Jhonattan Toloza

Moving from Pragmatic to formal model: HYPSO reliability evaluation using activity approach and AltaRica

Master's thesis in Reliability, Availability, Maintainability, and Safety (RAMS) Supervisor: Antoine Rauzy June 2022

Master's thesis

NDU Norwegian University of Science and Technology Faculty of Engineering Department of Mechanical and Industrial Engineering

Jhonattan Toloza

Moving from Pragmatic to formal model: HYPSO reliability evaluation using activity approach and AltaRica

Master's thesis in Reliability, Availability, Maintainability, and Safety (RAMS) Supervisor: Antoine Rauzy June 2022

Norwegian University of Science and Technology Faculty of Engineering Department of Mechanical and Industrial Engineering

Preface

This report is focused on the develop of a methodology that could be used to move easily from pragmatic models, often used in the Model-based System Engineering, to a formal models used in RAMS and Model-Based Safety Analysis. The thesis is part of the two-year International Master's thesis in Reliability, Availability, Maintainability, and Safety (RAMS) at NTNU and was carried during the spring semester of 2022.

The study case used to present the methodology proposed is from HYPSO project, a group from the SmallSat Lab in NTNU. The activity approach idea used to develop the methodology was provided by Antoine Rauzy.

This document is targeted to students and researches interested on system engineering concepts and how they could be used together with RAMS. It may be also interesting for people looking for space hazards on satellites.

Acknowledgment

I want to express my deepest gratitude to my supervisor, Professor Antoine Rauzy, for his support, guidance and comprehension throughout the thesis development. I also want to thank Cecilia Haskins for inviting me to join the HYPSO project and Evelyn Honoré-Livermore for her willingness to share her knowledge on the satellite project. Lastly, I want to thank my HYPSO teammates for answering all questions I had about the project and my friends and family for its emotional support.

Abstract

Systems are becoming more complex over time, requiring interdisciplinary groups to develop them. Moreover, systems are more interconnected, meaning that different systems should be designed to work together with others in a System on System environment. Therefore, more engineering groups are moving from paper-based to model-based system engineering approaches. Even though using models is not new in engineering, the MBSE concept became popular after 2007 when INCOSE introduced the MBSE initiative. From now on, the main limitation MBSE has had to overcome is the integration of different models that use different languages. Even though software suites nowadays offer a high level of integration, those solutions are out of the reach for several users in terms of cost. They do not offer the flexibility that uses different but well-known model languages.

This limitation is more remarkable for RAMS modeling. Even though the concept of MBSA has been used since 1990, integrating those techniques with a pragmatic approach like MBSE is not easy. The development of approaches focused on translating pragmatic models to a formal structure becomes relevant to making MBSE languages compatible with the formal ones used to get relevant RAMS calculations. Therefore, this work proposes the activity approach as an additional step in the system architecture development. The activity approach is thought to use logic and structure so that it could be used as the link between the two different model types.

This document uses the Cube Architecture framework as the first step of Model-Based System Engineer and introduces the activity concept in it. The case study is the HYPSO project, developed by the NTNU small Satellite lab. Satellites have to deal with unique conditions not seen on earth. Therefore, it is required prior to the development of the activity approach to analyze the hazard and the respective hazardous events, as well as their consequences.

Activity approach logic is translated to a formal structure. Subsequently, AltaRica is used to model the activity approach in a formal language.

Keywords: System Architecture, Model-based system architecture, Model-based Safety Assessment, SmallSat, Reliability.

Contents

	Pref	face	i		
	Ack	nowledgment	ii		
	Abs	tract	iii		
1	Acro	onyms	vi		
2	Intr	roduction	1		
	2.1	Background	1		
	2.2	Objectives	3		
	2.3	Approach	3		
	2.4	Limitations	4		
3	The	eoretical background and literature review	5		
	3.1	System engineer and Model-Based System Engineer	5		
	3.2	Hazard panorama	9		
		3.2.1 Environment	10		
		3.2.2 Vacuum environment	17		
		3.2.3 Human error	18		
4	Case study				
	4.1	Methodology	19		
		4.1.1 System Architecture	19		
		4.1.2 Activity approach	20		
		4.1.3 Failure mode and consequence analysis	22		
		4.1.4 Failure rate parameters	22		
		4.1.5 Formalization method	23		
		4.1.6 Use AltaRica to perform the reliability analysis based on activity approach .	23		
	4.2	Results	24		
		4.2.1 System Architecture	24		
		4.2.2 FMEA results	29		
		4.2.3 Activitiies and formalization	30		

		4.2.4 Altarica results	31
5	Con	nclusions	35
	5.1	Discussion	35
	5.2	Summary and Conclusions	36
	5.3 Recommendations for Further Work		38
Bi	bliog	graphy	39

Bibliography

Chapter 1

Introduction

1.1 Background

Design a system is becoming more demanding over time. Designers shall now deal with elements that require the support of several disciplines. Moreover, systems do not work as a stand-alone unit anymore; they are now part of a more complex system (System of systems) Friedenthal et al. (2015). With many variables to consider, project managers need a holistic perspective that considers not only the different disciplines required to develop the task but also the risk associated with the project, the external demands, and the ways the system will communicate with that external environment. System engineering, based on the system thinking TOP-DOWN perspective, is one of the paradigms used in project management. According to International Council on System Engineering INCOSE, "Systems Engineering is a transdisciplinary and integrative approach to enable the successful realization, use, and retirement of engineered systems, using systems principles and concepts, and scientific, technological, and management methods" International Council on System Engineering INCOSE. Thus, system engineer should break down the project from the general perspective to the details. Throughout that path, he or she will have to handle different kinds of models other disciplines use to simulate the process required Rauzy and Haskins (2019). System engineers need then an iterative tool that can be used to handle both technical and management functions and to be able to deal with the inherent changes in the design process Friedenthal et al. (2015).

However, SEBoK emphasize that the role of a system engineer is to ensure a successful lifecycle using using the tools he or she has available and assuring the quality of those process that are out of his or her scope SEBoK Editorial Board (2021). This mean that system engineering process is a constant feedback between internal and external stakeholders to fulfill the requirement or evaluate modifications that could affect the cost, duration or capacity (Trade-off analysis). Therefore, system engineers prefer frameworks and methodologies where system analysis is based on diagrams and flowcharts that describe internal and external requirements, as well as logic step process shall follow during the lifecycle Estefan et al. (2007) Ma et al. (2022). Languages as SYSML, widely used in the industry Ma et al. (2022), provides an interface that supports the follow-up of specifications, analysis, design, verification and validation SYS (2021). However, since system engineer relies on different groups for each are of expertise, several models should be integrated to develop all the parts of the system. The MBSE approach aims to keep a better system traceability SEBoK Editorial Board (2021) compared with the traditional paper based one, since any modification done by one member of the design crew will be immediately notified to the others. It is clear then that the challenge for MBSE approach is to make all system models compatible, or at least a common node that connects all the model and is able to share the relevant information between them. In fact, Rauzy and Haskins states that synchronization between models is a big challenge to fully implement a Model-Based engineering approach Rauzy and Haskins (2019). Most advanced suites nowadays, as Catia from Dassault Systémes, are able to cover most of the disciplines required for Model-Based System Engineering, even integrating other model languages as Simulink and safety analysis tools as FMEA and FTA Dassault Systémes (2022).

However, not all the players in the industry can afford those advanced suits. Moreover, the tools included are limited and not flexible, meaning that it is not possible to perform other safety analysis approaches not included in the suite. As stated by Rauzy and Haskins (2019), incorporate safety analysis (that requires a formal model) to System architecture models (Pragmatic models) could lead to incomplete and hard to understand results. Hence, It is required then to develop a methodology able to translate a system architecture model in a formal code. Batteux et al. Batteux et al. (2019) shows that is possible to create a formal model and then compared with the system architecture approach using an abstraction process that transform both models to the same language. Using the same logic, this work proposes the inclusion of the Activity approach (proposed by Antoine Rauzy) in the cube architecture framework generates an structured system understanding that is easy to move to a formal model. The approach cover all the elements described in the system architecture (Use cases, Operational scenarios, Functional architecture, physical architecture and interfaces), merging them in a logical structure that describes perfectly how transitions between different operational scenarios occur, the conditions that must be fulfilled so the activity occur, the activity transition time, the functional or physical elements involved on them and what are the external (Interface analysis) or internal (FMEA) circumstances that could stop the activity. The combination of activities should then depict the system functionality during its life-cycle. It is important to clarify that this activities should be defined by the design team. In fact, since this approach is part of the cube architecture framework, the design process's inherently iterative nature can generate that activities development leads to reformulate the design. This approach also prevents ambiguity: Just one activity can be active at the time, so each activity should have a unique combination of triggers and conditions.

The concept described before is used in this work to analyze the Hypso Satellite System. HYPSO program is an initiative developed by the NTNU Small Satellite Lab. The satellite, even though it is a small system, has several transitions during its operation. Thus, depending on the requirement, the satellite has different operational modes that activates sequentially based on what operation needs, making it highly suitable to be analyzed using the activity approach.

1.2 Objectives

The objectives of the thesis are listed below

- 1. Create a pragmatic model for the HYPSO satellite using the cube architecture framework
- 2. Identify hazards, hazardous events and their consequences.

Evaluate the hazards the system could face during its life cycle.

Determine the hazardous events related to the hazards.

Analize the consequences of these hazardous events on the satellite performance.

- 3. Analyze system transitions using the Activity approach and translate the pragmatic language structure to a formal one.
- 4. Perform a reliability analysis using a formal model based on the activity logic approach.

1.3 Approach

The approach used the develop the thesis is described below:

- Literature review of the relevant topics for this work. The author used NTNU Oria Database as main source of information. Information and documents from recognized agencies as NASA, as well as information from organizations like INCOSE were also used in the developement of this document. Sources as webpages or news reports were used to provide context. Literature review is divided in two main topics: the first one is related to the benefits and limitations Model-Based System engineer approach has nowadays, how Model-Based Safety Assessments is being integrated to it and what are the constraints in terms of RAMS calculations. The second part analyze the hazards a satellite shall face during its lifecycle and the consequences they can have on the mission.
- 2. Apply the Activity approach on the case study. Use the cube architecture framework to obtain the satellite pragmatic model.

- 3. Perform a FMECA: Evaluate each component from the system architecture to determine the failure mode based on the hazards and hazardous events identified in the literature review. Analyze the possible consequences for each failure mode and find in the literature a failure rate that can be used in the model. Depending on the type of failure mode, failure rates can be obtained in databases, MIL-HDBK-217F or using radiation models as Spenvis.
- 4. Apply the activity approach to translate the pragmatic language and FMECA results to a more formal structure. The explanation how this process shall be done is explained further in the work.
- 5. Use AltaRica to model the system reliability, using as input the activity approach result.

1.4 Limitations

Even though system architecture analysis considered all the different components in the HYPSO ecosystem, the reliability analysis study just consider the satellite. On the other hand, even if the hazard evaluation contemplates organizational and design hazards, these are not included in the FMEA evaluation. In order to simplify the analysis, hazardous events from launching and satellite deployment are not included in the study. Lastly, parameters used in the study are obtained from datasources and standards, since there is not information regarding the real components used in the HYPSO satellite.

Chapter 2

Theoretical background and literature review

This chapter is divided in two main subjects. Section 3.1 presents the theoretical background and the benefits of system engineer discipline provides to overcome the challenge of designing every time more complex and interconnected systems. It also explain the Model-Based System Engineer concept, and the challenges for its implementation due to the complex integration of several different models involved in the development of a system .Lastly, the section introduces the cube architecture framework, a pragmatic approach based on design thinking that proposes the decomposition of the system in six main co-related perspectives. Methodology in section 4.1 introduces o the cube architecture framework a complementary concept that bind all the six faces of the cube together in a logical approach that can be used to translate manually the pragmatic language to a formal one.

The case study used to apply the new approach mentioned above is a CubeSat developed by NTNU SmallSatLab. Therefore, a thorough investigation on space environment was required to analyse all the possible scenarios the satellite has to face during its life-cycle. Hence, section describes the hazards and hazardous events that a satellite faces during its mission. The knowledge gathered during the literature review is used to perform a FMEA to the main components in the Case Study.

2.1 System engineer and Model-Based System Engineer

Design a system is becoming more demanding over time. Designers shall now deal with elements that require the support of several disciplines. Moreover, systems do not work as a stand-alone unit anymore; they are now part of a more complex system (System of systems) Friedenthal et al. (2015). With many variables to take into account, project managers need the support of a holistic perspective that considers not only the different disciplines required to

Figure 2.1: Key Elements of Systems Engineering from SEBoK Editorial Board (2021)

develop the task but also the risk associated with the project, the external demands, and the ways the system will communicate with that external environment. System engineering, based on the system thinking TOP-DOWN perspective, is one of the paradigms that support project management. According to International Council on System Engineering INCOSE, "Systems Engineering is a transdisciplinary and integrative approach to enable the successful realization, use, and retirement of engineered systems, using systems principles and concepts, and scientific, technological, and management methods" International Council on System Engineering INCOSE. Figure 3.1 shows the key elements of system engineering and the interaction with the different actors in the design process. System engineer shall be able, supported by the leaders of each area of knowledge involved in the project, to translate customer requirements into technical specifications. Those coarse specifications shall be broken down into detailed ones that can be followed up during the design process. Requirements traceability through the different level of abstraction become essential to project with high level of complexity Dubois et al. (2010), allowing system engineers to follow up the progress and perform trade-off analyses if required.

In turn, system requirements could be translated to system architecture. Pohl and Sikora propose the COSMOD-RE method to breakdown requirements and architecture artefacts in a co-design process Pohl and Sikora (2007). As Pohl and Sikora describe, system requirements leads to functional and quality requirements that shall be verified and validated, while system architecture presents the functional and physical components required to fulfill the requirement, as well as the interfaces between the system and the environment. This breakdown process and the subsequent integration and verification is depicted in the V-model. Figure 3.2 shows a very detailed V-model designed by Bender, where system development is divided into hierarchical levels Gräßler et al. (2018). Throughout that process, system engineers shall handle

Figure 2.2: V-model from Gräßler et al. (2018)

different kinds of models that different disciplines use to simulate the process required Rauzy and Haskins (2019) Dubois et al. (2010). The use of more and more models over time, specially in complex projects, has done that system engineers move from the former static document-based paradigm to the more flexible Model-Based System Engineer approach. Instead of controlling the documentation about the system, MBSE control the model of the system, in which is integrated the requirements, design, and validation and verification steps depicted in Figure 3.2 Friedenthal et al. (2014). MBSE requires then an iterative tool that can be used to handle both technical and management processes and being able to deal with the inherent changes in the design process Friedenthal et al. (2015). However, engineers use today several softwares to create an abstraction that represent a part of the physical concept; the more different model used the more probable to find an incompatibility among the different software language and different level of abstraction Rauzy and Haskins (2019). Despite the high number of model used nowadays, Haskins and Rauzy grouped them in two big families: pragmatic and formal models Rauzy and Haskins (2019). Pragmatic models are aimed to communicate ideas among the team or the stakeholders, while formal models are developed to create something. It is entirely valid to use both in a project since their purpose is utterly different; however, trying to mix them in a unique one generates an information overload that makes the model unable to communicate and at the same time too complex to perform calculations Rauzy and Haskins (2019). An option to overcome this situation is using a tool or and approach that is able to translate one language to another. Batteux et al. (2019) did something similar when they wanted to synchronize system architecture and safety models: the two different models were abstracted into a pivot language, make them able to be compared. Despite their lack of calculation power, pragmatic models are necessary for system engineers to follow up and have a big picture of the project.

One of those models is the system architecture. Rauzy defines system architecture as a discipline that aims to improve the communication among stakeholders, making explicit key parts of the system that answer the question words why and how thy system is designed, what does it include, where it is in relation to it environment and when it is performing specific tasks Rauzy (2022). System architectures are usually developed using Architecture frameworks. According to ISO 42010:2011, and architecture framework should create architecture descriptions; developing architecture modeling tools and set process to facilitate the communication among the stakeholders iso (2011). Based on these requirements, Rauzy developed the Cube architecture Framework, a method that relies on the combination of six perspectives of the system that are related. The six faces of the cube Rauzy proposes are:

- Sketch: Coarse system description where design team depicts their system understanding and possible configuration. It could be considered as the first step to follow, however, any modification could lead the design group to move back the sketch.
- Use cases: Use scenarios describes how the system works and how it could fail. Use cases shall be refined, moving from coarse use cases description at the beginning of the project to a detailed ones once the detailed design is closed.
- Interface: How the system interacts with it environment. It is crucial to determine what is inside and what is outside the system boundaries.
- Functional architecture: System shall perform a series of function that fulfill the system requirement. Functions shall be decomposed into sublayers in order to make easier the functional analysis. Function descriptions shall not be ambiguous.
- Physical architecture: Elements that perform the functions described in the physical architecture. It is important to clarify that functional and physical architecture is not always a one-one relation; there could be cases where one physical element can perform different functions (For example, a controller in a Safety integrated Function SIF can also be used by another SIF)
- Operational modes: Describes the different modes the system can work during its lifecycle.

Given the challenges and complexity involved in designing, testing, and operating a satellite, Model-Based System Engineering can be used to manage the project during its life cycle. Kaslow et al. Kaslow et al. (2015) developed a model based on SysML for the Radio Aurora Explorer satellite. This work intended to generate a model to be used as the base of further Cube-Sat developments. Kaslow et al. work also demonstrates that including into the analysis other subsystems that interact with the satellite, for instance, ground stations or launching services, makes the model more robust but more complex Kaslow et al. (2015) Kaslow et al. (2016) Kaslow et al. (2017). Kaslow et al. (2018) included further in the model technical measurements in order to track and evaluate progress. Likewise, Gao et al. (2019) used the MBSE methodology to design a communication satellite, considering as a desirable output from the model a fault tree or FMECA analysis.

In parallel with MBSE, MBSA is an emerging discipline that is being used to perform safety and reliability analysis in complex systems. Similar to MBSE, the MBSA approach relies in computational tools to analyse systems instead of traditional paper methods like fault tree and FMEAGradel et al. (2022). Safety and reliability analysis based on models are more flexible and easy to adapt to system improvements, more level of details in further stages of the design process or modifications Li et al. (2014). Li et al. (2014) and Gradel et al. (2022) used AltaRica and Simulink tools respectively to perform safety analysis

2.2 Hazard panorama

Several factors influence in CubeSats' reliability. The first one is the space environment, where high energy radiation, low heat dissipation, and vacuum condition make it harsh for any equipment sent to orbit. The second aspect to consider in this analysis is human error as the probable cause of failures during the different stages of the process (Design, Integration, Assembly, Testing, Launching and Deployment, and regular operation). This analysis also considers failures due to organizational causes; the HYPSO project is designed and developed by MSc and Ph.D. students so that staff will change during the project life-cycle. However, the hazards do not affect all the components at the same way, yet the same hazard could lead to different hazardous events for different components. Figure 3.3 shows different hazards and hazardous events affecting a single component in the satellite.

Figure 2.3: Cause effect diagram for HSI subsystem

Hazard panorama analysis is paramount to understand all the possible satellite parts failure mode. This literature review also include sources and tools used to analyse and simulate space conditions based on satellite mission parameters.

2.2.1 Environment

2.2.1.1 Radiation

Satellites in Low-Earth orbit must face high radiation doses that affect internal components. This radiation could be categorized into three main sources: Galactic Cosmic Rays (GCR), electron and protons trapped in the geomagnetic field, also known as Earth Radiation Belt (ERB), and Solar Particle Events (SPE) Benton and Benton (2001). GCR are high-energy subatomic particles, like protons, alpha particles, and heavy ions Benton and Benton (2001). Those particles travel across the space close to light speed, making them difficult to stop with shielding Gil (2021). The level of radiation depends on the satellite's inclination and its altitude. Benton and Benton (2001) and Martinez (2012) states that radiation exposure is proportional to the orbit altitude, especially in the South Atlantic Anomaly (SSA), an area where the magnetic field becomes weaker than radiation flux concentrates on it. On the other hand, highly inclined orbits, as near-polar ones, faces more radiation levels from GCR since those are funneled to the poles across the magnetic field lines Benton and Benton (2001). Regarding SPE effects in Satellites, they are more severe in higher latitudes for the same conditions GCR's have Benton and Benton (2001). Given the importance of radiation effects in Space missions, several national agencies and universities have created models and software tools that simulate how much radiation the satellite will deal with during its life cycle, considering the orbit inclination and altitude. Thus,

CubeSats designers use software like SPENVIS, OMERE and FASTRAD, STK Space Environment Effect Tool, that are based on CREME96 and AE-8 and AP-8 radiation models Benton and Benton (2001) Secondo et al. (2018). Radiation could affect electronic elements, optical elements (HSI and RGB camera), electric power supply subsystem, other hardware elements as Attitude Control and Determination System (ACDS), and frame and supports.

2.2.1.1.1 Electronic components According to Maurer et al. (2008), Petkov (2003) and Wilson et al. (2016) radiation affects electronic components in two ways: cumulative effects and Single-Event effects. In terms of reliability and risk analysis, cumulative effects can be considered a degradation process that reduces the performance of electronic devices, leading to a fail state. On the other hand, Single-Event could be sudden failures that jeopardize or reduce the satellite capacity depending on the failed component criticality or non-destructive effects that leads to loss of data or recoverable system bugsMaurer et al. (2008) Petkov (2003). These two main failure modes can be subdivided depending on how they affect electronic devices. Thus, cumulative effects break down in three failure modes: Total Ionizing Dose (TID), Enhanced Low-Dose-Rate sensitivity (ELDRS), and displacement damage dose (DDD) Maurer et al. (2008)Petkov (2003) Wilson et al. (2016). Likewise, Single-Events is subdivided in Single-Event Upset (SEU), Single-event Latch-up (SEL), Single-Event Burnout (SEB), Single-Event Gate rupture (SEGR), Single-Event Transients (SET) and Single Event Functional Interrupt (SEFI) Wilson et al. (2016). It is important from RAMS perspective to know how these failure modes are triggered and the consequences they could have on the mission:

- Total Ionizing Dose (TID): It is a degrading failure mode where radiation modifies semiconductor electric properties over time. From an atomic perspective, incident radiation modifies circuit atoms, taking electrons and creating Electron-holes across the material. This process accumulates over time, reducing electronic device performance over time and finally, a failure.Petkov (2003) Martinez (2012). From the macroscopical point of view, the more radiation the electronic circuit accumulates, the more current it will require to work Maurer et al. (2008). TID risk can be mitigated from design: it is possible to calculate the expected accumulated radiation during the mission life-cycle, based on determined orbit and altitude, using software and tools described before. Based on calculated accumulated radiation value, electronic components are recommended to survive the exposure of 2X the expected radiation during life-cycle Petkov (2003). If possible, a radiation test can be performed under MIL-STD-881-1, or equivalent standard Petkov (2003). It is also possible to monitor the current consumption during the operation phase and model the degrading process to improve upcoming mission designs.
- Enhanced Low-Dose-Rate sensitivity (ELDRS): According to Nunez et al. (2014) and Department of Defense USA (2019), ELDRS occurs to bipolar linear components exposed

to Low dose radiation rates. To consider an electronic circuit as ELDRS, the Low-Dose Rate Enhancement Factor should be higher than 1.5 IEEE Staff Corporate Author (2010). Likewise, the Enhanced Factor is calculated as the ratio of the relative degradation at low and high dose IEEE Staff Corporate Author (2010). Even though a low dose rate is the most common environment satellite will deal with, testing electronic devices at that conditions are not feasible for SmallSats designers since the test period could be weeks or even months Maurer et al. (2008). This failure mode could reduce the theoretically expected life-cycle if critical components are affected by ELDRS.

