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Abstract

Floating wind has the potential to become a crucial contributor to the world’s need for renewable energy.

For the technology to become competitive compared to other energy sources, the cost of installation and

maintenance must be reduced. This thesis proposes a digital twin framework for monitoring the mooring

system of floating wind turbines. Specifically, it attempts to replace direct tension measurements with

a virtual sensor prediction model to monitor accumulated fatigue damage of the mooring lines. In a

large wind farm, the cost reductions of transitioning from preventative to predictive maintenance of the

mooring systems could be significant.

Using a hybrid modelling approach, this thesis aims to utilise a physics-based model to create a mapping

from turbine position to mooring line top tension in ”as-designed” condition with a basis in physical

understanding of the system. A data-driven model is used to map the difference from ”as-designed” to

”as-is” condition of the mooring system behaviour. The two models are combined into a hybrid model

to create a reliable and accurate prediction of top tension in mooring systems.

For the physics-based model, the mooring line tensions are estimated for each line, at each time step,

using quasi-static analysis. The data-driven models are based on three machine learning algorithms:

Random Forest Regressors, Artificial Neural Networks and Long-Short Term Memory networks. These

algorithms are compared for the more traditional data-driven approach, and for the hybrid approach

proposed in this thesis.

The digital twin framework is applied to a case study on the world’s first floating wind farm, Hy-

wind Scotland. The proposed hybrid model achieves an average 50% improvement in RMSE from the

physical-based models and an 11% improvement compared to the data-driven model.

The results indicate that hybrid modelling may have merits within mooring monitoring and remaining

useful life forecasting for floating wind. A case study with an increased amount of data is needed to test

the method on a broader range of conditions and evaluate generalising performance and the scalability of

the digital twin framework. Further work is proposed to improve upon the hybrid framework presented.
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Sammendrag

Flytende havvind har potensiale til å være en viktig bidragsyter mot verdens behov for fornybar energi.

Vedlikeholds og installasjons kostnader må reduseres for at teknologien skal bli et konkurransedyktig al-

ternativ til andre fornybare energi kilder. I denne masteroppgaven blir et rammeverk for digitale tvillinger

foreslått for tilstandsovervåking av flytende vindmøllers forankrings liner. Kostnadsbesparelsene ved å

bytte ut spenningsmålere med predikert spenning fra en virtuell sensor modell kan bli betydelige i en stor

flytende vindpark.

Oppgaven kombinerer en fysisk modell av forankringssystemet med en datadrevet modell i et forsøk på å

skape en robust og presis hybrid modell for prediksjon av topp-spenning i forankringslinene. Den fysiske

modellen blir konstruert basert på designkriteriene til Hywind Scotland, mens den datadrevne modellen

forsøker å lære hva som er forskjellen mellom den designede og faktiske topp-spenningen.

Den fysiske modellen bruker en kvasi-statisk tilnærming til å estimere topp-spenningen for hver line

i ethvert punkt som vindmøllene er i. De datadrevne modellene er basert på tre forskjellige maskin-

læringsalgoritmer: Random Forest Regression, Artificial Neural Networks og Long-Short Term Memory

networks. Disse algoritmene presenteres for den mer tradisjonelle datadrevne tilnærmingen, og sammen-

lignes med den hybride modellen som er forslått i denne avhandlingen.

Det foreslåtte digital tvilling rammeverket ble testet på en kasusstudie med operasjonell data fra verdens

første flytende vindpark, Hywind Scotland. Hybrid modellen oppnådde en 50% forbedring sammenlignet

med den fysiske modellen alene, og en 11% forbedring sammenlignet med den datadrevne modellen.

Resultatene antyder at hybrid modellering har potensiale innenfor tilstandsovervåking av flytende vind

og prediksjon av gjennværende levetid. Men en større studie med mer data og flere vind turbiner er

nødvendig for å kvantifisere rammeverkets skalerbarhet og nytte.
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Chapter 1
Introduction

Floating offshore wind is a rapidly growing industry. Maintenance and inspection of mooring systems at

large floating wind farms is labor intensive and costly. By transitioning from preventative to predictive

maintenance, costs and downtime may be reduced due to optimal intervals between repairs and replace-

ments (Daily and Peterson 2017, pp. 268–269). Ideally, accurate and reliable tension measurements

should be affordable and available. Line failures would instantly be detected, and fatigue from cyclic

loading could be quantified. Instead, however, the technology currently in use for permanently moored

platforms is expensive and unreliable (Hageman et al. 2019). One potential cost reduction comes from

virtual sensors, replacing sensor technology with a digital twin framework that predicts tension measure-

ments from other available data sources. Virtual tension sensors have the potential to cut both capital and

operational expenditures for floating offshore wind and, by doing so, partake in making floating offshore

wind more economically competitive as a renewable energy production technology.

This thesis will expand upon previous work within in-direct tension sensor technology for floating wind

turbine farms by applying a hybrid approach combining a simulated physical model and a machine

learning model. This methodology attempts to leverage the trustworthiness and interpretability of a

physics-based model while achieving the accuracy of data driven models, resulting in a more complete

approach for consistent in-direct tension measurement.

Figure 1.1 shows a wind farm setup where most of the floating turbines are only equipped with cheaper

sensors for tilt and displacement, while a small subset of the turbines is equipped with direct tension

measurement sensors. The direct tension measurement sensors are used to train and calibrate the hybrid

method, passing trained models and data onto the other turbines so that predictive maintenance can still

be performed without needing costly tension sensors.
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Figure 1.1: Wind farm with sparse tension measurements.

1.1 Background

According to IPCC’s latest assessment report, (Clarke et al. 2022) global warming cannot be limited to

less than 2°C without rapid reductions in emissions and transition to renewable energy sources. In the

emerging taxonomy of green solutions to the world’s energy shortage, power generated from wind is

expected to have a significant market share. In the period from 2015 to 2019, the global wind energy

capacity grew by 70% (Clarke et al. 2022).

Estimates by the International Energy Association (IEA) forecast that by 2030, 470 GW of wind produc-

tion capacity will be added annually to the global production, and 80 GW will be offshore (IEA 2021).

In comparison, only 5 GW of offshore wind capacity was added in 2020. As a result of this growth,

IEA expects the cost of operating and maintaining offshore wind production to soar to 90 billion USD.

In such a scenario, there will be a significant demand for technologies that enable cost savings, such as

reduced manual inspection or reduced need for sensors and technologies that minimize the likelihood of

damaged equipment or personnel.

For such a scenario to unfold, the cost of floating wind must become competitive with alternative renew-

able energy sources. Levelised Cost Of Energy (LCOE) is a metric used to compare the cost competi-

tiveness of power production technologies. The metric is the sum of production costs over the designed

lifetime, divided by the energy produced in the same period. When comparing the LCOE for Floating

Offshore Wind Turbines (FOWT), Bottom-fixed offshore wind turbines, and onshore wind turbines in

Europe, even the lowest current LCOE for FOWTs is significantly higher than the average for the other

two technologies. The LCOE of onshore wind turbines is 59 e/MWh (Trinomics 2020). In contrast,

the comparable number for FOWTs is estimated to be 95 e/MWh in the most profitable European areas

(Martı́nez and Iglesias 2022), making the cost of offshore wind over 60% higher than its shore-based

alternative.

2



1.2 Literature Review

The high cost of FOWTs is attributable to several factors, the biggest being the added complexity of

floating structures in offshore regions compared to bottom-fixed or onshore. In addition, offshore wind

turbines require more robust infrastructure than their onshore counterparts, such as subsea cables and

floating substations which increase the total cost of FOWTs . The substructure and the mooring system

are among the most significant contributors to the increased costs of floating wind (Martı́nez and Iglesias

2022). In addition to the above factors, the cost of offshore operations such as installation, maintenance,

and decommissioning adds to the total life cycle cost (Martı́nez and Iglesias 2022).

Although the LCOE of floating wind is expected to decrease by the synergies that follow the economics

of scale as the sector grows, innovations and new technologies are also vital to making FOWTs econom-

ically competitive (M. Learch and Berthelsen 2019).

1.2 Literature Review

1.2.1 Floating Wind

One of the biggest challenges when moving energy production offshore is the harsh environmental con-

ditions. For floating wind, severe weather is also one of the biggest advantages. Although the offshore

conditions cause a significant increase in both capital expenditures and operational costs, they also come

with the added benefit of a 90% increase in wind speeds at 80 meters (Archer and Jacobson 2005). In-

creased wind speed means that the energy production potential is considerable, providing a promising

upside given cost-efficient solutions for floating wind compared to onshore.

To date, only three floating wind farms have been commissioned. Current farms have only a hand full of

turbines, but larger projects are planned. Hywind Tampen by Equinor is planned to be commissioned in

Q3 2022 and will have a nearly doubled capacity (95 MW), and over double the number of wind turbines

compared to the current largest floating wind farm (Equinor 2022b). Norway’s government recently

announced an ambition to build 1500 offshore wind turbines with a total 30 GW capacity by 2040 (Olje-

og energidepartementet 2022). Other countries have also announced similar commitments to building

new capacity for floating wind. The number of wind farms and their size are expected to proliferate in

the coming decades.

Wind farm Location Commissioned Capacity [MW]
Hywind Scotland Scotland 2017 30
WindFloat Atlantic Portugal 2020 25
Kincardine Scotland 2021 50

Table 1.1: Commisioned floating wind farms to date (Cobra Group 2021; Energias de Portugal 2020; Equinor
2022a)

The forecasted growth in offshore wind production is based on several key characteristics of the energy

source. Firstly, the potential scalability for offshore wind is far beyond the current energy demand. There

are numerous different methodologies and estimates for the global potential. However, most are in the
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range of 71 - 120 terawatt (TW) of capacity potential and 300 000 - 420 000 TWh/year of generation

potential, around three times the annual global energy consumption (Bosch et al. 2018; IEA 2019; The

World Bank 2019). These estimates are based on data for, among other things, wind capacity, the effi-

ciency of wind turbines, the global water depth, spatial constraints such as distance to shore, and current

offshore activities. When looking at the share of floating to bottom fixed potential within the global

potential, 20% are suitable for bottom-fixed systems (0-40 m) while the rest need floating structures

(Bosch et al. 2018).

Figure 1.2 presents the most common categories of floating wind turbine concepts developed. The left-

most design, the spar, is the same type of floater that has been used in the Hywind Scotland wind park, the

world’s first commercial floating wind farm (Equinor 2022a). The figure also illustrates a key component

of floating wind turbine designs; mooring configurations.

Figure 1.2: Wind turbine designs. Courtsey: Scheu et al. (2018)

1.2.2 Floater designs and mooring configurations

For FOWTs, there exists four main types of floaters designs, shown in Figure 1.2: Spar buoy, Barge,

Tension Leg Platform (TLP), and Semi-Submersible. These designs are based on tried and tested solu-

tions from the oil and gas sector, leveraging decades of offshore experience. The spar buoy, currently in

use at two offshore locations, uses a low center of gravity combined with taut mooring lines or catenary

mooring lines for station keeping. Compared to the other designs, the floater has a significant draft in

the magnitude of 80-100 meters. The large draft limits the applicability in shallower waters and causes

complications during the assembly and transportation of substructures. The TLP has other advantages,

primarily the low mass needed for the floater compared to the other designs. It does, however, come with

added strain to the mooring lines and anchor. Finally, the semi-submersible design is easy to install and

transport but more complex on the design side. The semi-submersible utilizes active buoyancy distribu-

tion with water weight used as a stabilizing moment. Semi-submersibles require a more complex design

process and often come with a more expensive and time-consuming production. (Floating Offshore Wind
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Farms 2016, p. 6-8)

1.2.3 Mooring system components

Mooring systems may contain different components depending on the desired properties and behavior of

the system. As illustrated in Figure 1.3, mooring systems contain one or more anchors, mooring lines,

connection links, and points to the vessel. Mooring configurations may also include buoys or clump

weights to alter the mooring system’s buoyancy and weight, respectively. Buoys can be used to improve

the performance of the mooring by reducing the vessel’s offset and reducing the weight applied to the

vessel from the mooring lines. Clump weights are used to increase the restoring forces of the mooring

system (Chakrabarti 2005).

Figure 1.3: The main mooring line components. Courtsey: Hasan (2015)

The materials used for mooring lines are essential for how the mooring system will behave and change

over time. Depending on the differing use-cases, the most commonly used materials are chain, steel wire

rope, and fiber rope (Kai-Tung et al. 2019, p. 71-73).

Chains are used in mooring structures due to their sturdiness, resistance against seabed abrasion, and

high breaking strength. Especially for structures moored in shallow waters, all-chain solutions have been

frequently used in the oil and gas industry, with similar designs being introduced for offshore wind.

In deeper water, the weight of chains causes the material to be a more significant challenge than an

advantage, causing the catenary shape to become sub-optimal. The size and shape of chains vary, from

bar diameters down to 70 mm and up to 200 mm, implying link lengths between 0.42 and 1.2 meters.

Another important distinction is between studless and studlink chains, the two subcategories of chain.

The studlink chains have a stud in between the arch of the chain, comparable to an extra beam, which

improves the handling when deploying or retracting the lines. On the other hand, Studless are lighter

and cheaper to produce due to their simplicity but are primarily helpful for permanent mooring systems.

Kai-Tung et al. (2019)

The primary purpose of anchors is to fix the mooring lines to the seabed, primarily by restraining

horizontal movement. Traditional drag anchors are therefore not generally designed for vertical loads

(Chakrabarti 2005). Suction anchors differ from traditional anchors by also providing a vertical anchor
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load. The suction anchor’s holding capacity comes from a pressure differential using pumps. The under

pressure in the anchor cavity submerges the anchor into the seabed as described in Figure 1.4.

Figure 1.4: Installation of suction anchors. Courtesy: Chakrabarti (2005)

1.2.4 Mooring system failures

The failure rate of mooring systems for permanently moored units is a growing concern in the offshore

industry. In the ten years from 2001-2011, the annual probability of failure was found to be ten times

higher than DNV’s Offshore Standards target (DNV 2021; Ma et al. 2013). In the same period, several

previously unknown modes of failure were discovered from the incidents. Examples are out of plane

bending, chain hockeling, pitting corrosion, and more (Ma et al. 2013). Unknown failure mechanisms

are difficult to avoid since it is by nature unanticipated. Most of the new failure modes discovered are

detected by visual inspection, advocating for new standards for inspection and maintenance. Mooring

system monitoring is an essential tool for keeping track of mooring integrity and condition (Gordon et al.

