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Estimating vehicles’ locations is one of the key components in intelligent traffic management systems
(ITMSs) for increasing traffic scene awareness. Traditionally, stationary sensors have been employed in
this regard. The development of advanced sensing and communication technologies on modern vehicles
(MVs) makes it feasible to use such vehicles as mobile sensors to estimate the traffic data of observed
vehicles. This study aims to explore the capabilities of a monocular camera mounted on an MV in order
to estimate the geolocation of the observed vehicle in a global positioning system (GPS) coordinate sys-
tem. We proposed a new methodology by integrating deep learning, image processing, and geometric
computation to address the observed-vehicle localization problem. To evaluate our proposed methodol-
ogy, we developed new algorithms and tested them using real-world traffic data. The results indicated
that our proposed methodology and algorithms could effectively estimate the observed vehicle’s latitude
and longitude dynamically.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A growing body of literature recognizes the importance of intel-
ligent traffic management systems (ITMSs) to manage traffic safely
and efficiently. ITMSs mainly rely on traffic data to enhance traffic
scene awareness and make smart decisions [1].

There are two main approaches to collecting traffic data for
ITMSs. The first approach is based on stationary sensors placed
toward road networks, such as inductive loop detectors (e.g., [2])
and closed-circuit television cameras (e.g., [3]). Although this
approach is nowadays widely applied to collect traffic data, instal-
ling and maintaining these sensors to provide an acceptable cover-
age range on all roads might be costly [4]. The second approach is
based on using modern vehicles (MVs) equipped with sensors. An
MV with sensing and communication abilities can collect traffic
data mainly about itself and transfer it based on, in general,
vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) commu-
nications. To collect enough traffic data with this approach, most
vehicles in the traffic need to be MVs with an advanced sensor
mounted. However, converting most vehicles into MVs is time-
consuming. Studies predict that only 50% of vehicles in the United
States will have autonomy in Level 4 (vehicles in Level 4, based on
the Society of Automotive Engineers (SAE), have high automation,
with which the automated driving features can drive the vehicle
under limited conditions, and the driver holds control only if the
automated situation turns unsafe [5,6]) by 2050 [7]. Thus, the
near-future traffic would be a mixture of human-driven vehicles
(HDVs) and MVs with various levels of sensing capabilities, which
is called mixed traffic hereafter. Therefore, it is necessary to
explore the possibility of using an MV equipped with a low-cost
and popular sensor (e.g., a monocular camera), with the purpose
of enhancing generalizability in mixed traffic to collect traffic data
of the observed vehicles and feed them into the ITMSs.

In our previous studies [8,9], we have investigated the feasibil-
ity of using a vehicle equipped with a low-cost front-facing monoc-
ular camera with a built-in global positioning system (GPS)
receiver (hereafter, we call this vehicle an ego vehicle) to observe
another vehicle (hereafter, we call this vehicle the target vehicle)
and estimate its speed, distance, and the lane it is in. After studies
[8,9], a follow-up research question has been raised about the use
of an ego vehicle in estimating the geolocation of the target vehicle,
as accessing the vehicle’s geolocation plays a critical role in model-
ing the traffic scene and making smart decisions by ITMSs.

Therefore, in this paper, we go beyond the lane-level target-
vehicle localization presented in [9] and find the latitude and lon-
gitude of a target vehicle in a GPS coordinate system dynamically
while both the ego vehicle and the target vehicle are moving in a
metropolitan area. Although some research has been carried out
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on utilizing an ego vehicle as a mobile sensor to estimate traffic
data of the target vehicle, there is still very little scientific under-
standing of estimating the geolocation of HDVs based on ego-
vehicle self-localization, image-based estimated distance to the
target vehicle, and the relative angle between them by using a
monocular camera with a built-in GPS receiver mounted on a
mobile ego vehicle.

Therefore, the objective of this paper is to investigate the feasi-
bility of using data from low-cost sensors (i.e., a monocular camera
with a built-in GPS receiver) mounted on an ego vehicle to esti-
mate the geolocation of a moving target vehicle. Our research
question is defined as follows:

� RQ: How can the geolocation of a mobile target vehicle be
dynamically estimated in a GPS coordinate system based on
the vision of a front-facing low-cost monocular camera with a
built-in GPS receiver on a mobile ego vehicle?

To address this research question, we proposed two approaches
based on (1) object detection and image processing and (2) geomet-
ric computation by considering the camera’s pitch angle and height
from the road surface. In this regard, we extended the proposed
algorithms presented in [9] by including the estimation of the dis-
tance and angle between the ego vehicle and the target vehicle.