- Displacement Damage Dose (DDD): Displacement damage occurs when incident ions move atoms out of their position, creating vacancy-like and interstitial defects Maurer et al. (2008) Petkov (2003). This kind of defect deteriorates the material physically, reducing the performance of the elements affected by them. DDD can be calculated using the Non-Ionizing Energy Loss (NIEL) factor, which is the rate of energy deposit in the material that leads to a defect formation Inguimbert and Messenger (2012). Petrov recommends using for Reliability calculations 2X the radiation dose expected during the life cycle Petkov (2003).
- Single-Event Upset (SEU): This kind of failure mode is typical of elements with bi-stable elements like SRAM, DRAM and microprocessors Petkov (2003) Maurer et al. (2008). This failure can be defined as a software fail, where bit-flips occur due to radiation-induced energy, corrupting the information contained on the electronic element Maurer et al. (2008). Wilkinson et al. (1991) shows an example of SEU failure, where a state change in the RAM in the Attitude Control System of TDRS-1 satellite provoked the satellite were had anomalous control responses. According to Maurer et al. (2008), there are two parameters used to characterize SEU sensitivity: the threshold LET and the saturation LET cross-section. High values of LET threshold mean Low SEU sensitivity, while high cross-section values indicate high sensitivity to SEU Wilkinson et al. (1991). Electronic devices can be characterized by counting the number of SEU during a radiation test.
- Single-Event Latch-up (SEL): A typical CMOS circuits failure mode, a latch occurs when current flow through parasitic transistors due to radiation ionization Maurer et al. (2008) Petkov (2003). The current increase in the latched part could lead to a thermal failure if the anomalous state is not detected Maurer et al. (2008). However, the latch can be eliminated by resetting the power supply Martinez (2012). Department of Defense USA (2019) provides a procedure to perform latch-up testing on electronic devices to detect susceptibility to specific dose rates. It is important to detect which elements are prone to Latch-up since satellite designers can include detection methods to prevent Latch-up catastrophic failures.

- Single-Event Burnout (SEB): A failure mode related with power transistors (MOSFET and Bipolar) Maurer et al. (2008) Petkov (2003) Martinez (2012). Similar to SEL, radiation ionization induces a high-current condition in the device, melting down the material due to overheating Petkov (2003) or damaging one or more of the MOSFET parallel island architecture Maurer et al. (2008). Therefore, to mitigate SEB, electronic devices can be tested to determine the circuit's survival voltage and then designing the satellite derating that value at 75 percent Petkov (2003).
- Single-Event Gate rupture (SEGR): A failure mode presents in power devices, programmable devices, and components with thin dielectric layer Petkov (2003). SEGR occurs when incident ions induce an electric field across the dielectric element; When this field is higher than the dielectric breakdown field, a short circuit occurs, affecting permanently the area Petkov (2003). Similar to SEB, Petkov (2003) recommends derating survival voltage at 75 percent.
- Single-Event Transients (SET): Hass and Ambles (1999) defines SET as a glitch in a combinational logic due to a hit of an ion particle. It generates a voltage disturbance in the node that can be propagated through the circuit. Linear regulators and DC/DC converters are prone to suffer SET failures Maurer et al. (2008). Maurer also states that many DC/DC and linear regulators are not suitable for using FPGAs due to the high voltage sensitivity that element has. Analog-to-digital converters are also affected by SET, corrupting the data Maurer et al. (2008). This kind of failure can be detected during SEU testing and are more probable when the SEU cross-section increases Maurer et al. (2008).
- Single-Event Functional interrupt (SEFI): SEFI is a particular case of SEU, where the upset set the device in an unrecoverable mode, stopping the normal function Maurer et al. (2008)Martinez (2012). Depending on the failure, it can be possible to reset the system in order to restore system functionality Martinez (2012).

There are different options the design team can use to reduce the probability of failure due to radiation. Cumulative effects can be mitigated using shields, derating, or conservative circuit design Maurer et al. (2008). However, all the options presented before increase system complexity and, consequently, the final product's cost. Thus, it is necessary to perform trade-off analysis to know which option or combination fits better in the design based on the system requirement. On the other hand, despite there being insensitive SEE electronic devices, there are equivalent SEE sensitive component devices that provide better capability Maurer et al. (2008). Thus, in the case of selecting sensitive components for the satellite design, there should be a thorough analysis that proposes mitigation measures that overcome SEE when they happen. Likewise, as part of the component analysis step in the approach proposed in his document, Wilson et al. Wilson

et al. (2016) presents general recommendations that NASA provides for the part-selection process. In case it is not possible to perform radiation tests on the electronic components design team selected for the satellite, Wilson et al. provide a way to outweigh representative radiation data Wilson et al. (2016).

2.2.1.1.2 Optical components and camera sensor The optical lens suffers from darkening when ionizing radiation left or remove electrons on the material, creating defects on lenses and consequently reducing the image quality White and Wirtenson (1993). White and Wirtenson (1993) states that a non-RAD-HARD lens tends to turn dark by doses around a few krad, and become opaque to ultraviolet and visible radiation with doses around hundreds of krad. Likewise, Petkov (2003) states that Displacement Damage also affects the lenses surface, degrading the quality. Therefore, it is recommended to use RAD-HARD lenses in satellite designs. However, there are drawbacks when using those lenses: Cerium, the material used to harden lenses against radiation, makes the element more absorptive than the non Hardened option, especially on the ultraviolet and short visible wavelengths White and Wirtenson (1993). On the other hand, Gusarov et al. (2002) studied the radiation effect on the refraction index of both radiations hardened and non-hardened glasses. Refraction is when light changes its direction when it changes from one medium into another. Gusarov et al. (2002) states that RI can change at levels close to 1x10-5. Depending on the type of mission, this parameter could become a concern to satellite designers.

Regarding the camera sensor, this element suffers from a special degradation process. Wang et al. (2018) studied the performance degradation of HD camera non-radiation-hardened sensors under radiation environment at different dose rates. They found that there could be a significant reduction of SNR if the radiation dose is increased. They also found that the dark pixels are more affected by radiation than brighter ones.

2.2.1.1.3 Batteries and solar panels Knap et al. Knap et al. (2020) analyzed the effect of radiation on batteries. They found that, even though there could be a loss of around 11.2 percent at 5.7Mrad, the total expected radiation at LEO orbit a satellite will accumulate during its life-cycle is between 10-30krad. This means that degradation due to TID could be near 0.1 percent. On the other hand, solar cells present degradation patterns that should be considered during the satellite design phase. Orlava et al. Orlova et al. (2015) found that radiation could decrease the solar cell efficiency from an initial 21.1 percent to 16.3 and 17.8 percent after fast neutron and electron irradiation, respectively. Satellite designers should consider this degradation process when energy generation is compared with energy requirements.

2.2.1.2 Vibration

Vibration is presented during the launching and deployment process. According to Petrov, acoustic and random vibration and pyrotechnic shock are the three main satellite vibration sources Petkov (2003). However, due to the size and additional protection provided by the launchpod, NASA considers that a random vibration test is enough to assess a CubeSat Goddard Space Flight Center (2019). Table 3.1 shows the minimum vibration levels a satellite below 50kgs should be tested if the launch vehicle is unknown. If the launch vehicle has already been selected, the service supplier should provide its vibration profile. Vibration could affect the satellite structure,

	Table 2.1: NASA minimi	um vibration level test NASA (2017b)	
		NASA minimum vibration level test	
20 Hz	@	0.01g2/Hz	
20 to 80 Hz	@	+3dB/oct	
80 to 500 Hz	@	0.04g2/Hz	
500 to 2000 Hz	@	-3dB/oct	
2000 Hz	@	0.01g2/Hz	
Overall rate	=	68grms	

T 11 0 1 NIACA 1

the electronic components, and the optical elements mechanically.

2.2.1.2.1 Electronic components Vibration affects soldered joints in electronic components. According to Jannoun et al. Jannoun et al. (2017), solder joints are the most critical zone in those kinds of elements. Even though vibration is present just in the launching and deployment stage, the loads the satellite suffers can be high enough to provoke a failure. Therefore, it is important to mitigate the vibration effects, insulating or damping the vibrations so that electronic components receive a fraction of the total load.

2.2.1.2.2 Optical components Vibration during launching could provoke misalignment in the camera components. Even a minimum dislocation of one of the optical elements can generate distortion in the image, leading to quality degradation. There are studies and designs aimed to correct camera misalignment in space. Jo et al. Jo et al. (2016) propose an algorithm that works together with a physical actuator that adjusts one of the lenses inside the camera. However, these elements add more complexity to the system, increasing the risk of failure. Another option to prevent internal components' misalignment is to fix them in their casing, eliminating any chance of movements in all three axes. The drawback with this option is that there is no option to adjust the focus once the satellite is launched. However, as Jacobsen presents in its document, it is possible to do a calibration after launching by means of ground control points Jacobsen (2006).

2.2.1.2.3 Batteries and solar panels Failures induced by vibration in batteries and solar panels are mechanical. There is no register in the literature that says vibration loads can reduce long-term battery performance. Conversely, a wrong design in the batteries frame can lead to a structural failure in the battery module, as Zaragoza-Asensio et al. found in its design process Zaragoza-Asensio et al. (2021). On the other hand, vibration can produce stress on the solar cells mounted on the panel, leading to a crack. Bhattarai et al. Bhattarai et al. (2020) analyzed this problem and the possible mechanism that can be used to reduce the vibration effects on deployable solar panels.

2.2.1.2.4 Frame and supports Satellite frame should be designed to deal with dynamic loads vibration generates. There is no evidence in the literature nor web pages that shows frame or support fails as a root cause of On-arrival or infant death failures. Safety margins, computational modeling, and vibration tests drastically reduce the probability that these kinds of elements can fail.

2.2.1.3 Thermal

According to Petrov, there are three main external radiating sources a satellite in orbit can receive: Incoming solar radiation, reflected solar energy, and outgoing long-wave IR radiation emitted by the earth Petkov (2003). Besides external heat, satellite designers should also consider the heat generated by the satellite components. It is essential to perform a mission thermal balance analysis in order to know if it is required to include active heating elements or, conversely, design heat-dissipating sinks. Painting black components, shading with gold plates or optical solar reflectors the most critical ones, or including resistive heaters inside the satellite helps to keep the internal environment under good operational conditions Martinez (2012). Internal temperature limits vary on every mission and depend on the installed components. Thermal stress should also be considered in the design, given temperature fluctuation during the different satellite cycles. On the other hand, components installed outside the frame, like solar panels or another type of sensor, should deal with extreme temperature changes that can go from -120°C to +150°C.

It is important to remark that, opposite to earth conditions, there is no convention heat transfer on space. It means that the only way to transfer heat in that environment is through conduction to a cooler zone and then radiation to space. NASA recommends performing thermal vacuum testing in order to ensure that satellites will survive in space environment Goddard Space Flight Center (2019). Following subsections details how thermal variation can affect satellite components **2.2.1.3.1 Electronic components** Lakshminarayanan and Sriraam enumerate in their investigation the failure modes that temperature can induce in electronic devices Lakshminarayanan and Sriraam (2014). They conclude that temperature is the major cause of failure for electronic devices in earth conditions. Hence, Nasa recommends derating temperature limits in order to increase satellite reliability NASA.

2.2.1.3.2 Optical components Failures due to thermal variation or thermal degradation are not expected failures in satellites. However, lenses properties like refractive index can change due to thermal expansion-contraction Jamieson (1981). Therefore, satellite designers should consider those temperature gradients and determine the calibration required according to the temperature input value.

2.2.1.3.3 Batteries and solar panels Li-ion batteries are the most used type in satellites nowadays due to their high energy density and good performance. However, the temperature is a barrier to this technology. Li-ion battery operational range is between -20°C to 60°C; nevertheless, some investigators suggest that this range is too optimistic, and the optimal one is between 15°C to 35°C Ma et al. (2018). Shuai et al. determined that lithium plating, an increase of chargetransfer resistance, and changes in electrolyte property are typical degrading modes when Li-ion batteries face low temperatures. The same authors state that accelerated aging and thermal runaways are the consequences of operating batteries in high temperature environment.

Opposite to batteries in the internal satellite environment, solar panels must face extreme temperature variations outside. Vaillon et al. concluded in their analysis that high temperatures degrade solar panels' efficiency Vaillon et al. (2020).

2.2.2 Vacuum environment

A vacuum environment provides additional challenges. As discussed below, thermal dissipation is more challenging in this condition since there is no medium to have convention transfer. Vacuum and thermal tests are performed together. In general, all components sent to space are prone to suffer from outgassing, a phenomenon where materials lose mass due to evaporation Jiao et al. (2019). Gas released from this process contaminates the satellite environment, reducing or jeopardizing the mission. For instance, contamination can blur optical elements in the camera or deposit in electronic connections Jiao et al. (2019). No model can predict vacuum effects on satellites; however, standards like ASTM E595-15 have been developed to assess components designed to deal with vacuum conditions, reducing the risk of this failure mode from the design phase.

2.2.3 Human error

Several examples show how human errors can jeopardize a whole mission, wasting millions of euros. In 1999 the Mars Climate Orbiter was lost when it entered Mars' atmosphere. Further investigations demonstrated that a misunderstanding and lack of communication between two design teams provoked that they use two different unit systems, provoking a communication error between the modules NASA Solar System Exploration (2019). Recently, Russia lost a 45 million dollars satellite due to an error in its code Howell (2018). Even if the launching process is generally out of the scope of SmallSat designers, it is vital to know the risk this process has for the mission. A human error in the rocket leads to a total loss of the satellite. For instance, the rocket Vega, used by the french Arianespace, was carrying two payloads had a failure related to human error; the investigation demonstrates that two inverted cables in the thrust vector control actuator provoked that mission control was not able to manage the rocket Foust (2020). Despite there is no way to eliminate human error, different methodologies can be applied during the design, assembly, and testing stages. Nasa, for example, has a procedural requirement aimed to design and implement additional processes, procedures, and requirements needed to reduce error NASA (2017a). Some more simplistic models can better fit small teams with high budgets and schedule constraints. Despite several methods and approaches, human risk analysis follows a basic flow that starts identifying scenarios where human decisions can generate failures. These scenarios are generally provided in the different risk analyses performed in the satellite. Afterward, it is analyzed and then quantified to propose error reduction measures.

Chapter 3

Case study

This chapter is divided in two main parts. Section 4.1 describes the steps used to develop the case study from the construction of the system architecture to the reliability calculation using a formal model. The list below presents the main topics discussed in the section:

- System architecture developing using Cube framework, including the main parts of each cube face
- Introduce activity approach and explain its use
- Explain the method used to perform the FMECA.
- Describe how failure rate parameters were obtained
- Describe the formalization method
- Describe how to use altarica to perform the reliability analysis

Section 4.2 presents the results of the proposed methodology in case study. Figures and tables presented in the document are examples of the project development. Complete information can be found in Appendix section.

3.1 Methodology

3.1.1 System Architecture

System architecture is developed based on internal documentation and meeting with the design group. The boundaries of the architecture not only cover the satellite and the ground station, but also additional systems out of satellite environment that are planed to work together in order to improve accuracy and efficiency. Those additional systems

are the command center, Autonomous vehicles and sensors in the sea and artic. Even though they are included in the architecture, they are out of the scope of the FMECA and reliability analysis performed for this report. Cube architecture is performed as explained below

- Sketch: Based on existing satellite sketch.
- Use cases: Uses cases are divided in two main groups. The first group explain how the satellite work under normal conditions, while the second describes those moments where conditions to operate are not safe. Uses cases combine activities, operational modes, and physical or functional elements that perform an specific task. These two other cube faces and the additional one included in this report are highlighted in the satellite use case description (See section 4.2 and appendix 3). Hypso internal documents Bakken et al. (2020), Grøtte (2020), Bakken and Garrett (2020) and Carcelen and Grøtte (2020a), as well as information from meetings with design team, were used as inputs to create the use cases.
- Interface: Internal and external interfaces are defined. System ecosystem is considered as several systems that interact, so define the interfaces was essential to reduce logically the scope of the reliability analysis.
- Functional architecture: Functions are broken down as detailed as required. Functional architecture includes all the systems that are part of the HYPSO ecosystem in order to understand the interaction between them. However, since reliability analysis is focused in the satellite itself, its functional descriptions are more detailed, having up to 3 sub layers. Internal document Gjersvik (2020)
- Physical architecture: Physical architecture describes the physical elements required to perform the functions described in the previous step.
- Operational modes: Based on internal document Carcelen and Grøtte (2020b), Grøtte (2020) and Carcelen and Grøtte (2020a).

3.1.2 Activity approach

This report proposes the activity process as an additional step to the cube architecture framework. This approach, proposed by Antoine Rauzy, describes in a logic and non-ambiguous way the specific conditions required to change the system current step. It also describes what occur when the activity starts and what happen when it ends. The activity has also a duration time, that could be stochastic or deterministic depending on the conditions and the process it is described. Table 4.1 shows the main information activities require:

Activity	Activity title		
Triggering condition	Conditions required to start the activity. This conditions		
	could be environmental conditions, components state or		
	external requirements (Operational requirements)		
Duration	Activity duration, it can be stochastic or deterministic		
Effect at start	Modifications in the system once the activity start. A		
	modification could be to turn on or turn off an element.		
Effect at completion	Some element can change its state at the end of the activ-		
	ity, or some process can be finished and then the system		
	is ready to move to another activity		
Interruptions	Changes that can interrupt the activity. For example, if		
	there is a failure required in the activity, the activity stop		
	and another one is triggered		

Table 3.1: Activity description

Activity approach provides a thorough system understanding. It basically explain logically how the system works, and helps design group to detect loose ends or missing steps. As uses cases step, it is recommended that all the design team is involved in the development of the activities. Even though there is not yet a formal methodology that describes the activity concept (The use of activity approach could differ depending on the engineer perspective), this master thesis proposes minimum requirements described below:

- Activities should be unambiguous: Just one activity can be triggered at the time depending on the triggering conditions. It means that all activities have different triggering conditions.
- Activities should be a closed loop: Except for non-repairable systems, the system should be able to keep triggering activities. Non-repairable systems, as the satellite analysed in this report, finish its activity cycle once the system fails.
- External inputs should be included: Environmental and operational requirements should be included in the model and should be considered in the triggering conditions.
- Include failures as interruptions: Once a component included in the activity fails, the activity stops. The system then moves to another activity. This requires a failure mode and consequence analysis to determine the parameters to model the Working failure transitions (Or the states the component has).

3.1.3 Failure mode and consequence analysis

Activity approach consider component failures as part of its requirement. Moreover, failure rates are needed to perform the reliability analysis. This report uses the simplified version of FMECA methodology to determine the failure modes of the satellite main parts (stablished in the system architecture) and the consequence of that. The FMECA is supported by the hazard panorama analysis performed in the literature review. Table 4.2 and 4.1.3 shows the format used for the FMECA analysis

Table 3.2: FMECA format		
Physical elements	Component states	Functional failure
Components from Physical architecture	States the com-	When component is not able to perform is function
ponent can have		
	during its lifecy-	
	cle (On, off, idle,	
	Failed)	

Table 3.3: FMECA format

Failure mode and mechanism	Consequence	Mitigation	Failure rate
Hazardous event leading to component failure	How the failure of	Any mitigation meassure applied to reduce the risk	Failure rate based
	the component af-		on literature
	fects the system		

3.1.4 Failure rate parameters

Wilson et al. (2016) stablished in their paper that data collection is key for the further reliability analysis. However, they are also aware that it is difficult to find data from specific components, specially new ones or COTS not designed to be used in radiation conditions. They proposes as last option to use the information available; this could be data from similar components or estimated parameters. Unfortunately, failure rate parameters for specific components were not found for this report. Instead, this report relies in information from Military Standard MIL-HDBK-217F Department of Defense USA (1991) to get the failure rates. The result of the reliability analysis using this failure rates can be considered conservative since technology improvement over the years has increased the components reliability. On the other hand, data from the NASA Goodard Radiation Database webpage was used to analyze component performance during the duration o the mission and calculate SEE rates. Topper et al. (2020) O'Bryan et al. (2003) Moran and LaBel (1997) and O'Bryan et al. (2006) provided the single event transfer (LET) parameter to calculate the SEE in electronic components. Even though the components related in the documents were not exactly the same, they were similar in capacity and functionality. After collecting all the LET parameters required it was required to use the

tool Spenvis from ESA. The tool consider the orbit type, altitude, and for the case of Sun Synchronous orbit the local time of ascending node to develop an estimation of the total radiation the satellite will face during the duration of its mission. Once the orbit is determined the tool uses runs a proton and electron model based on AP8 and AE-8 respectively. Finally, a model based on Creme-86 is used to calculate the SEE for each component.

3.1.5 Formalization method

Once all previous steps are finished it is required to translate the pragmatic information from the activity process to a formal structure. Translation means to write the activities in such a way it can be used in a computational tool. Since this report uses AltaRica, the activities were translated to components state and transitions.

3.1.6 Use AltaRica to perform the reliability analysis based on activity approach

AltaRica is a modeling language designed for risk analysis of complex systems. The tool uses the guarded transition system semantic to perform system analysis. This mean that there is a change in the model state (transitions) if there is an event triggered and conditions are fulfilled to modify the system condition. Once there is a change in the system, the tool evaluate all the conditions and flow variables, calculates new system state and wait for the next transition. Thus,AltaRica suitable to be used with the activity approach, since it is based on changes in component states during activity execution and interruption due to failures or changes in the external conditions. It means basically that, once an event modifies the the system, the tool evaluates if the system is still in the same activity, or the event triggered is one of the interruptions and then the system should move to another one.

The model in Altarica is divided in four main parts. The first one models all the components in the satellite, setting all their possible states and creating a failure event that set the component in failure. External conditions as radiation and operator requirements are also modeled. As a simplification, battery state transitions are considered stochastic and not calculated based on component consumption. On the other hand, the second part of the model (block Trigger) presents the the conditionals for each activity. Each conditional is unique, meaning that only one activity can be triggered. The third section of the model shows all the transitions at start, activity duration and transitions at the end of the process. The model includes a variable (ContAx) that, in case the activity is stopped for any of the interruptions, the activity continues until finishing. Lastly, for section describes the observers used to get the key parameters. The list below presents the key performance indicators used in the reliability analysis:

- Satellite failure rate: Mean time (From MonteCarlo simulation) of the first time the satellite enter to failure state (first-occurrence-date).
- Satellite degraded state rate: Mean time (From MonteCarlo simulation) of the first time the satellite enter to degraded state (first-occurrence-date).
- Critical mode: Mean time (From MonteCarlo simulation) of the number of times the system moves to Critical Mode.
- Safe mode: Mean time (From MonteCarlo simulation) of the number of times the system moves to Safe Mode.

