
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Mathias Bynke

Multi-label image classification with
language-image models

An approach for a fine-grained domain-specific
dataset

Master’s thesis in Computer Science
Supervisor: Kerstin Bach
Co-supervisor: Bernt Ivar Utstøl Nødland
June 2022

M
as

te
r’s

 th
es

is

Mathias Bynke

Multi-label image classification with
language-image models

An approach for a fine-grained domain-specific
dataset

Master’s thesis in Computer Science
Supervisor: Kerstin Bach
Co-supervisor: Bernt Ivar Utstøl Nødland
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Sammendrag

Nylige framskritt innen selvveiledede fortrente bildemodeller (self-supervised pre-trained image
models) har gjort det mulig å bygge gode modeller for oppgavespesifikk (task-specific) bildeklas-
sifisering lettere og med mindre treningsdata enn før. Dette har senket terskelen for å lage
modeller for nye oppgaver. Utviklingen innen spr̊ak-bilde-modeller og utgivelsen av modeller
som OpenAIs CLIP [Radford et al., 2021] tillater s̊agar eksempelløse (zero-shot) bildeklassifika-
torer – klassifikatorer konstruert uten noen oppgavespesifikke eksempelbilder – uten annet enn
naturlig spr̊ak til å definere klassene. For finkornet (fine-grained) klassifisering har eksempelløs
bruk av CLIP vist seg å egne seg i svært varierende grad. I noen tilfeller fungerer det godt, i
andre tilfeller ikke. Vi undersøker hvor godt denne modellen fungerer som basis for en finkornet
flerannotasjonsklassifikator (fine-grained multi-label classifier) p̊a et datasett med spesialiserte
militærrelaterte bilder med inkonsekvente tekstannotasjoner. Dette gjør vi ved å bruke spr̊ak-
bilde-egenskapene til CLIP til å konstruere og evaluere en eksempelløs klassifikator, samt ved å
bruke CLIPs innlærte bilderepresentasjoner direkte til å utvikle rent bildebaserte modeller in-
spirert av k-nærmeste naboer og hurtigminnemodeller (cache models) som drar nytte av bilder
med kjente annotasjoner uten å m̊atte trenes. Under utviklingen av modellene studerer vi effek-
ten av ulike designvalg, blant annet om det lønner seg å trene deler av modellen videre. Siden
datasettet har norske tekstannotasjoner, undersøker vi ogs̊a hvilken effekt valget av spr̊ak har p̊a
den eksempelløse klassifikatoren.

Vi finner at det for v̊are data, som tilhører et spesialisert domene, gir mye bedre resultater å
lage en klassifikator som bruker CLIPs bilderepresentasjoner direkte, og som sammenligner med
bilder med kjente annotasjoner, enn å bruke den til å lage en eksempelløs spr̊ak-bilde-klassifikator.
Spr̊ak-bilde-klassifikatoren gjør det betydelig d̊arligere enn referansen, en bildebasert 1-nærmeste
nabo-modell, mens v̊are bildebaserte modeller gjør det bedre enn referansen. Det viser seg
ogs̊a at spr̊aket i tekstannotasjonene er viktig for hvor godt spr̊ak-bilde-klassifikatoren yter.
Engelske annotasjoner gjør det bedre enn norske, og manuelle engelske oversettelser av høy
kvalitet gjør det bedre enn automatiske oversettelser. Vi peker p̊a forhold vi tror hindrer spr̊ak-
bilde-klassifikatoren i å nærme seg ytelsen til de bildebaserte klassifikatorene. Den best egnede
modellen vi finner, er et søk som finner de bildene blant en mengde referansebilder som ligner
mest p̊a søkebildet, og vekter annotasjonene deres ut fra hvor mye de ligner.

ii

Abstract

Recent development in self-supervised pre-trained image models has made it possible to build
good models for task-specific image classification more easily and with less training data than
before. This has lowered the barrier to creating models for new tasks. The development of
language-image pre-training and the release of models like OpenAI’s CLIP [Radford et al., 2021]
even allow for zero-shot image classifiers – classifiers built without a single task-specific image
sample – using natural language to specify the classes. For fine-grained image classification tasks,
zero-shot usage of CLIP is shown to have unpredictable performance, doing well with some tasks
but not with others. We explore the effectiveness of this model as a basis for a multi-label fine-
grained classifier on a dataset of specialized domain military-related images with inconsistent
text labels. We do this by using the language-image properties of CLIP to create and evaluate
a zero-shot classifier as well as using its learned image representations directly to develop purely
image-based models inspired by k-nearest neighbors and cache models which utilize available
images with known labels while not requiring any training. As part of the development of the
models, we study the effects of various model design choices, one of which is whether to fine-tune
parts of the model. As the dataset has Norwegian text labels, we also investigate the effects of
the language of the labels on the zero-shot classifier.

We find that, for our specialized domain data, making a classifier that uses CLIP’s image
representations directly and utilizes images with known labels is drastically more effective than
using it to make a zero-shot language-image classifier. The results of the language-image classifier
are considerably worse than an image-based 1-nearest neighbor baseline, whereas our image-based
models’ results are better than this baseline. We also find that the language of the labels is
important for the language-image classifier’s performance, with English labels performing better
than Norwegian labels, and manual, high-quality translation into English performing better than
automatic translation. We point to issues that we believe keep the language-image classifier from
coming close to the performance of the image-based classifiers. The best performing model we
find is a search procedure that identifies the most similar images from a set of reference images
and weights their labels according to their similarity to the query image.

iii

Preface

This thesis is the final part of my Master of Science (MSc) degree with a specialization in artificial
intelligence at the Department of Computer Science at the Norwegian University of Science and
Technology (NTNU). The work was carried out in collaboration with the Norwegian Defence
Research Establishment (FFI). It was supervised by Kerstin Bach, professor at the Department
of Computer Science, and co-supervised by Bernt Ivar Utstøl Nødland, researcher at FFI.

I would like to thank Kerstin and Bernt Ivar for their excellent guidance and support through-
out the work on this thesis. I would also like to thank FFI for providing access to the dataset
used in this work as well as computational resources and for allowing me to work alongside
their researchers. I also appreciate the help of Ole Arne Øverland at FFI, who provided domain
expertise for keyword translation and other issues.

Mathias Bynke
Kjeller, June 20, 2022

iv

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Goals and Research Questions . 3
1.3 Research Method . 4
1.4 Contributions . 4
1.5 Thesis Structure . 5

2 Background 7
2.1 Background Theory . 7

2.1.1 Image processing . 7
2.1.2 Contrastive language-image pre-training 8
2.1.3 k-nearest neighbors . 12
2.1.4 Cache model . 13
2.1.5 k-means clustering . 13
2.1.6 Performance metrics . 14
2.1.7 Hyperparameter optimization . 17

2.2 Related work . 18
2.2.1 Image classification . 18
2.2.2 Applying language-image pre-training . 21

3 Method 25
3.1 Dataset . 25

3.1.1 Dataset description . 25
3.1.2 Data preparation . 28

3.2 Model architectures . 30
3.2.1 Language-image model . 31
3.2.2 Neighbor search model . 32
3.2.3 Neighbor net models . 34

4 Experiments and Results 41
4.1 Experimental Plan . 41

4.1.1 Data and model pipeline . 41
4.1.2 Language-image model . 42
4.1.3 Image-based models . 43

4.2 Experimental Setup . 44
4.2.1 Language-image model . 44
4.2.2 Image-based models . 44

4.3 Experimental Results . 47

v

vi CONTENTS

4.3.1 Language-image model . 47
4.3.2 Neighbor search model . 47
4.3.3 Neighbor net model . 48
4.3.4 Model comparison . 49
4.3.5 Example . 50

5 Discussion 53
5.1 Language-image model . 53
5.2 Image-based models . 54
5.3 Model comparison . 56

6 Conclusion and future work 59
6.1 Conclusion . 59
6.2 Contributions . 60
6.3 Future Work . 60

Bibliography 61

Appendix A Software 67

List of Figures

2.1 The architecture of CLIP . 11
2.2 Example ROC curve . 17
2.3 Bayesian optimization example . 19

3.1 Example image . 26
3.2 Occurrences of most common keywords . 27
3.3 Distribution of occurrences per keyword . 27
3.4 Number of keywords per image . 28
3.5 Data preparation pipeline . 29
3.6 Architecture common to all models . 31
3.7 Architecture of neighbor search model . 33
3.8 Architecture of neighbor net models . 35

4.1 Model pipeline . 42

vii

viii LIST OF FIGURES

List of Tables

3.1 Keyword translation examples . 32

4.1 Hyperparameters of language-image model . 45
4.2 Class confidence threshold for language-image model 45
4.3 Hyperparameters for neighbor search model . 46
4.4 Hyperparameters for neighbor net models . 46
4.5 Language-image model results . 47
4.6 Neighbor search and 1-NN model results . 48
4.7 Neighbor net model results . 48
4.8 Model results comparison . 49
4.9 Class-specific ROC AUC comparison . 50
4.10 Example image results . 51
4.11 Example image matches found by neighbor search model 52

ix

x LIST OF TABLES

Chapter 1

Introduction

Since machine learning methods came to dominate the field of image processing in general and
image classification in particular, building state-of-the-art classifiers for a new task has required
gathering a significant amount of training data specific to the task. For some tasks, getting such
data is costly or difficult. There have been efforts to better train machine learning models with
fewer training samples. One such effort is the development of general self-supervised pre-trained
image models, which can be specialized for specific tasks with significantly less data than models
trained for the task from scratch. This is achieved by fine-tuning or otherwise adapting the
general model for the specific task. With pre-trained language-image models, one can even build
specialized classifiers and other image models with no new training and no other data than a
short text description of the desired classes. The opportunities provided by such general models
for solving ever-new tasks are still being explored. In this thesis, we contribute to this effort by
investigating the effectiveness of specializing a general language-image model for the fine-grained
multi-label image classification task of predicting keywords of mostly military-related images.

1.1 Background and Motivation

Artificial intelligence as a field of research has come a long way since the term was first used
in 1956 [Russel and Norvig, 2010, p. 17]. Originally aspiring to define any intelligent process
so exactly that it can be simulated, it has gone through periods of optimism and bloom as well
as pessimism and stagnation. Along the way, artificial intelligence methods have been able to
perform ever new tasks previously reserved for humans. In the last decade, a combination of
advances in artificial neural networks, increased computing power, and large amounts of available
data have accelerated the development, use, and publicity of these methods enormously. Artificial
neural networks are a machine learning method, meaning that the behavior of the system is not
explicitly coded – perhaps not even understood – by humans, but is rather “learned” from some
form of experience. Problems that were recently seen by some as unsolvable in the near future,
have been solved using neural networks, such as reaching and surpassing human-level performance
in the games Go [Silver et al., 2016] and Starcraft 2 [Vinyals et al., 2019], predicting protein
folding [Jumper et al., 2021] or generating and manipulating complex, functioning computer
code from natural-language instructions [Chen et al., 2021; Li et al., 2022b].

As the effectiveness of neural networks became apparent, actors from an increasing number
of fields and with a variety of problems adopted them for their own use. Image processing
is such a field. It has gone through a revolution where classic methods carefully crafted by
humans have been supplemented with or even replaced by machine learning methods. This was

1

2 CHAPTER 1. INTRODUCTION

in particular due to convolutional neural networks, which are designed specifically for grid-like
data such as images. This change has helped solve a range of image-related problems that are
often straightforward for humans to solve, but where a solution is very difficult to formulate
explicitly. Examples of this are image classification and semantic segmentation.

The shift towards machine learning methods in image processing has created a need for data
to train the models. However, gathering data for a new task can be time-consuming and labor-
intensive. For some tasks or domains, it can be infeasible in practice. In other cases, data is
available but is of low quality, as it may not be optimized for machine learning. A way to reduce
this problem is transfer learning, which is the process of adapting a model that was trained
for one task on a certain kind of data to another task, possibly using a different kind of data.
This can be done by training the model again on new data. Training for the first task is then
called pre-training, and training for the new task is called fine-tuning. For this to be helpful,
the old and new tasks need to have something in common, so that the pre-trained model is in a
better position to learn the new task than an untrained model would be. For example, a neural
network classifying images may have learned to recognize features such as edges or color patterns
in photographs of real-world objects, and this knowledge may be relevant across a wide range of
tasks involving photographs.

If a task is quite general and requires a model to learn a broad range of concepts, it may
be a suitable task to pre-train models for before fine-tuning for any of a wide variety of other
tasks. Instead of doing pre-training again for each new specialized problem one wants to solve,
a single model pre-trained on such a general task may form the basis for solving several different
specialized tasks, saving time, computation, and work. For example, it is common to fine-tune
image classification models on the Imagenet dataset [Deng et al., 2009] in order to later perform
more specialized image classification. Imagenet has the advantages of being publicly available,
large, and quite varied, whereas task-specific data may be sparse. In fact, if the first task is
general enough, one may even use the model without fine-tuning at all, either as it is or adapting
it somehow. For example, a model trained on Imagenet may be reused without fine-tuning by
using the values from one of its final layers, treating them as an image representation vector that
is assumed to capture important features of the image.

Imagenet is a labeled dataset, and (pre-)training a model to predict these labels is a supervised
learning problem. Even though pre-training allows specialized tasks to be learned with less
specialized data during fine-tuning, labeling the large pre-training dataset is still a labor-intensive
manual process. This limits the size of such datasets and thus the capabilities of the models pre-
trained on them. Recently, there has been great progress in self-supervised pre-training, making
use of datasets without labels. For instance, contrastive learning has allowed models to learn
useful image representations from large sets of images without labels. This removes the need for
manual labeling, unlocking a vast amount of unlabeled data for training.

Contrastive language-image pre-training (CLIP) is a neural network model by Radford et al.
[2021] aiming to leverage transfer learning to perform new tasks with little or no task-specific data,
known as few-shot and zero-shot learning, respectively. After its release, it has gained attention
due to its unprecedented performance in these types of learning and in image representation
learning. It achieved this through self-supervised training, outperforming existing models with
supervised as well as self-supervised pre-training. Rather than using only images, it is pre-
trained on a 400-million-sample dataset of various images and text captions found together on
the Internet. Instead of classification, the task was to identify whether or not a certain image-
caption pair belongs together. This type of training data is readily available online and does
not need to be manually labeled, saving labor. The idea is also that this data format allows the
model to learn a broad range of concepts since image captions on the Internet are more varied
and rich in information than one-hot class labels, and matching them to the right image requires

1.2. GOALS AND RESEARCH QUESTIONS 3

knowledge of a variety of concepts. The authors do indeed find that CLIP can perform several
image classification tasks with good performance even without task-specific data. With the way
it uses text during pre-training, it has the benefit that one can tap into its knowledge using text.
This makes it possible to use it zero-shot without any fine-tuning, lowering the bar for using it
to solve new tasks. Indeed, this property has been used with success by others since the model’s
release, and new work using it is still being done.

The Norwegian Defence Research Establishment (FFI) has a dataset of military-related im-
ages, some of which are labeled with text keywords in Norwegian. The keywords specify different
aspects of the images’ contents, such as the specific make of a truck or a broad category of equip-
ment. The dataset is fine-grained and of a specialized domain, and there is considerable noise in
the keywords. FFI is interested in exploring how machine learning can be used to add value to
the dataset, for instance by inferring keywords for the unlabeled images from the labeled ones.
CLIP is a promising model to apply in this case. This is partly because it handles both images
and text and is specifically designed to look for relationships between them, which is at the core
of this problem. In addition, CLIP can be used as is – without any training other than the
pre-training which has already been performed by Radford et al. [2021]. Even disregarding the
language abilities of the model, its high-quality learned image representations are promising as
the basis for new image models. Investigating the application of CLIP to this task is part of
the collective, ongoing effort to investigate how well pre-trained task-agnostic models perform
on ever new tasks, in this case fine-grained multi-label classification on military-related images
with noisy labels.

FFI’s dataset was collected for different purposes over time, impacting its quality in a machine
learning setting. Curated and high-quality datasets are useful and popular for training and
evaluating machine learning models. However, such datasets do not realistically represent the
available data in all cases. In real situations, the available data may be less suitable for machine
learning; it may have been gathered at different times, by different people, and for different
purposes. This may cause inconsistencies across the dataset, and notably in the labels, as the
labeling policy may not have been the same throughout the data gathering. Knowing how to
make use of such data despite its shortcomings may be valuable in situations where improving
the quality of the data is impractical.

1.2 Goals and Research Questions

Goal Determining how well a general pre-trained image model performs on fine-grained multi-
label classification on a specialized image dataset with inconsistent labels.

In this work, we aim to explore ways to utilize the pre-training of a general pre-trained
model for our task, which is to predict keywords for the images in FFI’s dataset. This task is a
fine-grained, multi-label classification problem with images from the military domain and with
noisy text labels. While other models could be used as well, there is value in investigating the
capabilities of a self-supervised, pre-trained, and task-agnostic model by studying its ability to
solve this type of task. In addition to adding to the knowledge about such pre-trained models,
this can be seen as part of a broader goal of finding good models for this type of task.

Research question 1 How have previous works approached tasks similar to ours?

For informing the choice of approach for our problem and putting it into context, we want
to know what existing approaches work best for problems with similar characteristics, as these
may be promising for our problem as well.

4 CHAPTER 1. INTRODUCTION

Research question 2 How can the knowledge from CLIP’s pre-training best be harnessed for our
task?

We choose to focus our attention on the CLIP model due to its language understanding,
broad semantic knowledge, and unprecedented performance in zero- and few-shot learning and
representation learning. This makes it a promising pre-trained model to make use of for our
problem. However, what way to best utilize it is not clear. This is a broad question, and we
define two subquestions specifying more specific paths of investigation.

Subquestion 2 a How well suited is the language-image zero-shot classification method of Rad-
ford et al. [2021] for our task?

Subquestion 2 b How well suited is CLIP’s pre-trained image encoder for our task without using
text?

Since CLIP handles text, it is possible to use the text labels of the dataset to create a classifier
like Radford et al. [2021] do. However, the text is in Norwegian rather than English. This gives
us a chance to investigate the impact of this difference on the classifier’s performance. The
vocabulary may be too specialized for CLIP’s text encoder to perform well. Still, its image
encoder may have learned concepts that can be useful even when processing images from foreign
domains. It is thus not immediately clear if the best way to use CLIP is to use a language-image
classifier or some other architecture making use of the image representations learned during
CLIP’s pre-training.

