
An exploration of acoustic gas leak
and anomaly detections suitability
for autonomous inspections in
industrial plants

June 2022

M
as

te
r's

 th
es

is

M
aster's thesis

Simen Berg-Hansen

2022
Sim

en Berg-H
ansen

NT
NU

N
or

w
eg

ia
n

Un
iv

er
si

ty
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

De
pa

rt
m

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l E

ng
in

ee
rin

g

An exploration of acoustic gas leak and
anomaly detections suitability for
autonomous inspections in industrial
plants
Simen Berg-Hansen

Engineering and ICT
Submission date: June 2022
Supervisor: Gunleiv Skofteland
Co-supervisor: Christian Holden

Norwegian University of Science and Technology
Department of Mechanical and Industrial Engineering

Abstract

Today, many faults in industrial plants are found by skilled workers doing manual

inspections and using hearing to detect damaged machines or leaks. Equinor has

begun the transition to autonomous robot inspections instead and wishes to exam-

ine acoustic options. This thesis explores two directions: to specialize the robot to

detect gas leaks, since it has the highest damage potential, or to recognize sound

anomalies, which are sounds that deviate from the normal. A compressed air leak

dataset created by Johnson et al. [1] is used, and a handful of machine learning

models are chosen for each approach. The tree-based family is selected for gas

leak detection and One-Class Classifiers for anomaly detection. Through several

experiments, both approaches showed promising results, with the gas leak de-

tector indicating it might be possible to recognize leaks regardless of background

noise or leak type. The anomaly detector classified 90% of anomalies correctly

with the least noisy data and 70% on the hardest. It is also exhibited that look-

ing at a signal’s average power between 20-24 kHz is effective in classifying leaks

in the auditory hearing range in this dataset. In the end, it is concluded that the

gas leak approach is the most promising and should be the main focus of any

succeeding work.

iii

Sammendrag

I dag blir mange feil i industrianlegg funnet av kvalifiserte arbeidere som utfører

manuelle inspeksjoner og bruker hørselen for å oppdage skadede maskiner eller

lekkasjer. Equinor har begynt overgangen til inspeksjoner utført av autonome ro-

boter i stedet og ønsker å utforske akustiske muligheter. I den sammenheng un-

dersøker denne oppgaven to mulige retninger: å spesialisere roboten til å oppdage

gasslekkasjer, som har det høyeste skadepotensialet, eller å gjenkjenne lydanom-

alier, som er lyder som avviker fra det normale. Et datasett med komprimert luft

laget av Johnson et al. [1] brukes, og en håndfull maskinlæringsmodeller er valgt

for hver tilnærming. Modeller fra beslutningstre familien brukes for gasslekkas-

jedeteksjon og One-Class Classifiers for anomalideteksjon. Gjennom flere eksper-

imenter viste begge tilnærmingene lovende resultater, og gasslekkasjedetektoren

peker mot at det kan være mulig å gjenkjenne lekkasjer uavhengig av bakgrunnsstøy

eller lekkasjetype. Anomalidetektoren klassifiserte 90 % av uregelmessighetene

riktig i møte med data med lite støy og 70 % ved høy. Det er også vist at å se på et

signals gjennomsnittlige effekt mellom 20-24 kHz er konstruktivt for å klassifisere

lekkasjer i det brukte datasettet. Til slutt konkluderes det med at gasslekkasjetil-

nærmingen er den mest lovende og bør være hovedfokus for påfølgende arbeid.

iv

Preface

This master thesis is written as part of a five-year M.Sc. program named Engin-

eering and ICT at the Norwegian University of Science and Technology. The thesis

is conducted within the specialization in Robotics and Automation, at the depart-

ment of Mechanical and Industrial Engineering (MTP) during 20 weeks in the

spring semester of 2022. The thesis is a prolongation of the work done in a spe-

cialization project from the autumn semester of 2021. I would like to thank my

supervisors Gunleiv Skofteland and Christian Holden for advising me through this

process.

v

Contents

Abstract . iii

Sammendrag . iv

Preface . v

Contents . vi

1 Introduction . 1

1.1 Problem Description . 1

1.2 Robot Behaviour and Limitations . 3

1.3 Related Work . 3

1.4 Report Structure . 5

2 Theory . 6

2.1 Signal Processing . 6

2.1.1 Audio Signals . 6

2.1.2 Fourier Transform . 8

2.1.3 Signal Power and Energy . 11

2.2 Audio Features . 12

2.2.1 Time- and Frequency Domain Features 12

2.2.2 Mel-Frequency Cepstral Coefficients (MFCC) 13

2.3 Machine Learning . 14

2.3.1 What is Machine Learning? . 14

2.3.2 Training and Testing Set . 14

2.3.3 Evaluation Metrics . 15

2.3.4 Overfitting . 16

2.3.5 Cross-validation . 17

2.4 Machine Learning Models . 18

2.4.1 Tree-based Models . 18

2.4.2 Anomaly Detection Methods . 21

2.4.3 Hyperparameter Tuning . 23

3 Methods . 25

vi

Contents vii

3.1 Dataset . 25

3.2 Exploratory Data Analysis . 27

3.3 Pre-processing . 31

3.3.1 Loading data . 31

3.3.2 Normalization and Denoising 32

3.4 Feature Extraction . 33

3.4.1 File Segmentation . 33

3.4.2 Time- and Frequency Features 34

3.4.3 (Relative) Power in Frequency Segments 36

3.4.4 Feature Correlation . 38

3.4.5 Feature Parameter Selection . 40

3.5 Machine Learning . 41

3.5.1 Tree Based Binary Classification 41

3.5.2 One-Class Novelty Detection . 42

3.6 Experiments . 43

3.6.1 Experiments for Gas Leak Detection 43

3.6.2 Experiments for Anomaly Detection 44

4 Results . 46

4.1 Gas leak detection results . 46

4.2 Anomaly Detection Experiment Results 55

5 Discussion . 59

5.1 Results Discussion . 59

5.2 Comparison of Approaches . 62

6 Conclusions and Further Work . 65

6.1 Conclusions . 65

6.2 Further Work . 66

Bibliography . 68

A Code . 76

A.1 File Information Retrieval . 77

A.2 Relative power in segments code . 79

A.3 Experiment execution . 81

B Hyperparameters . 84

B.1 Tree Based Classification Models . 84

B.2 One Class Classifying Models . 86

Chapter 1

Introduction

1.1 Problem Description

Early detection of problems in machines or equipment can be essential to avoid

further destruction. For companies operating in the oil and gas sector, a leak

can have significant repercussions environmentally, economically, and safety-wise.

The worst leak outcome is an explosion caused by a spark or flame reacting with

the gas. Current leak detection approaches include mounted gas leak detectors

and manual inspections by skilled workers’ that use hearing to discover and loc-

alize leaks. The gas leak detectors are not always suited for outdoor use as wind

heavily impacts them. Having other essential tasks to tend to, struggling to access

small or high places physically, and the human hearing range, which is around 20-

20kHz, are factors that limit the workers. Equinor has proposed a solution to this

problem by equipping an autonomous inspection robot, such as the one displayed

in Figure 1.1, with microphones that can conduct routine inspections on on-and

offshore oil and gas platforms. The robot should process the recorded audio and

notify a human if any alarming sounds are detected. This use of autonomous ro-

bots is part of Equinor’s vision of having fully unmanned platforms. However, the

technology is not limited to the oil and gas sector, and most other industrial plants

and manufacturing facilities could benefit from this technology. In this thesis, we

consider two different angles to the problem; one is to specialize the robot in re-

cognizing the sound of a gas leak and alerting humans when it believes the sound

is present. The other is to instead focus on alerting humans when the robot ob-

serves some sounds in a location that differs from the expected, often called an

anomaly. Not too dissimilar from how mechanics can detect a broken engine by

comparing the sound to how they know it should sound.

1

Chapter 1: Introduction 2

In recent years, researchers have achieved excellent results in speech and au-

dio classification tasks using machine learning, but the work is not as advanced

for industrial audio analysis. However, there is a growing interest in the field, and

the same methods might also prove successful here.

The overarching goal of this thesis is to explore which of the two proposed dir-

ections above, which will be referred to as leak detection and anomaly detection,

are most suitable for the robot. This goal is divided further into the following

sub-goals:

• Find a publicly available relevant dataset with gas leaks and industrial noise.

• Explore the data to learn about the characteristics of gas leaks.

• Use the knowledge about the data to extract relevant information from the

audio, called features, and explore which features are most impactful.

• Create and train suitable machine learning models for gas leak and anomaly

detection.

• Utilize the dataset to test the models on experiments as relevant as pos-

sible to how the robot would be used in an industrial plant with the data

available.

Figure 1.1: An autonomous inspection robot created by Equinor which has been
deployed to an offshore platform. Source: [2]

In Section 1.2, there is a brief explanation of how the robot is intended to be

used, as well as how this, and other factors, create limitations for the thesis.

Chapter 1: Introduction 3

1.2 Robot Behaviour and Limitations

This thesis assumes that the robot will approach several pre-decided locations

a few times a day and stop for a predetermined time to record the audio. We

assume the sound is stationary during this recording, meaning the sound image

does not change. However, the sound in one location can change from day to

day. Audio will be recorded with a non-contact microphone capturing airborne

sound. The robot always knows where it is down to the millimeter, thanks to a

GPS, but the steering is not precise enough to do the same, so we cannot presume

recordings from precisely the same position each time. The robot can also store

specific information and connect that to a GPS location which can be used later.

In addition, the scope and achievements in this thesis are limited by the available

dataset’s quality and relevance.

1.3 Related Work

Using mobile robots for acoustic leak inspections is not common in the literature,

yet, Schenck et al. [3] proposed combining ultrasonic microphones and LIDAR on

a vehicle to localize pressurized leaks. Kroll and Gunther [4] created an ultrasonic

scanning system mounted on a mobile service robot for ground detection and a

remotely controlled micro aerial vehicle where it did not reach.

Using contact sensors, such as acoustic emission sensors and accelerometers, is

most prominent in related literature since it allows for more frequent recordings,

and it can be less noise.

When it comes to anomaly detection, Nunes [5] has completed a systematic

review of the papers published about detecting sound anomalies with machine

learning and found out that Autoencoders (AE) and Convolutional Neural Net-

works (CNN) are the techniques most cited currently. Oh and Yun [6] and Duman

and Bayram [7] use AE that inputs images representing the change in frequency

over time, called spectograms. The AE returns how similar new observations are

from examples of typical sounds it has seen before. A similarity threshold is set to

decide if the new data is dissimilar enough to be viewed as anomalous. Kampelo-

poulos et al. [8] tests several one-class classification algorithms, such as One-class

Support Vector Machine (OC-SVM), Isolation Forest (IF), and Local Outlier Factor

(LOF), which uses examples of normal data and aims to create a boundary around

safe data and new data that falls outside of the edge is regarded as an anomaly.

Müller et al. [9] begin with a CNN model that is trained on millions of regular im-

Chapter 1: Introduction 4

ages and uses transfer learning to train the model further on spectograms before

also using One-Class Classifiers and autoencoders to detect anomalies.

For gas leak detection, Quy and Kim [10] classify new data as normal or gas

leak based on the most similar data points with a K-Nearest Neighbour algorithm.

Xiao et al. [11] separate leaks from non-leaks with an SVM classifier, creating

a hyperplane that separates the classes. Cruz et al. [12] test several algorithms

such as K-nearest neighbors, RF, AdaBoost, and XgBoost for gas leak detection

and found Random Forest to perform best.

All the previously mentioned works use contact sensors, but research on air-

borne sound recorded by non-contact microphones is limited, probably because of

few available datasets. Johnson et al. [1] discuss this issue and note that there are

no large audio datasets with air leakage sound included, at least publicly avail-

able. They contribute to the field by creating a new dataset consisting of several

leak types and background noises. They use a Convolution Neural Network (CNN)

on spectogram images from their data to determine a baseline. Ning et al. [13]

use a CNN as well on data unavailable to the public. Nevertheless, they execute an

enhancement procedure to the spectograms to emphasize the leak in the images

before feeding them to the network. The same authors published [14] the year

later, where they used a Random Forest algorithm on several acoustic features

and achieved similar results.

Henze et al. [15] has created a pipeline combining both leak and anomaly

detection. Autoencoders are used to detect anomalies, initializing a classifier to

diagnose the cause if triggered.

Chapter 1: Introduction 5

1.4 Report Structure

In Chapter 2 the essential background theory is presented. Chapter 3 describes

the methods used and ends with an explanation of several experiments conduc-

ted. The results of these are presented in Chapter 4 before they are discussed in

Chapter 5. Any weaknesses are also acknowledged, and the main approaches are

compared. Chapter 6 concludes the thesis and presents further works.

Chapter 2

Theory

This chapter aims to equip readers with the preliminaries to follow this thesis.

It begins with a general introduction to sound and its digital representation, fol-

lowed by a brief overview of the Fourier transform and why it is useful in signal

processing. Then what audio features are, and what the features used in this thesis

represent. Finally, Machine Learning (ML) and relevant concepts in that field are

presented before two categories of ML methods are introduced.

2.1 Signal Processing

2.1.1 Audio Signals

Rossing and Moore [16] define sound as longitudinal waves that propagate through

either gas, liquid, or a solid and cause slight changes in air pressure that ears or

microphones can detect. The frequency of that sound is determined by how fast

these waves oscillate. According to Lerch [17], an audio signal is a function of

these sound pressure levels over time. The sound emitted from gas pipeline leaks

is from the turbulence caused by the gas decompressing when it enters an envir-

onment with lower pressure [1]. To humans, it appears as a hissing noise, and

the intensity is dependent on the distance from the source, pressure in the pipes,

gas viscosity and more. The leak sound can also reach the ultrasonic frequencies,

making it inaudible to humans who can only hear frequencies between 20-20kHz.

According to [18], the frequencies generated by gas leaks are generally between

10 and 60 kHz.

However, machines are not limited to the same frequency range as humans,

and by using sensors like microphones, these higher frequencies can be observed

6

Chapter 2: Theory 7

if the equipment is made for it. Microphones convert mechanical energy in sound

waves into electrical energy, but the signal has to undergo sampling for it to be

used by computers. Sampling converts a continuous-time signal to a discrete-time

signal by gathering a sequence of samples from the original signal. A value at a

point in the signal is called a sample. The sample rate is the number of samples

taken in a second, and the unit is samples per second or hertz (Hz) [19]. Accord-

ing to Nyquist Sampling Theorem [20], the sample rate should be at least twice

the signal’s highest frequency to reconstruct the original signal from the samples

without any loss of information:

sample rate> 2 · f reqmax (2.1)

Figure 2.1 shows a plot of a signal sampled with a rate not following Nyquist’s

theorem. The distortion of the signal caused by this is called aliasing.

Figure 2.1: Under-sampled sine wave. Source: [21]

Therefore, to use signals with frequencies up to the mentioned 60 kHz that gas

leaks could reach, one needs a microphone that can record those high frequencies

and sample the signal with a sample rate twice that. Figure 2.2 shows a plot of a

waveform of an audio signal for a trumpet.

Figure 2.2: Waveform plot of a 3s trumpet sound. For sound, a waveform is a
graph of the variations in air pressure over time.

Instead of analyzing the entire audio file length at once, it can be more bene-

ficial to look at shorter segments, or frames. A process called framing is used for

Chapter 2: Theory 8

this and can be visualized Figure 2.3. By sliding a window with a specific length,

called the frame-length, across the signal, the samples inside the window at each

step make up a frame. The hop-length describes how far the window moves for

the next frame, either in seconds or samples. We can convert between samples

and seconds by dividing or multiplying the sample rate. Commonly, frames over-

lap in order to extract as much information as possible. Each frame must contain

the frame-length amount of samples, implying that the final frame will be the last

part of the signal with a full window.

The primary motivation for framing is that real-world audio signals are often

non-stationary, meaning there can often be rapid property variations over time.

One sudden short burst of energy can dominate the signal during analysis, so

breaking it down into frames makes it possible to avoid this. In other cases, it

can turn one large datapoint into several smaller providing more data for analysis

[22].

Figure 2.3: Framing applied to a signal using 1 second frame-length, and 0.5
seconds hop-length. Source: [23]

2.1.2 Fourier Transform

An audio signal is composed of several single-frequency signals superimposed. The

Fourier transform is a mathematical concept that can be used to separate the signal

into the individual frequencies again. This transform can give information about

which frequencies are in the signal and their magnitude and phase. Transforming

our data from the time domain to the frequency domain gives another way of

representing it that can benefit the analysis. Figure 2.4 illustrates the relationship

between the time- and frequency domain for a signal.

The Discrete Fourier Transform (DFT) is a version of the transform that al-

lows discrete data, which is required for a computer to execute it. In practical

implementations of the DFT, it is common to use the Fast Fourier Transform (FFT)

algorithm that computes the DFT efficiently. Several python libraries exist with

Chapter 2: Theory 9

Figure 2.4: Figure illustrates the relationship between a signal’s time- and fre-
quency domain. The signal in the time domain (red line) consists of three sine
waves (purple, single lines). In the frequency domain (blue lines), we see peaks
at the frequencies of the three sine waves from the time domain and minor peaks
along the x-axis caused by noise. Source: [24]

slightly different implementations of the FFT, such as Scipy1. Using the methods

from the Scipy FFT package on an audio signal, a frequency spectrum can be

plotted. An example using the same sound from the waveplot above is found in

Figure 2.5. A Spectrogram is a visual representation of how the frequencies of a

signal change with time. Figure 2.6 shows an example, and it can be considered

a frequency spectrum plot as in 2.5 at each time step.

1 https://docs.scipy.org/doc/scipy/tutorial/fft.html

Chapter 2: Theory 10

Figure 2.5: Plot of the frequency spectrum of a trumpet sound.

