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Abstract

Robots today are primarily used for tasks that are repetitive and predictable.
However, many tasks that create value for our society include a high degree of
randomness, for example, picking up objects. Because of the immense diversity of
different objects, robots are traditionally restricted to picking in scenarios where
the object’s geometry is known and no disturbances occur.

Considering the general problem of real-world manipulation tasks, model-free re-
inforcement learning appears to provide a suitable family of algorithms, as they
make no assumptions about of dynamics of the system. Instead, they find the
action necessary to solve the task through experience. This thesis will study
these methods, focusing on their application to robotic grasping, evaluating their
performance and limitations when picking previously unseen objects. A series of
experiments are performed in a simulated environment, where two popular model-
free reinforcement learning algorithms, Soft Actor-Critic and Proximal Policy Op-
timization are tasked with picking up a cube with a robotic manipulator.

It is shown that model-free reinforcement learning algorithms provide a frame-
work that can be applied to various manipulation problems. The results show
that such algorithms can solve the picking task in the simulator without task-
specific refinement. The thesis also highlights significant challenges that hinder
the algorithms from solving general manipulation problems in practice, most im-
portantly the need for large quantities of data. Finally, potential solutions to the
identified challenges are identified and presented.





Sammendrag

Roboter i dag brukes først og fremst til oppgaver som er repetitive og forutsigbare.
Men mange oppgaver som skaper verdi for samfunnet vårt inkluderer høy grad
av tilfeldighet, for eksempel å plukke opp gjenstander. På grunn av det enorme
mangfoldet av forskjellige objekter, er roboter tradisjonelt begrenset til å plukke
i miljøer der objektets geometri er kjent og ingen forstyrrelser oppstår.

Tatt i betraktning det generelle problemet med manipulasjonsoppgaver i den
virkelige verden, ser modellfri reinforcement learning ut som svært passende fam-
ilie av algoritmer, siden de ikke gjør noen antagelser om systemets dynamikk. I
stedet finner de sekvensen av handlinger nødvendig for å løse oppgaven gjennom
erfaring. Denne oppgaven vil studere disse metodene, med fokus på deres anven-
delse på griping av objekter med roboter, samt evaluere deres ytelse og begren-
sninger når de plukker objekter som ikke er sett tidligere. En serie eksperimenter
utføres i et simulert miljø, der de to populære modellfrie reinforcement learning-
algoritmene Soft Actor-Critic og Proximal Policy Optimization får i oppgave å
plukke opp en kube med en mekanisk manipulator.

Det er vist at modellfrie reinforcement learning-algoritmer gir et rammeverk som
kan brukes på ulike manipulasjonsproblemer. Resultatene viser at slike algo-
ritmer kan løse plukkeoppgaven i simulatoren uten oppgavespesifikk tilpasning.
Oppgaven belyser også betydelige utfordringer som hindrer algoritmene i å løse
generelle manipulasjonsproblemer i praksis, viktigst av alt behovet for store data-
mengder. Til slutt identifiseres og presenteres mulige løsninger på de identifiserte
utfordringene.
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Chapter 1.

Introduction

Robots are getting more intelligent. In different areas, they seem to manage super-
human tasks, such as doing backflips with drones [16] or beating the best human
player consistently in the game of Go. [46] However, how come robots cannot
help us with more everyday tasks, like washing the dishes? What about clearly
significant tasks, like healthcare and taking care of the elderly? Shouldn’t these
intelligent machines be helping us personally in our everyday lives? Why don’t
we see them on the front lines in the case of emergencies and natural disasters,
where help is desperately needed?

This absence of robots in everyday scenarios comes down to the fact that tasks
that are easy for humans are not necessarily easy for robots. Roughly speaking,
robots have traditionally been exceptional compared to humans in following rules
that solve the problem. On the other hand, humans are masters of tasks that
require experience.

Consider the task of picking up a previously unseen object. Seen through human
eyes, this is no considerable achievement. However, when it comes to specifying
a set of rules that apply to every object, the task grows complicated, and it is
considered one of the most challenging tasks within robotics. Even with knowledge
of scene geometry, determining where to grasp an object is a significant challenge.

The introduction will start by providing a set of scenarios to motivate the im-
provement of autonomy of robots. It will then go on to describe a fundamental
challenge of robotic autonomy, namely manipulation, before defining the main
topic of this thesis, robotic grasping. Section 1.4 will provide a helpful frame-
work by introducing the see-think-act cycle. Next, results from deep learning and
deep reinforcement learning will be presented, to motivate an emerging trend of
applying these method to solve robotic problems. Finally, it will describe the
specific problem considered in the report and list the contributions. The overview
in section 1.9 will outline the rest of the thesis.



2 Chapter 1. Introduction

1.1. Motivating scenarios
The following paragraphs will provide motivating examples of why robotic ma-
nipulation is essential to improve, a skill critical in many scenarios.

1.1.1. E-commerce

In E-commerce, consumers typically order custom orders, and the products are
picked from a highly diverse assortment. In contrast to in-house production,
keeping track of every possible product, its shape, and its weight, for example, is
impossible. Many suppliers may supply the products, and the assortment changes
rapidly. Therefore, humans are often tasked with picking as robots fail to pick
the vast array of products consistently. However, companies mention that finding
human resources for this monotonous work is challenging, and robots can work
longer hours and go without sensitivity to temperature, air quality, and lighting.
[38]

Amazon was ranked as the third company globally by total revenue in 2021 [5],
with retail as its primary source of income. [11] In 2015, they offered $ 20 000
as the winning prize in their Amazon Picking Challenge, where top universities
applied robotics research to the task of picking. Such an initiative highlights the
demand for using robotics in E-commerce.

1.1.2. Manufacturing

Advances in robotics are historically due to demand in large-scale industries, and
it is indeed a significant driving force behind technological development today.
Automation of standard processes such as assembling parts into a product and
bin-picking components are active research areas. [49] Human-robot collaboration
also demands a high level of intelligence, including assertion of human intentions
and subtle communication.

In a competitive market, new products will be introduced frequently. A robot
executing a pre-programmed trajectory in a production cycle will need to be re-
programmed upon introducing a new product. Humans will be able to take brief
instructions to produce the new product quickly. Improving robotic manipulation
can heighten abstraction, pushing down the time needed to set up production for
a new product, as instructions can be given more concisely.
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1.1.3. Human assistance

In our lives, we are surrounded by objects that are important to us, and the utility
robots have for us will primarily be based on their ability to handle everyday
objects.

In robot-human collaboration, tasks involving picking and handing objects are
abundant. A motivating example, although futuristic, is a robotic assistant in
the kitchen. The need to pick up food products or utensils will be a large part
of the assistant’s work. Another example of assistance is picking up and bringing
personal objects on-demand in healthcare or assisting disabled and older people.
As in E-commerce, there are seldom any restrictions on what objects the robot
might encounter.

1.1.4. Inaccessible and dangerous environments

Environments where human access involves danger, for example, in space or un-
derwater, have called for the help of robots. There, the need for robust autonomy
is strong because of the impossibility of human intervention. In some cases, com-
munication is not possible, prohibiting teleoperation. Examples of tasks in such
environments are inspection and maintenance of subsea installations or explo-
ration of other planets.

During the Fukushima disaster in 2010, several robots were sent to assist the
dangerous work at the nuclear power plant contaminated by radiation. The harsh
conditions, as well as lack of communication, made the robots of limited use. Four
years later, DARPA hosted a challenge where autonomous robots should exit a
vehicle, open a door knob, and turn a valve. The competition was inspired by the
dire need for improvement that the Fukushima disaster revealed. [6]

1.1.5. Teleoperation

Achievements of human teleoperating dextrous robots set a high benchmark for
the capabilities of state-of-the-art hardware. For example, the ANA Avatar X-
price semifinal winners, NimbRo, manage to grasp objects and sort them by weight
with their avatar system. [42] Their showcase of dexterity and presence shows that
humans can use similar actuation and sensors to operate a robot to grasp novel
objects, among other many other tasks. However, latency is an issue even in
situations where teleoperation is possible. An onboard algorithm would be able
to act faster on sensory input.
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1.2. Robotic manipulation
The motivational examples mentioned above call for advances in many regards;
however, this report will focus on the general manipulation problem. Mason [27]
gives several definitions of the term, including the following:

Definition 1 Manipulation refers to an agent’s control of its environment through
selective contact.

This class of problems includes a highly diverse set of tasks; examples are opening
doors, building Lego, folding clothes, and pouring liquids. These are typically nat-
ural tasks to humans, involving our hands, and happen ubiquitously in everyday
activities. The following paragraphs will provide specific challenges in empowering
robots to perform manipulation tasks.

Sparse rewards

Many robotic manipulation problems are often binary marked as solved or not
solved; however, obtaining a solved state can require a complex sequence of actu-
ation signals to the robot. When opening a door, measuring whether the door is
open at the end of a trial is simple and well defined. However, the sequences that
the agent has to perform to succeed are unlikely to encounter, given no reward
signal before task completion. Ibarz et al. [14] describe this as finding the high
reward needle in the zero reward haystack.

Generalization

Compared to a lab setup, the diversity of encountered problems is enormous, even
within a single manipulation problem in the real world. Opening a door at the
level of humans, for example, involves being able to cope with any conceivable
door design. The step from solving the problem for a specific door in a lab to
opening doors in the real world is substantial. [7]

Sensing

Manipulation tasks often imply understanding the scene geometry and the poses of
the objects; however, the complete state of the scene is seldom directly observable.
Onboard sensors usually consist of cameras providing 2D images or 3-D depth
images, leaving the agent with the task of extracting useful information from
images about the scene to complete the task.
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Robustness

Unlike a simulated environment or a lab setup, executing tasks in the real world
implies being robust to external disturbances. Having the ability to recover and
replan in the case of unforeseen factors is crucial, especially in inaccessible envi-
ronments.

1.3. Robotic grasping
Kalashnikov et al. [15] argue that grasping includes a large part of the challenges
shared with the much broader robotic manipulation problem. They point to
the challenge of generalization as a critical shared factor. The abundance of
geometries, appearances, weights, and materials makes robotic grasping an ideal
scenario to develop and evaluate methods that can point to solutions to the general
manipulation problem.

Robotic grasping is the task of using a gripper and reasonable sensory inputs to
pick up an object from the environment, fixing it rigidly to the end-effector of the
robot, enabling the robot to use it further.

In many manipulation tasks, robotic grasping arises as a sub-problem. Opening a
door, for example, includes the robot rigidly grasping the door handle such that it
can be used to open the door. In collaborative manufacturing, handing objects to
humans or receiving them can be viewed as an extension of the grasping problem;
the object is no longer stationary in a container or on a surface but in the hand
of a human.

1.3.1. Challenges of robotic grasping

Robotic grasping tasks can take many forms. The complexity of the task and
the resulting solutions heavily rely on specific factors of the grasping task. The
objects might be isolated on a table or buried in a container among other objects.
In addition, object with specific properties prove to be especially challenging to
grasp.

Deformable objects pose a challenge in several ways. Firstly, the object’s ap-
pearance changes under forces, making the degrees of freedom not restricted to 6,
as for a rigid object. For image-based manipulation, the actor has to generalize
and recognize the object under all deformations. Deformability also challenges
finding a good grasp, as the geometry changes during contact.

Specular and transparent objects also pose a similar challenge, as the ap-
pearance can change rapidly depending on the viewing angle, background, and
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surroundings

1.4. The see-think-act cycle

Figure 1.1.: The see-think-act cycle, as described by Siegwart et al. in their
book “Introduction to Autonomous Mobile Robots”

[45]

The see-think-act cycle describes a framework for robotic control:

1. See: Use exteroceptive and interoceptive sensors to get information about
the robot’s state and its surroundings.

2. Think: Using this information, determine what actions to take to reach a
specified goal. This goal can be more than a location; more generally, it can
be a desired state of the robot and the environment.

3. Act: Execute the actions in the environment. For example, move the end-
effector or the whole robot to a location using actuators and motion control.

This cycle is visualized in figure 1.1, showing the cycle of perception, planning,
and motion control. The approach is also termed deliberative control. [44]

In the context of this cycle, this thesis will restrict its view to the “think”-process.
Choosing the actions to take can be done using various techniques. For example,
a map of the environment can be estimated. Then, a planning algorithm can find
a suitable trajectory for the robot to reach a given goal.
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1.5. Deep learning
In the context of generalization, there is a parallel to classification problems in
computer vision. Image classification is a task highly intuitive for humans, build-
ing on experience and understanding of the world around us. However, formulat-
ing a set of rules a machine can perform to infer whether a picture contains a cat
is inconceivable.

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [36], a clas-
sification challenge consisting of millions of images and hundreds of classes, aims
to benchmark state-of-the-art algorithms on the task of object classification. Work
by Krizhevsky et al. [20] outperformed the competitors with the AlexNet-architecture,
a deep convolutional neural network. Their report concludes that the depth of
the network is crucial to obtaining such high results. This fact proves that this
seemingly intuitive task for humans demands a high computing complexity.

In the case of image classification, deep neural networks can capture the compli-
cated relationship between appearance and object categories. The intractability
of stating these rules is evident by the sheer size of these networks; the AlexNet
has 60 million learned parameters. [20]

Image classification has seen significant advancements; however, recent progress
has flattened. In terms of accuracy on the ImageNet dataset, the best performance
rose from 51 to 80 between 2011 and 2016. From 2016 to 2022, it rose to 90. The
last instance of ILSRVC took place in 2017, further suggesting that the necessary
breakthroughs have been achieved. Robotic grasping, however, still prevails as an
unsolved challenge.