2014). Especially to predict unforeseen failure modes and detect anomaly behaviors of the vessel before

a failure occurs. Some of the most common sources of mooring failure can be seen in the list below.

• Wear: Long-time exposure to rubbing between line components and other instances of degrada-

tion cause the mooring lines to lose tensile strength.

• Fatigue: Long-time exposure to bending and axial stresses. The effect of tension and out-of-plane

bending of different links can cause fatigue failures.

• Abrasion: The roughens of seabed sediments can cause deterioration of the mooring lines if there

is contact. This is especially true when materials are designed for a mid-water touchdown on the

seabed.
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• Corrosion: Refined metals used as mooring line materials can suffer gradual destruction caused

by chemical reactions with their environments. This degredation is especially true for the splash

zone, the zone where the mooring lines reach the surface, as the water in this area is oxygenated.

• Excessive tension: Mooring systems placed in areas with more severe environmental conditions

than designed for can experience failure due to excessive tension.

• Operational failure: Accidents and poorly executed operations can, in the worst-case scenario,

lead to mooring line failure.

• Installation: If the system is installed differently from the design, the capacity of the mooring

system may be degraded. This also applies to defected components and material flaws.

The consequences of these mooring failures are potentially catastrophic. For oil and gas installations it

can cause vessel drift, which can be the source of riser rupture, production shutdown, and hydrocarbon

release (Ibrion et al. 2020). Both these consequences themselves are severe, in addition to the necessary

restorations of the broken mooring line. Apart from materials costs and damages, there is also the

increased risk for human life on the platforms, which increases drastically with mooring failures (Ibrion

et al. 2020). The consequences for the environment and human safety are smaller for mooring failures in

floating wind but the economical consequences may still be large.

1.2.5 Service life monitoring of mooring systems

When considering the strength and reliability of a mooring system, both the present state and future

degradation of the system must be taken into account, which in turn requires an understanding of the

mechanical behaviors of all mooring components and the environmental influences on the behaviors.

Understanding a mooring system requires an in-depth knowledge of everything from failure modes and

tensile strengths to marine species, corrosion, and abrasions (Pham et al. 2019).

Three key concepts in service life monitoring are Ultimate limit state , Fatigue limit state (FLS), and

Accident limit state . Each of these has a different purpose, as will be explained below, and are part of

DNV’s position mooring offshore standards DNV (2021).

• Ultimate Limit State (ULS): This design criterion defines requirements for individual mooring

lines and what environmental loads each mooring line should be able to withstand.

• Fatigue Limit State (FLS): For permanent mooring, there is an expected degradation of the moor-

ing lines. The FLS criteria define some measures for the expected service life of mooring lines,

given the fatigue from decomposing materials and environmental factors.

• Accident Limit State (ALS): This criterion is based upon situations post-failure. Regardless

of the cause, the aftermath of a line break can be detrimental or manageable, depending on the
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redundancy of the design. The ALS criteria define how a mooring system should behave during

failure.

DNV’s standard for position mooring DNVGL-OS-E301 requires permanently moored units to monitor

the integrity of each mooring line. Acceptable methods include direct load measurement and angle or

depth measurement. Global Navigation Satellite Systems (GNSS), such as GPS, is an acceptable method

for monitoring mooring lines if it can be documented to detect failures (DNV 2021, ch.2 sec.14) .

DNV’s standard for fleet in service DNVGL-RU-OU-0300 dictates how DNV classified units are to be

inspected throughout their lifetime (DNV 2018; Lillestøl et al. 2021a). For these inspections, the main

goal is to quantify the fatigue of the mooring system per the FLS. If a unit has experienced more or less

cyclic loading than expected, these inspections are meant to uncover this and how it has affected the

mooring lines. The July 2021 Edition of the in-service DNV Class Rules, DNVGL-OS-0300, requires

data collected on the actual behavior of the mooring system to be used in the recalibration of the design

criteria, meaning the FLS can be refactored based on how the mooring system has behaved historically

(DNV 2018; Lillestøl et al. 2021a) .

1.2.6 Digital Twin Framework

Digital twins (DT) are virtual copies of a physical system capable of replicating the behavior of the actual

system in real-time by using data from sensors.

As the industries become increasingly complex, the number of unknown dynamics grows. Unknown

dynamics affect the performance and output of the industrial process or system. The growth of big

data, real-time monitoring, and machine learning have introduced Industrial Artificial Intelligence (IAI).

IAI is utilized to create robust and autonomous methods of improving monitoring, optimization, and

performance of complex industrial systems.

Figure 1.5: Digital twin framework, Courtesy: Viola and Chen (2020)

Viola and Chen (2020) proposed a framework for constructing digital twins for IAI, Figure 1.5 shows

the proposed framework. The first steps build the method’s foundation by gathering information to

understand and model the system. Step 1, Target system definition, and step 2, system documentation,

encapsulate all activities for collecting information on the system. Examples of these information sources

are design drawings, system installation information, sensor package descriptions, and subsystems to
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describe the physical system as accurately as possible. After information gathering, a multidomain

simulation model is built to match the system definition and documentation gathered in the previous

steps. The simulation model should capture all known physical laws and relations of the system, and the

digital twins’ scope defines the simulation model’s complexity.

As the simulation model does not describe the unknown dynamics of the system, the simulation’s behav-

ior often deviates from the actual system. Therefore, behavioral matching is performed to optimize the

DT to fit the physical systems’ full dynamics. Methods within machine learning are used for behavioral

matching.

The final part of constructing a DT framework is the model validation and deployment. The DTs’ per-

formance as a virtual copy of the physical system must be evaluated and quantified, ideally under all

conditions and states the system may experience. Edge cases are essential to evaluate the models’ ro-

bustness and fault detection methods.

In this thesis, a hybrid model will perform the simulation step and behavioral matching of the digital

twin framework.

1.2.7 Predictive maintenance

The Internet of Things (IoT) has brought continuous data collection from a plethora of sensors and

equipment. Advances in cloud-based storage and analytics have enabled maintenance to transition from

preventative to predictive in many industries.

Preventative maintenance has been the norm within most industries, meaning equipment and parts are

inspected and replaced after a given period, hopefully before a failure occurs. The intervals between

maintenance are set by statistics of the unit’s durability and the expected operating conditions. This

results in most parts being inspected or replaced prematurely, while parts exposed to higher wear than

expected are prone to failure before scheduled maintenance. Predictive maintenance attempts to optimize

the interval based on the collected data on actual operational conditions, continuously updating the Re-

maining Useful Life (RUL) instead of using statistical averages for RUL. Ideally, predictive maintenance

reduces costs by performing as little as possible planned maintenance while avoiding extra costs due to

premature equipment failure. (Daily and Peterson 2017)

In the maritime industry, remote locations, strict safety requirements, and high downtime costs make

maintenance a significant expenditure for the operational phase. In recent years, multiple concepts for

predictive maintenance have emerged within shipping, oil and gas, and floating wind. Utilizing big data

and machine learning methods Jimenez et al. (2020) proposed a model for predicting maintenance for

vessel machinery in shipping. Moghadam et al. (2021) presented a method for building a digital twin for

predictive maintenance of gearboxes in FOWT drivetrains. Floating offshore Wind farms are especially

suitable for predictive maintenance due to the high amount of identical units and high maintenance cost,

making the development of a predictive model more worthwhile as it can be utilized for the entire park.
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1.2.8 Tension measurements

For condition monitoring of mooring systems, the induced tension for the mooring lines is an important

parameter. The amount of stress the lines are experiencing provides insight into the mooring systems’

condition. Ideally, accurate and reliable tension measurements of all mooring lines should be affordable

and available. Line failures would instantly be detected, and fatigue from cyclic loading could be quan-

tified. Unfortunately, with current solutions, adequately accurate and reliable tension readings are very

challenging (Minnebo et al. 2014). Tension is either measured directly or indirectly on the mooring line.

Direct tension measurements are provided from in-line load cells, as described by Elman et al. (2013).

The main issue with current direct tension measuring equipment is the inability to provide adequate

load range but still provide high-resolution data. A trade-off between capturing the highest loads and

capturing high-resolution data must be made.

Additionally, the load cell is exposed to the harsh environment subsea with corrosion and abrasion, mak-

ing the sensors prone to failure. Direct tension sensors either need a wire for power and data transmission

or must rely on batteries. The wired solution can capture high temporal resolution, with the drawback

being that the exposed wire is prone to failure. The battery-powered version is less vulnerable but must

balance between high temporal resolution and frequency of battery replacements.

The alternative, in-direct tension measurements utilize inclinometers to measure the angle of the mooring

line at the connection point to the unit. The line tension can be found using the in-direct angle measure-

ment using catenary equations. The catenary equations are based on static equilibrium. They, therefore,

neglect dynamic and highly non-linear effects, which may be significant, leading to the deterioration of

the accuracy of in-direct tension measurements based on the catenary equations alone.

Hageman et al. (2019) argues that current solutions for direct tension measurements are insufficiently

reliable for most mooring monitoring solutions. Direct tension measurements are more suitable to mon-

itor damaged or weakened lines until replacements can be made and for validation of design models and

assumptions.

(a) Inter-M Pulse H-link for direct tension mea-
surement. Courtesy: PULSE mooring monitoring

(b) Direct load monitoring with electrical strain
gauges. Courtesy: Hageman et al. (2019)

Figure 1.6: Direct tension measurement solutions
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1.2.9 Alternative sensor packages

Sensor packages for monitoring FOWTs have been the focus of research last years. Many sensor solu-

tions for the nacelle, gearboxes, umbilicals, and more have become available. The following section will

introduce a focus on alternative sensor solutions for mooring monitoring.

The Global Navigation Satellite Systems (GNSS) were made available for civilian use in the mid-1990s.

It first consisted of the American GPS and the Russian GLONASS systems. In the last decade, the

GNSS has been expanded with the Chinese BeiDou system (completed in 2018) and, most recently,

the European Galileo system (completed in December 2021) (Zidan et al. 2021). The availability of

high accuracy positional data have been made possible by the growth of the GNSS system, creating

a more robust and accurate sensor solution for offshore purposes. The disadvantage of the GNSS is

the low temporal resolution. GNSS alone should be used with caution due to low sampling rates and

wave-frequency motions issues (Ciuriuc et al. 2022).

For measuring a FOWTs acceleration, tilt, and velocities in roll, pitch, and yaw, an Inertial Measurement

Unit (IMU) may be installed. An IMU consists of multiple accelerometers and gyroscopes. Unlike

GNSS, an IMU requires no external reference signals and can provide a much higher sampling rate

compared to GNSS (Fossen 2021, Chp. 14).

According to Hageman et al. (2019) systems using the Global Positioning System (GPS) have been used

in multiple applications to detect mooring failures where outlier positions of the FOWT signal a potential

mooring system failure.

Ren et al. (2019) proposed two methods for combining IMU and GNSS measurements with sensor fusion

to get a real-time position and velocity estimate of offshore wind turbines. By combining a multi-

rate Kalman filter with a moving horizon estimator, the issues with the low sample rate from GNSS

measurements are mitigated. The resulting measurements proved applicable for a wide range of practical

applications.

1.2.10 Physics-based modelling

Traditional mooring analysis has been based on physical laws and equations. Most analysis is performed

in the design phase, prior to the installation of the offshore unit. The models are made from the design

specifications and simulations performed with statistical distributions of sea states for the given installa-

tion location.

The industry standard for mooring system analysis is catenary equations and finite element method

(FEM) solvers. The methods are built upon a trustworthy foundation from physical principles, veri-

fied with empirical data and model tests. Examples of software solutions for mooring system analysis

are DNV’s RIFLEX and MIMOMOSA software in the SESAM package; Orcina’s OcraFlex package is

an alternative. These methods apply to a wide range of configurations and floaters, making it easier to
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apply the same method to multiple windmills in a wind park. The transparency of the methods enables

errors and uncertainties to be quantified.

The traditional methods are computationally expensive and are not typically suitable for real-time com-

putations. Therefore, most of the analysis has been done in the design phase of the mooring system. The

downside to performing fatigue analysis in the design phase is the lack of ability to capture and correct

the difference between ”As designed” and ”As installed” and a missing symbiosis between the model

and the real world.

As the focus on mooring failures has increased, solutions for physics-based models (PBM) in real-time

mooring monitoring have emerged. Figure 1.7 shows the architecture of a PBM for mooring monitoring.

Each block in the model creates uncertainty in the estimate of mooring system response due to the design

conditions that do not perfectly represent the actual system. This uncertainty causes an iterative degra-

dation of the monitoring solutions’ accuracy. Hageman et al. (2019) discusses the mooring monitoring

system of Bluewater’s FPSO Aoka Mizu, located west of the Shetland Islands. Due to harsh weather

conditions at the site, an extensive mooring monitoring solution was installed. Inclinometers, provid-

ing measurements of mooring line tension and line failure detection, are installed at each mooring line.

An indirect mooring force estimation system was also implemented using motion and environmental

data. The data is fed into a detailed design model from aNySIM, providing real-time mooring system

response. Compared to the architecture described in Figure 1.7, the system installed at Bluewater’s Aoka

Mizu only models the mooring system, as the motion measurements replace the floater motion response

in the model, improving the computational expense of the mooring monitoring solution.

Figure 1.7: Typical Physics-based architecture for mooring monitoring, where the mooring system response is
estimated. Courtesy: Hageman et al. (2019)

1.2.11 Data driven modelling

Data driven modelling (DDM) has become a popular method for modelling processes, plants, complex

systems behavior, and properties by utilizing historical data. The increasing focus on data collection,

combined with the advancements in machine learning methods, has enabled DDM to become a powerful

analytical method (Ge 2017). Utilizing long-term historical data enables the data driven model to learn

actual behavioral patterns of the system, patterns that theoretical models struggle to capture as they may
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be too complex to include due to computational constraints. Examples are highly non-linear behavior,

coupled effects, and complex hydrodynamics. Meanwhile, a data driven model is not based on physical

laws or principles and is suitable for complex systems since the models are computationally efficient

after the training phase. Data driven models have, in multiple cases, been shown to be significantly faster

than physical models (Christiansen et al. 2013), enabling the models to run in real-time (Wu et al. 2014).