Figure 2.6: A plot of the spectogram for a trumpet sound, illustrating the change
in frequency over time. Magnitude (dB) is represented by color; lighter colors
indicate high values, and frequencies are log-scaled.

Chapter 2: Theory 11

2.1.3 Signal Power and Energy

In physics, power is the amount of energy transferred or converted per unit of

time. The same relation holds for audio signals as well.

The energy of a discrete signal is found by taking the sum of the squared

absolute value of the signal’s amplitude at each sample. For a signal x the energy

E(x) is defined as:

E(x) =
N−1
∑

n=0

|x(n)|2 (2.2)

The average signal power is defined as the total energy E(x) divided by the

length of the signal or the number of samples. Average power P(x) is:

P(x) =
E(x)

N
=

1
N

N−1
∑

n=0

|x(n)|2 (2.3)

Another common way of representing the average power of a signal is using

Root Mean Square (RMS). The RMS is computed by simply taking the square root

of average power [25].

RMS =
Æ

P(x) =

√

√

√

√

1
N

N−1
∑

n=0

|x(n)|2 (2.4)

Power Spectral Density (PSD) represents the distribution of power in a signal’s

frequency components, and it builds on the Discrete Fourier Transform. For each

frequency component, the mean square amplitude is computed and averaged over

the number of samples [26].

Chapter 2: Theory 12

2.2 Audio Features

Audio features can be considered a condensed representation of the most valuable

information from an audio signal. The original signal contains much information

and is ill-suited for analysis tasks. Getting the features from the signal is called fea-

ture extraction and requires a good understanding of the problem domain to know

where the information is [22]. It is common to separate between time-domain

and frequency- (spectral) domain features based on the signal representation.

The ones that have been used in the project will now be quickly introduced:

2.2.1 Time- and Frequency Domain Features

• Spectral Contrast

◦ This feature aims at capturing the relationship between the highest

and lowest frequencies in a frame. Each frame is divided into N sub

bands (default N = 6), and the top energy is compared to the lowest

energy. The contrast in each sub band are returned for each frame.

• Spectral Centroid

◦ This feature aims at capturing where the spectral center of “gravity” is

for each frame. A spectrum for each frame is extracted and normalized,

and the mean of the magnitudes are returned as the centroid.

• Spectral Bandwidth

◦ This feature aims at capturing the variance from the spectral centroid

and is computed by taking the weighted mean of the distances of the

frequency bands from the centroid.

• Spectral Rolloff

◦ This feature captures at what frequencies most of the power is located.

It returns the frequency bin where at least a predetermined percent of

the power in the spectrum is below it. The default is set to 85%.

• Root Mean Square Energy (RMSE)

◦ This feature returns the root-mean-square value of each frame.

• Zero Crossing Rate (ZCR)

◦ This feature aims at capturing the smoothness of a signal and returns

the number of zero-crossings within a frame.

Chapter 2: Theory 13

2.2.2 Mel-Frequency Cepstral Coefficients (MFCC)

MFCC is a way of representing the power of a sound that emulates how humans

perceive sound. Humans are much better at distinguishing between small differ-

ences in the lower frequencies than the high. For example, between 100 and 200

Hz and 1000 and 1100 Hz. Frequencies can be transformed to the mel scale to

capture this relation by using Equation (2.5). Since it mimics how humans per-

ceive sound, it is often used in music and voice recognition tasks and might also

prove useful here.

Mel(f) = 2595 ∗ log10(1+ f /700) (2.5)

To get the MFCC the following steps are commonly done [27]:

1. Take the Fourier Transform of the signal.

2. Convert the frequencies to the mel scale.

3. Take the logarithm of the powers of the mel frequencies.

4. Take the Fourier Transform of the mel log powers again.

5. Return the amplitudes from the spectrum.

Figure 2.7 shows the MFCC computed on the trumpet sound using librosa’s

MFCC method.

Figure 2.7: A plot of the MFCCs of a trumpet sound, using 12 rows of mel fre-
quency bins and magnitude (dB) represented by color.

Chapter 2: Theory 14

2.3 Machine Learning

2.3.1 What is Machine Learning?

This section is mainly inspired by Russell and Norvig [28] Zhang [29]. Machine

Learning is a direction in Artificial Intelligence (AI), as seen in Figure 2.8. AI is,

according to Rich [30] the study of how to make computers do things at which, at

the moment, people are better. Machine learning uses sample data, called training

data, to build mathematical models that can make predictions or decisions without

explicitly being programmed for the task. A test set the models have not seen is

used to evaluate their performance.

It is common to divide ML problems into supervised or unsupervised based

on the information available during training. In supervised learning, the model

is presented with example input-output pairs and learns a function that maps

an input to an output. The desired output is often called the target value. If the

output is a discrete value, the task is called classification, and regression if it is

continuous. Classification is called either binary, if there are two classes to classify,

or multi class if there are three or more. In unsupervised learning, the model has no

information about the output data and learns patterns in the input data without

feedback. Clustering is a common application where data with similar features

are grouped. Figure 2.8 also shows that ML can be divided into three categories,

including both classification and clustering, as well as reinforcement learning. This

thesis does not use reinforcement learning and clustering algorithms; however,

several different classification approaches are.

One-Class Classification (OCC) is a classification problem where the goal is to

identity if objects belong to that one class in the training set or not, often called

either novelty or outlier Detection. Both approaches aim to separate a group of reg-

ular observations from irregular observations, called outliers or anomalies. Sup-

pose the data only contains data points of the regular observations. In that case,

we call it novelty detection, but if there are some outliers in the training data, it

is called outlier detection [31].

2.3.2 Training and Testing Set

In Section 2.3.1, it was stated that subsets of the entire dataset, called train- and

test sets, are needed when working with machine learning models. The train set

is used as examples for the model to learn from, while the test set’s purpose is to

evaluate how well the model performs on unseen data. The data can be anything

Chapter 2: Theory 15

Figure 2.8: Relationship between artificial intelligence (AI), machine learning
(ML) and deep learning (DL). Source: [32].

from a vector of numbers to images or audio files. Nevertheless, it is common

to represent images with vectors of pixel intensity and audio files as a vector of

sampled amplitudes. In this thesis, one data point is a vector with one value for

each feature extracted from the signal. When splitting the data into train and

test sets, a common approach is randomly selecting 80% for training and 20%

for testing. However, this is not always the right solution, and according to Riley

[33], the question you want to answer should affect the way you split your data.

2.3.3 Evaluation Metrics

Reliably evaluating the models will be necessary. The most common metric for

testing the performance of a classifier is the accuracy, which is:

accurac y =
number of correct predictions
total number of predictions

(2.6)

However, this does not take into account the classes and their distribution.

Especially if one class dominates the others in the dataset, any model will get a

misleadingly high accuracy by predicting everything as the dominant class. Pre-

cision and recall are commonly introduced to understand the models’ actual per-

formance better. They are defined as:

Precision=
T P

T P + F P
(2.7)

Recal l =
T P

T P + FN
(2.8)

Chapter 2: Theory 16

where TP is true positive, FN is false negative, FP is false positive and TN is true

negative. Figure 2.9 shows a confusion matrix which is used to illustrate these

relations.

Figure 2.9: Confusion Matrix.

A
ct

u
al

cl
as

s

Prediction class
P N

P True
Positive

False
Negative

N False
Positive

True
Negative

In a leak detection context, we can think of precision as representing how many

times we predicted something to be a leak, which actually was, and recall as how

many of the actual leaks we detected. An ideal model will have high precision

and recall; however, these are contradictory. For example, classifying everything

as a leak would give a high recall but low precision. Therefore, there must be a

trade-off and deciding what is most important for the use case. For higher-risk

situations such as gas leak detection, it is much more essential that all leaks are

caught, and some false alarms are therefore allowed - thus, a high recall is re-

quired. In other domains, such as email spam filtering, it would be more dam-

aging to classify something as spam that was not than doing nothing, so precision

is most important.

The f1-score is a metric that represents the relationship between the precision

and recall for predictions, and is computed with Equation (2.9).

f1 =
2 · Precison · Recal l
P recison+ Recal l

(2.9)

The f1-score will only be high if both precision and recall are high and low if one

or both are low.

2.3.4 Overfitting

Overfitting is an issue for supervised machine learning models where a model can

get a high score on train data and a low on test data. The models do not generalize

Chapter 2: Theory 17

to new data; it can appear like the models memorize all the train data. In the plot

to the far right in Figure 2.10 we observe a model that has overfitted the training

data, as can be seen by perfectly classifying all the data in the training set. The plot

to the far left illustrates a model that underfits, meaning it learns little from the

training data. The plot in the middle shows the optimal line separating the classes,

ignoring the noise. It can be complicated to find the reason for the overfitting, but

often it happens either because of small data sets or too complicated models [34].

Figure 2.10: The figure illustrates three possible solutions to the binary classific-
ation task of separating the green circles from the purple stars with a line. The
plot to the right shows overfitting. Source: [35]

2.3.5 Cross-validation

According to Lones [36], who discusses machine learning pitfalls in academic re-

search many ML models are unstable. Small changes to the training data can result

in significant variations in performance, which means that evaluating a model only

once can give a wrong impression of a model’s true performance. Cross-validation

(CV) is a technique used to tackle this issue by training the models on different

subsets of the training data. Each training iteration on a subset is often called a

fold. Figure 2.11 illustrates a four-fold CV training scheme. After four folds of 25

samples, all the data is used for testing, and training. Some datasets require slight

adaptations to the CV. If one class is small, Stratified CV ensures each class is ad-

equately represented. By using Grouped CV, it is possible to make sure that data

from the same group will not appear in two different folds, which can be useful

to test the data on unseen groups while still using CV.

Chapter 2: Theory 18

Figure 2.11: Figure showing cross-validation with four-folds. Each row is one
fold, the red regions of the line are test data for that fold, and the blue is the train
set.

2.4 Machine Learning Models

This section presents the theoretical background behind the machine learning

models used in this project. First, the tree-based models’ Decision Trees, Random

Forest, AdaBoost, and Xgboost are presented in Section 2.4.1. Then the One-class

detection methods One-Class SVM, Information Forest, and Local Outlier Factor

is in Section 2.4.2.

2.4.1 Tree-based Models

This section is inspired by [37] and Russell and Norvig [28]. Tree-based models

are a family of supervised machine learning recognizable by tree-like structures

created for either classification or regression tasks. Decision Trees (DT) are the

backbone of the family, and the tree structure is created during a training phase.

Figure 2.12 illustrates one possible Decision Tree for the Titanic survival prediction

dataset 2. That is a typical beginner machine learning problem where the goal is to

predict whether a person would survive the Titanic sinking based on age, gender,

number of siblings onboard (sibsp), and more.

Every internal node works as a test on a feature. The internal nodes are selec-

ted based on their “importance,” meaning how well they separate the passengers

2 https://www.kaggle.com/c/titanic

https://www.kaggle.com/c/titanic

Chapter 2: Theory 19

Figure 2.12: Figure showing a potential Decision Tree for the titanic survival
classification problem based on [38]. The internal nodes are a feature used to
split the data, such as gender, and each edge represents a feature’s value, such as
female or male. The leaf nodes represent the model’s predicted value, either died
or survived. A modified figure from: [39].

in the target classes survived and died based on only this attribute. The remaining

attributes continue down the tree, and a leaf node is created when all the data

belong to one class. New data can be classified by traversing the tree from the root

down to a leaf, following the edges that match the values, and returning the leaf

node value. Decision trees are popular in many domains due to achieving good

accuracy with little data set and being easy for humans to interpret. On the other

hand, they are known to return varying results and work best when train and test

data are similar.

Ensemble learning is a method in which several models are combined to get

more reliable and accurate predictions than only one model. Bagging is one tech-

nique where models are joined in parallel. The final prediction is based on the

most common classification, called majority voting. Random Forest (RF) is an ex-

ample of an ensemble learning method in the tree family. It works by combining

multiple decision trees, all with some different partition of the dataset. Figure 2.13

illustrates a Random Forest model.

One advantage of the tree-based model family is that it can convey information

about the feature importance, which means how essential each feature was for the

model when making its decision. In Random Forest, one impurity-based approach

looks at the total decrease in node impurity to rank the features. Node impurity

is a measure of how homogeneous the labels at a node are.

Chapter 2: Theory 20

Figure 2.13: Figure illustrating the Random Forest algorithm where N different
Decision Trees, such as in Figure 2.12, are used in parallel, and each tree returns
one result, and the final prediction is the result with the majority of votes. Source:
[39]

Chapter 2: Theory 21

Boosting is another ensemble learning technique, where the models are added

sequentially instead of in parallel, and the models learn from the errors of their

predecessors. In contrast to in bagging, the training data for each subsequent

classifier changes, and misclassified examples by earlier classifiers get assigned

a higher weight, with the goal that the following models will prioritize them.

AdaBoost (Adaptive Boosting) is a popular boosting algorithm [40]. XGBoost is

another and stands for eXtreme Gradient Boosting.

2.4.2 Anomaly Detection Methods

One Class Classifiers (OCC) differ from binary- and multi-class classifiers because

they are only trained using the “normal” class of data. The classifiers will create

a boundary around the regular data, and the thought is that the new anomalous

data will end up outside the border and be classified accordingly. OCCs can be

used for both novelty and outlier detection.

OC-SVM is an adaptation of a popular binary classification algorithm called

Support Vector Machine (SVM). The traditional SVM algorithm is a binary classific-

ation method that aims to separate two classes by finding the optimal hyperplane

dividing the classes. The optimal hyperplane is the one that gives the most signific-

ant margin, meaning the distance from the hyperplane to the closest data point.

These points are called support vectors and are the reason for the algorithm’s

name. Figure 2.14 illustrates the optimal hyperplane for that data. New points

are predicted to belong to a given class depending on which side of the hyper-

plane it falls. The SVM algorithm requires the data to be linearly separable, so it

must be possible to divide the two classes with a line or a hyperplane. If the data

is non-linearly separable, it can be transformed to a higher dimension where it

is, using a kernel function, as seen in Figure 2.15. Different functions handle the

transformation differently, but the most common are the linear, polynomial, and

radial basis. The selection of a suitable kernel has a significant impact on the result

of the models [41]. The SVM algorithm is adapted to handling only one class by

trying to separate the training samples from the origin using a hyperplane instead

of two classes [42].

Isolation Forest is an adaptation of Decision Trees. The algorithm assumes reg-

ular points are much harder to isolate than anomalous ones. An isolation tree is

created by selecting a random value of a feature between the min and max of that

feature partitioning the data until one point is isolated. This process is illustrated

in figure Figure 2.16 and is continued until each point is separated. The figure

Chapter 2: Theory 22

Figure 2.14: Figure showing
optimal hyperplane dividing two
classes. Source: [43]

Figure 2.15: Figure showing linear
separability after transforming the
data. Source: [44]

shows that one point can be isolated by splitting twice, while the other ten, indic-

ating that the first point potentially lays far away from the rest of the points and

is an outlier.

Figure 2.16: Figure showing the isolation of two points. Each line represent one
split of a feature. Source: [45]

All the trees create a forest, as seen in Figure 2.17 where each partitioning,

like in Figure 2.16, is represented as a tree. During the evaluation, a data point

traverses through the forest, and based on how far down each three the point

gets, it is assigned an anomaly score. The algorithm requires a parameter for the

expected contamination, meaning the number of anomalies in the data. Based on

the contamination value, a threshold is created. Datapoints with an anomaly score

above this are classified as an anomaly [45].

Finally, the Local Outlier Factor (LOF) classifies anomalies by comparing the

local density of each point to the density of the N closest points, called neigh-

Chapter 2: Theory 23

Figure 2.17: Figure showing a isolation forest. Source: [46]

bors. LOF uses the distance from the neighbors to estimate the density, and the

algorithm assumes that a point is an outlier if it has a low density compared to its

neighboring points [47].

Both OC-SVM and IF require a critical parameter for the amount of expected

contamination in the training set. If this is sat low, it can create a too large bound-

ary around the normal data making it less likely to pick up anomalies, and setting

it high can cause a too small boundary resulting in many false alarms. This para-

meter should be selected by testing different values. LOF has a built-in method

for calculating the contamination [8].

2.4.3 Hyperparameter Tuning

Machine learning models have a few parameters that can be tweaked depending

on the problem for better performance. In a Random Forest model, examples of

these parameters are how many decision trees the forest should include (n_estimators)

and how deep one tree can grow (max_depth). These parameters are decided

before training and cannot change during; therefore, they are called hyperpara-

meteres. Hyperparameter tuning is a process to find the optimal hyperparameters

for the model to solve the task. However, some models, such as Random Forest,

are known to perform well with the default parameters [48], while others need

tuning to do good on a task.

According to Probst et al. [48] overfitting is also a potential issue during tuning.

The issue arises if the parameters are too perfect for the training data, making it

Chapter 2: Theory 24

generalize poorly to unseen data. Figure 2.18 illustrates the f1 score on training

and test set for a Random Forest model for an increasing number of max_depth.

Max_depth is the number of nodes in the longest path between the root node and

a leaf node in a tree. It is clear that as the depth increase, the f1 score on the

training data approaches 1, while the test score decline after reaching its peak

at around 5. This indicates that for deeper trees, the model is allowed to learn

everything about the training data, which results in bad performance on the test

set. Probst et al. [48] note overfitting during tuning can be partially avoided by

using a test-set to notice the model is overfitted or cross-validation.

Figure 2.18: Figure showing the f1 score of a Random Forest model when in-
creasing the max depth of the trees. The score on the train data increase, and the
test data decrease, which indicates overfitting. Source: [49]

Two common approaches for executing the tuning are grid search and random

search. Grid search is the most straightforward strategy, where a list of potential

values is used, and each value is tested and evaluated. Random search randomly

selects values between two limits to test and is, according to [50] more efficient

than grid search in high-dimensional spaces.