1.6. Deep reinforcement learning
In recent years, the field of deep reinforcement learning (deep RL) has produced
several success stories. In contrast to supervised learning, as is typically used
in image classification, RL is learning how to act in situations to maximize a
numerical reward signal. [50, p. 1]

In 2015, Mnih et al. [28] devised a method capable of performing above human
experts on an extensive range of Atari games. Their method observes only the
screen output of the games and learns complicated tactics to achieve high scores.
Shortly after, in 2016, Silver et al. [46] used Deep RL to construct AlphaGo, an
algorithm beating the best human Go-player. This goal has achievement has been
marked as outstanding and previously thought to be ten years away.
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1.6.1. Deep RL for robotics

Deep RL has shown many promising results within robotics, learning complex
locomotion gaits [41][8][13] and performing several manipulation tasks such as
solving a Rubik’s cube. [31] Specifically for grasping, Kalashnikov et al. [15]
demonstrated that a model free-approach could generalize to grasp unseen objects
using only observations from an RGB camera. Their method, termed QT-Opt,
will be further described in the related works. Their results hint that model-free
methods are promising in the challenge of generalizing in terms of grasping and
the general manipulation tasks.

1.7. Problem statement
The fundamental motivation for this thesis is the need to develop robots that
can perform manipulation tasks at a human level or above, as exemplified by the
motivational examples in section 1.1.

Referring to the see-think-act cycle, see figure 1.1, this thesis will focus on the
“thinking”-stage, taking place after extraction and processing of sensory data and
before acting in the environment.

The thesis will narrow its focus to robotic grasping, as it is a challenging task
inheriting many of the challenges common to manipulation tasks, such as gener-
alization.

Within the restrictions, this thesis looks at promising methods to tackle the grasp-
ing problem’s challenges and, ultimately, general robotic manipulation. Due to
the recent breakthroughs using deep RL, we will explore how such algorithms can
be used to solve a grasping problem.

Specifically, we will assume a setup similar to that described in appendix A as a
system for deployment, and the task of picking up a cube. The thesis will study
the possibilities and challenges of using model-free methods by running several
experiments in a simulated environment.

Limitations in time motivate us to look for open-source implementations and
lightweight frameworks. This pragmatic approach can prove helpful to practi-
tioners who do not have access to large-scale computing power and lack the time
and skill necessary to implement specific methods.

1.8. Contributions
This report will contribute the following:
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1. An overview and discussion of several relevant works on the topic of robotic
grasping

2. An evaluation of two popular model-free deep RL algorithms applied to
robotic grasping in a simulated environment

3. A discussion of apparent challenges and benefits of deep RL in the context
of robotic grasping and general robotic manipulation.

1.9. Thesis overview
Chapter 2 will present preliminaries supporting the related work and the methods
used in the experiments. Chapter 3 will discuss the related work and literature
on robotic grasping, and chapter 4 will present the setup and results from a series
of experiments conducted in a simulated environment. The discussion in chapter
5 will regard results from the related work and the experiment in the light of
the problem of robotic grasping and the manipulation problem in general. The
conclusion of chapter 6 will summarize the observations made in the discussion
and point toward exciting topics to explore in further research.





Chapter 2.

Preliminaries

This section will describe the concepts relevant to the methods discussed in chap-
ter 3 on related work.

First, section 2.1 will briefly define fundamental concepts within probability the-
ory. Then, turning to classical reinforcement learning, section 2.2 will define
Markov decision processes (MDPs), which serve as a framework for defining a
wide range of problems. Then, foundational methods for solving MDPs will be
defined in section 2.3. Section 2.4 will move towards problems with continuous
action and state spaces, where formulating the MDP is impossible. Finally, sec-
tion 2.5 and 2.6 will briefly define relevant concepts within optimization and deep
learning, respectively.

2.1. Probability theory
Stochasticity arises when modeling robotic tasks. The environment is often mod-
eled as stochastic, compensating for unavoidable modeling errors. As we will see
in section 2.3, having a stochastic actor has important benefits, allowing for explo-
ration and robustness. Therefore, the concepts of entropy and Kullbach-Leibler
divergence will be briefly defined.

2.1.1. Entropy

The entropy of a distribution is a measure of the uncertainty of the random
variable. Formally, it is the average bits needed to encode an outcome of the
variable. Intuitively, if the random variable has a high probability of realizing to
a small set of values, each of these high-probability outcomes can be encoded with
a small number of bits. If, on the other hand, the random variable can take on a
wide range of values with equal probability, the average number of bits needed to
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represent the outcome is higher. The expression of entropy is analytically defined
as: [35]

H[p(x)] = −
∫
p(x) log2 p(x)dx

For Gaussian distributions in one dimension, this evaluates to:

H[N (µ,Σ)] = 1
2 log(log 2πσ2) + 1

2,

which we can see only depends on the variance σ of the distribution.

2.1.2. Kullback - Leibler divergence

The Kullback-Leibler (KL-) divergence is a measure between two probability dis-
tributions, p and q, and a natural interpretation is as a measure of difference. It
is defined by the following expression:[35]

KL(p||q) =
∫
p(x) log p(x)

q(x)dx

The KL-divergence is always ≥ 0, and for two identical distributions it evaluates
to 0. In addition, it is not symmetrical, KL(p||q) ̸= KL(q||p).

2.2. Markov decision processes
As we will see in the Related Works, it is usual to model problems as Markov
decision processes (MDPs)[15] [10], and it provides an essential foundation for
classical and state-of-the-art methods.

2.2.1. Definition

MDPs are defined by:

• a set of states S

• a set of actions A

• a set of transition probabilities P ass′ = P (st+1 = s′|st = s, at = a)

• a set of rewards rass′ = E[rt|st = s, at = a, st+1 = s′]

It is essential to note the Markovian property of MDPs. The transition probabil-
ities only depend on the current state and action: it does not depend on previous
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actions and states. Therefore, they must include all information necessary to
calculate the distribution of the following state s′.

Also important to note is the expression for the reward. It implies an interest
only in reward expectation and not a dependency on the variance of the reward
distribution. This assumption might be relevant in cases where the notion of risk
adversity is of interest.

Finite MDPs are MDPs with a finite set of states and actions, which will be
assumed in the following sections.

2.2.2. Policies

MDPs offer the possibility of choice through the action set A. Because of the
Markovian property, only the current state is needed to determine which action
to take in an MDP. Policies are therefore defined as functions from states S to
actions A. This mapping is denoted π : S → A.

Non-deterministic policies instead output a distribution over the possible actions
π : S → P (a), a ∈ A. For simplicity of notation, deterministic policies will be
considered for the rest of the discussion on MDPs.

2.2.3. Discounted reward

Consider a policy applied to an MDP. This results in a Markov reward process
(MRP), where the state transitions only depend on the current state, because the
action is determined by the policy: Pss′ = P (st+1 = s′|st = s, at = π(st)).
A sample path in this MRP starting in any initial state s0, can be denoted
(s0, a0, r0, s1, ..). The expected value of timestep-discounted rewards of this tra-
jectory distribution gives the expression for discounted reward:

J(π) = E
[ ∞∑
t=0

γtr(st, π(st))
]
, γ ∈ [0, 1] (2.1)

It incorporates a measure of short-sightedness through the parameter γ. A value
close to 0 gives a higher relative weighting to the earlier returns. Constructing
the policy π to maximize J(π) will result in a shortsighted or myopic behavior.
On the contrary, maximizing the same expression with a γ close to 1 will result
in far-sighted behavior, where rewards in the future will have the same relative
weight as early rewards.

The optimal policy π∗ is defined to maximize J .
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2.2.4. Value function

Given the discounted reward 2.1 and a policy π, the corresponding value function
can be constructed. For every state s, it assigns the expected reward of starting
a trajectory in state s in the resulting MRP. It is defined as

V π(s) = J(π|s0 = s) = E
[ ∞∑
t=0

γtr(st, π(st)) | s0 = s

]

The optimal value function V ∗ is defined to be the value function for the optimal
policy π∗.

2.2.5. Action value function

Another useful quantity is the action-value function. It represents the value of
taking an action in a state s, and thereafter following the policy:

Q(s, a) = E[r(st, at) + γV (s′) | st = s, at = a]

2.2.6. Bellman equation

An important result in the context of MDPs is the Bellman equation. Reformu-
lating the equation for the discounted reward 2.1 gives the following relation:

V π(s) = J(π|s0 = s) = E
[
r(s0, a0) +

∞∑
t=1

γtr(st, π(st)) | s0 = s

]

= E
[
r(s0, a0) + γV π(s′)|s0 = s

]
The Bellman equation connects the value function at state s with the value func-
tions for all the possible successor states s′. It also poses a requirement for the
optimal value function:

V ∗(s) = max
a

[
r(s, a) + γ

∑
s′

P (s′|s, a)V ∗(s′)
]

(2.2)

TD-Error

Observing the transition (s, a, r, s′), we can define the Temporal Difference (TD)
error δTD for the action-value function Q:

δTD = Q(s, a; θ)− r − γmax
a′

Q(s′, a′; θ) (2.3)
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This is closely related to equation 2.2, and will be zero for all state action pairs
for an optimal Q-function.

2.2.7. Optimal policy

Every MDP inherit a fundamental question: “What actions can be taken to max-
imize the expected reward?” As mentioned, the optimal policy associated with an
MDPs is the answer to this question. With the definition of the value function,
we can obtain the optimal policy as a greedy policy utilizing the optimal value
function:

π∗(s) = max
a∈A

E[r(s, a) + γV ∗(s′)p(s′|s, a)]

2.2.8. Maximum entropy MDPs

Maximum entropy RL can be formulated as not only maximizing the discounted
reward of the policy but also the entropy of the policy.

Tang and Haarnoja [43] describe the benefits of maximum entropy learning through
the example in figure 2.1. When maximizing discounted reward, the agent would
tend to find the shortest path as shown in the left-hand figure. It would, however,
not learn the possibility of the lower route, as it is not optimal. When jointly
rewarding the entropy of the policy, the policy will incorporate the near-optimal
behavior of taking the lower route, as it adds to the entropy of the algorithm.

(a) Single path (b) Both paths

Figure 2.1.: A example problem to illustrate the robustness that maximum en-
tropy RL provides. From Tang and Haarnoja [43]

Maximum entropy objective

To maximize for entropy, a new term is added to the discounted reward. For each
timestep, the entropy of the policy is rewarded: [10]

J(π) =
T∑
t=0

E(st,at)∼ρπ
[r(st,at) + αH(π( · |st))] (2.4)
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Here α is called a temperature parameter. Setting this to 0 results in the original
discounted reward. ρπ is the distribution of action and states visited, assuming
trajectories are generated by policy π.

In the context of maximum entropy reinforcement learning, the term “soft” is
often used. This means that all actions have a nonzero probability in every state
[50, p. 100]:

π(a|s) ≥ 0,∀a ∈ A, ∀s ∈ S

2.3. Solving MDPs
This section will describe policy- and value iteration, which are procedures for
finding the optimal policy for a given MDP. Lastly, it will describe the solution
of maximum entropy MDPs, where maximizing the entropy of the policy is an
added objective.

2.3.1. Policy iteration

Using the fact that the optimal policy is simply the greedy policy associated with
the optimal value function, the policy gradient algorithm incrementally improves
the policy by updating to the greedy policy of its value function in each iteration.
The algorithm outlined in algorithm 1, will converge to the optimal policy π∗.

Algorithm 1 Policy Iteration
procedure Policy Iteration

π ← randomPolicy()
while π not converged do

V (s)←∑
s′,r p(s′, r|s, π(s))[r + γV (s′)] ▷ Policy evaluation

π(s)← arg maxa
∑
s′,r p(s′, r|s, a)[r + γV (s′)] ▷ Policy improvement

end while
return π

end procedure

Each iteration requires updating value function approximation for the current
policy, called policy evaluation. This is done by iterating over all states and
updating V (s) in the following manner:

V (s)←
∑
s′,r

p(s′, r|s, π(s))[r + γV (s′)]

The policy improvement step aims to update the policy greedily on current value
function V π. This is done by looping over all states and updating the policy:
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Algorithm 2 Value Iteration
procedure Value Iteration

V0(s)← maxa r(s, a)
while ||Vt − Vt−1||∞ ≤ ϵ do

for each s ∈ S do
Vt(s)← maxa r(s, a) + γ

∑
s′ P (s′|s, a)Vt−1(s)

end for
end while
π(s)← arg maxa

∑
s′,r p(s′, r|s, a)[r + γV (s′)]

return π
end procedure

π(s)← arg max
a

∑
s′,r

p(s′, r|s, a)[r + γV (s′)] (2.5)

2.3.2. Value iteration

Value iteration, in contrast, updates the value function directly. It updates the
next estimate Vt greedily on itself. The algorithm is outlined in algorithm 2.

Note: ||Vt − Vt−1||∞ = maxs |Vt(s)− Vt−1(s)|.

2.3.3. Solving maximum entropy MDPs

Solving MDPs, given the maximum entropy objective of equation 2.4, can be done
using soft policy iteration. In the same manner that policy iteration alternates be-
tween policy evaluation and improvement, soft policy iteration alternates between
soft policy evaluation and improvement.

