

4.2.3 Root Cause Analysis

Root cause analysis is a technique for identifying and analyzing the reasons for

issues, deviations, and failures. This strategy identifies the root cause of a process

95

problem and groups issues with the same cause together. The report then delves into

the elements that are producing issues. To accomplish root cause analysis, ML

algorithms cluster the issues. The algorithms then analyze the causes affecting these

difficulties in order to establish which elements are linked to which issues and which

may be the root of the problem. These algorithms scan the data for apparent patterns

and relationships.

Figure 4-6 Violin plot of the effects of humidity on fault classes on the PHM dataset.

The root causes are investigated based on the features inducing errors in each fault

category in this research. The effects of each attribute in performing classifications

were calculated in the feature importance phase, as discussed in section 3.5, and the

most influential elements were diagnosed. The process of analyzing the root causes

was performed in a class-based procedure. It is noteworthy that the analysis was

conducted on all features, not on the top 15 selected after the feature importance

stage. Visualizations demonstrate that defects are provoked by a limited number of

flaws in each category, and multiple common issues appear in more than one fault.

For instance, figure 4-6 shows a violin plot of how humidity affects all fault classes

and can cause difficulties in mechanical environments. Temperature and Fuse Cycle

96

Durations are among the other common problems in the PHM dataset's faulty cases.

However, different values of a single cause can influence different classes. For

example, figure 4-7 displays the distribution of CPU temperature values in cases

where it caused errors in class 3 versus the cases where no fault occurred in class 0.

Yet, CPU temperature was an effective attribute in both these cases.

Figure 4-7 Comparison between cases where CPU temperature caused a fault (class 3) and

value distributions where it caused no fault (class 0)

On the other hand, causes such as pressure are only seen in a particular class. Figure

4-8 demonstrates how pressure affects only the third class and has little or no effect

on other cases. Ultimately, figure 4-9 concludes this part by introducing the top-5

features affecting the faulty classes the most. It is worth mentioning that common

97

features such as humidity and temperature are omitted from all classes except the

ones they have the most effects on. Therefore, only unique features are taken into

consideration for each fault class.

Figure 4-8 Effects of pressure on the third fault class compared to little or no effects on the

other classes.

98

Figure 4-9 Top-5 most influential features in faulty classes based on the SHAP feature

importance.

4.2.4 Fault Diagnosis

The primary goal of this thesis was to identify faults intelligently. Now that the

robustness of the proposed algorithm is verified, a fault diagnosis can be performed

using this method. These results are based on the root cause analysis and the feature

importance values calculated for each fault class. In other words, the essential signals

in the feature importance analysis indicate the fundamental cause of an issue. More

studies into the data are carried out to better understand the origins of the problems

and their physical interpretation, particularly on the most significant signals. Table

4-3 summarizes these most critical signals for each class. This table displays the

signals causing most cases in the samples available in each class. Although some

99

signals might have large importance values, they do not trigger faults in a majority

of circumstances. For instance, common signals such as humidity cannot be the root

cause of any classes since they are available in all categories. The only case where

such issues are influential is class 7, in which humidity and temperature are among

the top difficulties causing faults.

Table 4-3 Most influential signals for each class.

Class Most Important Signals Fault Interpretation

2 FuseCycleDuration_3

FeederAction2_0

the fuses have less cycle duration in this class

3 CpuTemperature_1

Pressure_4

Mean CPU temperature of the control and

data acquisition computer is above average.

4 TotalCpuLoadNormalized_2 Higher Derivative-based trend for CPU

5 TotalMemoryConsumption_0

ProcessMemoryConsumption_0

Fluctuation in number of data acquisition for

Memory consumption.

7 TotalMemoryConsumption_1

Humidity_0

Temperature_0

Difference in environmental condition and

memory consumption acquired value.

9 SmartMotorSpeed_0

SmartMotorPositionError_0

Reduction in number of data acquired for the

speed of the motor.

11 SmartMotorSpeed_3

SmartMotorPositionError_3

DurationRobotFromFeederToTestBench_6

Rise in the motor speed value; as a

consequence, less duration to move from the

feeder to the test bench.

12 DurationRobotFromFeederToTestBench_6 Higher Frequency of the measurements for

duration to move

4.3 Discussion

It is observed that the proposed method outperforms all baseline algorithms

regarding the computational complexity and training time and, therefore, is desirable

in the PHM's dataset. It also reveals the best precision among all the

100

implementations, and the rest of the metrics are quite comparable in this case.

Although these measurements are pretty close to each other, achieving such results

is not a trivial task, and prior experiments proved that several other algorithms are

not able to perform desirably on this task. Figure 4-6 shows how five famous

machine learning algorithms perform on the same dataset using the same steps on

the PHM fault classification dataset. It is noticed that none of these algorithms,

including the Linear Discriminant Analysis (LDA), Logistic Regression, K-Nearest

Neighbors (KNN), AdaBoost, and the Support Vector Machine (SVM), were able to

accomplish an accuracy higher than 95%. This is proof that choosing tree-based

models and deep neural networks was the right preference since they all correctly

classified more than 99% of the test samples.

Figure 4-10 Test results on five popular machine learning approaches for the PHM dataset.

The confusion matrix from the test samples classified by the proposed model also

demonstrates the robustness of this algorithm, as seen in Figure 4-7. The primary

diagonal in this matrix indicates the correct classifications, in which the predicted

class is equal to the actual one. The matrix reveals that the model can classify faults

101

correctly for all cases except for 180 errors out of over 16 thousand test samples,

confirming that the classification task is performed almost flawlessly. Ultimately,

the final root cause analysis establishes that the proposed model does not act as a

black box. Its results are interpretable and enable researchers to understand the

causes and effects of each attribute on each fault in the dataset.

Figure 4-11 The confusion matrix resulted from the Extra Tree classification on the test set.

The primary diagonal shows the correct classification of each defect.

102

5 Conclusion and Recommendations

5.1 Conclusion

This research proposed an Extra Tree classifier to detect mechanical faults. The

study is performed in multiple stages, in which different preprocessing steps and

machine learning algorithms were examined to perform the classification task at

hand. Experiments revealed that tree-based algorithms and deep neural networks

could achieve the best results among all possible methods. Therefore, four

algorithms based on the concepts of trees were picked, namely, the XGBoost,

CATBoost, Hist Gradient Boosting, and the Extra Tree classifier. These methods

went through several stages of data preprocessing, in which the dataset was cleaned,

and the important features in fulfilling the desirable classification were revealed

using the SHAP (SHapley Additive exPlanations) approach. A fully-connected deep

learning algorithm was also designed to perform the same task without the

preprocessing phases. Such algorithms are developed to identify essential features

by themselves and do not require ordinary data processing methods.