Chapter 3

Methods

This chapter begins with a section introducing the selected dataset, followed by an

exploratory data analysis (EDA) to understand the data better. Then, the prepro-

cessing steps used on the data are explained, followed by which and how the fea-

tures are extracted. The machine learning models that are used are then presented

and, finally, the experiments conducted to test them.

3.1 Dataset

For the project the IDMT-ISA-COMPRESSED-AIR 1 dataset from Johnson et al. [1]

was selected. To our understanding, there are no comparable datasets publicly

available using non-contact microphones of a considerable size that include gas

leaks. The issue is mentioned in the paper associated with the dataset and is the

motivation for its creation. We can use the dataset for leak and anomaly detection

by operating with leaks as the anomalies.

The dataset contains two main leak types: ventleak and tubeleak. The ventleak

is created in a lab by releasing compressed air from a choke vent controlled by

a knob that opens and closes the vent. Each rotation of the knob opens the vent

more, and the researchers found that when the knob is rotated 5.5-9 times, enough

air leaks from the vent to be classified as a leak. Below 5.5 is no leak. All 0.5

increments of knob rotations from 0 to 9 are included in the dataset, meaning

some leaks will be stronger than others. Introducing a damaged tube into the

system gives the tubeleaks. The pressure of the air system is set to 6 bar, but to

create ventlow, a lower version of ventleak, the pressure is set to 5 bar.

1 https://www.idmt.fraunhofer.de/en/publications/datasets/isa-compressed-air.html

25

Chapter 3: Methods 26

Four Earthworks M30 omnidirectional measurement microphones are oriented

around the leak source at a configuration seen in Figure 3.1 and have a frequency

range of 3 Hz to 30 kHz. However, a 48 kHz sample rate is used for discretiz-

ing the signals. To emulate noisy environments in the lab, the researchers played

several noise recordings from a speaker. Those are hydraulic machine noise (high

and low) named hydr and hydr_low, and general factory workshop noise (high

and low) called work and work_low. The recordings without any noise played are

labeled lab, and all the data was recorded in three different recordings.

Figure 3.1: Microphone positions in IDMT-ISA-COMPRESSED-AIR dataset.
Source: [1]

Naturally, the dataset is imperfect since the creators intend to use it differently

than intended in this thesis. They want to place microphones at critical locations

in a compressed air network and detect when it leaks.

An ideal alternative would be to create a similar dataset using noise from one

of Equinor’s oil platforms, for instance. However, it would be time-consuming and

hard logistically to get the same quality and amount of data. However, there is still

a lot that can be learned from the data that can be transferable to the robot-use

case if it is used smartly. Below are some of the issues with the data presented and

potential workarounds to account for them.

• The dataset only contains two types of leaks released from a vent in a small

pipe, and there is uncertainty about the resemblance of those leaks’ charac-

teristics and those from an actual leak.

• The leaks always come from the same position, which works well for mon-

itoring a vent in a known location, but for the inspection robot, a leak can

come from anywhere. It might be possible to utilize that there are used four

Chapter 3: Methods 27

microphones to simulate different leak positions.

• The highest frequency that the microphones can record is 30 kHz, and a

sampling frequency of 48 kHz is used, which limits it to 24 kHz. Therefore

we are limited to slightly more than the human hearing range at 20 kHz,

which does not take full advantage of the equipment.

• The noise is played from a speaker, which results in one source from the

audio that might not be realistic, and some frequencies can be lost coming

from a speaker. In addition, the noises used in the dataset are not very re-

latable to an oil or gas platform. The creators mention that other noises can

be superimposed on the lab noise to get more noise.

• The dataset consists of an equal number of leaks and no-leaks, which does

not represent the real world where a leak occurs less frequently than not.

Dropping some of the files with leaks can mitigate this.

Finally, by using external datasets, there are no guarantees that the data is

error-free, and one can only trust that the creators have constructed it as said.

3.2 Exploratory Data Analysis

The second step is to better understand the data by doing a simple Exploratory

Data Analysis (EDA). EDA is a method that data scientists often use to analyze

the data before using it, often by visualizations, to have a better foundation for

making assumptions. It can also help identify erroneous or anomalous data or

interesting patterns [35]. The analysis will focus on understanding the different

impacts of the leaks, environments, and microphones on the sound in the files,

which hopefully can be helpful in the detection later.

General Information

Firstly, the dataset contains a total of 5592 files. The dataset is supposed to contain

384 files for each recording session and environment; however, Figure 3.2 shows

that some files are missing from lab in recording 1 and work-low in recording 2 and

3, caused by corrupted data according to Johnson et al. [1]. The average duration

of an audio file in the dataset is 30.1 seconds, with the longest being 36.6 and the

shortest being 26.2 seconds.

Chapter 3: Methods 28

Figure 3.2: Table showing the number of files with each environment noise for
the three recording sessions.

Leak Types

The dataset contains two types of leaks; ventleak (high and low) and tubeleak.

To understand their differences, we look at the frequency contents in two files

with the same environment noise, recording session, and microphone but with

different leak types.

First, we plot the frequency spectrum of the two main leaks (vent- and tubeleak)

in comparison to no leak with work and hydr as environmental noise. In Figures

3.3-3.6 this is plotted for the four combinations. In all plots, the magnitude (dB)

difference between the leaks and no-leaks seems to increase as the frequency in-

creases, even though the ventleak and tubeleak behave very differently. It can look

like the tubeleak appears more like a broadband white noise, while the ventleak is

more sporadic and higher in some specific frequencies. An auditory inspection also

confirms this, where the ventleak is easy to pick out as a high-frequency noise, and

the tubeleak is more indistinct. The figures also show that the biggest gap between

leak and no-leak emerges at around 20 kHz in all cases. However, the gap is the

biggest for the ventleak, where the leak causes a big increase in dB in these high

frequencies. In the tubeleak case, the gap is smaller and is created by the no-leak

dB decreasing, and the leak increases slightly.

Secondly, we compare the frequency spectrum of the two leaks to each other,

now, not using dB. Frequencies below 5kHz have been removed due to them be-

ing much greater than the highest ones, which we expect to be most interesting

based on the plots such as Figure 3.3. In Figure 3.7 the frequency spectrum for a

ventleak with the standard and low version is plotted together with work as en-

vironmental noise. We observe that they appear very similar, with three distinct

Chapter 3: Methods 29

Figure 3.3: Frequency spectrum
of work noise, with and without
ventleak present (microphone 1)

Figure 3.4: Frequency spectrum
of work noise, with and without
tubeleak present (microphone 1)

Figure 3.5: Frequency spectrum
of hydr noise, with and without
ventleak present (microphone 1)

Figure 3.6: Frequency spectrum
of hydr noise, with and without
tubeleak present (microphone 1)

spikes around 7, 15, and 23 kHz, only separated by the ventlow having a slightly

lower magnitude than the normal one. Figure 3.8 is the same plot but with a

tubeleak instead. We observe that the highest amplitude, around 25kHz for both

leak types, is double for the ventleaks compared to tubeleaks in this case. How-

ever, the most significant difference is that the three peaks are gone, and there

appears to be a more gradual increase from 5-25kHz.

The information extracted from these plots tells us that it is possible to dis-

tinguish between leaks and no-leaks by looking at frequencies above 20kHz in

this dataset and that detecting tubeleak might be a more challenging task than

ventleaks since the gap appears to be smaller.

Microphone Position

The dataset contains recordings done by four microphones, all from different pos-

itions. Microphone 1 is placed perpendicular to the leak direction 20 cm away, and

Chapter 3: Methods 30

Figure 3.7: Frequency spectrum of
lab noise, with ventleak and ventlow
present (microphone 1).

Figure 3.8: Frequency spectrum
of lab noise, with tubeleak present
(microphone 1).

microphone 3 is placed the same distance away but at a 30-degree angle. Micro-

phone 2 is placed behind microphone 1 and is 2 meters away from the leak, while

microphone 4 is positioned to record the full room. To better understand the im-

pact these placements have, the frequency spectrums of four signals recorded by

each microphone at the same time are plotted. In Figure 3.9 we look at a situation

with work noise and ventleak. We only look at frequencies above 20 kHz since it

appears to be the most relevant segment. Microphone 1 has the highest magnitude

for all frequencies, but the difference increase with the frequencies. Microphone 3

is most similar, which was expected since they are placed at an equal distance, but

surprisingly microphone 1 is at a more favorable angle. Microphones 2 and 4 give

a similar spectrum but are significantly lower in magnitude than the others. In

Figure 3.10 the recordings are from the same environment but of a tubeleak, and

we now ignore frequencies below 5 kHz. The difference between the microphones

is significantly smaller, particularly below 10 kHz. At the frequencies above this,

the same pattern as seen in 3.9 returns. The fact that microphones further away

struggle more at the highest frequencies is likely because the sound is faster ab-

sorbed, the higher the frequency [51], resulting in fewer waves reaching 2m than

2cm, for instance.

Chapter 3: Methods 31

Figure 3.9: Frequency spectrum
above 20 kHz of work noise, with
ventleak present for all four micro-
phones.

Figure 3.10: Frequency spectrum
above 5 kHz of work noise, with
tubeleak present for all four micro-
phones.

3.3 Pre-processing

3.3.1 Loading data

The dataset from Section 3.1, was downloaded and stored in a Google Drive

folder2. Code was written to handle the data more efficiently by extracting the

information from the file paths and creating one table for all the files. This table

can then be used to select only data with one particular leak, environment, or

microphone.

The path to the files all follow this format:

/ventleak/hydr/1/1_niO_6.5n_3l_.wav

The code can be found in Appendix A.1. The save_paths method iterates over

the paths of every file in the root folder and extracts the information. Doing this is

possible since we know all the paths have the same form. Each piece of information

is stored in a column, and all the columns are stored as an entry in a table that is

saved to an CSV file. Table 3.1 presents a sample of the table.

To get the audio files in a format that can be worked with in python, the

librosas.load(), Code listing 3.1, method is used. It returns a NumPy array of

the samples and the sample rate used. The parameters are the path to the in-

put file and the wanted sample rate (sr). Default sr is 22050, which will resample

the signal with that sample rate, which would result in a sampled signal with

22050/2= 11025Hz as the highest frequency due to Nyquist Sampling Theorem.

2 https://drive.google.com/drive/folders/1oc_4C5-dob3sHXk6yVxnxZ4JiaIx5HPx?usp=
sharing

https://drive.google.com/drive/folders/1oc_4C5-dob3sHXk6yVxnxZ4JiaIx5HPx?usp=sharing
https://drive.google.com/drive/folders/1oc_4C5-dob3sHXk6yVxnxZ4JiaIx5HPx?usp=sharing

Chapter 3: Methods 32

Table 3.1: Tabular representation of information of a few files from the IDMT-
ISA-COMPRESSED-AIR dataset.

path leaktype environment recording mic knobrotations leak

...wav valve lab 3 4l 1.0 0

...wav vent work 1 1l 7.5 1

...wav vent hydr-low 3 4l 9.0 1

...wav vent hydr 1 3m 3.5 0

...wav vent work 3 4l 0.0 0

Setting sr=None will preserve the native sampling rate of the file, which in this

case is 48000.

signal, sr = librosa.load(path, sr=None)

Code listing 3.1: Librosa’s load method

Code has been written to select subsets of all the files which will be useful

when conducting the experiments. The method takes in a table, like Table 3.1, of

all the file information and a dictionary of which values wanted for given columns.

An example of this dictionary can be seen in Code listing 3.2.

wanted_files = {

'leak_type' : ["ventleak"],

'environment' : ["work"],

'mic' : [1]

}

Code listing 3.2: Dictionary of which subset of files to use

Figure 3.11: Table containing file information for each file, and a list of samples
after the data is loaded.

3.3.2 Normalization and Denoising

After loading the files, it was considered to normalize them by dividing all by

the global maximum amplitude in all the data. In the end, this was not done.

Chapter 3: Methods 33

However, we standardize the features between 0 and 1 after they are extracted.

Doing this is most important in clustering methods and models like SVM, where

the euclidean distance is used. If one feature has values much higher than another,

it will dominate the distance rather strongly. Even though this is not necessary

for tree-based methods, it is done nonetheless since it will not impact the results

negatively. However, it is essential that any normalization or standardization is

based on the train set and that the test set uses the exact same scaling. Suppose

the train and test features are scaled together. In that case, the test data will impact

the train data resulting in the test data no longer being able to test the model’s

generalizability neutrally.

Doing some denoising or frequency-enhancing on the data was considered but

rejected since the dataset’s creators achieved good results without it. Also, Ning

et al. [13] learned that it is challenging to remove noise in signals where gas leaks

are included and wanted, but not impossible.

3.4 Feature Extraction

The next step is to extract information from the signals that can be useful for the

machine learning models in the form of features. Kampelopoulos et al. [8], Quy

and Kim [10], Xiao et al. [11], Ning et al. [14] and Rahimi et al. [52] were the

main inspiration for all time-and frequency domain features considered in this

thesis, since their work is similar in terms of goal and detection methods used.

All features mentioned were researched, and based on the results in the papers

and knowledge about the gas leak problem domain, most features were discarded.

The second type of feature represents the power in segments of frequencies, either

relative or not. It was based on the assumption that the total contribution to the

energy in the higher frequencies would be more significant during a leak based

on observations from the EDA in Section 3.2.

3.4.1 File Segmentation

The average length of one audio file in the dataset is 30 seconds. However, it does

not mean we must analyze the entire file simultaneously. Splitting it into shorter

segments of around 1, 5, or 10 seconds has been considered, and the selection is

discussed in Section 3.4.5.

Regardless of the segment’s length, two different approaches for handling the

frames when extracting features from the signals were considered. One was to

Chapter 3: Methods 34

divide the signals into frames and take the average over all the frames for each

feature so that we ended up with one data point for each file. The other was to

get the frames in the same way but save them as unique data points instead of

averaging. The advantage of added data points is why option two was selected.

3.4.2 Time- and Frequency Features

By looking at similar papers, very few report having good results using time-

domain features, for leak detection at least. Therefore, the main focus is on the

frequency features. The chosen features are spectral- centroid, bandwidth, flat-

ness, contrast, zero-crossing rate, root mean square energy for the whole frame,

and MFCC.

A method that takes in a signal, frame-length, and hop-length was written to

make the features. Librosa’s feature module was used to compute the wanted spec-

tral features, and each returns an array with the computed value for each frame.

Code listing 3.3 illustrates the method call for one of the features. The method re-

turns an array of the feature for N frames, where the number of frames is decided

by “n_fft” and “hop_length”. Those parameters are the number of samples in one

frame and how many samples the beginning of the frame is moved at each step.

“Signal” is the audio time series, and “sr” is the sample rate.

spec_centroid =

librosa.feature.spectral_centroid(y=signal, sr=sr, n_fft, hop_length)

Code listing 3.3: Librosa’s spectral centroid method

Spectral contrast and MFCC, however, return an array of the value of each

frequency bin for every frame, so we get several values that are used as unique

features for each frame. Each frame is stored as a row in a table, with the feature

values as columns.

A column with the index of the file it originates from is appended to each row,

ultimately resulting in tables like the one in Figure 3.12. We repeat this operation

for each file, and all the tables created are combined to create the entire feature

dataset.

In Figure 3.13, three selected features are plotted to observe if the features are

able to separate instances of leaks and no leaks. The values are plotted for each

frame for files from the same environment, leak, and microphone. In the spec-

bandwidth plot (left), we observe a good separation between the two classes,

with some outliers of frames with leaks with the no-leaks. The variance inside

Chapter 3: Methods 35

Figure 3.12: Table showing how features for frames are stored, using 5s long
frames and 2.5s overlap.

the classes appears minor compared to the zero-crossing rate plot (center), where

there is a greater spread for the frames with a leak. However, the variance is lower

for the frames without a leak, and it is still possible to visually separate the classes.

For the rmse (right) plot, there is no clear distinction between the classes because

the energy in the lowest frequencies dominates the total energy, so the distinctive

energy in the frequencies above 20 kHz gets lost.

Figure 3.13: Spectral bandwidth (left), zero crossing rate (center) and root mean
square energy (right) feature plots in work environment during a tubeleak recor-
ded with microphone 1 for frames with 5 seconds length, for 50 files. The frames
are shuffled. Orange points are from files with a leak, and blue is without.

In Figure 3.14 the Spectral Contrast in bin 5 for ventleak and tubeleak are

plotted, with same conditions. Observe that in the case of a ventleak (left), this

feature separates the classes well, while tubeleaks (right) are not as strong. This

illustrates that a feature can be useful in classifying one type of leak and not

another.

Chapter 3: Methods 36

Figure 3.14: Plots of Spectral Contrast in bin 5 for data with the work environment
but with different leak types. Otherwise same conditions as in Figure 3.13.

3.4.3 (Relative) Power in Frequency Segments

Outside of the standard features explored above, another feature was tested that

captures the power, or the relative power, in specific frequency segments of a

signal. This feature can potentially overcome the issues of taking the RMSE of

the entire frame, as was seen in Figure 3.13. It is based on a hypothesis that the

total power in a signal’s highest frequencies will be greater during a leak than

not. This feature has not been found in papers with similar goals to ours but is

more common with EEG signal processing in neurological- and sleep research

[53]. It is also possible to look at the relative power of a segment, meaning the

total contribution that segments have to the total power.

The code to extract this feature is found in Appendix A.2, and was inspired by

Vallat [54], a postdoc at UC Berkeley. First, Scipy’s Welch method is used to es-

timate the Power Spectral Density (PSD). The PSD of an arbitrary signal is plotted

in Figure 3.15 displaying only up to 5Hz for visibility. Scipy’s Simpson method is

then used to approximate the integral between the beginning and end of all the

segments, see Figure 3.16. A list is used to describe where each segment starts

and stops.

