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Abstract—Face morphing attacks target to circumvent Face Recognition Systems (FRS) by employing face images derived from
multiple data subjects (e.g., accomplices and malicious actors). Morphed images can be verified against contributing data subjects
with a reasonable success rate, given they have a high degree of identity resemblance. The success of the morphing attacks is directly
dependent on the quality of the generated morph images. We present a new approach for generating robust attacks extending our earlier
framework for generating face morphs. We present a new approach using an Identity Prior Driven Generative Adversarial Network,
which we refer to as MIPGAN (Morphing through Identity Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with
a newly formulated loss function exploiting perceptual quality and identity factor to generate a high quality morphed face image with
minimal artefacts and with higher resolution. We demonstrate the proposed approach’s applicability to generate robust morph attacks
by evaluating it against both commercial and deep learning based Face Recognition System (FRS) and demonstrate the success rate
of attacks. Extensive experiments are carried out to assess the FRS’s vulnerability against the proposed morphed face generation
technique on three types of data such as digital images, re-digitized (printed and scanned) images, and compressed images after
re-digitization from newly generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the proposed approach of
morph generation poses high threat to FRS.

Index Terms—Morph Attacks, GAN, Attack detection, Face Recognition, Vulnerability, Deep Learning
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1 INTRODUCTION

Face Recognition Systems (FRS) have provided ubiquitous
ways of verifying the identity in many applications. FRS
have been used in everyday applications from low-security
applications such as smartphone unlocking to high-security
applications such as identity verification in border control
processes. Each of the applications mandate a chosen way
of enrolment to FRS where either a supervised enrolment is
carried out (for instance in on-boarding at bank premises)
or unsupervised enrolment is requested (on-boarding for
banking applications from home). While it provides a high
degree of flexibility and convenience to users to initiate an
enrolment process in an unsupervised manner, this poten-
tially leads to a security risk: Without supervision, a data
subject enrolling into the FRS can submit a face image which
is manipulated, a printed face image, an image displayed
from an electronic screen (e.g., iPad) or a silicone latex face
mask [2]. In order to mitigate such attacks at the enrolment
level, it is therefore essential to have a robust attack de-
tection mechanism. While a number of works have been
proposed on both conducting such attacks and detecting
the attacks in a robust manner for printed attacks, display
attacks and mask attacks in recent years, we focus our work
on a new kind of attack referred popularly as Morphing

Haoyu Zhang, Sushma Venkatesh and Raghavendra Ramachan-
dra contributed equally.

Attack.
Face morphing is the process of combining two or more

face images to generate a single face image that can resemble
visually to all the contributing face images to a greater de-
gree [3]. A good quality morphed face image is also effective
in verifying against all contributing subjects by obtaining a
comparison score that exceeds the pre-determined threshold
(i.e., passes through FRS) [3], [4], [5], [6]. While morphing
can be conducted using multiple face images of different
subjects, the effectiveness of morphed images is reported
when the face images of similar ethnicity, gender and age
group are considered [6], [7], [8]. This is primarily due to
the fact that a morphed image should not only defeat the
FRS but should also provide high visual similarity, in order
to convince a human expert in a visual comparison process.

Face morphing attacks threaten FRS due to the current
practices in the ID-document application process, where
the biometric enrolment is carried out in an unsupervised
manner in many countries. Countries like the UK and
New Zealand allow citizens to upload a digital face im-
age for various applications such as passport renewal [9]
and visa application [10]. The capture process for such
images is unsupervised. In a similar manner, many Asian
countries and European countries (e.g. in The Netherlands
[11]) request the applicant to submit a scanned face image
for passport/visa/identity-card applications. Given that the
images are captured and submitted in an unsupervised
setting, the applicant has vast opportunities to upload a
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Fig. 1: Results from StyleGAN based face morphing [1] and the proposed MIPGAN (a) Contributing subject 1 (b) StyleGAN
[1] (c) Proposed method (d) Contributing subject 2

morphed image with malicious intent underlining the need
for robust Morphing Attack Detection (MAD) mechanisms.

1.1 Related Works on Face Morph Generation

While morphing attacks have been studied in recent years,
most of the attacks are conducted using the morphed images
created using facial landmarks-based approaches needing
high a degree of supervision to first extract the facial land-
marks, thereupon align them and then finally blend them to
generate morphs. The common set of procedures for warp-
ing/blending includes Free Form Deformation (FFD) [12]
[13], Deformation by moving least squares [14], deformation
based on mass spring [15], Bayesian framework based mor-
phing [16] and Delaunay triangulation based morphing [17]
[18] [19] [20] [21]. Due to inadvertent artefacts caused by
pixel/region-based morphing, the images need additional
work in refining the signal to create highly realistic morph
images. A set of post processing steps are usually included
as illustrated in number of works [20] [22] [23]. Gener-
ally, some set of post processing techniques such as image
smoothing, image sharpening, edge correction, histogram
equalisation, manual retouching, image enhancement to im-
prove the brightness and contrast are used to eliminate the
artefacts generated during the morphing process. In a par-
allel direction, morphed face images can also be generated
using landmarks-based methods available in open-source
resources like GIMP/GAP and OpenCV. Morphs generated
using GIMP/GAP technique are more efficient with respect
to a good quality of the resulting image (i.e., less notice-
able artefacts) as pixels are aligned manually. Despite the
minimal amount of effort needed for creating morphs using
such approaches, a significant amount of effort needs to be
dedicated to correcting artefacts. Additionally, commercial
solutions like Face Fusion [24] and FantaMorph [25] can
also generate good quality morphed images with limited
manual intervention. Although some steps can be excluded

in creating the morphs, it is very critical to meet the face
image quality standards laid out by the International Civil
Aviation Organization (ICAO) [26] [27] for electronic Ma-
chine Readable Travel Document (eMRTD) and deployment
of biometric identification applications.

1.2 GAN Based Face Morph Generation
In an attempt to overcome the cumbersome efforts of man-
ually creating (semi-automated) morphed images, a fully
automated approach using a Generative Adversarial Net-
work (GAN) was proposed by Damer et al. [28]. Unlike the
supervision required in extracting and aligning the face im-
ages in a manual morphing process, GAN-based techniques
synthesise morphed images directly by merging two facial
images in the latent space. In the work by Damer et al. [28],
the proposed MorGAN architecture for morph generation
basically employed a generator constituting encoders, de-
coders and a discriminator. The generator was trained to
generate images with the dimension 64× 64 pixels which is
a key limiting factor of the attack, as most commercial FRS
will reject images that do not meet the ICAO standard that
requires a minimum Inter-Eye Distance (IED) of 90 pixels.
The empirical evaluation of generated morph images using
MorGAN in a vulnerability analysis against two commercial
FRS indicated that those MorGAN morphs fail to meet
both quality standards and the verification threshold of
the FRS [1]. Motivated to address the deficiency of the
MorGAN architecture, in our recent work [1] 1 we proposed
an approach based on the StyleGAN architecture [29] to
increase the spatial dimension to 1024 × 1024 and thus to
improve the face quality. Unlike the previous approach of
MorGAN [28], StyleGAN [1] achieves better spatial resolu-
tion by embedding the images in the intermediate latent
space. With the increased spatial dimension of resulting

1. The preliminary work results were published at IWBF-2020 in
April, 2020.
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Fig. 2: Details of segmented components in morphs generated by earlier method based on StyleGAN [1] and proposed
MIPGAN (a) StyleGAN [1] (b) MIPGAN-I (c) MIPGAN-II.

morphed images from our recently proposed architecture,
we not only demonstrated that the images meet quality
standards but also have a reasonable success rate when
attacking commercial FRS [1].

1.3 Limitations of GAN Based Face Morph Generation
and Our Contributions

While our earlier work [1] indicated that better GAN archi-
tectures could result in superior quality morphs and could
attack an FRS in general, we also acknowledge the limited
threats that exist for Commercial-Off-The-Shelf (COTS) FRS,
as merely a subset of morphed images was accepted. Only
approximately 50% of the generated morph images were
verified successfully against probe images from a contribut-
ing subject. Thus the empirical evaluation in our earlier
work has shown that the attack was yet not very effective
[1] for a COTS FRS [30] and an open-source FRS based on
ArcFace [31]. We must state that up to now FRS are not
very vulnerable to GAN-based morphing attacks unlike to
landmarks-based morphing attacks. With a clear introspec-
tion into this aspect, we notice that the resulting morphed
images from our earlier work [1] does not retain a high
degree of facial similarity to both contributing subjects. With
lower similarity to contributing subjects in terms of facial
structures, the FRS do not attribute a high comparison score,
as anticipated. In other words, the missing enforcement
of identity information of contributing subjects will lead
to a high visual quality facial image but with lower face
similarity to contributing face characteristics.