To evaluate our proposed approaches and develop algorithms,
we ran empirical experiments using real traffic data from a
metropolitan area in Chengdu, China. We analyzed the findings
by plotting the estimated target vehicle’s trajectory on Google
Maps and compared it with the ground-truth trajectory of the tar-
get vehicle. Additionally, the vector distance was used to quantita-
tively analyze the deviations between the estimated and the
ground-truth geolocations of the target vehicle. The evaluation
results confirmed that both approaches could estimate the geolo-
cation of the target vehicles accurately.

The rest of the paper is organized as follows. Section 2 gives a
brief overview of the recent history related to vehicle localization
approaches. Section 3 explains the research strategy and method-
ology we propose. Section 4 presents the experiments and results
of our approaches. The discussion is presented in Section 5. The last
section concludes and proposes future studies.

2. Related work

To estimate the target vehicle’s geolocation in a GPS coordinate
system, we need to know the ego vehicle’s geolocation and the tar-
get vehicle’s location (the distance and angle between the ego
vehicle and the target vehicle) [10].This section presents a related
work of these aspects briefly.

2.1. Ego-vehicle geolocation

There has been an increasing amount of literature on estimating
the geolocation of ego vehicles, which is usually called self-
localization (e.g., [11]). A GPS receiver is one of the most popular
sensors for localizing ego vehicles [12]. Standard GPS receivers in
the market have an accuracy of about 10–15 meters in 95% of
the time [13]. To minimize the GPS receiver’s estimation error in
ego-vehicle localization, map matching is applied widely [14].
Huang et al., [14] classified the map matching algorithms into four
categories: geometric theory, topology, probability statics, and
advanced model.

2.2. Target vehicle’s location estimation

To date, various studies have investigated target vehicle’s
location estimation via monocular cameras regarding driving
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safety measures, assistance, and autonomous navigation. For
instance, Ifthekhar et al., [15] introduced an optical camera com-
munications (OCC)-based cooperative vehicle positioning (CVP)
technique. They proposed two approaches: (1) a neural network-
based approach and (2) a computer vision-based approach to esti-
mate the target vehicle’s location. They considered two vehicles,
one as an observing vehicle equipped with front-left and front-
right cameras. Another vehicle was treated as a target vehicle,
and its positioning was estimated based on its rear light-emitting
diodes (LEDs). Simulation results showed that the accuracy
achieved by the proposed neural network-based method was
higher than the computer vision-based method [15]. Hayakawa
et al., in [16] proposed a new approach based on integrating three
deep neural networks to estimate the ego-motion and the target
vehicle’s state (e.g., 3D vehicle bounding box, depth, and optical
flow). The experimental evaluations demonstrated that the dis-
tance error in the lateral and longitudinal directions were 1.19 m
and 1.70 m, respectively.

Lee [17] focused on inter-vehicle distance estimate based on
lane width. The proposed technique had a distance estimate error
of less than 7%. Huang et al. [18] proposed a novel approach to esti-
mate the inter-vehicle distance based on vanishing point detection,
road segmentation, and vehicle detection. The ratio of true distance
to image pixel was used to calculate the distance. In [18], a single-
lens camera was utilized to capture data from urban/suburban
roadways. Five image sequences of urban/suburban roads were
utilized to verify the performance of the suggested method. The
results showed average detection rate (DR), and false alarm rate
(FAR) values of the approach are 82.21% and 16.16%, respectively
[18]. Giesbrecht et al. [19] proposed a vision-based leader/follower
system for an ego vehicle. The system was a combination of three
main components: (1) a computer vision system for tracking the
target vehicle based on color and the scale-invariant feature trans-
form (SIFT), (2) a control system based on linear quadratic Gaus-
sian control, and (3) a path following system. Their experiments
showed that the mean and maximum error in the visual distance
estimate were 0.72 m and 2.42 m, respectively, the follower speed
was between 7.6 km/h and 10.2 km/h, and the follower separation
was between 10.46 m and 23.71 m.

Taken together, although some research has been carried out on
vehicle localization, more detailed empirical investigations are
needed to dynamically estimate the target vehicle’s geolocation
in a GPS coordinate system via a monocular camera with the pur-
pose of generating data to model the traffic scene and improve the
ITMS performance.
3. Research strategy and methodology

In this paper, we proposed two new approaches by integrating
deep learning, image processing, and geometric computation to
use the vision sensing and self-localization capabilities of a mobile
ego vehicle to estimate the geolocation of target vehicles. Fig. 1
illustrates our proposed research strategy. The components
included in Fig. 1 are as follows:
3.1. Pre-processing

For the estimation of the target vehicle’s geolocation, the
geolocation of the ego vehicle is required. The collected latitude
and longitude of the ego vehicle, which are usually collected by a
GPS receiver, might be noisy. Collecting the geolocations of the
ego vehicle accurately plays a vital role in accurately estimating
the target vehicle’s geolocations. Therefore, to enhance the accu-
racy of the ego-vehicle localization in the GPS coordinate system,



Fig. 1. The proposed steps in our research strategy.
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the proposed approach in [20], based on cross-GPS validation,
interpolation, best-fit, and map-matching techniques, is used.