1.3 Research Method

We apply an experimental methodology to examine the research questions. We build several
models and evaluate them on the same dataset. This allows us to compare them to each other
directly. We evaluate the zero-shot language-image approach of Radford et al. [2021], only
adjusting it to handle the multi-label case. We also introduce our own methods based only
on the image representation vectors generated by CLIP, comparing them to a simple 1-nearest
neighbor model baseline, as used by Conde and Turgutlu [2021]. These methods are not zero-
shot. We do not fine-tune CLIP itself, but inspired by Zhang et al. [2021] we experiment with
fine-tuning an add-on to the CLIP-model’s image encoder.

1.4 Contributions

In this thesis, we present evaluations of a set of multi-label image classifiers based on the learned
representations of the generally pre-trained language-image model CLIP on a specialized domain,
fine-grained task: classifying military-related images with text labels. We adapt a zero-shot
language-image classifier for our task and evaluate it, finding that its performance is relatively
poor. We also find that this classifier is sensitive to the language of the text labels, with even a
poor translation from Norwegian to English resulting in an improvement, and a manual, high-
quality translation improving it even more. We design and evaluate several models that use only
image representations along with reference images with known labels. We show the effects of
various model design decisions. Of all the models, a training-free search procedure inspired by
k-nearest neighbors gives the best results on our task.

1.5. THESIS STRUCTURE 5

1.5 Thesis Structure

In chapter 2 we present theory and research that we use directly or let inform our work in this
thesis. In chapter 3 we describe FFI’s dataset and the processing we perform on it. We also
present the architectures of the models we build and evaluate. In chapter 4 we describe what
experiments we perform and how we perform them, and we present their results. In chapter 5
we discuss the results of the experiments and what we can learn from them. Finally, in chapter 6
we sum up the findings and suggest paths for further research.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Background

Our work builds on that of others. This includes both established techniques we use for creating
and evaluating models and the results of other research informing our approach. In this chapter,
we present theory and research underlying our work. Parts of this chapter are adapted from
Bynke [2021].

2.1 Background Theory

This section presents theory that we use in this thesis. We describe the development of image
processing leading up to our task. We then go into the technical details underlying the CLIP
model as well as methods we use for building and evaluating our own models.

2.1.1 Image processing

Image processing means transforming or generating images in some way, or extracting knowledge
about the content of images. This field, which has traditionally made extensive use of human-
designed algorithms and transformations, has undergone great development since the rise of
artificial neural networks. Convolutional neural networks (CNNs) exploit the grid structure
of images by learning transformations that are invariant to translation and thus do not need
to learn each visual concept again for each position in the image. They revolutionized image
processing with their superior ability to classify images when compared to earlier approaches.
The annual ImageNet competition, where models competed to classify images from the large
ImageNet dataset [Deng et al., 2009], was won by a great margin in 2012 by the CNN AlexNet
[Krizhevsky et al., 2012]. This brought increasing attention to this type of model, and the CNNs
continued to be improved in later iterations of the ImageNet competition and elsewhere. More
recently, a newer network architecture originally designed for text, the transformer, is being used
for images in place of CNNs with great success [Dosovitskiy et al., 2020].

Large and high-quality datasets like ImageNet, which contains over a million manually labeled
images of certain objects, have been important for the development of image processing and other
machine learning methods. In real-world applications, however, the data available might not be
this plentiful or well labeled. For such cases, evaluating models on these clean datasets gives
unrealistic results. Actors may have collected data for other purposes, and seeing the success of
modern artificial intelligence methods, they may want to make use of them on their own data.
Since the data was not collected with machine learning in mind, and perhaps not even meant
for consumption by a computer, one may face certain problems, such as labels missing or being

7

8 CHAPTER 2. BACKGROUND

inconsistent or the data not covering all cases that a machine learning model would face when
used. In particular, neural networks can require a large amount of training data to perform well,
which poses a problem when the task is complex and the data is insufficient.

Despite ImageNet’s large size, language models have benefited from datasets that are much
larger still. This is made possible by models that do not require labeled data but can be trained
unsupervised on vast amounts of text, which is an abundant resource online. Notable examples
of large language models trained this way are BERT [Devlin et al., 2018] and the GPT models,
most recently GPT-3 [Brown et al., 2020]. There have been efforts to replicate this success of
unsupervised training for image models. One way to do this is to train a model to recognize
whether or not two images are altered versions of the same image. This does not require any
labeling of the images, unlocking vast amounts of data. This method uses contrastive training,
which presents true and false matches to the model and uses a special contrastive loss to make
the model associate only the true matches with each other. As a consequence, the model learns
to create useful representations of images that can then be used for another task directly or as a
starting point for fine-tuning a model for a specific task. Unsupervised training of large, general
models has proved effective, and the field has seen great success in the last half-decade.

Marking a milestone in this area, an alternative approach is to use contrastive training on
pairs of images and text captions. The model is then trained to recognize whether the pairing is a
“correct” one or randomly chosen. We refer to this use of both images and text as language-image
training. This can be achieved with an image model and a text model working in tandem. The
text captions are assumed to contain useful information about the images, requiring the model
to acquire knowledge about the contents of the images in order to learn the task successfully.
Like the pure image contrastive training, this learns useful image representations. In fact, CLIP,
which is such a model, pushed the frontier on learning such representations, surpassing existing
methods [Radford et al., 2021]. However, this approach comes with the added advantage that
the model also has a text component. This unlocks new ways of interacting with the model,
such as designing text captions that correspond to classes and using the model to assign images
to the most relevant class, effectively classifying the images. This means that a classifier can be
built without training on or even seeing a single task-specific sample image.

2.1.2 Contrastive language-image pre-training

In this section, we describe theory that underlies the Contrastive language-image pre-training
(CLIP) model before describing the model itself, focusing on the technical details.

Softmax

The softmax operation is defined like this: [Russel and Norvig, 2010, p. 848]

σ(z⃗)i =
ezi∑
j e

zj

It has two useful properties: The components of the resulting vector sum to one, and large
components of the input vectors are given exponentially more weight than small entries. It
is commonly used to normalize a vector in order to be able to interpret it as a probability
distribution. The function of softmax can be interpreted in multiple ways. It can be seen as
a continuous and differentiable version of the one-hot argmax function, which identifies which
component of the input vector is the highest, giving a value of one at the corresponding position
in the output vector and zero everywhere else. It is also a generalization of the logistic function
(1 + e−z)−1 from one to several dimensions.

2.1. BACKGROUND THEORY 9

Cosine similarity

Cosine similarity is one of several ways to measure how similar two vectors are to each other. It
is defined like this, the last formulation being the one used by the CLIP model:

Cosine similarity(x⃗, y⃗) =
x⃗ · y⃗

∥x⃗∥∥y⃗∥
=

x⃗

∥x⃗∥
· y⃗

∥y⃗∥
(2.1)

The name “cosine similarity” refers to its geometric interpretation as the cosine of the angle be-
tween the two vectors. This follows from a formulation of the dot product: x⃗·y⃗ = ∥x⃗∥∥y⃗∥ cos(x⃗, y⃗).
If the two vectors have the same direction, the similarity is 1, and if they have opposite directions,
it is −1. If the two vectors are perpendicular to each other, the similarity is 0. Note that since
the vectors are normalized by dividing by their magnitude, their magnitudes are ignored when
computing the cosine similarity.

Attention and transformers

When processing sequences such as text with neural networks, a common approach has been
to use so-called recurrent neural networks to convert the sequence to a single representation
vector for further processing. This type of model consumes the sequence one element at a time,
gradually updating the representation vector. Two consequences of this limit the training of high-
performance models. First, all the relevant information in the sequence needs to be encoded in
the representation vector. This requires this vector to be large enough. Even if it is, it is hard
for a model to learn to capture the entire sequence equally well. When moving from one end
of the sequence to the other, it is likely that the later elements will be better represented than
the earlier elements because they were more recently seen by the model. Second, the sequential
nature of the model makes it impossible to process all the elements in parallel. Parallelization
is desirable and often used with other types of neural networks because it can greatly speed up
the training process.

Bahdanau et al. [2014] address the problem of the limiting representation vector in text
translation. They introduce a mechanism called attention, which supplements the recurrent
neural network by learning to recognize which parts of the original sentence are relevant at each
position in the translated sentence. Information from these relevant parts is then used directly
instead of having to be encoded implicitly in the representation vector. For each position in
the output sentence, the attention mechanism considers all positions in the input sentence and
estimates how relevant the information there is for the output position in question. It then takes
the softmax of these estimates. This result is used as weights for computing the weighted average
of the information at all input positions. This weighted average is then one of the inputs when
deciding what to put in the output. The attention is trained along with the rest of the model.

The attention mechanism has since been developed further. The sequence is processed and
divided into different parts at each position of the input and output sequences: queries, keys
and values. The queries can be thought of as representing what information is required at each
output position considering what has been put in the output sequence so far. The keys represent
what information is provided at each input position. The values provide the information of each
input position. When the queries are drawn from the output sequence and the keys and values
from the input sequence, this is called cross-attention. In contrast, self-attention, a modification
to the attention mechanism, has also been introduced. It takes queries, keys, and values all from
the input sequence. This makes the attention mechanism function more like a layer in a neural
network, allowing several self-attention layers to be stacked for increased learning capacity.

Vaswani et al. [2017] address the problem of parallelization. They do this by doing away with
the recurrent neural networks, instead introducing a new architecture called a transformer. It is

10 CHAPTER 2. BACKGROUND

based on attention alone, heavily utilizing self-attention. This allows the models to be trained
significantly more quickly. This has become the state-of-the-art architecture for various forms of
natural language processing.

Even though they were invented for natural language, transformers have been shown to
perform very well on images as well, challenging the dominance of convolutional neural networks.
Dosovitskiy et al. [2020] apply a transformer to images with minimal changes to its architecture.
To obtain a sequence in the format expected by the transformer, they split the image into patches
of equal size and transform them into embeddings as one would with words when processing text.
The resulting models achieve results matching the state of the art while requiring fewer resources
to train.

Contrastive learning

When training a model for classification, one might make it predict the probabilities of a sample
belonging to each possible class. The loss function is chosen so that minimizing it makes the
probability of the correct class be close to 1, while all other probabilities are close to 0. In
contrastive learning, however, the model is trained to transform samples into representation
vectors that are close to each other if the samples are similar, and far apart if the samples are
dissimilar [Hadsell et al., 2006].

A contrastive loss is used that considers pairs of representations and a label signifying whether
they are “similar” according to some definition of this term. When minimized, this loss pushes
the dissimilar samples apart in the representation space and pulls the similar samples together.
The representations can then be used for classification or other tasks.

Prior knowledge is used to decide which samples are similar and thus should be pulled to-
gether. For instance, an image can be manipulated in several ways that are assumed to not
remove relevant information, such as rotating it. In that case, two manipulated images can be
defined as similar if and only if they are drawn from the same original image. This way, the
model can be trained unsupervised, making use of unlabeled samples. Approaches like this have
been used with success to create representations with unsupervised training [Oord et al., 2018;
Chen et al., 2020a]. If the samples are labeled with classes, they can instead be defined as similar
if and only if they belong to the same class.

The CLIP model

CLIP (Contrastive language-image pre-training) [Radford et al., 2021] is a model that compares
images to text captions. Given a set of images and a set of text strings as input, it outputs an
estimated probability of each text-image pair belonging together.

CLIP consists of an image encoder and a text encoder, which produce vector representations
(or feature vectors) of the same length. These feature vectors are compared using cosine similar-
ity. The model is trained on a large dataset of images and corresponding image captions retrieved
from public sources on the Internet. The training is contrastive, making the model output a high
similarity if the text-image pair is a real pair occuring in the dataset, and a low similarity if it
is a random pairing. This self-supervised training allows it to utilize large amounts of available
unlabeled data for learning good representations instead of requiring manually labeled image
datasets. This is similar to how language models have been able to learn from vast unlabeled
text datasets. The image captions provide richer information about the images than a one-hot
class label, and CLIP’s creators show that it does indeed learn concepts relevant for several tasks,
as long as they are not too niche or complex. The trained model’s parameters have been publicly
released.

2.1. BACKGROUND THEORY 11

Images

Image encoder

Text captions

Text encoder

Normalize Normalize

Transpose

Text feature matrix

Matrix mul-
tiplication

Image feature matrix

Softmax along
other dimension

Softmax along
one dimension

Predicted match-
ing text per image

Predicted match-
ing image per text

Figure 2.1: The architecture of CLIP

12 CHAPTER 2. BACKGROUND

As shown in Figure 2.1, when given a set of images and captions, the encoders produce
the respective representations vectors, normalize them by dividing by their vector lengths, and
stack them in two matrices, one image representation matrix and one text representation matrix.
These matrices are multiplied together with one of them transposed. This is equivalent to taking
the dot product of each image-caption pair of representations. Since the representation vectors
have length 1, this dot product is equal to the cosine similarity for each pair. The result is a
matrix of similarities with each row representing an image and each column a text caption, or vice
versa. Depending on the use case, the softmax can be taken of either each row or each column.
The result is, for each row or column, a probability distribution over all captions (or images)
estimating the probability that each of them belongs to the image (or caption) in question.

CLIP has been trained and released with two different image encoder architectures: a con-
volutional network and a vision transformer. Radford et al. [2021] found the vision transformer
to be the best performing, and this is the one we will consider. This is backed by related work
finding vision transformers to be suitable, as mentioned in subsection 2.2.1. The text encoder
also uses a transformer architecture. The encoders produce representation vectors of size 512.

The similarities calculated by CLIP can be used as is for tasks such as searching for images
semantically given a text prompt, searching for relevant text captions given an image, or helping a
generative adversarial model make an image based on text. Alternatively, the raw representations
calculated by CLIP’s encoders could be used directly, for instance for training an image or text
classifier or searching for images with similar content. Even when processing images or text only,
ignoring the other modality, the model is still indirectly benefiting from the other due to the
model being pre-trained on it. When using the representations, one should keep in mind how the
model was trained and how that affects what information is included in the representations – in
other words, what information would be relevant for matching it with a text caption. Since the
model is pre-trained, it can be applied to other tasks zero-shot, that is without any additional
training. Depending on the task and the available data, however, it may be beneficial to fine-
tune the model for the task at hand. Radford et al. [2021] use the model for zero-shot image
classification by crafting text captions such as “a picture of a [class name]” and using CLIP’s
similarity measure to identify which caption fits each image best. This is described in more detail
in 2.2.2.

2.1.3 k-nearest neighbors

k-nearest neighbors (k-NN) is a machine learning model for classification or regression [Russel and
Norvig, 2010]. Instead of training, when asked to predict the value of a new sample, the model
considers the known samples directly. It finds the k known samples closest to the new sample (its
k nearest neighbors) and uses their values to decide on a prediction. This can for instance be the
mean or the most common value, depending on whether it is solving a regression or classification
problem. The idea is that similar samples will also have similar values. The hyperparameter
k can be set according to the availability of known samples. The higher this parameter is, the
more protected the model is against overfitting because it bases every decision on more samples
and is less likely to be dominated by random noise. However, it risks underfitting and thus not
capturing the true pattern of the data if the available samples are few and far between. On the
other hand, a lower value of k puts more weight on each available sample. As a special case, if
k = 1, only the single nearest neighbor is used, and its value is returned unmodified.

2.1. BACKGROUND THEORY 13

2.1.4 Cache model

A cache model is a classification or regression model. It is similar to a k-NN model in that it
keeps a set of known samples and compares new samples to them. Unlike k-NN, however, it
compares a new sample to all known samples, weighting their labels by their similarity. In the
form of the cache model we refer to, the similarity between two samples is calculated as the dot
product of the samples’ vector representations. The model then applies the softmax operation
to these similarities, after multiplying by a temperature parameter to adjust the sharpness of
the weight distribution.

The name “cache model” goes back to Kuhn [1988]; Kuhn and De Mori [1990], who – inspired
by computer memory caching – introduced a speech recognition model that took recently used
words into account to avoid ambiguities. Inspired by this, a continuous cache model has been
shown to work well with neural networks for language [Grave et al., 2016]. It stores hidden
activations from the network and uses them to search for similar instances using the dot product
operation. This approach is reminiscent of the attention mechanism, using the activations for a
new instance as a query and the activations for the previously seen instances as keys and using
the dot products of the query and keys as a measure of relevance. However, unlike attention,
the cache model does not require training. The continuous cache model has been adapted to
image recognition as an add-on to pre-trained networks [Orhan, 2018]. Here, the representations
learned by the network are used as keys and queries. This allows making an image classifier
without training using the pre-trained network and labeled images as reference.

2.1.5 k-means clustering

k-means clustering is an unsupervised machine learning algorithm that groups vectors into k
groups (“clusters”), such that similar vectors are assigned to the same cluster [Wu et al., 2008].
More specifically, it attempts to minimize the distance from each vector to its cluster’s mean
vector (“centroid”). Various distance measures can be used, but euclidean distance is common.
The process is initialized by creating k centroids according to some rule, such as sampling random
vectors from the input. The algorithm then iterates between two steps: First, allocate each vector
to its closest centroid, forming clusters. Second, recalculate each cluster’s centroid, moving it to
the mean of the vectors belonging to the cluster. This loop is terminated when the process has
converged, that is when each iteration no longer makes any changes to the clusters. When using
euclidean distance, the process is guaranteed to converge to a minimum, albeit not necessarily
to the global one. To improve the chances of finding a good minimum, the algorithm can be
repeated with another choice of initial centroids.

The choice of the parameter k affects the possible solutions. In general, a higher k allows a
lower distance from the vectors to their closest centroids, at the cost of higher model complexity.
In the extreme case, when k is equal to the number of input vectors, there can be a centroid
at each input vector, resulting in a “perfect” solution with zero distance from input vector to
centroid. The best choice of k depends on the data and the desired properties of the clustering.
In our case, we mostly have a pre-determined k, so we do not go into this.

Mini-batch k-means clustering [Sculley, 2010] is a stochastic version of k-means clustering.
In each iteration, it considers only a randomly sampled mini-batch of the input vectors instead
of all of them. Instead of setting the centroid to the cluster’s mean in each iteration, it updates
it using one input vector at a time, decreasing the learning rate gradually as more input vectors
have been considered. This algorithm reduces the running time by orders of magnitude compared
to the original k-means clustering, at the cost of a somewhat worse solution after convergence.

