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Abstract: With the complex structure of planktonic species and an immense amount of data
captured from autonomous underwater vehicles (AUVs), a large burden is placed on the domain
experts for plankton taxa labeling. At the same time, the most prominent machine learning
(ML) methods for classification rely heavily on a massive amount of labeled datasets to create
and train neural network classifier models that perform their tasks accurately. Active Learning
(AL) is an ML paradigm that reduces this manual effort by proposing algorithms that support
the construction of the training datasets, thus enlarging the sets while minimizing human
involvement. To build the training set, AL methods apply heuristics to select a subset of images,
i.e., samples, from the entire data. The selected samples that capture the common statistical
patterns or feature space are likely to include all the information needed for the training and the
learning processes. In addition, the algorithm should prioritize samples that are likely belonging
to multiple classes, i.e., having close inter-class boundaries, and might lead to model confusion.
Many of the current AL approaches fail to incorporate both types of samples representing the
statistical pattern and the samples in which the particular machine learning model is uncertain
about.

In this paper, we extend our framework which addresses these challenges with an augmentation
module to increase the robustness of the model and ensure its adaptability to the planktonic
domain. We compare the framework with existing hybrid AL techniques and test an adaption of
our extended framework on the planktonic domain. The empirical results from the experiments
exerted in this paper confirm higher accuracy achieved by the new extended framework.
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(https://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. INTRODUCTION

the manual plankton taxa labeling with a constrained

budget that requires domain expertise, i.e., biologists, to
Planktonic species are critically important to the oceanic & d P &

ecological structure as they are the basis of the aquatic
food web. Hence, by studying temporal variations in
plankton taxa distributions, one can achieve a proxy for
the development of the oceanic ecosystems.

Progress in the development of autonomous underwater
vehicles (AUV) and robotic visual sensing enables the
possibility of capturing large amounts of planktonic im-
age data. Further, Convolutional Neural Network (CNN)
models have proved competent at solving computer vi-
sion problems in the supervised Machine Learning (ML)
paradigm. Embedding CNN models into AUV enables
the identification of plankton taxa distributions in-situ.
However, modern CNNs require an immense amount of
pre-classified labeled input in order to achieve satisfac-
tory classification performance. Since plankton biomass
appears in many different species, forms, and stages de-
pending on the geographical environment and season, pre-
classified training data has to be constructed for each
different geographical environment, season, and image-
acquiring system. Consequently, much effort is needed in

identify the complex structure of planktonic organisms.

Active Learning (AL) is a semi-supervised machine learn-
ing approach that aims at mitigating this burden placed
on domain experts. The key idea of AL is to capture the
data distribution of the full dataset with only a fraction
of the samples. This is possible from the fact that not all
images bring equal amounts of information to the image
classifier (Vodrahalli et al., 2018).

Existing AL models in the literature can be classified based
on the unlabeled data readiness and the sampling pool
chosen. In other words, when data arrives in streams,
the AL model is considered as a stream-based model,
(Krishnamurthy, 2002), while it is pool-based otherwise
(Lewis and Gale, 1994). Further, the AL models’ mode
of sampling varies between batch-mode (Ash et al., 2019)
or single-mode (Lewis and Gale, 1994) depending on the
number of data samples presented and chosen at each
labeling round. With the recent developments of CNNs,
batch-mode sampling has become increasingly relevant as
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it is not computationally feasible to update a large network
with single data points.

The most important distinction between the different
sampling modes aforementioned is in their prioritization
between informative and representative samples. While
the former aims to prioritize samples that are at the
proximity of the inter-class decision boundaries, the latter
exploits the feature space of the data points to best capture
the statistical patterns of the data. There exists a broad
literature on Active Learning. The reader can refer to the
survey presented in (Settles, 2009), and more recently,
the survey on deep learning version of AL techniques is
elaborated in (Ren et al., 2020).