3.2. Methodology

As shown in Fig. 2, to estimate the target vehicle’s geolocation
in the GPS coordinate system, in addition to the ego vehicle’s
geolocation, the distance d between the ego vehicle VE and the tar-
get vehicle VT and the clockwise angle a between the north (N) and
d are required [10].

In this regard, as Fig. 1 shows, we proposed two approaches, as
follows:

1. Approach 1: Object detection and image processing
� Estimating the distance d

To begin the distance estimation process, we employed you
only look once (YOLO)-v3 [21,22] to detect target vehicles
via the ego vehicle’s vision. YOLO-v3 is a well-documented
open-source one-stage method for detecting objects.
‘‘YOLO-v3 is extremely fast and accurate” [23]. For example
it is more than 1000x faster than R-CNN and 100x faster
than Fast R-CNN [21,22]. Wang et al., [24] listed YOLO-v3
as the second most popular object detector models. There-
fore, we chose to use YOLO-v3 in this study.
We trained YOLO-v3 on the KITTI dataset [25], as this study
focuses on traffic objects, and KITTI includes eight categories
of traffic objects: car, van, truck, pedestrian, person_sitting,
cyclist, tram, and misc [25]. To estimate the distance d from
the ego vehicle to the target vehicle, we followed the
Fig. 2. The required parameters for estimating the target vehicle’s geolocation.
Fig.
targ
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approach proposed by Namazi et al. [8]. This approach [8]
was based on the pinhole camera model by considering
the real, pre-known size of the vehicle and the size of the
bounding box added by YOLO-v3 around the target vehicle
on the image plane. Distance d was calculated based on
the average of the computed distances for both vehicle
width and vehicle height by using a weight factor (i.e., 85%
of the height and 15% of the width).

� Estimating the angle a
As presented in Fig. 2, in order to estimate the clockwise
angle a between the north N and d, we need to estimate
angle b, which is the angle between the north N and the
ego vehicle VE’s movement direction q, as well as angle h,
which is the angle between d and q.
(a) Estimating the angle b

To estimate the angle b, we need to identify the move-
ment direction of the ego vehicle VE based on its col-
lected GPS coordinates in sequential frames as a start
point (/1; k1) and an end-point (/2; k2) for all frames.
We used Eq. 1 - Eq. 3 [10] to estimate angle b along
the whole trajectory dynamically.

M ¼ sinðk2 � k1Þ � cos/2 ð1Þ

N ¼ cos/1 � sin/2 � sin/1 � cos/2 � cosðk2 � k1Þ ð2Þ

b ¼ atan2ðM;NÞ ð3Þ
(b) Estimating the angle h

The idea of estimating angle h in our first approach is
presented in Fig. 3. In Fig. 3, the blue bounding box
shows the target vehicle VT . P is the central point on
the button edge of the bounding box around the target
vehicle VT , and H is the central point of the image.
Angle h is estimated based on the horizontal angle
per pixel (c) in degrees and on the number of horizon-
tal pixels between P and the vertical line passing
3. The parameters used to estimate angle h between the ego vehicle and the
et vehicle used in Approach 1.



Fig. 5. The pinhole camera model used in Approach 2.
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through H, shown by a red line T. c is estimated based
on the camera’s horizontal field of view (FOV) and the
video’s resolution. In this study, the video’s resolution
was 960� 720 pixels, and the camera’s horizontal
FOV was 86.7 degrees [26]. Therefore, c is equal to
0.09 degrees. Angle h in degrees is estimated as
follows:

h ¼ T � c ð4Þ
(c) Estimating the angle a

To estimate the angle a, we considered three different
conditions, as follows:
– If the target vehicle drives in the same lane as
the ego-vehicle, then a ¼ b and h ¼ 0.

– If the target vehicle drives on the left side of the
ego vehicle, then, as Fig. 4, (a) shows, a ¼ b� h.

– If the target vehicle drives on the right side of
the ego vehicle, then, as Fig. 4, (b) shows,
a ¼ bþ h.
2. Approach 2: Geometric computation
The main idea of this approach is to transform 2D pixel coordi-
nates of point P into 3D world coordinates. By assessing the 3D
world coordinates of point P, we would be able to estimate dis-
tance d and angle a, which are needed to estimate the target
vehicle’s geolocation.
In this regard, we utilized a pinhole camera model as shown in
Fig. 5. In this figure, C is the perspective center of the camera
and the origin of the camera coordinate frame (CCF). Three unit
vectors of the CCF are represented by y1; y2, and y3. The image
coordinate frame (ICF) is centered at principal point H with unit
vectors r1 and r2. The principal axis passes through C and H and
is perpendicular to the image plane. The distance from C to the
image plane is f, which is the camera’s focal length. The image
plane carries a 2D pixel coordinate frame (PCF) with unit vec-
tors z1 and z2. The image plane is subdivided into nh pixels hor-
izontally and nv pixels vertically. To project the detected vehicle
on the image onto the real world, we need to transform point P
with pixel coordinates ðp1; p2Þ (which is the central point on the
Fig. 4. The mathematical rela
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button edge of the bounding box around the target vehicle) into
a 3D camera coordinate representation ðw1;w2;w3Þ.
In this regard, we first need to identify the 3D coordinates of

point P in 3D camera coordinates. Based on Fig. 6, the 3D
coordinates of point P in 3D camera coordinates are presented
in Eq. 5.
tion
y1
y2
y3