Moreover, an evaluation process was designed to assess models' performance

regarding various metrics. Investigations confirmed that the five chosen

architectures could achieve accuracies larger than 99%, and their results are

Chapter 5

103

comparable in most cases. The Extra Tree classifier is chosen as the proposed

algorithm since it achieves the same results in much less time. Although there are

minor differences regarding the evaluation metrics, the most important superiority

of the proposed algorithm is its short training time and capacity to work with limited

computational power. While accuracy and similar metrics are critical to showing the

model's ability to detect faults, performing this task with fewer computations and in

a swifter way is also desirable in mechanical industries where computer hardware is

not updated regularly. While the Extra Tree classifier is trained and ready to use in

less than 7 seconds, the deep learning model took approximately 870 seconds to

complete the same process. Although the other tree-based baseline algorithms are

quicker than the DL architecture, they were also unable to outperform the proposed

method. As a result, it is confirmed that the proposed algorithm is both efficient in

terms of computational power and robust regarding classification quality. At the end

of this stage, a root cause analysis is conducted to explore the causality of each fault,

revealing many of these defects are provoked by a limited number of issues such as

humidity and temperature. This step proves that the proposed model enables the

users to diagnose the causes of each fault occurring and does not act as a black box,

which is another advantage compared to deep neural networks.

5.2 Recommendations

There are numerous paths that can be taken in order to continue this research. As

section 2 demonstrated, the future of the Intelligent Fault Diagnosis research is

established on a path where more data can be utilized. The largeness of datasets can

assist with using modern deep learning architectures, and researchers have shown

that these models can improve significantly by the growth of their training data.

104

Therefore, it is efficient to use generative models to enlarge the datasets and improve

the amount of data the models receive. On the other hand, many research works have

confirmed that using models’ experience with former problems can improve their

efficiency on similar tasks. As a result, the larger datasets generated by the

generative models can be coupled with transfer learning approaches to take

advantage of robust models’ experiences for the IFD process. Using pre-trained

models can also decrease the training time and amount of computational power

required for ML-based models.

On the other hand, unsupervised learning methods can be associated with the

supervised approaches to improve the cause analysis and the configurations resulting

in each fault. More specifically, clustering algorithms can be utilized to analyze data

samples within each class and group them by the various cases of configurations that

can cause a particular fault. This method is helpful in completing the analysis of root

causes and will help configure faulty cases ideally. Moreover, although the Bayesian

optimization algorithm was employed to improve the model's hyperparameters,

more optimization can be performed using more recent algorithms and including

more extensive parameter settings.

Ultimately, it is known that taking advantage of such algorithms can be complicated

and non-practical for mechanical engineers without any functional background in

machine learning engineering. Since maintaining ML-based algorithms and

updating them using new data acquired in the mechanical processes can be

challenging for non-experts, using Automated Machine Learning (AutoML)

approaches can be practical in this field. The process of automating the activities of

applying machine learning to real-world situations is known as AutoML. Every stage

of a machine learning process, from launching with a raw dataset to developing a

105

machine learning model suitable for deployment, could be covered in AutoML.

Therefore, it is recommended to use such procedures in order to facilitate the

machine learning process and decrease the challenges for mechanical experts.

106

Bibliography

[1] S. Shao, S. Member, S. Mcaleer, R. Yan, and S. Member, “Highly-Accurate

Machine Fault Diagnosis Using Deep Transfer Learning,” IEEE Trans. Ind.

Informatics, vol. PP, no. c, p. 1, 2018, doi: 10.1109/TII.2018.2864759.

[2] T. Van Tung and B. Yang, “Machine Fault Diagnosis and Prognosis : The

State of The Art,” vol. 2, no. 1, pp. 61–71, 2009.

[3] X. Guo, L. Chen, and C. Shen, “Hierarchical adaptive deep convolution

neural network and its application to bearing fault diagnosis,” Measurement,

2016, doi: 10.1016/j.measurement.2016.07.054.

[4] M. Cerrada, G. Zurita, D. Cabrera, R. V. Sánchez, M. Artés, and C. Li, “Fault

diagnosis in spur gears based on genetic algorithm and random forest,” Mech.

Syst. Signal Process., vol. 70–71, pp. 87–103, 2016, doi:

10.1016/j.ymssp.2015.08.030.

[5] B. Cai, L. Huang, and M. Xie, “Bayesian Networks in Fault Diagnosis,” vol.

3203, no. c, 2017, doi: 10.1109/TII.2017.2695583.

[6] M. Gan, C. Wang, and C. Zhu, “Construction of hierarchical diagnosis

network based on deep learning and its application in the fault pattern

recognition of rolling element bearings,” Mech. Syst. Signal Process., pp. 1–

13, 2015, doi: 10.1016/j.ymssp.2015.11.014.

[7] W. Lu et al., “Deep Model Based Domain Adaptation for Fault Diagnosis,”

vol. 0046, no. c, 2016, doi: 10.1109/TIE.2016.2627020.

[8] L. Jing, M. Zhao, P. Li, and X. Xu, “A convolutional neural network based

107

feature learning and fault diagnosis method for the condition monitoring of

gearbox,” Measurement, 2017, doi: 10.1016/j.measurement.2017.07.017.

[9] C. Cheng, J. Wang, H. Chen, Z. Chen, H. Luo, and P. Xie, “A review of

intelligent fault diagnosis for high-speed trains: Qualitative approaches,”

Entropy, vol. 23, no. 1, pp. 1–33, 2021, doi: 10.3390/e23010001.

[10] C. Kara Mostefa Khelil, B. Amrouche, A. soufiane Benyoucef, K. Kara, and

A. Chouder, “New Intelligent Fault Diagnosis (IFD) approach for grid-

connected photovoltaic systems,” Energy, vol. 211, pp. 1–18, 2020, doi:

10.1016/j.energy.2020.118591.

[11] W. A. Smith and R. B. Randall, “Rolling element bearing diagnostics using

the Case Western Reserve University data : A benchmark study,” Mech. Syst.

Signal Process., pp. 1–32, 2015, doi: 10.1016/j.ymssp.2015.04.021.

[12] H. Jiang, F. Wang, H. Shao, and H. Zhang, “Rolling bearing fault

identification using multilayer deep learning convolutional neural network,”

pp. 138–149, 2017, doi: 10.21595/jve.2016.16939.

[13] M. Marrone, “Application of entity linking to identify research fronts and

trends,” Scientometrics, vol. 122, no. 1, pp. 357–379, 2020, doi:

10.1007/s11192-019-03274-x.

[14] A. Bhandare, M. Bhide, P. Gokhale, and R. Chandavarkar, “Applications of

Convolutional Neural Networks,” vol. 7, no. 5, pp. 2206–2215, 2016.

[15] J. J. Premkumar, “Machine Learning in Automatic Speech Recognition: A

Survey,” IETE Tech. Rev., pp. 240–251, 2015.