The promise of removing the bottleneck of manual labeling
in machine learning pipelines in addition to progress in
the development of deep learning models has brought a
surge in AL research. AL has been proven to be an efficient
method of querying informative samples from an unlabeled
pool of data points (Gal et al., 2017; Yoo and Kweon,
2019). Further, other approaches focusing on exploiting
the latent-space structure of unlabeled samples have also
been successfully proposed (Sener and Savarese, 2018).
Furthermore, hybrid methods combining the informative
and representative metric have become increasingly pop-
ular among researchers over the later years (Hsu and Lin,
2015). Still, much of the existing AL methods lack efficient
utilization of the latent-space structure and often suffer
from high correlation among queried samples. Moreover,
by only incorporating model-based query methods, many
existing AL approaches lack transferability to other deep
learning models. In (Vodrahalli et al., 2018), the authors
investigated how different datasets had unequal amounts
of information distributed among the images. In some
cases a few samples were enough to represent the full
distribution of the dataset yet in other cases this proved
not to be true. The success of active learning often depends
on the information distribution of the dataset; hence, it is
rarely possible to rely on either representative or informa-
tive sampling.

To address this issue, we proposed in Haug et al. (2021)
a combined representative and informative active learning
(CIRAL) approach that incorporates the full feature space
in the early cycles of querying and puts more weight
on samples at the proximity of the inter-class decision
boundaries at the later cycles. We compared the novel
hybrid framework with informative and representative ap-
proaches. We proved that this hybridization outperforms
the classical AL approaches under the two categories in
terms of the overall model accuracy on the CIFAR dataset
with minimal possible data presented to the model. The
CIFAR dataset was the most utilized in the literature as
a benchmark for performance comparison and as a proof
of concept.

The aim behind the proposed hybridization is threefold:
1) the model will have a good initialization from incor-
porating the full feature space in the early rounds of
querying and training. 2) Adding diversity sampling to the
queried uncertainty samples prevents redundant labeling
representation from the same area of uncertainty. 3) As the
softmax layer on neural networks has shown to be a bad
proxy for the uncertainty of neural networks (Ren et al.,

2020), an adversarial active learning method is employed.
This method has previously shown good results (Ducoffe
and Precioso, 2018), however, it was not employed with
sub-modular heuristics as is done in this work.

The contributions in this paper are twofold:

e First, we compare the performance of the novel hybrid
framework with other well-known hybrid methods
and show that it achieves better accuracy.

e Second, we extend the originally proposed framework
with a data augmentation module to increase the
robustness of the model and to ensure the adapt-
ability of the proposed semi-supervised method to
the plankton domain with the goal to minimize the
burden on domain experts.

The experiments in this paper are conducted on subsets
of the plankton dataset from National Data Science Bowl
(kag, 2015) and the CIFAR dataset (Krizhevsky, 2009).
The ResNet-18 architecture is employed as the learning
network model (He et al., 2015) for the CIFAR, whereas
a custom network is made for the plankton dataset.We
further created a pre-processing module to adapt the
images to the deep learning models employed in this paper
and speed up the convergence of the training process.
Pre-processing operations include normalization of pixel
values and resizing of input images to a fixed dimension.
Further, as opposed to many other AL studies (Mittal
et al., 2019), we employ regularization techniques in order
to enhance the classification performance of the AL models
and improve their robustness. More specifically, we employ
a random horizontal and vertical flip and a random affine
transformation.

The rest of the paper is organized as follows. Section
2 introduces some preliminary knowledge related to this
paper. Section 3 presents related work in the area of AL,
emphasizing hybrid and plankton-specific AL methods in
particular. Section 4 explains our proposed algorithmic
framework. Section 5 presents the experimental results.
In Section 6, a conclusion is made on the contributions of
this paper and also future directions are presented.