Another reason why DDM may be desirable is the ability to learn the ”as-installed” characteristics of the

system. As discussed by Lillestøl et al. (2021b), the gap between ”as-is” and ”as-installed” conditions of

long-term mooring systems can and should be quantified with data. The paper suggests using data from

the Automatic identification system and historical weather data in combination with ML methods and

statistical methods as a low-cost solution to provide insight into the condition of mooring systems.

Multiple papers have shown proof of concept for modelling slender marine structures with data driven

methods. Christiansen et al. (2013) demonstrates how the computational cost of dynamic mooring anal-

ysis can be reduced by a factor of 600 by using an artificial neural net (ANN). Riemer-Sørensen et al.

(2019) applied a data driven model to predict vortex-induced vibration response of marine risers sub-

jected to three-dimensional current using a random forest regressor.

Walker et al. (2021) proposed two digital twin frameworks for monitoring of mooring system for floating

offshore wind. The first DT concept is a proposal to detect long-term drifts in the mooring footprint. By

training a DDM to predict healthy FOWT behavior, large deviations between the data driven healthy

mooring system model and measured behavior may indicate a fault in the mooring system. The sec-

ond DT concept proposed is a framework for predicting near-future top tension in the FOWTs mooring

lines. Both DT concepts were tested on operational data from Hywind Scotland, and proved capable of

providing high accuracy predictions, with a mean absolute deviation of around 15 kN for each mooring

line.

The case study used by Walker et al. (2021) is also used in this thesis. The work of Walker et al. provides

a good benchmark for the Hybrid frameworks of this thesis, but it is important to stress that the results

achieved are not directly comparable. This is mainly due to the model validation schemes used. Walker

et al. randomly select a subset of the data from the complete dataset for validating the model. In theory,

this can lead to measurements a fraction of a second before and after the validation sample is included

in the training set. By utilizing such a validation scheme, an overly optimistic estimate of predictive

performance on unseen data is achieved. The validation scheme utilized in this thesis with a case-wise

cross-validation scheme provides a more conservative estimate of predictive performance.

The downside to pure data driven models is primarily the fact that the models are so-called black boxes,

meaning it is difficult or impossible to interpret the models’ reasoning. Trust and confidence in AI have

gotten increased attention in recent years, as DDM and AI are applied within safety-critical systems,

transparency and interpretability are a growing concern (Došilović et al. 2018). Samek and Müller (2019)

discussed recent advances in making explainable artificial intelligence, but compared to physics-based

models, most AI is still to be categorised as a black box.
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The consequences of a black box data driven model are a vulnerability to the quality and selection of

training data. ML models can interpolate between data sets used in training but have minimal capabilities

for extrapolating for unseen input. Lacking extrapolation means a robust model requires training data

covering all potential model use cases, which poses a challenge for rare events. Especially in a marine

environment, data from a 100-year storm is not likely to be included in a training set for a data driven

model. This, combined with the fact that data driven models have no bounds for errors, gives the models

poor performance given changes to the system or previously unseen problems.

1.2.12 Hybrid modelling

During the 1990s, the concept of hybrid modelling arose due to the potential benefits of combining both

physics-based and data driven models into a combined model. Psichogios and Ungar (1992) improved

a neural network model of a fed-batch bioreactor by introducing a partial first principles model of the

system. The result was a more generalized and reliable model, with improved interpolating and extrapo-

lating capabilities.

With the rapid increase in data-driven models, interest in hybrid modelling has reached new heights in

recent years. There is a growing consensus that safety critical systems with ML methodologies trained

on data must be coupled with physical modelling techniques to ensure reliability (Rai and Sahu 2020).

Multiple fields of science are contributing to hybrid modelling resulting in inconsistent terminology.

The terms ”gray-box”, ”physics guided”, ”physics fusion”, ”physics informed”, ”hybrid” are all for

architectures utilizing a combination of physics-based modelling and machine learning algorithms (Rai

and Sahu 2020; Sansana et al. 2021).

Implementing the coupling between PBM and DDM is not a straightforward process, and a plethora of

architectures have been proposed in the literature. Rai and Sahu (2020) presented a review of current

methodologies for hybrid modelling; a selection of architectures is presented in Figure 1.8. The figure

is based on a figure from the overview paper, with adapted terminology and symbols used in this thesis.

Figure 1.8 (a) shows how physics-based preprocessing (PBP) can be applied to a data driven model.

PBP includes a wide range of methods, including domain knowledge of the system’s behavior enabling

improved noise and outlier removal. The preprocessing transforms the input data X into X̂ , which is

then used as input to the data driven model. The output of the DDM, ŶDD, is then used in the loss

function together with the measured truth (in training) Y . Martens (2021) applied physics informed

dimensional reduction of multi-variate data to extract systematic covariation patterns and sent only the

residual irregularities to a black-box ML method.
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Figure 1.8: Architectures for hybrid modelling found in literature. (a) Physics based preprocessing for DDM, (b)
Hybrid architecture where the output from PBM is used as input to DDM (c) DDM with Physics-based regulariza-
tion. Adapted from Rai and Sahu (2020)
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Architectures where the PBM predicts the output value, ŶPB , is shown in Figure 1.8 (b). Here the

physics-based prediction is used as input to the DDM. The input data can also optionally be sent into the

DDM. The measured output value is used in the loss function to train the network. Fuchs et al. (2016)

apply a DDM to improve the accuracy and computational time of a mathematical aircraft wake model.

Figure 1.8 (c) show physics-based regularization. Instead of the PBM being fed input data, the physics

are included in the loss function, penalizing violations of physics-based constraints and governing equa-

tions. The governing equations may be first principle laws like mass, momentum, or energy conservation

(Chang and Dinh 2016).

To the best of the authors’ knowledge, no studies have compared multiple hybrid approaches against

each other and provided a quantifiable argument for using one approach over another. The choice of

method is often limited by the available PBM and the problem to be solved. In this thesis, versions of

method b and method c from Figure 1.8 will be implemented and compared. Hereafter, the methods will

be denoted method A and method, respectively.

The common denominator for hybrid modelling methodologies is the attempt to capture the beneficial

characteristics of both physical and data driven modelling while minimising the methods’ weaknesses.

Achieving the trustworthiness and interpretability of a physics-based model while achieving the accuracy

and computational effectiveness of data driven models.

1.3 Objectives and scope

This thesis explores the potential of combining data driven and physics-based modelling to create an

accurate and cost-effective method of mooring system monitoring for floating wind turbines. The com-

bination of these models, the hybrid model, is the basis for the research question for this thesis: How to

create a trustworthy and accurate alternative to direct tension measurements for floating wind turbines?

The research question will be investigated through the following topics:

• Mooring systems for floating wind turbines and their failure modes

• The background theory for physical and data driven modelling and previous work on hybrid mod-

elling

• The proposed digital twin framework and its implementation for monitoring and prediction of

remaining useful life

A case study of the world’s first floating wind farm, Hywind Scotland, is established, followed by a

comparison between the results of the hybrid approach and pure DDM and PBM. The final results will

then investigate and discuss the merits of hybrid modelling for in-direct tension measurement using

positioning and metocean data.
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1.4 Contributions

With this thesis, we aim to contribute to the ongoing work on virtual sensors and digital twins within

the marine sector. This is done by building on previous work on DDM with operational data (Walker

et al. 2021), and PBM for mooring system of floating wind turbines (Borg et al. 2014), and then creating

a new hybrid modelling digital twin framework. The ambition of the framework is to prove that the

combination of these methods is another step in the right direction for accurate and trustworthy mooring

monitoring of offshore floating wind, which is expected to have both tremendous growth and subsequent

need for innovation in the coming years.

To the best of the authors’ knowledge, no one has previously combined PBM and DDM into a hybrid

framework for mooring system monitoring. By investigating multiple physical and data driven models

and architectures for combining the models, further studies within the field may have a quantitative basis

for hybrid model selection.

1.5 Outline of thesis

The contents of this thesis are divided into six chapters.

Chapter 1: Introduces the background and literature review for the topic of the thesis. The motivation

and scope of the thesis is also presented.

Chapter 2: Presents theory for physical-based model, mooring line analysis and catenary equations, and

briefly touches on the finite element method for mooring line analysis.

Chapter 3: Theory and mathematical formulation of data driven models with machine learning.

Chapter 4: Presents the case study used in the work of the thesis, the available data and information for

the case, and how the proposed hybrid methodology is implemented.

Chapter 5: Results from physical-, data driven- and hybrid-models are presented and compared. The

results and differences between the models’ results are discussed.

Chapter 6: Concluding remarks and proposals for further work on hybrid modelling for mooring line

analysis.
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Chapter 2
Theory of mooring system analysis

The mooring system is an integral part of floating offshore wind. Deep knowledge and understanding

of the physical properties and behaviors of mooring systems are therefore critical for the design and

monitoring of the mooring systems.

Borg et al. (2014) provides a comprehensive list and details of relevant modelling approaches for floating

offshore wind.The main approaches are presented in Table 2.1 in order of increasing levels of complex-

ity and capabilities. Simplest model is a linear force-displacement-velocity (FDV) model, where the

mooring forces are described by a linear model consisting of a mooring stiffness proportional to the

floater displacement, and a dampening term proportional to the floaters velocity. The mooring system is

modelled as one unit in the FDV approach, it is therefore not possible to investigate individual mooring

line forces. To study mooring forces of individual mooring lines a quasi-static model may be utilized.

A quasi-static approach includes the forces acting on the individual lines, but not the inertia and other

dynamic forces. Multibody and FEM allow for both quasi-static and dynamic analysis, but increasing

complexity come at a increased computational cost (Borg et al. 2014).

Linear F-D-V Quasi Static Multibody Finite element
Static (average) tension x x x x
Individual line tension x x x
Line-seabed interaction x x x
Line longitudinal stiffness x x x
Line bending stiffness x x
Line inertia/hydro-damping x x
Line torsional stiffness x

Table 2.1: Mooring line modelling approaches and capabilities. Adapted from Borg et al. 2014

Analysis of mooring systems is a comprehensive field of engineering, to limit the thesis scope only theory

regarding our later case study will be covered. Focus on a quasi-static analysis of catenary mooring

configurations.

19



Chapter 2. Theory of mooring system analysis

2.1 Catenary mooring line analysis

Figure 2.1 illustrate a catenary line with length L, anchored to the seabed at point B, and connected

to a floater at point A. When the floater is positioned at point A, a part of the mooring line is resting

on the seabed, not supported by the floater. The suspended part between the seabed and the floater

is supported by the floater and the forces F3 and F4 at the floater connection point is due to the total

weight in sea water of the suspended line length. As the floater moves right in the horizontal direction,

increasing the horizontal length of the mooring line, a, more of the mooring line is lifted from the seabed

and is suspended in water. This results in more weight supported by the floater, causing higher line

tension near point A. The line angle, between the horizontal direction and the line, is decreased when a

increases, shifting more of the force into the horizontal component F3. providing a restoring force to the

floaters horizontal movement. Accordingly when the floater moves to the left in the horizontal direction,

decreasing the horizontal line length, more of the line is placed on the seabed, in combination with an

increased line angle resulting in reduced restoring forces at the floater.

Figure 2.1: Catenary line motions caused by floater movement. Courtesy: Chakrabarti 2005

The behavior of catenary mooring lines may be described mathematically by the catenary equations.

These equations describe the behavior of single mooring lines, for complete system analysis the contri-

butions from each line in the system may be summed up. Catenary analysis of complex mooring systems

can be a cumbersome task and is suitable for computer software. Several software packages for catenary

analysis are available from the industry, including OrcaFlex, Mimosa, and Riflex.

Figure 2.2 show a single mooring line with symbols and reference frame used in the following analysis.

• T : Line tension
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2.1 Catenary mooring line analysis

Figure 2.2: Mooring line with symbols, Courtesy: Faltinsen 1999

• Th: Horizontal component of tension at the connection point

• s: Suspended line length

• h: vertical dimension, in this case the water depth

• xB: Length of line resting at the seafloor

• ϕ: Line angle

• ϕw: Line angle at the connection point

A static approach for analysis of catenary mooring lines is described in Faltinsen (1999, Chp.8) and

Chakrabarti (2005, Chp.8) and will be presented in the following section. Figure 2.3 show an element

of the mooring line and the forces acting on it. The equations are formulated mathematically by Equa-

tion 2.1, where T is the line tension in the mooring line. F and D represent the hydrodynamic forces

acting on the line section, F in tangential direction, and D in normal direction with regards to the line

cross-section. According to Chakrabarti (2005), the elastic stretch of the line and the environmental

forces acting on the mooring line may be ignored for shallow waters and non-taught lines.

dT − ρgAdz =

[
wsinϕ− F

(
1 +

T

EA

)]
ds (2.1a)

Tdϕ− ρgAzdϕ =

[
wcosϕ+D

(
1 +

T

EA

)]
ds (2.1b)

The mooring lines characteristics are described by the submerged weight of line per unit length, w, the

elastic modulus, E and A the cross-sectional area of the line segment.
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Figure 2.3: Forces acting on a line element, Courtesy: Faltinsen 1999

The catenary equations are nonlinear and not generally solvable. To simplify the equations the following

assumptions are made

• Neglect F/D, no hydrodynamic forces acting on the mooring line

• No bending stiffness or torsional stiffness, a reasonable assumption for chains (Faltinsen 1999)

• Ignore elasticity, mooring line have a constant length

• Flat seabed, where the line lies horizontal at the lower end

Using the assumptions above the suspended line length s and vertical dimension h can be obtained using

respectively Equation 2.2 and Equation 2.3

s =
TH
w
sinh

(
wx

TH

)
(2.2)

h =
TH
w

[
cosh

(
wx

TH

)
− 1

]
(2.3)

From Figure 2.2 it can be seen that the vertical and horizontal component of the line tension, TH and Tz ,

at the top end becomes:

Tz = ws (2.4)

TH = Tcosϕw (2.5)

By rewriting the equations for the top end of the line, using depth d as the horizontal dimension h. The
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2.2 Finite Element Method

tension at the top end is expressed as:

T =
w(s2 + d2)

2d
(2.6)

To account for the section of mooring lines laying on the seabed, xB a iteration scheme is applied. Start-

ing with the line fully suspended, xB = 0, parts of the mooring line is laid at the seabed incrementally,

until force equilibrium is achieved with the restoring force.

As described in subsection 1.2.3 mooring lines are typically made up of multiple segments to improve the

characteristics of the mooring system. In a catenary analysis different segments are analysed separatly,

where the position of the connection points between the line segments are incrementally moved till there

is no force imbalance in the connection points.