[16] S. Pouyanfar, M. Shyu, S. Chen, and S. S. Iyengar, “A Survey on Deep

Learning : Algorithms , Techniques, and Applications,” ACM Comput. Surv.,

108

vol. 51, no. 5, 2018.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, “Deep learning,”

Nature, vol. 1, no. 2, 2016.

[18] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural

Networks, vol. 61, pp. 85–117, 2015, doi: 10.1016/j.neunet.2014.09.003.

[19] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time

Object Detection with Region Proposal Networks,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, 2017, doi:

10.2307/j.ctt1d98bxx.10.

[20] R. DiPietro and G. D. Hager, Deep learning: RNNs and LSTM. Elsevier Inc.,

2019.

[21] F. Rafique, L. Fu, and R. Mai, “End to end machine learning for fault

detection and classification in power transmission lines,” Electr. Power Syst.

Res., vol. 199, no. June, p. 107430, 2021, doi: 10.1016/j.epsr.2021.107430.

[22] J. Jiao, M. Zhao, J. Lin, and K. Liang, “A comprehensive review on

convolutional neural network in machine fault diagnosis,” Neurocomputing,

vol. 417, pp. 36–63, 2020, doi: 10.1016/j.neucom.2020.07.088.

[23] L. Guo, Y. Lei, S. Xing, T. Yan, and N. Li, “Deep Convolutional Transfer

Learning Network : A New Method for Intelligent Fault Diagnosis of

Machines With Unlabeled Data,” vol. 66, no. 9, pp. 7316–7325, 2019.

[24] J. Zou, Y. Han, and S. So, “Overview of Artificial Neural Networks,” 2008.

[25] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image

Recognition,” Comput. Vis. Pattern Recognit., pp. 770–778, 2016.

[26] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for

109

Large-Scale Image Recognition,” pp. 1–14, 2015.

[27] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking

the Inception Architecture for Computer Vision,” Proc. IEEE Comput. Soc.

Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 2818–2826,

2016, doi: 10.1109/CVPR.2016.308.

[28] X. Pang, Y. Zhou, P. Wang, W. Lin, and V. Chang, “An innovative neural

network approach for stock market prediction,” J. Supercomput., vol. 76, no.

3, pp. 2098–2118, 2020, doi: 10.1007/s11227-017-2228-y.

[29] L. Zhang, J. Lin, B. Liu, Z. Zhang, X. Yan, and M. Wei, “A Review on Deep

Learning Applications in Prognostics and Health Management,” IEEE

Access, vol. 7, pp. 162415–162438, 2019, doi:

10.1109/ACCESS.2019.2950985.

[30] I. Goodfellow, “Generative Modeling Generative Modeling,” 2016.

[31] M. Kang and N. J. Jameson, “Machine Learning: Fundamentals,” Progn.

Heal. Manag. Electron., pp. 85–109, 2018, doi:

10.1002/9781119515326.ch4.

[32] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, 2011.

[33] Y. Bengio, “Learning Deep Architectures for AI,” Found. Trends® Mach.

Learn., vol. 2, no. 1, pp. 1–127, 2009, [Online]. Available:

http://www.nowpublishers.com/product.aspx?product=MAL&doi=22000000

06.

[34] S. Ioffe and C. Szegedy, “Batch Normalization : Accelerating Deep Network

Training by Reducing Internal Covariate Shift,” Icml. (2015), 2015.

110

[35] H. Winner, S. Hakuli, F. Lotz, and C. Singer, Fundamentals of Machine

Vision. 2015.

[36] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A Simple Way to Prevent Neural Networks from Overfittin,” J.

Mach. Learn. Res., vol. 15, pp. 1929–1958, 2014, doi:

10.1109/CVPR.2018.00797.

[37] G. Dorgo, A. Palazoglu, and J. Abonyi, “Decision trees for informative

process alarm definition and alarm-based fault classification,” Process Saf.

Environ. Prot., vol. 149, pp. 312–324, 2021, doi:

10.1016/j.psep.2020.10.024.

[38] P. Tamilselvan and P. Wang, “Failure diagnosis using deep belief learning

based health state classification,” Reliab. Eng. Syst. Saf., vol. 115, pp. 124–

135, 2013, doi: 10.1016/j.ress.2013.02.022.

[39] W. Zhang, G. Peng, C. Li, Y. Chen, and Z. Zhang, “A New Deep Learning

Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation

Ability on Raw Vibration Signals,” 2017, doi: 10.3390/s17020425.

[40] R. Liu, B. Yang, E. Zio, and X. Chen, “Artificial intelligence for fault

diagnosis of rotating machinery : A review,” Mech. Syst. Signal Process., vol.

108, pp. 33–47, 2018, doi: 10.1016/j.ymssp.2018.02.016.

[41] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for

healthcare: Review, opportunities and challenges,” Brief. Bioinform., vol. 19,

no. 6, pp. 1236–1246, 2017, doi: 10.1093/bib/bbx044.

[42] R. K. Patel and V. K. Giri, “Feature selection and classification of

mechanical fault of an induction motor using random forest classifier,”

111

Perspect. Sci., vol. 8, pp. 334–337, 2016, doi: 10.1016/j.pisc.2016.04.068.

[43] Y. Lei, F. Jia, J. Lin, S. Xing, and S. X. Ding, “An Intelligent Fault Diagnosis

Method Using Unsupervised Feature Learning Towards Mechanical Big

Data,” vol. 0046, no. c, 2016, doi: 10.1109/TIE.2016.2519325.

[44] Z. Wang, G. Li, L. Yao, X. Qi, and J. Zhang, “Data-driven fault diagnosis for

wind turbines using modified multiscale fluctuation dispersion entropy and

cosine pairwise-constrained supervised manifold mapping,” Knowledge-

Based Syst., vol. 228, p. 107276, 2021, doi: 10.1016/j.knosys.2021.107276.

[45] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl.

Data Eng., vol. 22, no. 10, pp. 1345–1359, 2010, doi:

10.1109/TKDE.2009.191.

[46] A. Bernieri, M. D’Apuzzo, L. Sansone, and M. Savastano, “A Neural

Network Approach for Identification and Fault Diagnosis on Dynamic

Systems,” vol. 43, no. 6, 1994.

[47] J. Han, M. Kamber, and J. Pei, “Data Mining: Concepts and Techniques,”

Data Min. Concepts Tech., 2012, doi: 10.1016/C2009-0-61819-5.

[48] S. Shai Shalev and D. Shai Ben, Understanding Machine Learning. 2014.

[49] Z. Gao, S. Member, C. Cecati, F. Ieee, and S. X. Ding, “A Survey of Fault

Diagnosis and Fault - Tolerant Techniques Part II : Fault Diagnosis with

Knowledge - Based and Hybrid / Active Approaches,” vol. 0046, no. c, 2015,

doi: 10.1109/TIE.2015.2419013.