In an effort to make the attacks robust such that both sub-
jects can be verified with a good success rate, in this work,
we extend our previous architecture to generate morphs
by including the identity priors before the generation of
morphed faces. We now refer to this approach as MIPGAN
(Morphing through Identity Prior driven GAN). We propose
two variants of our approach named as MIPGAN-I and
MIPGAN-II based on the employed GAN being StyleGAN
or StyleGAN2 respectively [29], [32]. With the inclusion
of a new loss function in our proposed architecture, we
increase the attack success rate against a commercial-off-the-
shelf (COTS) FRS. Figure 1 shows the example of morphed
face images generated using proposed MIPGAN along with
outputs of both the variants. To further achieve superior
quality face morphs, we also customize the newly designed
loss function to account for ghosting and blurring artefacts
in an end-to-end manner with no human or manual inter-

vention eliminating the need for a high degree of inter-
action. As noted in Figure 2, the results from MIPGAN-
I and MIPGAN-II is more coherent in retaining structural
similarity as compared to our earlier architecture [1]. With
the updated architecture to generate high-quality morphs
which preserve both identity information and structural
correspondence, we evaluate the applicability in creating
stronger attacks by creating a large-scale dataset of morphed
images by employing the face images derived from the
FRGC-V2 face database [33]. The created dataset of 1270
bona fide images and 2500 morphed images is first eval-
uated to measure the attack success rate by verifying the
morphed images against the contributing subjects using a
commercial FRS from Cognitec [30]. Further to measuring
the attack success rate from the digital images, we also
extend our work by printing and scanning (re-digitizing)
the dataset. We check the consistency of the attack success
rate, unlike our earlier work which was limited to an
investigation on digital images alone [1]. We also include
the experiments on assessing the impact of compression
(down to 15kb following ICAO guidelines) of printed and
scanned face images that simulate the real-life e-passport
application scenario. The key motivation to extend our work
in this direction is, to mimic the passport application process
that is operated in many European countries and Asian
countries, which all accept printed-and-scanned face images
in the application process for an identity document (e.g.
passports).

With the extensive experimental results indicating a
highly satisfactory attack success rate, we also evaluate a
set of MAD algorithms to benchmark the detection capabil-
ities. To this extent, we evaluate two state-of-the-art MAD
approaches on digital morphed images, re-digitized and
compressed morphed images after re-digitizing. Thus, we
comprehensively cover the potential morphing attacks in
the digital domain and the re-digitized domain. While we
note the earlier works [1] arguing that attacks in the digital
domain can be detected by studying the cues such as resid-
ual noise in morphing [34], patterns of noise from morphed
images, histogram features of textures or the deep features
[4], we also investigate the MAD capabilities for re-digitized
images which do not exhibit the similar features (residual
noise) as the print-scan process eliminates the digital cues
and presents another set of variations. Specifically, given
the nature of the dataset in which we have only a single
suspected morphed image, for which we must determine
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either the morph or the bona fide class, we resort to Single
Image based MAD (S-MAD) approaches using two recent
but robust approaches using hybrid and ensemble features
[34], [35], [36], [37].

We therefore present a summary of contributions of this
work as listed below:
• We present a novel approach of generating morphed

face images through GAN architecture with enforced
identity priors and a customized novel loss function
to generate highly realistic images which we refer as
MIPGAN (Morphing through Identity Prior driven GAN).
We present two variants of the proposed approach for
generating attacks with a high success rate.

• The proposed approach (both variants) is benchmarked
to measure the attack success rate by verifying a COTS
and deep learning based FRS through studying the
vulnerability using a newly generated dataset from our
proposed architecture which is referred as MIPGAN
Face Morph Dataset.

• Human observer analysis for detecting morphs gen-
erated by the proposed and existing morphing attack
methods is presented.

• Analysis of the perceptual quality metrics to illustrate
the visual quality of the generated morph images is
presented.

• Extensive experiments on three different data types
such as (a) digital morphed images (b) print-scan mor-
phed image (c) print-scan morphed images with com-
pression are presented to cover the full spectrum of
passport application process under morphing attacks.

• The generated images are also benchmarked against the
existing MAD approaches both in digital form and the
re-digitized form to provide the insights on detection
challenges of SOTA approaches. We also present a
generalizability study on MAD schemes by training one
kind of morph generation and testing on a different
kind of morph generation approach to indicate direc-
tions to future works.

In the rest of the paper, Section 2 describes the new
architecture along with the newly designed loss function to
generate high-quality morphs. Section 3 provides the details
on the quantitative experiments indicating the vulnerability
of FRS and the detection challenge. With the set of remarks
and future works in this direction, we draw the conclusion
in Section 5.

2 PROPOSED MORPHED FACE GENERATION

Figure 3 presents the block diagram of the proposed mor-
phed face image generation using MIPGAN. The proposed
method is based on the end-to-end optimisation using a new
loss function that can preserve the identity of the generated
morphed face image through enforced identity priors. The
proposed MIPGAN framework is designed independently
on two different GAN models based on StyleGAN [29]
and StyleGAN2 [32] model. We refer the proposed scheme
with StyleGAN as MIPGAN-I and with StyleGAN2 as
MIPGAN-II respectively. Given the face images from the
accomplice (I1) (contributing subject 1) and the malicious
(I2) (contributing subject 2) data subjects, we predict the
corresponding latent vectors L

′

1 and L
′

2 in the first step. In

this work, we have employed the open-source pre-trained
prediction models trained to predict the corresponding
latent vector given an input image. Hence, L′1 and L′2
are predictions from the final output layer of the model,
which is further reshaped. Since MIPGAN-I and MIPGAN-
II are based on pre-trained StyleGAN [29] and StyleGAN2
[38] model respectively, we used two different open-source
pre-trained models for prediction. Both of the prediction
models employ ResNet50 [39] as backbone. The model for
MIPGAN-I (StyleGAN) uses one convolution layer and two
tree-connected layers [40] to map the output of ResNet50
into the final latent vector with the size of (18, 512). In
comparison, the model for MIPGAN-II (StyleGAN2) just
uses one fully-connected layer to achieve the mapping.
The predicted latent vectors thus provide the initialization
for the morphed face generation that is obtained using a
weighted linear average of L

′

1 and L
′

2 as follows:

L
′

M =
w1 ∗ L

′

1 + w2 ∗ L
′

2

2
, (1)

where w1 and w2 indicate the weights, which we have cho-
sen to be w1 = w2 = 1. Equal weights are selected as shown
in earlier work [41] where the morphing images generated
with equal weights pose higher vulnerability to COTS FRS.
Finally, L

′

M is passed through the synthesis network (inde-
pendently from StyleGAN [29] and StyleGAN2 [32] model)
to generate the corresponding morphed image I

′

M that has
a resolution of 1024 × 1024 pixels. The generated morphed
face image I

′

M is then optimised using the proposed loss
function to generate the high quality morphed face image.
In the following section, we discuss the loss function to
optimise the latent vector obtained using Equation 1.

2.1 Proposed Loss Function

The proposed loss function is based on both perceptual
fidelity, quality and identity factors that can facilitate high-
quality face morph generation. The common issue with the
GAN-based morph generation is the presence of the ghost
artefacts and the blurring issues. We employ the perceptual
loss with multiple layers to eliminate such effects as given
by Eqn 2.

LossPerceptual =
1

2

∑
i

1

Ni
||Fi(I1)− Fi(I

′

M )||22

+
1

2

∑
i

1

Ni
||Fi(I2)− Fi(I

′

M )||22,
(2)

where Ni denotes the number of features in layer i and Fi
denotes features in layer i of the perceptual network (VGG-
16 in our case). For the combination of perceptual layers,
we choose conv11, conv12, conv22, conv33 inspired by [42].
Compared with the original combination of layers conv12,
conv22, conv33, conv43 [43], our design measures low-level
features instead of high-level features like style of an image
and is closer to our goal of morphing faces with high quality.

The main goal of this paper is to generate the morphed
face images that can significantly attack FRS. In order to
achieve this, we have introduced the identity loss function
based on the feedback from FRS. We employ Arcface [31] - a
deep learning based FRS because of its robust and accurate
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Fig. 3: Block diagram of the proposed MIPGAN for generating high quality morphed face images

performance to obtain the feedback on generated morphed
face. Specifically, we employ a pre-trained embedding ex-
tractor with ResNet50 as the backbone to extract the unit
embedding vectors and define the identity loss by their
cosine distance to improve the morph generation process
as given by Eqn 3.