If the argument “relative” is set to True the relative power of each segment

is returned, which is found by using the total power of the signal as a divisor

on each segment. This results in a vector that can be plotted. In Figure 3.17 the

relative power for frequency segments with 4000 kHz intervals has been plotted

for two files recorded under similar conditions, with and without a leak. However,

a difference between the two is more apparent in Figure 3.18 where the logarithms

of the y-values have been plotted.

The next step is to get this feature in a format that makes it possible to merge

with the same frame of features created above. The util.frame() method from

librosa was used to divide the signal into frames in the same way as what is done

Chapter 3: Methods 37

Figure 3.15: Welch’s PSD estima-
tion.

Figure 3.16: Integrating segments.

Figure 3.17: Plot of relative power
with 4 kHz increments. Work envir-
onment, ventleak and microphone 1
is used.

Figure 3.18: Plot of the logarithm
of the relative power with 4 kHz in-
crements. Same conditions as 3.17.

for the spectral feature computation in Section 3.4.2. The method created for

extracting these features takes in the same arguments as time-frequency features

to ensure that the frames are the same. A segment list is also a required argument

that should say at what frequencies the segments start and stop. Each frame is

passed to a method that returns a list of the relative power in each segment.

The segment list has to be handcrafted, and there is no perfect list which causes

several questions to arise. Is few or many segments best? Should they be equal

in length or maybe decrease as frequencies increase? The answers to these ques-

tions will vary depending on which problem the features will be used. However,

it is possible to get a good alternative by using knowledge about gas leaks from

the EDA and studying figures of relative power with different segment lists. This

choice will be made in section Section 3.4.5.

In Figure 3.19 the log relative power of four combinations of leaks and envir-

onmental noise is plotted. It is a clear trend in all four subplots that the leak and

Chapter 3: Methods 38

no leak samples diverge at around the frequency bin 20, which means 20-21kHz.

We can also see that the final separation between the classes is more significant

during a ventleak than a tubeleak. Based on these results, it is evident that look-

ing at the relative power of frequencies above 20kHz might prove most beneficial,

which coincides with the discoveries made in Section 3.2.

Figure 3.19: The log relative power with 1 kHz segments for ventleaks in left
column and tubeleaks in the right. Work environmental noise is used in the top
row, and hydr in the bottom. All recorded with microphone 1.

3.4.4 Feature Correlation

Figure 3.20 shows a correlation matrix for all the features presented in this chapter

using microphone 1 data. The matrix is always square and symmetrical, where

each cell ij is the correlation between the columns i and j of the features. Ideally,

the features have a low correlation with each other since this implies that they

might represent different information from the data.

From the figure, we observe a high correlation between the relative power

features 10-20 and 20-24 kHz and the spectral- centroid, bandwidth and flatness,

and zcr particularly. This correlation can mean that the mentioned spectral fea-

tures also capture the information related to power in the top frequencies. Besides

that, all the cont_bin’s beside 0 have a relatively high correlation, but none with

the features discussed above.

Chapter 3: Methods 39

Figure 3.20: Correlation matrix for features extracted from all files recorded with
microphone 1. The matrix depicts the correlation between all possible feature
pairs. Darker red represents higher positive correlation, while colder blue is more
negative correlation.

Chapter 3: Methods 40

3.4.5 Feature Parameter Selection

Figures and domain knowledge is used to make an educated decision on the para-

meters segment length in Section 3.4.1 and segment list for power features in 3.4.3.

We considered basing this selection on model performance. However, this was re-

jected after observing that different models performed differently with different

values and acknowledging that this selection should be data-based, not model-

based.

Selecting Segment List for Power Feature

As mentioned in Section 3.4.3, there is no correct selection of segments, and it will

depend on the data. It might be reasonable to assume that fewer segments might

be preferable to generalize it. If we were to use 1kHz segments as in Figure 3.19,

one segment might be good for one leak but bad for another. The subfigure at the

top left indicates that bin 17 is a segment that has higher values for leaks than not.

However, this segment does not have the same separability in the other plotted

examples. Training a model on the first leak and testing it with the others could

result in a poorly performing model. This would not be an issue if each gas leak we

encountered were present in the dataset. Since this is not the case, it is assumed

that a few segments are preferable to make a more general model. Figure 3.19 in-

dicates that the separation between leaks and no-leaks begins at around 20kHz in

all four combinations of vent/tubeleak and work/hydr noises. 20kHz appears like

a natural beginning of one segment, which goes to the highest frequency, 24kHz.

According to [18], leaks emerge above 10kHz generally. Including a segment be-

low this (0-10kHz) would be another good segment based on this information.

Between 10-20 kHz can either be one segment or further divided. The figure in-

dicates that this section is mostly unimportant for this data and is kept as one.

Selecting File Segment Size for Frames

As was for segment list selection above, there is no standard size that would

be ideal here. The goal is to find a value that compromises between being long

enough for the data not to be too volatile but short enough to extract as many

data points as possible.

In Figure 3.21 the spectral bandwidth value for frames with increasing frame-

length is plotted, but the following observations also hold for other features. The

plot to the left, with 1 second, shows numerous orange points (leaks) grouped

Chapter 3: Methods 41

with the blue (no leaks). The contamination is not as strong in the middle and

right plots, where 5 and 10 seconds are used, respectively. The difference between

the final two is not that great either, and since using 5 seconds gives more data,

this is ultimately chosen for the frame length.

Figure 3.21: Spectral bandwidth plots for frames extracted from 50 files with
varying frame lengths. 1s is used in the left plot, 5s in the middle, and 10s in the
rightmost plot. The environment is work, and tubeleak is the leak. Recorded with
microphone 1, and the frames are shuffled. Orange points are from files with a
leak, and blue is without.

3.5 Machine Learning

This thesis explores which approach between gas leak- and anomaly detection is

most suitable for the robot, given the limitations in Section 1.2. Machine learning

is the tool that allows the robot to learn how to do either of these. Several models

from the tree-based family are selected for the binary classification problem of gas

leak detection, and three One class classifiers are chosen for the anomaly detec-

tion. In the following sections, we present the reason for selecting these particular

models, how they would be used on the robot, and finally, how the models are

implemented in code.

3.5.1 Tree Based Binary Classification

This family was selected to represent the gas classification approach because they

are known to perform well even with restricted tuning and had been proven in

a similar context by Ning et al. [14]. In addition, these models are often more

interpretable than at least the deep learning models. Interpretability is essential

since this thesis aims not to maximize the accuracy but to learn more about leak

detection for further work. All features are used, but the relative option in the

frequency bin power is set to False. The reason is discussed in 4.1.

Chapter 3: Methods 42

To implement the models Sklearn’s [55] tree and ensemble modules were used.

The models are initialized with the selected hyperparameters, and the model in-

stance is trained by calling fit(X_train,y_train) on it. All the tree-based models

are supervised, so they require training samples and the target value for those

samples. In this case, the target is the column “leak_present.” Before training, this

is separated from the rest of the features and named y. The remaining data is then

named X. After the model is trained, it can be used to predict the “leak_present”

vector for the test data by calling predict(X_test, y_test) on it. Code listing 3.4

shows all these steps. The only argument in the DecisionTreeClassifier call is “ran-

dom_state=0,” which is added so that the model always behaves the same to

achieve reproducibility. Since no other arguments are passed into the method, the

model will use the default hyperparameters. In Appendix B.1 each models hyper-

parameters are presented.

from sklearn import tree

dt_model = tree.DecisionTreeClassifier(random_state=0)

dt_model = dt_model.fit(X_train,y_train))

predictions = dt_model.predict(X_test, y_test)

Code listing 3.4: Code for initializing, training, and testing a model using

Sklearn.

3.5.2 One-Class Novelty Detection

The models chosen to represent the second approach of anomaly detection are

One-Class SVM, Isolation Forest, and Local Outlier Factor. They were selected since

they displayed some promising signs for the task in [8], ass well as being high-

lighted by Sklearn in a Novelty and Outlier Detection introduction 3. These models

also have in common with the tree-based models that it is easier to interpret the

results than deep learning methods such as the CNN Johnson et al. [1] uses. All

the features are also used here, but now relative power is used as well.

Sklearn modules were also used to implement the OCC models, and the fit()

and predict() methods from above are similarly used. However, since the models

are unsupervised with only one class, the target value will not be passed in the

methods. Instead, only the “normal” data should be used during training, but note

that the “leak_present” column will be used for this. A vector with predictions is

returned when the predict method is called on the model. That vector consists of

3 https://scikit-learn.org/stable/modules/outlier_detection.html

https://scikit-learn.org/stable/modules/outlier_detection.html

Chapter 3: Methods 43

the predictions for each data point; if the predicted value is 1 it is classified as

normal, and if it is -1 it is classified as an anomaly. In Appendix B.2 each models

hyperparameters are presented

3.6 Experiments

Several experiments were conducted to measure the performance of the models

with the goal of evaluating them in general, as well as in situations as close to the

intended use as the dataset allows. First, the experiments for gas leak detection

are presented, followed by the experiments related to anomaly detection.

For each experiment, the relevant data were extracted, and the models were

trained using a Cross-validation technique called Leave-One-Out (LOO). In prac-

tice, this means the training is done in three folds where each combination of two

recordings is used for training, and the last is used for testing. The final score is

the average of the three folds. This is inspired by the experiments conducted in

Johnson et al. [1], which are the ones behind the dataset that is used. They say the

motivation for using the LOO approach is to avoid data leakage between training

and testing datasets and to be able to observe potential overfitting in a specific

recording session where the scores vary drastically between folds.

3.6.1 Experiments for Gas Leak Detection

First, the models will be trained and tested comparably to experiment E1 con-

ducted in [1] to compare this approach to the CNN spectogram approach. E1

is, as we understand it, an experiment where all the data is from microphone 1

with all leaks and environmental noises, and their CNN model is evaluated using

Leave-One-Out (LOO) for recording sessions and accuracy score as the metric.

This experiment will be referred to as E1 in the following chapters.

Secondly, several smaller experiments were crafted to utilize the data to test

situations that the robot might encounter. Following the name notation of E1;

experiments E2-E4 will be presented below:

E2: How would a model perform if the robot encountered a location with an

unheard environmental noise? This is tested by training on one type of

noise and testing on others.

E3: How would a model perform if it encounters a leak it has not heard

before? This is tested by training on one leak and testing on another,

Chapter 3: Methods 44

with all noises included.

E4: How would the model perform if the leak occurred at a different location

than expected? This is tested by training on data gathered from several

microphones and testing on a different one.

The experiments are all executed by the same code that is presented in Ap-

pendix A.3. For each experiment, additional lines are added to get only the relev-

ant data. Code listing 3.6 illustrates the lines of code that are different for each

experiment. Those particular lines give experiment E2, where using different en-

vironments are tested. By changing the variable ’environment’ to ’leak_type,’ and

’work,’ and ’hydr’ to, for instance, ’tubeleak’ and ’ventleak,’ we get E3.

X_train_E2 = X['environment'].isin(['work'])]

X_test_E2 = X['environment'].isin(['hydr'])]

Code listing 3.5: Simplified code showing how train and test data is separated

for each experiment from all the data, called X. X_train_E2 is the training set for

E2 with only the work environmental noise, and X_test_E2 is the test set with

only hydr noise.

3.6.2 Experiments for Anomaly Detection

Testing the anomaly detection models requires different experiments than the bin-

ary classification of gas leak detection. Our goal is to test if the models can dis-

tinguish normal data from irregular data. In this thesis, this is done by training

on one type of noise without leaks and then testing with the same noise with all

the gas leaks included. First we test with the main noises work and hydr, before

training with for example work and testing with work_low in order to see if the

model handles slight variations in the noise.

The same code executes the experiment as for the binary classification dis-

played in Appendix A.3. The difference is that for the lines in 3.6, both X_train

and X_test should have the same environment. In addition, X_train should only

contain data where ’leak_present’ == 0, meaning that there is no leak.

Chapter 3: Methods 45

X_train = X[X['environment'].isin(['work']) & X['leak_present'] == 0)]]

X_test = X['environment'].isin(['work'])]

Code listing 3.6: Simplified code showing how train and test data is extracted

for anomaly detection experiments. X_train selects the data points where

’environment’ is ’work’ and no leak is present. X_test is of same environment as

train data, but also includes data with leaks.

Chapter 4

Results

This chapter presents the results for all the experiments introduced in Section 3.6.

The experiments for the tree-based binary classification approach E1-E4 are presen-

ted in 4.1 and start with a summary of the tests, followed by the results and poten-

tially exciting observations. The results for the anomaly detection approach are

presented in an equal manner in 4.2.

4.1 Gas leak detection results

This section presents the results of the experiments E1-E4. All the models are first

trained using the default parameters, and hyperparameter tuning is only done if

it appears to be necessary due to bad results or potential overfitting.

Experiment 1 Results

Experiment 1 (E1) tested how well the model classified leaks when all environ-

mental noises and leak types were used and recorded with microphone 1. The

accuracy score is used as the evaluation metric since [1] uses it in their experi-

ment, allowing a fair comparison between their CNN and the tree-based models.

In Section 2.3.3, it was pointed out that the accuracy score might be a weak eval-

uation metric in unbalanced datasets. However, the metric is useful here since

there are equal amounts of each target class.

The score is presented in Table 4.1 alongside the results of the CNN model on

E1. The scores are divided into condition and noise types to see potential weak-

nesses in specific areas. By inspecting the table we observe that the accuracy is in

the high 90s for most conditions for all the models, which is comparable to the

46

Chapter 4: Results 47

CNN model. The ensemble methods RF, Ada, and Xgb, get slightly higher accuracy

than the DT model, and the Xgb model seems to have the highest accuracy over

all the conditions. The Xgb model outperform the CNN model in all noise types

except hydr.

Chapter 4: Results 48

Ta
bl

e
4.

1:
Ta

bl
e

sh
ow

in
g

th
e

re
su

lt
s

of
Ex

pe
ri

m
en

t
1

(E
1)

fo
r

fo
ur

m
od

el
s,

an
d

th
e

C
N

N
m

od
el

fr
om
[1
].

E1
is

an
ex

pe
ri

m
en

t
w

he
re

al
l

da
ta

re
co

rd
ed

fr
om

m
ic

ro
ph

on
e

1
is

us
ed

,a
nd

LO
O

fo
r

re
co

rd
in

g
se

ss
io

n
is

us
ed

an
av

er
ag

ed
.

C
on

di
ti

on
N

oi
se

Ty
pe

D
T

R
F

A
da

X
gb

C
N

N
Ve

nt
Le

ak
La

b
98

.5
7
±

1.
52

99
.8

6
±

0.
18

10
0.

0
±

0.
0

99
.9
±

0.
14

96
.6

3
±

3.
07

Ve
nt

Lo
w

La
b

95
.7

5
±

3.
02

97
.4

4
±

2.
46

97
.6

4
±

2.
53

96
.9

4
±

2.
40

94
.4

5
±

5.
88

Tu
be

Le
ak

La
b

97
.0

4
±

1.
68

97
.7

3
±

2.
37

98
.1

2
±

1.
81

97
.8

2
±

2.
23

99
.1

1
±

0.
77

A
ve

ra
ge

La
b

97
.1

2
±

1.
15

98
.3

4
±

1.
08

98
.5

8
±

1.
01

98
.2

2
±

1.
23

96
.7

3
±

3.
90

Ve
nt

Le
ak

W
or

k
Lo

w
95

.2
5
±

0.
60

98
.6

6
±

1.
33

98
.2

2
±

1.
77

98
.8

1
±

1.
18

92
.6

5
±

3.
73

Ve
nt

Lo
w

W
or

k
Lo

w
90

.7
±

3.
26

94
.0

6
±

0.
29

93
.8

6
±

0.
20

94
.2

6
±

0.
53

91
.1

7
±

0.
77

Tu
be

Le
ak

W
or

k
Lo

w
93

.9
2
±

1.
70

97
.0

1
±

1.
50

95
.8

1
±

1.
20

96
.4

1
±

1.
44

97
.4

3
±

1.
47

A
ve

ra
ge

W
or

k
Lo

w
93

.2
9
±

1.
90

96
.5

8
±

1.
90

95
.9

6
±

1.
78

96
.4

9
±

1.
85

93
.8

9
±

3.
43

Ve
nt

Le
ak

W
or

k
95

.6
9
±

1.
34

99
.1

2
±

0.
47

98
.5

3
±

1.
09

99
.0

2
±

0.
73

98
.4

6
±

0.
88

Ve
nt

Lo
w

W
or

k
93

.3
8
±

1.
98

95
.8

4
±

2.
52

95
.4

5
±

2.
49

95
.2

5
±

2.
12

93
.3

5
±

4.
96

Tu
be

Le
ak

W
or

k
92

.7
±

1.
39

95
.8

5
±

2.
72

94
.8

6
±

3.
25

95
.8

5
±

2.
51

97
.0

2
±

2.
73

A
ve

ra
ge

W
or

k
93

.9
2
±

1.
27

96
.9

4
±

1.
54

96
.2

8
±

1.
61

96
.7

1
±

1.
65

96
.2

8
±

3.
66

Ve
nt

Le
ak

H
yd

r
Lo

w
96

.7
2
±

1.
28

98
.7

1
±

0.
77

96
.1

3
±

0.
72

98
.2

1
±

0.
25

98
.5

5
±

1.
29

Ve
nt

Lo
w

H
yd

r
Lo

w
91

.8
3
±

0.
98

94
.7

2
±

1.
10

93
.7

2
±

0.
50

94
.3

2
±

0.
65

87
.6

2
±

6.
58

Tu
be

Le
ak

H
yd

r
Lo

w
91

.7
3
±

1.
44

96
.0

6
±

0.
76

93
.2
±

0.
46

95
.5

7
±

0.
63

96
.0

3
±

3.
73

A
ve

ra
ge

H
yd

r
Lo

w
93

.4
3
±

2.
32

96
.4

9
±

1.
65

94
.3

5
±

1.
27

96
.0

3
±

1.
62

94
.0

7
±

6.
27

Ve
nt

Le
ak

H
yd

r
93

.3
1
±

0.
56

95
.6

9
±

1.
78

93
.6
±

0.
77

95
.6
±

1.
84

94
.2

4
±

2.
13

Ve
nt

Lo
w

H
yd

r
89

.4
6
±

1.
33

94
.7

3
±

1.
40

93
.0

6
±

2.
27

94
.7

4
±

1.
37

92
.7

5
±

2.
77

Tu
be

Le
ak

H
yd

r
88

.3
3
±

0.
90

92
.8

4
±

1.
32

89
.4

1
±

0.
48

92
.5

4
±

2.
23

98
.3

9
±

0.
81

A
ve

ra
ge

H
yd

r
90

.3
7
±

2.
13

94
.4

2
±

1.
18

92
.0

2
±

1.
86

94
.2

9
±

1.
28

95
.2

4
±

3.
20

Chapter 4: Results 49

Figure 4.1 shows the average feature importance over each fold for the Ran-

dom Forest model during this experiment. We observe that ’p_bin: 20-24kHz’ is

the dominant feature, with the following five except ’mfcc_bin: 5’ were noted to

be heavily correlated to this feature, as seen in Figure 3.20.