0
B@

1
CA ¼

p1 � h1

�ðp2 � h2Þ
f

0
B@

1
CA ð5Þ

In the follow-up step, we need to identify the 3D coordinates of
point P in 3D world coordinates. In this step, we temporally
assumed that the camera’s pitch angle, yaw angle, and roll angle
were equal to 0. The height of the camera mounted on the ego
vehicle from the road surface is named h, and we assumed that
the world coordinates are located on the road surface. The 3D
coordinates of point P in 3D world coordinates (w1;w2;w3) are
given in Eq. 6.

w1

w2

w3

0
B@

1
CA ¼

p1 � h1

�ðp2 � h2Þ þ h

f

0
B@

1
CA ð6Þ

After that, we need to find a mathematical expression for all
points that lie on the viewing ray from camera center C through
point P in world coordinates, as presented in Eq. 7, where n
defines any position along the viewing ray.
s between a; b, and h.



Fig. 6. The image plane used in Approach 2.
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f

0
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1
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As we assumed, the world coordinate system is located on the
road surface; therefore, the height of any point on the road sur-
face in the world coordinate system is equal to 0. So we can
express Eq. 7 as Eq. 8.

w1

0
w3

0
B@

1
CA ¼

0
h

0

0
B@

1
CAþ n �

p1 � h1

�ðp2 � h2Þ
f

0
B@

1
CA ð8Þ

Finally, to increase the accuracy of this estimation, we need to
consider the camera’s pitch angle r. Rotating the camera by
angle r has no effect on the location of point P in the w1 direc-
tion, but the point’s location in the w2 and w3 directions will be
affected by this rotation. Therefore, the following rotation is
applied:

w1

0
w3

0
B@

1
CA ¼

0
h

0

0
B@

1
CAþ n �

1 0 0
0 cosð�rÞ � sinð�rÞ
0 sinð�rÞ cosð�rÞ

0
B@

1
CA

�
p1 � h1

�ðp2 � h2Þ
f

0
B@

1
CA

ð9Þ
Therefore, n;w1, and w3 are calculated as follows:

n ¼ �h
ðcosð�rÞ � ð�p2 þ h2Þ � sinð�rÞ � f Þ ð10Þ

w1 ¼ n � ðp1 � h1Þ ð11Þ

w3 ¼ n � ðsinð�rÞ � ð�p2 þ h2Þ þ cosð�rÞ � f Þ ð12Þ
To calculate n;w1, and w3, we need to estimate the camera’s
height from the road surface h, the camera’s pitch angle r, and
the camera’s focal length f.
� Estimating the camera’s focal length f

In Approach 2, the camera’s focal length f in pixels is calcu-
lated based on the trigonometric relation presented in Eq.
(13). We used the horizontal number of pixels nh from the
video’s resolution and the camera’s horizontal FOV q in
degrees [26].

f ¼ nh

2 � tanðq2Þ
ð13Þ
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� Estimating the camera’s pitch angle r
To estimate the camera’s pitch angle r, we used a vanishing
point estimated based on the lane detection.
To detect lanes, as we presented in [8,9], we used canny edge
detection [27] and the progressive probabilistic Hough
transform [28,29]. In this study, we go further to identify
the vanishing point based on the detected parallel lines on
the road nearby the ego vehicle.
To estimate the pitch angle r, we used the camera’s focal
length (f) and the vertical differences between the principal
point H ¼ ðh1;h2Þ and the vanishing point J ¼ ðj1; j2Þ, as
shown in Fig. 7. In this figure, the blue lines represent the
detected parallel lines on the road nearby the ego vehicle
in a perspective view. Based on this figure, the camera’s
pitch angle r can be calculated by Eq. 14.

r ¼ atan2ðj2 � h2; f Þ ð14Þ
� Estimating the camera’s height h from the road surface

To estimate the height h of the camera mounted on the ego
vehicle from the road surface by considering the camera’s
pitch angle r, we applied Thales’s theorem [30]. Thales’s
theorem in this context is presented in Fig. 8. The variables
in this figure are defined as follows:

A ¼ f
cosr

ð15Þ

B ¼ h � tanr ð16Þ

E ¼ h
cosr ð17Þ

G ¼ f � tanr ð18Þ

K ¼ Gþ N ð19Þ
To estimate the camera’s height h based on Thales’s theorem and
the estimated distance d by Approach 1, we have the following
equation.