LossIdentity =
(1− ~v1·~vM

‖~v1‖‖~vM‖ ) + (1− ~v2·~vM
‖~v2‖‖~vM‖ )

2
, (3)

where ~v1, ~v2, ~vM respectively denotes the embedding vec-
tors which are extracted from image I1, I2, I

′

M respectively.
To further prove the loss function is differential for the

morphed embedding vector ~vM , we define xd, yd, zd to be
the value of vector ~v1, ~v2, ~vM in dimension d respectively
and d′ 6= d to be other dimensions except d. The expanded
identity loss function and its partial derivative are:

LossIdentity =
(1−

∑
d xdzd

‖~v1‖‖~vM‖ ) + (1−
∑

d ydzd
‖~v2‖‖~vM‖ )

2
, (4)

∂LossIdentity
∂zd

= 1− xd
2‖~v1‖

∂

∂zd
(

zd√
z2
d +

∑
d′ 6=d z

2
d′

)

− yd
2‖~v2‖

∂

∂zd
(

zd√
z2
d +

∑
d′ 6=d z

2
d′

),

(5)

∂

∂zd
(

zd√
z2
d +

∑
d′ 6=d z

2
d′

) =
1√

z2
d +

∑
d′ 6=d z

2
d′

+
2z2
d

−2(z2
d +

∑
d′ 6=d z

2
d′)

3
2

=

∑
d′ 6=d z

2
d′

(z2
d +

∑
d′ 6=d z

2
d′)

3
2

,

∂LossIdentity
∂zd

= 1−
( xd

2‖~v1‖ + yd
2‖~v2‖ )

∑
d′ 6=d z

2
d′

(z2
d +

∑
d′ 6=d z

2
d′)

3
2

. (6)

For any value zd = z′d, it is obvious that:

lim
∆zd→0

∂LossIdentity(z′d + ∆zd)

∂zd

= lim
∆zd→0

(1−
( xd

2‖~v1‖ + yd
2‖~v2‖ )

∑
d′ 6=d z

2
d′

((z′d + ∆zd)2 +
∑
d′ 6=d z

2
d′)

3
2

)

= 1−
( xd

2‖~v1‖ + yd
2‖~v2‖ )

∑
d′ 6=d z

2
d′

(z
′2
d +

∑
d′ 6=d z

2
d′)

3
2

=
∂LossIdentity(z′d)

∂zd
.

Hence, for any dimension of d, the partial derivative of the
identity loss function is continuous.

It is interesting to note that the identity loss based on
the Arcface feature extractor model is trained to maximize
the face class separability and thus is more sensitive to face
attributes. Hence, only optimising the identity loss cannot
achieve the same reconstruction performance as the percep-
tual loss but applying it on the face region can effectively
control the generated attributes to be recognized as both
subjects.

To solve the imbalance between different subjects, we
introduce an identity difference loss as given by Eqn 7.

LossID−Diff = |(1− ~v1 · ~vM
‖~v1‖‖~vM‖

)− (1− ~v2 · ~vM
‖~v2‖‖~vM‖

)|. (7)

With the idea of the Lagrange multiplier, it adds a constraint
to the optimisation process to force the cosine distance
between morph embedding and each of the two reference
embeddings to be the same. Since LossID−Diff is usually
small with a value less than 1, we apply L1 loss on the dif-
ference of two cosine distance terms to avoid the vanishing
gradient problem.

Finally, in order to improve the structural visibility of the
generated morphed face image, we also apply the Multi-
Scale Structural Similarity (MS-SSIM) loss LMS−SSIM to
measure the structure similarity [45]. Given two discrete
non-negative signals (images in our case) x and y, lumi-
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nance, contrast and structure comparison measures were
given by l, c, s as computed using Eqn 8.

l(x, y) =
(2µx2µy + (K1L)2)

µ2
x + µ2

y + (K1L)2
,

c(x, y) =
(2σx2σy + (K2L)2)

σ2
x + σ2

y + (K2L)2
,

s(x, y) =
(σxy + (K2L)2

2 )

σxσy + (K2L)2

2

,

(8)

where µx, σx and σxy denotes the mean of x, the variance
of x and the covariance of x and y respectively. L is the
dynamic range of the signal and K1 � 1,K2 � 1 are two
constant scalars. The MSSSIM loss LMS−SSIM is further
defined by Eqn 9.

MSSSIM(x, y) =[lJ(x, y)]αJ ·
J∏
j=1

[cj(x, y)]βj [sj(x, y)]γj ,

LMS−SSIM =
1

2
(1−MSSSIM(I1, I

′
M ))

+
1

2
(1−MSSSIM(I2, I

′
M )),

(9)
where j = 1, 2, . . . , J represents the jth scale and αj , βj
and γj are the factors of relative importance. As suggested
in [45], we also set αj = βj = γj ,

∑J
j=1 γj = 1 and use

the resulting parameters β1 = γ1 = 0.0448, β2 = γ2 =
0.2856, β3 = γ3 = 0.3001, β4 = γ4 = 0.2363, α5 = β5 =
γ5 = 0.1333.

Thus, the proposed loss function can be formulated as:

Loss = λ1LossPerceptual + λ2LossIdentity

+ λ3LossMS−SSIM + λ4LossID−Diff ,
(10)

where λ1, λ2, λ3 and λ4 are the hyper-parameters that are
set to achieve both stable and generalised convergence. In
this work, we empirically set λ1 = 0.0002, λ2 = 10, λ3 = 1
and λ4 = 1.

2.2 Training and Optimisation
The training and optimisation of the proposed method are
carried out on Tensorflow version 1.13 and version 1.14 for
StyleGAN and StyleGAN2, respectively. The optimisation
is carried out using NVIDIA GTX 1070 8 GB GPU with

CUDA version 10.0 and CUDNN version 7.5 and NVIDIA
Tesla P100 PCIE 16 GB GPU. The Adam optimiser with
hyper-parameters β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8

as recommended in the original paper [46] is employed
on this work. The list of morphing pairs is generated in
advance with careful considerations to gender. During each
optimisation process of 150 iterations, the learning rate is
initially set to η = 0.03 with an exponential decay per 6
iterations of ηnew = η ∗ 0.95.

Figure 4 illustrates the qualitative results of the proposed
MIPGAN framework based on StyleGAN and StyleGAN2.
Further, the qualitative results of the existing methods based
on StyleGAN [1] and MorGAN [28] is provided alongside
for the convenience of the reader in the same figure. It is
interesting to note that the proposed MIPGAN generated
face morph images indicate both perceptual and geometric
features correspondence to both contributing subjects (for
instance, malicious actor and accomplice).

3 EXPERIMENTS AND RESULTS

This section presents and discusses the experimental proto-
cols, datasets, and quantitative results of the proposed face
morphing technique. The images generated from proposed
MIPGAN-I and MIPGAN-II architectures are compared
with the state-of-the-art techniques based on both facial
landmarks [7] and StyleGAN based morph generation [1].
The effectiveness of the face morphing generation is quan-
titatively evaluated by benchmarking the vulnerability of
the COTS FRS for generated morphed face images. Further,
we also evaluate the morph attack detection potential by
evaluating the generated morphed face images using the
most recent and robust MAD techniques.

3.1 MIPGAN Face Morph Dataset

We employ the face images from FRGC-V2 face database
[33] to generate the MIPGAN Face Morph Dataset consisting
of morphed face images using both state-of-the-art and the
proposed MIPGAN technique. We have selected 140 unique
data subjects from the FRGC dataset by considering the
high-quality face images captured in constrained conditions
that resemble the passport image quality. Among 140 data
subjects, 47 data subjects are female and 93 data subjects are
male. Each data subject has a variable size of 7-21 additional

Morphs generated 

Contributing 
Subject 1

Proposed morphing technique

(a) (b) (c) (e)

MIPGAN-I MIPGAN-II

Contributing 
Subject 2

(d)

Fig. 4: Qualitative results of proposed MIPGAN together with existing GAN based face morph generation methods (a)
Landmark-I [7] (b) Landmark-II [44] (c) StyleGAN [1] (d) MorGAN [28] (e) Proposed method
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Fig. 5: Illustration of morphing in digital, print-scan and print-scan compression data (a) Contributing subject 1 (b)
Landmark-I [7] (c) Landmark-II [44] (d) StyleGAN [1] (e) MIPGAN-I (f) MIPGAN-II (g) Contributing subject 2

captures making the whole dataset have 1270 samples cor-
responding to 140 data subjects. We employ three different
face morph generation techniques based on facial land-
marks constrained by Delaunay triangles with blending [7]
we term this as Landmarks-I, landmarks-based techniques
with automatic post processing and color equalisation [44],
we term this as Landmarks-II and StyleGAN [1]. We do not
consider MorGAN [28] [47] based face morph generation as
it was earlier demonstrated that MorGAN does not generate
ICAO compliant images and thus makes COTS FRS not
vulnerable [1]. All the samples are pre-processed to meet
the ICAO standards [27] and morphing is carried out by
following the guidelines outlined earlier [7] [8], i.e, careful
selection of subjects based on gender and comparison score
using FRS to make attacks realistic.