Soft Policy improvement

Instead of acting greedily on the action-value function, the entropy must also be
considered. This additional objective entails reformulating the policy improve-
ment step from policy improvement, equation 2.5.

To motivate the derivation of the maximum entropy policy improvement, consider
a one step problem with a discrete policy distribution π(a). [32] The objective is
defined as:

max
π(a)

E[r(a)] + αH(π(a)) (2.6)
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This can be posed as an constrained optimization problem over π, which can be
solved using the Lagrangian. The solution to this optimization problem is

π∗(a) = 1
Z

exp
( 1
α
r(a)

)
,

where Z is a normalizer, to ensure that the elements of π sums up to 1.

Z =
∑
a

exp
( 1
α
r(a)

)
The intuition behind the temperature parameter α is illustrated by looking at
the limit when α → 0. We then get that the ratio of the term 1

αr(a) associated
with the highest reward will grow. The result is that all probability is assigned
to this action, simplifying the greedy policy in the classical policy improvement
from equation 2.5.

When α→∞, the ratios between the terms 1
αr(a),a ∈ A goes toward 1, resulting

with all elements of π∗ being weighted by the same probability. This is the other
extreme case, where entropy only is maximized without taking into account the
objective of maximizing reward.

Extending this result to multi step MDPs, we write down the Bellman equation
for the value function, incorporating the entropy objective:

Vk(s) = max
π

E
[
r(s,a) + αH(π(a|s) + Vk−1(s′))

]
(2.7)

The action value function is defined as:

Qk(s,a) = E[r(s,a) + Vk−1(s′)]

Plugging this into equation 2.7 for the Bellman equation for the soft value function
gives:

Vk(s) = max
π

E[Q(s,a) + αH(π(a|s))]

Comparing this expression 2.6 of the objective for the one-step problem, we see
that it is similar, as the only difference is that r(s,a) is changed by Q(s,a).
Consequently, the policy maximizing this objective is:

πk(a|s) = 1
Z

exp
( 1
α
Qk(s,a)

)
(2.8)
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And the value function update for this policy is:

Vk(s) = α log
∑
a

exp
( 1
α
Qk(s,a)

)

2.4. Model-free RL with function approximators
The techniques discussed in the previous sections assume that the MDP can be
represented in a tabular form. From this follows that the action-value function
Q(s, a) can be represented by a matrix (or a tensor) with each element corre-
sponding to taking action a in state s. In many settings, it is infeasible to explore
the state space and the entire action space for each state. The need to generalize
across the state spaces and actions spaces by using assumptions such as continuity,
smoothness, and periodicity is apparent.

For robotic grasping, it is imperative to represent the values and action-value
functions with approximators, thus turning the problem of learning the value
function and the Q-function into regression. This section will describe Q-learning,
which uses function approximators to learn the Q-function. It will then look to
policy search methods, where the parameters of the policy are learned directly.

2.4.1. Q-learning for continuous state and action spaces

In practice, the Q-function can be represented in a tabular form, listing a value
for each possible pair of states and actions. This representation quickly becomes
unpractical with large state and action spaces; typically, parametric functions are
used instead. A Neural Network (NN) is a popular example and is described in
section 2.6 in greater detail.

The TD-error for the Q-function, equation 2.3 provides an objective which can be
used as for fitting the parameters. To simplify the computation of the gradient
with respect to θ, the previous parameters θold could be used to obtain an estimate
of the target:

δ = Q(s, a; θ)− r − γmax
a′

Q(s′, a′; θold) (2.9)

Note: Following the notation of Sutton and Barto [50], we denote the TD-error
with δ, and its expectation, called the Bellman error, with δ̄.

For example, the following loss can be used in the training of a neural network:

l2 = (ŷ − y)2 = 1
2

(
Q(s, a; θ)− r − γmax

a′
Q(s′, a′; θold)

)2
= 1

2δ
2 (2.10)
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The gradient of this loss can be expressed as:

∇θδ = δ∇θQ(s, a)

Using back propagation, the gradient ∇θQ(s, a) can be effectively obtained. The
parameters of the network could be updated using gradient ascent:

θ ← θ + αδ∇θQ(s, a; θ),

where α is the step length. This algorithm is similar to stochastic gradient de-
scent (SGD), widely used in supervised deep learning. However, (s, a)-pairs are
not independent and identically distributed, as would typically be the case in the
supervised setting. The system dynamics and the policy determine this correla-
tion.

Another important difference, is that the “label” y = r + maxa′ Q(s, a′; θold) is
not a true label, but rather a bootstrap estimate obtained using the previous
parameters θold. A large part of recent research in RL is concerned with what
this entails and how to make Q-learning methods work effectively despite this
approximation.

2.4.2. Q-learning for the maximum entropy objective

The modification of the objective gives a new formulation of the action-value
function Q and the TD-error, giving rise to a new formulation for Q-learning.
The soft Q-function [9] is defined as:

Qsoft(s, a) = r(s, a) + E[
∞∑
l=1

γl(rt+l + αH(π( · |st+l)))]

The soft Bellman equation for the soft Q-function is defined as:

Qπ(s, a) = Es′,a′ [r(s, a) + γ(Qπ(s′, a′) + αH(π( · |s′)))]

Minimizing the soft Bellman error provides an objective for Q-approximators:

δ̄soft = Es′

[
r(s, a) + γEa′∼π[Q̃π(s′, a′)] + αH(π( · |s′))

]
− Q̃π(s, a)

This error can be estimated without bias by a single sample. Recalling the
definition of entropy H(π( · |s′)) = Ea[− log π(a|s)], we can estimate δ̄soft upon
observing the transition (s, a, r, s′):

δ̃soft = r + γ(Qπ(s′, ã)− α log π(a′|s′))−Qπ(s, a), ã ∼ π( · |s′)
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2.4.3. Policy gradient methods

Instead of learning the action-value function, policy search algorithms aim to find
the policy directly. Parameterizing the policy with a set of parameters θ, we
can formulate a loss function to optimize wrt. θ. Policy gradient methods are
based on the idea of estimating a gradient of the expected discounted reward, and
update the policy by stepping in the direction of this gradient. Policy gradients
are widely used in combination with NNs, as gradients are easily obtainable using
auto differentiation frameworks.

Policy gradients aim to maximize the discounted reward, discussed in 2.1. Defining
τ as the episode, consisting of transitions and rewards, τ = (s0, a0, r0, .....), we
can write the discounted reward as the following:

r(τ) =
T∑
t=0

γtr(st, at)

This expression can be viewed as an evaluation of the policy which produced the
trajectory. The expected return of a trajectory can be stated as an objective:

θ⋆ = arg max
θ

Eτ∼pθ(τ)[r(τ)] := arg max
θ
J(θ)

Here, the the trajectory distribution is parameterized by θ, and can be expressed
as:

pθ(s0, a0, ..., sT , aT ) = pθ(τ) = p(s0)
T∏
t=0

πθ(at|st) (2.11)

The policy gradient methods aim to obtain the gradient ∇θJ(θ), and use this to
optimize the objective function over θ. With equation 2.11, we can write this
gradient as

∇θJ(θ) = ∇θ
∫
pθ(τ)r(τ)dτ =

∫
pθ(τ)∇θ log pθ(τ)r(τ)dτ

= Eτ∼pθ(τ)[∇θ log pθ(τ)r(τ)] (2.12)

In the second step of the derivation, we are using the fact that:

∇θ log pθ(τ) = ∇θpθ(τ)
pθ(τ) → ∇θpθ(τ) = pθ(τ)∇θ log pθ(τ)
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The expected value in 2.12 can be approximated by a sample average:

∇θJ(θ) ≈ 1
N

N∑
i=1

(
T∑
t=0
∇θ log πθ(ai,t|si,t)

)(
T∑
t=0

r(si,t, ai,t)
)

(2.13)

This method highly inefficient, and has a large variance. So large in fact, that
this is never used in practice. A reason for this is that, here the probability of an
action is associated with a positive gradient if the whole episode is successful. An
important fact to minimize this variance, is to use a baseline. It can be shown
that incorporating a baseline b(s) does not affect the optimization objective, but
can decrease the variance of the gradient estimate. [50, p. 329]

An early proposed method in this regard is the REINFORCE-algorithm [53]. As
a baseline, it uses an estimated expected reward of the time steps remaning in the
episode: t ∈ [t, T ], rather than the full trajectory:

∇θJ(θ) = Eτ∼pθ(τ)

[
T∑
t=0

γtGt∇ log π(at|st; θ)
]

where Gt is the discounted downstream reward of the episode from the current
time step t:

Gt =
T∑
t′=t

γt
′−trt′

This gradient can be estimated via sample average, as seen in 2.13. Using gradient
ascent we can update the parameters for the policy:

θ ← θ + α∇θJREINFORCE(θ)

2.4.4. Advantage estimation

In the same way that the downstream rewards Gt are used as a baseline in RE-
INFORCE, a popular alternative baseline is the advantage function:

A(s, a) = Q(s, a)− V (s)

Schulmann et al. [40] report that this gives the lowest possible variance and offer
the generalized advantage estimate (GAE) as a way to estimate the advantage
function. It is used in the Proximal Policy Optimization algorithm discussed in
section 3.6.

Before defining GAE, we define δt as the TD-error for the value function V (s) at
timestep t:

δt = rt + γV (st+1)− V (st)
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This is analogous to the expression for the TD-error for the action value function
Q(s, a), equation 2.3, used in Q-learning. Consequently, the TD-error at timestep
t+ 1 is:

δt+1 = rt+1 + γV (st+2)− V (st+1)

The generalized advantage estimate for the action taken at timestep t is defined
as the sum:

ÂGAEt = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1 =
∞∑
t′=0

(γλ)t′δVt+t′

This gives the gradient:

∇θJ(θ) = Eτ∼pθ(τ)

[
T∑
t=0

ÂGAEt ∇ log π(at|st; θ)
]

This gradient can be estimated by collecting transitions from the environment
and truncating this sum to estimate the advantage. A more detailed description
of this will follow in section 3.6, discussing Proximal Policy Optimization.

2.5. Optimization
This section will briefly cover relevant methods from the field of optimization.
Firstly, the cross-entropy method will be discussed, as it is encountered in work
by Kalashnikov et al. on QT-Opt. [15]

2.5.1. Cross-entropy method for continuous optimization

In the case of continuous and large discrete action spaces, the maximization of
Q(s, a) over the action a is not trivial. It is impossible to check every possible
action, as it can be readily done in small discrete action spaces. This introduc-
tion focuses on CEM as applied for continuous optimization in work done by
Kalashnikov et al. [15].

CEM is a sampling-based method for function optimization, and this description
will describe the case of a Gaussian distribution. It first samples the function at
N points. It then fits a Gaussian distribution to the best M < N of these points,
from which it samples the following N points. This procedure can be repeated
until the standard deviation of the fitted Gaussian is under a given threshold or
simply after a fixed number of iterations. The overall algorithm is outlined in
algorithm 3.

It is essential to set the initial mean µ0 and variance σ0 suitably; a natural choice
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Algorithm 3 Cross-Entropy Method for Continuous Optimization
procedure Cross Entropy Method(f, N, M, iterationLimit, µ0, s )

distr ← GaussianDistr(µ0, σ0)
while i ≤ iterationLimit do

pointsAndV alues← {}
while j ≤ N do

xj ← distr.sample()
fj ← f(xj)
pointsAndV alues.append((xj , fj))
j ← j + 1

end while
x∗ ← sortOnF (pointsAndV alues)[0 : M ] ▷ Get M best points
distr ← fitGaussianToPoints(x∗)
i← i+ 1

end while
return distr.mean() ▷ Return mean of best points so far

end procedure

is a variance proportional to the size of the desired search space and a centered
mean to ensure a broad search.

2.5.2. Trust policy optimization and line search

Given the unconstrained optimization problem

min
x
f(x)

Nocedal and Wright [30, p. 19] describe two categories for iterating from a point
xk to xk+1:

• Line search methods choose a direction from the current iterate xk, and
then search for the step length.

• Trust region methods first choose a region around the current iterate xk,
and then finds the direction.

Trust region method using a quadratic approximation

As an example of a trust region method, the following algorithm finds an optimum
by iteratively maximizing a quadratic approximation around θ̂max:

1. Approximate the function around the current guess f̃(θ) ≈ f(θ).
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2. Choose a trust region

3. Optimize the approximation in this region: θ̃∗ = arg minθ∈trustRegion f̃(θ)

A suitable approximation will be close to the real objective function f in the
chosen trust region.

2.6. Neural networks
Because of its importance in modern RL methods, this section will introduce arti-
ficial neural networks (NNs), and a subset of these, convolutional neural networks
(CNNs).

Artificial neural networks (NNs) are inspired by biological compositions of neu-
rons, as found in the human brain. An illustration of an NNs is shown in the
figure as a computational graph. The left-hand side, labeled xni, are the inputs to
the network, znj are the hidden units, and ynk are the outputs. Each node except
for the input layer has an activation dependent on the linear weighted sum of the
activation of nodes pointing to it. Specifically, a nonlinear activation function ϕ is
applied to the weighted sum to calculate the activation. In the figure, the weights
are denoted vij and wjk. For example, the activation of znj can be written as:

znj = ϕ

(
D∑
i=0

wijxi

)

Examples of activation functions ϕ are ReLU and the Sigmoid-function.