[50] B. Samanta, “Gear fault detection using artificial neural networks and

support vector machines with genetic algorithms,” vol. 18, pp. 625–644,

2004, doi: 10.1016/S0888-3270(03)00020-7.

112

[51] V. Ã. Sugumaran, V. Muralidharan, and K. I. Ramachandran, “Feature

selection using Decision Tree and classification through Proximal Support

Vector Machine for fault diagnostics of roller bearing,” vol. 21, pp. 930–942,

2007, doi: 10.1016/j.ymssp.2006.05.004.

[52] X. Zhang, Y. Liang, and J. Zhou, “A novel bearing fault diagnosis model

integrated permutation entropy , ensemble empirical mode decomposition

and optimized SVM,” MEASUREMENT, vol. 69, pp. 164–179, 2015, doi:

10.1016/j.measurement.2015.03.017.

[53] S. Datta and S. Sarkar, “A review on different pipeline fault detection

methods,” J. Loss Prev. Process Ind., vol. 41, pp. 97–106, 2016, doi:

10.1016/j.jlp.2016.03.010.

[54] A. Stetco et al., “Machine Learning Methods for Wind Turbine Condition

Monitoring: A Review,” Renew. Energy, 2018, doi:

10.1016/j.renene.2018.10.047.

[55] P. Akulwar, S. Pardeshi, and A. Kamble, “Survey on different data mining

techniques for prediction,” Proc. Int. Conf. I-SMAC (IoT Soc. Mobile, Anal.

Cloud), I-SMAC 2018, pp. 513–519, 2019, doi: 10.1109/I-

SMAC.2018.8653734.

[56] R. Yan, Z. Ma, Y. Zhao, and G. Kokogiannakis, “A decision tree based data-

driven diagnostic strategy for air handling units,” Energy Build., vol. 133, pp.

37–45, 2016, doi: 10.1016/j.enbuild.2016.09.039.

[57] Y. Zhao, L. Yang, and B. Lehman, “Decision Tree-Based Fault Detection

and Classification in Solar Photovoltaic Arrays,” pp. 93–99, 2012.

[58] S. J. Norvig and P. Russell, Artificial Iintelligence: Modern Approach, no. 2.

113

1995.

[59] J. Zhang et al., “XGBoost Classifier for Fault Identification in Low Voltage

Neutral Point Ungrounded System,” pp. 1767–1771, 2019.

[60] Z. Wu, M. Zhou, Z. Lin, X. Chen, and Y. Huang, “Improved Genetic

Algorithm and XGBoost Classifier for Power Transformer Fault Diagnosis,”

vol. 9, no. October, pp. 1–10, 2021, doi: 10.3389/fenrg.2021.745744.

[61] S. Behrouzi, Z. Shafaeipour Sarmoor, K. Hajsadeghi, and K. Kavousi,

“Predicting scientific research trends based on link prediction in keyword

networks,” J. Informetr., vol. 14, no. 4, p. 101079, 2020, doi:

10.1016/j.joi.2020.101079.

[62] Z. Xu and D. Yu, “A Bibliometrics analysis on big data research (2009–

2018),” J. Data, Inf. Manag., vol. 1, no. 1–2, pp. 3–15, 2019, doi:

10.1007/s42488-019-00001-2.

[63] L. Puggini, J. Doyle, and S. McLoone, “Fault Detection using Random Forest

Similarity Distance,” IFAC-PapersOnline, pp. 583–588, 2015, doi:

10.1016/j.ifacol.2015.09.589.

[64] M. Ashok Mahant and V. Pellakuri, “Innovative supervised machine learning

techniques for classification of data,” Mater. Today Proc., no. xxxx, 2021,

doi: 10.1016/j.matpr.2020.11.092.

[65] J. Tian, C. Morillo, M. H. Azarian, and M. Pecht, “Kurtosis-Based Feature

Extraction Coupled With K -Nearest Neighbor Distance Analysis,” vol. 63,

no. 3, pp. 1793–1803, 2016.

[66] S. Naik and E. Koley, “Fault Detection and Classification scheme using

KNN for AC / HVDC Transmission Lines,” no. Icces, pp. 1–5, 2019.

114

[67] S. Ben-david, Understanding Machine Learning : From Theory to

Algorithms. Cambridge University Press, 2014.

[68] V. Muralidharan and V. Sugumaran, “A comparative study of Naïve Bayes

classifier and Bayes net classifier for fault diagnosis of monoblock

centrifugal pump using wavelet analysis,” Appl. Soft Comput. J., vol. 12, no.

8, pp. 2023–2029, 2012, doi: 10.1016/j.asoc.2012.03.021.

[69] Y. Zhao, J. Wen, F. Xiao, X. Yang, and S. Wang, “Diagnostic Bayesian

networks for diagnosing air handling units faults – part I: Faults in dampers,

fans, filters and sensors,” Appl. Therm. Eng., vol. 111, pp. 1272–1286, 2017,

doi: 10.1016/j.applthermaleng.2015.09.121.

[70] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.

7553, pp. 436–444, 2015, doi: 10.1038/nature14539.

[71] N. Ketkar, Deep Learning with Python. 2017.

[72] C. Lu, Z. Wang, W. Qin, and J. Ma, “Fault diagnosis of rotary machinery

components using a stacked denoising autoencoder-based health state identi

fi cation,” Signal Processing, vol. 130, pp. 377–388, 2017, doi:

10.1016/j.sigpro.2016.07.028.

[73] F. Xia, W. Wang, T. M. Bekele, and H. Liu, “Big Scholarly Data: A Survey,”

IEEE Trans. Big Data, vol. 3, no. 1, pp. 18–35, 2017, doi:

10.1109/tbdata.2016.2641460.

[74] H. Liu, J. Zhou, Y. Zheng, W. Jiang, and Y. Zhang, “Fault diagnosis of

rolling bearings with recurrent neural network- based autoencoders,” ISA

Trans., pp. 1–12, 2018, doi: 10.1016/j.isatra.2018.04.005.

[75] Z. Chen, C. Li, and R. Sanchez, “Gearbox Fault Identification and

115

Classification with Convolutional Neural Networks,” vol. 2015, 2015.

[76] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X. Gao, “Deep learning

and its applications to machine health monitoring,” Mech. Syst. Signal

Process., vol. 115, pp. 213–237, 2019, doi: 10.1016/j.ymssp.2018.05.050.

[77] G. Hu, T. Zhou, and Q. Liu, “Data-Driven Machine Learning for Fault

Detection and Diagnosis in Nuclear Power Plants: A Review,” Front. Energy

Res., vol. 9, no. May, pp. 1–12, 2021, doi: 10.3389/fenrg.2021.663296.

[78] F. Jia, Y. Lei, J. Lin, X. Zhou, and N. Lu, “Deep neural networks : A

promising tool for fault characteristic mining and intelligent diagnosis of

rotating machinery with massive data,” 2015, doi:

10.1016/j.ymssp.2015.10.025.