2. BACKGROUND

Active Learning is a type of semi-supervised learning that
provides classification accuracy competitive with fully-
supervised learning approaches while having the benefits
of minimal human interaction from unsupervised learning.
The main principle is to iteratively pick subsets from the
available unlabeled data in order to build a training set for
a machine learning model. As described in the previous
section, the query methods of active learning can be
primarily categorized into methods that exploit the feature
of the data and methods that search for samples the
machine learning model finds informative. A way of finding
the latter has often been done by prioritizing samples the
learning model is uncertain about, e.g. samples in the
proximity of the inter-class decision boundaries.

A large number of methods for finding uncertainty samples
have been proposed in recent years due to their simplicity
and comprehensiveness. Many of these have been based
on the softmax layers of CNNs as a proxy for the net-
works’ uncertainty. Such an approach was proposed by
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Wang et al. (2017), who in addition pseudo-labeled high
confidence samples for additional robustness. However,
research has shown that these softmax probabilities work
as a bad proxy for the confidence of neural networks (Ren
et al., 2020), and will often lead to worse performance than
random benchmark sampling. Consequently, other ways of
measuring the uncertainty of neural networks have been
proposed in the later years. Gal et al. (2017) proposed a
way of creating an ensemble of network architectures by
using Monte Carlo dropout and measure the disagreement
in prediction among the networks. A conceptually equal
method has also been studied in (Beluch et al., 2018),
where the authors employed an ensemble of different CNNs
instead of the Monte Carlo dropout. A drawback with the
latter ensemble method is the computational effort that
is increasing with the dimensions of the learning network
and the number of unlabeled samples.

A different approach from using the classification results
of the learning networks has been proposed by Tong and
Koller (2001) to calculate the distance to the inter-class
decision boundary. Samples lying close to the decision
boundary are considered to be informative for the machine
learning model as they can help to fine-tune the model
parameters. However, as it is feasible for support vector
machines (SVM), it is a more complex operation for CNNs.
Nevertheless, to transfer this approach to CNNs, Ducoffe
and Precioso (2018) proposed a way of measuring the
distance by making adversarial attacks and find which
of the images change the classification. By ranking the
size of the perturbation needed to change the sample
classification, one can get a proxy on how far a given
sample is from the decision boundary. This method looks
at the input to the network rather than the soft-max
layer as done in (Wang et al., 2017). However, both of
the latter methods query the topmost uncertain images.
As can be seen in figure 1 (b) and also stated in (Sener
and Savarese, 2018), uncertainty sampling tends to lead
to high correlation among the samples leading to a lack of
utilization of the data distribution and also the labeling of
redundant samples.

From figure 1 (a) one can observe that by employing a
representative metric to exploit the full feature space of
the available data points, this problem can be overcome.
A large number of methods for finding such representative
samples have been investigated over the later years. They
can be roughly divided into categories that try to exploit
the feature space and others that aim to maximize some
performance metric. An example of the latter is, as pro-
posed in (Pinsler et al., 2021), a method that approximates
the complete data posterior of model parameters that pro-
duce diverse batches. By selecting subsamples, the method
tries to lower the expected value of the loss function. An
example of the former is, as proposed in (Geifman and El-
Yaniv, 2017), a diversity method that performs a farthest-
first traversal to cover the feature space. A similar example
is shown in (Sener and Savarese, 2018) proposing a core
set method to find clusters based on the min-max facility
location problem and then optimizing these clusters with
mixed-integer programming.

(b) Proposed points resulting from the informative metric

Fig. 1. T-SNE plot of 200 samples queried with a representative
metric and an informative metric. The different colored data
points represent the images of the 10 different classes from the
CIFAR dataset. With the T-SNE algorithm (van der Maaten
and Hinton, 2008), the images are projected onto the two-
dimensional feature space.