Figure 2.2.: Computational graph for a NN [29]
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2.6.1. Convolutional neural networks

In image processing, convolutional operations with handcrafted filters have been
used extensively for edge detection and feature extraction. [2] [24] Convolutional
neural networks (CNNs) instead learn these filters, making them powerful for
interpreting visual images. A figure of CNN architecture is shown in figure 2.3,
an architecture featuring convolutional, subsampling, and fully connected layers.

Figure 2.3.: The LeNet-5 arcitechture [22]

Convolutional layers are especially applicable to image-based object recognition,
because of it’s invariance to translations. Thus, one filter can recognize a feature
regardless of its position in the picture. For example, a single filter can detect
horizontal edges for the whole image due to the convolution over the whole image.
This is different from traditional NNs, where this invariance instead has to be
learned.

2.6.2. Auto differentiation

Neural networks are a popular representation of policies, value, and action-value
function approximators. Typically, an objective is formed for each network, and
auto differentiation is used to obtain the gradients of this objective wrt. to the
network parameters. An example of this is the Soft Actor-Critic algorithm, de-
scribed in section 3.7.

In broad terms, auto differentiation frameworks keep track of the computational
graph involving NNs. An often reoccurring pattern is the following:

1. Sample data from a distribution D

2. Compute predictions ŷ = f(xi) using NN

3. Compute loss L(ŷ)

4. Compute gradients of loss wrt. to NN parameters

5. Step in the gradient direction

Stable baselines 3 [34], which is used in the experiments, utilize the Pytorch
framework to obtain the gradients.
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Related work

This chapter provides an overview of relevant work done on robotic grasping. A
high-level overview of the methods and their theoretical background is given. In
addition, the results and assumptions of the current methods are also presented
to outline current challenges.

Firstly, it is important to mention that robotic grasping is a large and active area
of research, and providing an exhaustive overview of the most successful methods
in the field is a challenging task. Important sources for choosing the methods
are the survey on learning-based robotic grasping done by Kleeberger et al. [19]
conducted in 2020 and the overview provided by Ibarz et al. [14], in “How to
Train Your Robot: Lessons We’ve Learned” published in 2021. At the time of
writing, a search of “robotic grasping” using the service Google Scholar returns
roughly 13000 publications on the topic since 2021. However, this chapter aims
to point out current challenges within robotic grasping and give an indication of
the progress that has been made to solve them.

Kleeberger [19] report that Dex-Net and QT-Opt methods have the highest re-
ported grasp success rate, up to 98% and 76-96%, respectively. Section 3.2 will
give an overview of the Dex-Net method and its results and limitations. Sub-
sequently, 3.4 will explore the QT-Opt method. Section 3.3 will focus on the
review article on robotic deep RL from Ibarz et al. [14], providing an overview of
the challenges of robotic grasping. A technique to improve the sample efficiency
of off-policy methods, Hindsight Experience Replay, [1] is discussed in section
3.8. Finally, the popular deep RL methods Soft Actor-Critic and Proximal Policy
Optimization will be described in section 3.7 and 3.6, respectively.
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3.1. Literature on grasping
A large part of the literature on robotic grasping divides the problem into two
tasks. First, using the sensory information, find a grasp. Finally, move the end-
effector to this grasp and perform the grasp. This separation of concerns is some-
times referred to as an open-loop approach to grasping. [15] [14]

The act of finding a proper grasp is termed grasp synthesis, and there exists a range
of methods to solve this problem. A review article by Sahbani et al. [37] offers
an overview, and the authors differ between analytic and empirical methods. The
“Springer Handbook of Robotics” by Siciliano and Khatib [44] describes analytic
models for finding contact points and forces necessary to ensure a stable grasp
given an object and a gripper geometry.

Central terms within grasp analysis are force closure and form closure. Form
closure is achieved when friction-less contact points between the manipulator and
the object keep the workpiece rigidly attached to the manipulator. A 6-degree-of-
freedom object needs seven friction-less contacts to achieve form closure. Force
closure includes frictional forces to withstand external forces. If the gripper is
modeled as two soft fingers, force closure of a 6 degrees of freedom object can be
achieved with two contacts.

These methods provide essential tools to analyze the grasp stability given contact
points and object geometry. However, a determining factor in many scenarios
stated in section 1.1 is that the geometries of the objects to be grasped are seldom
known to us. Furthermore, in cases where object geometries are known, such as
in manufacturing, tolerances infer minor variations from unit to unit.

The concept of empirical grasp synthesis is based on evaluating grasp samples
given a metric. Empirical grasp synthesis will be further explored in section 3.2
on work by Mahler et al. on their Dex-Net dataset.

3.2. Learning ambidextrous robot grasping policies
(Dex-Net 4.0)

Work by Mahler et al. [26] with the Dex-Net 4.0 dataset achieve picking of novel
objects with high reliability. Kleeberger et al. report this method to have the
highest reported grasp success rate among all the methods they considered. [19]
Mahler et al. devise a policy capable of grasping using two gripper modalities, a
parallel-jaw and suction-cup gripper.

This section will first formally define the problem formulation used by Mahler et
al. and subsequently outline their method, referred to as Dex-Net throughout the
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rest of the thesis. Lastly, it will present a set of assumptions and limitations.

3.2.1. Objective

Mahler et. al define the grasping problem as a partially observed MDP (POMDP),
meaning that the agent cannot observe the full state of the system:

yt: The observation received at grasp attempt t. On the form of depth
images.

ut: The grasp action taken, upon receiving observation yt.

π(yt) ∈ R: Policy that maps observations to grasp actions.

xt: Latent state of the whole scene, thereby objects and camera, unknown
to the robot.

The state x describes all information about the objects, the camera intrinsic
parameters and pose: x = (O1, . . .Om, C,w1, . . .wm)

These quantities are related according to the distributions defining the POMDP.
After taking an action ut, a reward of Rt = 1 is given if the grasp is successful,
and the agent is rewarded 0 otherwise. The chosen metric for evaluating a policy
is the rate of reward, or mean picks pr. hour (MPPH):

ρ(π) = E
[(

T−1∑
t=0

Rt

)/
(
T−1∑
t=0

∆t)
]

Where T is the number of attempts, and t is the time of executing time in hours.
We can see that this expression considers both the grasp success and the execution
time. The expectation is taken over the environment distribution:

p(x0,y0, . . . ,xT ,yT ) = p(x0)
T−1∏
t=0

p(yt|xt)p(xt+1|xt, π(yt))

3.2.2. Method

Mahler et al. assume a constant time per grasp, thereby keeping ∆t fixed. What
remains is to reach a perfect grasp success rate. Their approach is to train a grasp
quality CNN (GQ-CNN) for each gripper type, predicting the probability of grasp
success given a candidate grasp with the given gripper. During deployment, they
maximize over both GQ-CNNs to determine which gripper to use and where to
grasp.
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Dataset generation

The dataset consists of observations, grasps attempts, and their reward: D =
{Ri,yiui}. Generating the data set is done by using an explorational policy based
on an algorithmic supervisor that estimates the grasp success using the concept
of force closure. [25] This data collection is done to create a balanced dataset,
consisting of both successful and unsuccessful grasps. Synthetic depth images are
captured using a simulated environment.

3.2.3. Results

Ambidextrous robot grasping

The resulting policy has a 95 % reliability when picking in heaps of 25 novel
objects with 300 MPPH. It outperforms scripted policies on adversarial objects
that are transparent, deformable, or geometrically challenging to grasp.

3.2.4. Assumptions and imitations

The policy trained on the Dex-Net 4.0 dataset, while scoring high on the reliability
of an extensive range of novel objects, has some essential assumptions.

The modeling of the problem describes the actions as a grasp attempt, either a
grasp with a two-fingered gripper or a pick using a suction cup. This one-step
formulation implies that no pre-grasp manipulation is possible, which in some
cases can be beneficial. It is worth noting that Mahler et al. add a non-prehensile
pushing action if the policy fails to grasp several times consecutively; however,
long-term planning is not possible. [3]

The algorithm always picks the object with the highest grasp success in the heap,
involving that it is not possible to specify the object to be grasped to the policy.
Further, it cannot search for and pick up objects that are occluded.

An analytic method is used to compute the stability given geometry and a pro-
posed grasp in the dataset generation. This dependence restricts the Dex-Net
method to the problem of grasping and is not readily transferable to pre-grasp
manipulation. It also restricts the possibility of transferring results from Dex-
Net to the broader robotic manipulation problem, where an analytic model to
calculate the success probability is not necessarily available.
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3.3. How to train your robot
The review article “How to Train Your Robot with Deep Reinforcement Learning
– Lessons We’ve Learned” by Ibarz et al. presents important works within robotic
learning and describes fundamental challenges and methods to mitigate them. It
provides a starting point for uncovering challenges concerning implementing deep
RL methods for grasping.

3.3.1. The reality gap

The authors put forth the significant benefits of prototyping in simulation rather
than in the real world, pointing to factors such as speed and safety. A significant
obstacle, however, is the reality gap. It is caused by model inaccuracies in the
simulator and differences between rendered and real images.

Several tactics are presented to battle the sim-to-real gap; one of them is domain
randomization. The approach consists of forming distributions for parameters in
the simulator and, upon resetting the environment, drawing a new set of parame-
ters. The idea is to obtain robustness to a wide range of dynamics, and by forming
appropriate distributions, the actual real-world parameters are sufficiently covered
by the distributions.

3.3.2. Exploration and sparse reward

Addressing the topic of exploration in sparse reward problems, Ibarz et al. discuss
the tactic of reward shaping. Reward shaping tries to tackle this by adding rewards
to guide the agent to explore more fruitful action sequences. For example, the
distance between the end-effector and the object could be incorporated into the
reward, guiding the end-effector to approach the object. Ibarz et al. mention
that this approach is vulnerable to stimulating greedy or sub-optimal behavior to
occur.

3.4. QT-Opt
In their work “QT-Opt: Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation”, Kalashnikov et al. [15] show the capabilities of large-scale
deep RL trained on real-world data.

Their method achieves a 96% success rate in grasping previously unseen objects.
They also show that the method achieves complex strategies, such as a non-
prehensile motion to single objects before grasping and recovering if the object is
lost or pushed out of the gripper due to external disturbances.
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3.4.1. Method

QT-Opt is based on Q-learning and extended to be compatible with continuous
actions spaces. Figure 3.1 gives an overview of the method. Several robotic cells,
consisting of a manipulator and a bin of objects, collect experience using a Q-
function approximation which is periodically updated using collected data. The
following sections will describe these two processes in further detail.

Collecting experience

Deploying the algorithm is done by maximizing the learned Q-function. The Q-
function approximator is a neural network with 1.2 million parameters, and the
authors choose to maximize the function using CEM optimization described in
algorithm 3.

The data collection is done by the following steps:

1. Take image of scene, termed the state s

2. Find action a as: arg maxa Qθ(s,a)

3. Execute action a, and repeat.

The authors mention that a scripted policy is initially used to guide the Q-function
to successful states.

Updating the Q-function approximation

At a high level, the update of the Q-function approximator Qθ can be divided
into the following steps:

1. Collect a batch of transitions from the replay buffer

2. Estimate the value function

3. Compute the loss for Qθ
4. Step in gradient direction and repeat

The QT-Opt method aims to minimize Bellman error, defined as the expectation
of the TD-error, equation 2.3. The authors use the cross entropy as the distance
measure:

L(θ) = E(s,a,s′)∼p(s,a,s′)[Dcross-entropy(Qθ(s,a), QT (s,a))] (3.1)

The target Q-value is defined as:
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QT (s,a)) = r(s,a) + γV (s′)

To estimate the value, Kalashnikov et. al. keeps two versions of the Q-network
parameters, one exponential moving average θ̄1 and the other a lagged version of
this average, θ̄2. First, the action a∗ is chosen by maximizing Qθ̄1

:

a∗ = arg max
a′

Qθ̄1
(s,a)

Then, a combination of the two networks are used to estimate the value function
V (s). To avoid overestimation, a typical complication within Q-learning, the
minimum estimated Q-value is chosen to estimate the value:

V (s′) = min
i=1,2

Qθ̄i
(s′, a∗)

This process of updating the action-value function is done in an off-policy manner
and can be run as a separate process from the experience collection—this overall
process is illustrated in figure 3.1. The “Bellman Updater” produces labeled data
by the procedure outlined above, paving the way for supervised learning. The
“Training Worker” extracts a batch of labeled samples and updates the parameters
of the Q-function.

Figure 3.1.: Distributed learning using QT-Opt. [15]

3.4.2. Assumptions and limitations

The QT-Opt algorithm has some essential assumptions and limitations.

The action space of the algorithm is set to at = (tt, rt, gclose ,t, gopen ,t, et), where
tt, rt is the 3D-translation and the rotation around the vertical axis. [gclose ,t, gopen ,t] ∈
{0, 1}2 is a one-hot vector indicating whether to close or open the gripper. The
stopping criterion et is a Boolean which allows the actor to terminate the episode
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upon a successful grasp.

In their formulation of the problem, the authors aim to maximize grasp success.
This problem formulation entails that the policy has no notion of what object
it picks up, meaning that we cannot specify what object it should grasp next.
Additionally, it is not able to find a specified object occluded by other objects.

The dataset used to train the QT-Opt algorithm consists of 580k grasp attempts
and is collected using seven robotic manipulators for several weeks. While most
of this data is collected with minimal human supervision, it restricts the QT-Opt
algorithm to cases where such an abundance of data can be collected efficiently.