14 CHAPTER 2. BACKGROUND

2.1.6 Performance metrics

For comparing different approaches to solving our task of multi-label classification, we measure
their performance with various metrics. The purpose of the metrics is to take the raw results
from a classification model – consisting of a confidence score given to each class for each image –
compare them to the true labels, and condense them to a single number reflecting how “good” the
results are. There is no single metric that perfectly captures all relevant aspects of a result, and
for each metric there is a tradeoff between advantages and drawbacks. We therefore use several
metrics to measure the performance of various approaches on our task, but we focus more on
some than others. Some metrics take into account the confidence given by models to each class,
but others require a pure binary prediction. In the latter case, we set a confidence threshold
specific to each model such that confidences above or equal to the threshold are considered a
positive prediction, and confidences below the threshold are considered a negative prediction.

Some of the metrics are designed for binary classification. Multi-label classification is equiv-
alent to several binary classifications being performed at once, one for each class. The binary
classification metrics can be extended to the multi-label case in several ways: Assume that there
are M samples and C classes. The metric can be calculated for each class independently, re-
sulting in C different values. The average of these class-specific results can be used as the final
metric. This is called the macro average. This average could be weighted by the number of
actual samples from each class, known as the class’ support. This is called the weighted average.
Alternatively, the classes can be ignored, and all M × C predictions are handled together as a
single binary classification result. For the accuracy and mean squared error metrics, the macro
and micro averages are equal due to their linearity.

In the definitions below, we define P and N as the sets of true positive and true negative
samples, respectively, and PP and NP as the sets of predicted positive and predicted negative
samples, respectively.

Accuracy and subset accuracy

Accuracy is a widely used metric for classification problems. It is defined as the proportion of
the predictions that are correct. It is in the range [0, 1], where 0 is worst and 1 is best. This can
be written as:

accuracy =
|P ∩ PP | + |N ∩NP |

|P | + |N |

This metric is intuitive and easy to understand. However, it can be misleading when the classes
are imbalanced. For instance, if 99 % of the samples are negative, a naive classifier that always
gives a negative prediction will give the correct prediction in 99 % of the cases, a seemingly good
score that does not capture the classifier’s failure to recognize any positive samples.

For multi-label classification, there is also the subset accuracy metric. This is the proportion
of samples for which all labels are predicted correctly. This is a quite strict metric compared to
for instance micro averaged accuracy, especially when the number of classes is large. For instance,
if there are 159 classes (like in our dataset after data preparation) and the label for each class
is predicted correctly with a probability of 99 % independently of each other, the probability of
getting all classes right is approximately 20 % (0.99159).

2.1. BACKGROUND THEORY 15

Mean squared error

Mean squared error (MSE) is a common measure of the difference between two vectors or sets
of numbers. It is defined like this:

MSE = (yi − ŷi)2 =
1

n

n∑
i=1

(yi − ŷi)
2

where n is the number of samples, yi is 1 or 0 if sample i is positive or negative, respectively,
and ŷi is the model’s confidence of sample i being positive. In our case, where yi and ŷi are in
[0, 1] for all i, the MSE will be in the same range, where 0 is best and 1 is worst. Minimizing
MSE is equivalent to minimizing the euclidean distance between the vectors y and ŷ. This is the
only performance metric we use where lower values are better.

Recall and precision

In order to avoid the problem of accuracy being a misleading metric for unbalanced datasets,
two more specific aspects of the classifier’s behavior can be measured instead: The ability to
correctly identify positive samples, and the ability to correctly identify negative samples. By
giving the classifier a lower threshold for giving a positive result, the former will get worse and
the latter will get better, and vice versa. Balancing these two thus becomes a design question
when building the classifier, and will depend on the use case and the importance of the two
abilities.

Recall, also known as sensitivity, is a measure of the classifier’s ability to correctly identify
positive samples. It is the proportion of the true positive samples that are correctly identified as
positive:

recall =
|P ∩ PP |

|P |
Precision is a measure of the classifier’s ability to correctly identify negative samples. It is

the proportion of the samples predicted to be positive that really are positive:

precision =
|P ∩ PP |
|PP |

It can be interpreted as the probability that a sample predicted to be positive really is positive:
P(s ∈ P | s ∈ PP), where s is a sample. A weakness of this metric is that it depends on the
prevalence P(s ∈ P). Intuitively, “guessing” that a sample is positive, is more likely to be correct
if a large proportion of the samples are in fact positive. This means that precision measures
not only the quality of the classifier but the quality of the classifier’s result on a specific data
distribution. This can be both a strength and a weakness. It provides a useful statistic in
practice for a given classifier and dataset, directly addressing the question: “The classifier said
this sample is positive. How much can I trust that result?” However, one should be wary of
using it to compare classifiers if they have been given data with different distributions.

Fβ score

To compare classifiers quantitatively, one may want a single measure that sums up the two
abilities measured by recall and precision. The F1 score, or balanced F measure [Schütze et al.,
2008, p. 156], is an attempt at this. It is the harmonic mean of recall and precision. If both
precision and recall have a value of 1, the F1 score is 1 as well. If one or both of them are 0, the
F1 score is also 0.

16 CHAPTER 2. BACKGROUND

The F1 score gives equal weight to recall and precision. This might not reflect their true
relative importance in every use case. The Fβ score, or F measure, generalizes the metric by
assigning any weight β to recall relative to precision, with F1 being the special case with equal
weight. This generalized weighted harmonic mean can be written like this, where p is precision
and r is recall:

Fβ = (1 + β2)
pr

β2p + r

For instance, the F2 score, which we will use in this work, gives recall a weight two times as high
as precision. This can be suitable in a use case where the model’s predictions are to be shown
to a human who can identify false positives. In such a case the model should be incentivized to
show the edge cases to the human rather than hide them. In a case such as ours where the labels
are noisy, giving recall more weight than precision has the advantage of being less punishing
towards false positives [Conde and Turgutlu, 2021].

Since the Fβ score is derived from precision, it inherits precision’s property of depending on
P(s ∈ P) as discussed in the section about recall and precision. This means it should not be
used to compare methods if they were evaluated on data with different distributions.

Specificity

Specificity is an alternative to precision for measuring a classifier’s ability to correctly label
negative samples. Unlike precision, it is independent of the prevalence. Instead of asking how
much we can trust that a sample is positive if it was classified as such (P(s ∈ P | s ∈ PP)), it
turns the question around, asking how much we can trust the classifier to classify a sample as
negative if it is truly negative (P(s /∈ PP | s /∈ P) = P(s ∈ NP | s ∈ N)). It can be calculated as:

specificity =
|N ∩NP |

|N |

By being independent of the prevalence, specificity is useful for measuring the quality of classifiers
even if the prevalence is not the same between measurements. However, it does not directly
answer how much a positive prediction can be trusted for a given dataset, as the precision does.

Area under ROC curve (ROC AUC)

As mentioned, one can adjust a classifier’s threshold for giving a positive result to balance recall
against precision or specificity. Sometimes one wants to study how these measures respond
to different thresholds. This can be done by studying an ROC curve, which is a plot of the
true positive rate against the false positive rate, in other words, sensitivity/recall against (1 -
specificity), as the threshold varies [Schütze et al., 2008, p. 162]. An example of an ROC curve
is shown in Figure 2.2. The name ROC (receiver operating characteristics) stems from its use
with radar during World War II [Streiner and Cairney, 2007]. Studying this curve can help in
choosing the right threshold. It also gives an indication of the quality of the classifier. In general,
one wants points on this curve to be close to the top left corner, corresponding to a high true
positive rate and a low false positive rate. In contrast, a useless, randomly guessing classifier
would have an ROC curve along the diagonal from the bottom left to the top right corner. This
means that the degree to which the curve is close to the top left corner is a measure of the
quality of the model across all thresholds. This is commonly measured as the area under the
ROC curve, or ROC AUC (with AUC standing for “area under curve”). This number is 1 for
a perfect classifier, (approximately) 0.5 for a randomly guessing classifier, and 0 for a perfectly
wrong classifier.

2.1. BACKGROUND THEORY 17

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0
Re

ca
ll/

se
ns

iti
vi

ty

Figure 2.2: An example ROC curve. The diagonal which is characteristic of a randomly guessing
classifier is shown as a dashed line.

2.1.7 Hyperparameter optimization

In addition to the normal parameters of a machine learning model, whose values are decided
through some kind of training, models typically have a set of hyperparameters. These constitute
design decisions that must be made about the model before it can be trained. Examples of
hyperparameters are the number or size of layers in an artificial neural network, the number of
trees in a random forest, or k in k-nearest neighbors. Finding good hyperparameters for a given
problem is often non-trivial, and hyperparameter optimization is a field of research in its own
right. We will describe a few approaches for hyperparameter search: random search, grid search,
and Bayesian optimization.

Random search and grid search

Random search is a simple method that samples a value randomly for each hyperparameter
between upper and lower bounds specified by the user. The resulting combination of values is
used to train and evaluate the model according to a specified metric. This is repeated for any
desired number of iterations, and the hyperparameter combination with the best performance is
returned.

With grid search, the user specifies a set of values to evaluate for each hyperparameter,
typically evenly spaced between some upper and lower bounds. Every possible combination of
these values is then tested, and the best-performing one is returned. These combinations can be
visualized as lying on a grid in the multi-dimensional search space, hence the name “grid search”.
In contrast to random search, the number of iterations in grid search is implicitly defined as the
number of combinations of hyperparameter values. This number is Πn

i=1ki, where n is the number
of hyperparameters and ki is the number of values to test for each parameter. If all ki are the
same value k, this simplifies to kn, growing exponentially with the number of parameters. This
means that the number of iterations and thereby the running time of grid search quickly grows

18 CHAPTER 2. BACKGROUND

out of hand unless the number of parameters and values to test are kept quite small. However,
grid search is deterministic and can, given enough time, cover the search space well compared to
random search, which may by chance miss good parameter combinations.

As a compromise between the efficiency of random search and the thoroughness of grid search,
it is common to combine them. A relatively short random search is performed, and the best
combination found by random search is used to inform the search space of a grid search. It is
now assumed that the actual optimal solution is nearby, in effect narrowing down the possibly
vast search space significantly in only a constant number of iterations. A grid search is now
performed in this new neighborhood, possibly improving the solution found by random search.
It is also possible to run two grid searches, one with a relatively coarse grid and another one
with a smaller grid to allow for an increasingly focused search.

Bayesian optimization

Another compromise between randomness and thoroughness is Bayesian optimization. This
method estimates the performance of a model as a function of the hyperparameters, as well
as the uncertainty, through a Gaussian process. Using this estimate, it suggests new points in
the search space to evaluate and uses them to update the estimate iteratively. Like random
search, it runs for a specified number of iterations. The points are chosen because it seems to
be a promising point (exploiting the current information) or because it is likely to improve the
existing estimate (exploring the search space). The estimate can be initialized by evaluating
one or more points at random, like random search. Through this process, Bayesian optimization
starts out as a random search, but it gradually becomes more focused, prioritizing promising
areas in the search space. An example of this process can be seen in Figure 2.3.

2.2 Related work

2.2.1 Image classification

While we are specifically interested in applying general pre-trained image models for our task,
other methods may inform the development of our models. We describe some of the best per-
forming concurrent image classification models applied to multi-label, fine-grained, or few-shot
classification or image representation learning, highlighting their suitability for our task and
relationship to language-image pre-training models.

Learning task-agnostic image representations

Chen et al. [2020a] introduce the framework SimCLR, which learns image representations from
self-supervised contrastive pre-training. Instead of comparing images to text as CLIP does, it
creates training data by modifying unlabeled images and learns to identify image pairs that stem
from the same image. They evaluate the learned image representations by attaching a linear
classifier and training it on ImageNet. When the model was released, its results were state of
the art for self-supervised image representation learning. Chen et al. [2020b] go on to improve
SimCLR further, resulting in the framework SimCLRv2. This version performs semi-supervised
learning in several steps: First, it pre-trains a larger network than SimCLR on unlabeled images
with contrastive training. Second, it fine-tunes the network on labeled images. Finally and
optionally, it “distills” the network by training a new, much smaller network to mimic the
behavior of the large one on labeled as well as unlabeled images. The first step is task agnostic,
and the others are task specific. The authors reason that learning task-agnostic features requires

2.2. RELATED WORK 19

0 2 4 6 8 10 12
x

2

1

0

1

2

3

f(
x
)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
I(

x
)

True (unknown)

GP(x)

Observations

EI(x)

Next query point

Figure 2.3: Illustration of a one-dimensional Bayesian optimization process. The red dashed line
shows f(x) = sin(x) + sin(1.618x), which is the function to minimize, and the red points are the
values observed so far. The green dashed line and surrounding area show the current estimate
of f(x) and its uncertainty. The blue line shows the expected improvement (EI(x)) that would
result from evaluating f at the given value of x, with the blue dot marking the most promising
value to evaluate next. At the moment, the process has found a sub-optimal local minimum
around x = 3, but is aware that there may be a better minimum around x = 10.

20 CHAPTER 2. BACKGROUND

a model with greater capacity than when the task is known, and that this is the reason why the
increased model size during pre-training improves the performance.

The SimCLR models are no longer state of the art. Notably, with the CLIP model, Radford
et al. [2021] demonstrate that task-agnostic language-image pre-training learns more effective
image representations for linear probe classification on ImageNet than other publicly released
models at the time like SimCLRv2 and BiT-M [Kolesnikov et al., 2020], shortly before the
start of our work. Our task differs from ImageNet classification, limiting the usefulness of this
result, but while SimCLRv2 and BiT have the advantage of being trained on classification with
dataset specifically, CLIP is trained on a separate, task-agnostic dataset. CLIP’s good results
on ImageNet despite this are likely to be more representative of its representations’ effectiveness
when transferred to new tasks. We therefore believe that CLIP’s representations are the most
suitable for our work.

Multi-label image classification

Query2Label, introduced by Liu et al. [2021], is the state-of-the-art approach for multi-label
image classification for the datasets PASCAL VOC 2007 and 2012 [Everingham et al., a,b] and
NUS-WIDE [Chua et al., 2009] and on par with the state of the art for MS-COCO [Lin et al.,
2014]. The architecture can be divided into two stages. The first stage uses an image classification
backbone to extract spatial image features. The second uses transformer decoders to search for
the classes in these features. The model learns to predict each class’s presence in an image
by learning label embeddings for each class. The label embeddings are given as queries to a
transformer decoder, and the values and keys are derived from the image, in effect performing
cross attention looking for relevant parts of the image given the label. The authors argue that
this approach helps the model attend to different parts of the image for different classes, which
is useful when the image contains several objects of interest in different regions. In our dataset,
however, different classes do not typically correspond to multiple objects spread around in the
same image, but rather different attributes of the same objects, so this may not be as useful for
our task.

Fine-grained image classification

He et al. [2021] introduce the architecture TransFG, which is close to state of the art for the
fine-grained image classification datasets Caltech-UCSD Birds-200-2011 [Wah et al., 2011] and
Stanford dogs [Khosla et al., 2011].1 These datasets consist of images of variants of birds and
dogs, respectively. This means they are more uniform than our dataset. They argue that
vision transformers are a better choice of model for this type of task than convolutional neural
networks due to their innate ability to identify important regions, and thus take into account
global and local discriminative features at once. They do indeed find that standard vision
transformers (see section 2.1.2) are well suited for fine-grained classification. In addition, they
make several adjustments further improving performance, resulting in the TransFG architecture.
These adjustments include a “Part selection module” to help the model find and focus on the
discriminative regions and a contrastive loss to force the representations of similar images from
different classes further apart.

The CLIP model is released in several versions, one of the differences being whether the image
encoder is a visual transformer or a convolutional net. As our dataset is characterized by several
fine-grained classes, the work on TransFG gives reason to think that the visual transformer is the

1It was state of the art when work on this thesis began, but recently it has been surpassed in accuracy by
about 1 percentage point on both CUB-200-2011 and Stanford dogs.

2.2. RELATED WORK 21

most promising choice of image encoder for our task. This is also somewhat supported by the
work on Query2Label mentioned above, which also highlights the effectiveness of a transformer,
albeit used differently, on multi-label classification.

2.2.2 Applying language-image pre-training

It is not obvious how to best use a pre-trained language-image model to create an image classifier.
Several works have been published that use the language-image model CLIP to perform image
classification with or without using its text encoder. This includes the original work presenting
CLIP [Radford et al., 2021], where the authors describe a classifier architecture using both the
text and image encoders of CLIP. We consider some of these works to inform our approach.

Language-image pre-training is an active area of research. Since CLIP’s original release and
since we began work on this thesis, several other models similar to it have been released, and the
state of the art in pre-trained models has improved. These models include ALIGN [Jia et al.,
2021], Florence [Yuan et al., 2021], LiT [Zhai et al., 2021], BASIC [Pham et al., 2021], FLAVA
[Singh et al., 2021], BLIP [Li et al., 2022a], and CoCa [Yu et al., 2022]. We use CLIP as our
language-image model in this thesis, but our work could be repeated replacing CLIP with one of
these models, possibly improving results.

Language-image classifier

Radford et al. [2021] invented the original CLIP model. The way the model is implemented (see
2.1.2 for details), it can easily be repurposed from the contrastive pre-training to language-image
classification. The authors do this by giving the names of the classes to CLIP as text captions
and presenting it with an image. The model then gives each class name a score indicating how
well it matches the image. Finally, they reinterpret these scores as confidences in the image
belonging to each class. The result is a classifier that performs a task it was not trained for. In
other words, it performs the task zero-shot. The authors test this model on various datasets and
find that in many cases, it performs very well. Notably, it achieves an accuracy on ImageNet as
high as that of ResNet-50 [He et al., 2016], a commonly used image model, specifically trained
on ImageNet.

They note some interesting patterns in which datasets CLIP does and does not work well
with, compared to linear probing on ResNet50 pre-trained on ImageNet. The performance on the
datasets of general images is decent. For fine-grained classification datasets, however, it varies
a lot, doing best on car model recognition and worst on flower species recognition. This leaves
great uncertainty as to how well zero-shot CLIP classification can be expected to perform on
our fine-grained dataset. The model performs poorly on complex tasks including counting and
judging distance, but this is not likely to affect our use case.