2.2 Finite Element Method

Finite element method (FEM) is a numerical approach to find approximate solutions to differential equa-

tions. FEM has been widely applied within the field of engineering for decades, and the use cases vary

greatly. Within the field of marine technology FEM is used for computational fluid dynamics, structural

analysis of hulls, mooring analysis and more Dhatt et al. 2012.

The basics of finite element analysis (FEA) consists of first defining the physical problem, with physical

laws describing the problem in terms of differential equations. The object to be analyzed in FEA is

defined as the domain. Everything outside the domain is defined as boundary conditions. In a mooring

analysis boundary conditions may be external pressure, forces or environmental conditions.

The initial conditions of the analysis must be defined. The initial conditions is either set, or may use the

results from an simplified analysis like the caternary equations as a starting point. The shape, position,

and pre-tension of mooring lines must be defined.

The ’Finite Element’ part of the analysis comes from the division of the domain into small elements. The

connection points between the finite elements are defined as nodes. The initial conditons and external

conditions are then casted upon the nodes, and a iterative scheme is applied until convergence.

2.3 Static finite element analysis

A short summary of the theory behind the static finite element analysis is described in this chapter. Taken

from RIFLEX theory manual (SINTEF Ocean 2019).

Goal of the static analysis to determine the nodal displacement vector that corresponds to the system

being in static equilibrium. The equilibrium state is found as the solution to the system of equations in
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Equation 2.7.

RS(r) = RE(r) (2.7)

where

• r - Nodal displacement vector containing displacements and rotations for all nodes relative to the

stress-free configuration.

• RS(r) - Internal structural reaction force vector found by assembly of element contributions

• RE(r) - External force vector assembled from all elements.

The structural (RS(r)) and external forces (RE(r)) will in general be nonlinear functions of the nodal

displacement vector. Static equilibrium is determined numerically by incrementally applying loads with

equilibrium iterations for each load step.

For catenary mooring systems the bending stiffness of the mooring lines have a negligible contribution

to the static equilibrium. As a result the solution from catenary equations provide a close approximation

to the static equilibrium configuration. For such systems, the catenary solution can be used as the initial

guess to the FEA. Initializing the FEA with a approximate starting configuration results in a significant

reduction in computational time.

The static equilibrium in each load step k corresponds to zero imbalance force in the force imbalance

vector at load step k as described by Equation 2.8.

Rk(r) = RS
k (r)−RE

k (r) (2.8)

The equilibrium configuration for each load step may then be found by applying a iterative numerical

solver. The initial values at current step (k) for the iterative scheme are found from the static equilibrium

at previous load step (k − 1).

∆r0k = −
[
∂Rk−1

∂r

]−1 (
RS

k−1 −RE
k

)
(2.9a)

r0k = rk−1 −∆r0k (2.9b)

where ∆r is the incremental displacement vector and ∂Rk−1

∂r is the tangential stiffness matrix, commonly

denoted K.

∂Rk

∂r
= K = KM +KG (2.10)
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KM and KG denote the material and geometric stiffness matrices, respectivly.

Due to the favorable quadratic convergence rate, Riflex applies an Newton-Raphson iteration procedure

to Equations 2.9. For iteration cycle j the iteration scheme is:

∆rjk =

[
∂Rk−1

∂r

]−1

Rj−1
k (2.11a)

rjk = rj−1
k −∆rjk (2.11b)

The iteration scheme is performed until max iterations is reached or the convergence criterion is met.

The convergence criterion is given by Equation 2.12.

||∆rjk||
||rjk||

< ϵd (2.12)

The tolerance, ϵd is a specified requirement for convergence. ||rjk|| is a modified Euclidean displacement

norm, given by

||rjk|| =
1

Nt

Nt∑
i=1

r2ki (2.13)

where Nt is the number of translational degrees of freedom, and the summation is only performed on the

translational components in r.

2.4 Fatigue Analysis

Following section based on DNV-RP-C203 for Fatigue Design of Offshore Steel Structures and DNV-

OS-E301 standard for position mooring. The accumulated fatigue damage to a mooring line due to cyclic

loading is summed up from the load cycles experienced (DNV 2021, Chp.2 Section 2).

A S-N curve defines a components capacity against fatigue. It expresses the number of stress cycles

nc(s) at a given stress s until failure of a component is expected.

nc(s) = aDs
−m (2.14)

In Equation 2.14 aD and m refer to the intercept parameter and the slope of the S-N curve respectivly.

These are constants and values are given for chains and ropes in DNV standard DNV-OS-E301.

Assuming a linear cumulative damage model (Palmgren-Miner rule):
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D = Σk
i=1

ni
Ni

≤ η (2.15)

where the accumulated fatigue damage D, is expressed by the sum of number of cycles at stress Si, ni,

and the number of cycles to failure at stress Si, Ni. η describes the usage factor.

The stress cycles in Equation 2.15 are found using a cycle counting algorithm. A common option for

cycle counting is rainflow counting. Rainflow method refer to a range of algorithms where a timeseries of

stresses are split into individual cycles. This reduces the statistics used to describe the stress-timeseries

into a list of stress ranges and corresponding number of occurences of given stress ranges.

By keeping track of experienced stress cycles of each mooring line component the accumulated damage

can be quantified and in turn be used to give an estimate of remaining useful life of component.
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Machine Learning (ML) is a rapidly growing field within Artificial Intelligence (AI). ML algorithms

span a wide range of regression, classification, and clustering methods. In recent years ML algorithms

have been applied to problems within most fields and industries to solve problems that would be too

labor-intensive or complex for conventional methods.

As Figure 3.1 shows, the main three branches of machine learning methods include supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning requires both input data and

the desired outputs to be included in the training set. The supervised methods, in general, attempt

to learn the connections between the input and output data to predict the output from the input data.

Unsupervised learning methods do not require the desired outputs to be included in the training data.

Instead, it learns structures and similarities. They are used for data exploration, clustering, and outlier

detection. Reinforcement learning is used within the control of systems where the learning algorithm is

rewarded and punished in a feedback loop for good and bad actions, respectively.

As this thesis is studying the possibility of replacing a sensor package for tension measurements with

an indirect method, we wish to recreate the measured output as close as possible. Meaning we require

the desired outputs to be included in the training data, making supervised training the method of choice.

More specifically, we attempt to map the relation between cheaper sensor packages and the desired

tensions measurement. The mapping is a regression problem. We will explore the theory behind the

machine learning methods within supervised regression problems in the following sections. During

literature review of DDM for tension prediction in a maritime setting the most used methods described

were artificial neural nets (Christiansen et al. 2013) and Random Forest Regressors (Riemer-Sørensen

et al. 2019), these methods were therefore the primary focus for this thesis.
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Figure 3.1: An overview of the machine learning taxonomoy. Source: Adapted from Gao et al. (2020)

3.1 Supervised learning

Supervised learning is a particular case of machine learning used when one has the opportunity to observe

and supply the desired response for a model as a part of the training process. More formally, the task of

supervised learning is as follows:

Consider some set of variables x, drawn from a fixed but unknown distribution P (x), and subsequent

y for each x from a unkown conditional dependence function P (y|x). Given a set of N input-output

pairs I = (x1, y1), (x2, y2), ..., (xN , yN ), use the input-output pairs to discover some function f that

approximates P (x).

Supervised learning is one of the largest subdomains of machine learning, and its methods have evolved

in parallel with data availability and processing power over the last decades (Russell and Norvig 2003;

Vapnik 1991).

Generally, supervised learning is a threefold process:

1. Tuning the model, where different hyperparameters for the function f are tested to approach the

best approximation of P .

2. Producing the model, where all data available is used with the hyper-parameters from the previous

step to enable our function f .

3. Evaluating the final model, where the performance of the model is quantified.
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3.2 Performance Estimation Methods

Performance estimation is the process of evaluating the performance of a model on new and unseen ob-

servations and measurements. Quantifying how some model correctly handles unseen input-output pairs

is a fundamental part of machine learning. The method and metrics applied to achieve this quantification

are essential to the success of the training process. Within the evaluation domain, the concept of loss and

the loss function is used to handle this quantification: How can a model’s performance, good and bad, be

reduced to a single number? The loss function can be defined as a performance estimation metric and is

one of the two key concepts within performance estimation (Cerqueira et al. 2020).

Another important concept within performance estimation is how to train and validate the model. There

are several methods for this purpose, and which to choose depends on the underlying characteristics of the

data set. An independent and identically distributed data set, meaning all variables are equally distributed

and have no impact on each other, will require a different strategy compared to a time-series where the

temporal placement of a data point might have a significant impact on the predicted value (Arlot and

Celisse 2010). There will be further discussion of the most common methods and their advantages and

disadvantages below.

3.3 Risk and risk minimization

Loss, as described in section 3.2, is an important part in choosing and evaluating the best approximation

function f . This section is based on Vapnik (1991). The loss function can be defined as some L(y, f(x)),

which describes the discrepancy between the y and f(x). The expected value of loss can then be defined

by the risk function:

R(f) =

∫
L(yi, f(xi))dP (x, y) (3.1)

where P (x, y) = P (y|x)P (x) is the joint distribution introduced in section 3.1. The goal is to minimize

R(f), but with the unknown joint distribution, which can be solved using the training set. The risk

function can be replaced with an empirical risk function E(f) such that:

E(f) =
1

N

N∑
i=1

L(yi, f(xi)) (3.2)

By minimizing Equation 3.2, it is assumed that the the the risk R is also minimized. How the minimiza-

tion can be done using optimizers will be presented more in-depth later for a more specific case.

29



Chapter 3. Theory for machine learning

3.3.1 Loss functions

Loss functions are statistical performance indexes and are a vital part of all supervised machine learning

methods. Evaluating the performance of models is needed to improve the model; the loss function

grades how good a prediction is, and the model attempts to minimize the loss function by changing

model parameters.

Numerous methods exist for formulating mathematically how close a prediction is to the actual value.

The choice of method depends on the desired optimization goal of the machine learning model, and all

loss functions come with a set of advantages and drawbacks.

Regression and classification problems use different loss functions due to different ambitions of solving

the problems. In classification problems, the cost of being right and wrong may not be equal. The

choice of loss function is dependent on the algorithm’s confidence in predictions and performance. For

regression problems, loss function is decided based on how deviations should be punished or how well

the model’s features explain the variance in the output. The most common loss functions for regression

problems are described in detail below.

Define the regression problem as:

Yi = f(Xi, β) + ei (3.3)

Where Yi is the dependent variables in a observation, also know as the feature to be estimated. The

function f(Xi, β) is function to be estimated, with β being the regression coefficients in the regression

problem. Xi is the training data, also denoted as the independent variables. The deviation, ei = Yi − Ŷi,

is the difference between the estimated value, Ŷi = f(Xi, β), and the measured value, Yi,

Root Mean Squared Error

Root mean square error (RMSE) is one of the most common statistical performance indexes presented

for evaluating machine learning algorithms in the literature. For N samples RMSE is defined as:

RMSE =

√
ΣN
i (Yi − Ŷi)2

N
(3.4)

It represents the quadratic mean of the difference between estimated and observed values. The unit of

RMSE is the same as the dependent variable, making interpretation easier. RMSE is in the range [0,∞),

where lower values mean smaller average model estimate error. Since the deviations are squared, large

deviations are punished harder than smaller ones. Implying that the RMSE as a loss function emphasizes

the largest deviations, this property is valuable in cases where an error of 2ϵ is more than twice as bad as

an error of ϵ. Chai and Draxler (2014) argue that a weakness of RMSE as a loss function is it’s sensitivity

to outliers in the data set, but concludes that RMSE is the best option when the error distribution is
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expected to be gaussian.

Mean Absolute Error

Mean Absolute Error (MAE) is similar to RMSE but has a few key differences. MAE for N samples is

defined as:

MAE =
ΣN
i |Yi −Xi|

N
(3.5)

Most notably, the absolute value of the error is summed instead of the squared value. Consequently,

an error of 2ϵ is twice as bad as an error of ϵ, giving larger errors no more weight than smaller ones,

making MAE as a loss function less sensitive to outliers in the data than RMSE. The downside to MAE

is in the definition; with absolute value, mathematical calculations become more difficult. Consequently,

finding the gradient of MAE for model parameters is more computationally difficult or unfeasible (Chai

and Draxler 2014).

Coefficient of determination

The coefficient of determination (R2) expresses a regression model’s goodness of fit. R2 typically lies

between 0 and 1, where 1 means the regression model perfectly fits the data. Negative values can occur

when the model’s predictive performance is worse than just predicting the mean of the data. More

formally, the proportion of the variance in the dependent variable is predictable from the independent

variables. Formulated mathematical:

R2 = 1− SSres

SStot
= 1− ΣN

i (Yi − Ŷi)
2

ΣN
i (Yi − Ȳ )2

(3.6)

Where SSres is the residual sum of squares in the model and SStot is the total sum of squares. Ȳ is the

mean value of the dependent variables.

3.3.2 Model validation methods

To get a estimate of the predictive performance of a machine learning model, the model must be validated.

The available data is split into a training set, a test set and a optional validation set. The training set is

used to fit the model to the data. The optional validation set is sometimes used to evaluate the fit of the

model while training, to improve not only the models fit to the data but also its predictive performance

on unseen data. The validation set can help mitigate risk of overfitting. The test set is used for final

validation of the models performance on unseen data. The test set should be completely independent of

the rest of the data, and it is vital that no data leakage occur from the training set into the test set.
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A wide range of methods of splitting the data into training and test set exist. Out-Of-Sample (OOS)

method, commonly known as the holdout method, is an approach to performing model evaluation within

machine learning. In its simplest form, OOS validates by taking out some subset of the available data

and keeping it to perform testing after the model has finished training. More formally:

Let I be the set of input-output pairs defined in section 3.1 with a size N . For some It, require it to be a

proper subset It ⊂ I , selected using some function P such that P (I) = It, and define its complement as

Iv = (It)∁. The training set is then OOS if there exists some temporal point ϵ such that all input-output

pairs in It are temporally spaced before ϵ, but all pairs in Iv are after. When a model is trained on It and

validated on Iv, an OOS approach has been used.

Figure 3.2: Out of sample model validation scheme

This method is beneficial for evaluating models meant to be used in real-time, as it properly introduces

data more realistic than a deployment scenario. OOS approaches also give a more accurate representation

of the model’s grasp of non-stationarity. As only the in-sample temporal dependencies are captured, a

non-stationary change outside of ϵ would need to be captured based on what is learned inside ϵ.