3. RELATED WORK

Two areas of active learning are related to our work.
Firstly, other methods of hybrid active learning have been
increasingly popular among researchers in later years.
Kaushal et al. (2018) proposed a work of diversified subset
selection that utilizes methods of least confidence, smallest
margin, and highest entropy from the softmax probability
distribution to find informative samples. To incorporate
representative samples they used, similar to this work,
min-max facility location in addition to disparity mini-
mum. A similar approach was proposed by Zhdanov (2019)
to increase diversity in mini-batch Active Learning. Their
experiments reported that diversity-enhancing approaches
outperformed a baseline of uncertainty sampling methods.
They combined informative sampling with representative
sampling by using the smallest margin sampling from the
softmax layer as uncertainty metric and the k-means algo-
rithm as a representative metric. In (Huang et al., 2018),
the authors aim to fine-tune pre-trained networks with a
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Fig. 2. Visualization of the plankton classes show how the Chaetog-
nath Sagitta class is separated into two groups based on its
orientation. The plankton images are projected onto the two-
dimensional feature space using the T-SNE algorithm (van der
Maaten and Hinton, 2008)

combination of informative and representative samples.
Further, by employing a trade-off parameter, they can
let the representative samples have high influence in the
beginning, and gradually put more weight on informative
samples.

Moreover, instead of using the output layer probabilities
directly, Ash et al. (2019) computed a gradient of the
predicted category with respect to the parameters of the
last layer in the network. To measure the uncertainty of
the model, they used this gradients magnitude. Further,
to find diverse samples, they collected a batch of samples
with the k-means++ algorithm (Arthur and Vassilvitskii,
2006) to find gradients that span a diverse set of directions.
Furthermore, another way of combining informative and
representative sampling was proposed by Hsu and Lin
(2015). Their method, inspired by the multi-armed bandit
problem, would for each iteration explore the performance
of different sampling methods and exploit the one with the
best performance.

Another field of related work is plankton-specific active
learning. Luo et al. (2005) proposed an AL method using
multi-class support vector machines (SVM). They used
least confidence sampling and margin sampling based on
the SVMs decision function to decide which samples to
query. Following the developments of CNNs, Bochinski
et al. (2018) proposed a deep active learning approach con-
ceptually similar to the aforementioned method by Wang
et al. (2017). Another approach for minimizing human
labeling effort in plankton taxa labeling was proposed by
Pastore et al. (2020). Their method utilized fuzzy k-means
clustering on extracted features, and a supervised model
trained using the k-means clustering labels. Further, they
also employed an SVM to do anomaly detection and detect
unseen species of plankton.

The above-mentioned related work on hybrid AL is often
reliant on the output layer probability distribution to work
as an uncertainty metric. Additionally, a majority of the
proposed hybrid approaches make no use of modern data
augmentation, making it difficult to assess their validity
on real applications. Motivated by this, we employ in this
paper a data augmentation module as an extension to our
original work in Haug et al. (2021) and assess the applica-

bility of the framework to the plankton domain. Further,
we compare the results of the novel framework with other
well-known hybrid AL methods on both datasets the CI-
FAR and the plankton datasets.

4. PROPOSED FRAMEWORK

The framework introduced in this work builds on the
active learning hybridization proposed in Haug et al.
(2021). Figure 3 illustrates how the informative and a
representative metric are combined. A data augmentation
is added to this framework to increase the robustness of
the model and enhance the performance of the informative
metric. The reason behind extending the framework with
this module is that captured planktonic species have
complex structures compared to other datasets; moreover,
we found that planktonic organisms from the same class
but captured with different orientations are usually split
by the models into separate groups as shown by the
visualization tool in figure 2.

The data augmentation module, illustrated by module 8 in
figure 3, consists of two steps. The first step is the flipping
function which randomly generates images horizontally
or vertically flipped with 50% probability. The flipping
function allows the model to be more invariant to 90°image
rotation; The second step is an affine transformation func-
tion that is applied with a rotation angle of 7° and with
a horizontal and vertical translation of 0.1. This step is
used to keep the images center-invariant, thus making the
dataset dynamic rather than static which is particularly
beneficial for tasks with small amounts of labeled data
where overfitting is an issue. This set of augmentation
techniques are summarized as 7 in Algorithm 1.