The authors find that using class names as text captions for this kind of classifier can be
problematic when they were not originally written with this use in mind. They note that the
class names in image datasets are often written in such a way that they may confuse CLIP. For
instance, ambiguous label names are common, and they exist in our dataset as well.

It is also a problem that class labels are typically single words that do not resemble most
captions in the dataset CLIP was pre-trained on, which are more likely to be sentences than
individual words. The authors find that it helps to add additional text – a context – around the
class name, for instance “A photo of a [class].”, and use that as the text prompt. Contexts that
are tailor-made for the dataset, such as “A photo of a [class name], a type of pet.” for a dataset
of pet pictures, help more than a context designed to be used with all datasets. Improving
model performance by looking for good prompts in this way is referred to as prompt engineering.

22 CHAPTER 2. BACKGROUND

Ensembling over many prompts per class gives an even greater improvement to the model. They
do this by creating several different prompts and ensembling over the representations of these
prompts before comparing them to the images.

Prompt engineering is likely to be relevant for our dataset as well, as the keywords, even if
translated from Norwegian to English, are often short and provide very little context on their own.
It is also reasonable to suspect that performing prompt engineering on each class individually
will enable the model to perform even better, even though this is not mentioned by the authors.
This might however be labor-intensive to do for our dataset due to the large number of classes,
some of which require expert knowledge.

Prompt engineering can be a tedious process, as the exact wording in the prompt can have
large and counter-intuitive effects on the classifier. Zhou et al. [2021] remove the need for manual
prompt engineering by optimizing the context automatically, a procedure they call CoOp. They
do not actually use a text string as context. Instead, they optimize a list of continuous tokens to
use in place of the language tokens that are usually read by CLIP’s text encoder. This is combined
with the class names to create the final prompts. By training the classifier while keeping CLIP’s
weights frozen, the context is optimized for the task at hand. This means that their approach
requires training and uses training samples, and the classifier is no longer zero-shot.2

Gao et al. [2021] propose a different approach, fine-tuning a two-layer addition to CLIP’s text
and image encoders with task-specific data. They call their method CLIP-adapter and find it to
perform better than CoOp. Zhang et al. [2021] continue this work by finding a way to set the
weights of the adapter without training, calling this new approach Tip-adapter. They set the
weights such that the adapter implements a query-key cache model making use of a set of labeled
reference images. This exhibits similar performance to CLIP-adapter despite being trained, and
it improves further with only minimal fine-tuning.

Image-based classifier

Conde and Turgutlu [2021] use CLIP to perform classification on images of art. Their art
classification task has several features in common with our task, making their work relevant: It
is multi-label and fine-grained image classification, the images are annotated with keyword-like
text, and the domain is quite specific. The art images differ from the images in our dataset
(which is described in subsection 3.1.1) in that they are cleaner and mostly depict single objects
with plain backgrounds and little irrelevant information. This could make it easier for an image
encoder to focus on the relevant task, especially for CLIP, which is not trained for the specific
task. In our case, this could mean that the image representations waste space encoding irrelevant
information like weather and orientation of objects instead of the interesting properties of the
objects.

They evaluate CLIP’s image encoder zero-shot by getting its representation of images in a
reference set and a test set. They then assign labels to each test set image by finding its nearest
neighbor in the reference set and copying the labels of that reference image. This is a 1-NN
model as described in subsection 2.1.3. They achieve an F2 score of 51.61 %, which is similar
to the score of state-of-the-art convolutional neural nets trained on 10 % of the dataset. This
model has the advantages of being simple and not requiring any training. However, using only
the nearest neighbor seems restrictive. It seems reasonable that performance might benefit from
changing the model to a k-nearest neighbors model or in another way allowing it to take more
reference images than one into account.

The authors find two ways of improving the model through fine-tuning. First, they fine-tune
CLIP itself using contrastive training in the same way it was originally pre-trained, but with

2Arguably, manual prompt engineering also requires training samples.

2.2. RELATED WORK 23

task-specific data. This improves the F2 score of the 1-NN model by 3.46 percentage points.
Second, they use the image encoder from this fine-tuned version of CLIP as the basis for a
classifier network, which they train fully supervised. This network improves the F2 score by an
additional 4.9 points. With both of these improvements, the performance is close to a ResNet
[He et al., 2016] trained fully supervised. These results suggest that a form of fine-tuning may
help with our dataset as well.

24 CHAPTER 2. BACKGROUND

Chapter 3

Method

In this chapter, we present FFI’s image dataset, which we use to evaluate models, and provide
details on its composition and properties. We then introduce the pipeline we use to prepare this
data for use with the models. Finally, we present the architectures of our suggested models and
the reasoning behind them. The software we have used and corresponding version numbers are
listed in Appendix A.

3.1 Dataset

3.1.1 Dataset description

Our dataset is a collection of approximately 290 000 military-related images collected from various
sources and for various purposes over time. The dataset is provided by FFI.1 Most of the images
are photographs of types of vehicles or equipment, but the dataset is not limited to this, and
there are also images of other objects such as buildings or soldiers as well as drawings. Most
images have a single object clearly in the foreground, but some contain several objects, some of
which may be in the background and/or partially occluded. Figure 3.1 shows a photo typical of
the dataset.

Approximately 130 000 of the images are labeled with one or more keywords describing the
content of the images, and these are the ones we use in this work, as explained in subsection 3.1.2.
For example, the photo in Figure 3.12 could be labeled with the keywords “tankvogn” (fuel
truck), “lastevogn” (truck), “fireakslet” (four axle), and “Kamaz” (a truck manufacturer).3 Some
keywords do not refer to physical objects, but other concepts, such as “logo”. For our work, we
treat the keywords as labels and attempt to predict them given an image. Since each image can
have any number of labels, this is a multi-label classification problem. Most of the images are
also labeled with information other than the keywords, such as location or the relevant military
branch, but we do not consider this.

Approximately 160 000 of the images have no keywords. It can either be assumed that in
fact, no keywords were relevant to these images, or that they are just not labeled and cannot be
used for supervised machine learning without manual labeling effort by domain experts. Certain

1We do not have the license to share or show these images, so any images shown here are drawn from sources
where the license allows sharing, and not from the dataset.

2The example photo is by Yuriy Lapitskiy and is licensed under CC BY-SA 2.0. It is fetched from https:

//www.flickr.com/photos/74292825@N00/1295897644.
3Where useful, we use English translations of the keywords in this thesis for readability.

25

https://www.flickr.com/photos/74292825@N00/1295897644
https://www.flickr.com/photos/74292825@N00/1295897644

26 CHAPTER 3. METHOD

Figure 3.1: Example image of a four axle tank truck. This image is not taken from the dataset,
but depicts the same vehicle as an image in the dataset and is representative of it.

types of images seem to be more likely to have keywords than others. For instance, images of
trucks are likely to have them, whereas images of airplanes are not.

Certain keywords denote highly domain-specific objects that would require specialized knowl-
edge to recognize. Examples of this are the keywords “Troposcatter” or “Reconnaissance vehicle”.
The separation between keywords is also fine-grained, meaning that the classes can be very sim-
ilar to each other and hard to tell apart. An example of this is the set of keywords “two -”,
“three -”, “four -”, “seven -” and “eight axle vehicle”. To tell the difference between these, a
model would have to know specifically what part of the vehicle to consider, as the vehicles may
otherwise be very similar.

Some of the images in the dataset are duplicates of each other. Some are completely identical,
others are cropped slightly differently or have other insignificant differences. This is likely because
the same image was gathered from different places without the person gathering noticing the
situation.

The images are inconsistently labeled, owing to the way the dataset was built. Some keywords
are present in only some of the relevant images. A good example of this is the keyword “truck”,
which is only present in about 3 000 images. Compare this to the two most common keywords,
“three axle” and “Kamaz”, which have approximately 16 000 and 12 000 occurrences respectively,
even though a large proportion of these occurrences are in reality images of trucks. For example,
an image in the dataset of the exact same vehicle as in Figure 3.1 is labeled with “fuel truck”,
“Kamaz”, and “four axle”, but not “truck” even though it would be relevant to this image. This
issue is at its most apparent in duplicates, where some identical images are labeled differently.
Instead of interpreting the presence or absence of a keyword as a “yes” or “no”, it may be better
to interpret them as “yes” or “maybe”. Although we do still interpret absence as “no”, we
compensate for this by optimizing a metric (the F2 score) that puts more emphasis on sensitivity
than precision, as explained in section 2.1.6.

There are 570 distinct keywords in the dataset, but they are not evenly distributed, with
a few being very common and many being quite rare. Each keyword occurs between 1 and
15964 times, on average 426. The 25., 50., and 75. percentiles are 1, 4, and 139, respectively.

3.1. DATASET 27

TR
EA

KS
LE

T
KA

M
AZ

SA
M

BA
ND

SK
JØ

RE
TØ

Y
FI

RE
AK

SL
ET

UR
AL

RA
DA

R
AN

TE
NN

E
TI

LH
EN

GE
R ZI
L

M
IS

SI
L

BA
KK

E-
TI

L-
LU

FT
 (S

AM
)

ST
RI

DS
VO

GN
TO

AK
SL

ET
M

AZ
SA

M
BA

ND
SP

AN
SE

RV
OG

N
VE

DL
IK

EH
OL

DS
KJ

ØR
ET

ØY
ST

OR
M

PA
NS

ER
VO

GN
TR

AN
SP

OR
TP

AN
SE

RV
OG

N
M

T-
LB

u
[a

cr
on

ym
 1

]
LA

ST
EV

OG
N

BT
R-

80
UB

ÅT
KO

M
M

AN
DO

VO
GN

[a
cr

on
ym

 2
]

JA
M

M
ER

RA
KE

TT
KA

ST
ER

GA
Z-

66
KO

M
M

AN
DO

PA
NS

ER
VO

GN
TA

UB
ÅT GA
Z

UA
V

SA
TC

OM
TA

NK
VO

GN
AR

TI
LL

ER
I S

EL
VD

RE
VE

T
FE

LT
VO

GN
PE

IL
ER

IN
GE

NI
ØR

AR
BE

ID
SM

AS
KI

N
GE

NE
RA

TO
R

AV
DE

LI
NG

SM
ER

KE
M

IS
SI

L
BA

KK
E-

TI
L-

BA
KK

E
(S

SM
)

RE
DN

IN
GS

TJ
EN

ES
TE BA
Z

KR
AZ

GR
EN

SE
VA

KT
KR

AN
VO

GN

Keyword

0

2000

4000

6000

8000

10000

12000

14000

16000

Nu
m

be
r o

f o
cc

ur
en

ce
s

Figure 3.2: The 45 most common keywords and their number of occurrences.

100 101 102 103 104

Number of occurences

0

20

40

60

80

100

120

140

Nu
m

be
r o

f k
ey

wo
rd

s

Figure 3.3: Distribution of the number of occurrences per keyword.

28 CHAPTER 3. METHOD

0 2 4 6 8 10
Number of keywords

0

10000

20000

30000

40000

50000

60000

70000

Nu
m

be
r o

f s
am

pl
es

Figure 3.4: The distribution of the number of keywords per image, limited to the range [1, 10].

151 keywords occur exactly once. Figure 3.2 shows the number of occurrences of the 45 most
common keywords. The distribution of the number of occurrences per keyword can be seen in
figure 3.3.

Of the approximately 131,000 images that have associated keywords, each one has between 1
and 50 keywords, on average 1.86. The 25., 50., and 75. percentiles are 1, 1, and 3, respectively.
Figure 3.4 shows the distribution of the number of keywords per image, excluding those without
any keywords. Very few images have more than a handful of keywords.

3.1.2 Data preparation

Before training, optimizing, and evaluating the models, we prepare the dataset. The data prepa-
ration is based on Bynke [2021]. Figure 3.5 shows the data preparation pipeline. The first step
is removing any images that have no keywords. This follows the assumption described in subsec-
tion 3.1.1 that these images have not been considered for labeling and thus should not be used
for training or evaluation.

We then give the images as input to CLIP’s image encoder, obtaining a representation vector
for each image. All further processing will make use of this vector instead of the raw image
data. We normalize the vectors by dividing them by their norms. This has the effect that taking
the dot product between any such vectors later will be the same as finding the cosine similarity
between them, as demonstrated in Equation 2.1. In Figure 3.5 the normalization is not shown
but assumed to be part of the encoding step.

Using the representation vectors we calculate the cosine similarities between all images. These
similarities are then used to remove duplicates. If two images have a similarity above a certain
threshold, they are considered suspected duplicates, and one of them is removed. If more than
two images are duplicates of each other, all except one are removed. If the duplicates have
a similarity above an even higher threshold, they are considered certain duplicates, and any
keywords in the removed images are copied to their duplicate. The purpose of this is to not
waste label information when the labels of the duplicate images differ. To decide on the values
of the two thresholds we manually inspect randomly sampled images along with the image most

3.1. DATASET 29

All images
and keywords

Remove images
without keywords

Encode images

Labeled images

Get highest
similarities

Remove duplicates

Labeled image vectors

Similarities

Remove rare
keywords

Get highest soft-
maxed similarities

Labeled image vectors

Stratify

Similarities

Divide us-
ing stratums

Stratums

Validation setTraining set Test set

Figure 3.5: The data preparation pipeline. Each box represents a process in the pipeline. The
figure is adapted from Bynke [2021].

30 CHAPTER 3. METHOD

similar to them and label them as duplicates or not duplicates. We then use logistic regression
to model the probability of the two images being duplicates as a function of the cosine similarity
between them. We calculate the two similarity values that, when given as input to the regression
model, return probabilities of 1 % and 99 % respectively. These two are the values we set as our
two thresholds. We continue to sample and label image pairs until these thresholds converge.

As shown in Figure 3.3, most of the keywords occur very few times. We choose to exclude
keywords occurring less than 50 times in the training set. This is because we suspect that some
of these rare keywords disturb the results. Some seem to be sporadically applied only to one
or a few images even though they are in fact relevant for many others. Assuming that a model
correctly suggests such a label for those other images, these suggestions would be counted as false
positives and impact the result unfairly. Some of the rare keywords come from image keywords
that do not fit in with the rest or are completely irrelevant, for instance dates, corrupt strings,
or strings of only question marks. These stem from the non-homogeneous sources and use cases
of the images gathered for this dataset. After removing rare keywords, 159 distinct keywords
remain.

For building and evaluating models we split the data into a training set, a validation set,
and a test set. We want each of these sets to preserve the variation and the distribution of all
properties of the full dataset as well as possible. Sampling images randomly for creating these
sets runs the risk of producing sets that are not representative of the full dataset. This happens
the most easily for properties that are represented by only a few samples, such as a very small
class, as the chance of sampling a disproportionate amount of a group is higher when the group
is small. The large number of samples helps reduce this problem, but to reduce it further, we
use stratification when distributing the samples. Stratification means to divide the data into
relatively homogeneous groups (stratums) before dividing each of these groups proportionally.
This has the effect of keeping the distribution of a property of interest.

For single-label classification problems, stratification can be done by sampling the specified
proportion of images from each class, thus keeping the distribution of the labels. This simple
approach does not work with multi-label samples because each sample may belong to several
classes and may thus be picked several times. We instead stratify using a surrogate measure:
highest “softmaxed” similarity. For each image, the cosine similarity with every other image
is calculated, and the softmax operation is applied to these similarities.4 The highest of the
resulting similarities is then used as a stratification value for that image. The idea is that it
serves as a measure of the number of relevant examples available: many relevant examples give
a low maximum “softmaxed” similarity and vice versa. Since this is a continuous variable, the
samples are divided into ten equally sized groups using quantiles. These are the groups used
in the stratification. We split the data into training, validation, and test sets according to the
proportions 60 %, 20 %, and 20 %. When the data preparation is done, the training set has
75 992 samples while the validation and test sets have 25 331 samples each. This means that
126 654 images remain in the final sets, a reduction from 290 070 images in the original set.5

3.2 Model architectures

We evaluate three models: text similarity, image similarity search, and an image similarity
network based on a cache model. They all take CLIP image representation vectors as input and
output a confidence score for each class for each input image vector. Another image encoder

4Note that the cosine similarity between every pair of images is used twice in the data preparation pipeline –
here and when finding duplicates. By reusing the results from earlier instead of calculating them again, this
process can be sped up.

5Counting 2 images that were removed manually as they were corrupt, the original dataset had 290 072 images.

3.2. MODEL ARCHITECTURES 31

than CLIP’s could be used instead. Figure 3.6 shows how each model is then used to create label
suggestions for images. The class confidence scores are finally compared against a threshold. If
an image’s score for a class is at or above this threshold, the class is returned as a suggested
label for the image. The threshold is decided by optimizing the model’s performance on the
validation set, as described in section 4.2. There is no limit for the number of classes that could
be suggested as labels for the same image, making this a multi-label classifier.

Query images

Image encoder

Model

Image representation vectors

Threshold

Class confidence scores

Label suggestions

Figure 3.6: The architecture common to all models

3.2.1 Language-image model

This method is adapted from the original classification approach of Radford et al. [2021]. For the
purposes of this thesis, we refer to it as the language-image model. Each class name is converted
into an artificial caption by placing it in a context such as “a picture of a [class name]”. Each
caption is then fed through CLIP’s text encoder, converting it to a text representation vector.
The input image is fed through CLIP’s image encoder, and the resulting image representation
vector is compared to each caption’s representation vector with cosine similarity. To adapt the
method to the multi-label case, we do not perform a softmax operation on the cosine similarity
scores of the image, but instead rescale them from the range [−1, 1] to [0, 1] and interpret them
as confidence scores. In practice, the scores do not typically use the entire range, but tend to lie
around 0.5–0.7. We could adjust for this and use the entire range in a more meaningful way, but
this is not necessary as we are only interested in whether each score is above or below a certain
threshold.

Like Radford et al. [2021] we allow the model to aggregate several contexts. We provided

32 CHAPTER 3. METHOD

various contexts such as “a photo of a [class]”, “a drawing of a ”, and “a picture from the
military of a [class]”. An artificial caption is created for each class name and each context
before all captions are converted to text representation vectors. For each class, the model takes
a weighted average of all the corresponding text representation vectors. This weighted average
is then used when the model compares images to captions. The context weights are tuned as
hyperparameters.