To effectively evaluate the proposed method’s quanti-
tative performance and the existing techniques, we create
three different types of attacks from morphed images, such
as Digital morphed images: Morphed face images that are
obtained from the morph generation process in the digital
domain. Print-scanned morphed images: The digital mor-
phed and bona fide images are printed and then scanned (or
re-digitized) to simulate the passport application process.
We have employed DNP-DS820 [48] dye-sublimation photo
printer to generate the print of the digital morphed and bona
fide face images in this work. The use of a dye-sublimation
photo printer guarantees high-quality photo printing (gen-

erally used for a passport application) and makes sure that
printed photos are free from dotted patterns (or individual
droplets of ink) that are resulting from the printing process
of conventional printers. Each of these printed photos is
then scanned (or re-digitized) using the Canon office scan-
ner to have 300 dpi as suggested in ICAO standards [27].
Print-scanned compressed morphed images: The printed
and scanned images (both morphed and bona fide) are
compressed to have a size of 15kb that makes it suitable
to store in the e-passport. This process reflects the real-life
scenario of face image storage in passport systems. Thus, the
overall dataset has 2500× 3 (types of morph data)× 4 types
of morph generation technique = 30, 000 morph samples
and 1270 × 3 (types of morph data) × 4 types of morph
generation technique = 15, 240 bona fide samples. Figure 5
illustrates the three data types of attacks that are used to
evaluate the effectiveness of the proposed method and the
existing methods of face morph generation. It is evident that
the visual quality of the images vary largely for different
attack types (for instance, the digital data attack indicates
the best quality and print-scan with compression indicates
the lowest quality).

3.2 Vulnerability Analysis

This section presents the vulnerability analysis of the pro-
posed morphed face generation techniques to quantify the
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Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Digital Print-Scan Print-Scan with compression

Male Male Male

Landmark-I [7] 100 98.77 97.23 97.34 97.38 96.95

Landmark-II [44] 87.29 76.86 90.32 78.23 88.78 77.14

StyleGAN [1] 63.51 41.27 60.59 39.51 57.12 35.05

MIPGAN-I 93.35 83.08 91.72 80.55 91.07 77.89

MIPGAN-II 92.22 80.45 90.74 77.67 89.16 73.47

Female Female Female

Landmark-I [7] 100 99.26 99.37 99.02 99.78 99.24

Landmark-II [44] 94.28 88.67 98.22 91.48 98.16 90.97

StyleGAN [1] 68.75 42.62 66.45 42.01 66.45 40.49

MIPGAN-I 98.57 93.11 98.16 91.22 96.12 90.52

MIPGAN-II 95.91 87.66 95.30 86.26 94.69 84.47

Combined Combined Combined

Landmark-I [7] 100 98.84 97.64 97.60 97.84 97.30

Landmark-II [44] 88.65 78.72 91.85 81.56 90.61 79.33

StyleGAN [1] 64.68 41.49 61.72 39.90 58.92 35.89

MIPGAN-I 94.36 84.65 92.97 82.23 92.29 79.88

MIPGAN-II 92.93 81.59 80.56 79.02 90.24 75.20

TABLE 1: Quantitative evaluation of vulnerability of COTS Cognitec-FRS [30] from various morph generation approaches.
Note that, since FNMR = 0 @ FMR = 0.1% for Cognitec-FRS [30] following Eq. 12 and 13, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Digital Print-Scan Print-Scan with compression

Male Male Male

Landmark-I [7] 85.59 70.80 83.91 68.20 83.86 67.73

Landmark-II [44] 63.27 46.55 63.12 46.37 63.72 46.80

StyleGAN [1] 61.19 41.01 61.68 41.43 61.68 41.04

MIPGAN-I 76.96 59.24 76.96 57.16 76.07 57.31

MIPGAN-II 75.73 56.97 72.87 54.57 72.87 54.43

Female Female Female

Landmark-I [7] 96.03 83.55 93.95 82.02 93.32 81.39

Landmark-II [44] 87.76 71.85 89.39 73.82 89.80 74.27

StyleGAN [1] 80.42 59.19 79.79 59.10 78.54 58.83

MIPGAN-I 90.41 76.68 89.39 75.95 89.18 75.85

MIPGAN-II 88.98 75.42 87.96 74.54 88.37 74.90

Combined Combined Combined

Landmark-I [7] 87.64 72.82 85.87 70.39 85.71 69.90

Landmark-II [44] 68.07 50.64 68.27 50.80 68.86 51.28

StyleGAN [1] 64.92 43.91 65.20 44.25 64.96 43.88

MIPGAN-I 79.61 62.06 79.41 60.19 78.66 60.30

MIPGAN-II 78.34 59.95 75.84 57.80 75.92 57.73

TABLE 2: Quantitative evaluation of vulnerability of VGGFace2 [49] FRS from various morph generation approaches.
Note that, since FNMR = 0 @ FMR = 0.1% for VGGFace2 [49] following Eq. 12 and 13, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table above.

impact of our efficient attacks on FRS. We quantify the attack
success for five different FRS including two Commercial-off-
the-Shelf (COTS) FRS and three deep-learning-based open-
source FRS. The COTS FRS include the Cognitec FRS (Ver-
sion 9.4.2) [30] and Neurotechnology (Version 10) [50] and
the set of open-source FRS includes Arcface [31], VGGFace
[49] and LCNN-29 [51]. The operational threshold for all 5
FRS is set at False Match Rate (FMR) of 0.1% following the
guidelines of Frontex [52].

The vulnerability is assessed using two metrics Mated
Morphed Presentation Match Rate (MMPMR) [8] and Fully
Mated Morphed Presentation Match Rate (FMMPMR) [1]

based on the threshold provided by Cognitec FRS. For a
given morph image MI1,2 obtained using two subjects, we
compute the vulnerability by enrolling MI1,2 and verifying
it against probe images from the corresponding contributing
subjects I1 and I2. The obtained comparison scores S1 and
S2 for both probe images I1 and I2 against the morphed
imageMI1,2 indicates the threat to FRS, if and only if both S1

and S2 cross the actual verification threshold at FMR = 0.1%.
The corresponding metric FMMPMR [1] [41] is therefore
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Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Digital Print-Scan Print-Scan with compression

Male Male Male

Landmark-I [7] 99.60 98.19 97.38 96.88 97.33 96.70

Landmark-II [44] 91.09 84.62 93.45 86.42 93.60 86.02

StyleGAN [1] 70.99 55.76 73.86 58.67 73.32 58.26

MIPGAN-I 93.70 85.17 92.76 84.39 93.01 84.41

MIPGAN-II 93.65 86.45 93.55 85.30 93.25 85.06

Female Female Female

Landmark-I [7] 99.79 97.01 99.79 96.91 99.79 97.01

Landmark-II [44] 94.49 86.71 97.76 89.76 98.16 89.17

StyleGAN [1] 80.21 63.22 82.71 65.70 82.71 66.05

MIPGAN-I 97.35 89.53 97.96 91.02 97.76 91.02

MIPGAN-II 96.33 89.47 95.92 89.33 96.12 89.42

Combined Combined Combined

Landmark-I [7] 99.68 98.00 97.88 96.89 97.84 96.75

Landmark-II [44] 91.79 84.96 94.33 86.96 94.53 86.54

StyleGAN [1] 72.80 56.95 75.60 59.79 75.16 59.51

MIPGAN-I 94.45 85.94 93.81 85.46 93.97 85.48

MIPGAN-II 94.21 86.94 94.05 85.95 93.85 85.77

TABLE 3: Quantitative evaluation of vulnerability of Arcface [31] FRS from various morph generation approaches.
Note that, since FNMR = 0 @ FMR = 0.1% for Arcface [31] following Eq. 12 and 13, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table above.

Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Digital Print-Scan Print-Scan with compression

Male Male Male

Landmark-I [7] 99.40 94.70 95.45 83.71 93.23 77.16

Landmark-II [44] 88.99 68.51 88.92 63.31 80.62 53.63

StyleGAN [1] 52.26 26.47 31.88 12.98 31.60 12.15

MIPGAN-I 58.18 32.56 32.59 25.33 57.6 53.52

MIPGAN-II 53.16 29.65 47.41 20.71 50.73 23.72

Female Female Female

Landmark-I [7] 100 99.25 100 98.11 98.74 91.18

Landmark-II [44] 94.69 85.96 97.49 84.92 95.40 78.89

StyleGAN [1] 70.60 50.13 55.20 25.72 52.39 26.19

MIPGAN-I 80.98 56.29 73.06 46.87 77.89 30.50

MIPGAN-II 74.79 49.45 69.59 42.17 70.73 46.18

Combined Combined Combined

Landmark-I [7] 99.51 95.37 96.32 85.43 94.30 79.25

Landmark-II [44] 90.16 71.17 90.59 66.67 83.50 57.38

StyleGAN [1] 55.06 29.39 36.36 14.83 35.62 14.28

MIPGAN-I 63.22 35.73 40.46 28.71 61.66 34.14

MIPGAN-II 57.47 31.45 51.72 23.54 54.94 27.46

TABLE 4: Quantitative evaluation of vulnerability of COTS Neurotec [50] FRS from various morph generation approaches.
Note that, since FNMR = 0 @ FMR = 0.1% for COTS Neurotec [50] following Eq. 12 and 13, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table above.

computed as:

FMMPMR

=
1

P

∑
M,P

(S1PM > τ)&&(S2PM > τ) . . .&&(SkPM > τ),

(11)

where P = 1, 2, . . . , p represent the number of attempts
made by presenting all probe images of the contributing
subjects against the M th morphed image, K = 1, 2, . . . , k
represents the number of composite image constitute to
generate the morphing image (in our case K = 2), SkPM
represents the comparison score of the Kth contributing

subject obtained with P th attempt corresponding to M th

morphing image and τ represents the threshold value cor-
responding to FMR = 0.1%. When compared to MMPMR,
the FMMPMR will consider both pair-wise comparison of
contributory subjects and the number of attempts. In order
to also establish the relationship with respect to earlier
metrics, we also report the vulnerability using MMPMR [8].

Further, to effectively analyse the vulnerability, we
also present the results using Relative Morph Match Rate
(RMMR) defined as follows [53]:

RMMR(τ)MMPMR =1 + (MMPMR(τ))

− [1− FNMR(τ)]
(12)
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Morph generation type

MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%) MMPMR/RMMR(%) FMMPMR/RMMR(%)

Digital Print-Scan Print-Scan with compression

Male Male Male

Landmark-I [7] 96.63 89.28 95.25 89.36 94.80 88.62

Landmark-II [44] 75.09 60.72 74.64 57.81 82.43 68.32

StyleGAN [1] 83.12 66.44 85.20 69.54 84.85 68.88

MIPGAN-I 95.13 86.35 94.04 84.39 94.09 84.30

MIPGAN-II 94.93 85.14 93.94 83.14 93.75 82.63

Female Female Female

Landmark-I [7] 99.16 95.00 98.75 94.26 98.96 94.49

Landmark-II [44] 92.04 82.28 94.69 82.85 95.92 86.98

StyleGAN [1] 93.33 80.08 92.92 83.06 92.92 82.76

MIPGAN-I 97.76 92.27 96.94 91.59 96.94 91.44

MIPGAN-II 95.71 90.72 95.31 89.85 95.71 89.58

Combined Combined Combined

Landmark-I [7] 97.16 90.19 95.96 90.14 95.64 89.55

Landmark-II [44] 78.42 64.20 78.58 61.85 85.11 71.36

StyleGAN [1] 85.12 68.61 86.72 71.69 86.44 71.09

MIPGAN-I 95.68 87.30 94.64 85.55 94.68 85.45

MIPGAN-II 95.12 86.05 94.25 84.23 94.17 83.75

TABLE 5: Quantitative evaluation of vulnerability of LCNN-29 [51] FRS from various morph generation approaches.
Note that, since FNMR = 0 @ FMR = 0.1% for LCNN-29 [51] following Eq. 12 and 13, the value of RMMR is equal to
MMPMR/FMMPMR. Therefore, we have not entered RMMR separately in the Table above.

RMMR(τ)FMMPMR =1 + (FMMPMR(τ))

− [1− FNMR(τ)]
(13)

Where, FNMR indicates the False Reject Rate (FNMR) of
the FRS under consideration obtained at the threshold τ . In
this work, τ represents the value corresponding to FMR =
0.1%. Since we have evaluated 5 different FRS systems, we
have computed FNMR corresponding to these FRS to calcu-
late the RMMR. Note that, in Equation 12 and 13 if FNMR
= 0 then RMMR corresponds to MMPMR/FMMPMR.

The obtained success rate, or alternatively the vulner-
ability of FRS is provided in Table 1, 2, 3, 4 and 5 corre-
sponding to to Cognitec [30], VGGFace [49], Arcface [31],
Neurotechnology (Version 10) [50] and LCNN-29 [51] re-
spectively. The vulnerability analysis is carried out on 5 dif-
ferent morph generation methods that include facial land-
marks (Landmarks-I) with image smoothing as the post-
processing operation [7], Facial landmarks (Landmarks-II)
with automatic image retouching and colour equalisation
[44], existing GAN based face morphing method based on
StyleGAN [1] and proposed MIPGAN variants (MIPGAN-I
and MIPGAN-II). Based on the obtained results, the follow-
ing are the concrete observations:
• The FNMR corresponding to five different FRS is equal

to 0. Therefore, the value of the RMMR is equal to
MMPMR or FMMPMR. This indicates that the FRS
systems are accurate on our face datasets employed in
this work.

• Among the five FRS, the highest vulnerability is noted
for Arcface [31], which is vulnerable to all five kinds of
face morphing attack methods.

• Among COTS FRS, the Cognitec FRS indicates a higher
vulnerability on all five types of face morphing attack
methods compared to Neurotechnology FRS.

• Among five different morph generation methods,
Landmark-I indicates the highest vulnerability on all
five other FRS.

• The proposed face morphing methods MIPGAN-I and
MIPGAN-II consistently indicate the highest vulnera-
bility, when compared to the existing method based
on StyleGAN [1]. This indicates the high quality of
morphs generated using the proposed MIPGAN-I and
MIPGAN-II methods.

• The proposed MIPGAN-I and MIPGAN-II methods
also indicate a higher vulnerability than the Landmark-
II technique for morph generation with four different
FRS.

• Among the two different metrics (MMPMR and
FMMPMR), the proposed FMMPMR indicates a lower
vulnerability than MMPMR consistently as FMMPMR
imposes a strict selection of attack images, unlike
MMPMR.

• MIPGAN-I based morphed images show a marginally
better performance in attacking FRS than images gen-
erated by MIPGAN-II.

3.3 Perceptual Image Quality Analysis
This section presents quantitative results of the proposed
morphed image generation techniques using the perceptual
image quality metrics PSNR and SSIM. Both of these metrics
are computed based on the reference image. Morphed face
images are generated based on parent face images from two
contributory data subjects. Therefore, we used the parent
face images from both contributory data subjects as the
reference image against which the given morphed image is
assessed and we average the obtained image quality scores
for both parent images. Table 6 indicates the quantitative
results of both PSNR and SSIM on four different types of
face morph generation mechanism in the digital format.
Based on the obtained results, it can be observed that:
• There is little deviation in the perceptual image quality

metrics computed on all four different types of face
morph generation mechanisms.
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Fig. 6: Box plots of PSNR values computed from different
face morph generation methods (digital version)
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Fig. 7: Box plots of SSIM values computed from different
face morph generation methods (digital version)

• The proposed MIPGAN-I and MIPGAN-II methods
indicate a slightly better image quality when compared
to the StyleGAN [1] based face morphing method.

• The proposed MIPGAN-I and facial landmarks-based
methods [44] indicate a similar image quality.

• Figure 6 and 7 indicate the box plots of the PSNR and
SSIM quality scores. These results further indicate that
the perceptual quality of the proposed MIPGAN-I and
MIPGAN-II is superior to the existing state-of-the-art
method based on StyleGAN [1].