Figure 1 shows that the batch of samples queried with an
informative metric has a high correlation in some areas;
this suggests that there exists some redundancy among
the queried samples. Based on this inefficiency in sample
querying, a representative metric is integrated into the
active learning framework. This hybridization enables the
algorithm to choose the informative samples that also
best represent the feature space of the unlabeled data.
Moreover, with a trade-off function initially incorporating
all samples, the learning network will gain an overview
of the whole feature space. As the training proceeds and
general decision boundaries are formed, more focus is
put on samples on the inter-class decision boundaries. By
switching focus to these samples, the learning model is able
to fine-tune the decision boundaries to handle examples
that are difficult to classify. As described in algorithm 1,
the number of samples going from the informative metric
to the representative metric is lowering with a rate § each
round, indicating that more of the informative samples are
chosen at the end of the training. After the representative
sampling, a number Q) of samples are queried to a human
expert for labeling. This active learning process continues
until a labeling budget B is exhausted.

As illustrated in figure 3, a neural network is trained on
an augmented labeled pool in each round. For the CIFAR
dataset, the ResNet-18 architecture is employed as the
learning network. However, for the plankton dataset, a
custom network architecture consisting of 3 convolutional
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layers, 2 max-pooling layers, and 2 fully connected layers is
employed to avoid overfitting and increase generalization.

Algorithm 1 CIRAL: Combined informative and rep-

resentative active learning extended with the augmen-

tation module

Require: Unlabeled samples DY

Require: Initially labeled samples D

Require: Query budget B

Require: Batch size

Require: Set of hyper-parameters to train the network
H

Require:

Set of data augmentation techniques T
Require: Trade-off constant K
Require: Trade-off rate § € (0,1)
Ky = Ky
DL = Db
DU = pU
while DE — D} < B do
Ai, = TRAIN(DE H, T)
for x; € DkU do
r; < DEEPFOOL(x;, Ay)
end for
b; +— TRADEOFF(r;, K})
Qr «— MINMax(b;, 8)
Dl€+1 — Dl% U Qx
Dyty +— Di\Qx
Kk+1 — Kk -0
end while

By increasing the labeled pool with queried samples and
updating the parameters of the neural network at each
iteration, the inter-class decision boundaries are changing
for each round. However, as the training proceeds and
the model become more confident, the decision bound-
aries become more static, thus it is becoming increasingly
important to put weight on the samples that are in the
proximity of the boundary rather than samples far away
from it. This is done by filtering out the samples with
the largest distance result from the informative sampling,
illustrated with module 5 in figure 3. To find this distance,
the informative metric employed uses the DEEP-FoOOL
(Moosavi-Dezfooli et al., 2016) algorithm to compute ad-
versarial attacks in order to find a proxy for the distance
to the decision boundary. The DEEP-FOOL algorithm finds
the closest hyperplane for each sample and then pushes the
sample beyond it with a minimal possible perturbation.
By adding the aforementioned data augmentation module
to the framework, the network will improve its decision
boundaries from training on more samples, and resultingly
improve the accuracy of the boundary distance proxy
provided by the informative metric.

Moreover, to find the representative samples in the next
step, the min max facility location problem, well known
from literature and described in (Hochbaum and Shmoys,
1985), is employed. It can be formally described as

.  Ale .
i e i, Al o) 1)

Where A(z;,z;) represents the Euclidean distance be-
tween the data points x; and z;. Further, s' and s° is the
pool of labeled and unlabeled data points, respectively.