Label translation

Since the labels are mostly in Norwegian, we translate them to learn how this affects the per-
formance. We translate them both automatically and manually, resulting in three different
sets of labels to evaluate the model with: untranslated, automatically translated, and manually
translated. We use Google Translate to generate the automatic translations. The manual trans-
lation was done in collaboration with a domain expert at FFI. Table 3.1 shows examples of the
translations. The automatic translations have obvious flaws, and it is easy to find examples of
incorrect translations. Only 3 of the 10 labels in Table 3.1 are correctly labeled. For instance,
“stridsvogn” (main battle tank) is translated to “trailer”, “tankvogn” (tank truck) to “tank”,
and “sambandspanservogn” (armoured communication vehicle) to “community travel”. Transla-
tions like these are likely to mislead and confuse the model. Nevertheless, on manual inspection,
it seems reasonable that these labels might be more helpful than the original Norwegian labels
for the text encoder of CLIP, which was trained on English captions.

Original label Automatically translated Manual translation

treakslet treakslet three axle vehicle
sambandskjøretøy communication vehicle communication vehicle
fireakslet fireakslet four axle vehicle
antenne antenna antenna
tilhenger supporter trailer
missil bakke-til-luft (SAM) missil ground-to-air (SAM) surface-to-air missile (SAM)
stridsvogn trailer main battle tank
toakslet toakslet two axle vehicle
sambandspanservogn community travel armoured communication vehicle
vedlikeholdskjøretøy maintenance vehicle maintenance vehicle

Table 3.1: The 10 most common labels, excluding those that would be the same in English
as in Norwegian, and their automatically and manually generated translations. The correct
automatically generated translations are highlighted in bold.

3.2.2 Neighbor search model

We have implemented a model using CLIP’s image encoder to predict image labels based on
already labeled reference images. We refer to it as the neighbor search model.

Figure 3.7 shows the model’s architecture. It takes as input an image to analyze (the query
image) as well as a set of reference images, and it gives suggested labels as output in the form
of a set of classes with associated scores. The label scores reflect to what degree each label is
present on reference images that are similar in content to the query image. This is used as a
proxy for the probability of the query image belonging to each class.

3.2. MODEL ARCHITECTURES 33

Query image

Image encoder

Reference images
Reference im-

age labels

Image encoder

Cosine similarity

Filter

Softmax
Aggregate labels
with weighting

Label suggestions
for query image

Figure 3.7: The architecture of the neighbor search model

The core of the model is an image similarity search utilizing image representations provided
by an image encoder. We use the image encoder from CLIP, but this could in principle be any
model converting images into representation vectors. We compute the representations for the
query image as well as for all of the reference images. With many reference images, computing
all the representations is quite costly, taking approximately 5 hours for our labeled dataset of
130 000 images on a GPU. When several searches are to be performed with the same reference
images, we therefore cache the image representations and reuse them in subsequent searches,
greatly reducing the running time. The computation could likely be optimized, but with caching
it was unnecessary for our use.

We then calculate the cosine similarity between the query representation and each reference
representation. Like CLIP, we multiply these similarities by a certain factor before using them.
CLIP uses a factor of 100, resulting in similarity scores in the interval [−100, 100].6 For our
model, we optimize this factor as a hyperparameter, which we call the softmax temperature due
to its effect on the softmax operation that comes next.

The resulting scores are sorted and filtered, keeping only the best matches, defined as images
having a similarity score above a certain threshold, restricted to at most a certain number of
images. If the query image is itself also present in the reference set, this also needs to be removed
in the filter, or else it will be a perfect match and completely dominate the search result. We set
the similarity score threshold for the filter as the score of the best match found minus a maximum
similarity difference, optimized as a hyperparameter. For instance, if this maximum difference
is set to 7, images with a score lower than the threshold would have a score after softmax of at

6In practice, the number 100.125 is observed, probably due to float precision errors when calculating the cosine
similarity.

34 CHAPTER 3. METHOD

most 0.0009, which would be negligible. Setting a low value reduces the necessary computation
in the later steps. The maximum number of neighbors is also optimized as a hyperparameter.
For performance reasons, we do not let the maximum similarity difference or maximum number
of neighbors go above 8 or 200 respectively during hyperparameter search.

After the filter, we take the softmax of the remaining similarity scores and collect the labels
of the corresponding reference images. The similarity scores after softmax are now interpreted
as weights representing how relevant each reference image is for suggesting labels for the query
image. By extension, we interpret them as weights for the labels of the reference images. For
each label present in the reference images, we take the sum of all the weights given to it. We now
have a set of labels, each with an assigned score between zero and one, which we call the label’s
confidence score. Ideally, this score should be close to one for correct labels, and close to zero
for incorrect labels. For performance reasons, we add the weights of the most similar reference
images first and stop when the cumulative weight of all the processed images reaches 0.99, as
any further processing will have a minimal impact on the result.

The model can also present the reference images that were important for the result, to the
user, making it possible to verify that they are in fact relevant. This can help the user understand
what informed the result, and thus how much they can trust it. Alternatively, the user can ignore
the labels suggested by the model, only looking at the best matches and their labels.

Other approaches for converting search results into labels are possible. One could choose not
to weight the reference images, but let each one count equally to the result. This is equivalent
to setting the softmax temperature to 0. In that case, the filter should probably be made more
restrictive, allowing fewer reference images to pass through. This can be accomplished by lowering
the maximum similarity difference or maximum number of neighbors. The filter could also be
changed. It could select a certain number of the most similar images each time and otherwise
ignore the similarity scores. This would make the process more similar to a standard k-nearest
neighbors model. It could also select every reference image above a certain constant similarity
threshold. This might especially make sense if it is necessary to reduce the dependence on the
user inspecting the matching reference images and verifying that they are reasonable matches.

3.2.3 Neighbor net models

During work on this thesis, Zhang et al. [2021] introduced the model Tip-adapter, mentioned
in section 2.2.2. Inspired by this, we adopt the idea of implementing an image cache model
like the one presented by Orhan [2018] as a two-layer neural network, to be used as is or with
fine-tuning. Such a cache model works similarly to our image similarity search but does not filter
the matching reference images. Like the other models, it takes as input the features of the query
image as calculated by an image encoder and gives as output a confidence score between 0 and 1
for each class. We present two versions of this model: one largely unmodified version of a cache
model and one with more substantial modifications. We refer to these as the simple neighbor net
model and the class-wise neighbor net model respectively.

Simple neighbor net model

Without training, the calculations of the simple neighbor net are equivalent to the neighbor
search described in subsection 3.2.2 and shown in Figure 3.7 except that it does not have a filter
to restrict the number of neighbors to consider. Implementing the model as a neural network
makes it possible to fine-tune it.7

7It also has the added benefit of making the model much faster than the neighbor search, as the entire model
can be efficiently run on a GPU, as opposed to only a few of the operations with the neighbor search.

3.2. MODEL ARCHITECTURES 35

Query im-
age vectors

Linear layer

(B × d)

Reference image
vectors (Fr) (N × d)

Temperature (eτ)Multiply

(B ×N)

Softmax along
reference samples

(B ×N)

Linear layer

(B ×N)

Class scores

(B × C)

Expand

(B ×N)

Multiply

(B ×N × C)

−∞ masking

(B ×N × C)

Reference labels
(Lr) (N × C)(transp.)

Softmax along
reference samples

(B ×N × C)

Element-wise
multiply

Weights (B ×N × C)

Sum along
reference samples

(B ×N × C)

Rescale to [0, 1]

(B × C)

Class scores

(B × C)

Figure 3.8: The architecture of the simple neighbor net (left branch) and the class-wise neighbor
net (right branch). The middle part of the figure is common to both models. B is the number
of query images in a batch. Tensor dimensions are shown in parentheses.

36 CHAPTER 3. METHOD

The leftmost branch of Figure 3.8 shows the architecture of this model. The first linear layer
of the network calculates the cosine similarity between the query image and each reference image.
Adapting the notation from Zhang et al. [2021], this is achieved by setting its weights to Fr, a
N × d matrix whose rows are the feature vectors of all the reference samples. Here, N is the
number of reference samples, and d is the size of the feature vectors. Taking the feature vector
fq of the query image as input, the layer computes the matrix-vector product Frfq, which is
a vector of size N containing the cosine similarity between the query image and each of the
reference images.

To obtain normalized weights, we multiply this vector by a softmax temperature factor eτ

and then perform the softmax operation σ. Thus, the first layer along with the softmax can be
summarized as S = σ(eτFrfq).

The second layer weights the labels of the reference images by their similarities by computing
ŷ = LT

r S. Here, Lr is a N×C matrix, where each of the N rows contains the labels of a reference
image as C numbers, either 0 or 1, one for each class. ŷ now contains confidence scores for each
class and is the final output of the network.

Although the modifications made to the neighbor search model to create the simple neighbor
net model were inspired by Tip-adapter [Zhang et al., 2021], some differences remain between our
model and Tip-adapter. In what the authors call a residual connection, Tip-adapter combines
the class scores from the cache model with those of zero-shot CLIP, utilizing both reference
images and text. Tip-adapter’s cache model also uses a different function to determine the
weights of the reference images, whereas our simple neighbor net model uses the same function
as Orhan [2018], which is also equivalent to our neighbor search model’s weights. Our model is
also adapted to handle multi-label classification, which Tip-adapter does not. We achieve this
mainly by normalizing the weights of the reference images such that the final linear combination
of reference labels contains numbers between 0 and 1. A difference worth mentioning outside
of the architecture itself is that Zhang et al. [2021] test Tip-adapter on the task of classifying
ImageNet images and not a specialized domain dataset.

Class-wise neighbor net model

The simple neighbor net model applies the softmax operation across all reference image similar-
ities without regard to their labels. This normalizes the similarities making them sum to one.
Especially when aggregating the reference images and using a one-hot encoding for the labels (see
the explanation of aggregation below) this can make the classes compete for the same confidence
score points if reference images from several classes get a high similarity score compared to the
query image. This is not desirable in a multi-label setting, where several classes should be able
to get a high confidence score at the same time.

To prevent this, the class-wise neighbor net model looks at reference images of each class
separately, explicitly considering how similar the reference images of each class are to the query
image. It then summarizes these similarities into one number for each class, which we interpret
as the class confidence score. This raises the question of how to summarize the similarities.
Natural ways to do this are to take their average or their maximum. However, both of these
approaches may introduce issues. Using the maximum similarity within each class can be thought
of as answering the question “How similar is the query image to the most similar reference
image of each class?”. An issue with this is that it does not at all take into account any other
reference images than the most similar one and might be too easily fooled by a single noisy
or unrepresentative reference image. Using the average similarity for each class instead would
be less susceptible to noise. However, we suspect that it would hinder the model’s ability to
recognize classes that have great variation in image appearance. For example, the class “Search

3.2. MODEL ARCHITECTURES 37

and rescue (SAR)” in our dataset contains images of helicopters, of people, and of other pieces
of equipment. Averaging similarities across these very different images could lose important
information.

We try to avoid these issues by, instead of the (equally weighted) average or maximum, choos-
ing to use a weighted average of the similarities, using the similarities after a softmax operation
as weights. This is a generalization of the two approaches which allows the model optimization
to find a good middle ground between them. By multiplying with a softmax temperature first,
softmax can generate weights focusing completely on the most similar reference image (using
an infinitely high temperature) or weight each reference image equally (using a temperature of
0). Since this model variant considers the similarities of the reference images from each class
separately, we call this the class-wise neighbor net.

The rightmost branch of Figure 3.8 shows the architecture of this model. It implements the
class-wise similarity softmax described above. To avoid loops and allow for running efficiently
on a GPU, it is implemented as a series of tensor operations that processes all classes at once.
The “Expand” operation adds a new dimension for the classes by repeating the input along that
dimension. The similarities are then multiplied by the softmax temperature. −∞ is inserted at
all positions where the reference label is 0, leaving the original input only in positions (b, n, c)
such that reference image n belongs to class c. This is followed by a softmax operation along the
reference sample dimension. Inserting −∞ before the softmax has the effect of applying a mask
for the softmax, making it place a 0 in all positions that are not relevant for the class in question,
and thus letting the values within each class sum to 1. The output of the softmax operation is
now the weights that are to be used for the weighted average of the similarities. This weighted
average is produced by multiplying these weights element-wise by the original similarities after
the expansion from earlier and then summing along the reference sample dimension. The output
is now a weighted average for each class of the similarity with the reference images belonging to
that class, giving a higher weight to the most similar reference images. Finally, the results are
rescaled linearly from [-1, 1] to [0, 1].

Fine-tuning

Due to the design of the network and the way its weights are initialized, it can be used zero-shot,
or it can be fine-tuned. The only parameters that we train during fine-tuning, are the weights
of the first linear layer, which are initialized to Fr, and the softmax temperature eτ , which is
trained as its logarithm τ as in Radford et al. [2021].8 As opposed to Radford et al. [2021], we
do not clamp the temperature to a maximum of 100. The weights of the second linear layer of
the simple neighbor net are frozen. The linear layers do not have any biases.

Aggregating reference samples

Using all reference samples in the first layer of the network has the disadvantage of resulting in
a very large weight matrix for large training sets. This can impact performance and hinder fine-
tuning due to overfitting. In our case, with approximately 80.000 reference images and feature
vectors of size 512, this matrix contains around 40 million weights. This is fine performance-wise,
but we do see signs of overfitting.

Zhang et al. [2021] explore averaging the representation vectors of groups of samples to create
fewer “prototype” samples. This makes it possible to reduce the number of samples, and thus
parameters, to a constant number per class regardless of the original number of samples. They

8To circumvent numerical issues during training, the softmax temperature for the class-wise neighbor net is
optimized as a hyperparameter instead of trained as a normal parameter.

38 CHAPTER 3. METHOD

use 16 as their number of prototypes per class. They find that these 16 prototype samples can
capture information from the added additional available samples, and that fine-tuning helps to
avoid diminishing returns as the number of samples grows. We adopt this method but adjust it to
account for our problem being multi-label instead of multi-class classification. Zhang et al. [2021]
also limit this exploration to the relatively few-shot case, testing a maximum of 128 samples per
class, whereas our most common classes have several thousand samples. It is thus not known
how well the approach works in our case.

Since Zhang et al. [2021] are concerned with single-label classification, they can exploit some
simplifying properties of this problem that simplify the aggregation, but that are not valid for
the multi-label case. One such property is that each reference sample contributes to exactly one
class’s prototype sample. With multi-label samples, however, a choice must be made: Should a
sample with several labels be included in prototype samples of all relevant classes, or only one?
We choose to include it in all relevant classes, avoiding the need to choose between the classes,
and utilizing the information of every label. This means that the more classes a sample belongs
to, the more influence it will have in the model’s decisions. This may not be a bad thing, as a
sample belonging to many classes does indeed mean that it is relevant in many cases.

Another simplifying property is that creating labels for the prototype samples is trivial with
single-label samples, as they are all identical within each group – they belong to the same class.
where labels within each class are identical, they do not address how to aggregate the labels of
the reference images during aggregation. In multi-label classification, reference images belonging
to the same class can have different labels, as they can also belong to other classes apart from
the one in question. This means that not just the samples’ representation vectors must be
aggregated, but also their labels.

We implement two ways to aggregate the labels: simple averaging and one-hot encoding.
Averaging allows a prototype sample that was created for one class, to contribute to other
classes as well. For example, if a prototype sample for class 1 is made from 10 samples, all of
which belong to class 1, 5 of which to class 2 and none to class 3, the label of the prototype
sample will be [1, 0.5, 0], and any similarity between the query image and this prototype sample
will contribute half as much to class 2 as it will to class 1. With one-hot encoding, we ignore
the labels of the reference samples that make up the prototype sample, and replace them with
a one-hot encoding of the class that the prototype sample was made for. In the example above,
this would result in the label for the prototype sample being [1, 0, 0] even though some of the
samples belonged to class 2. Since the samples belonging to class 2 are included in the prototype
samples of that class anyway, the samples can still convey this information through them.

Zhang et al. [2021] aggregate samples into prototype samples by creating groups randomly
before averaging their representation vectors. As the number of samples to aggregate, and with it
the number of samples per group to average, grows, we expect these averages to become less and
less meaningful. Due to the law of large numbers, we can expect the averages from the different
aggregation groups for a class to tend to the same vector, losing information about any variation
within the class. This could be solved by increasing the number of prototype samples per class,
but this would partially defeat their purpose, letting the number of parameters grow along with
the number of available samples. To avoid this we evaluate grouping the samples by similarity
instead of randomly before averaging representation vectors. We use clustering to put similar
reference samples in the same aggregation group, letting each cluster serve as an aggregation
group. The motivation is that this will allow the prototype samples to each capture their own
variation of the class and better represent the entire class. We use mini batch k-means clustering
for creating the clusters to speed up calculation with large numbers of samples compared to
normal k-means clustering. This is explained in subsection 2.1.5. An artifact of the clustering
is that some of the clusters may be empty, especially if the number of samples is low compared

3.2. MODEL ARCHITECTURES 39

to the number of clusters. We detect this and set the aggregated representation vector of empty
clusters to the zero vector, causing the dot product with any query image representation vector
to be 0 and thus in practice not being considered further.

40 CHAPTER 3. METHOD

Chapter 4

Experiments and Results

Research question 2, along with its subquestions, asks how to best harness the knowledge from
CLIP’s language-image pre-training. In this chapter, we present the experiments that we perform
to shed light on this. We describe the experiments and how they are carried out, present the
specific hyperparameters used for each variant of the models, and present the results of the
experiments.

4.1 Experimental Plan

We perform experiments to answer research question 2 from section 1.2, which concerns how
to best utilize CLIP for our task. We evaluate the language-image model, the neighbor search
model, different variations of the neighbor net model, and a 1-NN as a baseline. These models
are described in section 3.2. Some of the models have more room for variation than others.
We experiment with different variants and identify each model’s best-performing variant. This
variant is what we finally use to compare the models to each other.

4.1.1 Data and model pipeline

We implement the models with similar interfaces such that they can be used as part of the same
pipeline. Figure 4.1 shows our pipeline for training, optimizing, and evaluating the models on our
dataset. The pipeline is automated only to a certain extent, with certain parts being performed
manually.