Figure 4.1: Average feature importance for three iterations of the LOO method
on the Random Forest model with training data as explained in E1.

To test how using fewer features impacts the result, the RF model is tested

with all, top five and the top-ranking features from the feature importance. RF

is used since that is the model from which the feature importance is obtained.

The results are presented in Table 4.2. We observe that using all or five features

yields almost identical results, with the highest drop in average accuracy being

just under 2% in the hydr case. For the model trained with only one feature, the

average accuracy is around 10% lower in all cases.

Chapter 4: Results 50

Table 4.2: Table showing the results of Experiment 1 (E1) for the Random Forest
model, with all, top five and top one features used.

Condition Noise Type RF - All features RF - Top 5 RF - Top 1
Vent Leak Lab 99.86 ± 0.18 99.86 ± 0.18 79.48 ± 4.88
Vent Low Lab 97.44 ± 2.46 97.64 ± 2.53 81.21 ± 1.95
Tube Leak Lab 97.73 ± 2.37 97.83 ± 2.44 75.08 ± 3.68
Average Lab 98.34 ± 1.08 98.44 ± 1.00 78.59 ± 2.57
Vent Leak Work Low 98.66 ± 1.33 98.81 ± 0.88 90.94 ± 0.12
Vent Low Work Low 94.06 ± 0.29 92.98 ± 1.55 86.99 ± 4.62
Tube Leak Work Low 97.01 ± 1.5 94.81 ± 1.32 85.74 ± 3.47
Average Work Low 96.58 ± 1.90 95.53 ± 2.43 87.89 ± 2.21
Vent Leak Work 99.12 ± 0.47 98.23 ± 0.48 92.48 ± 0.53
Vent Low Work 95.84 ± 2.52 95.74 ± 2.8 88.95 ± 1.86
Tube Leak Work 95.85 ± 2.72 94.18 ± 1.81 82.84 ± 2.01
Average Work 96.94 ± 1.54 96.05 ± 1.67 88.09 ± 3.98
Vent Leak Hydr Low 98.71 ± 0.77 98.51 ± 0.87 89.98 ± 1.52
Vent Low Hydr Low 94.72 ± 1.1 94.42 ± 0.61 89.24 ± 1.28
Tube Leak Hydr Low 96.06 ± 0.76 93.6 ± 0.89 75.0 ± 0.84
Average Hydr Low 96.49 ± 1.65 95.51 ± 2.14 84.74 ± 6.89
Vent Leak Hydr 95.69 ± 1.78 94.98 ± 0.69 87.61 ± 0.88
Vent Low Hydr 94.73 ± 1.4 94.04 ± 1.91 86.09 ± 1.6
Tube Leak Hydr 92.84 ± 1.32 89.41 ± 0.63 69.41 ± 1.73
Average Hydr 94.42 ± 1.18 92.81 ± 2.43 81.04 ± 8.24

Experiment 2 Results

Experiment 2 (E2) tests how the model performs when encountering background

noise that was not present during training and is performed by training on one

noise and testing on another. The first test is done by training on hydr and testing

on work, and the second test is the opposite. This experiment is the reason why

relative frequency bin power is not used. Since hydr has much more energy in

total than work, but the same in the frequencies above 20 kHz, they will have

completely different values. The models used are still the default from E1. The

evaluation metric used is also the same as in E1 to allow comparison with E3

from [1]. Unfortunately, the researchers do not deliver any in-depth explanation

of their implementation of this experiment, so there is no guarantee that they

are identically executed. However, the experiments are deemed equal enough to

make a broad comparison. Again, only microphone 1 is used.

The accuracy score for all the models trained on hydr and tested on work is

presented in Table 4.3. We observe that the Xgb model achieves the best average

Chapter 4: Results 51

accuracy, around 85%. Interestingly, the standard deviation is almost 10 for vent

and tubeleak, meaning there is a high variation in accuracy between the folds.

In Table 4.4 the accuracy score for all the models when trained on work and

tested on hydr is presented. The table reveals that all the models reach an almost

identical accuracy for all leak conditions.

Table 4.3: Accuracy when training on hydr and testing on work

Condition DT RF Ada Xgb
Vent Leak 72.59 ± 16.7 77.06 ± 2.06 85.03 ± 11.8 85.8 ± 9.18
Vent Low 68.41 ± 15.6 75.43 ± 1.99 84.07 ± 10.7 88.18 ± 4.78
Tube Leak 65.53 ± 17.9 74.74 ± 1.93 78.24 ± 8.74 80.54 ± 8.98
Average 68.84 ± 2.89 75.74 ± 0.97 82.44 ± 3.00 84.84 ± 3.19

Table 4.4: Accuracy when training on work and testing on hydr

Condition DT RF Ada Xgb
Vent Leak 76.0 ± 6.59 72.09 ± 0.53 72.09 ± 0.53 72.29 ± 0.4
Vent Low 75.97 ± 6.82 72.86 ± 1.09 73.17 ± 1.52 73.27 ± 1.66
Tube Leak 75.19 ± 5.29 71.76 ± 0.0 71.96 ± 0.13 71.96 ± 0.13
Average 75.72 ± 0.37 72.24 ± 0.46 72.40 ± 0.54 72.50 ± 0.55

To test the influence of the strongest feature a DT with max-depth 1 is tested.

A visual representation of this decision tree can be viewed in Figure 4.2. The tree

shows that by simply using ≈ −10 as a threshold for p_bin: 20-24kHz, we can

classify around 2000 samples correctly and get only 100 wrong.

Table 4.5 shows the average accuracy for the DT model. When testing on hydr

the score is equal to the other models in Table 4.4, but for work, the model clearly

outperforms the other models in Table 4.3.

Table 4.5: Table showing the average accuracy over all the leak conditions for
each of the two combinations of train and test data, trained on a Decision Tree
model with max-depth = 1.

Train data Test data DT (max_depth=1)
Work Hydr 72.37 ± 0.53
Hydr Work 95.01 ± 1.91

To find out why the accuracy is so much worse when testing on hydr, we plot

two features expected to be strong based on Figure 4.1 for the training and testing

data. In Figure 4.3, we discover a cluster of outliers in the hydr-test data of frames

Chapter 4: Results 52

Figure 4.2: Figure representing the structure of a Decision Tree with the max-
depth = 1, trained on one fold of the data containing only work environment
noise. The white rectangle is the root node where data with p_bin: 20-24kHz
values above or below -10 are passed to either the orange or blue leaf node. If
data reaches the orange box to the left, it is classified as leak and no_leak if it
reaches the blue node to the right. Samples is how many data points arrived at
that node, and the value, says which class all the samples stem from, with the first
index being leak, and the second index being no-leak.

without leak but with a high enough p_bin: 20-24kHz value to indicate that they

are.

Figure 4.3: Plots of spectral bandwidth and p_bin: 20-24kHz features for the train
(left) and test data (right) with predictions for E2. Training data is only the work
background noise without leaks, and the test data is the hydr noise with leaks
included. There is a cluster of outliers in test data where the p_bin: 20-24kHz
value is between -10 and -8.

In Figure 4.4 the frequency spectrum above 20 kHz for three files are plotted,

where the orange is of one of the outliers from Figure 4.3. The two others are from

the work environment, with leak (blue) and without leak (green), and is used to

compare.

Chapter 4: Results 53

Figure 4.4: Frequency spectrum of three signals showing one of the outliers (or-
ange) compared to one leak (blue) and non-leak (green) with work noise.

Experiment 3 Results

Experiment 3 (E3) evaluates how well the model performs when encountering

a leak that was not present during training. We emulate this by using data con-

taining one leak, such as a vent leak, during training and the other for testing,

and vice versa. F1-score is used as a metric since there is no similar experiment to

compare to in [1].

The results for training on ventleak and testing on tubeleak are presented in

Table 4.6. We observe that the ensemble methods score relatively well, with an

average above 90%. The only exception is the Xgb model with 86%, which is

drastically lowered by the lab noise type where the accuracy was 62% with a 36%

standard deviation.

Table 4.6: f1-score of models trained on ventleak and tested on tubeleak, with
all environments and microphone 1 used.

Noise Type DT RF Ada Xgb
Lab 34.83* ± 20.2 99.0 ± 0.55 97.61 ± 1.62 61.9 ± 35.8
Work Low 73.71 ± 23.3 94.98 ± 1.8 94.32 ± 1.98 95.2 ± 1.9
Work 67.33 ± 33.1 93.89 ± 3.95 93.3 ± 1.47 94.16 ± 3.81
Hydr Low 81.39 ± 12.1 92.49 ± 0.92 92.5 ± 0.67 92.3 ± 0.52
Hydr 74.41 ± 12.1 88.21 ± 1.53 85.71 ± 2.85 87.28 ± 2.62
Average 66.33 ± 16.3 93.72 ± 3.50 92.69 ± 3.89 86.17 ± 12.4

In Table 4.7 the f1-score for training on tubeleak and testing on ventleak

is shown, and this gives even better results with all models reaching the high

nineties.

In Table 4.8 we see the results of a test done with same conditions as in in

Table 4.7, only with microphone 4 instead of 1. The ensemble models handle the

Chapter 4: Results 54

Table 4.7: f1-score of models trained on tubeleak and tested on ventleak.

Noise Type DT RF Ada Xgb
Lab 99.02 ± 0.83 100.0 ± 0.0 99.9 ± 0.13 99.9 ± 0.13
Work Low 94.37 ± 0.05 98.94 ± 1.05 97.44 ± 2.25 98.8 ± 1.19
Work 94.98 ± 2.53 99.12 ± 0.63 97.6 ± 1.79 98.65 ± 0.97
Hydr Low 92.76 ± 2.08 96.84 ± 0.14 95.1 ± 1.78 97.04 ± 0.14
Hydr 92.5 ± 1.9 95.32 ± 1.59 93.81 ± 0.29 95.19 ± 1.76
Average 94.73 ± 2.34 98.04 ± 1.71 96.77 ± 2.11 97.91 ± 1.63

more challenging position better than the DT model, only losing around 5% in

average accuracy. The reason for calling it more challenging is due to Figure 3.9

in the EDA.

Table 4.8: f1-score of models trained on tubeleak and tested on ventleak using
microphone 4.

Noise Type DT RF Ada Xgb
Lab 91.33 ± 6.8 94.48 ± 3.19 89.84 ± 10.2 93.32 ± 5.3
Work Low 88.27 ± 0.36 95.96 ± 3.12 91.55 ± 2.99 94.96 ± 2.93
Work 90.51 ± 3.52 94.95 ± 2.56 92.6 ± 2.35 94.63 ± 1.79
Hydr Low 52.82 ± 26.1 95.41 ± 1.11 90.77 ± 1.44 95.54 ± 0.58
Hydr 52.89 ± 15.5 87.86 ± 2.56 83.4 ± 2.78 83.66 ± 3.5
Average 75.17 ± 18.2 93.73 ± 2.97 89.63 ± 3.24 92.42 ± 4.44

Experiment 4 Results

Experiment 4 (E4) aims to test how using recordings from different microphone

positions impacts the results. Only recordings from microphones 1-3, work and

hydr environments, and tube- and ventleak was used to reduce the amount of

data. Each combination of two microphones for training and one for testing is

used, for instance, training with microphones 1 and 2 and testing on microphone

3. The f1-score is also here used since there are no results from [1] to compare.

The results are presented in Table 4.9, Table 4.10 and Table 4.11. Each table will

be referred to with the number of the microphone used for testing.

Microphone 3 gives the best results, with the Xgb model reaching an average of

around 94%. Testing on microphone 1 yields second best, with the top-performing

model Ada getting an average of 87%. The final test where microphone 2 is used

gives an average of 78% by the Xgb model, but the tube leaks reduce the average

while it does well on vent leaks. This same trend is also evident when testing on

Chapter 4: Results 55

microphone 3. When testing on microphone 1, the Ada model performs very well

on both tubeleak and ventleak in the work environment but worse in the hydr

environment.

Table 4.9: Table showing f1-score for models trained with data from microphone
2 and 3, and tested on microphone 1.

Condition Noise Type DT RF Ada Xgb
Vent Leak Work 86.56 ± 4.57 95.84 ± 3.74 97.06 ± 1.68 94.67 ± 6.08
Tube Leak Work 82.44 ± 3.0 92.58 ± 0.62 92.55 ± 1.36 91.01 ± 4.56
Vent Leak Hydr 80.98 ± 5.29 79.05 ± 1.64 79.78 ± 1.37 80.94 ± 3.02
Tube Leak Hydr 77.76 ± 0.91 79.15 ± 0.7 79.94 ± 1.69 80.03 ± 0.16
Average 81.94 ± 3.16 86.66 ± 7.64 87.33 ± 7.63 86.66 ± 6.32

Table 4.10: Table showing f1-score for models trained with data from microphone
1 and 3, and tested on microphone 2.

Condition Noise Type DT RF Ada Xgb
Vent Leak Work 83.28 ± 9.37 84.75 ± 7.29 89.4 ± 5.98 86.23 ± 7.14
Tube Leak Work 67.07 ± 7.03 71.56 ± 3.38 68.55 ± 14.4 71.41 ± 5.47
Vent Leak Hydr 77.75 ± 1.45 80.39 ± 1.0 84.96 ± 3.28 84.36 ± 1.86
Tube Leak Hydr 66.95 ± 2.96 74.31 ± 0.69 63.69 ± 7.81 71.98 ± 5.35
Average 73.76 ± 7.03 77.75 ± 5.15 76.65 ± 10.7 78.50 ± 6.83

Table 4.11: Table showing f1-score for models trained with data from microphone
1 and 2, and tested on microphone 3.

Condition Noise Type DT RF Ada Xgb
Vent Leak Work 94.43 ± 2.4 95.76 ± 4.11 97.69 ± 0.98 97.48 ± 2.52
Tube Leak Work 86.34 ± 4.49 87.72 ± 3.62 88.7 ± 4.01 89.94 ± 2.65
Vent Leak Hydr 88.67 ± 0.76 94.84 ± 1.41 93.14 ± 3.37 95.61 ± 1.31
Tube Leak Hydr 81.3 ± 0.57 91.5 ± 1.17 87.87 ± 0.62 90.43 ± 0.83
Average 87.68 ± 4.71 92.46 ± 3.16 91.85 ± 3.92 93.36 ± 3.25

4.2 Anomaly Detection Experiment Results

Only one experiment is conducted for the novelty detection methods. Data is re-

corded from microphone 4, and one test is done for each environment. The model

is trained with data without leaks and tested with data from the same environ-

ment but with around 50 % leaks included. We use the f1-score evaluation and

LOO.

Chapter 4: Results 56

Figure 4.5: Top row shows plots of the decision boundary (red line) created
around the training data by OC-SVM models with varying nu (0.01, 0.1 and 0.5)
with only two features. The training data is without leaks and only with the work
environmental noise recorded from microphone 4. Bottom row shows the same
boundary overlaid the test data, which is from the work_low environment, now
with all leaks included.

First, the impact of the nu parameter for the OC-SVM model is explored. Fig-

ure 4.5 shows the decision boundary returned by three OC-SVM models with dif-

ferent nu that is trained on the work environmental noise. We see that increasing

the nu parameter creates a stricter boundary, resulting in a higher probability for

new data to fall outside and be classified as anomalous. Figure 4.6 is the same plot

with a model trained on the hydr noise. We observe that there are two clusters in

the training data, and only one in the test data.

Several different values for the contamination hyperparameter in IF and LOF

and nu in the OC-SVM was tested. The best accuracy was with the default value

of 0.5 for IF and LOF and 0.1 for OC-SVM. The results are presented in table

Table 4.12. We observe that the average f1-score for the lab environment is best

for all the models with between 85-90%, and worst for hydr with the best model

LOF getting 73%. For both hydr and work, all the models perform well on ventleak

and ventlow, with accuracy between 80-90%. However, the tubeleak drags the

average down, with the best performing on the hydr data being IF with only 53%.

In Figure 4.7 the decision boundary is plotted for each model when trained

and tested using the lab environment noise. We see that the boundary created by

OC-SVM and IF is similar and restricted to the central cluster of points, while LOF

Chapter 4: Results 57

Figure 4.6: Plots with same conditions as in Figure 4.5, except hydr is used in
top row and hydr_low is used in bottom row.