The model presented in this report does not include all the activities in the excel sheet. The model consider a basic configuration with one imaging mode and one processing mode. There are in total 7 activities in close loop.

3.2 Results

3.2.1 System Architecture

The modeling process started defining the system's main function. For this case, the main function is defined as *Monitoring ocean indicators, specially Harmful Algae Blooms, using HyperSpectral imaging with high temporal and spectral resolution, and Autonomous Ocean Sampling Network*. Afterward, it is necessary to define all the required and available subsystems to fulfill the established function. Figure 4.1. shows the key features consider for this project. HYPSO team is responsible for payload designing, testing, and assembly. Conversely, NanoAvionics will design and build the Satellite BUS. Likewise, Nanoavionics will perform integration and verification under HYPSO team supervision. Nanoavionics is in charge of the launching and commissioning stages too. Once the satellite moves to the operational stage, HYPSO TEAM will have the satellite command. Regarding third-parties providers like NTNU AMOS center or fixed-point sensor owners, an agreement is required to define a communication protocol between the HYPSO team and them. Figure 4.2 shows how different System-of-Systems elements interact with each other and define their boundaries.

Figure 3.1: Ocean monitoring sketch

Figure 3.2: Monitoring system interface

Since different subsystems are involved, it is essential to define and understand how those elements interact. Figure 4.3 shows the communication flow and protocols used between the different subsystems. Indeed, system analysis shows that both internal satellite communication and satellite-to-ground communication could be one of the biggest data bottlenecks, affecting the system latency Grøtte et al. (2021).

Figure 3.3: System Information flow

The information presented in Figure 4.3 is based on the HYPSO-1 design; the final data flow diagram used in HYPSO-2 could differ from the one presented in this document. Moving to the next steps of the cube architecture framework, mission requirements are used to define the use cases and functional and physical architecture. HYPSO mission requirements are based on scientific requirements proposed by an expert committee that discussed the parameters required to obtain an accurate Algae visualization using HyperSpectral Imaging. However, since scientific requirements were out of the scope of a satellite range, especially a SmallSat one, the HYPSO team defined mission requirements considering technical, budget, and schedule constraints. Mission requirements list and functional and physical architecture allocation is found in the appendix. As explained before, the architecture model is an iterative process where functional, physical and use cases are made in parallel in order to cover all the requirements, the functions and the operational modes the system needs. Table 4.4 shows an example of a use case. All the use cases are included in the appendix 3.

Table 3.4: Use case Example

Use Ca	se	
Title Slew imaging .		
Level	1	
		All system components are working ok
Preconditions		Mission parameters are ready to be uploaded
		Satellite is in cruise mode
Post-conditions		Mission control center receives processed images from satellite
		Satellite goes back to cruise mode
Trigger		Requirement from HYPSO users
Story		
1	HYPSO operator users stablishes mission parameters (Image coordinates, operational mode, data processing level,	
2	Commands are uplinked to Satellite via UHF using the ground station closer to it.	
3	Satellite image ocean surface according to mission commands.	
4	Satellite processes images On Board according to requirements.	
5	Satellite downlink processed images to nearest ground station via S-band Antenna.	
6	Satellite Command Center donwload information from webpage interface and analize.	

Figure 4.4 shows a part of the satellite functional architecture. The complete functional architecture is in the Appendix 1. The functions and sub-functions are expressed generically in the diagrams. All the functions described in the use cases were included in the architecture.

Figure 3.4: System functional architecture

Figure 4.5 shows the system's physical architecture. It includes both software (Yellow) and hardware (Blue) required to achieve the functions described in the functional architecture.
Components described in the satellite physical architecture are considered in the FMEA analysis. Appendix 2 shows the complete physical architecture.

Functional and physical architecture elements are allocated with the mission requirements. Table 4.5 shows a part of this allocation process. Complete table is included in the appendix. It can be noticed that some of the functional or physical elements, like the power supply module, are not included in the mission requirements because those functions derivates from the design process.

CHAPTER 3. CASE STUDY

	Tuble 5.5. Thysical and fu		
Code	Mission requirement description	Functional architecture	Physical architecture
HYPSO2-HSI-MR-010	The usable spectral range for the HSI shall cover 400 to 800 nm	1.1.1.4 Separate the light into its component wavelengths.	1.1.1.4 Grating
UVDCO2 USI MD 020	The spectral resolution for hyperspectral images shall be better then 10 pm	1.1.1.4 Separate the light into its component wavelengths.	1.1.1.4 Grating
H1F302-H3I-MIK-020	The spectral resolution for hyperspectral images shall be better than to fini.	1.1.1.2 Control the spectrometer resolution	1.1.1. Slit
UVDCO2 USI MD 021	The spectral resolution for hyperspectral images should be better than 5pm	1.1.1.4 Separate the light into its component wavelengths.	1.1.1.4 Grating
H1F302-H3I-WK-021	The spectral resolution for hyperspectral images should be better than 5mm	1.1.1.2 Control the spectrometer resolution	1.1.1. Slit
UVDCO2 USI MD 020	The along treak hyperspectral spatial resolution shall be better than 200 m	1.1.1. Capture image with spectral resolution	1.1.1. HyperSpectral camera
H1F302-H3I-MIK-030	The along-track hyperspectral spatial resolution shall be better than 500 m.	1.6.3 Maneuver satellite	1.2.4.2 Position actuators
UVDCO2 USI MD 021	The along track hyperconstral enotial resolution should be better than 100 m	1.1.1.2 Control the spectrometer resolution	1.1.1. Slit
1111 302-1131-WIK-031	The along-track hyperspectral spatial resolution should be better than 100 m.	1.6.3 Maneuver satellite	1.2.4.2 Position actuators

Table 3.5: Physical and functional allocation

Finally, Figure 4.6 shows the possible operational modes the satellite will have during its operation. It is also important to know which subsystems are required during each operational mode, in order to know the transition requirements.

Figure 3.6: Operational mode

Table 4.6 shows which subsystem is required in every operational mode.

					5	absystems		
	EPS	PC	HSI	RGB	OPU	ANTENNA	FC	ADCS
Cruise (Harvest)	ON	ON	OFF	OFF	OFF	UHF idle, S-Band OFF	ON	Sun pointing
Cruise (Eclipse)	ON	ON	OFF	OFF	OFF	UHF idle, S-Band OFF	ON	Z-face towards velocity vector
Pre-operational (Slew)	ON	ON	OFF	OFF	ON (Loading processing configuration)	UHF idle, S-Band OFF	ON	Image angle positioning (Slew)
Pre-operational (Nadir)	ON	ON	OFF	OFF	ON (Loading processing configuration)	UHF idle, S-Band OFF	ON	Image angle positioning (Nadir)
Telemetry	ON	ON	OFF	OFF	ON (Telemetry)	UHF idle, S-Band OFF	ON	
Imaging (Slew)	ON	ON	ON	ON	ON	UHF idle, S-Band OFF	ON	Slew maneuver
Imaging (Nadir)	ON	ON	ON	ON	ON	UHF idle, S-Band OFF	ON	Nadir pointing
Onboard processing	ON	ON	OFF	OFF	ON	UHF idle, S-Band OFF	ON	Sun-pointing
Downlink	ON	ON	OFF	OFF	OPU ON if data buffering is not complete	UHF idle, S-Band ON	ON	Pointing toward ground station
Uplink	ON	ON	OFF	OFF	OFF	UHF idle, S-Band ON	ON	Pointing toward ground station
Safe Mode	ON	OFF	OFF	OFF	OFF	UHF idle, S-Band OFF	ON	Sun-pointing
Critical mode	ON	OFF	OFF	OFF	OFF	UHF idle, S-Band OFF	OFF	Sun-pointing
Critical hardware mode	OFF	OFF	OFF	OFF	OFF	UHF idle, S-Band OFF	OFF	
Heat disipation mode	ON	OFF	OFF	OFF	OFF	OFF	ON	Spin

Table 3.6: Operational modes susbystem transitions

3.2.2 FMEA results

Table 4.7 depicts the hazard allocation depending on the satellite phase. It is important to clarify that the study presented in this report do not consider possible failures during launching and deployment stages. It also consider that QA/QC process eliminates all the failures due to human error. Table 4.8 shows an extract from the FMEA analysis. The complete FMEA analysis can be found in the Appendix 5.

Mission stages	Hazards
Design phase, Test and Assembly	Human Errors
Launching	Vibration
Deployment + LEOP	Vibration
Commissioning and Operational Mode	Thermal shock Aging (degradation) Human error (Software bug due to wrong update)

Table 3.7	Hazard	allocation
Table 5.7	. Hazaru	anocation

Table 3.8: FMECA for HSI camera

	Component states	Energy consumption	Failure mode	Failure mechanism	Consequence	Mitigation	Failure rate	
	- Working	Power_On: 3.15 W	Failed	Total failure	HSI camera out of service. Satellite can no	Radiation test	3.49E-08	failure/hour
	- Idle	Power_idle: 0.525 W	 Not able to take pictures 	 Camera interns rupture due to vibration. 	longer take more HSI images, Satellite can			
	- On			- Camera sensor failure due to Total Dose	still take RGB images or send telemetry to			
	- Off		Partial failures	Partial failure	Imaging with anomalies or camera is	Dedicated electric supply to	SEL LETth >87	/bit*day each pixel
	- Failed		- Wrong imaging or camera shutoff	- Single event Latch Up generates abnormal	shutdown due to current increase to	HSI camera. It is possible then	5.081e-	
				images	protect the element	to shutdown camera if current	2/bit*day.	
				- Single event Latch Up generates increase in		increase is detected	Camera 2,3MP	
				the current			81,15 pixel	
HSI Camera			Degraded	Degraded	HSI image quality degraded, but still	Radiation test	N/A	N/A
			 Quality picture is reduced 	- Darkening due to Ionizing radiation dose.	functional	Calibration on board		
				- SNR reduction due to lonizing radiation				
				dose.				
				 Lens misalignment due to vibration. 				
				- Refractive lens change due to temperature				
				gradients.				
				 Degraded imaging due to Displacement 				
				Damage				
		1	1		1	1	1	

3.2.3 Activitiies and formalization

Table 4.9 shows an example of an activity and its formalization. This is the first activity that prepares the satellite to uplink commands or downlink data once the satellite is in the range of one of the ground stations. The complete list of activities can be found in Appendix 4.

	PRAGMATIC APPROACH	FORMAL APPROACH
A1		
Activity	Uplink/downlink preparation	Uplink/downlink preparation
	Satellite is in the range of one of the stablished ground station.	Satellite_range = True
	Battery voltage is over 7,2V.	Battery_state = OK
Triggoring condition	S-Band antenna is Available.	SBANDstate = OFF
mggering condition	Radiation is below 20nT	Radiation = FALSE
	FC is ON	FCstate = _ON
	ADCS is Available (Coarse attitude determination)	CADCSstate = Working
Duration	1 minute	1 minute (Deterministic)
Effect at start	S-band is ON and idle MODE	SBANDstate = IDLE
Ellect at start	ADCS is On in Coarse Attitude determination (system points Satellite's Antenna to ground station)	CADCSstate = _ON
Effect at completion	Satellite is ready to receive/download commands	Satallita racaiva/download -True
Effect at completion	ADCS keeps satellite pointing to Ground Station	Satellite_receive/download = ride
	Satellite is out of the ground station range	Satellite_range = False
	S-band fails	SBANDstate = Failure
Interruptions	FC fails	FCstate = Failure
interruptions	ADCS system fails	CADCSstate = Failure
	Radiation reaches 20nT	Radiation = TRUE
	Battery voltage is below 7,2V.	Battery_state = Safemode or Battery_state = Criticalmode

Table 3.9: Activity and formalization	example
DDACK (ATTIC ADDDOACH)	DODI (IT IDDI

3.2.4 Altarica results

Figure 4.7 shows the four parts of the code described in the methodology. Appendix 6 presents the code used for the simulation. Each activity, as the one depicted in the figure, has an specific combination of conditions based on the component's states. Instantaneous transition are used in the code to modify component's states at the start once the activity becomes true. The same instantaneous transition is used to change the state of components at the end of the activity. EndA1 and ContA1 are tracks to check in which part of the process the activity is. EndA1 is also use as part of the conditional for Activity 2. observers are used calculate the indicators described in the methodology.

```
block Satellite
 /* HSI Camera failure model*/
block HSI
       OperModel state (init = OFF);
       parameter Real HSIFailureRate = 5.81e-10;
       event HSIFailure(delay = exponential(HSIFailureRate));
       transition
       HSIFailure: _state == ON -> _state := FAILURE;
       HSIFailure: state == IDLE -> state := FAILURE;
 end
block Trigger /* All the triggers are here*/
 /* Activity 1 (Activity 1 in Excel sheet) */
    Boolean Activity1(reset = false);
    assertion
            Activity1 := if main.Battery. state == true and main.Location. Range == YES and
main.Radiation. state == NO and main.SBAND. state == OFF and main.FC. state == OFF and
main.CADCS._state == OFF and main.Activityl.ContAl == NO then true else false;
/* Activity 1 in Excel sheet*/
block Activityl
   ActState ContAl(init = NO);
   ActState EndAl(init = NO);
    event TriggerActl(delay = Dirac(0.0));
    transition
       TriggerActl: ContAl == NO and main.Trigger.Activityl == true -> ContAl := YES;
       TriggerActl: ContAl == YES and main.SBAND._state == OFF-> main.SBAND._state := IDLE;
       TriggerActl: ContAl == YES and main.CADCS. state == OFF-> main.SBAND. state := ON;
    parameter Real DurationAct1 = 1; /* 1 minute duration*/
    event FinishAl(delay = Dirac(DurationActl));
    transition
       FinishAl: EndAl == NO and ContAl == YES -> EndAl := YES;
       TriggerActl: EndAl == YES and ContAl == YES -> ContAl := NO;
end
observer Boolean SafeMode = if Radiation. state == true or Battery. SAFEMODE == YES then true
else false;
observer Boolean CriticalMode = if Battery._CRITICALMODE == YES then true else false;
/*Condition modes*/
/*Degraded mode: the satellite is partially functional (Payload fails so just telemetry is
available) */
observer Boolean DEGRADED = if OPU. state == FAILURE or HSI. state == FAILURE or PC. state ==
FAILURE or (OPU._eMMC==FAILURE and MicroSD._state==FAILURE) then true else false;
/*Failure mode: Satellite out of service*/
observer Boolean FAILURE = if EPS. state == FAILURE or (UHF. state == FAILURE and
SBAND. state==FAILURE) or FC. state == FAILURE then true else false;
```


Figure 4.8 shows the transition simulation using the interactive module in AltaRica. Transitions are well defined so all the transitions required in one stage should be completed before moving to the next one (For instance, all the activities that are required to trigger at the start of activity 1 should be fired before moving to the end of the same activity). Unfortunately, simulation does not model activity transitions using stochastic simulation. To calculate reliability parameters it is necessary to assume that all the components are ON from the beginning of the simulation. Results from stochastic simulation are presented in

Tree View	Stepper Output			Sequence
FI .		V 1	~	Activity1.TriggerAct1 [0]
Element		Value		Activity1.TriggerAct1 [2]
✓ B Sat	ellite			
~ B	Activity1			
	G ContA1	YES		
	EndA1	NO		
	TriggerAct1 [0]			
	TriggerAct1 [1]	enabled		
	TriggerAct1 [2]			
	T FinishA1 [3]			
	TriggerAct1 [4]			
> B	Activity2			
> B	Activity3			
> B	Activity4			
> B	Activity5			
> B	Activity6			
> B	Activity7			
> B	AttControl			
> B	BOB			
> B	Battery			
~ <mark>B</mark>	CADCS			
	F CADCS_Failure	false		
	G Y	WORKING		
	5 _Mag	WORKING		
	5 _SS	WORKING		
	5 _state	ON		

Figure 3.8: Transition in the first activity

Figure 4.9. Time unit for the simulation is minutes since all the failure rates in the code are in failure/min. The number of cycles for Monte Carlo simulation is set in 10000.

The satellite MTTF is then 2.39 years. Figure 4.10 depicts the reliability over the 5 years of mission.

Mission Number of execut	tions	10000								
Mission time	2.628e+0	6								
Number of events Mean Minimum 33573.4 33448	s fired p Maximum 33708	er execu	ution							
Point estimates										
Indicator Date Sample s 2.628e+06	Times in size 10000	Critica Mean 20.3522	al Mode Standard 4.53156	deviation	95%	lower	bound	95%	upper	bound
Indicator Date Sample s 2.628e+06	Mean tim size 8239	e degrad Mean 953701.0	dation Standard 0	deviation 700021.0	95%	lower	bound	95%	upper	bound
Indicator Date Sample s 2.628e+06	Mean tim size 81	e to fai Mean 1.25662¢	ilure (Sa Standard e+06	tellite) deviation 760827.0	95%	lower	bound	95%	upper	bound
Indicator Date Sample 9 2.628e+06	Times in size 10000	Safe Mo Mean 182.097	ode Standard 13.5655	deviation	95%	lower	bound	95%	upper	bound

Figure 3.9: Results from stochastic simulation

Figure 3.10: Reliability during the mission lifecycle

Chapter 4

Conclusions, Discussion, and Recommendations for Further Work

This chapter analyze the main findings and results obtained during this work.

4.1 Discussion

The author of this master thesis used the cube architecture framework as a tool that provided a broad picture of the system to analyze. The use of this pragmatic approach in the satellite analyses provided a complete understanding of how it works and the interaction between the different parts of the system. The six points of view cube architecture framework suggested were built considering their further use in the activity approach presented in this master thesis. The reader can go through the system architecture analysis and understand the satellite and how it works. Even though some simplifications were done due to the complexity of the system, the level of detail shown in the architecture fulfills the requirements of this study.

On the other hand, the author of this thesis used the FMEA method to analyze all the hazardous events and the possible consequences for each main component. Hazardous events are based on the hazard panorama investigation included in the literature review. On the other hand, there were some limitations to the information regarding reliability parameters. Since it was not possible to find recent sources, failure rates were obtained from a military standard that has not been updated for longer. The accuracy in the result is then reduced since the newest technologies and COTS developed in recent years have more resistance to radiation. The result can be considered conservative, and the model can be updated once more recent information is available. Furthermore, some possible failures

were omitted based on the low probability of occurrence given the specific conditions of the satellite (Orbit, altitude, temperature). For example, even though low temperatures could be dangerous for batteries, the satellite has a heater to keep the temperature in acceptable conditions. Single event effects were also analyzed in the FMEA, and their failure rates were obtained using SPENVIS tool and parameters from different NASA radiation studies. Even though they could lead to a failure in the component, single events were not included in the formal simulation to reduce the complexity of the simulation.

The third part of the study was the use of the activity approach. Since there is not yet a specific methodology and the creation of activities is subjective, the author of this master thesis proposed four requirements activities should fulfill. Attached to the cube architecture framework, the activity approach provides a higher understanding of the system since it considers all the transitions in the system, avoiding loose ends in the design or another kind of analysis. The approach works much better and brings more benefits if it is used in systems with several transitions during normal operation. The activity approach can also be used to translate the pragmatic model to a formal one. As part of this master thesis results, there is a list of activities and their respective translation to formal language.

However, using a formal language based on the activity logic approach was not that straightforward due to the use of several conditionals and the inclusion of tracking variables to keep the model moving in the right direction. Activities also require the transition of several components simultaneously, adding additional lines to the code and increasing its complexity. Even though AltaRica is a tool designed to create reliability and safety models, the logical activity structure did not fit well with it. Even though the interactive simulation showed that activity transitions are performed following the logic established, the stochastic simulation was not able to run the activity logic. That was a limitation for the reliability analysis since the satellite failure rate and the other parameters set as KPI were obtained on the assumption that components were always on.

Given the assumptions made during the simulation and the use of old parameters, it can be said that there is no confidence in the reliability result. Nevertheless, the simulation presented in this document and the activity approach development could be the starting point for someone who could be interested in going further with the method.

4.2 Summary and Conclusions

Undoubtedly, analysis based on models is the new rule to overcome the complexity of new systems. Not only should designers deal with more challenging and complicated systems, but also safety and reliability analysts who perform studies, whether during the design

stage or operation. Therefore, RAMS engineers rely more on computational tools to execute reliability or safety analysis. However, before using computational tools, it is required to have a complete understanding of the system to study. RAMS disciplines should have a broad perspective to consider all the possible scenarios and the elements involved. The system engineering approach provides that holistic perspective required to analyze new or existing systems. This thesis is based on the concept of how to model systems. Hence, the first part of the literature review is focused on the system engineering discipline, the evolution of the Model-Based System Engineering, and how RAMS could be integrated into them via the Model-Based Safety Analysis approach. Literature also showed the restrictions behind moving from a pragmatic to a formal model. Although the limitations, this project introduced a concept aimed at facilitating that transition. The steps required to move from a pragmatic approach to a formal one are explained in the Methodology in section 4.1. Therefore, the first objective was to create a pragmatic model for the HYPSO satellite. The cube architecture framework was the approach used to do it.

Once all the functions and physical components were defined in the architecture, it was necessary to know the system's possible failures. FMEA was the method selected to analyze the functional failures and their effects. Two main challenges came up during the failure analysis: The lack of familiarity with space environments and the lack of information regarding reliability parameters. The first issue was solved through a thorough investigation of hazards and hazardous events in space environments; that information is compiled in the literature review. Regarding the second challenge, it was not possible to find the reliability parameters of the components used in the satellite. Therefore, some outdated sources were used to go on in the analysis. Nevertheless, the hazardous events and consequence analysis were performed as established in the objectives, and it was possible to move to the next step.

One of the main parts of this master thesis is the introduction of the activity approach. This new method, explained in detail in section 4.1, was successfully introduced as part of the architecture framework. The author of this document wanted to duplicate the activity logic in a formal model; therefore is was performed a translation of pragmatic to formal language was. That process made the migration smoother.

The last part of the project was the implementation of the activity logic in a formal model. The tool selected was AltaRica. Even though it is highly used in reliability and safety analysis, AltaRica did not run the stochastic simulation as expected. An interactive simulation was used to prove if the logic and the code were performing as intended getting good results. So, even though there was not possible to get a stochastic simulation using the activity logic, the interactive simulation showed that the code was working. It can be concluded that the last objective was partially fulfilled.

4.3 Recommendations for Further Work

Further work based on activity approach may require the use of another computational tool or a thorough revision of the code presented in this thesis.

Bibliography

(2011). Systems and software engineering - architecture description. Standard ISO/IEC/IEEE 42010:2011(E), International Organization for Standardization.

(2021).

- Bakken, S., Birkeland, R., and Garrett, J. (2020). Hypso-dr-005 hypso sw design report. Design Report.
- Bakken, S. and Garrett, J. (2020). Hsi software architecture and philosophy. Design Report.
- Batteux, M., Choley, J.-Y., Mhenni, F., Prosvirnova, T., and Rauzy, A. (2019). Synchronization of system architecture and safety models: a proof of concept. In *2019 International Symposium on Systems Engineering (ISSE)*, pages 1–8.
- Benton, E. and Benton, E. (2001). Space radiation dosimetry in low-earth orbit and beyond. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(1):255–294. Advanced Topics in Solid State Dosimetry.
- Bhattarai, S., Kim, H., and Oh, H.-U. (2020). Cubesat's deployable solar panel with viscoelastic multilayered stiffener for launch vibration attenuation. *International journal of aerospace engineering*, 2020:1–10.