K
E
¼ A

dþ B
ð20Þ

By simplifying Eq. 20, h in meters is calculated as follows:

h ¼ ðN þ f � tanrÞ � d � ðcosrÞ2
f � ðN þ f � tanrÞ � tanr � ðcosrÞ2

ð21Þ

Finally, by estimating the camera’s height from the road surface h,
the camera’s pitch angle r, and the camera’s focal length f, we
can calculate n;w1, and w3. Because w1 and w3 represent point P
Fig. 7. The camera’s pitch angle r and vanishing point used in Approach 2.



Fig. 8. The camera’s height from the road surface by considering the camera’s pitch angle r used in Approach 2.
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in 3D world coordinates, wherew2=0, we can estimate distance d by
Approach 2 based on the Euclidean distance [31] between w1 and
w3 as presented in Eq. 22, and estimate angle h based on trigonom-
etry [32] presented in Eq. 23. Finally, angle a can be estimated
based on the proposed conditions in Section 3.2.1.

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

1 þw2
3

q
ð22Þ

h ¼ atan2ðw3;w1Þ ð23Þ
3.3. Estimating the geolocation of the target vehicle

To estimate the target vehicle’s geolocation with both
approaches, we used Eq. 24 - Eq. 27 [10]. In these formulas, the
variables are as below: (‘1; g1) represent the geolocation of the
ego vehicle (‘2; g2) represent the geolocation of the target vehicle

R represents the Earth’s radius.
d represents the estimated distance between the ego vehicle

and the target vehicle by both approaches
a represents the estimated angle between the north N and d by

both approaches

‘2 ¼ asinðsinð‘1Þ � cosðd=RÞ þ cosð‘1Þ � sinðd=RÞ � cosðaÞÞ ð24Þ

U ¼ sinðaÞ � sinðd=RÞ � cosð‘1Þ ð25Þ

V ¼ cosðd=RÞ � sinð‘1Þ � sinð‘2Þ ð26Þ

g2 ¼ g1 þ atan2ðU;VÞ ð27Þ
Fig. 9. The scenarios studied using both approaches.
4. Experiments and results

In this paper, we carried out experiments using real-world traf-
fic data to demonstrate the effectiveness of both proposed
approaches for estimating the target vehicle’s geolocation by an
ego vehicle’s vision.

4.1. Data collection

We used three vehicles and drove them by the following the
pre-defined scenarios in Chengdu, China. All vehicles were
equipped with two GoPro Hero 7 cameras, and each camera
included a built-in GPS receiver. We used the GoPro Hero 7 camera
as it provides us with both visual information and GPS data of the
40
vehicles. One of the cameras mounted on the front window glass
looked forward through the window, and another mounted on
the front window glass looked backward. The purpose of mounting
two cameras on the same vehicle was to improve the ego vehicle’s
self-location in the pre-processing step [20], and to collect more
data for future studies. To estimate the target’s geolocation, this
study used only the footage collected from the camera mounted
on the front window glass. We used one of these vehicles as an
ego vehicle. The other two vehicles were treated as target vehicles.
The GPS data collected by the target vehicles were used as ground
truth to assess our proposed approaches.

The settings of the GoPro Hero 7 cameras we used were as fol-
lows. The used mode was 4� 3 and linear with a zoom = 0%. Dur-
ing the recording of the footage, the video’s resolution and the
frame rate were 1920� 1440 and 60 frames per second (FPS),
respectively. We adjusted the video’s resolution to 960� 720 and
the frame rate to 1 FPS to apply pre-processing and vehicle
detection.

Fig. 9 shows the studied scenarios, called Scenario S1 and Sce-
nario S2. In Scenario S1, ego vehicle v3 and target vehicles v1
and v2 are driven in the same direction on a straight trajectory.
The purpose of this scenario was to evaluate our proposed
approaches with one of the target vehicles driving on the same
lane as the ego vehicle and the other target vehicle driving on
the next lane. In Scenario S2, ego vehicle v3 and target vehicles
v1 and v2 are driven in opposite directions on a straight road. In
the scenario in which the vehicles are driven in opposite directions,
the period between detecting a target vehicle via an ego vehicle
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until both vehicles pass each other is short, so the number of esti-
mated locations is limited to this short period.
4.2. Experiments