[79] W. Sun, S. Shao, R. Zhao, R. Yan, X. Zhang, and X. Chen, “A Sparse Auto-

encoder-Based Deep Neural Network Approach for Induction Motor Faults

Classification,” MEASUREMENT, 2016, doi:

10.1016/j.measurement.2016.04.007.

[80] E. Chong, C. Han, and F. C. Park, “Deep learning networks for stock market

analysis and prediction: Methodology, data representations, and case

studies,” Expert Syst. Appl., vol. 83, pp. 187–205, 2017, doi:

10.1016/j.eswa.2017.04.030.

[81] G. Liu, H. Bao, and B. Han, “A Stacked Autoencoder-Based Deep Neural

Network for Achieving Gearbox Fault Diagnosis,” Math. Probl. Eng., vol.

2018, 2018, doi: 10.1155/2018/5105709.

[82] Z. Chen and W. L. Member, “Multisensor Feature Fusion for Bearing Fault

Diagnosis Using Sparse Autoencoder and Deep Belief Network,” pp. 1–10,

116

2017.

[83] B. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification

with Deep Convolutional Neural Networks,” 2017.

[84] L. He, G. Wang, and Z. Hu, “Learning depth from single images with deep

neural network embedding focal length,” IEEE Trans. Image Process., vol.

27, no. 9, pp. 4676–4689, 2018, doi: 10.1109/TIP.2018.2832296.

[85] L. Wen, X. Li, L. Gao, and Y. Zhang, “A New Convolutional Neural

Network Based Data-Driven Fault Diagnosis Method,” vol. 0046, no. c,

2017, doi: 10.1109/TIE.2017.2774777.

[86] C. Lu, Z. Wang, and B. Zhou, “Advanced Engineering Informatics Intelligent

fault diagnosis of rolling bearing using hierarchical convolutional network

based health state classification,” Adv. Eng. Informatics, vol. 32, pp. 139–

151, 2017, doi: 10.1016/j.aei.2017.02.005.

[87] O. Janssens et al., “Convolutional Neural Network Based Fault Detection for

Rotating Machinery,” 2016, doi: 10.1016/j.jsv.2016.05.027.

[88] M. Xia et al., “Fault Diagnosis for Rotating Machinery Using Multiple

Sensors and Convolutional Neural,” vol. 4435, no. c, pp. 1–9, 2017, doi:

10.1109/TMECH.2017.2728371.

[89] W. Zhang, C. Li, G. Peng, Y. Chen, and Z. Zhang, “A deep convolutional

neural network with new training methods for bearing fault diagnosis under

noisy environment and different working load,” Mech. Syst. Signal Process.,

vol. 100, pp. 439–453, 2018, doi: 10.1016/j.ymssp.2017.06.022.

[90] X. Li, Q. Ding, and J. Sun, “Remaining Useful Life Estimation in

Prognostics Using Deep Convolution Neural Networks,” Reliab. Eng. Syst.

117

Saf., 2017, doi: 10.1016/j.ress.2017.11.021.

[91] S. Wang, J. Xiang, Y. Zhong, and Y. Zhou, “Convolutional neural network-

based hidden Markov models for rolling element bearing fault

identification,” Knowledge-Based Syst., vol. 0, pp. 1–12, 2017, doi:

10.1016/j.knosys.2017.12.027.

[92] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki, “Scene labeling with

LSTM recurrent neural networks,” Proc. IEEE Comput. Soc. Conf. Comput.

Vis. Pattern Recognit., vol. 07-12-June, pp. 3547–3555, 2015, doi:

10.1109/CVPR.2015.7298977.

[93] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural

Comput., vol. 9, pp. 1735–1780, 1997, doi:

10.17582/journal.pjz/2018.50.6.2199.2207.

[94] R. Dey and F. M. Salemt, “Gate-variants of Gated Recurrent Unit (GRU)

neural networks,” Midwest Symp. Circuits Syst., vol. 2017-Augus, no. 2, pp.

1597–1600, 2017, doi: 10.1109/MWSCAS.2017.8053243.

[95] R. Zhao, R. Yan, J. Wang, and K. Mao, “Learning to Monitor Machine

Health with Convolutional Bi-Directional LSTM Networks,” pp. 1–18, 2017,

doi: 10.3390/s17020273.

[96] C. C. Aggarwal, “Transfer learning,” Data Classif. Algorithms Appl., pp.

657–665, 2014, doi: 10.1201/b17320.

[97] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans.

Knowl. Data Eng., vol. 194, pp. 781–789, 2009, doi: 10.1007/978-981-15-

5971-6_83.

[98] T. Pan, J. Chen, J. Xie, Y. Chang, and Z. Zhou, “Intelligent fault

118

identification for industrial automation system via multi-scale convolutional

generative adversarial network with partially labeled samples,” ISA Trans.,

vol. 101, pp. 379–389, 2020, doi: 10.1016/j.isatra.2020.01.014.

[99] L. Wen, L. Gao, and X. Li, “A New Deep Transfer Learning Based on Sparse

Auto-Encoder for Fault Diagnosis,” pp. 1–9, 2017.

[100] B. Yang, Y. Lei, F. Jia, and S. Xing, “An intelligent fault diagnosis approach

based on transfer learning from laboratory bearings to locomotive bearings,”

Mech. Syst. Signal Process., vol. 122, pp. 692–706, 2019, doi:

10.1016/j.ymssp.2018.12.051.

[101] A. Rzhetsky, J. G. Foster, I. T. Foster, and J. A. Evans, “Choosing

experiments to accelerate collective discovery,” Proc. Natl. Acad. Sci. U. S.

A., vol. 112, no. 47, pp. 14569–14574, 2015, doi: 10.1073/pnas.1509757112.

[102] L. Bolelli, Ş. Ertekin, and C. L. Giles, “Topic and trend detection in text

collections using latent dirichlet allocation,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol.

5478 LNCS, pp. 776–780, 2009, doi: 10.1007/978-3-642-00958-7_84.

[103] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” 2008, doi:

10.1016/j.neucom.2018.05.040.

[104] H. Yin, Z. Li, J. Zuo, H. Liu, K. Yang, and F. Li, “Wasserstein Generative

Adversarial Network and Convolutional Neural Network (WG-CNN) for

Bearing Fault Diagnosis,” vol. 2020, 2020.

[105] G. Colab et al., “Late policy : late submission will not be marked (no matter

in what reason)!!! Marking regulation . How to construct the training and

119

testing dataset (Very important) Where to download these datasets How to

obtain top-1 accuracy for each given dataset,” vol. 100, pp. 100–101.

[106] L. Biggio, M. Russi, S. Bigdeli, I. Kastanis, D. Giordano, and D. Gagar,

“PHME Data Challenge,” Eur. Conf. Progn. Heal. Manag. Soc., 2021.