Carcelen, S. and Grøtte, M. (2020a). Hypso-rp-040 operational scenarios. Report.

Carcelen, S. and Grøtte, M. (2020b). Hypso-rp-041 operational modes. Report.

Dassault Systémes (2022).

- Department of Defense USA (1991). Reliability prediction of electronic equipment. Standard, Department of Defense USA.
- Department of Defense USA (2019). Test method standard, environmental test methods for microcircuit (mil-std-883-1). Standard, Department of Defense USA.

- Dubois, H., Peraldi-Frati, M.-A., and Lakhal, F. (2010). A model for requirements traceability in a heterogeneous model-based design process: Application to automotive embedded systems. In *2010 15th IEEE International Conference on Engineering of Complex Computer Systems*, pages 233–242.
- Estefan, J. A. et al. (2007). Survey of model-based systems engineering (mbse) methodologies. *Incose MBSE Focus Group*, 25(8):1–12.
- Foust, J. (2020). Human error blamed for vega launch failure.
- Friedenthal, S., Moore, A., and Steiner, R. (2014). *A practical guide to SysML: the systems modeling language*. Morgan Kaufmann.
- Friedenthal, S., Moore, A., and Steiner, R. (2015). Chapter 1 systems engineering overview. In Friedenthal, S., Moore, A., and Steiner, R., editors, *A Practical Guide to SysML (Third Edition)*, The MK/OMG Press, pages 3–14. Morgan Kaufmann, Boston, third edition edition.
- Gao, S., Cao, W., Fan, L., and Liu, J. (2019). Mbse for satellite communication system architecting. *IEEE Access*, 7:164051–164067.
- Gil, L. (2021). Cosmic radiation: Why we should not be worried.
- Gjersvik, A. (2020). Hypso-dr-011 breakout board version 3.1 design report. Design Report.
- Goddard Space Flight Center (2019). Mission sucess handbook for cubesat mission. Technical handbook, Greenbelt, MD 20771.
- Gradel, S., Aigner, B., and Stumpf, E. (2022). Model-based safety assessment for conceptual aircraft systems design. *CEAS Aeronautical Journal*, 13(1):281–294.
- Gräßler, I., Hentze, J., Bruckmann, T., et al. (2018). V-models for interdisciplinary systems engineering. In *DS 92: Proceedings of the DESIGN 2018 15th International Design Con-ference*, pages 747–756.
- Grøtte, M. E. (2020). Hypso-mop-001 mission operations plan. Design Report.
- Grøtte, M. E., Birkeland, R., Honoré-Livermore, E., Bakken, S., Garrett, J. L., Prentice, E. F., Sigernes, F., Orlandić, M., Gravdahl, J. T., and Johansen, T. A. (2021). Ocean color hyperspectral remote sensing with high resolution and low latency–the hypso-1 cubesat mission. *IEEE Transactions on Geoscience and Remote Sensing*, pages 1–19.

- Gusarov, A. I., Doyle, D., Hermanne, A., Berghmans, F., Fruit, M., Ulbrich, G., and Blondel, M. (2002). Refractive-index changes caused by proton radiation in silicate optical glasses. *Applied Optics*, 41(4):678–684.
- Hass, K. and Ambles, J. (1999). Single event transients in deep submicron cmos. In *42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356)*, volume 1, pages 122–125 vol. 1.
- Howell, E. (2018). Russia lost a 45*millionweather satellited uetohumanerror, of ficial saysrussia* million weather satellite due to human error, official says.
- IEEE Staff Corporate Author (2010). The effects of eldrs at ultra-low dose rates. In *2010IEEE Radiation Effects Data Workshop*, 2010 Radiation Effects Data Workshop, pages6–6, [Place of publication not identified]. I E E E.
- Inguimbert, C. and Messenger, S. (2012). Equivalent displacement damage dose for onorbit space applications. *IEEE Transactions on Nuclear Science*, 59(6):3117–3125.
- International Council on System Engineering INCOSE. Systems engineering.
- Jacobsen, K. (2006). Calibration of imaging satellite sensors. *Int. Arch. Photogramm. Remote Sensing*, 36:1.
- Jamieson, T. H. (1981). Thermal effects in optical systems. *Optical Engineering*, 20(2):202156–202156.
- Jannoun, M., Aoues, Y., Pagnacco, E., Pougnet, P., and El-Hami, A. (2017). Probabilistic fatigue damage estimation of embedded electronic solder joints under random vibration. *Microelectronics and reliability*, 78:249–257.
- Jiao, Z., Jiang, L., Sun, J., Huang, J., and Zhu, Y. (2019). Outgassing environment of spacecraft: An overview. *IOP conference series*. *Materials Science and Engineering*, 611(1):12071.
- Jo, J.-B., Hwang, J.-H., and Bae, J.-S. (2016). Online refocusing algorithm for a satellite camera using stellar sources. *Optics express*, 24(5):5411–5422.
- Kaslow, D., Anderson, L., Asundi, S., Ayres, B., Iwata, C., Shiotani, B., and Thompson, R. (2015). Developing a cubesat model-based system engineering (mbse) reference model
 interim status. In *2015 IEEE Aerospace Conference*, pages 1–16.
- Kaslow, D., Ayres, B., Cahill, P. T., and Hart, L. (2018). A model-based systems engineering approach for technical measurement with application to a cubesat. In *2018 IEEE Aerospace Conference*, pages 1–10.

- Kaslow, D., Ayres, B., Cahill, P. T., Hart, L., and Yntema, R. (2017). Developing a cubesat model-based system engineering (mbse) reference model — interim status 3. In 2017 *IEEE Aerospace Conference*, pages 1–15.
- Kaslow, D., Ayres, B., Chonoles, M. J., Gasster, S. D., Hart, L., Massa, C., Yntema, R., and Shiotani, B. (2016). Developing a cubesat model-based system engineering (mbse) reference model - interim status 2. In 2016 IEEE Aerospace Conference, volume 2016-, pages 1–16. IEEE.
- Knap, V., Vestergaard, L. K., and Stroe, D.-I. (2020). A review of battery technology in cubesats and small satellite solutions. *Energies (Basel)*, 13(15):4097.
- Lakshminarayanan, V. and Sriraam, N. (2014). The effect of temperature on the reliability of electronic components. In *2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)*, pages 1–6.
- Li, Y., Gong, Q., and Su, D. (2014). Model-based system safety assessment of aircraft power plant. *Procedia Engineering*, 80:85–92.
- Ma, J., Wang, G., Lu, J., Vangheluwe, H., Kiritsis, D., and Yan, Y. (2022). Systematic literature review of mbse tool-chains. *Applied Sciences*, 12(7).
- Ma, S., Jiang, M., Tao, P., Song, C., Wu, J., Wang, J., Deng, T., and Shang, W. (2018). Temperature effect and thermal impact in lithium-ion batteries: A review. *Progress in natural science*, 28(6):653–666.
- Martinez, L. (2012). Analysis of leo radiation environment and its effects on spacecraft's critical electronic devices. Master's thesis, Embry-Riddle Aeronautical University, https://commons.erau.edu/cgi/viewcontent.cgi?article=1101context=edt.
- Maurer, R., Fraeman, M., Martin, M., and Roth, D. (2008). Harsh environments: Space radiation environment, effects, and mitigation. *Johns Hopkins APL Technical Digest*, 28(1):17–28.
- Moran, A. and LaBel, K. (1997). Single event effect test report on the xilinx 3090a fpga. Test report.
- NASA. Electrical, electronic and electromechanical (eee) parts derating.
- NASA (2017a). Human-rating requirements for space systems. Nasa procedural requirements, NASA.
- NASA (2017b). Payload vibroacoustic test criteria. Technical standard, NASA.

NASA Solar System Exploration (2019). In depth | mars climate orbiter.

- Nunez, D., Poizat, M., Jimenez, J., Munoz, E., and Dominguez, M. (2014). Enhanced low dose rate sensitivity analysis. In *2014 IEEE Radiation Effects Data Workshop (REDW)*, pages 1–6.
- O'Bryan, M., LaBel, K., Howard, J., Poivey, C., Ladbury, R., Kniffin, S., Buchner, S., Xapsos, M., Reed, R., Sanders, A., Seidleck, C., Marshall, C., Marshall, P., Titus, J., McMorrow, D., Li, K., Gambles, J., Stone, R., Patterson, J., Kim, H., Hawkins, D., Carts, M., Forney, J., Irwin, T., Kahric, Z., Cox, S., and Palor, C. (2003). Single event effects results for candidate spacecraft electronics for nasa. In *2003 IEEE Radiation Effects Data Workshop*, pages 65–76.
- O'Bryan, M. V., Poivey, C., Kniffin, S. D., Buchner, S. P., Ladbury, R. L., Oldham, T. R., Howard Jr, J. W., LaBel, K. A., Sanders, A. B., Berg, M., et al. (2006). Compendium of single event effects results for candidate spacecraft electronics for nasa. In *2006 IEEE Nuclear and Space Radiation Effects Conference*.
- Orlova, M. N., Yurchuk, S. Y., Didenko, S. I., and Tapero, K. I. (2015). Study of degradation of photovoltaic cells based on a3b5 nanoheterostructures under ionizing radiation. *Modern Electronic Materials*, 1(2):60–65.
- Petkov, M. P. (2003). The effects of space environments on electronic components.
- Pohl, K. and Sikora, E. (2007). The co-development of system requirements and functional architecture. In *Conceptual Modelling in Information Systems Engineering*, pages 229–246. Springer.
- Rauzy, A. (2022). *Model-Based Reliability Engineering An Introduction from First Principles*. The AltaRica Association.
- Rauzy, A. B. and Haskins, C. (2019). Foundations for model-based systems engineering and model-based safety assessment. *Systems Engineering*, 22(2):146–155.
- SEBoK Editorial Board (2021). The guide to the systems engineering body of knowledge (sebok).
- Secondo, R., Garcia Alia, R., Peronnard, P., Brugger, M., Masi, A., Danzeca, S., Merlenghi, A., Chesta, E., Vaille, J. R., Bernard, M., and Dusseau, L. (2018). System level radiation characterization of a 1u cubesat based on cern radiation monitoring technology. *IEEE transactions on nuclear science*, 65(8):1694–1699.

- Topper, A. D., Lauenstein, J.-M., Wilcox, E. P., Berg, M. D., Campola, M. J., Casey, M. C., Wyrwas, E. J., Ox2019;Bryan, M. V., Carstens, T. A., Fedele, C. M., Forney, J. D., Kim, H. S., Osheroff, J. M., Phan, A. M., Chaiken, M. F., Cochran, D. J., Pellish, J. A., and Majewicz, P. J. (2020). Nasa goddard space flight centeramp;x2019;s compendium of radiation effects test results. In *2020 IEEE Radiation Effects Data Workshop (in conjunction with 2020 NSREC)*, pages 1–12.
- Vaillon, R., Parola, S., Lamnatou, C., and Chemisana, D. (2020). Solar cells operating under thermal stress. *Cell reports physical science*, 1(12):100267.
- Wang, C., Hu, S., Gao, C., and Feng, C. (2018). Nuclear radiation degradation study on hd camera based on cmos image sensor at different dose rates. *Sensors (Basel, Switzerland)*, 18(2):514.
- White, R. H. and Wirtenson, G. R. (1993). *Radiation induced darkening of the optical elements in the Startracker camera*. Lawrence Livermore National Laboratory.
- Wilkinson, D., Daughtridge, S., Stone, J., Sauer, H., and Darling, P. (1991). Tdrs-1 single event upsets and the effect of the space environment. *IEEE Transactions on Nuclear Science*, 38(6):1708–1712.
- Wilson, C., George, A., and Klamm, B. (2016). A methodology for estimating reliability of smallsat computers in radiation environments. In *IEEE Aerospace Conference Proceed-ings*, volume 2016-.
- Zaragoza-Asensio, J. A., Pindado, S., and Pérez-Álvarez, J. (2021). Li-ion battery for space missions based on cots cells: Mechanical analysis and design. *The Egyptian journal of remote sensing and space sciences*, 24(2):311–317.

Appendix A

Acronyms

FMEAFailure Mode and Effects AnalysisHYPSOHYPer-spectral Smallsat for ocean ObservationINCOSEInternational Council on System EngineeringMBSEModel Based System EngineeringMBSAModel Based Safety AssessmentNTNUNorwegian University of Science and TechnologyRAMSReliability, availability, maintainability, and safetySESystem engineering

APPENDIX 1 Functional architecture

Uplink data from artic sensors to satellite

APPENDIX 2 Physical architecture

APPENDIX 3 USE CASES

OPERATIVE MODE

Use Case 1 Title Slew imag	ging
10.00	Satellite is in cruise mode
Preconditions	All system components are working ok
	Mission parameters are ready to be uploaded
Post conditions	Mission control center receives processed images from satellite.
Post-conditions	Satellite goes back to cruise mode
Trigger	Requirement from HYPSO users
Story	

1 HYPSO wakes up from Cruise mode and turns to uplink mode: S-band antenna is turned on and pointed to Ground station.

2 HYPSO operator user stablishes imaging parameters in slewing mode and uplink them via ground station.

3 Payload controller initiates preoperational mode sending slew manuever command to Flight Controller and sending process configuration to On-Board Processing Unit (OPU).

Physical architecture components

Activity

- 4 Flight controller sets satellite initial imaging position using position sensors and position actuators
- 5 Satellite moves from Pre-operational mode to Image (Slew). HSI Camera image earth surface while ADCS maneuver satellite. Image information is buffered to Memory

6 Satellite moves to On-boarding process. FPGA processes images saved in Memory and buffer the payload data to PC

- 7 Satellite enters to downlink mode when it is close to a ground station. ADCS points satellite antenna to Ground station and data is downlinked via S-band Antenna. (See Use Case 5 If file size is that big it is not possible to download it in one pass)
- 8 Satellite Command Center donwload information from webpage interface and analize.

Lise Case 2		
Title Nadir im:	aging	
Level 1	uging	
	Satellite is in cruise mode	
Preconditions	All system components are working ok	
	Mission parameters are ready to be uploaded	
	Mission control center receives processed images from satellite	
Post-conditions	Satellite goes back to Cruise Mode	
Trigger	Requirement from HYPSO users	
Story		
1 HYPSO w	vakes up from Cruise mode and turns to uplink mode: S-band antenna i	s turned on and pointed to Ground station.
2 HYPSO or	perator user stablishes imaging parameters in Nadir mode and uplink	them via ground station.
3 Payload o	controller inititates preoperational mode sending Nadir manuever com	mand to Flight Controller and sending process configuration
to On-Bo	ard Processing Unit (OPU).	
4 Flight cor	ntroller sets satellite initial imaging position using position sensors an	d position actuators
5		
Satellite	moves from Pre-operational mode to Image (Nadir). HSI Camera imag	ge earth surface. Image information is buffered to FPGA
6 Satellite	moves to On-boarding process. FPGA processes images and buffer the	e payload data to PC
7 Satellite	enters to downlink mode when it is close to a ground station. ADCS po	ints satellite antenna to Ground station and data is
downlink	ed via S-band Antenna. (See Use Case 5)	
8 Satellite	Command Center donwload information from webpage interface and	analize.

Use Case 3 Title Software update Level 1 Satellite is in cruise mode Preconditions Software update are ready to be uploaded Post-conditions Software is updated or calibrated. Mission control receives a Green light "Succesful update" Requirement from HYPSO users Trigger Story 1 HYPSO wakes up from Cruise mode and turns to uplink mode: S-band antenna is turned on and pointed to Ground station. 2 HYPSO operator uplink Software Update via ground station.

3 Payload controller sends software update to On-Board Processing Unit (OPU) to update Software

4 Operator receive a green state, meaning that image loading was successful

Use Case 4	
Title Satellite o	alibration
Level 1	
	Satellite is in cruise mode
Preconditions	All system components are working ok
	Operator wants to check HSI calibration
	Mission control center receives processed images from satellite
Post-conditions	Satellite goes back to Cruise Mode
Trigger	Requirement from HYPSO users
Story	

1 HYPSO wakes up from Cruise mode and turns to uplink mode: S-band antenna is turned on and pointed to Ground station.

2 HYPSO operator user stablishes calibration mode command and uplink them via ground station.

3 Payload controller inititates preoperational mode sending Nadir manuever command to Flight Controller and sending process configuration to On-Board Processing Unit (OPU).

4 Flight controller sets satellite initial imaging position using position sensors and position actuators

5 Satellite moves from Pre-operational mode to Image (Nadir)*. HSI Camera image earth surface. Image information is buffered to FPGA

6 Satellite moves to On-boarding process. FPGA processes images and buffer the payload data to PC

- 7 Satellite enters to downlink mode when it is close to a ground station. ADCS points satellite antenna to Ground station and data is downlinked via S-band Antenna. (See Use Case 5)
- 8 Satellite Command Center donwload information from webpage interface and analize.
- 9 Calibration coefficients calculated on ground
- 10 HYPSO wakes up from Cruise mode and turns to uplink mode in a new pass: S-band antenna is turned on and pointed to Ground station.
- 11 HYPSO operator user uplink new calibration coefficients via ground station.

12 Apply: Use	e Case Software update
*Imaging configuration fo	r calibration and Nadir is basically the same, however configration changes and therefore the time camera is on
Use Case 5	
Title Downlinki	ng file in multiple passes
Level 1	
Preconditions	Satellite is in downlink mode
	Downlinking is finished
Post-conditions	Satellite goes back to Cruise Mode
Trigger	Satellite moves out of the ground station range
Story	
1 Satellite r	noves out of the ground station range. Downlinking stops and HYPSO goes to Cruise mode.
2 Satellite r	noves in into the ground station range. HYPSO wakes up from Cruise mode to Downlink mode.
3 Downlinki	ng process in downlink mode continues. If downlink finishes moves to 4, if not, back to 1.
4 Downlinki	ng finishes and satellite goes to Cruise Mode
Use case 6	- 4-4-
Intel Telemetry	y data
Droconditions	All custom components are working ok
Freconditions	An system components are working on
Post-conditions	Stability Downiniking is finished
Trigger	Satellite goes back to cruise Mode
Story	Operator requires telefinetry and satellite is at GS range
	alion up from Cruico mode and turns to unlink model 5 band asternas is turned on and pointed to Ground station
	area of monitorial conservation and and and and and and and and pointed to Ground station.
2 mps0 0p	lerator user uprink teremetry command via ground station.

- 3 Payload controller initiates Telemetry mode requiring tememetry data from Flight controller, EPS and On-Board Processing Unit.
- 4 Satellite enters to downlink mode to send telemetry data to ground
- 5 Satellite Command Center donwload telemetry information

	Use Case 7	
Title RGB imaging		
	Level 1	
Preconditions		Satellite is in imaging mode
		RGB is available
	Post-conditions	RGB image is saved in OPU memory
	Trigger	HYPSO user requires RGB image in addition to HSI image
	Story	

- 1 HYPSO user requires RGB image in addition to HSI image
- 3 RGB camera moves to idle mode preparing camera configuration.
- 2 RGB camera captures RGB image when satellite is in Nadir position (28,5 sec after first image in Slew mode and 5 sec after first image in
- Nadir mode) 3 RGB image is saved in OPU memory
- 3 hop mage is barea in or o memor

EXCEPTIONAL SCENARIOS

Use Case 8

Title Safe scen	ario due to low batery
Level 1	
Preconditions	Satellite could be in any condition
Post-conditions	Satellite goes to Safe Mode until power battery gets to 7,4V
Trigger	Battery voltage is below 7,2V
Story	
1 Battery vo	ltage gets below 7,2V
2 HYPSO EP	S cuts power supply to Payload
3 HYPSO EP	S cuts power supply to Payload controller
 The balance of the second secon	the line of the second s

- 4 Flight controller send command to ACDS to move satellite to sun pointing (Harvesting) position
- 5 Satellite goes to Safe Mode until power battery gets to 7,4V

Use Case 9

Title Safe scenario due to High Radiation Level

Level 1

Preconditions	Satellite could be in any condition
---------------	-------------------------------------

Satellite goes to Safe Mode until radiation level goes to safe

Post-conditions levels

Trigger Radiation level reaches 20 nT

Story

- 1 Radiation level reaches 20 nT
- 2 Operator check NOAA spaceweather condition and see that Radiation level reaches 20 nT
- 3 Operator send command to Satellite to go to Safe mode
- 4 HYPSO EPS cuts power supply to Payload

5 HYPSO EPS cuts power supply to Payload controller

6 Flight controller send command to ACDS to move satellite to sun pointing (Harvesting) position 7 Satellite goes to Safe Mode until Radiation is below 18nT

Use Case 10	
Title Critical sc	enario
Level 1	
Preconditions	Satellite is in safe mode
Post-conditions	Satellite goes to Critical Mode until battery level reaches 6,5V (Safe mode)
Trigger	Battery level goes below 6,5V
Story	
1 Battery le	evel goes below 6,5V
2 Satellite r	moves from Safe mode to Critical mode
3 HYPSO EP	S cuts power supply to Flight controller
4 Satellite s	stays in Safe Mode until battery level reaches 6,5V (Safe mode)
Use Case 11	
Title Critical ha	ardware scenario
Level 1	
Preconditions	Satellite could be in any condition
Post-conditions	Satellite goes to Critical Hardware Mode until battery level
	reaches 6,5V (Safe mode)
Trigger	Critical damage to a subsystem or components*
Story	
1 Critical da	image to a subsystem or components is detected*
2 Satellite r	moves to Critical Hardware Mode
3 HYPSO EP	s cuts power supply to all Bus and Payload components and turn off itself
4 Satellite s	stays in Critial Hardware Mode until battery level reaches 6,5V (Sate mode)
Use Case 12	
Title Missed ta	rget for HW/SW reasons
Level 1	Catallita in income mode
Preconditions	Satellite is in image mode
Post-conditions	satellite send reeedback with telemetry saying there was something wrong
Trigger Story	There is something wrong in the imaging or processing modes
1 There is s	omething wrong in the imaging or processing modes
2 Satellite	send a feedback (with telemetry) to operator saving there was something wrong during the process
3 OPU dele	tes wrong data from memory
	- /

Use Case 13

Title Missed to	Missed target for operational reasons		
Level 1			
Preconditions	Satellite is in image mode		
Post-conditions	Satellite send feeedback with telemetry saying there was		
FOST-CONDITIONS	something wrong		
Trigger	There is something wrong in the imaging or processing modes		
Stony			

Story
1 There is something wrong in the imaging or processing modes
2 Satellite send a feedback (with telemetry) to operator saying there was something wrong during the process