3.3.3 Cross-validation approaches

Cross-validation (CV) is another technique for model validation. When performing machine learning,

one typically wishes to train the model on as much data as possible to improve the model’s predictive

performance. While still saving enough data to get a good estimate of the true predictive performance on

unseen data. Compared to OOS approaches, CV utilizes more available data for model validation. By

training multiple models on subsets of the data, then predicting the remaining data, a better estimate of

the predictive performance of a model is achieved (Berrar 2019).

Several cross-validation algorithms exist. The main categories are exhaustive and non-exhaustive schemes.

As cross-validation generates one model per step, it has a much higher computational cost than OOS ap-

proaches. The most exhaustive method is leave-p-out CV, where p samples out of a set of N samples are

used for validation, and the remaining samples are used for the training set. This is then repeated to all

possible combinations of p samples that are used as a validation set. The amount of models, M , created

is given by the binomial coefficient:

M =

(
N

p

)
=

n!

k!(n− k)!
(3.7)
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Figure 3.3: Leave-one-out cross validation scheme, blue marks samples in training set, while red samples are in
the validation set

Figure 3.4: K-fold cross-validation with k = 3, blue marks samples in training set, while red samples are in the
validation set

For a (small) data set with 100 samples and p = 5, over 75 million models are required to perform full

leave-p-out cross-validation.A special case of leave-p-out CV is leave-one-out CV, where p = 1. Shown

in Figure 3.3 leave-one-out reduces the number of models down substantially to M = N . The test

set error in leave-one-out CV is approximately an unbiased estimate of the true prediction error (Berrar

2019).

For large data sets exhaustive CV approaches are unfeasible due to computational cost. Non exhaustive

methods are an estimation of leave-p-out cross-validation methods. Most commonly used is k-fold CV,

where the set of samples N is divided into k subsets, and each subset is used for validation once. A

k-fold CV scheme is shown in Figure 3.4. For k = 1 the method becomes identical to leave-one-out CV.
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3.4 Neural Networks

Neural networks (NN) are among the most discussed and anticipated subcategories of machine learn-

ing. Over the last 60 years, computers’ ever-increasing computational power has followed Moore’s law,

which states that the number of transistors within the same area will double each second year. The

size of transistors has decreased by a factor of 1 000 since the 1970s, giving way to far more complex

computational tasks such as NNs (Popper et al. 2018).

The human brain inspired the base idea of NNs. In 1958, Rosenblatt (1958) defined a mathematical

approximation for the behavior of neurons in the brain, aptly named the perceptron. The perceptron can

be seen as a linear regression model with data, weights, bias, and output. More in-depth, the perceptron

uses linear combination and some activation function σ to transform the input X , of size N, to some

output y. For each xi ∈ X , a corresponding weight wi reflects how important or unimportant the given

input is. Each of the weighted inputs is linearly combined and then combined with a bias b, which

corrects the net sum of the combination and defines this linear combination as z. Finally, the bias and

linear combination are given to the activation function, which will be introduced later. The mathematical

definition of a perceptron can be seen in Equation 3.8, and an illustration in Figure 3.5.

y = σ (z) where z =

N∑
i=1

wixi + b (3.8)

Inputs

Σ σ
Output

y

wn

w2

w1

Bias

bx1

x2

xn

Linear 

combination

Activation

function

...

Figure 3.5: A standard perceptron.

3.4.1 Activation function

One of the most significant advantages of NNs is their capability to learn any nonlinear function (Nwankpa

et al. 2018). Also nicknamed Universal Function Approximators, ANNs ability to learn any input-output
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mapping comes from the activation function by introducing the network to nonlinearity.

The task of the activation function is to add nonlinearity to perceptrons. However, another important

characteristic is that the activation function must be differentiable. Backpropagation, the tuning of NNs,

is only possible given a differentiable activation function, which will be discussed later.

3.4.2 ANN

The simplest form of a NN is just a single perceptron, which can classify linearly separable classes.

However, for most modern use cases, the perceptron is used as a building block for larger NNs. Artificial

neural networks (ANN), also known as feed-forward neural networks, consist of three types of layers:

the input layer, hidden layers, and the output layer, as shown in Figure 3.6 (Grossi and Buscema 2008)

. Except for the input layer, all nodes that make up an ANN are perceptrons. For each layer, different

activation functions can be used. So with unbound numbers of layers and subsequent nodes, ANNs can

represent the interaction of multiple factors in parallel. Utilizing the ANN to its fullest potential makes it

possible to derive the maximum amount of knowledge for some mapping between the input and output

without explaining the potential causation connecting the two (Grossi and Buscema 2008) .
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Figure 3.6: A traditional feed-forward neural network.

Backpropagation

Backpropagation, an abbreviation of backward propagation of errors, is a method for calculating the

gradient of the loss function described in section 3.3 with regards to the weights in a NN. As with any

machine learning model, during the training phase, NNs need to minimize the deviation between the

predicted output f(x) and the actual output y, i.e., a specific method for minimizing the empirical risk

function for a given network. For feed-forward neural networks, this is done using backpropagation

(Rumelhart et al. 1986). Backpropagation moves the opposite way of neural networks: first, the output
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nodes are backpropagated, with all weights and biases adjusted for output perceptrons. The same is then

done iteratively for all hidden layers until every perceptron has been backpropagated. Below, the process

of backpropagating for a single perceptron will be explained.

For the first step, some loss function L is chosen (for each layer), which quantifies the difference between

the desired and predicted output. The cost function C can be calculated after calculating this deviation

for the training set It, and the cost function C can be calculated. Although the cost function is formally

defined as all functions that aggregate the response from the loss function over the training set, the

average of the loss function is the only method used in this paper.

The next step defines how one can reduce the cost function. This reduction requires a mapping between

the change in the weights and biases and the cost function. Using the gradient of the cost function for

the weights, which can be done using partial derivation and the chain rule as seen in Equation 3.9, this

mapping can be extrapolated.

∂C

∂wi
=
∂C

∂f
× ∂f

∂z
× ∂z

∂wi
(3.9)

These expressions can be derived mathematically, giving a firm rule for the gradient of any cost function.

For the first two expressions, ∂C
∂f and ∂f

∂z , there is, however, the issue of choosing a loss function L and

an activation function σ. Without the concrete functions, the partial derivatives cannot be simplified, as

shown in Equation 3.10 and Equation 3.11. For the last expressions, the solved and simplified solution

can be found in Equation 3.11.

∂C

∂f
=

∂

∂f

1

N

N∑
i=1

L(xi, f(xi)) (3.10)

∂f

∂z
=

∂

∂z
σ(z) (3.11)

∂z

∂wi
=

∂

∂wi

N∑
i=1

(wixi + b) = xi (3.12)

Solving the above equations for some functions L and σ gives the cost functions C gradient with respect

to wi. The same can be shown to be possible for the bias, ∂C
∂wi

, where the only difference is that the input

is assumed to be constantly equal to 1, simplifying the expression somewhat.

Optimizers

The next step is to leverage the gradients to minimize the cost function. This optimization can be di-

vided into two subcategories, the gradient descent optimizers, and the adaptive optimizers. The primary
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defining characteristic which divides the two optimization categories is whether there is a set learning

rate, as there is for the gradient descent optimizers, or if the learning rate is dynamically set throughout

the training phase, as is done for the adaptive optimizers (Bottou 2012). Each will be introduced below;

each is considered the best general approach within their respective categories.

The focus will be the mini-batch gradient descent for the gradient descent optimizer. The method per-

forms gradient descent on a subset of the training set and is presented in Equation 3.13. Here, x, y is the

input-output pair as previously, α is the learning rate, j is some index in the training set It of size N such

that 0 ≤ j ≤ N , and k is the size of the batch. The term θ is also introduced, which in this case is just

a symbolic parameter of either w or b. The mini-batch method compromises two other gradient descent

methods: stochastic gradient descent and batch gradient descent; if j = 0 and k = N , the entirety of It

is part of the batch, while for k = 0, each batch is just a single input-output pair. This trade-off affects

how well the method avoids local minimums, how fast the computations can be performed, how fast the

method converges, and several other parameters (Bottou 2012). The learning rate, which defines how

far each ”step” the method takes, must also be tuned with the batch size in mind, as smaller batches are

usually better paired with lower learning rates.

θ = θ − α
∂C(xj:j+k, yj:+k)

∂θ
(3.13)

As explained previously, in gradient descent algorithms, the learning rate is fixed for all the recurrent

sequences, which results in slow convergence. The adaptive optimizer Adam instead has a variable

learning rate for each parameter. This method will converge to a minimum of the cost function for an

adequately set learning rate. In short, Adam is the combination of two other optimization functions; Root

Mean Square Propagation optimization (RMSP) and Moment optimization.

Momentum optimization keeps track of the gradient at all other steps and accumulates the weighted sum

of these to decide the next direction. A simplified analogy is the momentum of a ball rolling down a hill

with a sudden turn. The ball would start slow, build up speed and then continue straight for some distance

when the turn appears. This is expressed mathematically in Equation 3.14, where mt is the momentum

part of the Adam optimizer. The formula also includes β1, the empirical moving average parameter. The

RMSP optimizer, on the other hand, attempts to penalize changes in the parameters which cause the most

oscillations in the cost function. This is done by implementing a vector of learning rates, one for each

trainable parameter. This average is updated with a running average of magnitudes of squares of previous

gradients, as can be seen in Equation 3.15, where vt is the exponential average of squares along some θ.

mt = β1mt−1 + (1− β1)

[
∂C

∂θ

]
(3.14)

vt = β2mt−1 + (1− β2)

[
∂C

∂θ

]2
(3.15)
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Each of these terms, mt and vt must then be bias corrected, as the moving average is biased towards 0.

This can be seen in Equation 3.16 and Equation 3.17.

m̂t =
mt

1− bt1
(3.16)

v̂t =
mt

1− bt2
(3.17)

Finally, each of the two methods can be combined as seen in Equation 3.18. For most of the given

constants, ϵ, β1, and β2, there are empirical values that give good generalized results. The only parameter

that must be tuned is α. parenciteadam

θt+1 = θt −
α√
v̂t − ϵ

m̂t (3.18)

The Adam optimizer has been shown to improve upon both the RMSP and the momentum optimizers

(Kingma and Ba 2014). The method is well tested, and for general optimization problems, Adam has a

fast running time, low memory requirements, and requires only tuning for a single parameter.

3.4.3 LSTM

Long Short-Term Memory (LSTM) networks are a Recurrent Neural Network (RNN) meant to learn

long-term dependencies. The RNN is itself one of the subcategories of NNs, and can be viewed as copies

of ANNs executing sequentially as illustrated in Figure 3.7. For traditional RNN structure a common

issue is exploding or vanishing gradients when many time steps need to be back-propagated (Hochreiter

1998).

In comparison, the LSTM cell states and memory modules, as illustrated in Figure 3.8, reduce the like-

lihood of exploding or vanishing. The memory modules, or gates, are responsible for what part of the

data is input, what part is remembered, and what part of the data is output. The LSTM receives inputs in

the figure depicted as xt. In addition to this input, there are two types of memory or states: the hidden

state yt and the cell state ct. The hidden state is denoted y, instead of ht as in Figure 3.7, as it is also

used as the output from the LSTM layer. There are several interpretations of what these states mean con-

ceptually, and understanding this depends on how the model is trained and applied. The cell state can be

considered as an aggregate of all previous memory. In contrast, the hidden state is usually considered the

characteristic output from the previous LSTM cell and the associated input value. As the cell state ct−1

enters the current cell through the to, the forget gate f decides what part of the cell state is forgotten. The

input gate, i, decides what is added to the cell state that continues, ct. Finally, the output gate o decides

what part of the data has to be output. (Hochreiter and Schmidhuber 1997)
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x xt-s+1 xt-s+2 xt

h ht-s+1 ht-s+2 h1

y yt-s+1 yt-s+2 yt

=
Unfolding

...

W

W

V V V V

Figure 3.7: The RNN structure. Here, x is the input, y the output, h is the hidden state passed between each
temporal step and W,V are weights. Adapted from Feng et al. (2017)

The gates leverage either sigmoid or tanh functions for two differing purposes. The sigmoid function

squishes inputs between zero and one, which can be interpreted as either diminishing or keeping some

inputs. The tanh function handles normalized encoding of the input it is given.
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Figure 3.8: The LSTM structure. Here, the green circles denote the layer of the neural network; merging arrows
denote point-wise operation; dotted circle denotes multiplication; plus denotes sum over all inputs; arrows denote
concatenate; splitting arrow denotes copy. Adapted from Van Houdt et al. (2020)

Forget gate

The first gate in the LSTM architecture handles prioritization of information from the previous cell state

ct−1. As mentioned above, the sigmoid function diminishes parts of the state memory. The forget gate

uses the hidden state from the last cell, combined with the new input xt for this cell, to decide what part

of the cell state should be removed before continuing with the calculations for the current cell.
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ft = σ (Wf [yt−1, xt] + bf ) (3.19)

Equation 3.19 shows the forget gate ft, where σ is the sigma function, Wf are the weights for the forget

function, and bf is the forget bias.

Input gate

The input gate is responsible for updating the cell state with the most recent data for the given block.

The gate both encodes all information that should be kept further in the model and prioritizes this infor-

mation. As the information is passed to the cell state, it is scaled to the given priority. Equation 3.20 and

Equation 3.21 illustrate the calculations for the prioritizing and encoding, respectively, again leveraging

the properties of the sigmoid and tanh functions.

it = σ (Wi[yt−1, xt] + bi) (3.20)

c̃t = tanh (Wc[ht−1, xt] + bc) (3.21)

For Equation 3.20 and Equation 3.21, Wi and Wc are the weights, bi and bc are the biases, it is the input

gate, and c̃t is the encoded information from the hidden state and new input.

ct = ft ⊙ ct−1 + it ⊙ c̃t (3.22)

In Equation 3.22, the forget gate is used to remove unnecessary information from the cell state while the

input gate and encoded new information are added to the cell state. ⊙ is point-wise multiplication in the

equations.

Output gate

The output gate is responsible for defining how the current input should be combined with the previous

hidden state. This gate functions similarly to other previously explained sigmoid gates, weighting what

part of the flowing data should be prioritized and neglected as shown in Equation 3.23.

ot = σ (Wo[yt−1, xt] + bo) (3.23)

yt = ot ⊙ tanh(ct) (3.24)
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Finally, the block output is calculated and passed on as the new hidden state and as the output from the

LSTM layer. Here, in Equation 3.24, the cell state is used to encode the output state calculated in the

previous step, completing the flow through this instance of an LSTM block.