Table 4.12: Table of f1-score for three One-class classifiers that is using same
environmental noise during training and testing.

Train Env. Test Env. Condition OC-SVM LOF IF
Work Work Vent Leak 82.43 ± 7.30 89.30 ± 5.08 82.35 ± 6.97
Work Work Vent Low 83.58 ± 5.17 87.26 ± 4.89 82.83 ± 4.57
Work Work Tube Leak 69.93 ± 8.81 65.31 ± 13.5 66.33 ± 12.6
Work Work Average 78.65 ± 6.18 80.63 ± 10.8 77.17 ± 7.66
Hydr Hydr Vent Leak 81.34 ± 3.13 88.64 ± 0.19 81.38 ± 1.49
Hydr Hydr Vent Low 81.83 ± 0.99 88.58 ± 2.55 80.31 ± 0.64
Hydr Hydr Tube Leak 31.42 5.29 43.37 ± 2.37 53.12 ± 2.76
Hydr Hydr Average 64.87 ± 23.6 73.53 ± 21.3 71.60 ± 13.0
Lab Lab Vent Leak 85.14 ± 12.3 89.01 ± 12.0 91.16 ± 4.88
Lab Lab Vent Low 88.02 ± 6.77 86.00 ± 10.0 88.82 ± 5.09
Lab Lab Tube Leak 82.90 ± 12.4 86.97 ± 9.73 88.02 ± 4.71
Lab Lab Average 85.35 ± 2.09 87.33 ± 1.25 89.33 ± 1.33

encapsulates more of the deviant points closer to the origin.

The models are also tested by training on the loud version of the leak and

testing on the lower version to see how it tackles minor variations in the noise.

The results are presented in Table 4.13. The average score for work_low is slightly

higher than before, mostly because of the tubeleak increasing to above 80% for

all models. For hydr and hydr_low, the score is lower in all areas.

Chapter 4: Results 58

Figure 4.7: Top row shows the boundary created by the OC-SVM, LOF and IF
models when trained on the lab environmental noise without leak (blue). Bot-
tom row is the test data which is the same noise, now including data with leak
(orange).

Table 4.13: Table of f1-score for three One-class classifiers training on the main
version of the environmental noise and testing on the lower version.

Train Env. Test Env. Condition OC-SVM LOF IF
Work Work Low Vent Leak 77.94 ± 6.38 83.74 ± 7.89 77.56 ± 5.86
Work Work Low Vent Low 82.23 ± 11.2 83.45 ± 11.8 81.13 ± 10.4
Work Work Low Tube Leak 82.07 ± 4.55 83.52 ± 7.54 81.24 ± 4.71
Work Work Low Average 80.75 ± 1.98 83.57 ± 0.12 79.98 ± 1.70
Hydr Hydr Low Vent Leak 82.87 ± 1.23 76.74 ± 0.72 69.79 ± 2.01
Hydr Hydr Low Vent Low 74.45 ± 4.37 71.06 ± 1.90 66.63 ± 1.42
Hydr Hydr Low Tube Leak 41.32 ± 2.26 42.60 ± 4.05 48.30 ± 1.58
Hydr Hydr Low Average 66.21 ± 17.9 63.47 ± 14.9 61.57 ± 9.47

Chapter 5

Discussion

In this Chapter, the results from Chapter 4 will first be discussed in Section 5.1.

The experiments relevance and any weaknesses can also be found here. In Sec-

tion 5.2 the two approaches considered in this thesis are compared to evaluate

their suitability for being used by the robot.

5.1 Results Discussion

E1 Results:

This experiment was included to compare the features and models used here to

the deep learning-based approach with CNN and spectograms seen in [1], even

though the experiment itself might not be the most relevant to the intended use

case. As was seen in Section 4.1 all the models perform comparably to the CNN

and, in some cases, even outperform it.

Hyperparameter tuning was not done either. That could have extracted a few

percent more out of the models. The reason for not tuning was that the score

was so good that we could only get a slight increase with the added potential of

overfitting due to no unseen data available.

The most interesting observation from the experiment was that the results

remained good even though the number of features was reduced, even down to

just one single feature. On the one hand, this should be considered a weak point

for the models since they cant pick up on more complex relations. However, it

might instead point to a weakness in the dataset. We saw in the Leak Type section

of the EDA 3.2 that by looking at the energy in the 20-24kHz range, we could

distinguish between leaks and no leaks. If there were included noise in this range

59

Chapter 5: Discussion 60

as well in the dataset, the models might be forced to use more information from

more features. The main takeaway from this experiment is that the tree-based

models perform comparably to the CNN model, even with only one feature.

E2 Results:

This experiment is interesting because it indicates that the model, to some degree,

could generalize beyond the background noise and that the model did not need

to be trained on all possible environmental noise it could encounter.

We observed large standard deviations in Table 4.3, which can point to over-

fitting in one of the folds. Hyperparameter tuning could potentially resolve this,

but it was not prioritized due to the Xgb model performing well.

Tables 4.4 and 4.5 aroused suspicion since all the models performed almost

identical, especially considering how Xgb outperformed DT in Table 4.3. In Fig-

ure 4.3, we plotted the train and test data and observed a cluster of data points

without leaks, with the power and spectral bandwidth values to be it.

After inspecting the files that these points are from, we observed that all have

in common that they are files without leaks with the letter “m” after the micro-

phone number instead of “l.” The meaning of these is not described in the dataset

explanation, but they most likely stand for “max” and “low” volume settings on

the microphones. These files all have energy in the frequencies above 20 kHz to

indicate that they are leaks, which can be seen in Figure 4.4. Whether this was an

error by the creators or actual observations is uncertain, but the fact that the model

does not classify them as leaks is not worrying since this pattern was not present

in the training set, and the model will only learn from the examples offered to

it. In hindsight, this aspect of the data should have but was not discovered in the

EDA.

Either way, even though the best average accuracy achieved in the experiment

is close to 85%, it is still far away from the score achieved by the CNN model in

[1]. They got an average accuracy of close to 98% for all vent- and tubeleaks and

90% for ventlow. The CNN models results were only slightly reduced in some cases

by training on a different noise than testing, so it appears that this deep learning

approach picks up on some information in the signals that are not represented in

the features selected here.

Chapter 5: Discussion 61

E3 Results:

As with E2, this is an interesting experiment because it can potentially give some

indication about what can be achieved in terms of detection of leaks not included

in the dataset. The experimental results are impressive, particularly when tubeleak

is used for training and ventleak for testing.

However, the experiment uses only one microphone 20 cm away from the leak,

which also always comes from the same place each time. Therefore, this does not

prove that by including tubeleaks in the dataset, we can always detect ventleaks

as well. The experiment was also tested using microphone 4, which has a different

orientation, and the results were good.

Some models had extreme standard deviation in accuracy, probably due to

overfitting caused by lack of tuning, but again this was not prioritized due to the

good results regardless.

The reason it performs best when trained on tubeleak and tested on ventleak

is presumably a consequence of what we observed in Section 3.2. The energy in

the top frequencies is much higher in the ventleak. Any split made in any trees

which picks up on this, which a lot of the features do, since we know they correlate

to p_bin: 20-24kHz, the ventleak will always be higher than the highest leak in

tubeleak, so it should detect them. Note that the results are good the other way as

well, so there must be something different the models pick up on as well, which

is promising.

E4 Results:

The goal of including this experiment was to test if the models could detect leaks

even though they were recorded from another position. The results are good when

tested on microphones 1 and 3, which was expected since the other is then used

for testing, and we observed they were pretty similar in Section 3.2. Microphone

2 was performing worse than the other was also expected. The same plot also

showed that microphone 2 picked up on less of the frequencies above 20 kHz,

which we have come to realize is so important

Anomaly Detection Results:

This experiment is reasonably similar to how it would look on the robot. However,

more noise is expected than what is encountered here.

Chapter 5: Discussion 62

The accuracy is good in the work and lab environment. It is clear from Fig-

ure 4.6 that the issue with the hydr cluster from E2 also has an impact here, and

the model created a border around data in the training that is normal in the test.

That the models struggle more with tubeleaks than ventleaks is not surprising

since we know tubeleaks are less extreme and more difficult to hear as a leak,

also for humans. Note that neither of the models is best in all cases, so we cannot

conclude that one is better than the rest. Potentially, the models could be combined

in an ensemble way where the predictions of all the models are taken into account.

In the experiment, the f1-score was used, which holds information about the

relationship between precision and recall. In anomaly detection, recall is most

important. We allow false alarms but not to classify something potentially dan-

gerous as an anomaly. This should perhaps be more emphasized in the models,

and the nu value of the OC-SVM should, for instance, be increased so that it was

stricter and got fewer false negatives. On the other side, as seen in Figure 4.5, us-

ing nu=0.5 would lead to considerable false alarms that would drastically reduce

its usefulness. Therefore, including a condition that, for instance, five consecutive

predictions have to be anomalous for the robot to alert humans has the potential

of reducing the impact of false alarms.

5.2 Comparison of Approaches

Several strengths and weaknesses have become apparent through the experiments

for the gas leak detection, and anomaly detection approaches. In this section, they

will be compared against each other to compare which might be most suitable for

an autonomous inspection robot. For simplicity, gas leak detection will be referred

to as option one and anomaly detection as option two.

The first option’s main advantage is that the system’s sole purpose is to detect

what we are most worried about, which is leaks since that has the highest damage

potential. However, if the robot is to replace human inspectors, it should be able

to detect what humans do, which also includes faulty machinery, for instance. The

second approach can also be used to detect leaks, as seen in Section 4.2, but this

is not a priority above other defects. In addition, there is no way of knowing the

anomaly’s source after detecting it, leaving the human inspectors with no idea

what the problem might be. This might be a more significant issue if we were to

look for leaks in the ultrasonic range where humans are physically unable to hear

Chapter 5: Discussion 63

it. Another strength of option one is that it would be possible to begin a localization

procedure after the leak is located since we know that the source probably is a

high-frequency leak somewhere. Looking at where the energy is most significant

could potentially lead to the source.

In Section 4.1, option one was able to detect leaks in a different environment

than it was trained on. It must be said that this is much easier when both are

recorded from precisely the exact location with the same leak; however, it might

be possible with sufficient data. If we assume that it is, this is a great advantage

option one has over option two since this means that a new model would not

need to be trained at each unique location the robot is inspecting. Using option

two would require training new models for each new location.

The main advantage of option two is that it does not need examples of the anom-

alies in the data set to work. It only needs the normal data; over time, it will prob-

ably get better and better the more data it receives. Option two does need labeled

data in the form of gas leaks. We saw in the EDA 3.2 that there is a big difference

between tube- and ventleaks. There probably exist numerous variations of leaks

with vastly different characteristics. Even though option one averaged around a

95% accuracy when training on another leak in E1, the conditions are ideal, so

this is probably the most straightforward situation possible. Models learn from

the data provided to them, so it makes sense to include a representative amount

of potential leaks to create a general gas leak detector. Collecting the leak data

can be challenging since some are hard to reproduce or dangerous. Repeating an

experiment for leaks caused by material degradation would be complicated, and

perhaps the sound from the dangerous gasses sound different from compressed

air?

In [1] a CNN model is used for the leak detection instead of the tree-based

models used here. In experiments E1 and E2, we saw that the CNN model was

better at generalizing beyond the environment, but they performed evenly in the

general E1 experiment. The discovery in E2 points to the main advantage of using

a deep learning model like CNN. The feature extraction is done by the model,

which saves time and is not as dependent on the domain knowledge of the creators

of the features. It can also discover patterns in the data that cannot be found

using manual feature extraction. The advantage of the tree-based methods is that

they are more interpretable, meaning we, to a higher degree, can reason why

Chapter 5: Discussion 64

the models have made their predictions. It can be said that this is valuable in an

inspection setting since if a person knows the meaning of the features, they can

observe the decision path down a Decision Tree, for instance, which is not possible

in most deep learning models.

Chapter 6

Conclusions and Further Work

This chapter summarizes the thesis before we conclude whether we reached our

goals and which approaches have the highest potential to be used in an autonom-

ous inspection setting in industrial plants. Followed by a section where any re-

commendations for further work are presented.

6.1 Conclusions

In this thesis, we have examined different acoustic approaches for detecting dam-

age in industrial plants with a robot. First, the theoretical foundation was laid, and

several machine learning methods representing each approach were put forth to

solve the problem. Several experiments to test the models were crafted and dis-

cussed.

The overarching goal of the thesis was to explore if it might be best to special-

ize the robot to detect gas leaks or to detect if something sounds wrong in general.

Several sub-goals was also presented, and they were all completed to a varying

degree.

The first sub-goal was to find a publicly available and relevant dataset, which

was done with the compressed air leak dataset. It had weaknesses, primarily when

used for creating the gas leak detection experiments, but proved suitable for an-

omaly detection. Nevertheless, several issues with it have been pointed out, and

suggestions to improve it in the future are presented in Section 6.2.

The second sub-goal was to explore the data and learn about the characterist-

ics of gas leaks, which was done in 3.2. Information about the difference between

tubeleak and ventleak and the potential of looking at frequencies above 20 kHz

was discovered. However, analysis of the environmental noise was not thoroughly

65

Chapter 6: Conclusions and Further Work 66

performed, causing unforeseen observations in the experiments.

The third was to use the knowledge to extract relevant features and explore

which are most vital. In Section 3.4 we used proven features from related works

and crafted another that used what we had learned about the high frequencies of

a leak. In some experiments, the feature importance was presented, and we saw

what could be achieved with only a few features.

The final sub-goal was implementing reasonable machine learning models and

testing them with the chosen dataset. Several well-proven methods from other

domains were tested, and the experiments gave valuable insights to compare the

two directions.

Ultimately, as mentioned initially, the goal was to explore the two approaches.

However, in light of the discussion of the approaches in Section 5.2, it appears

that gas leak detection focusing on the highest frequencies is the most suitable

approach. This is mostly based on the fact that it avoids the necessity of training

at each new location which would be strenuous. In addition, gas leaks are the

most worrying defect on oil and gas platforms due to the potential damage extent.

However, ideally, both approaches should be implemented, complementing each

other and creating a more significant impact. Suppose a gas leak detector was

implemented on an inspection robot on a platform. In that case, the processed

data could be used to train potential anomaly detectors, automating the process.

6.2 Further Work

This thesis is only the beginning of much fascinating work in an impactful field.

Much research is still required before the robot can alert its first human. The

following section presents some encouragement for further work and begins with

how to create an ideal dataset for this task.

Improved Dataset

The IDMT-ISA-COMPRESSED-AIR dataset created by Johnson et al. [1] was used

in this thesis. It was created in order to fill a void in gas leak datasets, as well as en-

courage the same from others. It had several useful characteristics, but ultimately

it was made with a different application in mind. If we were to create a more suit-

able dataset to continue the work in leak or anomaly detection in autonomous

robot inspectors, the following aspects should be considered:

Chapter 6: Conclusions and Further Work 67

• Keep the microphone in one place, with some minor millimeters deviation

in all directions, to account for the imprecision in the robot movement.

• Create leaks by releasing compressed air from a bigger tube and make it

mobile. Move the leak source around the microphone instead of keeping it

fixed to one place to resemble the fact that a leak does not appear from only

one location.

• Record environmental noise from a location on a platform and superimpose

the sound of leaks to that instead of playing the noise from a speaker.

• Use a sample rate that allows for ultrasonic frequencies and a microphone

that permits it.

Improved Machine Learning

Besides using an improved dataset, testing different machine learning models

and techniques should be considered. First and foremost, the impressive results

achieved with deep learning in other fields such as object detection and natural lan-

guage processing, as well as seeing the CNN model of [1] outperform the tree-based

models in E2, makes makes it apperant that exploring this would be a reasonable.

Regardless of losing interpretability. In theory, it is not unreasonable to assume

that a DL model would be able to detect any gas leak in a spectogram image if

it can detect a dog. The limiting factor is the amount of data available, and as

explained in Section 5.2 it can be challenging to gather gas leak the data. Deep

Auto Encoders could be considered for anomaly detection, which also appears to

be the leading approach [5].

Until the vast amounts of data required are acquired, it would be reasonable

to continue exploring the tree-based solution for leak detection since they per-

form well with less data. Other, more reliable methods should be explored for the

anomaly detection direction. To further improve the models, several steps could

be taken.

For anomaly detection, the models should at least be tuned better, and com-

bining them in an ensemble fashion could potentially be interesting. Seliya et al.

[56]s literature review of OCC mention several variations to the methods used

here and some unused.

Implementing denoising of signals should be considered if more noisy data is

to be used. In addition, augmenting the data should be considered, which means

slightly altering the signals or features to get a more diverse dataset. Augmenta-

tion is common in for instance image classification [57].

Bibliography

[1] D. Johnson, J. Kirner, S. Grollmisch and J. Liebetrau, ‘Compressed air leak-

age detection using acoustic emissions with neural networks,’ INTER-NOISE

and NOISE-CON Congress and Conference Proceedings, vol. 261, no. 1, pp. 5662–

5673, 12th Oct. 2020.

[2] ‘Equinor deploys a robot that can find its way around an offshore platform,’

JPT. (14th Apr. 2021), [Online]. Available: https://jpt.spe.org/equin

or-deploys-a-robot-that-can-find-its-way-around-an-offshore-

platform (visited on 20/12/2021).

[3] A. Schenck, W. Daems and J. Steckel, ‘AirleakSlam: Detection of pressur-

ized air leaks using passive ultrasonic sensors,’ in 2019 IEEE SENSORS,

ISSN: 2168-9229, Oct. 2019, pp. 1–4. DOI: 10.1109/SENSORS43011.2019.

8956631.

[4] A. Kroll and T. Gunther, ‘Localization of compressed air leaks in industrial

environments using service robots with ultrasonic microphones,’ [Online].