3 OPU deletes wrong data from memory

APPENDIX 4 ACTIVITIES

PRAGMATIC APPROACH

FORMAL APPROACH

A1		
Activity	Uplink/downlink preparation	Uplink/downlink preparation
Triggering condition	Satellite is in the range of one of the stablished ground station. Battery voltage is over 7,2V. S-Band antenna is Available. Radiation is below 20nT FC is ON ADCS is Available (Coarse attitude determination)	Satellite_range = True Battery_voltage.value = OK (>7,2) S-Band_antenna = OFF Radiation.value < 20 FC.state = _ON ADCS_CDA = Working
Duration	1 minute	1 minute (Deterministic)
Effect at start	ADCS is On in Coarse Attitude determination (system points Satellite's Antenna to ground station)	S-band_Antenna = IDLE ADCS_CDA = _ON
Effect at completion	Satellite is ready to receive/download commands ADCS keeps satellite pointing to Ground Station	Satellite_receive/download =True
Interruptions	Satellite is out of the ground station range S-band fails FC fails ADCS system fails Radiation reaches 20nT Battery voltage is below 7,2V.	Satellite_range = False S-Band_antenna = Failure FC.state = Failure ADCS_CDA = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A2		
Activity	Uplinking mission parameters	Uplinking mission parameters
Triggering condition	Satellite is in the range of one of the stablished ground station. Satellite is ready to receive / download commands Operator sends commands to the satellite (Just mission parameters) Battery voltage is over 7,2V. S-Band antenna is ON. Radiation is below 20nT Ground station is available Payload controller is ON	Satellite_range = True Satellite_receive/download =True Operator_requirement_mp = True Battery_voltage.value > 7,2 S-band_Antenna = IDLE Radiation.value < 20 Groundstation = Working PC.state = _Working and _ON
Duration	20 seconds	20 seconds
Effect at start	Ground station is ON (start uplinking process) S-band moves to Uplinking mode	Groundstation = ON (start uplinking process) S-band_Antenna = ON
Effect at completion	Mission commands are uploaded to Payload controller. Ground station is OFF S-Band is OFF	Missioncommand_upload = True Groundstation = OFF S-band_Antenna = OFF Operator_requirement = False
Interruptions	Single event upset in PC buffered information PC failure S-band failure Ground station failure Radiation reaches 20nT Battery voltage is below 7,2V.	PC.Data = Failure PC.state = Failure S-Band_antenna = Failure ADCS_CDA = Failure Radiation.value > 20 Battery_voltage.value < 7,2

Activity	Uplinking mission parameters + camera parameters	
Triggering condition	Satellite is in the range of one of the stablished ground station. Satellite is ready to receive / download commands Operator sends commands to the satellite Battery voltage is over 7,2V. S-Band antenna is ON. Radiation is below 20nT Ground station is available Payload controller is ON 40 seconds	Satellite_range = True Satellite_receive/download =True Operator_requirement_mp_cp = True Battery_voltage.value > 7,2 S-band_Antenna = ON and idle MODE Radiation.value < 20 Groundstation = Working PC.state = _Working and _ON 40 seconds
Duration	Ground station is ON (start uplinking process)	Groundstation = ON (start uplinking process)
Effect at start	S-band moves to Uplinking mode	S-band_Antenna = ON and Working
Effect at completion	Mission commands are uploaded to Payload controller. Ground station is OFF S-Band is OFF	Missioncommand_upload = True Groundstation = OFF S-band_Antenna = OFF Operator_requirement_mp_cp = False
Interruptions	Single event upset in PC buffered information PC failure S-band failure Ground station failure Radiation reaches 20nT Battery voltage is below 7,2V.	PC.Data = Failure PC.state = Failure S-Band_antenna = Failure ADCS_CDA = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A4		
Activity	Preparation to slew imaging (Also for Nadir) Mission commands are uploaded to payload controller Battery voltage is over 7,2V.	Missioncommand_upload = True Battery_voltage.value > 7,2 Badiation value < 20
Triggering condition	ADCS system is ON and (Precise attitude determination) available Flight Controller is ON Payload controller is ON OPU is available HSI is available	ADCS_PDA = Working FC.state = _Working and _ON PC.state = _Working and _ON OPU = _Working and OFF HSI= _Working and OFF
Duration	120 seconds ADCS moves to Precise attitude determination mode OPU is ON and IDLE (Loading process configuration)	120 seconds ACDS_PDA = ON OPU = ON and Idle
Effect at start	HSI moves to IDLE (Loading camera parameters)	HSI = ON and Idle
Effect at completion	Satellite is ready to slew imaging (Or Nadir) ACDS keeps Precise attitude determination mode	Imaging_position = True OPU = IdIe HSI = IdIe
	ADCS (Precise attitude determination) system is not available FC fails OPU is not ON	ADCS_PDA=Failure FC.state=Failure PC_State=Failure
Interruptions	HSI is not ON Radiation reaches 20nT Battery voltage is below 7,2V.	PC.Data = Failure HSI_State = Failure Radiation.value > 20 Battery_voltage.value < 7,2

A3

A5		
Activity	Change FPGA processing configuration Operator changed processing configuration Battery voltage is over 7,2V. Radiation is below 20nT	Operator_requirement_pc = True Battery_voltage.value > 7,2 Radiation_value < 20
Triggering condition	Payload controller is available Memory card in OPU accessible UHF antenna is available	MemorySD_1.state = Working PC.state = _Working and _ON OPU = Working and Idle UHF = Working
Duration	27,6 sec	2,76 seconds MemorySD_1 = On
Effect at start	PC send FPGA configuration to SD card in OPU Configuration is upload in SD number 1	UHF = On MemorySD_1 = Off
Effect at completion	OK message to operation OPLL is not energized	UHF = OFF
	OPU is not working Payload controller is not working	PC.Data = Failure PC.state = Failure OBU = failed
Interruptions	SD memory is not accessible Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.state = Failure MemorySD_1.Data = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A6		
Activity Triggering condition	Start slew imaging Battery voltage is over 7,2V. Radiation is below 20nT Payload controller is available OPU is working ADCS system available (Precise attitude determination)	Operator_slew = True Battery_voltage.value > 7,2 Radiation.value < 20 PC.state = _Working and _ON
	HSI is available	HSI = Working and Idle ADCS_PDA = ON
Duration	57 seconds	57 seconds
Effect at start	HSI starts slew imaging ADCS starts slew maneouver	OPU = ON HSI = ON
Effect at completion	Image is binned and saved in OPU memory HSI turn off ACDS_PDA turn off	HSI = OFF ACDS_PDA = OFF Image.state = True
Interruptions	Single event upset in memory or memory failure ADCS precise attitude determination fails HSI failure Radiation reaches 20nT Battery voltage is below 7,2V.	ADCS _PDA = Failure FC.state = Failure Memory.State = Failure Memory.Data = Failure HSI.State = Failure HSI.data = Failure Radiation.value > 20

Battery_voltage.value < 7,2

A7		
Activity	Start Nadir imaging	
	Battery voltage is over 7,2V.	Operator padir-True
	Radiation is below 20nT	Operator_nadir= frue
	Payload controller is available	Ballery_vollage.value > 7,2 Padiation value < 20
Triggering condition	OPU is available	RC state = Working and ON
	ADCS system available (Precise attitude determination)	OPU = Working and Idle
	HSI is available	HSI - Working and Idle
		ADCS PDA = Working ON
Duration	10 seconds	10 seconds
Duration	HSI starts Nadir imaging	
	ADCS keens Nadir nosition	ACDS_PDA=ON
Effect at start	Noes keeps taan position	
Ellect at start	Image is hinned and saved in OPU memory	HSI=ON
	Hist comproving off	Memory = On
	Attitude control system	HSI = OFF
	Attrade control system	ACDS_PDA = OFF
Effect at completion		Image.state = True
	Single event upset in memory or memory failure	ADCS PDA = Failure
	ADCS precise attitude determination fails	FC.state = Failure
	Holfallure	Memory.State = Failure
Interruptions	Radiation reaches 2001	Memory.Data = Failure
interruptions	Battery vortage is below 7,2 v.	HSI.State = Failure
		HSI.data = Failure
		Radiation.value > 20
		Battery_voltage.value < 7,2
A8		
Activity	Start Calibration imaging	
	Battery voltage is over 7,2V.	Operator calibration = True
	Radiation is below 2001	Battery_voltage.value > 7,2
	Payload controller is available	Radiation.value < 20
Triggering condition	OPO IS available	PC.state = _Working and _ON
	ADCS system available (Precise attitude determination)	OPU = Working and Idle
		HSI = Working and Idle
		ADCS_PDA = Working_ON
Duration	1 second	1 seconds
	HSI starts nadir imaging	ACDS PDA = ON
Cff and an advant	ADCS keeps Nadir position	OPU = ON
Effect at start		HSI = ON
		Memory = On
	Image is saved in OPU memory	HSI = OFF
Effect at completion	•	
		Image.state = True
	Single event upset in memory or memory failure	initigeistate itae
	ADCS precise attitude determination fails	ADCS _PDA = Failure
	HSI failure	FC.state = Failure
	Radiation reaches 20nT	Memory.State = Failure
Interruptions		Memory Data = Failure
	Battery voltage is below 7,2V.	
	Battery voltage is below 7,2V.	HSI.State = Failure
	Battery voltage is below 7,2V.	HSI.State = Failure HSI.data = Failure
	Battery voltage is below 7,2V.	HSI.State = Failure HSI.data = Failure Radiation.value > 20

A9		
Activity	Start RGB imaging during Slew imaging	
	Activity 6 is active	Operator PCP - True
	28.5 sec after initiating HSI slew imaging	ActivityA6 state - True
Triggering condition	RGB camera is available	ActivityAb.state = frue
		ActivityA9.Init = ActivityA6.Init + 28,5 sec
		RGB = Working
Duration	1 seconds	1 seconds
Effect at start	RGB starts imaging	RGB = ON
Effect at completion	Image is saved in OPU memory	RGB = OFF
Interruptions	RGB camera fails	RGB = Failure
A10		
Activity	Start RGB imaging during Nadir imaging	
Activity	Start NOB Imaging during Naun imaging	
	RGB image is required	
	Battery voltage is over 7,2V.	
Triggering condition	Radiation is below 20nT	Operator_RGB = True
	5 sec after initiating HSI slew imaging	ActivityA7.state = True
	RGB camera is available	ActivitvA10.init = ActivitvA7.init + 5 sec
	Memory is working	RGB = Working
Duration	1 seconds	1 seconds
	PCP starts imaging	
	RGB starts imaging	RGB = ON
Effect at completion	Image is saved in OPU memory	RGB = OFF
Interruptions	RGB camera failure	RGB = Failure
A11		
Activity	Process data using MOBIP configuration for Slew imaging	
	Process command is to do MOBIP processing from slew imaging	
	Battery voltage is over 7,2V.	Process_cont = MOBIP
	Radiation is below 20nT.	Battery_voltage.value > 7,2
	FPGA is available.	Radiation.value < 20
Triggering condition	Memory is working	Image.state = True
	Memory SD CARD boot is available	OPU = ON
	PC is working	MemorySD_1.state = Working
	r c is working.	Memory.state = ON
		PC.state = _ Working and _ON
Duration	1929.1 sec	1929.1 seconds
	FPGA boots Processing configuration from SD card	
Effect at start	6 6	MemorySD 1 state = ON
	Processed data is huffered to PC	
Fffeet at a smalletion		OPU = OFF
Effect at completion		Image.MOBIP.slew =True
		MemorySD_1.state = OFF
	Sinle event upset in SD booting image or SD failure	MomonySD 1 Data - Eailurg
	Single event upset in OPU memory or memory failure	MemorySD_1.Data = Failure
	FPGA failure	WemorySD_1.state = Failure
	Single event upset in PC memory	Memory.Data = Failure
Interruntions	Radiation reaches 20nT	Memory.state = Failure
	Battery voltage is below 7,2V.	HPGA = Failure
		PC.Data = Failure
		PC.state = Failure
		Radiation.value > 20
		Battery_voltage.value < 7,2

A12		
Activity	Process data using DROBIP configuration from Slew Imaging	
Triggering condition Duration Effect at start	Process command is to do DROBIP processing from Slew Imaging Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working. 326.3 sec FPGA boots Processing configuration from SD card Processed data is buffered to PC	Process_conf = DROBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD_1.state = Working Memory.state = ON PC.state = _Working and _ON 326.3 sec FPGA = ON MemorySD_1.state = ON OPU = OFF Image DROBIP slew = True
Interruptions	Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A13 Activity	Process data using TOBIP configuration from Slew Imaging	
Triggering condition	Process command is to do TOBIP processing from Slew Imaging Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working.	Process_conf = TOBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD_1.state = Working Memory.state = ON PC.state = Working and ON
Duration	37.6 sec	37.6 sec
Effect at start	FPGA boots Processing configuration from SD card	MemorySD_1.state = ON
Effect at completion	Processed data is buffered to PC	Image.TOBIP.slew =True
Interruptions	Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2

A14		
Activity	Process data using COBIP configuration from Slew Imaging	
Triggering condition Duration Effect at start Effect at completion	Process command is to do COBIP processing from Slew Imaging Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working. 32.7 sec FPGA boots Processing configuration from SD card Processed data is buffered to PC	Process_conf = COBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD_1.state = Working Memory.state = ON PC.state = _Working and _ON 32.7 sec FPGA = ON MemorySD_1.state = ON OPU = OFF Image.COBIP.slew =True
Interruptions	Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A15 Activity	Process data using MOBIP configuration from Nadir imaging	
Triggering condition	Process command is to do MOBIP processing for Nadir imaging Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available.	Process_conf = COBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD 1 state = Working
	Memory is working. PC is working.	Memory.state = ON PC.state = _Working and _ON
Duration	Memory is working. PC is working. 2407.9 sec	Memory.state = ON PC.state = _Working and _ON 2407.9 sec EPGA = ON
Duration Effect at start	Memory is working. PC is working. 2407.9 sec FPGA boots Processing configuration from SD card	Memory.state = ON PC.state = _Working and _ON 2407.9 sec FPGA = ON MemorySD_1.state = ON OPU = OFF
Duration Effect at start Effect at completion Interruptions	Memory is working. PC is working. 2407.9 sec FPGA boots Processing configuration from SD card Processed data is buffered to PC Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7.2V	Memory.state = ON PC.state = _Working and _ON 2407.9 sec FPGA = ON MemorySD_1.state = ON OPU = OFF Image.MOBIP.nadir =True MemorySD_1.Data = Failure Memory.Data = Failure Memory.Data = Failure Memory.state = Failure PC.Data = Failure PC.Data = Failure Radiation.value > 20 Battery, voltage value < 7.2

A16		
Activity	Process data using DROBIP configuration fro Nadir imaging	
Triggering condition Duration Effect at start Effect at completion	Process command is to do DROBIP processing from Nadir Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working. 66.14 sec FPGA boots Processing configuration from SD card Processed data is buffered to PC.	Process_conf = COBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD_1.state = Working Memory.state = ON PC.state = _Working and _ON 66.14 sec FPGA = ON MemorySD_1.state = ON OPU = OFF Image.DROBIP.nadir =True
Interruptions	Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A17 Activity	Process data using TOBIP configuration fron Nadir Imaging	
Triggering condition	Process command is to do TOBIP processing from Nadir Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working.	Process_conf = COBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD_1.state = Working Memory.state = ON PC.state = _Working and _ON
Duration	9.1 sec	9.1 sec
Effect at start	FPGA boots Processing configuration from SD card	MemorySD_1.state = ON OPU = OFF
Effect at completion	Processed data is buffered to PC Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	Image.TOBIP.nadir =True MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2

Process data using COBIP configuration from Nadir		
Process command is to do COBIP processing from Nadir Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working.	Process_conf = COBIP Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True FPGA = Working and IDLE MemorySD_1.state = Working Memory.state = ON PC state = Working and ON	
6.7 sec	6.7 sec	
FPGA boots Processing configuration from SD card	FPGA = ON MemorySD_1.state = ON OPU = OFF	
Processed data is buffered to PC	Image.COBIP.nadir =True	
Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2	
Transfer Slew imaging Raw data to PC Process command is to transfer Raw Data Battery voltage is over 7,2V. Radiation is below 20nT.	Process_conf = RAWSLEW Battery_voltage.value > 7,2 Badiation value < 20	
Memory is working. PC is working.	MemorySb_1.state = Working Memory.state = ON PC.state = Working and ON	
4329.3 sec	4329.3 sec	
Raw Data is buffered from OPU memory without processing	MemorySD_1.state = ON	
Raw data is buffered to PC	OPU = OFF Image.RAW.slew =True	
Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2	
	Process data using COBIP configuration from Nadir Process command is to do COBIP processing from Nadir Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working. 6.7 sec FPGA boots Processing configuration from SD card Processed data is buffered to PC Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is over 7,2V. Radiation is below 20nT. Memory is working. PC is working. PC is working. PC is working. PC is working. Sinle event upset in SD booting image or SD failure Satery voltage is over 7,2V. Radiation is below 20nT. Memory is working. PC is working. Sinle event upset in SD booting image or SD failure Single event upset in PC memory without processing Raw data is buffered to PC Sinle event upset in SD booting image or SD failure Single event upset in PC memory without processing Raw data is buffered to PC Sinle event upset in SD booting image or SD failure Single event upset in PC memory without processing Raw data is buffered to PC Sinle event upset in SD booting image or SD failure Single event upset in PC memory Radiation reaches 20nT Sinle event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	
A20		
---	---	--
Activity	Transfer Nadir imaging Raw data to PC	
Triggering condition	Process command is to transfer Raw Data Battery voltage is over 7,2V. Radiation is below 20nT. FPGA is available. Memory is working. PC is working.	Process_conf = RAWNADIR Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True MemorySD_1.state = Working Memory.state = ON PC.state = _Working and _ON
Duration	877.5 sec	877.5 sec
Effect at start	Raw Data is buffered from OPU memory without processing	MemorySD_1.state = ON OPU = OFF
Effect at completion	Raw data is buffered to PC	Image.RAW.nadir =True
Interruptions	Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A21		
Activity	Transfer Calibration imaging to PC	
Triggering condition Duration Effect at start	Calibration command Battery voltage is over 7,2V. Radiation is below 20nT. Memory is working. PC is working. 130 sec Calibration Raw Data is buffered from OPU memory without processing Calibration Raw data is buffered to PC	Process_conf = RAWCALIB Battery_voltage.value > 7,2 Radiation.value < 20 Image.state = True MemorySD_1.state = Working Memory.state = ON PC.state = _Working and _ON 130 sec MemorySD_1.state = ON Image.state = False OPU = OFF
Effect at completion		UPU = OFF
Interruptions	Sinle event upset in SD booting image or SD failure Single event upset in OPU memory or memory failure FPGA failure Single event upset in PC memory Radiation reaches 20nT Battery voltage is below 7,2V.	MemorySD_1.Data = Failure MemorySD_1.state = Failure Memory.Data = Failure Memory.state = Failure FPGA = Failure PC.Data = Failure PC.state = Failure Radiation.value > 20 Battery_voltage.value < 7,2

۵22		
Activity	Downlinking MOBIP data from Slew imaging	
	S-Band antenna is pointed to ground station	с
	MOBIP Data from Slew imaging is in PC ready to be downlinked	Satellite_range = Irue
	Battery voltage is over 7,2V.	Image MOBIP slew =True
Triggering condition	Radiation is below 20nT.	Battery voltage value > 7.2
	PC is working	Radiation.value < 20
		PC.state = _ Working and _ON
		S-band_Antenna = WORKING and idle MODE
Duration	558 sec	558 sec
Effect at start	PC sends data to GS using S-band antenna	S-band_Antenna = ON
	Data is downlinked	S-band_Antenna = OFF
Effect at completion		Image.MOBIP.slew =False
	Satellite is out of ground station Range	Satellite_range = False
	Single event upset in PC memory	PC.Data = Failure
Interruptions	Radiation reaches 20nT	S-hand Antenna = Failure
	S-band antenna Fails	Radiation.value > 20
	Ground Station fails	Battery_voltage.value < 7,2
	Battery voltage is below 7,2 v.	
A 22		
A25 Activity	Downlinking DROBIP data from Slew imaging	
Accivity	S-Band antenna is pointed to ground station	Satellite range=True
	DROBIP Data from Slew imaging is in PC ready to be downlinked	Satellite receive/download =True
Triggering condition	Battery voltage is over 7,2V.	Image.DROBIP.slew =True
	Radiation is below 20nT.	Battery_voltage.value > 7,2
	PC is working	Radiation.value < 20
Duration	93 sec	93 sec
Effect at start	PC sends data to GS using S-band antenna	S-band_Antenna = ON
		S-band_Antenna = OFF
Effect at completion	Data is downlinked	Image.DROBIP.slew =False
	Satellite is out of ground station Range	Satemice_range = raise PC Data = Eailure
	Single event upset in PC memory	PC.state = Failure
Interruptions	Radiation reaches 20nT	S-band Antenna = Failure
	S-band antenna Falls	 Radiation.value>20
	Battery voltage is below 7.2V	Battery_voltage.value < 7,2
A24		
Activity	Downlinking TOBIP data from Slew imaging	
		Satellite range=True
		Satellite receive/download =True
	S-Band antenna is pointed to ground station	Image.TOBIP.slew =True
Triggering condition	TOBIP Data from Slew imaging is in PC ready to be downlinked	Battery_voltage.value > 7,2
	Battery voltage is over 7,2V.	Radiation.value < 20
	Radiation is below 20nT.	PC.state = _Working and _ON
	PC is working	S-band_Antenna = WORKING and idle MODE
Duration	10.5 sec	10.5 sec
Effect at start	PC sends data to GS using S-band antenna	S-band_Antenna = ON
Effect at completion	Data is downlinked	Image TOBIP slew =False
Encer ar completion		Satellite range=False
	Salenne is out of ground station Range	PC.Data = Failure
In the second t	Radiation reaches 20nT	PC.state = Failure
interruptions	S-band antenna Fails	S-band_Antenna = Failure
	Ground Station fails	Radiation.value > 20
	Battery voltage is below 7,2V.	Battery_voltage.value < 7,2

A25		
Activity	Downlinking COBIP data from Slew imaging	
	S-Band antenna is pointed to ground station	Catallita, range - True
	COBIP Data from Slew imaging is in PC ready to be downlinked	Satellite_range = frue
	Battery voltage is over 7,2V.	Image COBIP slew =True
Triggering condition	Radiation is below 20nT.	Battery voltage value > 7.2
	PC is working	Badiation value < 20
		PC state = Working and ON
		S-band Antenna = WORKING and idle MODE
Duration	2.6 sec	2.6 sec
Effect at start	PC sends data to GS using S-band antenna	S-band Antenna = ON
	C C	S-band Antenna = OFF
Effect at completion	Data is downlinked	Image.COBIP.slew =False
		Satellite range = False
	Satellite is out of ground station Range	PC.Data = Failure
	Badiation reaches 20nT	PC.state = Failure
Interruptions	S-hand antenna Fails	S-band_Antenna = Failure
	Ground Station fails	Radiation.value > 20
	Battery voltage is below 7.2V.	Battery_voltage.value < 7,2
A26		
Activity	Downlinking MOBIP data from Nadir imaging	
		Catallita, range - True
		Satellite_range = Irue
	S-Band antenna is nointed to ground station	Image MOBIP padir -True
Triggering condition	MOBIP Data from Nadir imaging is in PC ready to be downlinked	Battery voltage value > 7.2
	Battery voltage is over 7.2V	Badiation value < 20
	Badiation is below 20nT.	PC state = Working and ON
	PC is working	S-band Antenna = WORKING and idle MODE
Duration	113 sec	113 sec
Effect at start	PC sends data to GS using S-band antenna	S-band Antenna = ON
		S-band Antenna = OFF
Effect at completion	Data is downlinked	Image.MOBIP.nadir =False
		Satellite range = False
	Satellite is out of ground station Range	PC.Data = Failure
	Single event upset in PC memory	PC.state = Failure
Interruptions	S hand antonna Fails	S-band_Antenna = Failure
	Ground Station fails	Radiation.value > 20
	Battery voltage is below 7.2V	Battery_voltage.value < 7,2
A27		
Activity	Downlinking DROBIP data from Nadir imaging	
	S-Band antenna is pointed to ground station	Satellite range=True
	DROBIP Data from Nadir imaging is in PC ready to be downlinked	Satellite receive/download =True
Triggering condition	Battery voltage is over 7,2V.	Image.DROBIP.nadir =True
	Radiation is below 20nT.	Battery_voltage.value > 7,2
	PC is working	Radiation.value < 20
Duration	18.8 sec	18.8 sec
Effect at start	PC sends data to GS using S-band antenna	S-band_Antenna = ON
		S-band Antenna = OFF
Effect at completion	Data is downlinked	 Image.DROBIP.nadir =False
	Satellite is out of ground station Dange	Satellite_range = False
	Single event unset in PC memory	PC.Data = Failure
	Radiation reaches 20nT	PC.state = Failure
Interruptions	S-band antenna Fails	S-band_Antenna = Failure
	Ground Station fails	Radiation.value > 20
	Battery voltage is below 7,2V.	Battery_voltage.value < 7,2
	· • ·	