The experiments were run using a laptop with a 3.1 GHz Intel
Core i5 processor and Intel Iris Plus Graphics 650 1536 MB. As
we explained in Section 4.1, we chose to use 1 FPS when analyzing
the video, with the purpose of making a trade-off between the
amount of generated data and the running time of the system. Also,
as the vehicles’ speeds were low (between 19.55 km/h and
30.18 km/h on average), there were hardly any informative
changes in the vehicle’s speed, distance, angle, and location within
less than one second. Therefore, analyzing the data with a higher
frequency could not provide much extra information. We mea-
sured the running time based on the experimental studies using
Approaches 1 and 2 after the data pre-processing. We found that
the system based on Approach 1 ran 0.680 FPS on average, and that
the system based on Approach 2 ran 0.684 FPS on average, to out-
put the geolocation of the target vehicle from the input videos and
the pre-processed ego vehicle’s geolocations.
4.2.1. Evaluation
The evaluation is done in two steps: (1) plotting the estimated

geolocations (i.e., latitude and longitude) of the target vehicles on
Google Maps and (2) analyzing the distance vector between the
estimated target vehicle’s geolocations by both proposed
approaches and the ground-truth data.

Fig. 10 and Fig. 11 present the outputs of the experiments
related to Scenario S1 and Scenario S2, respectively. In these fig-
ures, the white polyline in (a) and (d) shows the ground-truth tra-
jectory of the observed target vehicle. The red polyline in (b) and
(e) shows the trajectory of the target vehicle estimated with
Approach 1. The blue polyline in (c) and (f) shows the trajectory
of the target vehicle estimated with Approach 2. These figures
show that the trajectories of the target vehicle estimated with both
approaches are plotted on the correct lane of the road and that they
almost overlap with the ground-truth trajectory. This means that
both approaches enable us to estimate the trajectory of the target
vehicle accurately on the right lane of the road. As expected, with
Scenario S2, the number of plotted positions along the trajectory,
presented in Fig. 11, are limited (2–3 points) because of the oppo-
site movement directions of the ego vehicle and target vehicle and
the short sensing time.
Fig. 10. The estimated trajectory with Scenario S1 on the map. Two cases are considered
target vehicle v2 (d-f).
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To analyze the estimated geolocations of the target vehicle
numerically, we used the distance vector between the ground truth
and the geolocations estimated by both approaches. This analysis
provides information regarding the estimation deviation in our
proposed approaches. Fig. 12 visualizes our findings related to Sce-
nario S1 and Scenario S2. Our numerical findings are summarized
in Table 1, as well. As Fig. 12 and Table 1 show, the geolocation
estimation deviation (based on the absolute values) with Approach
1 is on average between 1.38 m and 3.54 m. The geolocation esti-
mation deviation with Approach 2 is on average between 1.4 m
and 3.51 m. Fig. 12 (a) and (b) shows a slightly upward trend
between the plotted points. This result may be explained by the
fact that the collected data by a GPS receiver to provide the ego
vehicle’s location and ground truth data of the target vehicle’s posi-
tion were not noise-free. As we expected, Fig. 12 (e) - (h) represent
the limited points as Scenario S2 focused on studying the vehicle
movement in the opposite directions and the sensing lifetime
was limited. In addition, as Table 1 shows, the highest on average
geolocation estimation deviation with both approaches is obtained
in Scenario S2, when v3 observes v1. A possible explanation for this
might be that as in this scenario, only limited geolocations (2–3)
were estimated, so the estimation deviation of one point has a
big effect on the average error.

To analyze our proposed approaches further, we applied the
root mean square error (RMSE) to the distance vector between
the estimated geolocations and the ground truth to show the esti-
mation deviation. The calculated RMSE related to Approach 1 was
between 1.5 m and 3.7 m (2.39 m on average). The calculated
RMSE related to Approach 2 was between 1.55 m and 3.63 m
(2.37 m on average). Overall, these results indicate that, in the
studied scenarios, Approach 2 is slightly (about 0.02 m on average)
better than Approach 1.

As the speed of the vehicles and the distance between them
may influence our estimation accuracy, we studied the effect of
the speed of the ego vehicle and target vehicle and the distance
between them on estimating the target vehicle’s geolocation. As
an example, we presented our findings related to Scenario S1 in
Fig. 13. Fig. 13 shows that in the case in which v3 observes v1, with
both vehicles driving on the same lane, changes in the distance and
speed have no significant effect on our estimation accuracy. How-
ever, when v3 observes v2, with both vehicles driving on different
lanes, increasing the distance between the vehicles, as caused by
changes in the vehicles’ speed, increases the estimation deviation.
However, as the speed of the vehicles and the distance between
: (1) ego vehicle v3 observes target vehicle v1 (a-c) and (2) ego vehicle v3 observes



Fig. 11. The estimated trajectory with Scenario S2 on the map. Two cases are considered: (1) ego vehicle v3 observes target vehicle v1 (a-c) and (2) ego vehicle v3 observes
target vehicle v2 (d-f).

Fig. 12. The distance vectors between ground truth and estimated geolocations with Approach 1 (a, c, e, and g) and Approach 2 (b, d, f, and h) for Scenario S1 and Scenario S2.
Two cases are considered: (1) ego-vehicle v3 observes target vehicle v1, and (2) ego-vehicle v3 observes target vehicle v2. X shows longitudinal and Z shows lateral directions.
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Table 1
Evaluation results.