Layer outputs

When considering a full layer of LSTM blocks, there are various ways to pass output onto the next layer

or output from the entire layer. In Figure 3.8, there is the appearance of what has previously been called

the output, yt, in addition to the hidden cell state ct. The potential outputs increase when stacking several

blocks together, from time-step t − s to t. Figure 3.9 shows the two most common output variants,

Many-to-Many and Many-to-One. The former utilizes some subset 1 < k ≤ t of the output states and

forwards these to the next layer, the figure illustrating this for k = t. Many-to-one, for comparison, only

forwards the last output state yt. This can be advantageous when there are no appended layers after the

LSTM, as shown in the figure, and the desire is only to predict one time-step. The hidden call state is

often also returned from the LSTM layer as an added data source to improve predictions.
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Figure 3.9: LSTM layer structures.

3.4.4 Backpropagation through time

For LSTMs, the backpropagation explained in section 3.4.2 is no longer complete. Because of the added

dimension, time, LSTMs, and RNNs, in general, are both deep and ”wide”. This means one must

backpropagate both backward in the deep network, and at the same time through the previous time steps.

This is done by unfolding the LSTM network, which can mathematically be described as adding a time
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as part of the chain rule in Equation 3.9. The loss for backpropagation through time depends on the

output type of the layer, described in subsection 3.4.3. This is due to either having numerous loss metrics

that must be summed for Many-to-One output, while there is only one for Many-To-One. Regardless of

the output type, there are two main gradients of backpropagation through time: the output difference as

computed by any subsequent layer and the output difference for each subsequent time-step, i.e., LSTM

block.

3.5 Over- and under-fitting

One of the most fundamental challenges of supervised learning is how to achieve optimal fit for a model.

Given a set of input-output pairs as described in section 3.1, there are countless ways of creating functions

that approximate the relationship, most of which will usually not be a good fit for the actual function.

Consider Figure 3.10, and the three graphs presented there. The rightmost graph is an example of over-

fitting, where all the noise, measurement errors, and peculiarities of the data are considered to represent

the function we are attempting to recreate. Because of this, the approximation function for the data

becomes some arbitrary function that coincidentally is correct for all our input points. However, the

predictions would be inaccurate given any set of new points. Over-fitting is especially common for

small data sets, where the needed data to generalize properties of some domains is simply missing.

Under-fitting also occurs when the data sample size is too small, or one attempts to capture complex

dependencies and properties with models that cannot. An example of this is applying linear regression

to capture polynomial behavior, as seen in the leftmost graph of Figure 3.10.
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Figure 3.10: Over- and under-fitting. Adapted from Educative.io (2013)

There are a variety of approaches that, when used correctly, can help minimize the likelihood of over-and

under-fitting. Methods used in this thesis is described in the following sections.
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3.5.1 Early stopping

When working with real-world data in machine learning, there is a high likelihood of noise being present

in the data set. Given some training data to reduce the risk of a function f , if the estimation risk function

is forced to reduce to zero, then the function f is forced to represent both the desired representation

and the noise present in the data (Ying 2019). This behavior is illustrated in the rightmost graph of

Figure 3.10. Early stopping is one of the methods used to avoid precisely this behavior.

Figure 3.11 shows the expected errors when training a machine learning model on a data set with noise.

After the initial improvement for the validation set, the model starts to represent the noise and the un-

derlying relationship, which in turn causes the metrics on the training set to improve. In contrast, the

metrics for the validation set degrade. The idea behind early stopping is to identify the turning point for

the validation set and stop training at that point.

Error

Validation set

Training set

Early

stopping

Number of

iterations

0

Figure 3.11: Illustration of how early stopping may improve model accuracy on unseen data. Courtesy: Gençay
and Qi (2001)

3.5.2 Dropout

Another way to prevent over-fitting is using dropout, where there is a probability that each node in a

neural network is ignored in the training phase. This method is a type of regularization, which is a term

for all methods where some penalty is added to the loss function such that parameters that are useless

gain limited control of the model. Dropout modifies the concept of learning all network weights and

instead runs some fraction of weights and aggregates the results (Ying 2019). Figure 3.12 shows the

difference between a regular ANN during the training phase on the left and an ANN with dropout on

the right. The activated and deactivated perceptrons change each iteration, allowing all perceptrons the

possibility to partake in the training process.
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(b) ANN structure after dropout.

Figure 3.12: The effect of dropout on the NN training phase. Adapted from Srivastava et al. 2014

The intuition behind dropout is based on aggregation and regularization. Ideally, when working with

machine learning, each prediction done would be the aggregate of several models, which almost always

improves the performance of the predictor (Srivastava et al. 2014). However, for neural nets, this is

prohibitively computationally expensive. Instead, dropout is used, which samples subnetworks of the

original network. and aggregates the effects of each of these smaller networks by upscaling their weights.

Mathematically, the method requires defining some desired dropout rate rd, such that rd of the nodes in

each layer is ignored. The others have their weights upscaled by 1
1−rd

.

3.6 Random Decision Forest

Random Decision Forests is a supervised ensemble learning methods within machine learning. Ensemble

method in this context means it utilizes multiple learning methods to improve the model’s performance,

obtaining better performance collectively than the methods perform on their own. The name random de-

cision forest stems from the method consisting of multiple decision trees collectively creating a ”decision

forest”.

Decision trees are used to replicate human decision making and have been widely applied to classification

tasks and within data mining. The advantages of decision trees are their white-box properties, meaning

the conclusions made are explainable and interpretable. Due to the method handling one variable at a

time, there is little data preparation needed as the data set does not have to be normalized (Kotsiantis

2013).

The disadvantages of decision trees are primarily overfitting and instability. The resulting decision tree is

highly dependent on the training data, and small changes in the data can result in a completely different

decision tree. This also means the method does not generalize well, performance is overfitted to the

training set, and often does not perform well on unseen data (Ho 1995).

Figure 3.13 show an example of a decision tree. An observation enters the top node of the tree. At each

branch, a feature of the observation is evaluated against a threshold, deciding the path of the observation.

This continues down the tree structure until the observation is placed in an end node, where a conclusion

44



3.6 Random Decision Forest

about the observation is made.

Decision trees are typically constructed top-down, meaning the feature of each split is selected in the

order of best performance improvement. A metric is used for evaluating the predictive performance of

a split. For classification problems, Information gain and Gini Impurity are commonly used. Decision

trees for regression are built using a loss function for regression problems, like RMSE, MAE, or R2. At

each split in the tree, splits are selected such that the loss function is minimized.

Figure 3.13: Example of decision tree

Ho (1995) first proposed Random Decision Forests for classification problems over 20 years ago. Ran-

dom forest attempts to mitigate the shortcomings of singular decision trees by building multiple trees

in randomly selected subspaces of the feature space. As shown in Figure 3.14 the output of the Ran-

dom Forest method is a combination of all the decision trees’ outputs. By creating multiple trees built

with different features, the method reduces the risk of overfitting the model to the training data mak-

ing the model more generalizable to unseen data. The same principles discussed by Ho (1995) are also

applicable to regression problems.

Random Decision Forests are constructed using a technique called Bootstrap aggregating or bagging.

Bagging selects a random sample of the training data to construct each decision tree. The amount of

decision trees created is a tuning variable. Feature bagging is also applied to select a random subset of

the features. These bagging techniques are utilized to ensure a wider variety of trees are constructed. If

a few features dominate the predictive response, these features will be featured in most of the decision

trees, causing correlated trees. Correlated trees are undesirable as it reduces the advantages of multiple

trees.
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Figure 3.14: Random Forest structure
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Chapter 4
Methodology

In this chapter the implementation of the digital twin framework for mooring system monitoring of

floating wind turbines is presented.

The case study used to evaluate the frameworks performance is discussed and the available data and

mooring configuration is described. Subsequently the physical modelling of the described mooring sys-

tem in Riflex and MoorPy is shown. Then the framework for data driven modelling is elaborated on,

and the process of tuning each model is discussed. Lastly the implementation of fatigue life estimation

algorithms is presented.

4.1 Hywind Scotland

In October 2017, the world first floating wind farm, Hywind Scotland, started producing electricity. The

wind farm resulted from a collaboration between Equinor and Masdar and was a continuation of the

Hywind demo project in Norway, demonstrating the scalability of offshore floating wind. Five turbines

are installed, giving Hywind Scotland a total of 30 MW capacity, powering equivalent to 20 000 homes

in the UK every year since its start of production (Equinor 2022a).

Ore Catapult is a UK-based technology and research center for offshore renewable energy. Together

with Equinor, they published operational data from the Hywind Scotland wind farm at their Platform

for Operational Data (POD), making a wide range of sensor streams from the world’s first wind farm

available to the industry and academia. Thanks to Ore Catapult and Equinor, we can test our hybrid

methods on operational data.

4.1.1 Mooring setup

The floating wind turbines at Hywind Scotland are moored using a spread catenary configuration. The

wind park is anchored at 100m depth. Figure 4.2 shows how each unit is connected to 3 mooring lines
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Figure 4.1: Hywind Scotland wind farm. Courtesy: Equinor (2022a)

anchored to the seabed. Suction anchors are used to fix the lower end of the mooring lines to the seabed.

At the wind farm, multiple FOWTs may share seabed anchors. The upper 50 meters of the mooring lines

are split using a bridle, giving the three mooring lines six connection points to the FOWT. The mooring

lines are made out of steel stud-less chains. For short the 6 lines will be referred to by the line number

and bridle number, LxBy, corresponds to Line x and Bridle y etc.

Figure 4.2: Mooring configuration

4.1.2 Sensor package

The turbines at Hywind Scotland are outfitted with a sensor suite to monitor the floating structure’s

behavior and dynamics. All sensor measurements available from the turbine is summarized in Table 4.1

and the sensors locations are shown in Figure 4.3. Except for heave, all movements of the floater are

measured. Missing heave movement must be compensated for in the modelling approaches. The effect

of missing heave measurement will be discussed later in the thesis.

The dGPS sensor measurements are converted from longitude-latitude coordinates to a measurement

48



4.1 Hywind Scotland

of drift off in latitude and longitude direction. The zero-offset position is selected as the installation

coordinates for the given FOWT. Due to the dGPS being installed 17m above sea level, some of the

translational movements may be caused by rotational movements in roll and pitch. These movements

will be corrected for in the physical modelling.

Sensor Measurement Unit
dGPS at tower Drift of in north and east direction m
MRU at tower Roll, pitch, and yaw angle deg
MRU at nacelle Roll and pitch angle deg
Anemometer Wind speed m/s
Rotor controller Orientation of rotor (wind direction) deg
Load cell Tension at upper end of each bridle kN

Table 4.1: Sensor suite at turbine

The environmental conditions for the area are also provided in the data set published at Catapult’s POD.

The wave and current conditions are measured from an onsite wave buoy, while the conditions for wind

are aggregated from the anemometers mounted on the wind turbines. The available metocean data is

summarized in Table 4.2.

Measurement Unit
Significant wave height m
Peak Wave period s
Wave direction deg
Mean wind m/s
Wind direction deg
Current at 4 depths m/s
Current direction deg

Table 4.2: Metocean data collected per case

Coordinate system

The coordinate system used for the measurements is x in the eastern direction, while y points north. The

labels on rotation are somewhat unconventional, where roll is defined about the north (y) axis, while

pitch is defined about the east (x) axis. All rotations have a positive direction with the clock. Figure 4.4

shows the coordinate system. Wind and wave direction is defined as the direction the wind is coming

from, while the current direction is defined as the direction it is going towards. The same coordinate

system is used in the physics-based simulations to avoid confusion and errors.
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Figure 4.3: Diagram showing the Hywind Scotland FOWT, and its respective sensors.
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Figure 4.4: Coordinate system used for all features.

4.2 Data exploration

Data exploration is the first step of data analysis when working with complex data sets. Understand-

ing the the quality, quantity, and completeness of the data available, and potentially understanding the

relationships between the different features are valuable for the continued use of the data set. The data

set consists of 11 cases of 30min intervals of data from the first half of 2018. Nine (9) of the 11 cases

are from the regular operation, while 2 cases are from high wind conditions where the turbine is in idle

mode. The two idle cases of the 24th of January 2018 overlap by 10 minutes and are therefore combined

into a 40min long case. This combination prevents data from being used twice in the overlapping cases.

Data visualization is a valuable tool for data exploration. By looking at the distribution of data patterns,

incomplete subsets may be discovered. Plotting the features against each other gives insight into their

relationships and interactions. Figure 1 in Appendix A shows some of the features plotted against each

other in the lower triangle. The diagonal of the same figure shows the distribution of each feature. The
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Figure 4.5: Distribution of mean wind speed [m/s] and direction in cases

color represents the dates. In Figure 1 it is clear that the idle cases (in red) and the case of the 6th of

January (in dark blue) are significantly different from the rest of the cases. This difference is due to the

wind conditions, where Figure 4.5 shows that the 6th of January is the only case with a northerly wind,

while the rest of the cases have southerly winds. In addition, the idle cases have significantly higher wind

speeds than the operational cases. Differences in environmental conditions are expected to influence the

results of the hybrid methods, especially when the outlier cases are not part of the training set.

An interesting artefact found from the data exploration was the distribution of the Tower yaw angle, as

shown in Figure 4.6. We found it peculiar that in all cases before April, the measurement of floater

yaw angle has a non-zero mean for all cases. This causes the mean yaw position to be approximately

9 degrees off. After contacting the data distributor, we found out the yaw measurement calibration was

incorrect. The offset in the yaw angle is corrected by assuming a zero mean yaw angle for the period

from January to April. Zero mean yaw angle is a reasonable assumption for a circular hull with the bridle

mooring configuration, as shown in Figure 4.6 from April to July.

Hywind Scotland is located east of the Scottish mainland. Prior to the installation of the wind farm, a

thorough analysis of the metocean conditions at the site was performed. Figure 4.7a shows the probability

contours for return periods of Hs-Tp pairs at the Buchan Deep. These contour lines are based on over

50 years of data from the Norwegian Meteorological Institute. On the other hand, Figure 4.7b shows the

Hs-Tp pairs present in the data set used for this thesis. As the figures show, the span of wave conditions in

the data is relatively narrow compared to the one-year return period, indicating that more data is needed

to get a stable model for all expected sea conditions of the wind farm.