The dataset is first prepared by the process outlined in subsection 3.1.2. This process produces
three datasets: a training set, a validation set, and a test set. When working with the image-
similarity-based models, we also refer to the training set as the reference set, as these are the
images used as reference images by these models. Depending on the model architecture, we
either use the training/reference set for constructing the model and possibly fine-tuning it, or
we do not use it at all. We perform hyperparameter optimization using the validation set. This
includes setting the class confidence threshold. Finally, we evaluate the optimized models using
the test set.

Following Conde and Turgutlu [2021], we use the F2 score (described in 2.1.6) as a metric
for optimizing and comparing methods. This takes both precision and recall into account, but
gives recall twice as much weight as precision. All the models output class confidence scores
between 0 and 1 for each image-class pair, but the F2 score does not consider the exact value
of the confidence scores, only whether or not it is above the model’s threshold. Other metrics

41

42 CHAPTER 4. EXPERIMENTS AND RESULTS

Full dataset

Data preparation

Validation setTraining set Test set

Train and op-
timize model

Model architecture Evaluate model
model

Results

Figure 4.1: The model pipeline

such as mean squared error or area under the ROC curve do consider the confidence scores1

and may give a better indication of the model’s ability to differentiate high and low confidence
answers. However, we believe that the F2 score captures the most essential aspects of the models’
performance well, focusing on the task of either suggesting a label for an image or not suggesting
it. For fine-tuning the neighbor nets we use mean squared error as loss, as this requires a
differentiable measure.

4.1.2 Language-image model

Our language-image model is based on the zero-shot classifier by Radford et al. [2021]. In that
work, the model is evaluated on multi-class classification using various datasets. We aim to
answer subquestion 2 a from section 1.2 asking how well the approach works on our type of data
and for multi-label classification. The model is described in subsection 3.2.1.

For this model, we experiment with three versions of the class names: the original Norwegian
labels, automatically translated labels, and manually translated labels. We store the translations
as mappings from original name to translated name and use these mappings when building the
model. We evaluate all of these versions with context ensembling. To investigate the impact of
context ensembling, we also evaluate the best of these versions with only one context.

When using context ensembling we have created a list of suggested contexts and optimize the
weight of each context as hyperparameters. The weights are chosen from the range [0, 100] and
then normalized such that their sum to 1. If the weight of a context is set to 0, it is effectively
unused. When not using ensembling, the model is optimized by evaluating one context at a

1The area under the ROC curve depends on the confidence scores indirectly by considering many threshold
values.

4.1. EXPERIMENTAL PLAN 43

time and choosing the best one. When using the original Norwegian labels, we supply suggested
Norwegian contexts as well as the same English contexts that we use for the English labels. The
Norwegian contexts are merely translated versions of the English contexts. It is then up to the
hyperparameter optimization to decide whether to use English or Norwegian contexts or both.

4.1.3 Image-based models

To answer subquestion 2 b from section 1.2, which asks how well suited the image features
learned by CLIP’s image encoder are for our task, we perform several experiments using only
these image features. These experiments evaluate the neighbor search model and the neighbor
net model variants, which are described in section 3.2, as well as the baseline 1-NN model.

1-NN model

As a baseline, we evaluate a simple 1-nearest neighbor (1-NN) model like the one used by Conde
and Turgutlu [2021] for fine-grained multi-label classification. k-NN models are described in
subsection 2.1.3. In practice, we use our implementation of the neighbor search described in
section 3.2 to implement the 1-NN baseline model. This is possible because 1-NN is a special case
of the neighbor search. We do this by setting the hyperparameter for the maximum number of
neighbors of the neighbor search to one. Doing this effectively puts the other two hyperparameters
out of effect, as they make no difference when the number of neighbors is only one.

Neighbor search model

The neighbor search model has no variants to test other than varying hyperparameters, which is
handled by hyperparameter optimization. We therefore only present one experiment using this
model.

Neighbor net models

The neighbor net model has several variants. Variants include the simple and class-wise archi-
tectures, and nets with and without prototyping, clustering, and fine-tuning and with different
ways to create the labels of the prototype samples. These properties and the motivation for
introducing them are described in subsection 3.2.3. There are five properties with two options
each that can be varied and combined, resulting in close to 25 = 32 possible model variants.2 We
have not tested all of these, but rather let the evaluation of each change to the models inform
further experimentation. In this process, we use evaluations on the validation set to make model
design decisions during experimentation. However, the results presented in subsection 4.3.3 are
from evaluations on the test set.

During experiments, it turned out that introducing prototype samples reduced performance
when not fine-tuning. However, a motivation for introducing prototype samples was specifi-
cally to help with fine-tuning by reducing overfitting. Since hyperparameter optimization is
considerable faster without fine-tuning, we experiment further with prototype samples with-
out fine-tuning. Then, after identifying which properties give the best result, we reintroduce
fine-tuning.

When using prototype samples, we mostly use 16 prototypes like CLIP-art [Conde and
Turgutlu, 2021], but we also make an attempt to optimize this number as a hyperparameter.

2In reality, not all combinations are possible – for instance – clustering requires using prototypes, so the real
number is a bit lower.

44 CHAPTER 4. EXPERIMENTS AND RESULTS

4.2 Experimental Setup

This section contains information about the optimization results necessary for reproducing the
experiments.

We optimize each method that uses hyperparameters using the validation set and Bayesian
optimization, which is explained in section 2.1.7. We start the process with 10 random initial-
ization iterations. The optimization stops when the 10 best F2 scores are all within a window of
0.1 percentage points, or after a maximum of 1000 iterations. The best set of hyperparameters
found are used for evaluation on the test set, and we report the result of this evaluation.

The models output a confidence score for each class, but calculating certain metrics – F2

score, for instance – requires binary predictions. Depending on the use case, binary predictions
may also be required when putting the model to use, such as when deciding whether to suggest
the class to the user. We set a threshold for the confidence score above which the class is
included as a suggested label. This threshold is set at the value that maximizes the F2 score on
the validation set for the model in question.

4.2.1 Language-image model

The hyperparameters of this model are the relative weights of the different contexts. The sug-
gested contexts are written manually based on the experiences reported by Radford et al. [2021].
Table 4.1 shows the hyperparameters for the language-image model with context ensembling as
well as the full set of suggested candidates. The model seems to have a certain preference for
the endpoints 0 and 100, meaning no weight and equal weight. The reason for this is unknown;
there might be an artifact of the Bayesian optimization that makes the minimum or maximum
allowed values more likely to be chosen. For the experiment without context ensembling, the
context chosen by optimization was “a photo from the military of a {}”.

For the automatically translated labels, the hyperparameter search returned a weight of 38.13
for the context “a picture of a{}” and 100 or 0 for all other contexts. We discovered that setting
this to zero as well, giving equal weight to the remaining 6 contexts, gave equal or slightly
improved results, and we use this manual modification in our experiment for simplicity. The
same was not true for the single non-endpoint weight of the model with manually translated
labels, which was 12.57.

Table 4.2 shows the optimal class confidence threshold for each model.

4.2.2 Image-based models

1-NN model

Since k is fixed to 1, this model has no meaningful hyperparameters and thus requires no op-
timization. The class confidence threshold is also unimportant, as this model can only output
class confidences of exactly 0 or 1.

Neighbor search model

This model has three hyperparameters that are optimized through Bayesian optimization: the
softmax temperature – a factor to multiply the similarity score of each reference image by before
performing softmax, the maximum similarity difference, and the maximum number of neighbors
(matching images) to consider, as explained in subsection 3.2.2. As with the other models, we
also find the optimal class confidence threshold. Table 4.3 shows the hyperparameters for the

4.2. EXPERIMENTAL SETUP 45

Label translation

Context None Automatic Manual

a photo of {} 0 0 0
a photo of a {} 0 0 0
a picture of a {} 0 0 0
a drawing of a {} 100 100 100
an illustration of a {} 100 100 0
a photo of a big {} 100 100 0
a photo of a small {} 55.78 0 0
a military photo of a {} 100 0 12.57
a photo from the military of a {} 100 0 100
a picture from the military of a {} 46.01 100 100
this photo from the military contains a {} 23.21 100 0
this photo from military contains a {} 100 100 0
a photo of a {}, a type of military equipment 0 0 0
a photo of a {}, a type of vehicle 0 0 0

et fotografi av {} 0 - -
et fotografi av en {} 0 - -
et bilde av en {} 72.07 - -
en tegning av en {} 83.99 - -
en illustrasjon av {} 0 - -
et fotografi av en stor {} 0 - -
et fotografi av en liten {} 0 - -
et militært fotografi av en {} 0 - -
et fotografi fra militæret av en {} 0 - -
et bilde fra militæret av en {} 22.97 - -
dette fotografiet fra militæret inneholder en {} 0 - -
dette fotografiet fra militær inneholder en {} 0 - -
et fotografi av {}, en type militært utstyr 0 - -
et fotografi av {}, en type kjøretøy 0 - -

Table 4.1: The hyperparameters (relative context weights) used for the language-image model.
“{}” denotes the position of the class label.

Context ensembling Label translation Threshold

Context ensemble
Original labels 63.30 %
Automatic 63.70 %
Manual 64.06 %

Single context Manual 64.90 %

Table 4.2: The class confidence threshold used for each variant of the language-image model.

46 CHAPTER 4. EXPERIMENTS AND RESULTS

image similarity search model that were found during optimization on the validation set and
used for evaluation on the test set.

Hyperparameter Value

Softmax temperature 68.566
Maximum similarity difference 5.2568
Maximum number of neighbors 36
Class confidence threshold 14.34 %

Table 4.3: The hyperparameters used for the neighbor search model

Neighbor net model

M
o
d

el

P
ro

to
ty

p
es

C
lu

st
er

in
g

P
ro

to
ty

p
e

la
b

el
s

F
in

e-
tu

n
ed

S
of

tm
ax

te
m

p
er

a
tu

re

E
p

o
ch

s

M
in

i-
b

at
ch

si
ze

L
ea

rn
in

g
ra

te

M
om

en
tu

m

Simple

No - - No 105.60 - - - -
No - - Yes 105.60 6 319 0.000016878 0.10277
16 No One-hot No 10.557 - - - -
16 Yes One-hot No 57.704 - - - -
16 Yes Average No 43.653 - - - -
16 Yes Average Yes 43.653 12 33 9.8052 0.36597
4241 Yes Average No 102.13 - - - -

Class-wise
16 Yes - No 14.193 - - - -
16 Yes - Yes 4.9755 63 64 100 0.90390
16 No - Yes 1 100 64 52.2653 0.99

Table 4.4: The hyperparameters used for each variant of the neighbor net model. The values in
italics are not optimized. For the simple neighbor net with fine-tuning, the softmax temperature
is trained, and the value shown is its initial value before training.

Table 4.4 shows the hyperparameters used for the different variants of the neighbor net model.
When not fine-tuning, the softmax temperature is the only optimized hyperparameter. For fine-
tuning we use stochastic gradient descent (SGD) with a cosine annealing learning rate scheduler
like Tip-adapter [Zhang et al., 2021]. We do not use warm restarts for the scheduler, as it
does not seem to improve performance. We found that the mini-batch size and learning rate
used by Tip-adapter3 did not work well for training our model. Instead, we optimize them as
hyperparameters. We also optimize the number of epochs as well as a momentum factor for SGD.
As loss, we use mean squared error instead of the binary cross entropy used by Tip-adapter. This

3Tip-adapter uses a mini-batch size of 256 and a learning rate of 0.001.

4.3. EXPERIMENTAL RESULTS 47

is to keep the loss from exploding when confidence scores outputted by the model are exactly 0
or 1, which they can be as there is no activation function at the end of the network.

When fine-tuning the simple neighbor net model, like Radford et al. [2021], we train the
softmax temperature as a normal parameter during the fine-tuning to avoid having to optimize
it as a hyperparameter. We then initialize the temperature to the value used by the corresponding
model without fine-tuning, which was found through hyperparameter optimization. This way the
models are identical before fine-tuning starts, and the training can start improving it immediately
instead of finding a good softmax temperature separately. For the class-wise neighbor net model,
the softmax temperature is not trainable, so we optimize it as a hyperparameter.

4.3 Experimental Results

We now present the results of the experiments grouped by type of model. We then compare the
best variant of each model along with the 1-nearest neighbor baseline. We present the F2 score
of all model variants and a broader selection of metrics for the final comparison. We also show
how well the models recognized individual classes. Finally, we show each model’s output for an
example image.

As explained in section 2.1.6, the precision metric and, through it, the F2 score depend on
the prevalence of the dataset and can not be used to meaningfully compare classifiers that have
been evaluated on datasets with different prevalences. The prevalence of the test set used to
generate the results presented in this section is 1.16 %. In Table 4.8 we also present metrics that
do not depend on prevalence.

4.3.1 Language-image model

Context ensembling Label translation F2 score

Context ensemble
Original labels 11.6 %
Automatic 15.8 %
Manual 19.1 %

Single context Manual 18.6 %

Table 4.5: The results of different variants of the language-image model

Table 4.5 shows the results from experiments with the language-image model. The effect of
translating the labels is clear, with automatic translation performing better than the original,
Norwegian labels, and the manually translated labels performing better still. We also see that
using context ensembling has only a minimal impact on the performance.

4.3.2 Neighbor search model

Table 4.6 shows the performance of the neighbor search model, both restricted to 1 neighbor
and without such a restriction. We also show the result of evaluating the baseline 1-nearest
neighbor model, which we implement as a special case of the neighbor search model. Comparing
the neighbor search to the 1-NN model, we see that allowing the use of several neighbors has a
significant impact on the F2 score, increasing it by 10.9 percentage points.

48 CHAPTER 4. EXPERIMENTS AND RESULTS

Model F2 score

1-NN 45.8 %
Neighbor search 56.8 %

Table 4.6: Results of the neighbor search model and the 1-NN model, where the latter is imple-
mented as a special case of the former.

4.3.3 Neighbor net model

Fine-tuned

Model Prototypes Clustering Prototype labels No Yes

Simple neighbor net

No - - 55.8 % 55.8 %
16 No One-hot 22.5 %
16 Yes One-hot 27.6 %
16 Yes Average 38.6 % 54.8 %
Optimized Yes Average 55.1 %

Class-wise neighbor net
16 Yes - 17.8 % 55.3 %
16 No - 55.9 %

Table 4.7: F2 scores of different variants of the neighbor net model.

Table 4.7 shows a comparison of the different variants of the neighbor net models that we
have tested.

Introducing prototype samples without fine-tuning worsens the F2 score considerably from
55.8 % to 22.5 %, as well as all other metrics (not included in the table). When introducing
fine-tuning in addition to the prototype samples, the F2 score increases to 54.8 %, 1.0 percentage
points short of the performance without prototype samples.

When optimizing the number of prototypes, the hyperparameter search found 4241 prototype
samples to be the optimal number, resulting in an F2 score without fine-tuning of 55.1 %, which
is still slightly lower (0.7 percentage points) than the score without prototype samples. However,
this is without fine-tuning. Doing the same optimization with fine-tuning would be interesting
in future work.

We see that using clustering improved the F2 score of the simple neighbor net without fine-
tuning from 22.5 % to 27.6 %, an improvement of 5.1 percentage points. The class-wise neighbor
net with fine-tuning performed slightly better without clustering, with an F2 score of 55.9 % as
compared to 55.3 %. It is not clear that this small difference is more than random variation, and
it is certainly not large.

Using average labels for the prototype samples instead of one-hot encoded labels improved
the F2 score from 27.6 % to 38.6 %, an improvement of 11.0 percentage points.

Without fine-tuning, the class-wise neighbor net performs much worse than the simple neigh-
bor net. Compared to the best performing simple neighbor net without fine-tuning, the F2 score
was reduced from 38.6 % to 17.8 %, a reduction of 20.8 percentage points. However, with fine-
tuning, the performance of the class-wise neighbor net is 1.1 percentage points better than the
simple neighbor net. The class-wise neighbor net is not made to use the average prototype labels,
and this column is thus unused in the table.

The best performing variation is the class-wise neighbor net with fine-tuning and without

4.3. EXPERIMENTAL RESULTS 49

clustering, which achieved an F2 score of 55.9 %. This is less than 0.1 percentage points better
than the simple neighbor net without prototypes, which achieved an F2 score of 55.8 % both with
and without fine-tuning. This difference is less than the stopping criteria for the hyperparameter
optimization, which means that it is not significant. This means that the best variation was able
to match, but not surpass the performance of the simple neighbor net without fine-tuning or
prototype samples.

4.3.4 Model comparison

Model F2 score MSE Recall Precision Accuracy Subset acc. ROC AUC

Language-image 19.1 % 0.3760 38.9 % 6.3 % 92.6 % 2.5 % 0.805
1-NN 45.8 % 0.0126 45.9 % 45.6 % 98.7 % 35.8 % 0.726
Neighbor search 56.8 % 0.0075 66.5 % 35.8 % 98.2 % 18.2 % 0.945
Simple neighbor net 55.8 % 0.0077 65.8 % 34.7 % 98.2 % 19.7 % 0.969
Class-wise neighbor net 55.9 % 0.0078 65.0 % 35.8 % 98.2 % 11.3 % 0.942

Table 4.8: Comparison of different methods, using micro averaging where applicable.

Table 4.8 compares the best variants of each model, also showing other metrics than the
F2 score. We see that all image-based models greatly outperform the zero-shot language-image
model. The F2 score of the language-image model is 26.7 percentage points below the 1-NN
baseline.

The neighbor search model is the best performing model and improves the F2 score with 11.0
percentage points compared to the 1-NN baseline. The neighbor net models come close to this
result, but do not improve upon it. The simple and class-wise neighbor nets improve the F2

score by 10.0 and 10.1 percentage points respectively.

To give a more complete view of the differences between the various models, we include several
metrics in addition to the F2 score in Table 4.8. These metrics are described in subsection 2.1.6.
The F2 score is what we optimize during hyperparameter search and model design decisions such
as choosing the best variant of the neighbor net models.

Table 4.9 shows the ROC AUC for each of the 10 most common classes for the different
methods. We choose to show this metric instead of the F2 score because we believe it better
shows the model’s ability to discriminate positive and negative samples across thresholds, not
being restricted by a common threshold for all classes. The neighbor search model has the best
performance in 6/10 cases, and the simple neighbor net is best in the remaining 4/10 cases.
There is very little difference between the two models’ results, owing to the models being nearly
equivalent.