3.5. Robosuite

Figure 3.2.: An overview of different environments provided in the robosuite
package. [54]

Robosuite is a benchmark and simulation framework for reinforcement learning for
manipulators based on the Mujoco physics engine. Zhu et al. released Robosuite
v1.0 in 2020 along with their publication [54], and at the time of writing, the
latest release is v1.3.

The framework provides a set of environments as benchmarks and platforms for
testing algorithms. The environments are focused on the manipulation of objects,
often requiring long-term planning before completing the tasks. Examples of
environments are lifting cubes, screwing bolts, and peg-in-hole operations.

3.5.1. Benchmarking results

The authors test the Soft Actor-Critic [10] algorithm in a lifting environment.
There, the actor is tasked with picking up a cube using a robot manipulator. Zhu
et al. [54] run two experiments with two different control interfaces for the agent.
The operation space pose controller (termed OSC-POSE) allows the agent to set
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the pose of the end-effector directly. The joint velocity interface, on the other
hand, allows the actor to set a rotational velocity on the manipulator’s joints.

The results show that the algorithm learns the task faster when controlling the
end-effector pose directly, as opposed to the joint velocities. The authors argue
that it allows for exploring the task space more efficiently. See figure 3.3. Panda
and Sawyer are different types of manipulators, and we see that the algorithm
learns the task faster with the pose controller, regardless of the manipulator.

The SAC algorithm solves this using the operation space controller using experi-
ence from 500 epochs with 500 steps per episode. For a desktop computer, this
training took around two days.

The observation modalities available to the agent are fixed in all the experiments.
It can directly observe the position of the cube, as well as the configuration of the
robot.

Figure 3.3.: Episodic return of SAC deployed on different robots and control
interfaces in the Lift-environment. The maximum reward possible is 500. [54]

3.6. Proximal Policy Optimization
The Proximal Policy Optimization (PPO) algorithms are a family of deep RL al-
gorithms devised by Schulmann et al. [41]. The authors have focused on forming
algorithms which are easy to tune, sample efficient, and straightforward to imple-
ment. It can run several actors in parallel, and the pipeline resembles traditional
supervised learning, which allows for techniques such as dropout and parameter
sharing between the networks.
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Among the different algorithms described by Schulmann et al., this section will
describe PPO-clip, which the authors report to perform the best over a wide range
of environments. It is also the most popular algorithm in the PPO family and is
the one used in the experiments.

3.6.1. Algorithm

The overall algorithm is similar to policy gradients described in section 2.4, as
simplicity is one of the authors’ goals. A high-level view of the algorithm is shown
in algorithm 4.

Algorithm 4 Proximal Policy Optimization, Actor-Critic Style
Initialize parameters for the Neural Networks
for iteration=1,2,. . . do

for actor=1,2,. . . ,N do
Collect rollouts with πθold for T timesteps
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize L wrt. θ for K epochs, and minibatch size M
θold ← θ

end for

Collecting rollouts can be distributed across multiple workers, each deploying a
recent version of the policy in the environment. The advantage estimates Â are in
turn calculated using the rollouts and the trained value function estimate V (s).
The authors use a truncated generalized advantage estimate (GAE):

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1 =
T∑
t′=t

(γλ)t′δVt+t′

Recall that δVt is defined as the TD-error for the value function approximation:

δt = rt + V (st+1)− V (st)

After collecting T transitions, the worker calculates the truncated advantage es-
timates stored in the replay buffer.

3.6.2. Loss function

The loss function is comprised of 3 terms, the clipped surrogate loss LCLIP for
the actor, LV F for the value function approximator and an entropy bonus term
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S[π](st).

The loss for the value function approximator is a squared loss error to rewards-
to-go estimated using rollout data. [33]

The policy loss is inspired by trust region methods, as it aims to keep the policy
update close to the previous policy while still improving the performance. This is
reflected in the design of the objective function for the policy, which is defined as:

LCLIP (θ) = Êt
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ϵ, 1 + ϵ) Ât

)]
Here, Ât is the GAE estimate for the timestep calculated by the workers. The
probability ratio rt(θ) is defined as:

rt(θ) = πθ (at | st)
πθold (at | st)

This is the ratio between the action probability of the new and old policy param-
eters. Both quantities are positive, so r lies in the range [0,∞]. If the action is
more probable with the new policy, r(θ) > 1, and if less likely for the new policy:
r(θ) ∈ [0, 1].

rt(θ)

L
C
L
I
P

(a) Ât > 0

rt(θ)

L
C
L
I
P

(b) Ât < 0

Figure 3.4.: Plots of LCLIP

Figure 3.4 shows LCLIP using a single point estimate. The leftmost figure shows
the case when Ât > 0. Intuitively, more advantageous actions should be made
more probable, and gradients of the LCLIP will tend to shift r in the positive
direction. The graph bends off at the point 1+ϵ, restricting the update in shifting
the probability of beneficial actions beyond this limit. The same is visible in the
rightmost graph, showing the case when Ât < 0, where the probability intuitively
should be lowered. The gradient is only positive up until the point 1 − ϵ, where
further decreasing of the action probability does not yield any further increase in
the objective value.
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As described in the algorithm, the combined loss function is optimized using SGD
or the Adam optimizer [18] on the data collected on policy.

3.7. Soft Actor-Critic
Soft-Actor Critic (SAC), devised by Haarnoja et al. [10] is a model-free, off-policy,
maximum entropy actor-critic algorithm. It builds upon the theory presented in
section 2.1.1 from maximum entropy RL. It can be likened to the policy iteration
algorithm 1, alternating between updating V π and π, aiming to maximize the
maximum entropy objective defined as equation 2.4.

3.7.1. Algorithm

An overview of the SAC algorithm is provided by algorithm 5.

Algorithm 5 Soft Actor-Critic
Initialize parameters for the neural networks
for each episode do

for each environment step do
at ∼ π(at|(st)
st+1 ∼ Environment(st+1|st,at)
D ← D ∪ {st,at, r(st,at), st+1}

end for
for gradient step do

ψ ← ψ − λV ∇̂ψJV (ψ) ▷ Update value function
θi ← θi − λQ∇̂θi

JQ(θi) for i ∈ {1, 2} ▷ Update action-value function
ϕ← ϕ− λπ∇̂ϕJπ(π) ▷ Update policy
ψ̄ ← τψ + (1− τ)ψ̄

end for
end for

Three neural networks are trained: value function Vψ(s), action value function
Qθ(s, a) and the policy πϕ(a|s). They are updated in the following manner:

Action Value Function

The Q-networks aim to reduce the soft Bellman residual, a difference in predicted
Q-value and a bootstrapped Q-value estimate:

JQ(θ) = E(st,at)∼D

[1
2
(
Qθ (st,at)− Q̂ (st,at)

)2
]

,
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where the Q-value estimate relies on the value network:

Q̂ (st,at) = r (st,at) + γEst+1∼p
[
Vψ̄ (st+1)

]
In the implementation, this expectation is estimated using samples. As the the
action value function is parameterized as a neural network, auto differentiation
software is used to obtain the gradients.

To avoid the problem of overestimation in the policy improvement step, the au-
thors train two action-value networks, parameterized by θ1 and θ2.

Value function

Having a separate value network is not necessary, as taking the expectation of
the Q-network will produce a value estimate. However, the authors note that
introducing a value network stabilizes the algorithm. The authors use the Q-
network to compute targets that are used in the objective function for the value
network.

δ̂V = E[12(V (st)− E[Q(st,at)− log π(at|st)2]]

This expectation is estimated similarly to the action-value function, namely by
sampling state-action pairs from the replay buffer.

Policy

Recalling equation 2.8 for the soft policy update, note the inner expectation over
the policy. As π also is the distribution we want to optimize over, this compli-
cates the procedure for calculating the gradients of this objective. The authors
choose to parameterize the policy in the following way, essentially separating the
randomness from the parameters of the model. The randomness is generated from
independent noise ϵt, and fϕ is a deterministic function, parameterized by ϕ:

at = fϕ(ϵt; st) (3.2)

The authors do not specify the function f explicitly, however the implementation
from Stable Baselines 3 [34] uses the following function [47]:

fϕ(ϵt; st) = tanh(µϕ(st) + σϕ(st)⊙ ϵt), ϵt ∼ N (0, I)

Where ⊙ represents element-wise multiplication. The mean µϕ and the variance
σϕ are outputs from the policy network.
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Plugging equation 3.2 into the equation for the soft policy update 2.8 gives:

Jπ(ϕ) = Es∼D,ϵt∼N [log πϕ(fϕ(ϵt; s)|s)−Qθ(s, fϕ(ϵt; s))]

In the same way as for the value and action value approximators, we can get the
gradient of this using auto differentiation software and sampling from the replay
buffer. After sampling states from the replay buffer, a set of actions ãi ∼ πϕ( · |si)
is calculated using the policy. Together with the log probabilities, the loss for the
policy can be computed as:

1
|B|

∑
s∈B

(
min
i=1,2

Qϕi
(s, ã)− α log πϕ(ã|s)

)

The gradients of this object with regard to the policy parameters ϕ are computed
using auto-differentiation.

3.7.2. Stable Baselines implementation

The implementation used in the experiments deviates from the above description
in the following ways:

1. In the original formulation of SAC, described above, the reward scaling is
left as a hyperparameter to be tuned. This is due to the compromise between
policy entropy and exploitation. Haarnoja et al. propose a modification to
battle this sensitivity by dynamically adjusting the entropy parameter. It
is updated along with the policy and value functions as:

α← α− λ∇̂αJ(α)

Where J(α) is defined as:

J(α) = Eay∼πt [−α log πt(at|st)− αH̄]

Similalry to the other objectives, this is estimated using sample estimates,
and predicting actions using the current policy. The “desired entropy” H is
usually set to −dim(A) where A is the action space.

2. The implementation of SAC used in the experiments omits the value function
network, and computes targets using the a set of target networks:

Q̂ (st,at) = r + γ

(
min
j=1,2

Qϕtarg ,j

(
s′, ã′)− α log πθ

(
ã′ | s′)) , ã′ ∼ πθ

(
· | s′)

3. The parameters for the target networks are updated through Polyak aver-
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aging the parameters of the Q-networks. At each iteration i:

ϕtarg,i ← ρϕtarg,i + (1− ρ)ϕi

4. At the beginning of collecting rollouts, actions are not sampled using the
policy but instead sampled from a uniform distribution. This modification
of early exploration is reported to improve performance.

3.8. Hindsight Experience Replay (HER)
In their work on Hindsight Experience Replay (HER), Andrychowicz et al. achieve
higher sample efficiency in settings with sparse rewards. Furthermore, by adding
the HER technique to DDPG, they enable it to solve tasks that the algorithm
was previously unable to solve. They also verify their results on a physical robot,
allowing it to pick up cubes from a table. They achieve this without fine-tuning
in the real world by adding observation noise in the simulator training.

3.8.1. Motivation

The fundamental idea behind HER is intuitive. Consider the task of hitting a goal
from some distance on a hockey field. The first attempt might result in missing
the goal; the puck, perhaps, drifts too far off to the left. Traditional model-free
algorithms would treat this episode as a failure, as the goal was not achieved.
Instead of viewing this as a failure, the authors use the fact that this would be a
perfect shot were the goal placed further to the left. This idea proves effective in
cases of sparse rewards, making data from unsuccessful episodes helpful.

More concretely, consider the REINFORCE algorithm. The value of actions in
a given state depends on the reward obtained in the remainder of the episode.
In a sparse reward environment, an unsuccessful episode will not give us any
information on what actions are beneficial.

3.8.2. Multi-goal RL

In work on “Universal Value Function Approximators”, Schaul et al. train a
universal value function V (s, g : θ), which aims to generalize over potential goals.
[39] A possible intuition is that a state close to the goal is also a high reward state,
i.e., it is possible to generalize V in the vicinity of g, not only in the vicinity of s.
Following this idea, HER passes not only the current state but the current goal g
to the agent, π(st, g). HER assumes the following:
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Figure 3.5.: The pick-and-place environment used by Andrychowicz et al. [1] to
evaluate the performance of HER. The goal position is marked with a red dot.

• Every goal is associated with a function fg : S → {0, 1}, which indicates
whether a state satisfies the goal: fg(s) = 1 .

• For every state s, there exists a goal which is satisfied in this state: ∃m :
S → G s.t. ∀s∈Sfm(s)(s) = 1.

3.8.3. Algorithm

HER can be combined with any model-free off-policy algorithm, for example,
DQN [28] or DDPG [23]. Due to the multi-goal representation, tuples on the
form (st||g, at, rt, st+1||g), are stored in the replay buffer. The goal g is the goal
provided to the actor in the relevant episode. Here, || indicates concatenation.
The distinctive feature of the HER method is that it also adds tuples on the form
(st||g′, at, rt, st+1||g′) to the buffer, where g′ is not the original goal of the episode,
but taken from the set of goals G.

We can sample g′ from G in different ways, for example, the last state of the
episode. The tuples will thus seem to be sampled from a successful episode.
Through their experiments, the authors find the most successful tactic to ran-
domly sample states encountered downstream in the current episode. Intuitively,
this enables the actor to learn how to reach the termination state and encountered
states.

3.8.4. HER for grasping

Their experiments evaluate HER in three different environments, pushing, sliding,
and pick-and-place. Due to its relevance to the focus of this thesis, we will consider
the pick-and-place environment.