[107] G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend

time series,” Eur. J. Oper. Res., vol. 160, no. 2, pp. 501–514, 2005, doi:

10.1016/j.ejor.2003.08.037.

[108] A. Zien, N. Krämer, S. Sonnenburg, and G. Rätsch, “The feature importance

ranking measure,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 5782 LNAI, no. PART 2, pp.

694–709, 2009, doi: 10.1007/978-3-642-04174-7_45.

[109] D. Bowen and L. Ungar, “Generalized SHAP: Generating multiple types of

explanations in machine learning,” 2020, [Online]. Available:

http://arxiv.org/abs/2006.07155.

[110] Y. A. Alsariera, V. E. Adeyemo, A. O. Balogun, and A. K. Alazzawi, “AI

Meta-Learners and Extra-Trees Algorithm for the Detection of Phishing

Websites,” IEEE Access, vol. 8, pp. 142532–142542, 2020, doi:

10.1109/ACCESS.2020.3013699.

[111] C. Chen, N. Wang, and M. Chen, “Prediction model of end-point phosphorus

content in consteel electric furnace based on PCA-extra tree model,” ISIJ

Int., vol. 61, no. 6, pp. 1908–1914, 2021, doi:

10.2355/isijinternational.ISIJINT-2020-615.

[112] N. Chakrabarty and S. Biswas, “Navo Minority Over-sampling Technique (

NMOTe): A Consistent Performance Booster on Imbalanced Datasets,” no.

120

June, 2020, doi: 10.36548/jei.2020.2.004.

[113] A. V. Dorogush, V. Ershov, and A. Gulin, “CatBoost : gradient boosting with

categorical features support,” arXiv, pp. 1–7, 2018.

[114] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,

“CatBoost : unbiased boosting with categorical features,” no. Section 4, pp.

1–11, 2018.

[115] G. Ke et al., “LightGBM : A Highly Efficient Gradient Boosting Decision

Tree,” in 31st Conference on Neural Information Processing Systems, 2017,

no. Nips, pp. 1–9.

[116] Y. J. Ong, N. Baracaldo, and H. Ludwig, “Adaptive histogram-based gradient

boosted trees for federated learning,” arXiv, 2020.

[117] Y. Shi, J. Li, and Z. Li, “Gradient Boosting with Piece-Wise Linear

Regression Trees,” arXiv, 2019.

[118] M. Abadi et al., “TensorFlow : A System for Large-Scale Machine Learning

This paper is included in the Proceedings of the TensorFlow : A system for

large-scale machine learning,” 2016.

[119] H. Shafizadeh-Moghadam, A. Asghari, A. Tayyebi, and M. Taleai,

“Coupling machine learning, tree-based and statistical models with cellular

automata to simulate urban growth,” Comput. Environ. Urban Syst., vol. 64,

pp. 297–308, 2017, doi: 10.1016/j.compenvurbsys.2017.04.002.

[120] J. T. Townsend and W. Lafayette, “Theoretical analysis of an alphabetic

confusion matrix,” vol. 9, 1971.

[121] S. Visa, B. Ramsay, A. Ralescu, and E. Van Der Knaap, “Confusion matrix-

based feature selection,” MAICS, 2011.

121

[122] A. A. Salatino, “Early Detection of Research Trends,” arXiv, 2019, doi:

10.21954/ou.ro.00010698.

[123] D. V Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine Learning

Interpretability : A Survey on Methods and Metrics,” pp. 1–34, 2019, doi:

10.3390/electronics8080832.

[124] Y. Li and Y. Pan, “A novel ensemble deep learning model for stock

prediction based on stock prices and news,” Int. J. Data Sci. Anal., pp. 1–15,

2021, doi: 10.1007/s41060-021-00279-9.

[125] T. Rashed, J. R. Weeks, M. S. Gadalla, and A. G. Hill, “Revealing the

anatomy of cities through spectral mixture analysis of multispectral satellite

imagery: A case study of the Greater Cairo Region, Egypt,” Geocarto Int.,

vol. 16, no. 4, pp. 7–18, 2001, doi: 10.1080/10106040108542210.

[126] P. A. Flach, P. E. F. Lach, and B. Ac, “The Geometry of ROC Space :

Understanding Machine Learning Metrics through ROC Isometrics,” 2003.

[127] D. Chicco and G. Jurman, “The advantages of the Matthews correlation

coefficient (MCC) over F1 score and accuracy in binary classification

evaluation,” pp. 1–13, 2020.

122

Appendix

Data Pre-Processing Steps

Path1 = r'C:\Users\lenovo\Documents\PHM datasets\Totaldata'

df_normal = pd.DataFrame()

df_abnormal = pd.DataFrame()

for root, dirs, files in os.walk(Path1):

 for file in files:

 if file.startswith('class_ 0'):

 dft = make_array()

 dft['Class'] = 0

 df_normal = pd.concat([df_normal, dft], axis=0)

 elif file.startswith('class_ 2'):

 dft = make_array()

 dft['Class'] = 2

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_ 3'):

 dft = make_array()

 dft['Class'] = 3

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_ 5'):

 dft = make_array()

 dft['Class'] = 5

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_ 7'):

 dft = make_array()

 dft['Class'] = 7

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_ 9'):

 dft = make_array()

 dft['Class'] = 9

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_ 4'):

123

 dft = make_array()

 dft['Class'] = 4

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_11'):

 dft = make_array()

 dft['Class'] = 11

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

 elif file.startswith('class_12'):

 dft = make_array()

 dft['Class'] = 12

 df_abnormal = pd.concat([df_abnormal, dft], axis=0)

df_normal.to_pickle('DFnormal.pkl')

df_abnormal.to_pickle('DFabnormal.pkl')

df_normal = pd.read_pickle('DFnormal.pkl')

df_abnormal = pd.read_pickle('DFabnormal.pkl')

frames = [df_abnormal,df_normal]

dft = pd.concat(frames)

counts = dft.nunique()

to_del = [i for i,v in enumerate(counts) if v == 1]

print(to_del)

to_del_col = [('FuseOutsideOperationalSpace',3),

'LightBarrieActiveTaskDuration2', 'LightBarrierActiveTaskDuration1b',

'LightBarrierPassiveTaskDuration1b'