The optimization problem in (1) can be understood as
choosing b cluster centers such that the largest distance
from any single point to its nearest cluster center is mini-
mized. As this problem is NP-hard, a sub-optimal solution
is found by a greedy algorithmic approach as described in
(Sener and Savarese, 2018). This method is proven to have
a solution such that

max min A(x;,z;) <2X OPT (2)

i jestus®

is satisfied, where OPT is the optimal solution to the
optimization problem in 1 (Hochbaum and Shmoys, 1985).
As described in our framework, the representative and
informative metrics are combined through a trade-off
function that only passes on the top Kj samples closest to
the decision boundary. Thus, the algorithm will eventually
ignore samples found at large distances away from the
decision boundary. Formally, this trade-off method can be
described as

Q1 = MINMAX(K}, - DEEPFOOL(X)) (3)

Where K} is the trade-off constant and X is the input
from the unlabeled samples.

5. EXPERIMENTAL RESULTS

The experiments were performed on the CIFAR dataset
(Krizhevsky, 2009) and a subset of the plankton dataset
of the Kaggle national data science bowl (kag, 2015),
both containing 10 different classes. After each round of
querying, a neural network got trained on the labeled
pool until convergence of accuracy on a held-out valida-
tion set. A prediction was then performed on a separate
testing set. We repeated this process until a pre-defined
labeling budget was exhausted. All our results report an
average of 3 complete trials. In figure 6, results from the
proposed hybrid method and other state-of-the-art AL
methods tested on the plankton dataset are presented.
The figure presents both the results with and without
the data augmentation module described in section 4. In
figure 6 (a), the accuracy of our method is compared to
other hybrid methods. Further, in figure 6 (b), our method
is compared to informative and representative methods.
Random benchmark sampling is included in both (a) and
(b) for reference. One can observe from these results that
our proposed method(CIRAL) is performing steadily in
terms of classification accuracy and is outperforming the
random sampling benchmark by a large margin. Random
sampling needs approximately twice as many samples to
reach the same level of accuracy as our proposed method.
This result is valid for the other methods as well, suggest-
ing that active learning is effective on the plankton dataset.
That is, the information provided in the images is not
uniformly distributed in the dataset, making it possible to
strategically select images for labeling. Furthermore, the
results can be studied in more detail in figure 4, where the
classification accuracy of our method is presented relative
to the other methods. In each plot, our method is com-
pared with another AL method. Similar results can also be
found in figure 5, where our method has been applied to
the CIFAR dataset. In the latter plot, one can observe that
the hybridization benefits from combining informative and
representative methods in that it outperforms each of them
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Fig. 4. (LHS) The proposed AL method compared to informative,
representative and random methods. (RHS) The proposed AL
method compared to other hybrid methods (BADGE, Active
Learning by Learning, Softmax Hybrid). All experiments in this
figure are performed on the plankton dataset.

individually. This performance enhancement compared to
the other strategies is a result of incorporating the full fea-
ture space while also taking samples close to the inter-class
decision boundaries into account. The samples obtained in
the latter case help fine-tune the model to gain additional
performance. This is particularly evident in figure 4 where
one can observe how our proposed method outperforms
the coreset representative method when 20% of the sam-
ples have been labeled. Both our proposed method and
the coreset method perform well in the beginning from
incorporating the full dataset. The hybrid method does,
however, eventually put more weight on the informative
samples and thereby gain an advantage over the pure

— CIRAL 10
5 CORESET
0 04~

& Accuracy[%)

0 2 a 6 8 10 0 2 4 6 8 10
5 /”,’x 5 //\_
0 0

-59 —— CIRAL -59 = CIRAL
RANDOM Softmax Hybrid
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5 54 — CIRAL
Active Learning by Learning
+ v L

A Accuracy(%]

0 2 a 6 8 10 0 2 a 6 8 10
Number labeled samples|%] Number labeled samples[]

Fig. 5. (LHS) The proposed AL method compared to informative,
representative and random methods. (RHS) The poposed AL
method compared to other hybrid methods (BADGE, Active
Learning by Learning, Softmax Hybrid). All experiments in this
figure are performed on the CIFAR dataset.