A28		
Activity	Downlinking TOBIP data from Nadir imaging	
Triggering condition	S-Band antenna is pointed to ground station TOBIP Data from Nadir imaging is in PC ready to be downlinked Battery voltage is over 7,2V. Radiation is below 20nT. PC is working	Satellite_range = True Satellite_receive/download =True Image.TOBIP.nadir =True Battery_voltage.value > 7,2 Radiation.value < 20 PC.state = _Working and _ON S-band Antenna = WORKING and idle MODE
Duration	2.1 sec	2.1 sec
Effect at start	PC sends data to GS using S-band antenna	S-band_Antenna = ON
		S-band_Antenna = OFF
Enect at completion	Dataisdowninked	Satellite range - False
Interruptions	Satellite is out of ground station Range Single event upset in PC memory Radiation reaches 20nT S-band antenna Fails Ground Station fails Battery voltage is below 7,2V.	PC.bata = Failure PC.state = Failure S-band_Antenna = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A29		
Activity	Downlinking COBIP data from Nadir imaging	
Triggering condition	S-Band antenna is pointed to ground station COBIP Data from Nadir imaging is in PC ready to be downlinked Battery voltage is over 7,2V. Radiation is below 20nT. PC is working	Satellite_range = True Satellite_receive/download =True Image.COBIP.nadir =True Battery_voltage.value > 7,2 Radiation.value < 20 PC.state = _Working and _ON S-band_Antenna = WORKING and idle MODE
Duration	0.6 sec	0.6 sec
Effect at start	PC sends data to GS using S-band antenna	S-band_Antenna = ON
		S-band_Antenna = OFF
Effect at completion	Data is downlinked Satellite is out of ground station Range Single event upset in PC memory Radiation reaches 20nT S-band antenna Fails Ground Station fails Battery voltage is below 7,2V.	Image.COBIP.nadir =False Satellite_range = False PC.Data = Failure PC.state = Failure S-band_Antenna = Failure Radiation.value > 20 Battery_voltage.value < 7,2
A30		
Activity	Downlinking Raw data from Slew imaging	
Triggering condition	S-Band antenna is pointed to ground station Raw Data from Slew imaging is in PC ready to be downlinked Battery voltage is over 7,2V. Radiation is below 20nT. PC is working 1255 5 sec	Satellite_range = True Satellite_receive/download =True Image.RAW.slew =True Battery_voltage.value > 7,2 Radiation.value < 20 PC.state = _Working and _ON S-band_Antenna = WORKING and idle MODE 1255 Sec
Effect at start	PC sends data to GS using S-hand antenna	S-band Antenna = ON
	r e señas data to es asing s bana antenna	S-band_Antenna = OFF
Effect at completion	Data is downlinked	Image.RAW.slew =False
Interruptions	Satellite is out of ground station Range Single event upset in PC memory Radiation reaches 20nT S-band antenna Fails Ground Station fails Battery voltage is below 7,2V.	Satenite_range = Faise PC.Data = Failure PC.state = Failure S-band_Antenna = Failure Radiation.value > 20 Battery_voltage.value < 7,2

Activity Downlinking kaw data from Nadir Imaging Satellite_range = True Triggering condition S-Band antenna is pointed to ground station Image.RAW.nadir = True Raw Data from Nadir Imaging is in PC ready to be downlinked Battery voltage volue > 7.2 Radiation is below 2007. PC is working S-band_Antenna = ON S-band_Antenna = ON Duration 254.5 sc 254.5 sc Effect at start PC setes - Joint of Support PC is working Duration Data is downlinked Image.RAW.nadir = False Statellite is out of ground station Range Shand_Antenna = ON Shad antenna is pointed to ground station Range PC Data = Falire Statellite is out of ground station Range Shand_Antenna = Falire Shad antenna falis Battery voltage.value < 7.2 Battery voltage is below 7.2V. Battery voltage.value < 7.2 Asia Shad antenna falis Ground Station falis Battery voltage.value < 7.2 Battery voltage is below 7.2V. Battery voltage.value < 7.2 Adation is below 2007. PC state = Falire Shad antenna is pointed to ground station Image.RAW.addi = Falire Triggering condition Shad antenna is pointed to ground station Battery voltage.value < 7.2 Adation is below 2007. PC state = Autory Radiation value < 20 <
Statilite_range=True Satilite_rangeSatilite_rangeTriggering conditioSeand antenna is pointed to ground station Raw Data from Nadir imaging is in PC ready to be downlinked Battery voltage value > 7,2 Radiation is below 2001. PC is surf infigBattery voltage value > 7,2 Radiation value < 20 PC state = _Working and _ON S band _Antenna = WORKING and idle MODEDurationPC is surf infigS band _Antenna = ON S band _Antenna = OFEffect at completionData is downlinked at is downlinked statelite is out of ground station Range Radiation reaches 2007 S band _Antenna = OFInterruptionsSatellite is out of ground station Range Single event upset in PC memory Single event upset in PC memory Songle at the Charan station fails Ground Station fails Battery voltage is below 7,2V.A32 ActivityDownlinking calibration dataTriggering conditionSatellite_range = True Statilite_range = True Statilite_range = True Statilite_range is below 7,2V.A32 ActivityDownlinking calibration dataTriggering conditionData is no PC ready to be downlinked Battery voltage. Value < 7,2
Triggering condition range from Nadir imaging is in PC ready to be downlinked Battery voltage is over 7, 2V. Radiation value < 20 PC state = Working and _ON S-band, Antenna = WORKING and idle MODE DurationBattery voltage is over 7, 2V. Radiation value < 20 PC state = Working and _ON S-band, Antenna = WORKING and idle MODEDuration254.5 sec254.5 secEffect at startPC sends data to GS using S-band antennaS-band, Antenna = ON S-band, Antenna = ON S-band, Antenna = False PC Data = False PC Data = False PC state = False PC st
Bailery Outget Store PC:state = Working and ON PC:state = Working and ON PC:state = Working and ON Duration 254.5 sec Effect at start PC:sends data to GS using S-band antenna S-band, Antenna = ON Effect at start PC:state = Failure S-band, Antenna = OFF Effect at completion Data is downlinked Image, RAW.nadir = Failer Interruptions Radiation reaches 200T S-band, Antenna = Failure Shand antenna Fails Radiation reaches 200T S-band, Antenna = Failure Shand antenna Fails Radiation reaches 200T S-band, Antenna = Failure Ground Station fails Battery voltage is below 7,2V. Battery voltage value < 7,2
PC is workingS-band_Antenna = WORKING and idle MODEDuration254.5 secEffect at startPC sends data to GS using S-band antennaS-band_Antenna = OFEffect at startData is downlinkedImage RAW. nadir F-alseStart is downlinkedSatellite is out of ground station RangeSatellite_range=FalseInterruptionsRadiation reaches 20n7PC. state = FailureRadiation reaches 20n7PC. state = FailureS-band_Antenna = Spinted to ground stationImage RAW. skew < True
Duration 254.5 sec 254.5 sec Effect at start PC sends data to SS using S-band antenna S-band_Antenna = OR Effect at start Data is downlinked Image RAW.nadir = False Effect at scompletion Data is downlinked Statellite; range = False Interruptions Radiation reaches 20nT S-band_Antenna = Faliure Soland antenna Falis Radiation values 20 Battery_voltage is below 7,2V. A32 Activity Downlinking calibration data Satellite_range = True Triggering condition S-Band antenna is pointed to ground station Image RAW.slew Triggering condition S-Band antenna is pointed to ground station Image RAW.slew Duration S-Band antenna is pointed to ground station Image RAW.slew Triggering condition Calibration bate is in PC ready to be downlinked Battery_voltage, value < 7,2
and terration Set of the
Effect at completion Data is downlinked Image RAW addr - Falsie Satellite is out of ground station Range Single event upset in PC memory Radiation reaches 20nT Shand antenna Falis Ground Station falis Battery voltage is below 7, 2V. PC.state = Faliure PC.state = Faliure Radiation.value > 20 Battery_voltage is below 7, 2V. A32 Activity Downlinking calibration data Satellite_range = True Satellite_range = True Satellite_range = True Satellite_receive/download =True Image.RAW.slew = True Calibration bata is pointed to ground station Calibration Data is in PC ready to be downlinked Battery_voltage.value > 7,2 Duration 9.5-Band antenna is pointed to ground station Calibration Data is in PC ready to be downlinked Battery_voltage.value > 7,2 Duration 9.7-Sec PC.state = _Working andON PC is working PC.state = _Working andON PC is working Duration Data is downlinked Battery_voltage is over Shand_Antenna = ON Shand_Antenna = Faliure Shand_Antenna = Shand_Antenna = Co Shand_Antenna = Co Shand
Satellite is out of ground station RangeSatellite range = halse (C.bata = Failure PC.state = Failure Sband antenna Fails Ground Station fails Battery voltage is below 7, 2V.C.state = Failure Battery voltage value < 7, 2A32 ActivityDownlinking calibration dataSatellite _ range = True Satellite _ receive/download = True Image.RAW.slew = True Calibration bataTriggering conditionS-Band antenna is pointed to ground station altion is below 200T. Radiation value < 200 Battery voltage value < 7, 2
InterruptionsSingle event upset in PC memory Radiation reaches 20T S-band antenna Failis Ground Station fails Battery voltage is below 7,2V.PC state = Failure Radiation.value < 20 Battery_voltage.value < 7,2A32 ActivityDownlinking calibration dataSatellite_range = True Satellite_receive/download =True Image.RAW.slew =TrueTriggering conditionS-Band antenna is pointed to ground stationImage.RAW.slew =True Satellite_receive/download =True Satellite_range.active.com PC state = Working and _ONDurationS-Band antenna is pointed to ground stationImage.RAW.slew =True Satellite_range.active.com PC state = Working and _ONDurationS-Band antenna is pointed to ground stationBattery_voltage.value > 7,2 Radiation is below 20 TrueDurationS-Band antenna is pointed to ground stationImage.RAW.slew =True Satellite_range.active.com PC state =_Working and _ONDuration37.7 sec37.7 sec37.7 secEffect at startPC sends data to GS using 5-band antennaS-band_Antenna = ON Sband_Antenna = OFInterruptionsSatellite is out of ground station Range Single event upset in PC memory Battery voltage is over 7,2V.PC.Data = Failure Shand_Antenna = Failure Shand_Antenna = Failure Shand_Antenna = Failure Shand_Antenna = FailureA33 ActivityUplinking FPGA image Satellite is in the range of one of the stabilished ground station. Battery voltage is over 7,2V.Satellite_range = True Satellite_range = True Satellite_range = True Satellite_range = True Satellite_range = True Satellite_range = True Satellite_range = True Satellite is in the range of one of the stabilished
InterluptionsS-band antenna Fails Ground Station fails Battery voltage is below 7,2V.Statery voltage is below 7,2V.A32 ActivityDownlinking calibration dataSatellite_range = True Satellite_receive/download =True Image.RAW.slew =True Calibration Data is in PC ready to be downlinked Battery voltage is over 7,2V.Satellite_receive/download =True Image.RAW.slew =True Satellite_receive/download =True Satellite_receive/download =True Image.RAW.slew =True Calibration Data is in PC ready to be downlinked Battery voltage is over 7,2V. Radiation value < 20 Radiation is below 20nT. PC is working DurationSatellite_range = True Satellite_receive/download =True Image.RAW.slew =TrueDuration37.7 sec37.7 secEffect at startPC sends data to GS using S-band antenna S-band_Antenna = ON S-band_Antenna = OF FIge event upset in PC memory Satellite is out of ground station Range Ground Station fails Battery voltage is below 7,2V.A33 ActivityUplinking FPGA image Satellite is out of ground station Range Ground Station fails Battery voltage is below 7,2V.A33 ActivityUplinking FPGA image Satellite is out of ground station fails Battery voltage is below 7,2V.A33 ActivityUplinking FPGA image Satellite is out of ground station is available. Radiation is available. Payload controller is available.Triggering conditionGround station is available. Payload controller is available.Autoni = 200 secondsSatellite_receive/download = True Statellite_receive/download = True Statellite_receive/download = True Statellite_receive/download = True Statellite_receive/download = True Statellite_receive/download = True
Ground Station fails Battery, voltage is below 7,2V. Battery, voltage is below 7,2V. A32 Activity Downlinking calibration data Triggering condition S-Band antenna is pointed to ground station Image RAW. slew = True Satellite_range = True Satellite_receive/download = True Battery voltage is over 7,2V. Radiation.value < 20
A32 Activity Downlinking calibration data A32 Activity Downlinking calibration data Triggering condition Calibration Data is in PC ready to be downlinked Battery_voltage is over 7,2V. Radiation is below 20nT. PC is working Sband_Antenna = WORKING and idle MODE Duration 7.7 sec Effect at start PC sends data to GS using S-band antenna S-band_Antenna = OF Effect at completion Data is downlinked Battery_voltage is over 7,2V. Radiation is below 20nT. PC is working S-band_Antenna = OF Effect at completion Data is downlinked Battery_voltage is over 7,2V. Radiation reaches 20nT S-band_Antenna = OF Single event upset in PC memory Radiation reaches 20nT S-band_Antenna = Allere Single event upset in PC memory PC. State = Failure Radiation reaches 20nT S-band_Antenna = Failure Radiation reaches 20nT S-band_Antenna = Failure S-band_Antenna = Failure S-band_Antenna = Failure S-band_Antenna = Failure Attivity Uplinking FPGA image Satellite is in the range of one of the stablished ground station. Battery voltage is over 7,2V. S-Band antenna fails Cround Station fails Battery voltage is over 7,2V. S-Band antenna is available. Operator_requirement_updateFPGA=True Battery_voltage is over 7,2V. S-Band_Antenna = Non S-band_Antenna = True Satellite_range = True
A32 Activity Downlinking calibration data Triggering condition Satellite_range=True Satellite_receive/download=True Calibration Data is in PC ready to be downlinked Battery_voltage value > 7,2 Battery voltage is over 7,2V. Battery_voltage value > 7,2 Battery voltage is over 7,2V. PC.state=_Working and_ON PC is working S-band_Antenna = WORKING and idle MODE Duration 37.7 sec 37.7 sec Effect at start PC sends data to GS using S-band antenna S-band_Antenna = ON Effect at completion Data is downlinked Image.RAW.slew =False Interruptions Satellite is out of ground station Range Single event upset in PC memory PC.bata = Failure S-band_Antenna = OF Interruptions Radiation reaches 200T S-band_Antenna = Failure S-band_Antenna = Arilure S-band_Antenna = Arilure S-band_Antenn = Arilure S-band_Antenn
Activity Downlinking calibration data Triggering condition Satellite_range = True Satellite_receive/download = True Calibration Data is in PC ready to be downlinked Battery_voltage.value>7,2 Battery voltage is over 7,2V. Radiation.value < 20
Statellite_range = True Satellite_receive/download = TrueTriggering conditionImage.RAWslew = TrueCalibration Data is in PC ready to be downlinkedBattery_voltage.value > 7,2Battery voltage is over 7,2V.Radiation.value < 20
S-Band antenna is pointed to ground stationImage.RAW.Sew =TrueTriggering conditionCalibration Data is in PC ready to be downlinkedBattery_voltage.value > 7,2Battery voltage is over 7,2V.Radiation.value < 20
Triggering conditionCalibration Data is in PC ready to be downlinked Battery voltage is over 7,2V. Radiation is below 20nT. PC is workingBattery voltage.value > 7,2 Radiation.value < 20 Radiation is below 20nT. PC is workingRadiation.value < 20 PC is working and _ON S-band_Antenna = WORKING and idle MODEDuration37.7 sec37.7 secEffect at startPC sends data to GS using S-band antenna S-band_Antenna = ON S-band_Antenna = OFFS-band_Antenna = OFFEffect at completionData is downlinkedImage.RAW.slew =False Satellite_range = False Single event upset in PC memory S-band Antenna = Failure S-band Antenna = Satellite_receive/download = True S-Band antenna is available. Payload controller is availableSatellite_receive/download =True S-band_Antenna = ON and idle MODE Radiation.value > 7.2Triggering condition Radiation is available Payload controller is availableSatellite_receive/download =True S-band_Antenna = ON and idle MODE Radiation.value > 7.2Duration200 seconds200 seconds200 seconds
Battery voltage is over 7,2V.Radiation.value < 20Radiation is below 20nT.PC.state =_Working and _ONPC is workingS-band_Antenna = WORKING and idle MODEDuration37.7 secEffect at startPC sends data to GS using S-band antennaS-band_Antenna = ONS-band_Antenna = ONEffect at completionData is downlinkedInterruptionsSatellite is out of ground station RangeSingle event upset in PC memoryPC.state = FailureS-band_antenna FailsS-band_Antenna = FailureS-band antenna FailsS-band_Antenna = FailureS-band antenna FailsS-band_Antenna = FailureS-band antenna FailsRadiation.value > 20Battery voltage is below 7,2V.Battery_voltage.value < 7,2
PC is workingC-band_Antenna = WORKING and idle MODEDuration37.7 sec37.7 secEffect at startPC sends data to GS using S-band antennaS-band_Antenna = ONEffect at startPC sends data to GS using S-band antennaS-band_Antenna = OFFEffect at completionData is downlinkedImage.RAW.slew =FalseSatellite is out of ground station RangeSatellite range = FalseSingle event upset in PC memoryPC.state = FailureInterruptionsRadiation reaches 20nTS-band_Antenna = FailureS-band_Antenna = FailureS-band Station failsRadiation.value > 20Battery voltage is below 7,2V.Battery_voltage.value < 7,2
Duration37.7 sec37.7 secEffect at startPC sends data to GS using S-band antennaS-band_Antenna = ONEffect at startData is downlinkedS-band_Antenna = OFFEffect at completionData is downlinkedImage.RAW.slew =FalseSatellite is out of ground station RangeSatellite_range = FalseInterruptionsRadiation reaches 20nTS-band_Antenna = FailureS-band antenna FailsS-band_Antenna = FailureGround Station failsS-band_Antenna = FailureBattery voltage is below 7,2V.S-band_Antenna = FailureActivityUplinking FPGA image Satellite is in the range of one of the stablished ground station. Battery voltage is over 7,2V.Satellite_range = True Satellite_receive/download =TrueFriggering conditionGround station is available. Payload controller is availableOperator_requirement_updateFPGA = True Battery_voltage.value > 7,2Triggering conditionGround station is available. Payload controller is availableS-band_Antenna = ON and idle MODE Radiation.value < 20 Ground station is availableDuration200 secondsSo secondsS-band_Antenna = ON and idle MODE Radiation.value < 20 Ground station is download = True
Effect at startPC sends data to GS using S-band antennaS-band_Antenna = ONEffect at completionData is downlinkedImage.RAW.slew =FalseEffect at completionData is downlinkedImage.RAW.slew =FalseInterruptionsSatellite is out of ground station Range Single event upset in PC memory S-band_antenna FailurePC.Data = FailureInterruptionsRadiation reaches 20nT S-band antenna Fails Ground Station fails Battery voltage is below 7,2V.S-band_Antenna = FailureA33ActivityUplinking FPGA image Satellite is in the range of one of the stablished ground station. Battery voltage is over 7,2V.Satellite_range = True Satellite_receive/download =True Operator_requirement_updateFPGA = True Battery_voltage.value < 7,2
Effect at completionData is downlinkedImage.RAW.slew =FalseEffect at completionSatellite is out of ground station RangeSatellite_range = FalseSingle event upset in PC memoryPC.Data = FailureInterruptionsRadiation reaches 20nTPC.state = FailureS-band antenna FailsS-band_Antenna = FailureGround Station failsRadiation.value > 20Battery voltage is below 7,2V.Battery_voltage.value < 7,2
Satellite is out of ground station RangeSatellite_range = FalseSingle event upset in PC memoryPC.Data = FailureRadiation reaches 20nTPC.state = FailureS-band_antenna FailsS-band_Antenna = FailureGround Station failsRadiation.value > 20Battery voltage is below 7,2V.Battery_voltage.value < 7,2
Single event upset in PC memoryPC.Data = FailureInterruptionsRadiation reaches 20nTPC.state = FailureS-band antenna FailsS-band_Antenna = FailureGround Station failsRadiation.value > 20Battery voltage is below 7,2V.Battery_voltage.value < 7,2
InterruptionsRadiation reaches 20n1S-band antenna FailsS-band antenna = FailureS-band antenna FailsRadiation.value > 20Battery_voltage.value < 7,2
A33 Activity Uplinking FPGA image Satellite is in the range of one of the stablished ground station. Battery voltage is over 7,2V. Satellite is in the range of one of the stablished ground station. Satellite_range = True Satellite is in the range of one of the stablished ground station. Satellite_receive/download =True S-Band antenna is available. Operator_requirement_updateFPGA = True Radiation is below 20nT Battery_voltage.value > 7,2 Triggering condition Ground station is available. Payload controller is available S-band_Antenna = ON and idle MODE Payload controller is available S-band_Antenna = ON and idle MODE Duration 200 seconds 200 seconds
A33 Activity Uplinking FPGA image Activity Uplinking FPGA image Satellite is in the range of one of the stablished ground station. Satellite_range = True Battery voltage is over 7,2V. Satellite_receive/download =True S-Band antenna is available. Operator_requirement_updateFPGA = True Radiation is below 20nT Battery_voltage.value > 7,2 Ground station is available S-band_Antenna = ON and idle MODE Payload controller is available S-band_Antenna = ON and idle MODE Duration 200 seconds 200 seconds
A33 Activity Uplinking FPGA image Satellite is in the range of one of the stablished ground station. Satellite_range = True Battery voltage is over 7,2V. Satellite_receive/download =True S-Band antenna is available. Operator_requirement_updateFPGA = True Radiation is below 20nT Battery_voltage.value > 7,2 Ground station is available S-band_Antenna = ON and idle MODE Payload controller is available S-band_Antenna = ON and idle MODE Radiation.value < 20
Activity Uplinking FPGA image Satellite is in the range of one of the stablished ground station. Satellite_range = True Battery voltage is over 7,2V. Satellite_receive/download =True S-Band antenna is available. Operator_requirement_updateFPGA = True Radiation is below 20nT Battery_voltage.value > 7,2 Ground station is available. S-band_Antenna = ON and idle MODE Payload controller is available S-band_Antenna = ON and idle MODE Radiation.value < 20
Satellite is in the range of one of the stablished ground station. Satellite_range = True Battery voltage is over 7,2V. Satellite_receive/download =True S-Band antenna is available. Operator_requirement_updateFPGA = True Radiation is below 20nT Battery_voltage.value > 7,2 Ground station is available S-band_Antenna = ON and idle MODE Payload controller is available S-band_Antenna = ON and idle MODE Duration 200 seconds
Duration Seconds Solution is soluble. Satellite_receive/download =True S-Band antenna is available. Operator_requirement_updateFPGA = True Radiation is below 20nT Battery_voltage.value > 7,2 Ground station is available S-band_Antenna = ON and idle MODE Payload controller is available Radiation.value < 20
Triggering condition Radiation is below 20nT Operator_requirement_updateFPGA = Irde Ground station is available Battery_voltage.value > 7,2 Payload controller is available S-band_Antenna = ON and idle MODE Radiation.value < 20
Payload controller is available S-band_Antenna = ON and idle MODE Payload controller is available Radiation.value < 20
Radiation.value < 20
Duration 200 seconds PC.state =_Working and _ON 200 seconds
Duration 200 seconds 200 seconds
Groundstation = ON (start uplinking process)
Effect at start Ground station start uplinking process S-band_Antenna = ON and working requirement_updateEDCA = True
Groundstation = OFF
S-band_Antenna = OFF
Effect at completion Commands are uploaded to Payload controller. Operator_requirement = False
S-band failure
S-band failure Ground station failure Interruptions S-band_antenna = Failure S-Band_antenna = Failure
S-band failure PC.Data = Failure Ground station failure PC.state = Failure Interruptions Radiation reaches 20nT Battery voltage is below 7,2V. ADCS_CDA = Failure