,'LightBarrierPassiveTaskDuration2','LightBarrierTaskDuration']

drop useless columns

df_normal.drop(to_del_col, axis=1, inplace=True)

df_abnormal.drop(to_del_col, axis=1, inplace=True)

print(df_abnormal.shape)

print(df_normal.shape)

dft.drop(to_del_col, axis=1, inplace=True)

def nan_check(data):

 total = data.isnull().sum().sort_values(ascending= False)

 percent_1 = data.isnull().sum()/data.isnull().count()*100

124

 percent_2 = (np.round(percent_1,1)).sort_values(ascending = False)

 missing_data = pd.concat([total,percent_2],axis=1,keys=['Total','%'])

 return missing_data

#How much missing value:

dfcheckss = nan_check(dft)

high_sorted = dfcheckss.sort_values(["Total", "%"], ascending=False)

dist_df = high_sorted.reset_index(level=[0,1])

dist_df.plot(x ='Signal', y='%', kind = 'line',figsize=(30,30))

dist_df.head(34)

to_del = [('NumberFuseDetected',5)

,('FuseHeatSlopeOK',5)

,('NumberFuseDetected',6)

,('NumberFuseEstimated',5)

,('FeederBackgroundIlluminationIntensity',5)

,('IntensityTotalImage',5)

,('SharpnessImage',5)

,('NumberFuseDetected',2)

,('NumberFuseDetected',3)

,('NumberFuseDetected',4)

,('SharpnessImage',2)

,('SharpnessImage',3)

,('SharpnessImage',4)

,('SharpnessImage',6)

,('IntensityTotalImage',2)

,('IntensityTotalImage',3)

,('IntensityTotalImage',4)

,('IntensityTotalImage',6)

,('FeederBackgroundIlluminationIntensity',2)

,('FeederBackgroundIlluminationIntensity',3)

,('FeederBackgroundIlluminationIntensity',4)

,('FeederBackgroundIlluminationIntensity',6)

,('NumberFuseEstimated',2)

,('NumberFuseEstimated',3)

,('NumberFuseEstimated',4)

,('NumberFuseEstimated',6)

,('FuseHeatSlopeNOK',5)

,('FuseHeatSlopeOK',2)

,('FuseHeatSlopeOK',3)

,('FuseHeatSlopeOK',4)

125

,('FuseHeatSlopeOK',6)

,('FuseHeatSlope',5)

,('IntensityTotalThermoImage',5)

,('TemperatureThermoCam',5)]

df_normal.drop(to_del, axis=1, inplace=True)

df_abnormal.drop(to_del, axis=1, inplace=True)

print(df_abnormal.shape)

print(df_normal.shape)

df_abnormal = df_abnormal.fillna(0)

df_normal = df_normal.fillna(0)

frames = [df_abnormal,df_normal]

dftotal = pd.concat(frames)

Multi index to single index:

mylevels= [dftotal.columns.levels[0],['0', '1', '2', '3', '4', '5', '6', '']]

dftotal.columns = dftotal.columns.set_levels(levels=mylevels)

dftotal.columns = ["_".join(pair) for pair in dftotal.columns]

dftotal.head()

dfclass = dftotal['Class_']

dftotal1 = dftotal.copy()

dftotal.drop('Class_', axis=1, inplace=True)

X = dftotal.values

y = dfclass

summarize the shape of the dataset

print(X.shape, y.shape)

dfdiag1 = dftotal1.copy()

dfdiag = dftotal.copy()

#Scaler

from sklearn.preprocessing import QuantileTransformer

126

scaler = QuantileTransformer()

X = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20,

random_state=1)

Model Implementations

Extra Tree Classifier

start_time = time.time()

model_ex = ExtraTreesClassifier().fit(X_train, y_train)

score_ex = model_ex.score(X_test,y_test)

Ypred_ex = model_ex.predict(X_test)

recall_ex = metrics.recall_score(y_test, Ypred_ex, average = 'macro')

precision_ex = metrics.precision_score(y_test, Ypred_ex, average = 'macro')

f1score_ex = metrics.f1_score(y_test, Ypred_ex, average='macro')

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_ex)

y_preb_probs = model_ex.predict_proba(X_test)

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr")

MATT = matthews_corrcoef(y_test, Ypred_ex)

print("accuracy : {}\n".format(score_ex),

 "precision : {}\n".format(precision_ex),

 "recall : {}\n".format(recall_ex),

 "f1 score : {}\n".format(f1score_ex),

 "kappa : {}\n".format(CohenKappa),

 'ROC : {}\n'.format(ROCAUC),

 'MATTEW : {}\n'.format(MATT))

end_time = time.time()

print("Execution time: ", end_time - start_time,"secs")

confusion_matrix(y_test, Ypred_ex)

127

Bayesian Optimization Algorithm

def gbm_cl_bo(max_depth,

max_samples,min_samples_split,min_samples_leaf,max_leaf_nodes,n_jobs):

 params_gbm = {}

 params_gbm['max_depth'] = round(max_depth)

 #params_gbm['max_features'] = round(max_features)

 params_gbm['max_leaf_nodes'] = round(max_leaf_nodes)

 params_gbm['min_samples_leaf'] = round(min_samples_leaf)

 params_gbm['min_samples_split'] = round(min_samples_split)

 params_gbm['max_samples'] = round(max_samples)

 params_gbm['n_jobs'] = round(n_jobs)

 #params_gbm['n_estimators'] = round(n_estimators)

 scores = cross_val_score(ExtraTreesClassifier(**params_gbm),

 X_train, y_train, scoring='accuracy', cv=3).mean()

 score = scores.mean()

 return score

Run Bayesian Optimization

start = time.time()

params_gbm ={

 'max_depth' :(80,200),

 'n_jobs' :(1,5),

 #'max_features':(2,10),

 'min_samples_split':(2,6),

 'max_leaf_nodes': (550,750),

 'min_samples_leaf':(2,6),

 #'n_estimators': (10,100),

 'max_samples':(70,160),

}

gbm_bo = BayesianOptimization(gbm_cl_bo, params_gbm, random_state=111)

gbm_bo.maximize(init_points=20, n_iter=4)

print('It takes %s minutes' % ((time.time() - start)/60))

XGBoost

start_time = time.time()

model_xb =

XGBClassifier(objective='multi:softmax',tree_method='approx').fit(X_train,

y_train)

128

score_xb = model_xb.score(X_test,y_test)

Ypred_xb = model_xb.predict(X_test)

recall_xb = metrics.recall_score(y_test, Ypred_xb, average = 'macro')

precision_xb = metrics.precision_score(y_test, Ypred_xb, average = 'macro')

f1score_xb = metrics.f1_score(y_test, Ypred_xb, average='macro')

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_xb)

y_preb_probs = model_xb.predict_proba(X_test)

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr")

MATT = matthews_corrcoef(y_test, Ypred_xb)

print("accuracy : {}\n".format(score_xb),

 "precision : {}\n".format(precision_xb),

 "recall : {}\n".format(recall_xb),

 "f1 score : {}\n".format(f1score_xb),

 "kappa : {}\n".format(CohenKappa),

 'ROC : {}\n'.format(ROCAUC),

 'MATTEW : {}\n'.format(MATT))

end_time = time.time()

print("Execution time: ", end_time - start_time,"secs")

confusion_matrix(y_test, Ypred_xb)