S# V# Estimation deviation of Approach 1 (m) Estimation deviation of Approach 2 (m)

Min Avg Max RMSE Min Avg Max RMSE

S1 v3 observes v1 0.50 2.03 4.51 2.35 0.35 2.02 4.51 2.34
v3 observes v2 0.47 1.74 4.31 2.03 0.19 1.63 4.18 1.96

S2 v3 observes v1 2.040 3.54 4.33 3.70 2.18 3.51 4.20 3.63
v3 observes v2 0.79 1.38 1.97 1.50 0.72 1.4 2.07 1.55

Fig. 13. Plotting the deviations with regard to ground truth to study the effect of speed and distance (here shown for Scenario S1.).

Table 2
Traffic data measurements with Scenario S1 and Scenario S2.

S# V# Ego vehicle speed (km/h) Target vehicle speed (km/h) Dist. ego and target vehicles (m)

Min Avg Max Min Avg Max Min Avg Max

S1 v3, v1 17.50 26.38 38.04 13.64 25.65 34.35 20.04 25.02 38.84
v3, v2 17.50 27.14 38.04 16.19 26.94 33.4 8.81 13.25 20.01

S2 v3, v1 16.98 19.55 22.04 29.12 29.40 29.55 17.35 30.78 44.14
v3, v2 22.04 23.2 24.36 29.63 30.18 30.74 20.53 27.95 35.37
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them were limited in the studied scenarios, more studies are
needed to validate these findings in the future. The extracted traffic
data (i.e., the ego vehicle’s and the target vehicle’s speed and the
distance between the vehicles) are summarized in Table 2.
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4.2.2. Comparison of Approach 1 with Approach 2
Although Approach 2 can estimate the target vehicle’s geoloca-

tion slightly better than Approach 1 on average, it cannot always
be the optimum approach. Therefore, we investigated the devia-
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tions between the ground truth and estimated geolocations in the
longitudinal and lateral directions in time series using both
approaches. Our findings related to Scenario S1 as an example
are presented in Fig. 14.

As Fig. 14 shows, the deviations between the ground truth and
the estimated geolocations in the longitudinal direction (a) with
Approach 1 and Approach 2 are almost overlapped. However, this
parameter in the lateral direction (b) is more different. This result
may be explained by the fact that the ego vehicle’s geolocation was
utilized in estimating the angle between the ego vehicle and the
target vehicle. However, the used ego vehicle’s geolocation is not
noise-free. In addition, the ground truth data to apply the estima-
tion deviation were collected by such GPS receivers, as well.
Another possible explanation for this is that the employed method-
ology to estimate the distance between ego vehicle and target
vehicle with both approaches were different. The first approach
relied on the accuracy of the bounding box added by YOLO-v3
around the target vehicle, and the second approach used the cen-
tral point on the bottom edge of the bounding box. In general, by
considering the proposed methodology in each approach, we can
conclude in case the lane marks and the vanishing point, which
are needed by the second approach, are available, we can use
Approach 2 as it is identified as the more accurate approach; other-
wise, Approach 1 can be used. In both cases, enhancing the accu-
racy of the GPS receiver accuracy and the vehicle detection
algorithms are vital.
5. Discussion

To date, most of the existing studies on collecting traffic data
focused on two main approaches: (1) stationary sensors and (2)
V2V and V2I communications, which require most of the vehicles
to have sensing and communication capabilities. However, the
much-debated question is how to estimate the geolocation of the
target vehicle in mixed traffic. To address this gap, this study pro-
posed two approaches to dynamically estimating the target vehi-
cle’s geolocation based on an ego vehicle’s vision capability.

5.1. Comparison with related work

As presented in Section 2, most of the existing studies regarding
estimating the position of the target vehicle focused on the relative
target vehicle’s location estimation (e.g., [15,19]) and inter-vehicle
distance estimation (e.g., [17,18]). Despite the importance of the
target-vehicle localization, there remains a paucity of empirical
studies on estimating the target vehicle’s geolocation in a GPS
coordinate system in order to enhance the ITMS awareness about
the traffic scene. In addition, to be able to generalize the proposed
Fig. 14. The deviation between the ground truth and the estimated geolocations with A
longitudinal directions in Scenario S1.
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approaches in reality, using real traffic data to run experiments is
vital; however, most of the studies applied the experiments by
using a simulator (e.g., [15]). Moreover, studying the real traffic
data from the urban area, which can reflect the possible estimation
uncertainties and sources of noise (e.g., tall buildings that affect the
GPS receiver accuracy) are important.