In this environment, a box is placed at a random position on the table in front
of the robot, and it shall move the cube to a specified position above the table.
Figure 3.5 illustrates the environment.

Important are the choices for observation and actions spaces and the formulation
of reward. Andrychowicz et al. defines the following for their pick-and-place
environment:
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Observations: The policy is given:

• the absolute position of the end-effector,

• the relative position of the cube from the end effector,

• the relative position of the goal from the cube and

• the distance between the fingers of the parallel-finger gripper.

The action space of the agent is the gripper’s position; the rotation is fixed. In
addition, the agent controls the finger distance of the gripper.

The reward signal is sparse, which is an assumption needed to use the HER
technique. They return a reward of −1 as long as the cube is not within a fixed
tolerance from the specified goal position and 0 once the goal is reached.

Figure 3.6 shows the results Andryschowicz et al. obtained by training DDPG
combined with HER in the pick-and-place environment. We observe that the
algorithm solves the task after experiencing approximately 50 epochs. This cor-
responds to 2M timesteps in the environment.

Figure 3.6.: The results of DDPG with and without HER in the pick-and-place
environment. The green and red lines are the performances of two variants of
DDPG without HER. The blue and the red line are two variants of DDPG com-
bined with HER. The horizontal axis is the number of epochs the agent is trained
for, and for each epoch, the agent collects 40 000 timesteps in the environment.
The vertical axis is the success rate. [1]

3.8.5. Assumptions and limitations

In the observation space, the actor is provided information about the object’s
position, which is directly measured with a typical setup including a camera. To
cope with this, the authors use a trained CNN to predict the cube position using
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RGB-D images from a camera mounted on the robot in real-life experiments.
Using simulations and domain randomization, they achieved stable performance
on the real-life implementation.

Andrychowicz et al. report that it is necessary to provide a single state where the
cube is grasped and start half of the episodes from this state. The algorithm could
not learn the grasping task without this single demonstration state. Additionally,
they mention that it can learn the task if some goals are on the table, not just
in the air. They provide no experimental results using this method; whether the
performance is comparable is unknown.
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Experiments

The experiments in this section aim to describe how model-free deep RL algo-
rithms might be used to solve real-world robotics tasks. Specifically, it will explore
the performance of the PPO and SAC algorithm in a simulated environment with
a robotic manipulator, where the goal is to pick up a cube.

The experiments will explore the benefits and challenges of using a model deep
model-free RL algorithm. The choice of action space, observation space, and
reward signal strongly influence the task’s difficulty, and different combinations
will be explored.

For the action space, work done by Zhu et al. [54] shows that the SAC algorithm
learns significantly faster when directly controlling the end-effector pose than
controlling the actuator’s joint velocities. This simplification of the control is
realistic, as all robotic manipulators typically offer this interface. Because of this,
direct pose control will be used for the rest of the experiments.

4.1. Setup
The experiments will be performed in an environment from robosuite. [54] The
package includes, among other manipulators, the KUKA LBR iiwa and predefined
environments. It utilizes Mujoco [51] for the simulations and visualizations.

4.1.1. Lift environment

The lift environment is one of the predefined environments in Robosuite. It con-
sists of a table with a cube placed randomly on it and a robotic manipulator.
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Reward

The dense reward at each step is defined as the sum of the following terms:

• Reaching: 1 − tanh(10 · ||pgripper − pcube||), where pgripper, pcube ∈ R3 is the
position of the gripper and the cube.

• Grasping: 0.25 if the gripper is grasping the cube, 0 otherwise. Specifically,
both fingers are in contact with the object.

• Lifting: 2.25 if zcube > ztable + 4cm, 0 otherwise.

For the sparse reward, only the term associated with lifting is used, point 3, while
the dense reward signal sum all of them. This gives a maximum possible reward
per time step of 3.5

2.25 ≈ 1.56 for dense and 1 for sparse reward. The episode length
is fixed to 200 timesteps, meaning that the respective maximum total rewards are
330 and 200. This limit is theoretical, neglecting the time it takes to move the
end effector, grip the object and lift it above the threshold.

Observations

The experiments will two options for the observations:

• RGB-D images of a camera overlooking the table: I ∈ R128×128×4, Iij ∈
[0, 255].

• A combination of modalities including robot configuration and the cube
pose.

The components of the observations of robot configuration and object pose is
listed below:

1. The pose of the cube, represented by: pcube = [x, y, z] ∈ R3 and the orien-
tation quaternion: ξcube ∈ R4.

2. The relative position of the end-effector to the cube: pend-eff − pcube.

3. Several proprioceptive observations:

a) For each of the seven joints of the KUKA-arm

i. Joint position, cosines: qcos ∈ R7, qcos,i ∈ [−1, 1].

ii. Joint positions, sines: qsin ∈ R7, qsin,i ∈ [−1, 1].

iii. Joint velocities: rad/s: q̇ ∈ R7.

iv. End-effector position, orientation: pend-eff ∈ R3 , ξend-eff ∈ R4.
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(a)

(b)

(c)

Figure 4.1.: Row (a) shows pictures of an episode with SAC trained with sparse
reward. Row (b) shows the behavior of SAC trained with dense rewards. Row (c)
shows an instance of PPO trained with sparse rewards, where the agent fails to
learn the picking task.

v. Angles and velocities of the 6 joints of the gripper: q̇end-eff, qend-eff ∈
R6.

These elements are concatenated into a 1-D list of 40 values, and all values are
represented as 32-bit floats.

When using RGB-D images as observations, the algorithm uses the policy type
“CnnPolicy” provided by Stable Baselines 3 [34]. Otherwise, the policy type
“MlpPolicy” is used.

4.2. Reward shaping experiment
To explore the effect of reward shaping, we run an ablation study. Both PPO
and SAC are trained in the lift environment with two settings: One where the
algorithm receives the sparse reward signal and one where it receives the shaped
reward. Considering the randomness of the environment and the algorithms,
we run five instances where only the random seed is changed. In the case of
both algorithms, they collect 2 million timesteps in the environment. Additional
hyperparameters are listed in Appendix B. All policies are evaluated using sparse
rewards to measure progress towards the true goal: picking up the cube. They are
also set to exploit during evaluation, which in the case of PPO and SAC means
picking the mode of the policy-distribution π(a|s) as the action.
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4.2.1. SAC

Figure 4.2 shows the comparison of the SAC algorithm trained using a sparse and
shaped reward signal. Instances corresponding to the same settings are grouped
to indicate the average performance.

Figure 4.2.: Comparison of SAC performance using a sparse and shaped reward
signal. The bold line is the mean of 5 runs, and the shaded area spans over the
maximum and minimum of the runs.

Figure 4.3 shows the performance of 5 instances of SAC on the environment with
shaped reward. Figure 4.1, row (b) shows a visualization of a trained algorithm’s
behavior.

Figure 4.4 shows the performance of the five instances of SAC trained with sparse
rewards. A visualization of the behavior of a trained algorithm is shown in figure
4.1, row (a).

4.2.2. PPO

Figure 4.5 shows the performance of PPO with shaped and dense rewards. We
can see that, in general, the algorithm learns the task more quickly using reward
shaping than sparse reward; however, it suffers from high variability in both set-
tings due to some instances not learning the task. The following sections will
discuss the different scenarios.
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Figure 4.3.: Evaluation performance on a sparse reward environment of SAC in-
stances trained in a shaped reward environment. For improved visibility, smooth-
ing of the graphs is used used. The faint lines represent the original data.

Failure to learn from shaped reward

Figure 4.6 shows the evaluation of five different instances of PPO, trained with
shaped reward, but evaluated with sparse rewards. We observe that two of the
five instances, 5 and 2, fail to learn the task.

Figure 4.7 shows the shaped reward during exploration for the different runs.
Here, the same runs that failed at the sparse evaluation plateau at a lower reward
appear to be stuck in suboptimal behavior. The behavior of such an instance is
shown in figure 4.1, row (c).

Failure to learn from shaped reward

Figure 4.8 shows the individual performance of 5 instances of PPO trained with
a sparse reward signal.

4.3. Observation space
To study the effect of the observation space, we run a study of PPO with the two
different observation spaces described in section 4.1. Because of computational
restrictions, we set the algorithm to collect 1 million timesteps in the environment.
In both cases, the algorithms are rewarded using a shaped reward signal.
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Figure 4.4.: Evaluation performance on a sparse-reward environment of SAC-
instances trained on a sparse reward environment. For improved visibility,
smoothing of the graphs is used. The shaded lines represent the original data.
Instances 1 and 5 both fail to learn the task.

The policy using image-observation could not be trained in parallel environments,
extending the training time drastically: Training the policy took about 100 hours,
whereas the parallel training of non-image-based policies took 45 minutes. Storage
is also a restriction, as the buffers add up to hundreds of gigabytes using SAC.
Therefore, the experiments are run using PPO, an off-policy algorithm that does
not require a large buffer.

Figure 4.9, showing the reward during exploration, illustrates the comparative
performance of the two different sets of observation modalities. Due to computa-
tional constraints, only one run trained with RGB-D observations is shown. The
average performance of two runs using the alternative observations is shown as a
comparison. As opposed to the other experiments, episode length here is 1000,
meaning that the maximum total reward is ≈ 1600.

Figure 4.10 shows images from an episode with an agent trained with the two
different observation modalities. For the policy observing RGB-D images, the
policy parameters at 450 000 steps of the algorithm is used, as this is near the
highest point of the rewards during training. The latest parameters are used
for the policies observing the combined modalities, as they are also the best-
performing.
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Figure 4.5.: Comparison of PPO performance using sparse and shaped reward.
The bold line is the mean of 5 runs, and the shaded area spans over the maximum
and minimum of the runs.

4.4. Comparison of SAC and PPO
Figure 4.11 shows the rewards of SAC and PPO during training. The algorithms
are trained in the lift environment with shaped reward and the combination of
modalities such as robot configuration and object pose. The hyperparameters are
listed in appendix B.
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Figure 4.6.: Evaluation performance on a sparse-reward environment of PPO-
instances trained on a shaped reward environment. For improved visibility,
smoothing of the graphs is used used. The faint lines represent the original data.
PPO instances 5 and 2 fail to learn the task and receive no reward after 500 steps.

Figure 4.7.: Rollout reward of PPO-instances trained in a shaped reward envi-
ronment. This is the reward that the algorithm receives during exploration, as
opposed to the evaluation reward that is shown in other plots.
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Figure 4.8.: Evaluation performance on a sparse-reward environment of PPO-
instances trained in a sparse reward environment. For improved visibility, smooth-
ing of the graphs is used. The shaded lines represent the original data. Instances
1 and 5 both fail to learn the task

.

Figure 4.9.: Comparing PPO performance using RGB-D as opposed to robot
configuration and cube pose as observations.
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(a)

(b)

Figure 4.10.: Row (a) shows pictures of an episode with PPO trained with RGB-
D observations. Row (b) shows the behavior of PPO trained with a combination
of different modalities, such as robot configuration and cube pose.

Figure 4.11.: Learning curves for an instance of both SAC and PPO. The hori-
zontal axis is the run-time of the training-process



Chapter 5.

Discussion

This discussion will consider the problem of robotic grasping and the broader
manipulation goal stated in the introduction. It will first discuss the results of
the experiments in chapter 4. It will then go on to present some of the limitations
of the experiments. Then, it will turn to the related works and their results and
limitations in robotic grasping. Finally, it will discuss these findings in the context
of general robotic manipulation.

5.1. Discussion of the experiment results
This section will discuss the results presented in the chapter 4 on the experiments.
It will discuss the effect of different observations and reward signals provided.
Finally, it will compare the performance of PPO and SAC and discuss the behavior
of a policy trained with SAC.

5.1.1. Observation space experiment

The observation space is a large part of the complexity of a manipulation problem.
This fact is suggested by the comparative experiment done in section 4.3. We see
that the two instances of PPO observing modalities such as robot configuration
and object pose learns the task with low variance and rise steadily in reward from
the beginning. Although the learning curve is still rising at 1 million timesteps,
we observe in figure 4.10, row (a), that the policy has learned a behavior sufficient
to grasp the cube.

In comparison, the PPO instance trained by observing RGB-D images does not
learn the task. Additionally, it degrades in performance after reaching a peak.
The images of the behavior of the trained algorithm confirm that this policy
does not learn the behavior, not even learning to exploit the “reaching” reward
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which guides the end-effector towards the cube. This result suggests that learning
suitable end-effector movements directly from RGB-D images is a significantly
more complex task than learning using the other modalities.

The results might also suggest that knowledge of the cube pose simplifies the
problem significantly. Intuitively, a scripted policy using this information is far
more straightforward compared to using RGB-D images. In the simplest case,
we might program the following steps: Move the gripper directly above the cube,
lower the gripper, close the gripper, and lift.

Looking to the related work, we have discussed QT-Opt, which learns to grasp
using solely RGB observations. In addition, the method can grasp unseen ob-
jects, a task far more complicated than the one considered in these experiments.
However, in the experiments, the PPO algorithm fails to learn the task using
RGB-D observations. There are many reasons for this gap between the success
of the experiments, and we theorize that essential factors are the dataset quality,
the network’s architecture, and the training duration. The PPO algorithm in the
experiments only experiences unsuccessful episodes, only performs 500 gradient
steps, and no specific study has been performed on architecture design. QT-
Opt, in comparison, trains for 15M steps and has a complex architecture for the
Q-function approximator.