CATBoost

start_time = time.time()

model_cb = CatBoostClassifier(border_count=None, verbose=False).fit(X_train,

y_train)

score_cb = model_cb.score(X_test,y_test)

Ypred_cb = model_cb.predict(X_test)

recall_cb = metrics.recall_score(y_test, Ypred_cb, average = 'macro')

precision_cb = metrics.precision_score(y_test, Ypred_cb, average = 'macro')

f1score_cb = metrics.f1_score(y_test, Ypred_cb, average='macro')

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_cb)

y_preb_probs = model_cb.predict_proba(X_test)

129

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr")

MATT = matthews_corrcoef(y_test, Ypred_cb)

print("accuracy : {}\n".format(score_cb),

 "precision : {}\n".format(precision_cb),

 "recall : {}\n".format(recall_cb),

 "f1 score : {}\n".format(f1score_cb),

 "kappa : {}\n".format(CohenKappa),

 'ROC : {}\n'.format(ROCAUC),

 'MATTEW : {}\n'.format(MATT))

end_time = time.time()

print("Execution time: ", end_time - start_time,"secs")

confusion_matrix(y_test, Ypred_cb)

Hist Gradient Boosting

start_time = time.time()

model_hg =

HistGradientBoostingClassifier(loss='categorical_crossentropy').fit(X_train,

y_train)

score_hg = model_hg.score(X_test,y_test)

Ypred_hg = model_hg.predict(X_test)

recall_hg = metrics.recall_score(y_test, Ypred_hg, average = 'macro')

precision_hg = metrics.precision_score(y_test, Ypred_hg, average = 'macro')

f1score_hg = metrics.f1_score(y_test, Ypred_hg, average='macro')

CohenKappa = metrics.cohen_kappa_score(y_test, Ypred_hg)

y_preb_probs = model_hg.predict_proba(X_test)

ROCAUC = roc_auc_score(y_test, y_preb_probs, average='macro', multi_class="ovr")

MATT = matthews_corrcoef(y_test, Ypred_hg)

print("accuracy : {}\n".format(score_hg),

 "precision : {}\n".format(precision_hg),

 "recall : {}\n".format(recall_hg),

 "f1 score : {}\n".format(f1score_hg),

 "kappa : {}\n".format(CohenKappa),

 'ROC : {}\n'.format(ROCAUC),

130

 'MATTEW : {}\n'.format(MATT))

end_time = time.time()

print("Execution time: ", end_time - start_time,"secs")

confusion_matrix(y_test, Ypred_hg)

Deep Neural Network

X = np.load("/gdrive/MyDrive/Datasets/Projects/Mechanical Faults/My

Specialization Project/Final Data/X.npy")

Y = np.load("/gdrive/MyDrive/Datasets/Projects/Mechanical Faults/My

Specialization Project/Final Data/y.npy")

print(X.shape)

print(Y.shape)

print()

print(len(np.unique(Y)))

print(np.unique(Y))

from sklearn.preprocessing import LabelEncoder

X = X.astype('float32')

Y = LabelEncoder().fit_transform(Y.astype('str'))

print(len(np.unique(Y)))

print(np.unique(Y))

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

X = scaler.fit_transform(X)

X_transform = X.reshape(X.shape[0], X.shape[1], 1)

print(X.shape)

print(X_transform.shape)

X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.2,

random_state=1)

print(X_train.shape)

print(y_train.shape)

131

print(X_test.shape)

print(y_test.shape)

"""# Model Definition"""

Commented out IPython magic to ensure Python compatibility.

%cd /gdrive/MyDrive/Datasets/Projects/Mechanical Faults/Models

"""## Model Implementation"""

keras.backend.clear_session()

model = Sequential()

model.add(Dense(50, activation='relu'))

model.add(Dense(100, activation='relu'))

model.add(Dense(200, activation='relu'))

model.add(Dense(300, activation='relu'))

model.add(Dense(200, activation='relu'))

model.add(Dense(100, activation='relu'))

model.add(Dense(50, activation='relu'))

model.add(Dense(9, activation='softmax'))

opt = RMSprop(learning_rate=0.0001, momentum=0.1, centered=False)

model.compile(loss='sparse_categorical_crossentropy',

 optimizer=opt,

 metrics=['accuracy'])

es = EarlyStopping(monitor='val_loss', verbose=1, patience=20)

mc = ModelCheckpoint('final_model.h5', monitor='val_loss', verbose=1,

save_best_only=True)

#model.summary()

history = model.fit(X_train, y_train,

 validation_split=0.2,

 batch_size=None,

 callbacks=[es, mc],

 epochs=150)

plt.style.use('ggplot')

plt.plot(history.history['accuracy'])

132

plt.plot(history.history['val_accuracy'])

plt.title('Model Accuracy')

plt.ylabel('Accuracy')

plt.xlabel('Epoch')

#plt.ylim([0, 1])

plt.legend(['Train', 'Validation'], loc='lower right')

plt.show()

plt.style.use('ggplot')

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title('Model Loss (Sparse Categorical Crossentropy)')

plt.ylabel('Sparse Categorical Crossentropy')

plt.xlabel('Epoch')

#plt.ylim([0, 1.5])

plt.legend(['Train', 'Validation'], loc='upper right')

plt.show()

"""## Model Test"""

model = load_model('final_model.h5')

pred = model.predict(X_test)

eval = model.evaluate(X_test, y_test)

recall_dnn = metrics.recall_score(y_test, np.argmax(pred, axis=-1), average =

'macro')

precision_dnn = metrics.precision_score(y_test, np.argmax(pred, axis=-1), average

= 'macro')

f1score_dnn = metrics.f1_score(y_test, np.argmax(pred, axis=-1), average='macro')

CohenKappa = metrics.cohen_kappa_score(y_test, np.argmax(pred, axis=-1))

ROCAUC = roc_auc_score(y_test, np.argmax(pred, axis=-1, average='macro',

multi_class="ovr"))

MATT = matthews_corrcoef(y_test, np.argmax(pred, axis=-1))

print()

print("accuracy : {}".format(round(eval[1], 7)))

print("precision : {}".format(round(precision_dnn, 7)))

print("recall : {}".format(round(recall_dnn, 7)))

print("f1 score : {}".format(round(f1score_dnn, 7)))

print("Kappa : {}".format(round(CohenKappa, 7)))

print("ROCAUC : {}".format(round(ROCAUC, 7)))

133

print("MATT : {}".format(round(MATT, 7)))

print()

confusion_matrix(y_test, np.argmax(pred, axis=-1))

model.summary()

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Sina Yousefi - candidate no:10010

A Data-Driven Approach for Fault
Classification of a Manufacturing
Process

Master’s thesis in RAMS Engineering
Supervisor: Professor Shen Yin
May 2022

M
as

te
r’s

 th
es

is