representative method as illustrated in the top left plot
in figure 4. The opposite is true in the mid-left plot in
figure 4 where the hybridization performs better than the
informative method in the beginning but on par in the
later rounds. Moreover, the proposed CIRAL method is
also showing promising results compared to the BADGE
(Ash et al., 2019), Active Learning by Learning (Hsu and
Lin, 2015) and Softmax Hybrid (Kaushal et al., 2018)
methods. Comparing with the performance of the Softmax
Hybrid, it can be observed that the proposed hybridization
is significantly better on the CIFAR dataset, as illustrated
in figure 5. This observation may suggest that the proposed
method is better at identifying informative samples when
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Fig. 6. Comparison of the experimental results with and without
data augmentation during training. (a) Performance compar-
ison between our method and other hybrid AL methods with
and with out data augmentation. (b) Performance comparison
between our hybrid method and informative and representative
methods with and without data augmentation.

the classes are more intertwined, such as in the CIFAR
dataset. The different classes in the plankton dataset, as
illustrated in figure 2, are less intertwined compared to
the classes from the CIFAR dataset illustrated in figure
1. This information about the latent space is relevant for
the efficiency of the hybrid framework. Comparing the
results of figure 4 and figure 5, one can observe that
the hybrid framework, in general, performs better when
the classes are more intertwined. This suggests that the
hybrid framework is able to overcome redundant sampling,
and select images that brings much information to the
classifier.

Furthermore, from figure 6 one can observe how the data
augmentation module significantly increases the classi-
fication accuracy of the active learning methods. The
hybridization is performing best when no augmentation
is applied, however, with the augmentation module, the

difference in the performance of the methods becomes
less significant suggesting that all the methods are fully
enabled to utilize the information provided in the dataset.
However, an interesting observation can be made in figure
6 (b) when comparing the DFAL method with and without
the augmentation module. It can be observed that, without
the augmentation module, it performs worst of the com-
pared methods, however, with the applied augmentation
module, it surpasses most of the other AL methods. This
observation suggests that the data augmentation improves
the decision boundaries in the learning model from which
the DFAL and CIRAL methods benefit. Hence, the appli-
cation of a data augmentation module is justified in terms
of a general performance increase and the increased per-
formance of the decision boundary-dependent informative
metric.

6. CONCLUSION AND FUTURE WORK

This paper presents a novel framework furthering the
field of in-situ underwater planktonic image analysis (Saad
et al., 2020, 2021). Manual labeling of planktonic data is
time-consuming and puts a large burden on the domain
experts. The proposed active learning method can mini-
mize this effort while achieving satisfactory classification
results and outperform random sampling. The framework
presented in this paper combines metrics for representative
and informative sampling and achieves better performance
than each of them separately. The method has proven to
be efficient on both the benchmark CIFAR dataset and
the more complex plankton dataset, suggesting that these
metrics should be considered in combination when apply-
ing active learning. Furthermore, empirical results show
that our proposed framework outperforms other state-of-
the-art hybrid AL methods.

The informative metric employed in the proposed frame-
work is dependent on good decision boundaries to get full
utilization. The augmentation algorithm which is added as
an extension to the originally proposed CIRAL framework
(Haug et al., 2021), further allowed the model to create
better decision boundaries on complex data structures that
exist in the plankton and CIFAR datasets and increased
its general classification performance. It was seen from the
performance enhancement of the DFAL method that the
applied data augmentation module increased the perfor-
mance of the information metric in the hybridization.

An interesting future direction would be to investigate how
other representative functions affect the performance of
the classifier. In particular, looking at combining Bayesian-
based representative metrics with informative metrics is an
interesting direction. Another interesting future direction
is to construct, from this novel hybrid AL framework, clas-
sifier models that require a minimum amount of labeled
datasets for training and embedding those created models
into AUV platforms for in-situ plankton classification.
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