We look more closely at the class-specific performance of the language-image model and the
best image-based model. The language-image model performed at its best on the classes “Patch”,
“Transport helicopter”, “Passenger aircraft”, “Aircraft carrier”, and “Attack helicopter”. It
performed the worst on the classes “Customs” and “Garrison” as well as several acronym names.
On several classes, it even performed worse than random chance. The neighbor search model
performed the best on the classes “Passenger aircraft”, “Attack helicopter”, “Fishing vessel”,
“Emblem”, and “Logo”. It performed the worst on the classes “Minelayer”, “Harbor”, “Self-
propelled mortar”, and “Armored medical evacuation vehicle”.

50 CHAPTER 4. EXPERIMENTS AND RESULTS

Class N
ei

g
h
b

or
se

a
rc

h

1-
N

N

L
a
n

g
u

ag
e-

im
ag

e

S
im

p
le

n
ei

gh
b

o
r

n
et

C
la

ss
-w

is
e

n
ei

g
h
b

o
r

n
et

Three axle vehicle 0.910 0.726 0.744 0.906 0.895
Kamaz 0.936 0.761 0.769 0.933 0.930
Communication vehicle 0.926 0.711 0.815 0.924 0.923
Four axle vehicle 0.926 0.744 0.700 0.925 0.909
Ural Automotive Plant (UralAz) 0.910 0.682 0.688 0.907 0.899
Radar 0.926 0.776 0.812 0.926 0.898
Antenna 0.929 0.771 0.812 0.935 0.920
Zavod imeni Likhachyova (ZiL) 0.917 0.673 0.612 0.914 0.902
Trailer 0.909 0.690 0.724 0.913 0.891
Surface-to-air missile (SAM) 0.905 0.724 0.769 0.911 0.878

Table 4.9: Comparison of the class-specific ROC AUC of different methods on the 10 most
common classes.

4.3.5 Example

To demonstrate the model, we perform inference on the image in Figure 3.1, which is not taken
from our defense dataset. The image depicts a four-axle tank truck from the manufacturer
Kamaz. Table 4.10 shows the final label suggestions for the query image based on these and
other reference images. Demonstrating that the neighbor search model can be used to identify
relevant reference images and present them to the user for inspection, Table 4.11 shows the
keywords and normalized similarity scores of the most similar reference images as judged by the
model. These are the top five images contributing to the final label suggestions for this model
in Table 4.10.

4.3. EXPERIMENTAL RESULTS 51

Label N
ei

g
h
b

or
se

ar
ch

1-
N

N

L
an

g
u

ag
e-

im
ag

e

S
im

p
le

n
ei

g
h
b

or
n

et

C
la

ss
-w

is
e

n
ei

g
h
b

o
r

n
et

Four axle vehicle 33.8 % 65.4 % 29.0 % 19.0 %
Kamaz 79.5 % 100.0 % 66.3 % 71.4 % 53.3 %
Tank truck (POL) 19.8 % 65.8 % 14.0 % 59.2 %
Truck 19.8 % 64.1 % 14.6 % 19.4 %

Armoured bridgelayer 64.2 %
Armoured command vehicle 65.9 %
Armoured communication vehicle 65.5 %
Armoured engineer reconnaissance vehicle 63.9 %
Armoured medical evacuation vehicle 65.3 %
Armoured NBC reconnaissance vehicle 64.0 %
Armoured recovery vehicle (ARV) 65.2 %
Armoured transport vehicle 65.3 %
Artillery command vehicle 65.3 %
Bridgelayer 7.8 %
Command vehicle 65.0 % 6.3 % 11.9 %
Communication vehicle 18.4 % 65.0 % 16.1 %
Container 5.3 %
Crane truck 65.0 %
Decontamination vehicle 65.2 %
Direction finder 4.9 %
Eight axle vehicle 65.4 %
Engineering vehicle 65.2 %
GAZ-66 64.3 %
Generator truck 64.4 %
Heavy equipment transporter (HET) 64.5 %
Kraz 65.5 %
Light utility vehicle (LUV) 64.2 %
Maintenance vehicle 10.8 % 65.2 % 10.2 % 10.6 %
Medical evacuation vehicle 64.5 %
Missile (SSC) 64.1 %
Multiple rocket launcher (MLR) 63.9 %
NBC decontamination vehicle 64.8 %
Reconnaissance vehicle 64.1 %
Recovery vehicle 65.1 %
Self-propelled 64.5 %
Seven axle vehicle 65.5 %
Surface-to-air missile (SAM) 64.1 %
Test vehicle 65.1 %
Three axle vehicle 49.6 % 100.0 % 65.5 % 51.5 % 83.1 %
Two axle vehicle 16.6 % 65.5 % 13.1 % 10.4 %
Ural Automotive Plant (UralAz) 15.1 % 24.0 %

Table 4.10: Label suggestions with corresponding confidence scores of different models using
the image of Figure 3.1 as query image. All confidence scores above its model’s threshold are
included (shown in bold), as well as the three runners-up. The ground-truth labels are written
in bold.

52 CHAPTER 4. EXPERIMENTS AND RESULTS

Match 1 Match 2 Match 3 Match 4 Match 5

Weight 4.7 % 4.6 % 4.0 % 3.5 % 3.5 %

Labels

Kamaz Truck Kamaz Truck Tank truck (POL)
Three-axle Kamaz Communic. vehicle Baz Kamaz

Two-axle Satcom Four-axle Four-axle
Three-axle Heavy equip. transporter
Antenna

Table 4.11: The weights and labels of the five top matching reference images found by the
neighbor search model when using the image of Figure 3.1 as query image. The ground-truth
labels of the query image are shown in bold. Some labels are shortened. Match 5 is an image of
the same exact vehicle.

Chapter 5

Discussion

The results presented in section 4.3 show significant differences in performance across different
models. They also indicate whether the different modifications made to the models improve
them. In this chapter, we evaluate these results and discuss what we can learn from them. First,
following research subquestion 2 a, we consider the zero-shot language-image model, noting
its apparent poor results and discussing possible reasons for it. We then move to research
subquestion 2 b by discussing the neighbor search and net models and their variations. Finally,
following research question 2, we compare all models.

5.1 Language-image model

The fact that the language-image model’s performance increases with each translation – first
automatic and then manual – is not completely surprising. CLIP’s text encoder can be assumed
to have received minimal exposure to Norwegian text and can be expected to perform better
with English text than with Norwegian text. However, as exemplified in section 3.2.1, the
automatically translated labels contain mistakes that sometimes completely lose their meaning.
As such, it was not clear that the automatic translation would increase the F2 score by as much
as 4.2 percentage points, a large increase relative to the score with the original labels of 11.6 %.
The manual translation increases the score further by 3.3 percentage points. This means that
the overall improvement achieved by translating the labels from Norwegian to English is 7.5
percentage points, a substantial improvement.

Context ensembling makes considerably less of a difference, only increasing the F2 score by
0.5 percentage points compared to using only the best performing context. Note that it should be
impossible for the context ensembling to have a negative impact, as the hyperparameter search
space for the context ensembling variant is a superset of that of the single context variant of the
model.

As seen in Table 4.10, the language-image models can return a very long list of suggested
labels. This indicates a poor ability to discriminate between classes, leading to the model “guess-
ing” when in doubt. Contributing to this is the fact that we choose the class confidence threshold
that optimizes the F2 score, which punishes false negatives more than false positives. This is also
reflected in Table 4.8, which shows that the model has a very low precision of 6.3 %. This is even
worse than the particular example used in Table 4.10, where 11 % (4/38) of the suggestions were
correct. However, in Table 4.8 we also see that one ground-truth label barely had a high enough
confidence (64.1 %) to be suggested, demonstrating the model’s need for the low threshold.

53

54 CHAPTER 5. DISCUSSION

A clear conclusion from the results is that the language-image model performs quite poorly
compared to the purely image-based models. There are several differences between these models
that can be the reason for this difference. The language-image model is zero-shot, while the
image-based models make use of the tens of thousands of reference images in our dataset. The
language-image model’s only way to distinguish the classes is to consider the captions, where the
class names are all that differ between them. This means that the language-image model depends
on the class names to convey the concept of the class. If the class name is too general or even
misleading, or if the concept is not contained in the learned representation space of the text and
image encoders, the model will be unable to accurately recognize the class. These problems are
especially pronounced in our case due to the fine-grained nature and quite specialized domain of
our dataset. For instance, the dataset has classes for different numbers of axles on a vehicle. It
would not be surprising if the text encoder does not capture this distinction accurately due to
limited exposure to it in its pre-training data. While the language-image model has to represent
each class only through a single representation vector, the image-based models directly consult
similar reference images from the same distribution and specialized domain, helping it recognize
obscure or varied classes by example.

The language-image model does not have any knowledge of what the dataset looks like,
whereas the neighbor search and neighbor net models use the training set. This is a disadvantage
for the language-image model in cases where the class names are obscure, not self-explanatory,
or ambiguous and where the classes are more easily understood through examples. If a keyword
has poor coverage in the dataset in the sense that it is relevant to many more images than are
actually labeled with it, this can hurt the performance of the language-image model because it
could give what appears to be false positives when an image lacks a keyword that it should have
had. We believe this is not necessarily a weakness of the model, but an artifact of the inconsistent
labels in the test set, as even a perfect model could suffer from this problem. Compared to this,
if the labeling errors are consistent, the neighbor search and neighbor net may profit from being
able to copy the errors of the training set, getting an artificially high score.

On the other hand, the image models’ ability to adapt to the specific distribution might
become a problem if they are used with a different distribution. The language-image model
would likely not be affected by a distribution shift in the same way, but we have not tested
this. Combining the language-image model and an image-based model could get the best of both
worlds, utilizing both reference images and class names. The ablation study for Tip-adapter
[Zhang et al., 2021] indicates that such a combination performs better than either of the models
alone. However, the language-image model performs reasonably well on their task of classifying
ImageNet images, while it does not on our task.

The language-image model may be a good starting point for fine-tuning similar to what we do
with the neighbor net models. The large improvement we see when fine-tuning the neighbor net
models despite having reduced the number of weights by creating 16 prototype samples, may be
possible to replicate at least partially with the language-image model. This would give a similar
weight matrix as using 1 prototype sample per class for the neighbor net, but this number could
be increased, for example by duplicating rows in the matrix while adding some noise to help
gradient descent update the rows differently.

5.2 Image-based models

The neighbor search comfortably outperforms the 1-NN baseline model. The fact that it at least
does not do worse than it, is to be expected. This is because the 1-NN model is a special case
of the neighbor search. Thus, if 1-NN had been optimal, we could expect the hyperparameter

5.2. IMAGE-BASED MODELS 55

optimization of the neighbor search to find it. In other words – the neighbor search performing
worse than 1-NN would indicate a flaw in the hyperparameter search.

The simple neighbor net model with no sample aggregation and no training is almost, but not
quite as good as the neighbor search model. The two are nearly equivalent. The only difference
is that the neighbor search model filters the matching reference images before using them. This
shows that this filter improves the model compared to considering the labels of all reference
images every time. This is further demonstrated by the hyperparameter optimization of the
neighbor search model, which made the filter significantly less inclusive than required by the
search space.

When optimizing the number of prototype samples, the resulting number is higher than the
number of reference samples in almost every class in our dataset. For these classes, the prototype
samples map to the reference samples one-to-one1. This means that the prototype samples have
little effect, and the model is largely the same as a model without prototype samples. The fact
that the hyperparameter search identified this high number as optimal, indicates that reducing
the number of samples at all is not optimal, at least without fine-tuning.

Fine-tuning made no meaningful difference on the simple neighbor net without prototype
samples. All metrics we gathered are extremely close for these two models. The hyperparameter
search also chose a low number of training epochs and a low learning rate, suggesting that
training the model further did not improve it. When using prototype samples, however, fine-
tuning improved performance drastically compared to not fine-tuning. This suggests that the
aggregation of samples into prototypes removed information beyond what was made necessary
by the reduced number of model parameters. It also demonstrates that the fine-tuning was able
to reintroduce this information. However, the performance increased only to around the level
of the model without prototypes, indicating that the prototypes did not help the fine-tuning
improve the original model.

A strength of using CLIP to calculate image similarities is the model’s generality, which arises
from the varied and non-specialized data it has been pre-trained on. However, this can also be
a weakness. Since CLIP’s image encoder is task agnostic – or rather is trained to match general
images with text captions – it might not pay attention only to aspects of the images that are
relevant to our task. For example, for a picture of a vehicle, it might assign high importance
to elements in the environment such as the weather, the type of landscape, or whether there is
snow in the image. When all we are interested in, is the specifics of the vehicle, these elements
may confuse the model and make it pair the image with images of similar landscapes rather
than similar vehicles. If the image encoder had been more specialized for the task, it would
likely be better at knowing what aspects of an image matter. As our task requires fine-grained
classification, the lack of task-specific data during pre-training is likely to hinder its performance.

When given the example image in Figure 3.1 of a tank truck, an image of the exact same
vehicle is only considered to be the fifth most similar reference image (Table 4.11). The four more
similar images contain other green military-looking trucks. This may be caused by confusion by
irrelevant elements in the image as mentioned above. For example, the lighting is so different
between the query image and the real matching reference image that it might not be immediately
obvious even to a human that the color of the truck is the same in the two images. However,
the calculated similarities are nearly the same for all these images, suggesting that the most
important issue is that the image encoder simply struggles to separate the fine-grained classes.
As can be seen from the labels of the identified matches, the model does not seem to give very
high importance to the number of axles. In contrast, it seems to be better at recognizing the
truck’s manufacturer (Kamaz), as confirmed by the very high confidence (79.5 %) in Table 4.10.
Manual inspection indicates that this may be due to the distinct shape of the cabins of the

1In practice, the clustering algorithm may still combine some reference samples into one prototype sample.

56 CHAPTER 5. DISCUSSION

trucks in these images, which seems to be unique to this manufacturer in our dataset and is
easily recognizable by a human.

5.3 Model comparison

It is interesting that while the various models achieve very different F2 scores, there is a striking
number of models in a narrow range between 54.8 % and 56.8 %. This includes the neighbor
search model, the simple neighbor net model without prototype samples and with an optimized
number of prototype samples, and all fine-tuned neighbor net models. This raises the question
of whether there is a limit to how well a model can perform on this dataset, perhaps due to the
inconsistent labels, or if the limitation lies in a part of the model design that is common to the
different models. If the limit lies in the dataset, steps could be taken to make it more consistent,
as suggested in section 6.3.

Mean squared error (MSE) is the metric we optimize during fine-tuning, as it is differentiable,
as opposed to the F2 score. Note that of the models in Table 4.8, the class-wise neighbor net is the
only model that has been fine-tuned. Even though it has been trained directly for minimizing
this metric, it does not have the lowest MSE. The much higher MSE of the language-image
model is a consequence of its confidence scores not using the entire [0, 1] range, as mentioned in
subsection 3.2.1.

The 1-NN model has the highest precision of all models, 9.8 percentage points higher than
that of the neighbor search model. Note however that the recall is 20.6 percentage points lower,
and we have weighted this twice as high as precision through the F2 score. Unlike the neighbor
search model, the 1-NN model does not have a threshold to adjust to make the optimal tradeoff
between recall and precision. It is thus unable to adapt to the difference in importance between
these two metrics. It is likely that if the recall and precision were weighted the same when
choosing the threshold, the neighbor search model would be able to outperform the 1-NN model
in both metrics.

The accuracy of all image-based methods is above 98 %, demonstrating that the dataset is
very imbalanced, as explained in section 2.1.6. As mentioned in section 4.3, the prevalence is
1.16 %, meaning that 98.84 % of the labels are negative. A model could then label all samples as
negative and still get an accuracy of more than 98 %. The differences in subset accuracy are more
pronounced. Notably, the subset accuracy of the 1-NN model is quite high, and considerably
higher than that of any other model. This suggests that there are connections between the
classes that this model is particularly good at recognizing. It may be that by looking only at the
most similar reference image, this model has a higher chance of getting lucky and finding a very
similar image with all the same keywords, and that this information is lost in the noise when
factoring in more reference images.

Also when looking at the ROC AUC, the image-based models perform considerably better
than the language-image model. It is interesting that the simple neighbor net model has a higher
ROC AUC than the neighbor search model despite having a lower F2 score. This indicates that
the simple neighbor net is less sensitive to the choice of threshold than the neighbor search. The
ROC AUC for the 1-NN model is less interesting because it is impossible to adjust the sensitivity
of it other than setting the threshold to 0 (and predicting all samples as positive) or above 1
(and predicting all samples as negative).

Looking at the class-specific ROC AUC scores of Table 4.9 and what classes are handled best
by the language-image and neighbor search models, we see some similarities and some differences.
The language-image model seems to be at its weakest when given acronym class names while
handling more common object names like “Attack helicopter” and “Passenger aircraft” better.

5.3. MODEL COMPARISON 57

The neighbor search model also performs best with the same kind of common objects, but does
the worst with less common objects such as “Self-propelled mortar” and “Armoured medical
evacuation vehicle”.

The difference in the models’ weak classes is likely due to the language-image model’s reliance
on the class names. While the neighbor search model uses the image encoder of CLIP, the
language-image model requires both the text encoder and image encoder to be familiar with
the concept to recognize. When the class name is obscure, either due to uncommon words
or unknown concepts, it is unable to recognize the class well. The similarity in the models’
strengths is interesting. It may indicate a correlation between concepts that are commonly
depicted in images online, and concepts that we can easily describe with common words, and
thus have simple, yet accurate class names. This would be natural, considering that natural
language has evolved to be efficient in day-to-day use. It can also indicate the simple fact that
common concepts are more prevalent in CLIP’s pre-training dataset, and thus both its text and
image encoders were rewarded during training for being able to recognize those. However, as
our dataset comes from a quite specialized domain, the lacking performance with uncommon
concepts impacts the overall performance negatively.

Although the metrics show a great divide in performance, it is interesting to note that, unlike
the 1-NN model, all our own models returned all four ground-truth labels as suggestions for our
example, as can be seen in Table 4.10. Still, the image-based models do this with drastically
fewer suggestions. This is only one example, however, and we must take care to not draw grand
conclusions from this alone. Looking at the models’ recall in Table 4.8 we see that the perfect
recall in our example is indeed above average, with the best methods at around 66 %.