A34		
Activity	Get telemetry	
	Operator requires telemetry.	
	Battery voltage is over 7.2V.	Operator_telemetry = Irue
	Radiation is below 20nT	Battery_voltage.value > 7,2
Triggering condition	Payload controller is available	Radiation.value < 20
		OPU.state = _Working
	FC IS dvdildDle	PC.state = _ Working and _ON or _ Working and _Idle
		FC.state = _Working and _ON or _Working and _Idle
Duration	1 seconds	1 seconds
	PC requires TM data to OPU. FC and EPS	If OPU state - OFF
Effect at start		
		OPU.state = Idle
		OPU.CHANGE = True
	Telemetry data is ready to be downloaded	One water tale weater True
		Operator_telemetry = I rue
		If PC.CHANGE = TRUE
		PC.state = Idle
		PC.CHANGE = False
Effect at completion		If FC.CHANGE = TRUE
Encer at completion		EC state = Idle
		IT OPU.CHANGE = IRUE
		OPU.state = OFF
		OPU.CHANGE = False
		EC State - Eailure
	Single event uppet in BC information	PC state = Failure
	OPULis working	S Pand antonna - Failuro
Interruptions		
	Radiation reaches 2001	Radiation.value > 20
	Battery voltage is below 7,2V.	Battery_voltage.value < 7,2
A35		
Activity	Get telemetry during Safe Mode	
	Operator requires telemetry.	Operator telemetry=True
	Satellite is in Safe mode	safemode = True
Triggering condition	FC is available	PC state - Working and ON or Working and Idle
		FC.state =Working and _ON orWorking and _dla
.		FC.state =working and _ON orworking and _ure
Duration	1 seconds	1 seconds
	EPS controller requires data to FC	If PC.state = Idle
		PC state = ON
		PC CHANGE = True
Effect at start		If EC state = Idle
		If FC.state = Idle
		FC.state = ON
		FC.CHANGE = True
	Telemetry data from EPS and FC is ready to be downloaded	Operator telemetry -True
		If DC CHANCE - TRUE
Effect at completion		PC.state = Idle
Linect at completion		PC.CHANGE = False
		If FC.CHANGE = TRUE
		FC.state = Idle
		FC.CHANGE = False
		FC.State = Failure
	Single event upset in PC information	PC.state = Failure
Interruptions	OPU is working	S-Band_antenna = Failure
-		
	Fc fails	ADCS_CDA = Failure
	Fc fails Radiation reaches 20nT	ADCS_CDA=Failure Radiation.value>20

A36		
Activity	Get telemetry during critical Safe Mode	
	Operator requires telemetry.	Operator_telemetry =True
Triggering condition	Satellite is in Safe mode	Criticalsafemode = True
	FC is available	FC.state = _Working and _ON or _Working and _Idle
Duration	1 seconds	1 seconds
		If FC.state = Idle
		FC.state = ON
Effect at start	EPS controller requires data to FC	FC.CHANGE = True
		Operator_telemetry =True
		If FC.CHANGE = TRUE
		FC.state = Idle
Effect at completion	Telemetry data from EPS and FC is ready to be downloaded	FC.CHANGE = False
		FC.State = Failure
	Single event upset in PC information	PC.state = Failure
Interruptions	OPU is working	S-Band_antenna = Failure
	Fc fails	ADCS_CDA = Failure
	Radiation reaches 20nT	Radiation.value>20
	Battery voltage is below 7,2V.	Battery_voltage.value < 7,2

APPENDIX 5 FMEA

	Physical eleme	nts		Component states	Energy consumption	Failure mode	Failure mechanism	Consequence	Mitigation	Failure rate	T
				- Working	Power_On: 3.15 W	Failed	Total failure	HSI camera out of service. Satellite can	Radiation test	3,49E-08	failure/hour
				- Idle	Power_idle: 0.525 W	 Not able to take pictures 	 Camera interns rupture due to vibration. 	no longer take more HSI images,		I	
				- On			 Camera sensor failure due to Total Dose 	Satellite can still take RGB images or		I	
				- Off		Partial failures	Partial failure	Imaging with anomalies or camera is	Dedicated electric supply	SEL LETth >87	/bit*day each pixel
				- Failed		 Wrong imaging or camera shutoff 	 Single event Latch Up generates abnormal 	shutdown due to current increase to	to HSI camera. It is possible	5.081e-2/bit*day.	
							images	protect the element	then to shutdown camera	Camera 2,3MP	
							 Single event Latch Up generates increase in 		if current increase is	81,15 pixel Failures/min	
			HSI Camera				the current		detected	Failure is neglected	
						Degraded	Degraded	HSI image quality degraded, but still	Radiation test	N/A	N/A
						 Quality picture is reduced 	 Darkening due to Ionizing radiation dose. 	functional	Calibration on board	I	
							 SNR reduction due to Ionizing radiation dose. 				
							 Lens misalignment due to vibration. 				
							 Refractive lens change due to temperature 				
							providential provident and the Displacement				
				Working	Power Op: 3 150 W	Failed	Total failure	HSI camera out of service. Satellite can	Padiation test	2 734E-07	failure/hour
				- On	Power_idle: 0.210 W	- Not able to take nictures	- Camera interns runture due to vibration	no longer take more RGB images RGB	Radiation test	2,7342-07	ranure/nour
				- Off	rower_later official	Not usic to take pictures	- Camera sensor failure due to Total Dose	camera is not considered a vital			
				- Failed			accumulation.	element, since its role is to image at			
								46 45 46			6
						Partial failures	Partial failure	Imaging with anomalies or camera is		SEL LE I th >8/	/bit*day
						- wrong imaging of camera shuton	- Single event Laten op generates abnormal	shutdown due to current increase to		S.USIE-2/DIL'Udy.	
			RGB Camera				- Single event Latch I in generates increase in	protect the element		81 15 nivel Eailures/min	
							the current			Failure is neglected	
						Degraded	Degraded	RGB image degraded. It does not	Radiation test	N/A	N/A
						- Quality picture is not enough to	 Darkening due to lonizing radiation dose. 	affect the system functionality		I	
						compare HSI image with KGB image	- SNR reduction due to ionizing radiation dose.			I	
							- Lens misalignment due to vibration.				
		1				e di si	- Refractive lens change due to temperature	Bart of the Bart of the state	De distina de d	2 200425 00	6-11-11-01-11-11
			Communication			- Not able to transform voltage from	- Circuit break due to Total Ionizing	failure in the Bayload. It means the	Radiation test	2,30912E-08	failure/nour
			ports			FDS	accumulation	satellite will work just for telemetry			
			et a contra a	- Working		- Not able to transfer power.	- Catastrophic failure due due to Latch-up.	satellite will work just for telefiled y			
		BoB	Electric input	- On			- Joint failures due to vibration.				
			Voltage	- UTT		Partial failure	Partial Failure	System moves to hardware critical	Radiation test		
			transformer	- Falled		- System restart	- System restart due to SET or non-catastrophic	mode to protect the payload and bus	Radiation protection	SEL LETth >52	
Pavload			Payload electric			.,	SEL	(Restart)	(shielding)	5.081e-2/bit*day	
.,			Output		_						
				- Working		Failed	Total failure	Not possible to proccess images using	Radiation test	2,081E-07	failure/hour
				- Idle		 Not able to process image 	- FPGA failure due to Total Ionizing	the FPGA, increasing the processing	Radiation protection		
			FPGA	- Un			accumulation.	time since software image processing	(snielding)		
				- UIT Failed		De stalfeit a	- Circuit failure due to nigh temperature.	take much longer time		CEL 1 ET() - 7 0	All water and the stand
				- Tallea		Partial failure Processing dicturbance (Mrong	Wrong processing due to SELL	Operator requires to do the process		SEL LE I UI >7.9	/bit day each pixel
				- Working		Failed	Total failure	Not possible to process images using		2 081E-07	failure/hour
				- Idle		- Not able process image	- EPGA failure due to Total Ionizing	software.		2,0012 07	randi c/ riodi
				- On		·····	accumulation.				
			Processor	- Off			- Single-Event Gate rupture				
				- Failed			- Circuit failure due to high temperature.				
		OPU				Partial failure	Partial Failure	Corrupted file. Unsuccessful imaging		SEL LETth >200	/bit*day
					4	- Processing disturbance (Wrong	- Wrong processing due to SEU	Operator requires to do the process		3.094e-2/bit*day	
				- Working		Failed	Total failure	If eMMC fails the payload lose it	Radiation test	I	failure/hour
	PicoBoB		-141-0	- Un	Power_On: 4.234 W	- Not readable	 eMMC failure due to Total Ionizing 	golden image. So, in case of corrupt			
			eiviiviC	- UIT Failed	rower_iule: 3.654 W	Partial failure	accumulation.	uata IN THE MICRO-SD there is not	Padiation tost	2,02031E-05	1
				- raileu		- Corrupt data	- Flip hits due to SELL	eMMC booting is required the process	naulation test	3 094e-2/hit*day	
				- Working	1	Failed	Total failure	Imaging data is saved in the memory	Radiation test	5.0546-2/Dit day	failure/hour
				- On		- Not readable/writable	- Memory failure due to Total Ionizing	before processing in case of failure	noordon test	I	ranare/ nour
			Memory	- Off			accumulation.	Payload functionality is lost		2,01233E-05	;
			· ·	- Failed		Partial failure	Partial Failure	Corrupted file. Unsuccessful imaging	Radiation test	SEL LETth >2.8	
					1	- Corrupt data	- Flip bits due to SEU	Operator requires to do the process		3.094e-2/bit*day	
				- Working		Failed	Total failure	Writing: In case memory is failed,	Radiation test		failure/hour
				- OFF		 Not readable/writable 	- Memory failure due to Total Ionizing	booting configuration will be saved in		I	
				- On			accumulation.	memory 2		I	
	1			- Failed				Reading: If memory fails and the		I	
			Mico-SD #1					system requires booting, the booting			
								process select memory 2 if there is a			
	1	1						not image is used		2 022255 05	
								goiu mage is useu.		2,023332-03	1
		Micro-SD				Partial failure	Partial Failure	Corrupted file. Unsuccessful hooting	Radiation test	SELLETth >2.8	
		Micro-SD				Partial failure - Corrupt data	Partial Failure - Flip bits due to SEU	Corrupted file. Unsuccessful booting. Booting process moves to memory 2	Radiation test	SEL LETth >2.8 3.094e-2/bit*day	
		Micro-SD		- Working		Partial failure - Corrupt data Failed	Partial Failure - Flip bits due to SEU Total failure	Corrupted file. Unsuccessful booting. Booting process moves to memory 2 Back-up memory: This device is used	Radiation test	SEL LETth >2.8 3.094e-2/bit*day	failure/hour
		Micro-SD		- Working - OFF		Partial failure - Corrupt data Failed - Not readable/writable	Partial Failure - Flip bits due to SEU Total failure - Memory failure due to Total Ionizing	Corrupted file. Unsuccessful booting. Booting process moves to memory 2 Back-up memory: This device is used just if the main memory is not	Radiation test Radiation test	SEL LETth >2.8 3.094e-2/bit*day	failure/hour
		Micro-SD	Miro-SD #2	- Working - OFF - On		Partial failure - Corrupt data Failed - Not readable/writable	Partial Failure - Flip bits due to SEU Total failure - Memory failure due to Total Ionizing accumulation.	Corrupted file. Unsuccessful booting. Booting process moves to memory 2 Back-up memory: This device is used just if the main memory is not readable. In case both memory fails,	Radiation test Radiation test	SEL LETth >2.8 3.094e-2/bit*day	failure/hour
		Micro-SD	Mico-SD #2	- Working - OFF - On - Failed		Partial failure - Corrupt data Failed - Not readable/writable	Partial Failure - Flip bits due to SEU Total failure - Memory failure due to Total Ionizing accumulation.	Corrupted file. Unsuccessful booting. Booting process moves to memory 2 Back-up memory: This device is used just if the main memory is not readable. In case both memory fails, system would work just with the gold	Radiation test	SEL LETth >2.8 3.094e-2/bit*day 2,02335E-05	failure/hour
		Micro-SD	Mico-SD #2	- Working - OFF - On - Failed		Partial failure - Corrupt data Failed - Not readable/writable Partial failure	Partial Failure - Flip bits due to SEU Total failure - Memory failure due to Total Ionizing accumulation. Partial Failure	Corrupted file. Unsuccessful booting. Booting process moves to memory 2 Back-up memory: This device is used just if the main memory is not readable. In case both memory fails, system would work just with the gold Back-up corrupted file. Unsuccessful	Radiation test Radiation test Radiation test	SEL LETth >2.8 3.094e-2/bit*day 2,02335E-05 SEL LETth >2.8	failure/hour

			Payload controller	- Working - On - Off - Failed	Power_On: 0.367 W	Failed - Not able to process information.	Total failure - Controller failure due to Total Ionizing accumulation. - Single-Event Gate rupture	In case of failure all the payload functions are lost. Just telemetry from Electric Power Suply	Radiation test HarRad components	Failure rate will be the combination in series of a processor, Memory and sd card. This is a coarse	
HYPSO satellite						Partial failure - Processing disturbance (Wrong	 Circuit failure due to high temperature. Partial Failure Wrong processing due to SEU 	Corrupted data. Report error is reported to operator	Radiation test	model of the controller Failure rate will be the combination in series of a	
			Solar panel	 Working Power_input (Real value) Degradation process Failed 		Failed - Not able to transform solar energy to electric energy Degradation - Solar panels generate energy below the requirements	Total failure - Panel rupture due to vibration. Degradation - Efficiency reduction due to thermal stress and radiation	Mission is jeopardized in case solar panels are lost. (This study consider the satellite Energy harvesting is reduced over time	Vibration test (NanoAvionio	Launching and deployment is not considered Model consider a linear degradation of 2% per year. This degradation cas be neglected	
	Electric power suply		Li-lon Batteries	- Working - Power_input (Real value) - Power_output (Real value) - Capacity (Real Value) - Degradation - Failed	Power_On: 0.168 W	Failed - Not able to store energy Degradation - Batteries stores energy below the requirements	Total failure - Battery rupture due to vibration. - Battery damage due to accumulated radiation dose (TID) Degradation - Battery capacity reduction due to thermal degradation.	Mission is jeopardized in case solar panels are lost. -(This study consider the satellite survives launch and deployment Energy storage is reduced. Satellite moves to Safe Mode more often over time	Tested to NASA GEV's environmental levels and to 20kRad TID Battery overcurrent Protection Battery overvoltage	detroit registered literature review determine that probability of failure for a 5 years mission in LEO 0.12% battery capacity degradation. It can be neglected	
		Powe	er distribution Board	- Working - On - Off - Failed	-	Failed - Not able to process information.	Total failure - Controller failure due to Total Ionizing accumulation. - Single-Event Gate rupture. - Circuit failure due to high temperature.	Mission is jeopardized in case.	Tested to NASA GEV's environmental levels and to 20kRad TID Vibration test Thermal/vacuum test	2,081E-07	failure/hour
						- System restart	 Wrong processing due to SEU. System restart due to SET or non-catastrophic 	consumption	critical mode to protect the payload and bus (Restart)	SEL LETth >200 3.094e-2/bit*day	/bit uay
	6 .1		UHF	- Working - RX - TX - Failed	Power_RX: 6.237 W Power_TX: 0.146 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	UHF is the back-up antenna to send operational commands. Beacon function is lost. Failure rate aplies only when component is working	Deployment test	2,30E-05	failure/hour
	Sat communication		S-band antenna	- Working - Idle - On - Off	Power_RX: 4.183 W Power_TX: 12.201 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	Data transmission could be through UHF antenna. However, the time increase dramatically due to UHF speed transfer. Failure rate aplies only			failure/hour
				- Failed - Working - On	Power_ON: 0.208 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	when component is working Attitude determination accuracy in coase mode is reduced. Coarse determination is totally failed if Sun		2,30E-05	failure/hour
BUS		Coarse attitude	Sun Sensor	- Off - Failed - Working - On	Power ON: 0.002 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	sensor, wagnetometers and gyroscope fail. Attitude determination accuracy in coase mode is reduced. Coarse determination is totally failed if Sun		2,28311E-05	failure/hour
		sensor	Magnetometers	- Off - Failed		Failed	Total failure	sensor, Magnetometers and gyroscope fail. Attitude determination accuracy in		2,28311E-05	failure/hour
			Gyroscope	- Working - On - Off - Failed	Power_ON: 0.052 W	- Not able to send/receive information.	 Antenna failure due to Total Ionizing accumulation. 	coase mode is reduced. Coarse determination is totally failed if Sun sensor, Magnetometers and evroscope fail.		2.28311E-05	
		Procise attitude	Star tracker	- Working - On - Off	Power_ON: 1.575 W	Failed - Not able to take pictures Degraded - Quality picture is not enough to detect HAB	Total failure - Antenna failure due to Total Ionizing accumulation.	Attitude determination accuracy in precise mode is reduced. Precise determination is totally failed if Star tracker and IMU fail. Precise attitude is supported by coarse determination		2 905 195 07	failure/hour
	ACDS	sensor	Startuatker	- Working - On - Off	Power_ON: 1.575 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	Attitude determination accuracy in precise mode is reduced. Precise determination is totally failed if Star tracker and IMU fail. Precise attitude is supported by coarse determination		3,003182-07	failure/hour
		Attitude control	IMU Magnetorques	- Failed - Working - On - Off - Failed	Power_ON: 5.261 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	components Reaction wheels and magnetorques work together as ACDS actuators. In case one fails, the accuracy is reduced but is is still functional		2,28311E-05 2,28311E-05	failure/hour
			Reaction wheels	- Working - On - Off - Failed	Power_ON: 1.680 W	Failed - Not able to send/receive information.	Total failure - Antenna failure due to Total Ionizing accumulation.	Reaction wheels and magnetorques work together as ACDS actuators. In case one fails, the accuracy is reduced but is is still functional		2,28311E-05	failure/hour
			Flight controller	- Working - On - Off - Failed	Power_ON: 0.333 W	Failed - Not able to process information.	Total failure - Controller failure due to Total Ionizing accumulation. - Single-Event Gate rupture - Circuit failure due to high temperature.	Attitude control system is lost	Vibration test (NanoAvionics) Thermal-vacuum test	Failure rate will be the combination in series of a processor, Memory and sd card. This is a coarse model of the controller	

			Partial failure	Partial Failure	Error response to operator	System health supervision		
			 Processing disturbance (Wrong 	 Wrong processing due to SEU 		internal software	The same case	
	- Working		Failed	Total failure	No time sinchronization neither orbit			failure/hour
	GPS - On	Device ON-0 104 M	- No time sinchronization neither orbit	 Controller failure due to Total Ionizing 	determination			
	- Off	Power_0N: 0.184 W	determination	accumulation.				
	- Failed						2,28311E-05	5
	CubeSat Frame Structural components	N/A	Failed	Total failure	Mission is jeopardized	Vibration test	Launching and	
	Vibration dampers	19/4	- Structural failure	- Frame rupture due to vibration		(NanoAvionics)	deployment is not	
	UHF Antenna	N/A for this analysis	Failure	Total failure	No communication with the satellite			
Ground station	S-Band Antenna _ Working	(Reliable Dower	- Not transmmiting/receiving signal to	- Broken antenna due to external reasons	(Ground components are not			
Ground station	Internet connection	(Reliable Fower	satellite	(Environmental condition)	considered in the reliability analysis)		Ground station not	
	Mission Control Software	subhial	 interface not accessible 	- Software failure			considered in the analysis	5