3.4 Human Observer Analysis

In this section, we discuss the quantitative detection perfor-
mance of human observations regarding morphed face im-
ages, which are generated using MIPGAN-I and MIPGAN-
II. To this extent, we have designed and developed a web-
portal to evaluate the human morph detection performance

Morph generation Methods PSNR SSIM

Landmark-I [7] 21.1111± 0.0415 0.7609±0.0009

Landmark-II [44] 20.2737±0.0523 0.7363±0.0010

StyleGAN [1] 20.1347±0.0383 0.7199±0.0008

MIPGAN-I 21.0133±0.0409 0.7573±0.0008

MIPGAN-II 20.8306±0.0409 0.7586±0.0008

TABLE 6: Morph image quality analysis using PSNR and
SSIM with 95% confidence interval

reflecting both single image-based morphing attack detec-
tion scenario (S-MAD) and differential morphing attack
detection scenario (D-MAD). We have used only digital
samples of both bona fide and morphed face images as
the proposed MIPGAN is used to generate the images in
the digital domain. Figure 8 (a) shows the screenshot of
the web-portal for S-MAD in which the human observer
needs to decide whether the displayed image is a morphed
face image or a bona fide image by looking at one single
image at a time. Correspondingly, Figure 9 (a) presents
the screenshot for D-MAD experiment where the observer
needs to detect whether the unknown image is morphed
given a trusted bona fide image as a reference. We have
selected a total of 90 images where 15 images are from each
group corresponding to bona fide, two different types of
facial landmarks based morphing such as Landmarks-I [7]
and Landmarks-II [44], StyleGAN [1] based face morph-
ing, MIPGAN-I and MIPGAN-II based face morphing. To
make the testing robust, all 90 chosen images correspond to
unique data subjects and there is no repetition of data sub-
jects. To avoid gender bias by participants, we have selected
a near equal distribution of male and female data subjects
in each group. We have chosen 90 images considering the
time constraints required to assess these images for human
observers. It was important that observers do not loose focus
while conducting the detection experiments.

Figure 8 (b) shows the quantitative results of S-MAD ob-
tained from 56 human observers, including 14 experienced
and 42 inexperienced observers. The experienced observers’
group consists of researchers working in face morphing
attack detection and as ID expert’s in border control, while
the non-experienced group consists of students and other
computer science professionals. As noticed from the Figure
8 (b) following are the main observations:

• Detection performance of the bona fide images indi-
cates better detection performance by both experienced
and non-experienced group when compared to the
morphed face image. The experienced group indicates
the detection performance with an accuracy of 97.14%,
while the non-experienced group indicates the detec-
tion performance with an accuracy of 79.21%.

• Human observers with experience in face morphing
demonstrate higher detection accuracy on four different
face morph generation mechanisms than the inexperi-
enced group.

• Among the four different morphing types, the ex-
perienced group indicates that the detection of the
landmarks-based morphing is challenging compared to
other morphing mechanisms (deep learning-based).

• Human observers with no experience in face morphing
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(a) (b)

Fig. 8: (a)Example of screen shot used for human observer study (b) Quantitative results

(a) (b)

Fig. 9: (a)Example of screen shot used for differential human observer study (b) Quantitative results

LossID−Diff LossIdentity LossMS−SSIM LossPerceptual

MIPGAN-I MIPGAN-II

FMMPMR MMPMR FMMPMR MMPMR

Cognitec ArcFace Cognitec ArcFace Cognitec ArcFace Cognitec ArcFace

5 3 3 3 81.82 75.87 90.69 93.47 77.83 71.98 90.1 91.18

3 5 3 3 78.07 62.15 89.17 83.77 78.39 64.51 90.04 82.54

3 3 5 3 80.82 73.33 91.81 92.66 78.73 71.79 89.58 90.55

3 3 3 5 21.37 47.85 44.18 71.95 11.92 33.12 29.47 59.56

3 3 3 3 84.65 85.94 94.36 94.45 81.59 86.24 92.93 94.21

TABLE 7: Vulnerability - Ablation study on the proposed loss function. Here, 3 indicates the selected and 5 indicates the
not selected loss function in the ablation study
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are marginally good in detecting the landmarks-based
face morph images compared to other types of face
morphing techniques. MIPGAN-I exhibits more chal-
lenging morph images to detect as compared to other
morph generation methods.

• Based on the obtained results, it can be noted that
the human observers with good experience in face
morphing can detect morphed images with an accuracy
of 88.25% while the human observer with no knowl-
edge of face morphing shows the challenge to detect
the morphed face images with a detection accuracy of
64.31%.

• The overall results from 56 human observers indicate
that detecting morphed face images is challenging. Fur-
ther, it is also interesting to note that detecting different
face morphing types is also challenging.

For the quantitative results of D-MAD, 5 experienced
observers and 10 inexperienced observers have participated.
As shown in Figure 9 (b), following observations are illus-
trated:
• In the scenario of D-MAD, the group with relevant

experiences achieved an overall 86% accuracy, which is
better than 81% for the inexperienced group. However,
this difference is much less than the difference in S-
MAD, which means that the reference image can help
inexperienced observers to identify the morphs.

• Morphs generated by Landmark-II present significant
challenge than other morph generation mechanisms
in D-MAD. This may be attributed to a more nat-
ural skin texture appearance (comparing with GAN-
based mechanisms) and fewer artefacts (comparing
with Landmark-I) and observers focusing less on its
minor artefacts in the pairwise comparison.

• It is also interesting to see that the performances
of experienced observers on detecting Landmark-II
(80.95% and 72.00%), StyleGAN (90.48% and 88.00%),
MIPGAN-II (90.95% and 86.67%), and bona fide images
(90% and 88.00%) are lower than their performance
in S-MAD. We believe this is because the experienced
observers do not pay critical attention to tolerable dif-
ference between the trusted reference image and the
unknown comparison image.

3.5 Ablation Study
In order to measure the impact of the loss functions in the
proposed approach, we conduct an extensive ablation study.
The proposed loss function combines four different enti-
ties such as: perceptual loss (LossPerceptual), identity loss
(LossIdentity), identity difference (LossID−Diff ) and Multi-
Scale Structural Similarity (MS-SSIM) loss (LossMS−SSIM ).
The main contribution of our work is to use identity in-
formation, which can be considered as a specific high-level
feature, to measure the loss. However, high-level features
also mean that it is hard for the gradient descent algorithm
to ensure a good convergence during the optimisation pro-
cess. Therefore, we have introduced the perceptual loss that
can measure relatively low-level features in addition to MS-
SSIM and identity difference loss to effectively control the
optimisation process to generate a high-quality morphed
image. We perform the ablation study by discarding each

term in the loss function iteratively. We benchmark the
vulnerability using COTS FRS (Cognitec FRS (Version 9.4.2))
and the open-source ArcFace FRS, as the proposed approach
is dedicated to generating high-quality morphed images.

Table 7 indicates the quantitative performance of the
ablation study using a vulnerability analysis for both the
COTS-FRS from Cognitec and for the open-source Arcface
FRS with the proposed MIPGAN-I and MIPGAN-II meth-
ods. The ablation study is carried out on the digital morphed
images generated using both MIPGAN-I and MIPGAN-
II Methods. Figure 10 and 11 shows the qualitative per-
formance of the ablation study on both MIPGAN-I and
MIPGAN-II, respectively. Based on the obtained results, the
following is the main observations:
• Each term in our proposed loss function (see Eq. 10)

contributes to posing a greater challenge to FRS from
the both proposed MIPGAN-I and MIPGAN-II morph
generation framework.

• Among the four other losses that we have used, the
LossPerceptual is critical in improving the proposed
method’s performance. Discarding the perceptual loss
has resulted in a degrading performance in both qual-
itative (see Figure 10 (d) and 11 (d)) and quantitative
results.

• The use of identity loss (LossIdentity) also indicates the
importance of improving the quantitative performance
of the proposed method.

• The LossMS−SSIM also contributes to both qualitative
and quantitative improvements of the morphs gener-
ated by the proposed method.

MIPGAN-IBonafide Bonafide(a) (b) (c) (d)

Fig. 10: Qualitative results of ablation study using pro-
posed MIPGAN-I (a)LossID−Diff (b) LossIdentity (c)
LossMS−SSIM (d) LossPerceptual

MIPGAN-II BonafideBonafide (c)(b)(a) (d)

Fig. 11: Qualitative results of ablation study using pro-
posed MIPGAN-II (a)LossID−Diff (b) LossIdentity (c)
LossMS−SSIM (d) LossPerceptual

3.6 Hyper-parameters Study

This section presents both qualitative and quantitative re-
sults on the selection of hyper-parameters (λ1, λ2, λ3,
and λ4) in the proposed loss function employed in both
MIPGAN-I and MIPGAN-II. Based on the ablation study
reported in Section 3.5, we have noticed that the perceptual
loss is the vital component of our loss function (see Eq. 10)
and the other three terms can be used as constraints during
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the optimisation. Therefore, the first step is to study the gen-
erated morphed face images’ attack strength by increasing
and decreasing the value of λ1. Among the remaining three
terms, we have also noticed from the ablation study that
the identity loss (LossIdentity) is contributing more towards
generating a high-quality morph compared to the other two-
loss functions (lossMS−SSIM , LossID−Diff ). We analyze
the importance of identity loss (LossIdentity) with respect to
the other two loss functions (LossMS−SSIM , LossID−Diff )
by increasing the value of λ3 and/or λ3 and decreas-
ing the value of λ2. Further, we have also noticed from
the ablation study that the loss functions lossMS−SSIM
and LossID−Diff are less important and numerically very
small. Therefore, we did not conduct studies on decreasing
the values of λ3 and λ4. Altogether, we have tested four
different cases of changing the hyper-parameter values to
generate the morphed face images. These generated mor-
phed face images are benchmarked against the proposed
hyper-parameter values through the vulnerability analysis
using both COTS FRS (Cognitec FRS (Version 9.4.2)) and
open-source ArcFace FRS.