The neighbor search model has the advantage of being explainable. The reference images
that it uses to create its output can be reported and displayed to the user along with their
labels. This allows the user to consider these images and potentially decide that they are in fact
irrelevant or even incorrectly labeled and thus judge whether the model’s label suggestions can
be trusted. In fact, the user can choose to ignore the suggestions altogether and use the model
only to look for relevant reference images. In that case, it may not be problematic if there are
irrelevant reference images at the top of the list, as long as actually relevant images are there as
well for the user to find. An example of such a case is the matches found using Figure 3.1 as
query image, shown in Table 4.11, as discussed in section 5.2.

A disadvantage of the neighbor net models with fine-tuning is that we lose this explainability.
Without fine-tuning, it is possible to make the neighbor net models still report exactly what
reference images contributed to the result and by how much. With fine-tuning, the connection
to the original reference images is lost. The weights that were initialized to the reference images’
representation vectors are no longer L2 normalized, and taking the dot product with a query
image’s representation vector can no longer be interpreted as a cosine similarity. Instead of using
the reference images directly, the model has now learned implicit knowledge that it is unable to
explain to the user, and it has become a black box. In this regard, it becomes similar to neural
networks trained from scratch.

With some modification2, the language-image model has the advantage that it can be used
for semantic search – using text descriptions to search for images. As with the neighbor search
model as described above, the user can choose to ignore the model’s label suggestions and use
the model only to look for relevant images and then inspect them manually.

2The modification would involve comparing one text string to many reference images instead of comparing
many text strings to one query image.

58 CHAPTER 5. DISCUSSION

Chapter 6

Conclusion and future work

6.1 Conclusion

We conclude by reviewing the research questions and seeing what our results tell us about them.

Research question 1 How have previous works approached tasks similar to ours?

In section 2.2 we have presented previous work on image classification problems with properties
similar to our task. Work on fine-grained and on multi-label image classification highlights the
usefulness of the transformer architecture for these tasks. Self-supervised methods exist that
learn image representations well suited for classification. Of these, CLIP is quite suitable for
our task. We have made use of an existing language-image classifier using CLIP’s text and
image encoders, adapting it for our task. We have also adopted an existing 1-NN approach for
fine-grained multi-label classification using CLIP’s image representations as a baseline model. A
cache model has been shown to be effective in combination with CLIP’s image representations,
especially by implementing it as a neural network and fine-tuning it. We are inspired by this
when developing our models.

Subquestion 2 a How well suited is the language-image zero-shot classification method of Rad-
ford et al. [2021] for our task?

A language-image zero-shot classifier adapted for multi-label classification did not perform well
on our dataset. Using the original Norwegian labels, it performed very poorly. Translating the
labels to English helped substantially, but not enough to bring the performance close to the
image-based baseline 1-NN model from Conde and Turgutlu [2021].

Subquestion 2 b How well suited is CLIP’s pre-trained image encoder for our task without using
text?

The best method we have identified for utilizing CLIP’s pre-trained image encoder to do multi-
label classification on our dataset is a nearest-neighbor-inspired model, called the neighbor search
model in this thesis. This performed better than the baseline 1-NN model.

Research question 2 How can the knowledge from CLIP’s pre-training best be harnessed for our
task?

The best method we have found to utilize CLIP’s pre-training knowledge to perform multi-label
classification on our dataset is our neighbor search model. This is a purely image-based model
and does not use CLIP’s text encoder. This performed better than zero-shot language-image
classification and other image-based models we have tested.

59

60 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Contributions

We have explored ways to use a self-supervised language-image pre-trained model, CLIP, as
a basis for an image classifier. Specifically, we have built and evaluated such classifiers on a set
of military-related images.

The task we have evaluated the classifiers on has a set of interesting properties. The images
in the dataset are labeled in the form of text keywords, inviting the use of CLIP’s cross-modal
knowledge. The text labels are in Norwegian, allowing us to investigate the performance of
CLIP’s text encoder on Norwegian text compared to an English translation. The images belong
to a quite specialized domain and are unlikely to have been well represented in CLIP’s generic
pre-training dataset. The task requires fine-grained image classification, which was found by
Radford et al. [2021] to work well with CLIP zero-shot only in some cases. The task is a multi-
label classification task, which none of the tasks tested by them were. The labels in the dataset
are inconsistent, which can confuse models and disturb the evaluation of the models, but is a
realistic scenario in use-cases where high-quality curated datasets for machine learning are not
available.

We have built and evaluated several models based on CLIP’s text and image encoders to
perform this task. One model is a zero-shot classifier making use of text labels similar to the
one created by Radford et al. [2021], adapted for multi-label classification. With this model,
we investigate the effects of the language of the labels. We find that the language of the labels
is important for the language-image classifier’s performance, with English labels performing
better than Norwegian labels, and manual, high-quality translation into English performing
better than automatic translation. However, even with the manual translations, the performance
of the language-image classifier is considerably worse than an image-based 1-nearest neighbor
baseline. We have pointed to issues keeping the language-image classifier from coming close to
the performance of the image-based classifiers. It especially struggles with names of companies
and fine-grained distinctions such as three- versus four-axle vehicles, but even for common objects
such as passenger planes, where it is at its best, it lags behind our other models.

We have also built and evaluated a variety of purely image-based models using CLIP’s learned
image representations directly. These models are inspired by k-nearest neighbors and cache
models. Unlike the zero-shot classifier, they utilize reference images with known labels while still
not requiring any training. We have studied the effects of various model design choices to find a
well performing model. One of these design choices is whether to fine-tune parts of the model.
We find that these image-based classifiers outperform the 1-NN baseline and perform drastically
better than the the zero-shot language-image classifier. Of all models we have evaluated, the
best performing one is a k-NN inspired search procedure that identifies the most similar images
from a set of reference images and uses their labels weighted according to their similarity to the
query image. Our attempts to improve this model by implementing it as a cache model neural
network and fine-tuning it did not help the performance.

6.3 Future Work

In this work we have compared a zero-shot language-image model to image-based models with
access to tens of thousands of training samples, concluding that the latter perform the best. In
a situation where no training data was available, however, our image-based models would not
work, and the language-image model would be better. An interesting question is at what amount
of data the language-image model is outperformed by the best image-based model. This would
give new insight into which situations would benefit the most from the different approaches.

6.3. FUTURE WORK 61

As we have acknowledged, our dataset suffers from problems such as inconsistent labels. While
we made some improvements to the dataset in the data preparation pipeline (subsection 3.1.2),
further improvements can be done by manually correcting individual sample labels. Improving
the dataset may help answer whether its inconsistencies are the reason for what seems like a
limit in performance, as discussed in section 5.3. Inconsistencies can be identified by using our
models to rank the samples by loss. In this way, one can focus the manual inspection on the
samples with a high loss, working on the assumption that these are more likely to deviate from
the majority of the training set. Similarly, the language-image model can be used to identify
which class names are the most unhelpful to it, as indicated by a low F2 score or ROC AUC
for the individual class. These class names can then be manually changed to something that is
believed to be more helpful, the evaluation can be run again and the process repeated for as long
as desired. Our manual class name translation was a way to improve the quality of the data for
use by that model, and we have identified some poorly performing class names, but we have not
done systematic improvement of specific class names based on their performance.

We suspect that a straightforward, but effective way to improve all of our models is to
implement class-wise thresholds. Our models all have a single threshold across all classes that
decides how high a class confidence score must be before the corresponding class is included as
a suggested label. By optimizing a threshold for each class instead, we believe that the models
will be better able to handle the large differences between the classes, for example in how specific
they are. This may especially help the language-image model, which has very limited information
about each class. For the fine-tuned neighbor net models, a similar effect could likely be achieved
by instead adding a trainable bias to the final layer.

We have tried optimizing the number of prototype samples in the simple neighbor net model
without fine-tuning. Doing this with fine-tuning as well would be a natural continuation of this
work. It could identify whether 16 prototype samples are too few or too many to avoid overfitting
while keeping enough model parameters to successfully learn the task.

We have found that the simple neighbor net model without prototype samples and without
fine-tuning performs slightly worse than the neighbor search model, despite the two being nearly
equivalent. Since the neighbor search model is the best performing model, it would be interesting
to see if it could be improved by fine-tuning. This could be done by adding a filter to the simple
neighbor net such that it is completely equivalent to the neighbor search model, before fine-
tuning.

Although the language-image model is clearly outperformed by the image-based models, it
has access to information that the image-based models do not have: class names. A single model
that makes use of this textual information in addition to the reference images could get the best
of both worlds and perform better than a purely image-based model. This could be achieved by
ensembling the existing models or designing a new model that uses both the class names and the
reference images.

62 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. arXiv
preprint arXiv:2005.14165.

Bynke, M. (2021). Preparing noisy multi-labeled image datasets for evaluating language-image
models. Specialization project. Norwegian University of Science and Technology (NTNU).

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. d. O., Kaplan, J., Edwards, H., Burda, Y.,
Joseph, N., Brockman, G., et al. (2021). Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework for contrastive
learning of visual representations.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020b). Big self-supervised
models are strong semi-supervised learners.

Chua, T.-S., Tang, J., Hong, R., Li, H., Luo, Z., and Zheng, Y.-T. (July 8-10, 2009). Nus-wide:
A real-world web image database from national university of singapore. In Proc. of ACM Conf.
on Image and Video Retrieval (CIVR’09), Santorini, Greece.

Conde, M. V. and Turgutlu, K. (2021). Clip-art: Contrastive pre-training for fine-grained art
classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3956–3960.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An image is
worth 16x16 words: Transformers for image recognition at scale. CoRR, abs/2010.11929.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html.

63

64 BIBLIOGRAPHY

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

Gao, P., Geng, S., Zhang, R., Ma, T., Fang, R., Zhang, Y., Li, H., and Qiao, Y.
(2021). Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544.

Grave, E., Joulin, A., and Usunier, N. (2016). Improving neural language models with a contin-
uous cache. arXiv preprint arXiv:1612.04426.

Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an invari-
ant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), volume 2, pages 1735–1742. IEEE.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D.,
Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk,
M. H., Brett, M., Haldane, A., del Ŕıo, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E. (2020).
Array programming with NumPy. Nature, 585(7825):357–362.

He, J., Chen, J.-N., Liu, S., Kortylewski, A., Yang, C., Bai, Y., and Wang, C. (2021). Transfg:
A transformer architecture for fine-grained recognition.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778.

Head, T., Kumar, M., Nahrstaedt, H., Louppe, G., and Shcherbatyi, I. (2021). scikit-optimize.

Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science & Engi-
neering, 9(3):90–95.

Jia, C., Yang, Y., Xia, Y., Chen, Y.-T., Parekh, Z., Pham, H., Le, Q., Sung, Y.-H., Li, Z., and
Duerig, T. (2021). Scaling up visual and vision-language representation learning with noisy
text supervision. In International Conference on Machine Learning, pages 4904–4916. PMLR.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Ž́ıdek, A., Potapenko, A., et al. (2021). Applying and improving alphafold at
casp14. Proteins: Structure, Function, and Bioinformatics, 89(12):1711–1721.

Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L. (2011). Novel dataset for fine-grained
image categorization. In First Workshop on Fine-Grained Visual Categorization, IEEE Con-
ference on Computer Vision and Pattern Recognition, Colorado Springs, CO.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., Willing, C., and develop-
ment team, J. (2016). Jupyter notebooks - a publishing format for reproducible computational
workflows. In Loizides, F. and Scmidt, B., editors, Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, pages 87–90, Netherlands. IOS Press.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J., Gelly, S., and Houlsby, N. (2020).
Big transfer (bit): General visual representation learning. In European conference on computer
vision, pages 491–507. Springer.

BIBLIOGRAPHY 65

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:1097–
1105.

Kuhn, R. (1988). Speech recognition and the frequency of recently used words: A modified
markov model for natural language. In Coling Budapest 1988 Volume 1: International Con-
ference on Computational Linguistics.

Kuhn, R. and De Mori, R. (1990). A cache-based natural language model for speech recognition.
IEEE transactions on pattern analysis and machine intelligence, 12(6):570–583.

Li, J., Li, D., Xiong, C., and Hoi, S. (2022a). Blip: Bootstrapping language-image pre-training
for unified vision-language understanding and generation. arXiv preprint arXiv:2201.12086.

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles, T., Keeling, J.,
Gimeno, F., Lago, A. D., et al. (2022b). Competition-level code generation with alphacode.
arXiv preprint arXiv:2203.07814.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., and Zitnick,
C. L. (2014). Microsoft coco: Common objects in context. In European conference on computer
vision, pages 740–755. Springer.

Liu, S., Zhang, L., Yang, X., Su, H., and Zhu, J. (2021). Query2label: A simple transformer way
to multi-label classification.

Oord, A. v. d., Li, Y., and Vinyals, O. (2018). Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748.

Orhan, E. (2018). A simple cache model for image recognition. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors, Advances in Neural
Information Processing Systems, volume 31. Curran Associates, Inc.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural In-
formation Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830.

Pham, H., Dai, Z., Ghiasi, G., Kawaguchi, K., Liu, H., Yu, A. W., Yu, J., Chen, Y.-T., Luong,
M.-T., Wu, Y., Tan, M., and Le, Q. V. (2021). Combined scaling for open-vocabulary image
classification. arXiv preprint arXiv:2111.10050.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning transferable visual models from natural language
supervision. In International Conference on Machine Learning, pages 8748–8763. PMLR.

Russel, S. J. and Norvig, P. (2010). Artificial intelligence: a modern approach. Pearson Educa-
tion, Inc., Upper Saddle River, New Jersey.

66 BIBLIOGRAPHY

Schütze, H., Manning, C. D., and Raghavan, P. (2008). Introduction to information retrieval.
Cambridge University Press.

Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th international con-
ference on World wide web, pages 1177–1178.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser,
J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016). Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489.

Singh, A., Hu, R., Goswami, V., Couairon, G., Galuba, W., Rohrbach, M., and Kiela, D. (2021).
Flava: A foundational language and vision alignment model. arXiv preprint arXiv:2112.04482.

Streiner, D. L. and Cairney, J. (2007). What’s under the roc? an introduction to receiver
operating characteristics curves. The Canadian Journal of Psychiatry, 52(2):121–128.

The pandas development team (2021). pandas-dev/pandas: Pandas 1.3.3.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and
Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing
systems, pages 5998–6008.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H.,
Powell, R., Ewalds, T., Georgiev, P., et al. (2019). Grandmaster level in starcraft ii using
multi-agent reinforcement learning. Nature, 575(7782):350–354.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. (2011). The caltech-ucsd
birds-200-2011 dataset.

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G. J.,
Ng, A., Liu, B., Yu, P. S., et al. (2008). Top 10 algorithms in data mining. Knowledge and
information systems, 14(1):1–37.

Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini, M., and Wu, Y. (2022). Coca:
Contrastive captioners are image-text foundation models. arXiv preprint arXiv:2205.01917.

Yuan, L., Chen, D., Chen, Y.-L., Codella, N., Dai, X., Gao, J., Hu, H., Huang, X., Li, B., Li,
C., et al. (2021). Florence: A new foundation model for computer vision. arXiv preprint
arXiv:2111.11432.

Zhai, X., Wang, X., Mustafa, B., Steiner, A., Keysers, D., Kolesnikov, A., and Beyer, L. (2021).
Lit: Zero-shot transfer with locked-image text tuning. arXiv preprint arXiv:2111.07991.

Zhang, R., Fang, R., Gao, P., Zhang, W., Li, K., Dai, J., Qiao, Y., and Li, H. (2021).
Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv preprint
arXiv:2111.03930.

Zhou, K., Yang, J., Loy, C. C., and Liu, Z. (2021). Learning to prompt for vision-language
models. arXiv preprint arXiv:2109.01134.

Appendix A

Software

This is a list of software we use and its version numbers.

Python 3.8.10.

PyTorch 1.9.1 [Paszke et al., 2019]. For implementing all models.

CLIP 1.0 [Radford et al., 2021]. For loading the CLIP model and using its image and text
encoders.

Scikit-learn 1.0 [Pedregosa et al., 2011]. Calculating metrics, clustering samples and dividing
the dataset into train, validation and test sets.

Skopt/Scikit-optimize 0.9.0 [Head et al., 2021]. Bayesian hyperparameter optimization.

Deep-translator 1.6.1. Automatically translating class names from Norwegian to English.

NumPy 1.21.2 [Harris et al., 2020]. Matrix and vector manipulation for implementing models
and calculating metrics.

Pandas 1.3.3 [The pandas development team, 2021]. Storing and handling the dataset and its
samples.

Matplotlib 3.4.3 [Hunter, 2007]. For plotting figures.

h5py 3.4.0. Storing and retrieving pre-calculated image features.

Jupyter [Kluyver et al., 2016]. Running Python code in notebooks. It consists of the following
packages: IPython (7.27.0); ipykernel (6.4.1); ipywidgets (7.6.5); jupyter client (7.0.3);
jupyter core (4.8.1); nbclient (0.5.4); nbconvert (6.1.0); nbformat (5.1.3); notebook (6.4.4);
qtconsole (5.1.1); traitlets (5.1.0).

67

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Mathias Bynke

Multi-label image classification with
language-image models

An approach for a fine-grained domain-specific
dataset

Master’s thesis in Computer Science
Supervisor: Kerstin Bach
Co-supervisor: Bernt Ivar Utstøl Nødland
June 2022

M
as

te
r’s

 th
es

is

	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background
	Background Theory
	Image processing
	Contrastive language-image pre-training
	k-nearest neighbors
	Cache model
	k-means clustering
	Performance metrics
	Hyperparameter optimization

	Related work
	Image classification
	Applying language-image pre-training

	Method
	Dataset
	Dataset description
	Data preparation

	Model architectures
	Language-image model
	Neighbor search model
	Neighbor net models

	Experiments and Results
	Experimental Plan
	Data and model pipeline
	Language-image model
	Image-based models

	Experimental Setup
	Language-image model
	Image-based models

	Experimental Results
	Language-image model
	Neighbor search model
	Neighbor net model
	Model comparison
	Example

	Discussion
	Language-image model
	Image-based models
	Model comparison

	Conclusion and future work
	Conclusion
	Contributions
	Future Work

	Bibliography
	Appendix Software