Due to the limited variance of weather conditions in the data set, the spread of floater positions are not as

well distributed as would be desirable to acquire a more robust model. Figure 4.8 shows the distribution

of recorded latitude and longitude measurements. As expected from the distribution of wind directions

shown in Figure 4.5 pushes the floater north. With only one case of northern wind, the number of

positions with negative latitude drift-off is limited.
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Figure 4.6: Histogram of yaw-angle measurements for all cases. Cases before april 2018 have a mean yaw angle
of 9 degrees, from april and out the yaw angle have a mean of 0 degrees.

STD L1B1 L1B2 L2B1 L2B2 L3B1 L3B2
mean 14.68 14.68 25.55 26.86 17.13 19.03
25% 5.77 5.77 8.54 12.95 6.20 7.14
50% 12.43 12.43 19.97 23.96 14.30 16.41
75% 21.17 21.17 38.95 37.68 25.26 28.36
max 84.55 84.55 125.61 141.23 79.00 91.99

Table 4.3: Measured tension standard deviation, in kN, for similar FOWT positioning. Requirement for similarity:
< 0.1 meters deviation in the horisontal plane and < 0.1 degrees for pitch, roll and yaw. Mean is the mean STD
for all sets of similar points for each line, 25% is the boundary for the 25% lowest STDs for all sets of points, etc.

Quality of sensor measurements

For the tension measurements, it is desirable to grasp how much noise is present for the position of

the FOWT. Given that no dynamic analysis with current and wave loads will be performed for the final

model, having a quantifiable range for the noise this and other factors contribute is important for how the

results are evaluated later. One possible way to quantify this noise is by comparing the tension values

for points with similar positions. The physical part of the hybrid modelling relies solely on position,

meaning deviations for similar positions also estimate how accurate the physical analysis is. Table 4.3

contains this estimate. The values in the table are calculated by defining all positions within the boundary

given for similarity and then calculating the standard deviation for each set. The mean value, and some

boundary values, for the STD are then presented to show the distribution of tension.

Table 4.3 shows that the most significant deviation is in L2B1 and L2B2, which is reasonable given that

these are the bridles with the highest average tension. The mean values are also within reason; they are

well below one-tenth of the measured tension for each line. Given measurement errors in the different

sets of sensors, some deviations are expected. What is challenging is the max deviations. It is clear that

some similar positions have significantly different tensions
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(a) Probability contour lines of Hs-Tp pairs for re-
turn periods of 1,10, 50, and 100 years for the lo-
cation of Hywind Scotland. Courtesy: Mathiesen
et al. (2014)
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(b) Hs-Tp pairs in the operational data set

Figure 4.7: Expected sea states vs. Captured sea states

Figure 4.8: Distribution of FOWT positions recorded
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4.3 Hybrid Modelling

Input Target
Latitude driftoff PBM deviation L1B1
Longitude driftoff PBM deviation L1B2
Tower roll angle PBM deviation L2B1
Tower pitch angle PBM deviation L2B2
Tower yaw angle PBM deviation L3B1
Wind speed in x direction PBM deviation L3B2
Wind speed in y direction
Metocean data (optional)
PBM estimate L1B1-L3B2

Table 4.4: Input and target features for Hybrid model A

Input Target
Latitude driftoff Measured tension L1B1
Longitude driftoff Measured tension L1B2
Tower roll angle Measured tension L2B1
Tower pitch angle Measured tension L2B2
Tower yaw angle Measured tension L3B1
Wind speed in x direction Measured tension L3B2
Wind speed in y direction
Metocean data (optional)
PBM estimate L1B1 - L3B2

Table 4.5: Input and target features for Hybrid model B

The motivation for this thesis is to provide a proof of concept for hybrid modelling for mooring system

monitoring of floating wind turbines. The amount of historical operational data available is very limited,

the implementation of the monitoring system in this thesis deviates from a solution running in real-time

with a continuous stream of input data.

In this thesis, two hybrid modelling approaches are implemented. Both hybrid methods contain the

same workflows; the main difference is what the target features of the DDM are and how the data flows

between the models.

Hybrid model A, shown in Figure 4.9, utilizes the data stream from the wind turbine as inputs in both the

PBM and the DDM, and the DDM is trained to predict the deviation from the sensor data and the PBM,

the results from both models are combined into the resulting tension prediction.

Figure 4.10 shows the alternative hybrid model implemented. In this setup, the DDM is trained to

estimate the line tension with the PBM results as input features and the turbine measurements.

The hybrid methodology and its subsystems are implemented in Python 3.9 (Van Rossum and Drake

2009). The main workflow of the python application is described in Figure 4.11. The data is collected

from Ore Catapult, then ingested into our data preprocessing pipeline, it then controls the workflows

of the PBM and the DDM, according to the hybrid methodology applied. The module for data-driven
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Figure 4.9: Hybrid model A

Figure 4.10: Hybrid model B

modelling can be changed from Random Forest Regressor, LSTM, and ANN by altering only one line of

code.

Figure 4.11: Process overview flow chart. Green blocks are python modules, purple are bash scripts, and blue is
the Riflex module.
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4.4 Data pre-proccesing

4.4.1 Sampling

The operational data available from the sensor package described in subsection 4.1.2 has different sam-

pling frequencies, presented in Table 4.6. Non-matching sampling time creates a range of problems

for the data pipeline. As neither the physical models nor the data-driven models used in this thesis are

capable of handling data with different sampling frequencies, the data must be resampled.

The advantage of upsampling the data to a higher frequency is the ability to utilize the complete fidelity

of the high-frequency sensors. At a sampling frequency of 5Hz, every tension measurement is utilized

in the model, providing a higher resolution of the variations in tension. The disadvantages are the higher

cost of training and calibration due to more data points included in the model and the fact that all lower

frequency data is used multiple times. At 5Hz, every dGPS measurement is used five times. Techniques

like interpolation can mitigate these issues, but they assume a linear relationship between the position

and tension, which may not be accurate.

By downsampling the data instead, the higher frequency data streams are filtered by aggregating to the

mean of the samples within the new sampling period, reducing the noise of the measurement.

Sensor Sampling frequency [Hz]
dGPS 1
Tension 5
Tower MRU 10
Nacelle MRU 10
Windspeed 0.95
Tower yaw angle 5
Metocean data Constant within case

Table 4.6: Mean sampling frequency for sensors at Hywind Scotland

4.4.2 Merging data sets

The sensor streams are not synchronized to provide measurements simultaneously. This may cause

inaccuracies for the model, especially in offsets between load cell data and the GPS/IMU data, which

may further result in a tension measurement being mapped to the wrong turbine position. In practice, the

delay between the measurements has a negligible effect on this thesis. With the data being downsampled

to 1 Hz, the effect of the approximate 100 ms offset in sampling timestamps is small.
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4.4.3 Feature engineering

Feature engineering is applying domain knowledge to transform raw data into features for machine learn-

ing. Feature engineering attempts to create better features to help machine learning models to better

extract relationships and knowledge from the data.

The data from the turbine’s anemometer decomposed from wind direction and wind speed into a north /

east wind component. This way, the ML model does not have to learn the relationship between wind di-

rection and floater response and remove the jump in directional data between 360 degrees and 0 degrees.

Instead of using latitude and longitude measurements directly from the dGPS in the model, a trans-

formation into a local frame is performed, providing features measuring the offset in meters from the

equilibrium position. also known as the field zero point, of the turbine.

The zero offset position in dGPS measurements refers to the intended installation location of the FOWT.

If this is not equal to the mooring field zero position, the offset in latitude and longitude need to be

calibrated such that the origin of the offset is in the field zero point. We investigated the physical model’s

sensitivity to moving the zero offset position. To investigate this phenomenon, we utilized methods from

the field of design of experiments (DoE). DoE is the planning of systematic variation of controllable,

independent variables to induce a response in the dependent variables. The experiments are planned

such that the maximum amount of information is gained from the minimum amount of effort. Design

Expert 13 (Stat-Ease 2022) is used to build and evaluate the experiment setup shown in Figure 4.12. This

design is optimal with 30 experimental runs, and it is optimized to create an accurate response surface.

Figure 4.12: Experimental setup to find mooring equilibrium position. The points show experiments where the
zero offset position is shifted north/east.
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The responses discussed in subsection 3.3.1 (R2, RMSE) is used to evaluate the experiments. A sample

of 2000 data points from the data set is selected randomly to perform the experiments. The statistical

performance indices are found from the physical model and the tension measurements, meaning we try to

find the zero offset position which optimizes the physical model. The number of samples used to optimize

the physical model is a trade-off; too few samples and the results are too sensitive to noisy measurements,

too many samples included cause very high computational cost and can also risk overfitting the physical

model. Ideally, a completely separate set of data should be used to optimize the zero offset position.

However, due to the limited amount of data available, we used a small percentage of the data ( 5%) to

optimize the physical model.

Figure 4.13: Results from design of experiments. Red points are experiments performed. Desirability define the
areas where RMSE and MAE is minimized, while R2 is maximized.

A cubic model is fitted to the responses of the experiments, results of this can be seen in Figure 4.13. The

best performance is achieved in the area around (−2,−2.5) where the RMSE between the physical model

and the tension measurements is minimum, and the coefficient of determination (R2) is maximum. As a

result, the dGPS measurements used in this thesis are shifted 2m west and 2.5m south from the original

data set.
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4.5 Physical modelling

The following section will introduce the concepts and processes needed to produce a physical model of

the system. Two main tools will be presented, MoorPy and Riflex, their respective implementations, and

a general workflow for the PBM.

4.5.1 RIFLEX

RIFLEX is a tool for the analysis of slender marine structures. This includes static and dynamic analysis

of risers, mooring lines, wind turbines, and umbilicals. Both Catenary analysis and fully nonlinear Finite

Element Analysis are available for static analysis. For dynamic analysis, there is eigenvalue analysis

and Dynamic time domain analysis. RIFLEX may be run as a standalone but is commonly used in the

simulation workbench SIMA, providing a graphical user interface. For the application of real-time con-

dition monitoring of mooring systems, computational cost is a limiting factor; therefore, static analysis

is focused on in this thesis.

4.5.2 MoorPy

In addition to implementing RIFLEX as the primary physical model, some time was also spent adopting

the MoorPy framework from Hall et al. (2021). MoorPy is a python package for quasi-static mooring

analysis, utilizing catenary equations for effective computations. The motivation behind implementing

a second simulation tool was three-fold: Firstly, the needed input and workflow for MoorPy are almost

identical to that of RIFLEX, and as such the extra development time was reasonable. Secondly, vastly

differing results would likely mean there was an error in implementing either model. Finally, as MoorPy

only solves the catenary equations, it is significantly faster than Riflex. It can be a valuable tool for

investigating the different properties of the mooring system. More specifically, MoorPy was an integral

part of the tuning of zero offset position as presented in subsection 4.4.3.

Because of the similar implementations for the MoorPy framework and RIFLEX, MoorPy will not be

presented in-depth. The framework uses the same node positions file as RIFLEX, and passes the results

on identically.

Approach

The goal is to obtain an accurate estimate grounded in physical principles of the tension in the mooring

lines for each time-step. For each time-step, the sensor data explained earlier is the available input. The

tension in each of the six bridles is the desired output. RIFLEX provides a mapping between the turbine

position and line tension.

For physical analyses such as these, some trade-off must be made between performance and precision.
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Real-time calculations usually require simplifications of the given system or precalculations. One pos-

sible solution for this is precalculating a reasonable number of positions within the working area for the

FOWT. The resolution of these positions would then decide the number of calculations needed before

running the system, with interpolations covering the rest of the domain. However, given that the MRU

and the dGPS together provide displacements in 5 DOF, the precalculated database of tension would be

pretty sizable.

Another option is to do concurrent calculations of each time-step. One standard CPU can estimate

tensions for a time-step in 10 seconds, then 10 concurrent units can keep up with real-time data at only

a 10 seconds delay. This delay is well within the bounds of reason for service life monitoring. Instead of

needing interpolations, this approach would also calculate the tensions at the exact position measured. It

is significantly more computationally heavy real-time, but also more robust as this method would not be

dependent on inputs within a given area.

For this thesis, the assumption is that the second option is the most feasible. The tensions are calcu-

lated separately for every single available position for the mooring system. This is done at one-second

intervals, as this is the lowest sampling frequency for the necessary sensors, as given in Table 4.6. The

workflow is then to take the measurements of the IMU and dGPS, use these to calculate the position of

mooring connection points, and finally calculate the tension in each bridle at that given position. This

workflow will be discussed more in-depth below.

4.5.3 Mooring system model

As the node positions at the fairlead of the wind turbine is calculated from measured data, no coupled

analysis is needed to figure out the floater response. We assume the environmental conditions are re-

flected in the sensor measurements and therefore the modelling of the Turbine and its substructure is not

needed. Instead, the mooring system can be defined with only the following components: supernodes,

lines, cross sections, and seafloor contacts. In addition, the sea surface and seafloor must be defined by

the environment.

• Supernodes: There are two main types of supernodes, constrained and free. Free nodes are free to

be displaced in 6DOF, while constrained nodes can be either constrained in all 6DOF or have free

rotation. Translational constrained nodes are used for the supernodes that model the connection

between the mooring lines and the FOWT floater, and the connection between the mooring lines

and the suction anchors. For the connection point between the bridles, a free node is used. This

method investigates the mooring tension for a given position of the floater but without making any

assumptions about how the mooring lines would fall in this given position.

• Lines: For the modelling of mooring lines, the leading property is their initial line length. Each

line has a firm line length, which matches up with the length between the supernodes that the lines

connect.
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(a) RIFLEX model before simulation. (b) RIFLEX model on final step of static simulation.

Figure 4.14: Comparison of the mooring lines before and after static analysis

• Cross sections: For the Hywind Scotland mooring system both the bridles and the main lines

are stud-less chains. The section from anchor to bridle is of a higher diameter than the section

from bridle to substructure, therefore have to define two separate cross-sections for the model.

The cross-sections are defined by their respective mass coefficient, cross-sectional area, and axial

stiffness.

• Seafloor contacts: For the model to interact with the seafloor properly, it needs to define normal,

in-plane, and lateral friction forces between the seafloor and the mooring lines.