5.1.2. Reward shaping experiment

This subsection will discuss the results from the ablation studies conducted with
sparse reward. It will first discuss the results from the training with sparse reward,
then with reward shaping.

Sparse rewards

A typical failure case for both algorithms is to fail to learn the task in the sparse
reward setting. See figure 4.4 and 4.8. For both algorithms, 2 of 5 instances
fail to learn the task. This demonstrates the fundamental problem of sparse
rewards, presented as a general challenge of robotic manipulation problems in the
introduction. Each actor collects 2 million transitions in the simulator, hinting
that the successful sequence of actions is stumbled upon by chance rather than
sequential progress.

Empirically, we see that once high-rewarding action sequences are found, the
algorithm manages to learn the task. Instances that achieve an episodic reward
over 50 seldom degrade in performance drastically; however, they often undergo
a jump from low rewards to near-optimal rewards. This effect of sudden learning
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can be likened to learning the skill, and the results show that this is reliant on
the actor experiencing episodes with higher rewards.

Reward shaping

The reward signal during training impacts how fast the algorithm can learn the
task. This is shown in the experiments, where both algorithms learn faster on
average in the shaped reward environment. This is seen in figure 4.2 and figure 4.5
showing the mean episodic reward in the evaluation environment during training.
This is especially clear for SAC, as training on average results in higher reward
behavior starting from around 500 algorithm steps, whereas this happens after
1M steps for the sparse reward setting.

Exploitation of shaped reward

Another important observation is that the average PPO performance lies substan-
tially lower (≈ 100) than that of SAC (≈ 175). This deviation is explained by
further investigating the separate runs of the PPO algorithm. We see in figure
4.6 that two of the instances fail to learn the task altogether. Looking at figure
4.7, which shows the episodic reward during exploration, we observe that these
instances plateau on a lower level (≈ 60). This indicates that the algorithm learns
to maximize a part of the dense reward unrelated to grasping.

Figure 4.1, row (c), shows the behavior of the policies that fail to learn the task
while being trained with dense rewards. We see that the policy learns to position
the gripper around the object but fails to learn to grasp the object and pick it up.
We suspect that the policy learns to maximize the component of the shaped reward
corresponding to reaching. It manages to minimize the distance between the
gripper and the object; however, it does not explore the opportunity to close the
gripper and receive a higher reward. Ibarz et al. [14] mention the same issue when
discussing reward shaping and noting that it might lead to exploitation behavior.
This behavior might be mitigated by tuning the weighting of this component of
the shaped reward; however, Ibarz et al. point out that this can be challenging.

5.1.3. Comparison of SAC and PPO

Figure 4.11, showing the learning curve of an instance of each algorithm, reveals
interesting characteristics. We noted that SAC typically has a more turbulent
exploration reward during training, having more spikes and sudden drops. On
the other hand, PPO tends to increase smoothly before stabilizing on a fixed
reward level.
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This coincides with the inner workings of the algorithms, as PPO aims to keep
the updated policy close to the previous, resulting in a steady growth of the
exploration reward. On the other hand, SAC uses a large replay buffer (500
episodes) to update its policy and shift it more quickly. An interesting parallel
is a dichotomy between trust regions and line search, described in section 2.5 on
optimization techniques. SAC, as it samples randomly from a buffer and takes
a gradient step, resembles the line search algorithm stochastic gradient descent.
PPO resembles trust-region methods, as it uses an on-policy replay buffer and
aims to find the optimum within a region by doing several epochs on the same
data.

Looking at the experiments done in the dense reward setting, we observe that PPO
tends to get stuck at a lower-reward plateau, whereas SAC consistently manages
to solve the task. It is evident that SAC inherits more exploration and is resilient
to getting stuck in suboptimal behavior. While a study of hyperparameters, such
as learning rate and reward scale is needed to conclude, these results indicate
that the off-policy learning of SAC might help pull it out of local maxima and
consistently discover the optimal behavior.

5.1.4. Resulting behavior

Looking at the agent’s behavior in the experiment, we can see that it has signifi-
cant variance and, in some cases, have an arguably suboptimal grasping strategy.

Intuitively, an optimal tactic to grasp the object is to lower the gripper vertically,
close the gripper, and raise the box. In this case, no rotation around the horizontal
axes is needed. Examining row (a) of figure 4.1, we see that the resulting policy
learns to grasp in a way that rotates greatly before grasping the object.

This behavior results from the sparse rewards, and the agent is purely incentivized
to lift the cube. If there is an interest in limiting unnecessary movement, such
as the rotation mentioned above, this might be incorporated into the reward.
However, incorporating an energy-term might lead to additional challenges. In
the same way that policies might fail to learn the task given a shaped reward,
penalizing actuation might result in the policy exploiting this term. For example,
the agent might only learn to stand still, as moving will result in a penalty.

5.2. Limitations of the experiments
This section will list some of the limitations of the experiments, considering the
application of deep RL algorithms to solve real-world grasping tasks.
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5.2.1. Generalization

The experiments consider the case of one fixed object, specifically a red cube.
They do not explore the challenges of learning to grasp several objects and extend
that knowledge to grasping unseen ones. However, the environment does initialize
the cube position randomly while keeping the rotation fixed, requiring the agent
to generalize over the object position within a small range.

5.2.2. Simulated

The experiments are conducted in Mujoco, a simulated environment, where the
physics of the system is computed using numerical methods. Ideally, the al-
gorithms would be evaluated in the real world, and there might be significant
discrepancies in the performance of the algorithms when deployed on a similar
setup in real life.

However, several techniques exist to transfer algorithms trained in simulations to
act on physical setups, proving that results in the simulation are relevant to solving
real-world problems. Techniques such as domain randomization and random force
injection can train policies to be deployed directly to a physical setup. [1] [52]
Nevertheless, this usually entails the need for more experience as the policy needs
to generalize over a more stochastic environment.

5.2.3. Hyperparameters and architectures

The experiments do not sweep over all hyperparameters. Even though SAC and
PPO are designed to be easy to tune, parameters of the environment could favor
the performance of one algorithm above another. For example, a different weight-
ing of the terms in the shaped reward might have enabled PPO to learn the task
more reliably.

The experiments are restricted to two considering architectures, namely “MlpPol-
icy” and “CnnPolicy”, two options offered by Stable Baselines 3 [34]. Different
architectures might result in faster learning, especially in the case of RGB-D ob-
servations.

The experiments are also restricted to two sets of observations, and a more thor-
ough study might support the claim that observing object pose seems to simplify
the problem significantly. Additionally, exploring different algorithms might re-
veal how image observations and proprioceptive information might be combined
to ease the learning of the task when the object pose is unknown.
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5.2.4. Choice of algorithms

As stated in the introduction, SAC and PPO were chosen as they are available
open-source through Stable Baselines 3 [34]. However, they differ from the algo-
rithms discussed in the related works, and these differences might give rise to gaps
in performance. In other words, the experiments are not exhaustive in showing
the capabilities of model-free RL algorithms.

Both PPO and SAC are Actor-Critic style algorithms, meaning that they are
inspired by policy iteration, where the policy (actor) is updated using a value
function approximator (critic). QT-Opt is based on Q-learning, where the policy
is not explicitly defined but implicitly by maximizing a Q-function.

This difference in the Actor-Critic and Q-learning formulation might bring differ-
ent advantages and challenges; however, the experiments reveal challenges com-
mon to all model-free RL algorithms, such as a dependency on data, observations,
and action interface and reward signal.

5.3. In the context of robotic grasping
This section will discuss the results from related works and the experiments in
the light of robotic grasping and present emerging challenges.

5.3.1. Comparison of QT-Opt and Dex-Net

Two grasping methods were explored in the section on related work: QT-Opt
and Dex-Net. While they achieve a comparable grasp success, the methods dif-
fer substantially. Kleeberger et al. [19] categorize Dex-Net as using supervised
learning, as it turns the problem of grasping into predicting grasp success for
a candidate grasp. Therefore, the exploration problem arising with deep RL is
instead converted to constructing a sufficiently large and diverse dataset.

QT-Opt is characterized as an RL algorithm, as it formulates the problem of
grasping as a multi-stage MDP. It also incorporates the challenges of exploration
and utilizes sparse rewards.

The different approaches result in highly different behavior, which is not revealed
by inspecting their grasp success rate. QT-Opt can perform sequences of action
within a single grasp, allowing for sequences of non-prehensile actions. Due to
their approach, Dex-Net is incapable of sequences of actions within a single grasp
attempt.
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5.3.2. Data collection

QT-Opt inherits a restriction based on the need for a large and diverse dataset.
In their work, Kalashnikov et al. use a dataset of 580k grasp attempts, col-
lected mainly autonomously. Still, this dependence upon a large dataset limits
the method from being applied to tasks where data collection can not be done
efficiently. Haarnoja et al., from their experiments with SAC for locomotion on a
physical quadruped, report being unable to capture a large amount of data due
to the time-consuming collection process. [8]

The vital need for data is further exemplified by the results from the experiments,
where the algorithms need to collect around 1 million timesteps before solving the
grasping task. Moreover, this is in the setting where the algorithm observes perfect
pose information of the object to grasp. To illustrate the timescales of conducting
a similar setup in the real world: Assuming that one timestep corresponds to 1
second in real-time, 1 million timesteps corresponds to ≈ 28 hours of effective
training time, neglecting the setup needed between episodes.

As shown in work on QT-Opt, data collection can be done largely autonomously
in the case of robotic grasping; however, solving tasks where this is not necessarily
possible calls for different techniques.

Collection of useful data

An important specification of data dependence is the dependence on valuable
data, often successful episodes by a scripted policy or human demonstrations.

As discussed in the experiments, specifically regarding the experiments using
sparse rewards, we observe that the algorithms quickly learn the task when the
first successful episodes are collected. This benefit of experiencing reward is in-
dicated by the shift from collecting purely low-reward episodes to consistently
performing high-reward grasps. This hints that having access to valuable data is
a trigger to allow the algorithm to learn the task.

Kalashnikov et al. [15] report that they have to use a scripted policy to initially
collect useful episodes. Andrychowicz et al. [1] report resorting to similar meth-
ods, starting half of the episodes in a state where the gripper grasps the object.

5.3.3. Semantics in grasping

Both algorithms aim to grasp objects successfully; however, they do not allow
choosing which object to pick up next. In both cases, when the algorithm picks
up an object, it does not know what it might be. Furthermore, they cannot search
for a pre-specified object in a heap of objects.
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While not explicitly stated, both algorithms presumably grasp the objects with
the same force. This restricts the application to objects where a light touch is
necessary.

5.3.4. Dealing with sparse rewards

As argued by Ibarz et al. [14], specifying the sparse rewards is often the most
natural way to specify a manipulation problem. This is also the case for grasping
tasks where a sparse reward signal introduces no bias to choosing behaviors that
might be suboptimal.

In the experiments, the bias towards sub-optimal behavior induced by reward
shaping, is exemplified. In the discussion of the experiments using reward shaping,
PPO fails to learn the task in some instances, instead learning to maximize a term
of the shaped reward that does not correspond to grasping and lifting the object.

Hindsight Experience Replay, presented in section 3.8, offers a framework for
dealing more efficiently with sparse rewards. Although their method drastically
increases the performance of the DDPG algorithm, it requires around 1.6 million
timesteps in the environment to solve the pick-and-place task, which is in many
ways similar to the grasping problem of the experiments in chapter 4. This shows
that HER, too, relies on a large dataset that might be impractical to collect in
the real world.

5.3.5. Observation space

As seen through the experiments and the related work, the choice of observations
available to the agent heavily influences the complexity of grasping. Therefore,
using model-free RL algorithms on a physical robot demands considerations of
what observations are given to the agent. For some setups, this might limit the
practicality of deploying such algorithms.

In the discussion of the experiments regarding the observation space, we see that
changing the observation space from RGB-D images to a combination of different
modalities such as object pose and robot configuration drastically changes the
algorithm’s performance.

In their experiments, Andrychowicz et al. [1] offer similar observations to the
algorithm, using a CNN to infer the object pose using RGB-D images and feeding
this estimate to the trained actor.

QT-Opt and DexNet 4.0, however, depend only on depth image or an RGB image
of the scene as observations, respectively. They reveal that learning to grasp
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directly from image or depth observations is possible given a large enough dataset
and a network of sufficient complexity.

In a robotic grasping system, several observation spaces are possible. We could
construct a policy that can infer grasps from raw input, such as depth or images.
This approach is often referred to as learning end-to-end [14]. Alternatively, the
policy could receive observations that are processed, such as shown in work by
Andrychowicz et al. [1] on HER, where they use an estimate of the pose of the
object with a separate CNN. Such a preprocessing of the images can be connected
to the “thinking” stage between the “seeing” and “acting” in figure 1.1 illustrating
the see-think-act cycle. In the same manner that Ziegward et al. mention different
stages of the “thinking” stage, such as building a map, steps to extract useful
information such as object pose can be extracted by a separate algorithm at this
stage.

The experiments show that providing object pose as an observation to the agent
is highly beneficial to accelerate the learning using SAC and PPO. Therefore,
an approach similar to that of Andrychowicz et al. [1] is a natural approach to
implementing a grasping solution on a physical manipulation setup, similar to the
system described in appendix A.

5.3.6. Action space

The action space offered to the actor also dramatically impacts the task’s difficulty
and affects the possibility of learning to solve the grasping task on a given physical
system.