MIPGAN-I

(a) (b) (c) (d)Bonafide Bonafide

MIPGAN-II

Bonafide Bonafide
(b) (c) (d)(a)

Fig. 12: Qualitative results of Hyper-parameters study on
both MIPGAN-I and MIPGAN-II (a)λ1 (b) λ2 (c) λ3 (d) λ4

Table 8 shows the qualitative performance and Figure 12
shows the qualitative performance of the hyper-parameter
study. Based on the obtained results, it can be noted that the
increase in the value of λ1 and λ3 shows comparable results
with the proposed weighting schemes. However, based on
our empirical study on hyper-parameters, we noted that:
if we set λ1 and λ2 with equal weights, then, during the
optimisation, the generated morph image will soon become
roughly similar to both contributing subjects. This will
quickly reduce identity loss (LossIdentity) to a minimal
value and loose its importance in the optimisation. Hence,
we set a larger factor to the identity loss compared with
other loss terms measuring high-level features to ensure our
most important constraint term is still effective in the later
stage of optimisation. Further, both λ3 and λ4 can make the
optimisation goal more comprehensive but setting a large
factor will obstruct the convergence. Especially setting high
values to λ4 will end up with an image not similar to both
subjects. Therefore, the selection of the proposed hyper-
parameters confirms the generation of a high-quality mor-
phed image but also aids for effective and comprehensive
optimisation.

3.7 Morph Attack Detection Potential

Considering the success rate of the newly generated dataset,
we naturally choose to evaluate the morphing attack de-
tection performance to also validate the robustness of the
existing MAD mechanisms. Additionally, we investigate
recent works about general face manipulation detection
[54] [55] and some results are shown in the supplementary
material. In this work, we focus on single image based
morphing attack detection (S-MAD) as it perfectly suits our
dataset. MAD has been widely addressed in the literature by
developing the techniques based on both deep learning [56],
[57], [58] [59] [60] and non-deep learning [61] [19] [62] [63]
approaches. Readers can refer to [64] for an exclusive survey
on face MAD. Owing to the recent works detailing the
applicability of Hybrid features [35] and Ensemble features
[36] in detecting morphing attacks, we choose to benchmark
both Hybrid features [35] and Ensemble features [36]. While
the Hybrid features [35] resort to extracting features using
both scale space and color space combined with multiple
classifiers, Ensemble features [36] employ a variety of tex-
tural features in conjunction with a set of classifiers. In
common both approaches evaluate a wide variety of MAD
mechanisms in a holistic manner supported by empirical
results [35], [36]. In addition, the Hybrid features [35] mech-
anisms are also validated against the ongoing NIST FRVT
morph challenge dataset [37] with the best performance in
detecting printed and scanned morph images justifying our
selection of algorithm to benchmark the newly composed
database.

The reporting of MAD performance is following the
ISO/IEC metrics [65] namely the Attack Presentation Clas-
sification Error Rate (APCER (%)) which defines the propor-
tion of attack images (morph images) incorrectly classified
as bona fide images and the Bona fide Presentation Classi-
fication Error Rate (BPCER (%)) in which bona fide images
incorrectly classified as attack images are counted [65] along
with the Detection Equal Error Rate (D-EER (%)). To evalu-
ate the generated morphed face image’s attack potential, we
have sub-divided the newly generated database into two
sets for training and testing that consists of independent
data subjects with no overlap between the splits. The train-
ing set includes 690 bona fide images and 1190 morphed
images. The testing set consists of 580 bona fide and 1310
morphed images. To effectively evaluate the performance of
the MAD reflecting a real-life scenario, we report the results
on both intra (training and testing dataset from the same
morph generation approach) and inter (training on one
type of morphing techniques and testing on another type
of morphing techniques) evaluation of MAD mechanisms.
Extensive experiments are performed on digital, print-scan
and print-scan with compression data types to provide an
in-depth analysis of the S-MAD performance. Table 9, 10,
11, 12 and 13 presents the quantitative results of MAD
mechanisms on morph generation methods together with
the SOTA morph generation techniques. Based on the results
obtained from the intra-dataset experiments, we make some
concrete observations as listed below:

• The intra-dataset evaluation indicates that the mor-
phing attacks are detected with a good success rate
irrespective of the type of generation.
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Proposed Morph Generators Case-study
Hyper-parameters weights MMPMR (%) FMMPMR (%)

λ1 λ2 λ3 λ4 Cognitec ArcFace Cognitec ArcFace

MIPGAN -I

1 0.0004 10 1 1 93.94 93.49 84.39 75.61

2 0.0001 10 1 1 92.66 91.15 79.66 72.94

3 0.0002 1 10 1 94.17 91.9 84.34 75.66

4 0.0002 1 1 10 83.16 82.14 67.19 59.46

Proposed weights 0.0002 10 1 1 94.36 94.45 84.65 85.94

MIPGAN -II

1 0.0004 10 1 1 91.36 91.98 81.29 76.18

2 0.0001 10 1 1 91.69 88.29 73.91 68.16

3 0.0002 1 10 1 90.63 90.91 80.76 75.87

4 0.0002 1 1 10 87.22 74.33 57.43 51.91

Proposed weights 0.0002 10 1 1 92.93 94.21 81.59 86.94

TABLE 8: Quantitative results of hyper-parameters study

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

Landmarks-I [7]

Ensemble Features [36] 0 0 0 2.35 1.45 0.96 2.58 1.71 1.54
Landmarks-I [7] Hybrid Features [35] 0.16 0 0 1.85 0.85 0.34 2.25 1.12 0.51

Landmarks-II [44]
Ensemble Features [36] 49.55 92.22 88.85 41.93 81.45 76.25 42.15 83.88 77.64

Hybrid Features [35] 49.16 99.31 97.59 44.17 86.48 80.24 46.49 88.38 81.95

StyleGAN [1]
Ensemble Features [36] 0.22 0 0 13.36 27.44 16.46 14.77 27.27 19.38

Hybrid Features [35] 0.16 0 0 44.96 83.7 75.47 9.44 14.57 9.14

MIPGAN-I
Ensemble Features [36] 39.16 73.14 65.35 9.45 14.57 8.74 8.95 15.26 9.26

Hybrid Features [35] 46.82 86.62 81.64 12.32 19.72 13.2 9.74 15.95 8.91

MIPGAN-II
Ensemble Features [36] 34.13 70.49 61.57 5.32 6.68 2.57 6.72 8.16 4.14

Hybrid Features [35] 44.96 83.7 75.47 5.9 8.42 3.23 5.67 6.18 2.91

TABLE 9: Quantitative performance of MAD - Training- Landmarks-I [7]

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

Landmarks-II [44]

Landmarks-I [7]
Ensemble Features [36] 48.57 97.77 95.36 24.19 52.48 43.22 21.64 47.51 36.19

Hybrid Features [35] 45.67 96.91 94.16 32.26 77.87 66.55 24.51 50.94 40.65

Ensemble Features [36] 3.62 2.22 0.68 6.32 7.97 2.42 5.57 6.41 2.42
Landmarks-II [44] Hybrid Features [35] 1.53 0.17 0 5.21 5.19 3.14 5.37 5.71 3.46

StyleGAN [1]
Ensemble Features [36] 29.67 61.92 52.48 27.18 61.57 50.6 29.18 62.14 52.48

Hybrid Features [35] 34.76 74.44 62.95 34.8 67.23 58.14 23.17 49.22 38.25

MIPGAN-I
Ensemble Features [36] 30.23 65.35 53.17 43.92 87.65 79.24 44.24 89.23 82.33

Hybrid Features [35] 46.29 84.04 77.01 34.16 71.18 64.66 35.5 76.84 65.52

MIPGAN-II
Ensemble Features [36] 27.13 58.83 45.45 33.57 77.35 65.52 40.46 84.9 75.47

Hybrid Features [35] 46.82 83.53 75.81 35.91 77.18 65.24 36.5 79.24 68.78

TABLE 10: Quantitative performance of MAD - Training- Landmarks-II [44]

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

StyleGAN [1]

Landmarks-I [7]
Ensemble Features [36] 0.32 0 0 16.6 28.13 19.89 13.89 22.12 17.66