APPENDIX 6 Altarica code

```
domain OperMode1 {ON, OFF, IDLE, FAILURE}
domain OperMode2 {ON, OFF, FAILURE}
domain ActState {YES, NO}
domain SimpleStage {WORKING, FAILURE}
domain Satellite {OPERATIVE, DEGRADED, FAILURE}
domain Operational {OPERATIVE, SAFEMODE, CRITICALMODE}
block Satellite
/* HSI Camera failure model*/
block HSI
   OperMode1 state (init = OFF);
   parameter Real HSIFailureRate = 5.81e-10;
   event HSIFailure(delay = exponential(HSIFailureRate));
   transition
   HSIFailure: state == ON -> state := FAILURE;
   HSIFailure: state == IDLE -> state := FAILURE;
end
/* RGB Camera failure model*/
block RGB
   OperMode2 state (init = OFF);
   parameter Real RGBFailureRate = 4.55e-9;
   event RGBFailure(delay = exponential(RGBFailureRate));
   transition
   RGBFailure: state == ON -> state := FAILURE;
end
/* BOB failure model*/
block BOB
   OperMode2 state (init = OFF);
   parameter Real BOBFailureRate = 3.84e-10;
   event BOBFailure(delay = exponential(BOBFailureRate));
   transition
   BOBFailure: state == ON -> state := FAILURE;
end
/* OPU failure model: The component fails if both the processor and fpga fails or the memory
fails */
block OPU
   OperMode1 state(init = OFF);
   SimpleStage FPGA(init = WORKING);
        SimpleStage Processor(init = WORKING);
       SimpleStage Memory(init = WORKING);
        SimpleStage eMMC(init = WORKING);
   Boolean OPU Failure(reset = false);
   parameter Real FPGAFailureRate = 3.46e-9;
   parameter Real ProcessorFailureRate = 3.46e-9;
   parameter Real MemoryFailureRate = 3.35e-7;
```

```
parameter Real eMMCFailureRate = 3.36e-7;
   event FPGAFailure(delay = exponential(FPGAFailureRate));
   event ProcessorFailure(delay = exponential(ProcessorFailureRate));
   event MemoryFailure(delay = exponential(MemoryFailureRate));
   event eMMCFailure(delay = exponential(eMMCFailureRate));
   event OPUFailure(delay = Dirac(0.0));
   transition
       OPUFailure: state == ON and OPU Failure == true -> state := FAILURE;
      OPUFailure: state == IDLE and OPU Failure == true -> state := FAILURE;
       FPGAFailure: FPGA == WORKING -> FPGA := FAILURE;
       ProcessorFailure: Processor == WORKING -> Processor := FAILURE;
       MemoryFailure: Memory == WORKING -> Memory := FAILURE;
       eMMCFailure: eMMC == WORKING -> eMMC := FAILURE;
   assertion
      OPU Failure := if ( FPGA == FAILURE and Processor == FAILURE)
             or Memory == FAILURE then true else false;
end
/* MicroSD failure model: The GROUP fails if both MicroSD fails*/
block MicroSD
   OperMode2 state(init = OFF);
   SimpleStage MicroSD1(init = WORKING);
   SimpleStage MicroSD2(init = WORKING);
   Boolean MicroSD Failure(reset = false);
   parameter Real MicroSDFailureRate = 3.37e-7;
   event SDFailure1(delay = exponential(MicroSDFailureRate));
   event SDFailure2(delay = exponential(MicroSDFailureRate));
   event MicroSDFailure(delay = Dirac(0.0));
   transition
   MicroSDFailure: state == ON and MicroSD Failure == true-> state := FAILURE;
   SDFailure1: MicroSD1 == WORKING -> MicroSD1 := FAILURE;
   SDFailure2: MicroSD2 == WORKING -> MicroSD2 := FAILURE;
   assertion
   MicroSD Failure := if MicroSD1 == FAILURE and MicroSD2 == FAILURE then true else false;
end
/* PC is modeled as a combination of a processor, a SDRAM memory and a SDcard, if any of the
components fails the PC fails*/
block PC
   OperMode1 state (init = ON);
   SimpleStage SDcard (init = WORKING);
       SimpleStage Processor (init = WORKING);
       SimpleStage _Memory (init = WORKING);
   Boolean PC Failure (reset = false);
   parameter Real SDcardFailureRate = 3.37e-7;
```

```
parameter Real ProcessorFailureRate = 3.46e-9;
   parameter Real MemoryFailureRate = 3.35e-7;
   event SDcardFailure(delay = exponential(SDcardFailureRate));
   event ProcessorFailure(delay = exponential(ProcessorFailureRate));
   event MemoryFailure(delay = exponential(MemoryFailureRate));
   event PCFailure(delay = Dirac(0.0));
   transition
   PCFailure: _state == ON and PC_Failure == true -> _state := FAILURE;
   PCFailure: state == IDLE and PC Failure == true-> state := FAILURE;
   SDcardFailure: SDcard == WORKING -> SDcard := FAILURE;
   ProcessorFailure: Processor == WORKING -> Processor := FAILURE;
   MemoryFailure: _Memory == WORKING -> _Memory := FAILURE;
   assertion
   PC Failure := if SDcard == FAILURE or Processor == FAILURE or Memory == FAILURE then
true else false;
end
/* FC is modeled as the PC*/
block FC
   OperMode1 state(init = OFF);
   SimpleStage SDcard(init = WORKING);
        SimpleStage Processor(init = WORKING);
        SimpleStage Memory(init = WORKING);
   Boolean FC Failure(reset = false);
   parameter Real SDcardFailureRate = 3.37e-7;
   parameter Real ProcessorFailureRate = 3.46e-9;
   parameter Real MemoryFailureRate = 3.35e-7;
   event SDcardFailure(delay = exponential(SDcardFailureRate));
   event ProcessorFailure(delay = exponential(ProcessorFailureRate));
   event MemoryFailure(delay = exponential(MemoryFailureRate));
   event FCFailure(delay = Dirac(0.0));
   transition
   FCFailure: state == ON and FC Failure == true-> state := FAILURE;
   FCFailure: _state == IDLE and FC_Failure == true -> _state := FAILURE;
   SDcardFailure: SDcard == WORKING -> SDcard := FAILURE;
   ProcessorFailure: Processor == WORKING -> Processor := FAILURE;
   MemoryFailure: Memory == WORKING -> Memory := FAILURE;
   assertion
   FC Failure := if SDcard == FAILURE or Processor == FAILURE or Memory == FAILURE then
true else false;
end
/* EPS Failure model*/
block EPS
   OperMode2 state(init = ON);
   parameter Real EPSFailureRate = 3.46e-9;
```

```
event EPSFailure(delay = exponential(EPSFailureRate));
   transition
   EPSFailure: state == ON -> state := FAILURE;
end
/* SBAND Failure model*/
block SBAND
   OperMode2 state(init = OFF);
   parameter Real SBANDFailureRate = 3.83e-7;
   event SBANDFailure(delay = exponential(SBANDFailureRate));
   transition
   SBANDFailure: state == ON -> state := FAILURE;
end
/* UHF Failure model*/
block UHF
   OperMode2 state(init = OFF);
   parameter Real UHFFailureRate = 3.83e-7;
   event UHFFailure(delay = exponential(UHFFailureRate));
   transition
   UHFFailure: state == WORKING -> state := FAILURE;
end
/* Coarse ADCS sensors Failure model: All the sensors should fails*/
block CADCS /* Coarse attitude determination */
   OperMode2 state(init = OFF);
   SimpleStage SS(init = WORKING); /* Sun Sensor */
   SimpleStage Mag(init = WORKING); /* Magnetometers */
   SimpleStage GY(init = WORKING); /* Gyroscope */
   Boolean CADCS Failure(reset = false);
   parameter Real SSFailureRate = 3.80e-7;
   parameter Real MagFailureRate = 3.80e-7;
   parameter Real GYFailureRate = 3.80e-7;
   event SSFailure(delay = exponential(SSFailureRate));
   event MagFailure(delay = exponential(MagFailureRate));
   event GYFailure(delay = exponential(GYFailureRate));
   event CADCSFailure(delay = Dirac(0));
  transition
       CADCSFailure: state == ON and CADCS Failure == true -> state := FAILURE;
       SSFailure: SS == WORKING -> SS := FAILURE;
       MagFailure: Mag == WORKING -> Mag := FAILURE;
       GYFailure: GY == WORKING -> GY := FAILURE;
   assertion
       CADCS Failure := if SS == FAILURE and Mag == FAILURE and GY == FAILURE then true
else false;
end
/* Precise attitude determination: The two sensors should fails so PADCS fails */
```

```
block PADCS
   OperMode2 state (init = OFF);
   SimpleStage _ST (init = WORKING); /* Star tracker */
   SimpleStage IMU (init = WORKING); /* IMU */
   Boolean PADCS Failure (reset = false);
   parameter Real STFailureRate = 3.80e-7;
   parameter Real IMUFailureRate = 3.80e-7;
   event STFailure(delay = exponential(STFailureRate));
   event IMUFailure(delay = exponential(IMUFailureRate));
   event CADCSFailure(delay = Dirac(0));
   transition
    CADCSFailure: state == ON and PADCS Failure == true -> state := FAILURE;
       STFailure: ST == WORKING -> ST := FAILURE;
       IMUFailure: IMU == WORKING -> IMU := FAILURE;
   assertion
       PADCS Failure := if IMU == FAILURE and ST == FAILURE then true else false;
end
/* Attitude actuators */
block AttControl
   OperMode2 state (init = OFF);
   SimpleStage _MT (init = WORKING); /* Magnetorques */
   SimpleStage RW (init = WORKING); /* Reaction wheels */
   Boolean AttControl Failure (reset = false);
   parameter Real MTFailureRate = 3.80e-7;
   parameter Real RWFailureRate = 3.80e-7;
   event AttControlFailure(delay = Dirac(1.0));
   event MTFailure(delay = exponential(MTFailureRate));
   event RWFailure(delay = exponential(RWFailureRate));
   transition
       AttControlFailure: state == ON and AttControl Failure == true -> state := FAILURE;
       MTFailure: MT == WORKING -> MT := FAILURE;
       RWFailure: RW == WORKING -> RW := FAILURE;
   assertion
   AttControl Failure := if RW == FAILURE and MT == FAILURE then true else false;
end
/* Model the GS commands */
block GS
   ActState Telemetry (init = NO);
   ActState OperMP (init = YES);
   ActState OperMPCP (init = NO);
   parameter Real OprMPReg = 720; /* Basic Oper Reg twice a day */
   parameter Real OprMPCPReq = 4320; /* Oper Req with configuration every 3 */
   parameter Real TMReg = 240; /* Telemetry every 4 hours */
   event OprMPR(delay = Dirac(OprMPReg));
```

```
event OprMPCPR(delay = Dirac(OprMPCPReq));
   event TMR(delay = Dirac(TMReg));
   transition
   OprMPR: OperMP == NO -> OperMP := YES;
   OprMPCPR: OperMPCP == NO -> OperMPCP := YES;
   TMR: _Telemetry == NO -> _Telemetry := YES;
end
/* Model the satellite orbit and when it is in the range of the GS */
block Location
   ActState Range (init = YES);
   parameter Real OutRange = 11.29; /* Mean NTNU + SVALBARD Access time in min */
   parameter Real InRange = 194; /* Mean time satellite is in range again */
   event OutRangeState(delay = Dirac(OutRange));
   event InRangeState(delay = Dirac(InRange));
   transition
   OutRangeState: Range == YES -> Range := NO;
   InRangeState: Range == NO -> Range := YES;
end
block Radiation
   ActState state(init = NO);
   parameter Real RadHighInit = 4.62e-5; /* MeanTime radiation twice a month */
   parameter Real RadHighEnd = 0.05; /* Meantime 20 min duration high radiation */
   event RadHighState(delay = exponential(RadHighInit));
   event NoRadHighState(delay = exponential(RadHighEnd));
   transition
   RadHighState: state == NO -> state := YES;
   NoRadHighState: state == YES -> state := NO;
end
block Battery
   Boolean state(reset = true);
   ActState SAFEMODE (init = NO);
   ActState CRITICALMODE (init = NO);
   parameter Real SafeModeT = 6.94e-5; /* MTTF 3 safe modes per month*/
   parameter Real CriticalModeT = 7.71e-6; /* 1 critical mode ever 3 months*/
   parameter Real Back_to_Oper = 14; /* 14 minutes to go back to operation*/
   event SafeModeTrigger(delay = exponential(SafeModeT));
   event CriticalModeTrigger(delay = exponential(CriticalModeT));
   event BacktoOper(delay = Dirac(Back to Oper));
   transition
   SafeModeTrigger: _SAFEMODE == NO -> _SAFEMODE := YES;
   CriticalModeTrigger: CRITICALMODE == NO -> CRITICALMODE := YES;
   BacktoOper: SAFEMODE == YES -> SAFEMODE := NO;
```

```
BacktoOper: CRITICALMODE == YES -> CRITICALMODE := NO;
   assertion
   _state := if _SAFEMODE == YES or _CRITICALMODE == YES then false else true;
end
block Trigger /* All the triggers are here*/
/* Activity 1 (Activity 1 in Excel sheet)*/
       Boolean Activity1(reset = false);
       assertion
                     Activity1 := if main.Battery. state == true and main.Location. Range ==
YES and main.Radiation. state == NO and main.SBAND. state == OFF and main.FC. state ==
OFF and main.CADCS. state == OFF and main.Activity1.ContA1 == NO then true else false;
/* Activity 2 (Activity 1 in Excel sheet)*/
       Boolean Activity2(reset = false);
       assertion
              Activity2 := if main.Battery. state == true and main.Location. Range == YES and
main.Radiation. state == NO and main.SBAND. state == IDLE and main.PC. state == ON and
main.GS. OperMP == YES and main.Activity1.EndA1 == YES and main.Activity2.ContA2 == NO
and main.Activity1.ContA1 == NO then true else false;
/* Activity 3 (Activity 1 in Excel sheet)*/
       Boolean Activity3(reset = false);
       assertion
              Activity3 := if main.Battery. state == true and main.Location. Range == YES and
main.Radiation. state == NO and main.SBAND. state == IDLE and main.PC. state == ON and
main.GS. OperMPCP == YES and main.Activity1.EndA1 == YES and main.Activity3.ContA3 == NO
then true else false;
/* Activity 4 (Activity 4 in Excel sheet)*/
       Boolean Activity4(reset = false);
       assertion
              Activity4 := if main.Battery. state == true and main.Radiation. state == NO and
main.PADCS. state == OFF and main.CADCS. state == ON and main.HSI. state == OFF and
main.OPU. state == OFF and main.FC. state == IDLE and main.PC. state == ON and (
main.Activity2.EndA2 == YES or main.Activity3.EndA3 == YES) and main.Activity4.ContA4 == NO
then true else false;
/* Activity 5 (Activity 6 in Excel sheet)*/
       Boolean Activity5(reset = false);
       assertion
              Activity5 := if main.Battery. state == true and main.Radiation. state == NO and
main.PADCS. state == ON and main.HSI. state == IDLE and main.OPU. state == IDLE and
main.FC. state == IDLE and main.PC. state == ON and main.Activity4.EndA4 == YES and
```

main.Activity5.ContA5 == NO then true else false;

/* Activity 6 (Activity 11 in Excel sheet)*/

Boolean Activity6(reset = false);

assertion

```
Activity6 := if main.Battery. state == true and main.Radiation. state == NO and
main.MicroSD._state == OFF and main.OPU._state == ON and main.PC._state == ON and
main.Activity5.EndA5 == YES and main.Activity6.ContA6 == NO then true else false;
/* Activity 7 (Activity 22 in Excel sheet DOwnlinking MOBIP configuration)*/
       Boolean Activity7(reset = false);
       assertion
              Activity7 := if main.Battery. state == true and main.Radiation. state == NO and
main.PC. state == ON and main.SBAND. state == IDLE and main.Activity6.EndA6 == YES and
main.Activity1.EndA1 == YES and main.Activity7.ContA7 == NO then true else false;
end
/* Activity 1 in Excel sheet*/
block Activity1
  ActState ContA1(init = NO);
  ActState EndA1(init = NO);
  event TriggerAct1(delay = Dirac(0.0));
  transition
       TriggerAct1: ContA1 == NO and main.Trigger.Activity1 == true -> ContA1 := YES;
       TriggerAct1: ContA1 == YES and main.SBAND._state == OFF-> main.SBAND._state :=
IDLE;
       TriggerAct1: ContA1 == YES and main.CADCS. state == OFF-> main.CADCS. state := ON;
  parameter Real DurationAct1 = 1; /* 1 minute duration*/
  event FinishA1(delay = Dirac(DurationAct1));
  transition
       FinishA1: EndA1 == NO and ContA1 == YES -> EndA1 := YES;
       TriggerAct1: EndA1 == YES and ContA1 == YES -> ContA1 := NO;
end
/* Activity 2 in Excel sheet*/
block Activity2
  ActState ContA2 (init = NO);
  ActState EndA2 (init = NO);
  event TriggerAct2 (delay = Dirac(0.0));
  transition
       TriggerAct2: ContA2 == NO and main.Trigger.Activity2 == true -> ContA2 := YES;
       TriggerAct2: ContA2 == YES and main.SBAND. state == IDLE -> main.SBAND. state :=
ON;
       TriggerAct2: ContA2 == YES and main.Activity1.EndA1 == YES -> main.Activity1.EndA1 :=
NO;
   parameter Real DurationAct2 = 0.33; /* 20 seconds duration*/
   event FinishA2 (delay = Dirac(DurationAct2));
   transition
       FinishA2: EndA2 == NO and ContA2 == YES -> EndA2 := YES;
```

```
TriggerAct2: EndA2 == YES and ContA2 == YES -> ContA2 := NO;
    TriggerAct2: main.SBAND. state == ON and EndA2 == YES -> main.SBAND. state := OFF;
    TriggerAct2: main.GS._OperMP == YES and EndA2 == YES -> main.GS. OperMP := NO;
end
/* Activity 3 in Excel sheet*/
block Activity3
  ActState ContA3 (init = NO);
  ActState EndA3 (init = NO);
  event TriggerAct3 (delay = Dirac(0.0));
  transition
       TriggerAct3: ContA3 == NO and main.Trigger.Activity3 == true -> ContA3 := YES;
       TriggerAct3: ContA3 == YES and main.SBAND._state == IDLE -> main.SBAND. state :=
ON;
       TriggerAct3: ContA3 == YES and main.Activity1.EndA1 == YES -> main.Activity1.EndA1 :=
NO;
   parameter Real DurationAct3 = 0.66; /* 20 seconds duration*/
   event FinishA3 (delay = Dirac(DurationAct3));
   transition
       FinishA3: EndA3 == NO and ContA3 == YES -> EndA3 := YES;
    TriggerAct3: EndA3 == YES and ContA3 == YES -> ContA3 := NO;
    TriggerAct3: main.SBAND._state == ON and EndA3 == YES -> main.SBAND._state := OFF;
    TriggerAct3: main.GS. OperMPCP == YES and EndA3 == YES -> main.GS. OperMP := NO;
end
/* Activity 4 in Excel sheet*/
block Activity4
  ActState ContA4 (init = NO);
  ActState EndA4 (init = NO);
  event TriggerAct4 (delay = Dirac(0.0));
  transition
       TriggerAct4: ContA4 == NO and main.Trigger.Activity4 == true -> ContA4 := YES;
       TriggerAct4: ContA4 == YES and main.CADCS. state == ON -> main.CADCS. state := OFF;
       TriggerAct4: ContA4 == YES and main.PADCS. state == OFF -> main.PADCS. state := ON;
       TriggerAct4: ContA4 == YES and main.OPU. state == OFF -> main.OPU. state := IDLE;
       TriggerAct4: ContA4 == YES and main.HSI. state == OFF -> main.HSI. state := IDLE;
       TriggerAct4: ContA4 == YES and main.Activity3.EndA3 == YES -> main.Activity4.EndA4 :=
NO;
       TriggerAct4: ContA4 == YES and main.Activity2.EndA2 == YES -> main.Activity2.EndA2 :=
NO;
   parameter Real DurationAct4 = 2; /* 2 minutes duration*/
   event FinishA4 (delay = Dirac(DurationAct4));
   transition
       FinishA4: EndA4 == NO and ContA4 == YES -> EndA4 := YES;
    TriggerAct4: EndA4 == YES and ContA4 == YES -> ContA4 := NO;
    TriggerAct4: main.SBAND. state == ON and EndA4 == YES -> main.SBAND. state := OFF;
```

end /* Activity 6 in Excel sheet*/ block Activity5 ActState ContA5 (init = NO); ActState EndA5 (init = NO); event TriggerAct5 (delay = Dirac(0.0)); transition TriggerAct5: ContA5 == NO and main.Trigger.Activity5 == true -> ContA5 := YES; TriggerAct5: ContA5 == YES and main.OPU. state == IDLE -> main.OPU. state := ON; TriggerAct5: ContA5 == YES and main.HSI. state == IDLE -> main.HSI. state := ON; TriggerAct5: ContA5 == YES and main.Activity4.EndA4 == YES -> main.Activity4.EndA4 := NO; parameter Real DurationAct5 = 0.95; /* 57 seconds duration*/ event FinishA5 (delay = Dirac(DurationAct5)); transition FinishA5: EndA5 == NO and ContA5 == YES -> EndA5 := YES; TriggerAct5: EndA5 == YES and ContA5 == YES -> ContA5 := NO; TriggerAct5: main.PADCS. state == ON and EndA5 == YES -> main.PADCS. state := OFF; TriggerAct5: EndA5 == YES and main.HSI. state == ON -> main.HSI. state := OFF; end /* Activity 11 in Excel sheet MOBIP configuration*/ block Activity6 ActState ContA6 (init = NO); ActState EndA6 (init = NO); event TriggerAct6 (delay = Dirac(0.0)); transition TriggerAct6: ContA6 == NO and main.Trigger.Activity6 == true -> ContA6 := YES; TriggerAct6: ContA6 == YES and main.MicroSD. state == OFF -> main.MicroSD. state := ON; TriggerAct6: ContA6 == YES and main.Activity5.EndA5 == YES -> main.Activity5.EndA5 := NO; parameter Real DurationAct6 = 32.15; /* 32 minutes duration*/ event FinishA6 (delay = Dirac(DurationAct6), policy = memory); transition FinishA6: EndA6 == NO and ContA6 == YES -> EndA6 := YES; TriggerAct6: EndA6 == YES and ContA6 == YES -> ContA6 := NO; TriggerAct6: main.MicroSD. state == ON and EndA6 == YES -> main.MicroSD. state := OFF; TriggerAct6: EndA6 == YES and main.OPU. state == ON -> main.OPU. state := OFF; end /* Activity 22 in Excel sheet Downlinking MOBIP configuration*/ block Activity7 ActState ContA7 (init = NO); ActState EndA7 (init = NO); event TriggerAct7 (delay = Dirac(0.0));

transition

```
TriggerAct7: ContA7 == NO and main.Trigger.Activity7 == true -> ContA7 := YES;
TriggerAct7: ContA7 == YES and main.SBAND._state == IDLE -> main.SBAND._state :=
```

ON;

TriggerAct7: ContA7 == YES and main.Activity6.EndA6 == YES -> main.Activity6.EndA6 :=

NO;

parameter Real DurationAct7 = 9.3; /* 9.3 minutes downlinking duration*/ event FinishA7 (delay = Dirac(DurationAct7));

transition

FinishA7: EndA7 == NO and ContA7 == YES -> EndA7 := YES;

TriggerAct7: EndA7 == YES and ContA7 == YES -> ContA7 := NO;

```
TriggerAct7: main.SBAND._state == ON and EndA7 == YES -> main.SBAND._state := OFF;
```

TriggerAct7: EndA7 == YES and main.Location._Range==NO -> EndA7 := NO; /* Activity EndA7 finishes once the satellite is out of range. Since the satellite was in the range to finish the transmission, the previous activities ContA7 and SBAND will move to NO and OFF first than the ENDA7 changes to NO */

end

observer Boolean SafeMode = if Radiation._state == true or Battery._SAFEMODE == YES then true else false;

observer Boolean CriticalMode = if Battery._CRITICALMODE == YES then true else false; /*Condition modes*/

/*Degraded mode: the satellite is partially functional (Payload fails so just telemetry is available)*/

observer Boolean DEGRADED = if OPU._state == FAILURE or HSI._state == FAILURE or PC._state == FAILURE or (OPU._eMMC==FAILURE and MicroSD._state==FAILURE) then true else false; /*Failure mode: Satellite out of service*/

observer Boolean FAILURE = if EPS._state == FAILURE or (UHF._state == FAILURE and SBAND._state==FAILURE) or FC._state == FAILURE then true else false;

end