Experiments by Zhu et al. [54] show that the performance of the SAC algorithm
is substantially higher when given direct control of the end-effector pose. Similar
action space is also used in the setting of QT-Opt, and Dex-Net 4.0. Additionally,
QT-Opt restricts the action space further, as the only rotation allowed is about
the vertical axis.

The results from Zhu et al. might be explained by the fact that grasping is
significantly simplified when both actions and observations are defined as task
space poses. Moving toward the object to be grasped, for example, is solved by
setting the gripper pose equal to the object pose, perhaps with some offset. Solving
this problem by acting directly on the joints complicates this task significantly.

Setting task-space poses directly is an interface available at the large majority of
robotic manipulators and is, therefore, a realistic formulation of the action space.
Directly controlling the end-effector pose can, in some cases, cause unwanted
behavior, such as singularities. It can also have ambiguities, as and-end effector
pose might be reached through several robot configurations. However, this can
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be circumvented by assuming that the set of poses that the actor can choose is
well outside the configuration space where these problems arise.

5.4. In the context of robotic manipulation
This discussion will present a discussion on the related work and the experiments
from the perspective of the general robotic manipulation problem.

5.4.1. From robotic grasping to general manipulation

The algorithms for robotic grasping explored in the related works vary in relevance
to general robotic manipulation.

Dex-Net 4.0 constructs the database using an analytic model to calculate the
grasp stability. This limits the method to the case of robotic grasping. However,
it might be an inspiration for methods incorporating knowledge of the mechanics
to solve the manipulation problem.

The HER technique can prove helpful in many manipulation problems, as sparse
rewards can be specified easily. However, the method is restricted to tasks that
can be specified in a multi-goal format. While this is highly relevant for tasks such
as aiming for a goal, like throwing a dart or curling, many tasks are rewarded in a
binary manner. For example, at what angle the door is opened is of little concern;
the fact that it is opened is the main objective.

However, QT-Opt, SAC, and PPO are fundamentally model-free and can be ap-
plied to other manipulation tasks. Still, some aspects limit their application to
general manipulation problems.

Collection of useful data

As seen in the experiments, as well as the results of QT-Opt, these model-free
algorithms are dependent on a large set of successful episodes to learn the tasks.
QT-Opt solves this problem partly by using scripted policies and partly with
large-scale data collection.

Even though scripted policies might suffice to collect valuable data, this depen-
dence on demonstrations can restrict model-free methods when considering gen-
eral manipulation tasks. Consequently, they will not be able to efficiently solve
tasks that cannot be solved by a scripted policy initially. Alternatively, human
demonstrations can also be used; however, this might be elusive for some tasks.
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5.4.2. Observations

The lessons learned from the experiments with different observations extend to
general manipulation. Specific modalities are highly informative and help the
agent learn the task quickly. The experiments show that knowledge of the object
state and the robot configuration has this effect. Helpful representations might
change from problem to problem; however, knowledge of the poses of different
objects in the scene might be valuable in most manipulation tasks.

How informative the observations are, is restricted by the sensors. However,
separating the task of extracting useful information from sensor data can also
provide more informative observations to the agent. For example, using a pose-
estimator as discussed for robotic grasping might be relevant to a large set of
manipulation problems.

5.4.3. Actions

As discussed for robotic grasping, the agent learns the task more quickly when
directly controlling the end-effector pose in the task space. This fact might ex-
tend to several manipulation problems for the same reasons given. The action
of approaching an object is greatly simplified when formulating observations and
actions as task-space poses.

While this is a natural formulation for robotic manipulators, such as described in
the setup of appendix A, this does not extend to all physical robots. The popular
quadruped platform used for robotic dogs is often controlled at the joint level.
Other examples are articulated grippers, such as humanoid hands, which do not
have a single end-effector to put in a desired pose. However, setting the fingertips
in the task space is a possibility.
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Conclusions and further work

As stated in the problem description, this thesis explored the capabilities and
limitations of model-free RL for robotic grasping, with the motivation of solving
the general manipulation problem. The experiments applied the model-free deep
RL methods SAC and PPO to pick up a box in a simulated setup with a robotic
manipulator, similar to the setup described in appendix A. The discussion ex-
amined the results from both related works and the experiments and highlighted
emerging challenges of model-free RL for grasping and general manipulation.

Considering the discussion of the previous chapter, we can make the following
conclusions:

• Model-free deep RL algorithms provide a framework for solving a large set
of tasks with general algorithms; however, some significant challenges limit
a practical application to all manipulation problems.

• Given the sufficient state information, open-source implementations of model-
free algorithms can be used to solve a grasping problem in simulation with-
out task-specific refinement.

• Open source implementations of model-free deep RL algorithms learn the
task significantly faster when observing object pose and robot configuration
rather than RGB-D images.

• Reward shaping accelerates the learning process for both SAC and PPO.

• Our experiments hint that SAC is robust to exploiting shaped reward, as it
solved the task 5 out of 5 times. In contrast, PPO solved it 3 out 5 times.

• An emergent solution for performing a grasping task on a physical setup is
to separate the concern of object pose estimation to a separate process, such
as a CNN.
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6.1. Further research
This section will identify areas of future research in light of the observations this
thesis has made.

6.1.1. Deployment on an actual setup

The experiments were exclusively done in a simulated setup, and deploying algo-
rithms on a physical setup calls for solutions to the sim-to-real gap. Comparing
existing methods, such as domain randomization and random force injection [52],
and further improving them will impact how practical algorithms are on real
robotic systems.

6.1.2. Policy architectures

The experiments in this report did not explore potential architectures extensively,
and further research on the benefits of different policy architectures might improve
the performance.

Some architectures allow the network to build a memory of previous inputs and
outputs, especially architectures used for natural language processing (NLP). Poli-
cies can benefit from this in many manipulation tasks. For example, digging
through a heap for an object might benefit from knowing where the agent has
looked previously. Another example is opening a locked door, where the agent
has to unlock the door before opening the handle. With a direct mapping of
visual inputs to actions, the algorithm cannot infer whether it has unlocked the
door when it sees an image of the handle.

Exploring different architectures allows for a combination of different sensor modal-
ities. In the experiments, a fully convolutional network is used for the RGB-D
observations, and a fully connected network is used for the one-dimensional ob-
servations. Forming an architecture that applies convolutional operations on the
images before merging the result with one-dimensional observations will allow for
using all modalities and might improve performance.

6.1.3. Different optimization techniques

The methods discussed in this thesis have been confined to using variations of gra-
dient descent to find the optimal policy. However, other optimization techniques
can have different advantages, some of which can be highly fruitful in deep RL.
For example, evolution-based methods. [48] [17]
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6.1.4. Improving observations

While pose estimation is highly advantageous when manipulating rigid objects,
this is not sufficient when the tasks include soft materials or liquids. In these
scenarios, learning a scene representation from images using autoencoders might
provide more informative observations to the agent.[4]

6.1.5. Sophisticated control

The experiments have assumed that the agent directly allows for commanding
the end-effector position. However, how this is achieved is not explored. When
contact between the environment and the end-effector occurs, the force exerted
by the end-effector on the environment depends on the controller’s stiffness. A
correct controller design is necessary to ensure the safety of the physical robot
and its surroundings. Additionally, challenges such as grasping fragile objects call
for more sophisticated controllers than discussed here. Allowing the algorithm
to control stiffness parameters or the torques on the system directly might allow
higher safety and more sensitive manipulation.

6.1.6. Accelerate the collection of experience

Experiments show that the ability to parallelize environments has a massive effect
on the training time, often cutting the runtimes in orders of magnitude. Exploring
simulators that easily allow for generating realistic experiences from simulated
parallel environments could have significant benefits in the efficiency of generating
data and allow algorithms to learn more complicated tasks in a shorter amount
of wall time.

6.1.7. Demonstrations and multi-goal learning

The discussion of sparse rewards in section 5.1.2 expresses that experiencing suc-
cessful episodes primes the learning of the task. An evident challenge is to quickly
guide the algorithm to fruitful action sequences in a sparse reward setting. Explor-
ing techniques dealing with this problem, such as learning from demonstrations,
is a clear direction to explore to improve algorithms for manipulation problems.
Other directions are multi-goal learning, as demonstrated by HER, and inverse
RL, where the reward function is learned from demonstrations. [14]

6.1.8. Predicting uncertainty

To help the collecting diverse datasets, allowing the policy to express uncer-
tainty might be crucial. In machine learning, it is helpful to differentiate between
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aleatoric and epistemic uncertainty in a model. They can be briefly described as
[12] :

• Aleatoric (or statistical) uncertainty: Irreducible noise inherent to the pro-
cess. For example, a dice has a uniform distribution of landing on all six
sides. This randomness is irreducible, and more data on experiments with
the dice will not decrease this uncertainty.

• Epistemic uncertainty: Uncertainty about the model due to lack of data.
Consider a coin a weighting, making the probability of heads equal to 1.
Experiments will reveal what the coin always will show; however, before
experimenting, there is uncertainty about whether the coin will show heads
or tails. This uncertainty is reducible by collecting more data.

The aleatoric uncertainty can be likened to the uncertainty that maximum entropy
learning aims to nurture in the policies, as described in 2.3. Many robotic tasks,
including grasping, are solved in various ways, and having this uncertainty in the
policy is proven beneficial. For example, having the notion of multiple ways to
grasp an object makes the policy more robust when it is forced to grasp the object
in another way than most optimal.

Extending to robot grasping, we can connect the epistemic uncertainty to the
random exploration of the model-free algorithms in the sparse reward environ-
ment. The uncertainty of what actions to take to obtain the sparse reward is
highly reducible; one successful episode will limit the action-sequence space to be
explored significantly.

As in machine learning, it is helpful to signify when models predict with significant
uncertainty due to lack of data or inherent noise. Extending this to solving ma-
nipulation tasks, devising algorithms that can signify the epistemic uncertainty,
and combining this with guiding in the form of shaped rewards or demonstra-
tions might eliminate the need for highly random exploration that model-free
algorithms are forced to do in sparse reward settings.

6.1.9. Estimating a model

Model-free algorithms start with highly random exploration; however, with more
experience, they can seemingly learn complex behavior without forming an explicit
model. Their lack of a model makes them highly bias-free; however, the high
variance is visible in a large amount of exploration before discovering fruitful
behavior.

On the other hand, having a model can allow for finding an optimal policy using
no exploration. Given an MDP of the problem, policy- or value iteration can find
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the highest performing policy purely by executing computations using the model.
However, a fully model-based approach can suffer from discrepancies between the
model and the real world, as modeling the simulator precisely as the real world is
a nearly impossible task. Therefore model-based methods can be seen as having
no variance but a significant bias in following the model.

Further research can follow this reasoning to strike a balance between model-free
methods and model-based methods. As mentioned by Ibarz et al. [14], several
successful works have been done where a model is learned through large datasets
and is then used to choose actions. Including epistemic uncertainty allows for
developing models that can express where they need more data. This can work
towards obtaining robust models for an extensive range of scenarios.
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Appendix A.

Description of physical robot

Figure A.1.: An overview of the setup used as an example throughout the thesis.

The setup consists of a robot arm (KUKA LBR iiwa) equipped with a gripper
(Robotiq 2F 85) and a Zivid Two RGB-D camera facing the scene. An overview
of the setup is shown in figure A.1.

A.1. KUKA LBR iiwa
KUKA LBR iiwa is a collaborative robot designed to work alongside humans. It
has safety mechanisms hindering forceful collisions with humans. It can carry
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Figure A.2.: Robotiq 2F 85 mounted on the mechanical arm
.

payloads up to 14 kg and has a reach of 820 mm. It has seven joints, giving in
one additional degree of freedom when keeping the end-effector pose fixed. This
can enable it to avoid obstacles. It is controlled by joint torques applied at the
joints, with software offering other control interfaces, such as directly controlling
the end-effector pose. [21]

A.2. Robotiq 2F 85
Attached to the manipulator is a Robotiq 2F 85, a parallel gripper. The width
between the finger is 85 mm, and it can lift an object weighing up to 5 kg. It is
depicted in figure A.2.

A.3. Zivid Two
The Zivid Two camera provides the RGB-D images. This uses structured light to
obtain high precision estimates of the depth of the image. It faces the robot and
the workspace, as shown in figure A.1. Figure A.4 shows a closeup of the camera.
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Figure A.3.: The KUKA LBR iiwa in the example setup

Figure A.4.: A closeup of the Zivid Two RGB-D camera





Appendix B.

Hyperparameters

The parameters for SAC and PPO used in the experiments are outlined in table
B.1 and B.2, respectively. All other parameters are left to default values unless
stated otherwise in the experiments.

Parameter Value Explanation
T 1 Environment steps pr iteration
ngradient steps 1 Gradient steps pr. iteration
H -7 Desired entropy, = −dimA
tau 0.005 Polyak update parameter for the critic networks
Buffer Size 106 The maximum size of the replay buffer
γ 0.99 Discount factor
nexplorational steps 100 Initial steps using the explorational policy

Table B.1.: The SAC parameters used in the experiments

Paramameter Value Explanation
N 8 Parallel environments for exploration
T 2048 Timesteps collected pr. environment before policy update
λ 0.95 Bias-variance-tradeoff parameter of GAE
γ 0.99 Variance reduction parameter in GAE (discount factor)
K 10 Number of epochs in policy update
M 64 Minibatch size

Table B.2.: The PPO parameters used in the experiments