Available: https://www.ndt.net/search/docs.php3?id=20360.

[5] E. C. Nunes, ‘Anomalous sound detection with machine learning: A sys-

tematic review,’ arXiv:2102.07820 [cs, eess], 15th Feb. 2021. arXiv: 2102.

07820. [Online]. Available: http://arxiv.org/abs/2102.07820 (visited

on 15/09/2021).

[6] D. Y. Oh and I. D. Yun, ‘Residual error based anomaly detection using auto-

encoder in SMD machine sound,’ Sensors, vol. 18, no. 5, p. 1308, May 2018,

Number: 5 Publisher: Multidisciplinary Digital Publishing Institute. DOI:

10.3390/s18051308. [Online]. Available: https://www.mdpi.com/1424-

8220/18/5/1308 (visited on 10/12/2021).

68

https://jpt.spe.org/equinor-deploys-a-robot-that-can-find-its-way-around-an-offshore-platform
https://jpt.spe.org/equinor-deploys-a-robot-that-can-find-its-way-around-an-offshore-platform
https://jpt.spe.org/equinor-deploys-a-robot-that-can-find-its-way-around-an-offshore-platform
https://doi.org/10.1109/SENSORS43011.2019.8956631
https://doi.org/10.1109/SENSORS43011.2019.8956631
https://www.ndt.net/search/docs.php3?id=20360
https://arxiv.org/abs/2102.07820
https://arxiv.org/abs/2102.07820
http://arxiv.org/abs/2102.07820
https://doi.org/10.3390/s18051308
https://www.mdpi.com/1424-8220/18/5/1308
https://www.mdpi.com/1424-8220/18/5/1308

Bibliography 69

[7] T. B. Duman and B. Bayram, ‘Acoustic anomaly detection using convolu-

tional autoencoders in industrial processes,’ in 1st Jan. 2020, pp. 432–442,

ISBN: 978-3-658-07615-3. DOI: 10.1007/978-3-030-20055-8_41.

[8] D. Kampelopoulos, G.-P. Kousiopoulos, N. Karagiorgos, V. Konstantakos, S.

Goudos and S. Nikolaidis, ‘Applying one class classification for leak detec-

tion in noisy industrial pipelines,’ in 2021 10th International Conference on

Modern Circuits and Systems Technologies (MOCAST), Jul. 2021, pp. 1–4.

DOI: 10.1109/MOCAST52088.2021.9493355.

[9] R. Müller, F. Ritz, S. Illium and C. Linnhoff-Popien, ‘Acoustic anomaly de-

tection for machine sounds based on image transfer learning,’ Proceedings

of the 13th International Conference on Agents and Artificial Intelligence,

pp. 49–56, 2021. DOI: 10.5220/0010185800490056. arXiv: 2006.03429.

[Online]. Available: http :/ / arxiv. org /abs /2006 . 03429 (visited on

28/09/2021).

[10] T. B. Quy and J.-M. Kim, ‘Real-time leak detection for a gas pipeline using

a k-NN classifier and hybrid AE features,’ Sensors, vol. 21, no. 2, p. 367,

7th Jan. 2021, ISSN: 1424-8220. DOI: 10.3390/s21020367. [Online]. Avail-

able: https://www.mdpi.com/1424-8220/21/2/367 (visited on 10/12/2021).

[11] R. Xiao, Q. Hu and J. Li, ‘Leak detection of gas pipelines using acoustic

signals based on wavelet transform and support vector machine,’ Measure-

ment, vol. 146, pp. 479–489, 1st Nov. 2019, ISSN: 0263-2241. DOI: 10.

1016/j.measurement.2019.06.050. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0263224119306189 (visited

on 10/12/2021).

[12] R. P. da Cruz, F. V. da Silva and A. M. F. Fileti, ‘Machine learning and acoustic

method applied to leak detection and location in low-pressure gas pipelines,’

Clean Technologies and Environmental Policy, vol. 22, no. 3, pp. 627–638,

Apr. 2020, ISSN: 1618-954X, 1618-9558. DOI: 10 . 1007 / s10098 - 019 -

01805- x. [Online]. Available: http://link.springer.com/10.1007/

s10098-019-01805-x (visited on 14/12/2021).

[13] F. Ning, Z. Cheng, D. Meng, S. Duan and J. Wei, ‘Enhanced spectrum convo-

lutional neural architecture: An intelligent leak detection method for gas

pipeline,’ Process Safety and Environmental Protection, vol. 146, pp. 726–

735, 1st Feb. 2021, ISSN: 0957-5820. DOI: 10.1016/j.psep.2020.12.

https://doi.org/10.1007/978-3-030-20055-8_41
https://doi.org/10.1109/MOCAST52088.2021.9493355
https://doi.org/10.5220/0010185800490056
https://arxiv.org/abs/2006.03429
http://arxiv.org/abs/2006.03429
https://doi.org/10.3390/s21020367
https://www.mdpi.com/1424-8220/21/2/367
https://doi.org/10.1016/j.measurement.2019.06.050
https://doi.org/10.1016/j.measurement.2019.06.050
https://www.sciencedirect.com/science/article/pii/S0263224119306189
https://www.sciencedirect.com/science/article/pii/S0263224119306189
https://doi.org/10.1007/s10098-019-01805-x
https://doi.org/10.1007/s10098-019-01805-x
http://link.springer.com/10.1007/s10098-019-01805-x
http://link.springer.com/10.1007/s10098-019-01805-x
https://doi.org/10.1016/j.psep.2020.12.011
https://doi.org/10.1016/j.psep.2020.12.011

Bibliography 70

011. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/S0957582020319388 (visited on 10/12/2021).

[14] F. Ning, Z. Cheng, D. Meng and J. Wei, ‘A framework combining acoustic

features extraction method and random forest algorithm for gas pipeline

leak detection and classification,’ Applied Acoustics, vol. 182, p. 108 255,

1st Nov. 2021, ISSN: 0003-682X. DOI: 10.1016/j.apacoust.2021.108255.

[Online]. Available: https://www.sciencedirect.com/science/article

/pii/S0003682X21003492 (visited on 02/11/2021).

[15] D. Henze, K. Gorishti, B. Bruegge and J.-P. Simen, ‘AudioForesight: A pro-

cess model for audio predictive maintenance in industrial environments,’ in

2019 18th IEEE International Conference On Machine Learning And Applica-

tions (ICMLA), Dec. 2019, pp. 352–357. DOI: 10.1109/ICMLA.2019.00066.

[16] T. D. Rossing and R. F. Moore. ‘Science of sound, the | 3rd edition | pear-

son.’ (2002), [Online]. Available: https://www.pearson.com/store/

p/science-of-sound-the/P100000828672/9780805385656 (visited on

18/12/2021).

[17] A. Lerch, An introduction to audio content analysis: applications in signal

processing and music informatics. Hoboken, New Jersey: Wiley, 2012, 272 pp.,

ISBN: 978-1-283-80405-9.

[18] ‘Ultrasonic gas detectors with artificial neural network intelligence,’ p. 3,

[Online]. Available: https://s7d9.scene7.com/is/content/minesaf

etyappliances/Gassonic%20Ultrasonic%20Gas%20Leak%20Detection%

20White%20Paper%20-%20EN.

[19] Sampling (signal processing), in Wikipedia, Page Version ID: 1084648620,

25th Apr. 2022. [Online]. Available: https://en.wikipedia.org/w/i

ndex.php?title=Sampling_(signal_processing)&oldid=1084648620

(visited on 18/05/2022).

[20] Nyquist–shannon sampling theorem, in Wikipedia, Page Version ID: 1086141927,

2nd Jun. 2022. [Online]. Available: https://en.wikipedia.org/wiki/

Nyquist%E2%80%93Shannon_sampling_theorem (visited on 18/05/2022).

[21] ‘Exploring communications technology,’ Exploring communications tech-

nology. (), [Online]. Available: https : / / www . open . edu / openlearn /

science-maths-technology/exploring-communications-technology/

science- maths- technology/exploring- communications- technology

(visited on 21/05/2022).

https://doi.org/10.1016/j.psep.2020.12.011
https://doi.org/10.1016/j.psep.2020.12.011
https://doi.org/10.1016/j.psep.2020.12.011
https://doi.org/10.1016/j.psep.2020.12.011
https://www.sciencedirect.com/science/article/pii/S0957582020319388
https://www.sciencedirect.com/science/article/pii/S0957582020319388
https://doi.org/10.1016/j.apacoust.2021.108255
https://www.sciencedirect.com/science/article/pii/S0003682X21003492
https://www.sciencedirect.com/science/article/pii/S0003682X21003492
https://doi.org/10.1109/ICMLA.2019.00066
https://www.pearson.com/store/p/science-of-sound-the/P100000828672/9780805385656
https://www.pearson.com/store/p/science-of-sound-the/P100000828672/9780805385656
https://s7d9.scene7.com/is/content/minesafetyappliances/Gassonic%20Ultrasonic%20Gas%20Leak%20Detection%20White%20Paper%20-%20EN
https://s7d9.scene7.com/is/content/minesafetyappliances/Gassonic%20Ultrasonic%20Gas%20Leak%20Detection%20White%20Paper%20-%20EN
https://s7d9.scene7.com/is/content/minesafetyappliances/Gassonic%20Ultrasonic%20Gas%20Leak%20Detection%20White%20Paper%20-%20EN
https://en.wikipedia.org/w/index.php?title=Sampling_(signal_processing)&oldid=1084648620
https://en.wikipedia.org/w/index.php?title=Sampling_(signal_processing)&oldid=1084648620
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
https://www.open.edu/openlearn/science-maths-technology/exploring-communications-technology/science-maths-technology/exploring-communications-technology
https://www.open.edu/openlearn/science-maths-technology/exploring-communications-technology/science-maths-technology/exploring-communications-technology
https://www.open.edu/openlearn/science-maths-technology/exploring-communications-technology/science-maths-technology/exploring-communications-technology

Bibliography 71

[22] T. Giannakopoulos and A. Pikrakis, ‘Introduction to audio analysis: A MAT-

LAB approach,’ in Introduction to Audio Analysis, Oxford: Academic Press,

1st Jan. 2014, p. iii, ISBN: 978-0-08-099388-1. DOI: 10.1016/B978- 0-

08- 099388- 1.00010- 8. [Online]. Available: https://www.scienced

irect.com/science/article/pii/B9780080993881000108 (visited on

19/05/2022).

[23] S. Abdoli, P. Cardinal and A. Koerich, End-to-End Environmental Sound Clas-

sification using a 1D Convolutional Neural Network. 18th Apr. 2019.

[24] Phonical, English: View of a signal in the time and frequency domain, 30th Nov.

2017. [Online]. Available: https://commons.wikimedia.org/wiki/File:

FFT-Time-Frequency-View.png (visited on 22/05/2022).

[25] J. O. Smith, Physical Audio Signal Processing, 2010 edition. 2010. [Online].

Available: http://ccrma.stanford.edu/~jos/pasp/.

[26] J. Dempster, ‘CHAPTER SIX - signal analysis and measurement,’ in The

Laboratory Computer, ser. Biological Techniques Series, J. Dempster, Ed.,

London: Academic Press, 1st Jan. 2001, pp. 136–171. DOI: 10.1016/B978-

012209551 - 1 / 50039 - 8. [Online]. Available: https : / / www . scienced

irect.com/science/article/pii/B9780122095511500398 (visited on

10/06/2022).

[27] Mel-frequency cepstrum, in Wikipedia, Page Version ID: 1088378317, 17th May

2022. [Online]. Available: https://en.wikipedia.org/w/index.php?tit

le=Mel-frequency_cepstrum&oldid=1088378317 (visited on 06/06/2022).

[28] S. Russell and P. Norvig. ‘Artificial intelligence: A modern approach, 3rd

edition.’ (), [Online]. Available: https://www.pearson.com/content/

one-dot-com/one-dot-com/us/en/higher-education/program.html

(visited on 11/12/2021).

[29] X.-D. Zhang, ‘Machine learning,’ in A Matrix Algebra Approach to Artifi-

cial Intelligence, X.-D. Zhang, Ed., Singapore: Springer, 2020, pp. 223–440,

ISBN: 9789811527708. DOI: 10.1007/978-981-15-2770-8_6. [Online].

Available: https://doi.org/10.1007/978-981-15-2770-8_6 (visited on

09/12/2021).

[30] E. Rich, Artificial Intelligence (International Student Edition). McGraw-Hill,

1st Jan. 1984, vol. 11, 436 pp.

https://doi.org/10.1016/B978-0-08-099388-1.00010-8
https://doi.org/10.1016/B978-0-08-099388-1.00010-8
https://www.sciencedirect.com/science/article/pii/B9780080993881000108
https://www.sciencedirect.com/science/article/pii/B9780080993881000108
https://commons.wikimedia.org/wiki/File:FFT-Time-Frequency-View.png
https://commons.wikimedia.org/wiki/File:FFT-Time-Frequency-View.png
http://ccrma.stanford.edu/~jos/pasp/
https://doi.org/10.1016/B978-012209551-1/50039-8
https://doi.org/10.1016/B978-012209551-1/50039-8
https://www.sciencedirect.com/science/article/pii/B9780122095511500398
https://www.sciencedirect.com/science/article/pii/B9780122095511500398
https://en.wikipedia.org/w/index.php?title=Mel-frequency_cepstrum&oldid=1088378317
https://en.wikipedia.org/w/index.php?title=Mel-frequency_cepstrum&oldid=1088378317
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://www.pearson.com/content/one-dot-com/one-dot-com/us/en/higher-education/program.html
https://doi.org/10.1007/978-981-15-2770-8_6
https://doi.org/10.1007/978-981-15-2770-8_6

Bibliography 72

[31] ‘2.7. novelty and outlier detection,’ scikit-learn. (), [Online]. Available: Gi

annakopoulos (visited on 18/12/2021).

[32] P. Date, ‘Combinatorial neural network training algorithm for neuromorphic

computing,’ Ph.D. dissertation, 16th Dec. 2019. DOI: 10.13140/RG.2.2.

27337.90726.

[33] P. Riley, ‘Three pitfalls to avoid in machine learning,’ Nature, vol. 572,

no. 7767, pp. 27–29, Aug. 2019, Bandiera_abtest: a Cg_type: Comment

Number: 7767 Publisher: Nature Publishing Group Subject_term: Math-

ematics and computing, Software, Research data. DOI: 10.1038/d41586-

019-02307-y. [Online]. Available: https://www.nature.com/articles/

d41586-019-02307-y (visited on 12/05/2022).

[34] X. Ying, ‘An overview of overfitting and its solutions,’ Journal of Physics:

Conference Series, vol. 1168, p. 022 022, Feb. 2019, ISSN: 1742-6588, 1742-

6596. DOI: 10.1088/1742- 6596/1168/2/022022. [Online]. Available:

https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/

022022 (visited on 06/06/2022).

[35] ‘What is overfitting?’ (6th Mar. 2021), [Online]. Available: https://www.

ibm.com/cloud/learn/overfitting (visited on 27/05/2022).

[36] M. A. Lones, ‘How to avoid machine learning pitfalls: A guide for academic

researchers,’ arXiv:2108.02497 [cs], 5th Aug. 2021. arXiv: 2108.02497.

[Online]. Available: http :/ / arxiv. org/ abs /2108 . 02497 (visited on

12/05/2022).

[37] L. Rokach, Ensemble Learning: Pattern Classification Using Ensemble Meth-

ods, 2nd ed., ser. Series in Machine Perception and Artificial Intelligence.

WORLD SCIENTIFIC, Mar. 2019, vol. 85, ISBN: 9789811201950 9789811201967.

DOI: 10.1142/11325. [Online]. Available: https://www.worldscientific

.com/worldscibooks/10.1142/11325 (visited on 20/05/2022).

[38] Gilgoldm, English: A tree showing survival of passengers on the titanic ("sibsp"

is the number of spouses or siblings aboard). 18th May 2020. [Online].

Available: https://commons.wikimedia.org/wiki/File:Decision_

Tree_ - _survival _ of _ passengers _ on _ the _ Titanic . jpg (visited on

20/05/2022).

[39] ‘What is a random forest?’ TIBCO Software. (), [Online]. Available: http

s://www.tibco.com/reference-center/what-is-a-random-forest

(visited on 20/05/2022).

Giannakopoulos
Giannakopoulos
https://doi.org/10.13140/RG.2.2.27337.90726
https://doi.org/10.13140/RG.2.2.27337.90726
https://doi.org/10.1038/d41586-019-02307-y
https://doi.org/10.1038/d41586-019-02307-y
https://www.nature.com/articles/d41586-019-02307-y
https://www.nature.com/articles/d41586-019-02307-y
https://doi.org/10.1088/1742-6596/1168/2/022022
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022
https://iopscience.iop.org/article/10.1088/1742-6596/1168/2/022022
https://www.ibm.com/cloud/learn/overfitting
https://www.ibm.com/cloud/learn/overfitting
https://arxiv.org/abs/2108.02497
http://arxiv.org/abs/2108.02497
https://doi.org/10.1142/11325
https://www.worldscientific.com/worldscibooks/10.1142/11325
https://www.worldscientific.com/worldscibooks/10.1142/11325
https://commons.wikimedia.org/wiki/File:Decision_Tree_-_survival_of_passengers_on_the_Titanic.jpg
https://commons.wikimedia.org/wiki/File:Decision_Tree_-_survival_of_passengers_on_the_Titanic.jpg
https://www.tibco.com/reference-center/what-is-a-random-forest
https://www.tibco.com/reference-center/what-is-a-random-forest

Bibliography 73

[40] C. Zhang and Y. Ma, Eds., Ensemble Machine Learning, Boston, MA: Springer

US, 2012, ISBN: 978-1-4419-9325-0 978-1-4419-9326-7. DOI: 10.1007/

978-1-4419-9326-7. [Online]. Available: http://link.springer.com/

10.1007/978-1-4419-9326-7 (visited on 20/05/2022).