Therefore, the main objective of this study is to go beyond the
target vehicle localization and estimate the relative angles besides
estimating distance and ego vehicle’s geolocation to be able to esti-
mate the geolocation of the target vehicle dynamically. To estimate
the ego vehicle’s geolocation based on a low-cost GPS receiver, we
used the proposed approach in [20]. To estimate distance and rel-
ative angle, we proposed two new approaches based on object
detection and image processing and geometric computation. To
assess our proposed approaches, we developed a new system and
ran experiments on real traffic data collected from the urban area.

The experiments on estimating the target vehicle’s geolocation
showed that the estimation deviation with Approach 1 was on
average between 1.38 m to 3.54 m. The results with Approach 2
were between 1.4 m and 3.51 m. In our study, the ego vehicle’s
speed was between 16.98 km/h and 38.04 km/h, the target vehi-
cle’s speed was between 13.64 km/h and 34.35 km/h, and the dis-
tance between the ego vehicle and the target vehicle varied
between 8.81 m and 44.14 m. Comparison of our findings with
those of similar studies focused on estimating the distance to the
target vehicle (e.g., [19]) confirms that our geolocation estimation
deviation is reasonable. For example, the approach proposed by
Giesbrecht et al. [19] yielded an estimated distance with a mean
and maximum error of 0.72 m and 2.42 m, respectively, with a fol-
lower speed between 7.6 km/h and 10.2 km/h and a follower sep-
aration between 10.46 m and 23.71 m. However, our experiments
were applied to real traffic data collected from the urban area by
considering the higher speed and distance.
5.2. Limitations of our proposed approaches

Although the experiments confirmed that both our proposed
approaches were able to estimate the geolocation of the target
vehicle accurately on the right lane of the road, each approach
has some pros and cons. For instance, Approach 1 is tightly con-
nected to the vehicle detection accuracy because we employed
the size of the bounding box added by YOLO around the target
vehicle to estimate its distance. However, during the experiments,
we observed that these bounding boxes were shaking during the
trajectory, and the size of them varies between frames, which
can affect the accuracy of the distance estimation.

Approach 2 has some limitations as well. For instance, like
Approach 1, Approach 2 is tightly dependent on the accuracy of
pproach 1 (the red polyline) and Approach 2 (the blue polyline) in the lateral and
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the central point on the bottom edge of the bounding box around
the target vehicle, which is used to transform 2D space into a 3D
space. Therefore, it has a direct effect on estimating the distance
of the target vehicle. In addition, the camera’s pitch angle was con-
sidered in Approach 2 to enhance the localization accuracy. To esti-
mate the camera’s pitch angle, we used a vanishing point based on
the parallel lane on the road. Therefore, enhancing the lane detec-
tion accuracy would be beneficial for enhancing the accuracy. Fur-
thermore, this pitch angle was caused by our manual installation of
the camera with a suction cup on the vehicle; therefore, installing
the camera more precisely is highly recommended.

In addition, in the both Approaches, to estimate the angle, we
used the ego vehicle’s movement direction and the central point
on the bottom edge of the bounding box around the target vehicle.
Therefore, the estimation error of each of these parameters has a
negative effect on the angle estimation accuracy. As the ego vehi-
cle’s movement direction was estimated based on the ego vehicle’s
GPS data, if the GPS data is noisy, the estimation deviation will
increase. The same is true for the central point on the bottom edge
of the bounding box around the target vehicle, which is estimated
by YOLO. The experiments showed that the central point was not
stable and was shaking between frames. Therefore, to mitigate
the estimation deviation, enhancing the accuracy of the YOLO
and GPS data is needed.

Another source of uncertainty is that the noisy low-cost GPS
receiver used to collect the ground truth data in a metropolitan
area surrounded by many tall buildings. Although we applied data
pre-processing to mitigate the GPS receiver noise, it is still not
noise-free. Moreover, since the study was limited to vehicle move-
ments along straight streets with limited scenarios, more studies
are needed to be able to generalize our proposed approaches by
considering various vehicle movements scenarios.
6. Conclusion

The main goal of the current study was to dynamically estimate
the geolocation of mobile target vehicles via a low-cost front-
facing monocular camera on a mobile ego vehicle. To estimate
the target vehicle’s geolocation, the distance between the ego vehi-
cle and the target vehicle and the relative angle are needed. In this
regard, we proposed two approaches: (1) object detection and
image processing and (2) geometric computation.

The results of the evaluation using real traffic data confirmed
that our algorithms were able to estimate the geolocation of the
target vehicles accurately. Taken together, these findings con-
firmed the feasibility of a vehicle-mounted monocular camera for
estimating the location of target vehicles in mixed traffic. The pre-
sent study lays the groundwork for future research on using an ego
vehicle as a mobile sensor to collect traffic data to reduce the traffic
cost and improve ITMS efficiency. Further studies that take these
data types into account will be needed to increase the accuracy
and enhance the generalizability by considering various scenarios.
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