Hybrid Features [35] 0.42 0 0 15.26 26.41 17.66 14.37 22.81 16.92

Landmarks-II [44]
Ensemble Features [36] 44.72 89.53 80.61 38.31 78.5 69.15 38.84 83.7 74.17

Hybrid Features [35] 45.65 90.22 84.56 34.18 81.95 70.53 32.93 78.5 64.12

Ensemble Features [36] 0 0 0 0 0 0 0 0 0
StyleGAN [1] Hybrid Features [35] 0 0 0 0 0 0 0 0 0

MIPGAN-I
Ensemble Features [36] 39.97 75.98 68.78 20.21 42.14 33.44 20.73 45.28 36.53

Hybrid Features [35] 46.45 86.79 77.87 29.34 59.19 47.51 24.87 51.62 41.18

MIPGAN-II
Ensemble Features [36] 39.93 73.58 66.89 15.78 28.14 19.38 13.72 28.98 16.63

Hybrid Features [35] 44.72 82.16 73.75 19.36 43.22 28.64 16.98 32.93 23.84

TABLE 11: Quantitative performance of MAD - Training- StyleGAN [1]



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 16

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compression

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

MIPGAN-I

Landmarks-I [7]
Ensemble Features [36] 23.66 51.45 39.96 5.82 7.22 2.92 6.17 7.54 3.94

Hybrid Features [35] 47.15 87.16 79.41 6.5 8.23 4.15 7.91 10.29 6.34

Landmarks-II [44]
Ensemble Features [36] 35.38 82.33 68.95 41.67 95.14 83.53 43.68 96.01 85.44

Hybrid Features [35] 28.62 75.64 61.4 44.38 95.66 85.78 38.18 90.46 78.16

StyleGAN [1]
Ensemble Features [36] 17.72 37.22 26.58 12.19 26.24 15.26 11.82 24.69 14.23

Hybrid Features [35] 31.16 64.32 53.85 11.99 19.2 13.72 9.93 18.15 9.94

Ensemble Features [36] 0 0 0 0 0 0 0 0 0
MIPGAN-I Hybrid Features [35] 0 0 0 0 0 0 0 0 0

MIPGAN-II
Ensemble Features [36] 2.15 0.17 0 0.68 0 0 0.64 0 0

Hybrid Features [35] 1.36 0.34 0 0.86 0 0 0.8461 0 0

TABLE 12: Quantitative performance of MAD - Training- MIPGAN-I

Morph Generation Type: Training Morph Generation Type: Testing MAD Algorithms

Digital Print-scan Print-scan with compres-
sion

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

D-EER(%)
BPCER @ APCER =

5% 10% 5% 10% 5% 10%

MIPGAN-II

Landmarks-I [7]
Ensemble Features [36] 13.08 29.15 15.78 4.28 3.94 2.22 4.28 3.61 2.22

Hybrid Features [35] 40.14 77.7 67.23 5.49 5.48 2.4 7.21 10.98 4.15

Landmarks-II [44]
Ensemble Features [36] 32.37 84.9 70.32 39.2 90.12 82.32 44.17 95.49 88.73

Hybrid Features [35] 23.88 63.8 45.62 40.22 88.9 79.2 38.96 94.28 82.14

StyleGAN [1]
Ensemble Features [36] 12.51 22.29 15.78 13.72 29.67 18.18 14.25 31.73 20.41

Hybrid Features [35] 24.7 49.74 41.85 12.87 26.58 14.75 11.86 26.92 15.09

MIPGAN-I
Ensemble Features [36] 1.56 0.68 0.34 2.14 1.22 0.53 2.57 0.85 0.34

Hybrid Features [35] 2.27 0.85 0.17 4.79 4.8 3.43 4.3 3.6 2.22

Ensemble Features [36] 0 0 0 0 0 0 0 0 0
MIPGAN-II Hybrid Features [35] 0 0 0 0 0 0 0 0 0

TABLE 13: Quantitative performance of MAD - Training- MIPGAN-II

Contributing Subject 1 Contributing Subject 2Morph Contributing Subject 2Contributing Subject 1 Morph
(b)

(a)
Contributing Subject 1 Contributing Subject 1Contributing Subject 2 Contributing Subject 2Morph Morph

Fig. 13: Examples of morphed images that failed to attack FRS (a) morphed face images generated using proposed
MIPGAN-I (b) morphed face images generated using proposed MIPGAN-II

• In general, the attack detection success rate is high with
digital data when compared to print-scan and print-
scan compression.

• Among the different types of morph generation tech-
niques, the Landmark-II based morph generation
shows the highest error rates. The attack images created
using StyleGAN and proposed MIPGAN can be effi-
ciently detected using both the employed approaches
with high accuracy. This can be attributed to the noises
that are synthesised using GANs due to the computa-
tional modifications performed on the latent space in
GAN-based morph generation methods.

In the following, we discuss the important observations
based on the results obtained from inter-dataset MAD anal-
ysis:

• The performance of the MAD techniques are degraded
on all five different case studies as indicated in the Table
9, 10, 11, 12 and 13.

• Training MAD algorithms with one type of landmarks-
based method did not show the improvement in detec-
tion performance of another kind of landmarks-based
morph generation method.

• When MAD mechanisms are trained using the
Landmarks-I [7] method, the degraded performance is
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noted for all other morph generation methods except
for the StyleGAN [1] based approach. This fact is also
noted when we train the MAD techniques using Style-
GAN [1] generated samples and test it with Landmarks-
I [7] samples. Thus, the StyleGAN [1] based morph gen-
eration is easy to detect even when MAD mechanisms
are not trained using the images from same morph
generation scheme.

• When MAD algorithms are trained using Landmarks-
II [44] samples, MAD algorithms indicate degraded
performance on all other morph generation techniques.

• When MAD mechanisms are trained using the pro-
posed MIPGAN-I generated samples. The MAD mech-
anisms indicate an excellent detection performance on
MIPGAN-II samples. However, the detection perfor-
mance of MAD methods is deceived with other morph
generation techniques.

• It is interesting to note that when MAD mechanisms
are trained using MIPGAN-I/MIPGAN-II, higher de-
tection accuracy can be observed for print-scan and
print-scan with compression data when compared to
digital morph data. A possible reason is that the noise
generated together with the morphed images using the
proposed MIPGAN-I/MIPGAN-II can approximate the
generated noise resulting from the print-scan and print-
scan compression process.

• Based on the results of the inter-database MAD anal-
ysis, the detection of Landmarks-II [44] samples are
challenging.

4 LIMITATIONS OF CURRENT WORK AND POTEN-
TIAL FUTURE WORKS

Despite the work presenting a new and robust approach to
generate the morph attacks which is empirically evaluated
using COTS FRS, this work has a few noted limitations. In
the current scope of work, we evaluate the impact of print
and scan (re-digitizing) using one printer reflecting a real-
istic scenario. The MAD mechanism employed in this work
has not been investigated with a wide range of printers and
scanners that may impact the MAD performance. While we
assert that the MAD performance may not vary extremely,
when tested with a wider combination of printers and
scanners, that empirical evaluation is yet to be conducted
in future works.

A second aspect is that the proposed approach needs
pre-selection of ethnicity for generating stronger attacks.
Figure 13 shows the example morphed face images gen-
erated using the proposed method using MIPGAN-I and
MIPGAN-II that fail to get verified to contributing subjects
when ethnicity pre-selection is not performed [7]. We notice
that the selection of contributing subjects plays an impor-
tant role with the proposed method to generate stronger
attacks with MIPGAN. It is our assertion that the selection
of contributing subjects with similar geometric structures
(particularly ethnicity and age) can improve the perfor-
mance of the proposed system, but that aspect needs further
investigation.

5 CONCLUSION

Addressing the limitations of generating the robust mor-
phing attacks using GAN, we have proposed a new archi-
tecture for generating face morphed images in this work.
The proposed approach (MIPGAN with two variants) for
devising robust morphing attacks uses identity prior driven
GAN with a customized loss exploiting perceptual quality
and identity factors to generate realistic images that can
strongly threaten FRS. In order to validate the attack po-
tential of the proposed morph generation method, we have
created a new dataset consisting of 30, 000 morphed images
and 15, 240 bona fide images. Both COTS and deep learning
based FRS was evaluated empirically to measure the success
rate of the new approach and vulnerability was reported
indicating the applicability of the new approach and newly
generated database. In a similar direction, the dataset is also
validated for detection performance by studying two state-
of-art MAD mechanisms. Despite the high attack detection
success rate by employed MAD, we note that the morphed
images generated by MIPGAN can severely threaten FRS in
a present state without MAD in FRS.
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