[41] A. Patle and D. S. Chouhan, ‘SVM kernel functions for classification,’ in

2013 International Conference on Advances in Technology and Engineering

(ICATE), Jan. 2013, pp. 1–9. DOI: 10.1109/ICAdTE.2013.6524743.

[42] Y. Xiao, H. Wang, W. Xu and J. Zhou, ‘Robust one-class SVM for fault de-

tection,’ Chemometrics and Intelligent Laboratory Systems, vol. 151, pp. 15–

25, Feb. 2016, ISSN: 01697439. DOI: 10.1016/j.chemolab.2015.11.010.

[Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/

S0169743915003056 (visited on 06/06/2022).

[43] V. Pattanashetti. ‘Classical ML & its algorithms,’ Medium. (18th Jun. 2020),

[Online]. Available: https://medium.com/@_vp/classical- ml- its-

algorithms-9a47c9d65ee0 (visited on 20/12/2021).

[44] A. Jain. ‘Support vector machine(s.v.m) — classifiers and kernels.’ (25th Sep.

2020), [Online]. Available: https://medium.com/@apurvjain37/suppor

t-vector-machine-s-v-m-classifiers-and-kernels-9e13176c9396

(visited on 20/12/2021).

[45] S. Hariri, M. C. Kind and R. J. Brunner, ‘Extended isolation forest,’ IEEE

Transactions on Knowledge and Data Engineering, vol. 33, no. 4, pp. 1479–

1489, Apr. 2021, Conference Name: IEEE Transactions on Knowledge and

Data Engineering, ISSN: 1558-2191. DOI: 10.1109/TKDE.2019.2947676.

[46] ‘Isolation forest: Learned iForest construction for toy dataset,’ ResearchG-

ate. (), [Online]. Available: https://www.researchgate.net/figure/Is

olation-Forest-learned-iForest-construction-for-toy-dataset_

fig1_352017898 (visited on 06/06/2022).

[47] M. M. Breunig, H.-P. Kriegel, R. T. Ng and J. Sander, ‘LOF: Identifying

density-based local outliers,’ p. 12,

[48] P. Probst, M. N. Wright and A.-L. Boulesteix, ‘Hyperparameters and tuning

strategies for random forest,’ WIREs Data Mining and Knowledge Discovery,

vol. 9, no. 3, e1301, 2019, ISSN: 1942-4795. DOI: 10.1002/widm.1301.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.

1002/widm.1301 (visited on 12/06/2022).

https://doi.org/10.1007/978-1-4419-9326-7
https://doi.org/10.1007/978-1-4419-9326-7
http://link.springer.com/10.1007/978-1-4419-9326-7
http://link.springer.com/10.1007/978-1-4419-9326-7
https://doi.org/10.1109/ICAdTE.2013.6524743
https://doi.org/10.1016/j.chemolab.2015.11.010
https://linkinghub.elsevier.com/retrieve/pii/S0169743915003056
https://linkinghub.elsevier.com/retrieve/pii/S0169743915003056
https://medium.com/@_vp/classical-ml-its-algorithms-9a47c9d65ee0
https://medium.com/@_vp/classical-ml-its-algorithms-9a47c9d65ee0
https://medium.com/@apurvjain37/support-vector-machine-s-v-m-classifiers-and-kernels-9e13176c9396
https://medium.com/@apurvjain37/support-vector-machine-s-v-m-classifiers-and-kernels-9e13176c9396
https://doi.org/10.1109/TKDE.2019.2947676
https://www.researchgate.net/figure/Isolation-Forest-learned-iForest-construction-for-toy-dataset_fig1_352017898
https://www.researchgate.net/figure/Isolation-Forest-learned-iForest-construction-for-toy-dataset_fig1_352017898
https://www.researchgate.net/figure/Isolation-Forest-learned-iForest-construction-for-toy-dataset_fig1_352017898
https://doi.org/10.1002/widm.1301
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1301
https://onlinelibrary.wiley.com/doi/abs/10.1002/widm.1301

Bibliography 74

[49] S. Saxena. ‘Random forest hyperparameter tuning in python | machine

learning,’ Analytics Vidhya. (12th Mar. 2020), [Online]. Available: https:

//www.analyticsvidhya.com/blog/2020/03/beginners-guide-random-

forest-hyperparameter-tuning/ (visited on 27/05/2022).

[50] J. Bergstra and Y. Bengio, ‘Random search for hyper-parameter optimiza-

tion,’ Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305,

2012, ISSN: 1533-7928. [Online]. Available: http://jmlr.org/papers/

v13/bergstra12a.html (visited on 27/05/2022).

[51] R. E. Berg. ‘Sound - sound absorption | britannica.’ (9th Jun. 2006), [On-

line]. Available: https://www.britannica.com/science/sound-physics

/Sound-absorption (visited on 10/06/2022).

[52] M. Rahimi, A. Alghassi, M. Ahsan and J. Haider, ‘Deep learning model for

industrial leakage detection using acoustic emission signal,’ Informatics,

vol. 7, no. 4, p. 49, Dec. 2020, ISSN: 2227-9709. DOI: 10.3390/informati

cs7040049. [Online]. Available: https://www.mdpi.com/2227-9709/7/4/

49 (visited on 09/03/2022).

[53] M. R. Azim, S. A. Haque, M. S. Amin and T. Latif, ‘Analysis of EEG and EMG

signals for detection of sleep disordered breathing events,’ in International

Conference on Electrical Computer Engineering (ICECE 2010), Dec. 2010,

pp. 646–649. DOI: 10.1109/ICELCE.2010.5700776.

[54] R. Vallat. ‘Bandpower of an EEG signal.’ (May 2018), [Online]. Available:

https://raphaelvallat.com/bandpower.html (visited on 31/03/2022).

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot and É. Duchesnay, ‘Scikit-learn: Ma-

chine learning in python,’ Journal of Machine Learning Research, vol. 12,

no. 85, pp. 2825–2830, 2011, ISSN: 1533-7928. [Online]. Available: http:

//jmlr.org/papers/v12/pedregosa11a.html (visited on 13/06/2022).

[56] N. Seliya, A. Abdollah Zadeh and T. M. Khoshgoftaar, ‘A literature review

on one-class classification and its potential applications in big data,’ Journal

of Big Data, vol. 8, no. 1, p. 122, 10th Sep. 2021, ISSN: 2196-1115. DOI:

10.1186/s40537-021-00514-x. [Online]. Available: https://doi.org/

10.1186/s40537-021-00514-x (visited on 12/06/2022).

https://www.analyticsvidhya.com/blog/2020/03/beginners-guide-random-forest-hyperparameter-tuning/
https://www.analyticsvidhya.com/blog/2020/03/beginners-guide-random-forest-hyperparameter-tuning/
https://www.analyticsvidhya.com/blog/2020/03/beginners-guide-random-forest-hyperparameter-tuning/
http://jmlr.org/papers/v13/bergstra12a.html
http://jmlr.org/papers/v13/bergstra12a.html
https://www.britannica.com/science/sound-physics/Sound-absorption
https://www.britannica.com/science/sound-physics/Sound-absorption
https://doi.org/10.3390/informatics7040049
https://doi.org/10.3390/informatics7040049
https://www.mdpi.com/2227-9709/7/4/49
https://www.mdpi.com/2227-9709/7/4/49
https://doi.org/10.1109/ICELCE.2010.5700776
https://raphaelvallat.com/bandpower.html
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1186/s40537-021-00514-x
https://doi.org/10.1186/s40537-021-00514-x
https://doi.org/10.1186/s40537-021-00514-x

Bibliography 75

[57] H. Inoue, ‘Data augmentation by pairing samples for images classifica-

tion,’ arXiv, arXiv:1801.02929, 11th Apr. 2018, type: article. arXiv: 1801.

02929[cs, stat]. [Online]. Available: http://arxiv.org/abs/1801.

02929 (visited on 12/06/2022).

https://arxiv.org/abs/1801.02929 [cs, stat]
https://arxiv.org/abs/1801.02929 [cs, stat]
http://arxiv.org/abs/1801.02929
http://arxiv.org/abs/1801.02929

Appendix A

Code

This appendix contains code discussed in the thesis deemed unsuited to include

in the text due to length. The complete code can be found on GitHub: https://

github.com/simenb-h/gas-and-anomaly-detectors. Open the files to see already

executed code or follow the instructions in the readme to run the code yourself.

76

https://github.com/simenb-h/gas-and-anomaly-detectors
https://github.com/simenb-h/gas-and-anomaly-detectors

Chapter A: Code 77

A.1 File Information Retrieval

import os

import csv

import glob

from google.colab import drive

drive.mount('/content/gdrive',force_remount=1)

path_to_audio_files = '/content/gdrive/MyDrive/Masteroppgave/IDMT_dataset/'

def save_paths(base_dir, file_end, save_file_name="wav_paths.csv"):

wav_files = []

for root, dirs, files in os.walk(base_dir):

for file in files:

if file.endswith(str(file_end)):

path = os.path.join(root, file)

leak_present = 1 if "_niO_" in file else 0

file_split = file.split("_")

recording = file_split[0]

knob_rotations = file_split[2]

mic = file_split[3]

root_split = root.split(base_dir)[1].split("/")

leak_type = root_split[0]

environment = root_split[1]

environment_folder = root_split[2]

wav_files.append([path,leak_type,environment,recording,mic,

knob_rotations,leak_present])

#print([path,leak_type,environment,recording,mic,knob_rotations,

leak_present])

if ".csv" not in save_file_name:

save_file_name += ".csv"

with open(save_file_name,'w') as result_file:

wr = csv.writer(result_file, dialect='excel')

wr.writerow(["path","leak_type","environment","recording","mic","

knob_rotations","leak_present"])

for wav_file in wav_files:

wr.writerow(wav_file)

Chapter A: Code 78

save_paths("/content/gdrive/MyDrive/Masteroppgave/IDMT_dataset/", ".wav", "

wav_paths_master.csv")

Chapter A: Code 79

A.2 Relative power in segments code

import pandas as pd

import numpy as np

from scipy.signal import welch

from scipy.integrate import simps

def relative_power_segments(data, sr, segment_list, window_sec, relative=False):

"""Parameters

data : 1d-array

Input signal in the time-domain.

sr : float

Sampling frequency of the data.

segment_list : list

List with frequencies to begin new segment.

window_sec : float

Length of each window in seconds.

Return

bp : DataFrame

Relative segment power for len(segment_list)-1 segments.

"""

Compute the modified periodogram (Welch)

freqs, psd = welch(data, sr, nperseg=nperseg)

avg_segment_power = []

#Iterating over the segemnts from segment-list

for i in range(len(segment_list)-1):

freq_res = freqs[1] - freqs[0]

low = segment_list[i]

high = segment_list[i+1]

Find closest indices of segment in frequency vector

idx_segment = np.logical_and(freqs >= low, freqs <= high)

Integral approximation of the spectrum using Simpson's rule.

bp = simps(psd[idx_segment], dx=freq_res)

#Dividing the segment-power of each bin with the total power

if relative:

Chapter A: Code 80

bp /= simps(psd, dx=freq_res)

#Storing the results to a list

avg_segment_power.append(bp)

return pd.DataFrame([avg_segment_power])

Chapter A: Code 81

A.3 Experiment execution

The following method returns a dictionary with all the models, that will be used.

def ml_models():

dt = DecisionTreeClassifier(random_state=0)

rf = RandomForestClassifier(random_state=0)

xgb_model = xgb.XGBClassifier(objective="binary:logistic", random_state=0)

ada = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1),

algorithm="SAMME", random_state=0)

models = {

"dt" : dt,

"dt_1" : dt_1,

"rf" : rf,

"ada": ada,

"xgb" : xgb_model,

}

return models

Chapter A: Code 82

The following is the code that is used to executa all of the experiments. All

from sklearn.model_selection import StratifiedGroupKFold

from sklearn.metrics import accuracy_score

#Setting up StratifiedGroupKFold for LOO

cv = StratifiedGroupKFold(n_splits=3) #Using CV with 3 splits

env_groups = X.recording.values # and recording as group

#Splitting train and test data, only needed for CV

X = df_train_features

y = X.leak_present.values

#Calling the ml_models() method to get models

models = ml_models()

#Dictionary to store all the results

all_results = {}

#Iterating over the models and training and testing them

for model in models :

model_results = {}

#Iterating over all the train and test set in 3 splits

for train_idxs, test_idxs in cv.split(X ,y ,env_groups):

#Dividing the data into train and test, with labels.

X_train, y_train, X_test, y_test = get_data_labels(X.iloc[train_idxs], X.iloc[

test_idxs])

#Code for selecting subset of features

X_train = X_train[['spec_bandwidth','spec_flatness', 'mfcc_bin: 5', 'zcr', '

p_bin: 20-24kHz']] #Notation for selecting subset of features

X_test =X_test[['spec_bandwidth','spec_flatness', 'mfcc_bin: 5', 'zcr', 'p_bin:

20-24kHz']]

#Training models on train data of the current fold

models[model].fit(X_train,y_train)

score = models[model].score(X_test , y_test)

predictions = models[model].predict(X_test)

#Combining the predictions with the Test data

pred_col = pd.DataFrame(predictions)

pred_col.columns = ["predictions"]

pred_col.reset_index(drop=True, inplace=True)

Chapter A: Code 83

X_test_info.reset_index(drop=True, inplace=True)

test_preds = pd.concat([X_test_info, pred_col["predictions"]], axis=1)

#Iterating over leaks and environments in the test set to get predictions

category wise

for leak in X_test_info_preds.leak_type.unique():

for env in X_test_info_preds.environment.unique():

preds = test_preds.loc[(test_preds.leak_type == leak) & (test_preds.

environment == env)]["predictions"]

y_test = test_preds.loc[(test_preds.leak_type == leak) & (test_preds.

environment == env)]["leak_present"]

if len(predictions) != 0:

f1 = f1_score(predictions, y_test)

acc = accuracy_score(predictions, y_test)

metric = acc #Selecting what metric to use

else:

metric = 0

#Adding the result to a dictionary that stores the models results

key = str(leak + "-" + env)

if key in model_results:

model_results[key].append(metric)

else:

model_results[key] = [metric]

#Iterating over the results for each fold and averaging it

average_results = {}

for key, vals in model_results.items():

if (0.0 in vals) or (0 in vals):

vals.remove(0)

average_results[key] = [(np.mean(vals)*100), 100*statistics.pstdev(vals), "*"

]

else:

average_results[key] = [(np.mean(vals)*100), 100*statistics.pstdev(vals)]

#Storing the average results for each model

all_results[model] = average_results

#printing the results for all the models

all_results

Appendix B

Hyperparameters

B.1 Tree Based Classification Models

Decision Tree:

{'ccp_alpha': 0.0

'class_weight': None

'criterion': 'gini'

'max_depth': None

'max_features': None

'max_leaf_nodes': None

'min_impurity_decrease': 0.0

'min_samples_leaf': 1

'min_samples_split': 2

'min_weight_fraction_leaf': 0.0

'random_state': 0

'splitter': 'best'}

Random Forest:

{'bootstrap': True

'ccp_alpha': 0.0

'class_weight': None

'criterion': 'gini'

'max_depth': None

'max_features': 'auto'

'max_leaf_nodes': None

'max_samples': None

'min_impurity_decrease': 0.0

'min_samples_leaf': 1

84

Chapter B: Hyperparameters 85

'min_samples_split': 2

'min_weight_fraction_leaf': 0.0

'n_estimators': 100

'n_jobs': None

'oob_score': False

'random_state': 0

'verbose': 0

'warm_start': False}

AdaBoost:

{'algorithm': 'SAMME'

'base_estimator__ccp_alpha': 0.0

'base_estimator__class_weight': None

'base_estimator__criterion': 'gini'

'base_estimator__max_depth': 1

'base_estimator__max_features': None

'base_estimator__max_leaf_nodes': None

'base_estimator__min_impurity_decrease': 0.0

'base_estimator__min_samples_leaf': 1

'base_estimator__min_samples_split': 2

'base_estimator__min_weight_fraction_leaf': 0.0

'base_estimator__random_state': None

'base_estimator__splitter': 'best'

'base_estimator': DecisionTreeClassifier(max_depth=1)

'learning_rate': 1.0

'n_estimators': 50

'random_state': 0}

XgBoost

{'base_score': 0.5

'booster': 'gbtree'

'colsample_bylevel': 1

'colsample_bynode': 1

'colsample_bytree': 1

'gamma': 0

'learning_rate': 0.1

'max_delta_step': 0

'max_depth': 3

'min_child_weight': 1

'missing': None

'n_estimators': 100

'n_jobs': 1

Chapter B: Hyperparameters 86

'nthread': None

'objective': 'binary:logistic'

'random_state': 0

'reg_alpha': 0

'reg_lambda': 1

'scale_pos_weight': 1

'seed': None

'silent': None

'subsample': 1

'verbosity': 1}

B.2 One Class Classifying Models

One Class SVM

{'cache_size': 200

'coef0': 0.0

'degree': 3

'gamma': 'scale'

'kernel': 'rbf'

'max_iter': -1

'nu': 0.1

'shrinking': True

'tol': 0.001

'verbose': False}

Local Outlier Factor:

{'algorithm': 'auto'

'contamination': 'auto'

'leaf_size': 30

'metric': 'minkowski'

'metric_params': None

'n_jobs': None

'n_neighbors': 20

'novelty': True

'p': 2}

Isolation Forest:

{'bootstrap': False

Chapter B: Hyperparameters 87

'contamination': 'auto'

'max_features': 1.0

'max_samples': 'auto'

'n_estimators': 100

'n_jobs': None

'random_state': None

'verbose': 0

'warm_start': False}