With the above properties defined, the foundation for the analysis is in place. Several calculation pa-

rameters must then be decided, primarily the loading sequence. This sequence decides which loads are

calculated and the number of iterations that should be performed for these loads. For the static analysis

without any environmental conditions, the applied loads are volume forces, specific displacements, body

forces, and bottom friction forces. With the above-explained model, and some desired node positions,

RIFLEX can calculate the tension profile of each of the mooring lines and bridles. Figure 4.14 shows the

initial RIFLEX model before static analysis and after the analysis at the final step of the simulation.

4.5.4 From sensor to supernodes

The RIFLEX model requires positional input for each supernode to calculate the bridle tensions correctly.

There is a difference between the initial and final position for constrained nodes to let the mooring lines

iteratively fall into their final position from the initial position. Some of these inputs are constant, like the

final position of the suction anchors, while the rest are dependent on the desired position of the floater.

The final and initial positions of the floater-connected super nodes are equal, the bridle connected super

nodes are free and as such have only initial positions, and so the only nodes with both initial and final

positions are the anchor nodes. Both the initial and final positions are illustrated in Figure 4.15, as well

as some of the denotations that will be used below.

The desire is for the RIFLEX model to, as closely as possible, replicate the behavior of the actual floater

and the tension in its mooring lines. This is dependent on a mapping between the measured sensor
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Figure 4.15: Diagram showing the geometrics of the mooring system. The blue lines are the final positions of the
system, while the black lines are the initial positions. The supernodes a, b, and f , are denoted with i if it is in
the initial position and f if it is the final position. Supernode f is denoted i, j as it has an equal initial and final
position. The lines and nodes are iterated from the intial position into the final position, with fi,j and af being
known, and the rest of the supernodes unknown or calculated in subsection 4.5.4.

data and the position of all the supernodes. The correlation between sensors and nodes is illustrated in

Figure 4.3. There is a set distance between the mooring center and the dGPS sensor. This distance, in

combination with the measured pitch and roll from the MRU, makes it possible to estimate the desired

mapping, as shown in Equation 4.1.

pc =


xs − Lcssin(Φ)

ys + Lcssin(θ)

Dc

 (4.1)

where symbols denoted with subscript c are in the mooring center, symbols denoted with subscript s

is in the dGPS sensor position, θ is rotation in the pitch direction, Φ is rotation in the roll direction,

Lcs is the length between the mooring center and the dGPS position, and Dc is the constant debt of the

mooring center. The debt of the mooring center is considered constant as there are no measurements in

heave, z, direction. When the mooring center is found, the next step is to calculate the position of the

three supernodes connecting the bridles to the floater. For each of these supernodes, fi, their respective

positions compared to some origo is known, p0i. By rotating these positions with the measured rotations

and placing them relative to the mooring center, all the connected supernode positions can be calculated
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as shown in Equation 4.2

fi = Rz(ψ)Ry(Φ)Rx(θ)p0i + pc (4.2)

The placement is more arbitrary for the anchor nodes and the bridle nodes, as they will be iterated from

their initial position into the final position. This final position is, as mentioned, known for the anchor

node and irrelevant for the bridle node. However, there are two main constraints for the nodes: Firstly,

The Euclidian distance between two nodes must be equal to the length of the line segment modeled

between the nodes. This means that between a floater and bridle supernode, the Euclidian distance must

be equal to the length of a bridle and likewise between other nodes. Secondly, the placement of the nodes

should be such that, when RIFLEX iteratively lets nodes ”fall” between their initial and final position, the

movement should primarily be vertical. The easiest way of doing this is constraining connected bridle

and anchor supernodes to lay on a line parallel to the seafloor.

Mathematically, the position is calcated as follows. For two floater nodes fi and fj, calculate the vector

between them:

I⃗J = fj − fi (4.3)

Then, we assume that the bridle node, bi connected to both these floater nodes, has a position in the z-

direction equal to the average of its two nearest floaters for simplicity. This is reasonable as the position

in z is primarily arbitrary and has little impact on the final calculations. The bridle node can then be

viewed as the final corner of a bilateral triangle, with the floater nodes making up the two other corners.

The length of the sides in the triangle is known and denoted Lff for the distance between two connected

floater nodes and Lfb for the distance between a connected floater and bridle node. The position of the

bridle node is then simple geometrics:

bi =
I⃗J × êz

∥I⃗J × êz∥

√
L2
fb − (Lff/2)

2 +
1

2
(fj + fi)

Where êz is the unit vector in z-direction. The above equation calculates the midpoint of I⃗J and then

calculates a vector out from the plane defined by I⃗J and êz , i.e., a vector normal both to I⃗J and parallel

with the xy plane. This vector is then placed in the midpoint, and stretched to be the height of the

aforementioned triangle.

Finally, the anchor nodes detonated a. The final positions for the anchors at the seafloor are known and

are used to find the initial anchor node positions. We can define a vector between the two points by

defining a point directly above the final anchor node position, ai0, along the xy plane with the same
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depth as the respective bridle node. This vector is placed in bi, and set to the constant length of mooring

lines Lba, as seen in the following equation:

ai =
ai0 − bi
∥ai0 − bi∥

Lba + bi

With the above step, the node placement procedure is complete. It is important to note that the method

is only valid with the assumption that the tension in lines placed in some position is the same as when

the lines are pulled out from equilibrium position. The above method lets the lines iterate into position

from the new position of the nodes, when in actuallity they are displaced from their equilibrium position.

This assumption was necessary to make due to limitations in the physical modelling frameworks. To

achieve the alternative, a floater would need to be modelled, and then the floater would need to be

displaced with a force exactly strong enough to place the nodes in their desired position. This would

require several analysis per data point to iterate the correct forces, and subsequently be magnitudes more

computationally heavy than the current approach.

4.5.5 Pipeline for static analysis

Above, the conceptual mathematics and logic behind the physical modelling have been explained. These

steps need to be reproduced for every available positioning data point before the same data points can be

input into the RIFLEX static analysis.

Figure 4.16 shows the flowchart for the physical modelling, starting after the sensor data has been im-

ported and reprocessed and ending after the static analysis is completed and post-processed for each data

point. The process utilizes python to interface with RIFLEX, which allows for complete end-to-end in-

tegration. This integration also allows for easier tuning and troubleshooting of the system dynamics and

utilizes different files to checkpoint the data as it is processed.

Several measures can be taken to keep the run-time reasonable when performing an analysis of this

magnitude, i.e. thousands of computationally heavy simulations. Improving hardware is the least time-

consuming if better hardware is readily available. Profiling the code and identifying bottlenecks is also

advisable. Both of these techniques were used to speed up the process of the physical analysis.
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Import pipeline

Move dGPS signal to
mooring center

Calculate node
placements
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Run SIMA / RIFLEX
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Read input file
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RIFLEX node imports
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Finished
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Figure 4.16: Flowchart showing the method for physical modelling using Riflex. Here, blue denotes Riflex, green
denotes python, and gray denotes files.
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4.6 Data driven modelling

In the following section, the different implementations of the DDM are presented. In total, three different

DDMs are implemented and compared: Random Forest Regressor, ANN, and LSTM. For each of these,

the tuning and hyperparameters will be discussed. Finally, the pipeline for the DDM is introduced.

Input Target
Latitude driftoff Measured tension L1B1
Longitude driftoff Measured tension L1B2
Tower roll angle Measured tension L2B1
Tower pitch angle Measured tension L2B2
Tower yaw angle Measured tension L3B1
Wind speed in x direction Measured tension L3B2
Wind speed in y direction
Metocean data (optional)

Table 4.7: Input and target features for data driven modelling

4.6.1 Random Forest regression

The Random Forest regressor used is based on the implementation of Random Forest regressor from

(Pedregosa et al. 2011). The advantage of Random Forest regressor is the minimal amount of tuning

needed. Only one parameter needs tuning in the Scikit-learns implementation, which is the number of

decision trees in the forest. Figure 4.17 shows the development of the statistical performance indexes as

the number of trees grows. For both RMSE and MAE, decreasing values mean increasing performance.

Diminishing returns are seen from 30 trees and upwards. A conservative number of 100 trees were used

for this thesis.

As Random Forest trees are invariant to the scale of the features, no normalization of the features are

needed for the Random Forest implementation. This reduces the pre-and post-processing of the data.
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Figure 4.17: Effect of increasing amount of decision trees in Random Forest model
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4.6.2 Neural Networks

Using NNs for experimental setups requires several steps. The construction of the architecture, and

training of the models, are make-or-break for the experimental results. Since the NNs use layers as

building blocks for the network, these need to be defined first. For the general purpose of ANN, deeper

networks tend to need fewer units per layer and generalize better to the test set but are often harder to

optimize. For this thesis, given that the purpose is to investigate the hybrid approach, an architecture that

generalizes well is preferred. This means less time can be used to optimize each of the models.

Feature scaling

Machine learning methods that map a smooth function between input and output features are sensitive to

the input scale. This can be seen from the perceptron introduced subsection 3.4.2, where all inputs are

weighted and summarized before passing through the activation function. Although the weights can be

tuned to encapsulate the difference in scale, this often causes longer convergence times for the models

(Zheng and Casari 2018). For these models and components, it is a good idea to scale the features so that

the output is within some desired range.

The machine learning data set is scaled using standardisation scaling, also known as Z-score normali-

sation. Standardisation leverages the mean values of each feature, as well as the variance, to map each

feature to a similar scale. Equation 4.4 shows how the Z-score is calculated. Each point x is placed in

accordance to the mean value, and then scaled down based on the variance. The scaled points are then

placed around x = 0, with a variance of 1. Z-score feature scaling is quite robust with regards to outliers,

but does this by assuming that data in each feature is normalised. When this is not the case, and the

data is skewed, the distribution of the new scale is not equal. The majority of the sensor data is either

normalised, or sufficiently normalised for z-score normalisation to be considered an tolerable approach

in this case.

x′ =
x− x̄

σ
(4.4)

x = x̄+ x′σ (4.5)

Keras & Tensorflow

There are numerous different tools, frameworks, and applications developed over the last decades to sim-

plify the development of NNs. The frameworks allow for faster development, more optimized training,

and flexibility for developers. For this project, Keras was deemed most fit (Chollet et al. 2021). The

Keras framework interfaces with TensorFlow, and allows for quick deployment and experimentation for
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NNs.

Hyperparameters and grid search

When comparing different machine learning methods, using hyperparameter search allows for a more fair

compression. Tuning the model parameters can lead to subconscious favoritism towards the desired goal.

To avoid this, a standard grid search is performed on the parameters than do not have a recommended

value for general purpose. Grid search can often be time-consuming and computationally heavy, so each

parameter should only be tested for a small number of variations. The input variables for grid search is

presented in Table 4.8. The final hyperparameters, and the reasoning behind the given value, is presented

in Table 4.9.

Hyperparameter Parameters
Batch size [128, 256]

Learning rate [0.01, 0.05, 0.1, 0.3]

Sequence length [1, 3, 5, 10]

Dropout [0.1, 0.3, 0.5]

Table 4.8: Grid search input variables
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Hyperparameter Parameters Reasoning

Epoch NA
The number of epochs should be large enough for
early stopping to stop the process.

Batch size NA
The batch size was decided through hyperparameter
search

Learning rate NA
The learning rate was decided through hyperparameter
search

Sequence length NA
The sequence length was decided through hyperparameter
search

Dropout NA
The dropout decided through hyperparameter
search

Neurons NA
The number of neurons was decided through hyperparameter
search

Optimizer ADAM

As mentioned in subsection 3.4.2, Adam has a fast
running time, low memory requirements,
and requires only tuning for a single parameter.
This means it is well fit for general purpose

Output activation
function

Linear
For the output layer of regression models, a linear
activation function is recommended (Szandała 2020).

Loss function RMSE

RMSE was chosen due to the intrinsic nature of the
prediction: larger deviations from the truth
are always more important than smaller ones.
In addition, RMSE is computationally less complex than
other options.

Early stopping
patience

10 A low patience was set to save on computational time.

Table 4.9: The common NN hyperparameters.
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ANN

For the ANN, the only specifics that must be defined is the network structure. By implementing a

somewhat deep network architecture, varying the amount of nodes should allow the network to fit to

most general purposes. Four hidden layers are used, with dropout on each, and a sigmoid activation

function on each them.

LSTM

For the LSTM, two stacked layers will be implemented with equal numbers of neurons. The stacking

of layers should allow for learning complex temporal connections given enough neurons and input data.

The first layer of the LSTM will be many-to-many, as described in subsection 3.4.3, while the second will

be many-to-one such that only the final time-step of the tensions is predicted. This structure allows for

forward and backward interactions in the temporal space and avoids too computationally heavy training.

Also note that the LSTM was trained on the grid search, but not for a sequence length of 1 as presented

in Table 4.8.

4.7 Training, Validation, and Testing

To validate the model’s predictive performance, a k-fold cross validation scheme was implemented.

To limit data leakage, we used one whole case from the operational data as a test case in each cross-

validation fold. This ensures that the model has not been trained on identical environmental conditions

as seen in the test case. For internal validation during each training epoch, 20% of the training data is

randomly selected.

Figure 4.18: Cross-validation scheme. Each case (red) is used once for validation for a model trained on the
remaining data (blue).

There are a variety of different approaches to training for machine learning, with different strengths and

weaknesses, as explained in section 3.3. CV can maximize the training set, with the trade-off that training

time is significantly increased. Within the options for cross-validation, one must also consider if the data
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should be shuffled or not:

If the input data is over several time steps, then the number of data points would have to be decreased

by a factor of s time-steps to avoid leakage into the test set. This is due to overlapping points also

necessarily being overlapping in the input set. Furthermore, no meta-data could be input as it would

be a direct way to differentiate each of the different input cases. Most importantly, there would be no

test of the robustness of the model. If each of the k-folds in CV has different environmental conditions,

it requires the model to generalize instead of overfitting. In short, a shuffled data set for input would

improve metrics but not the actual model instead of giving a misleadingly positive result.

4.7.1 Loss function

The pros and cons of different loss functions have been discussed in subsection 3.3.1. When predicting

tension measurements, larger deviations are more significant than smaller ones, and minimizing outliers

is a priority. Likewise, it is desirable for the loss function to have an easily calculable gradient, as

presented in section 3.4.2. This leaves RMSE as the desirable choice in this case.

4.7.2 Fatigue damage estimation

To evaluate the methods performance at fatigue damage analysis, the measured tension from tension

sensors and the prediction results from the hybrid model was analyzed with the methodology described

in section 2.4. QATS is a python implementation of the rainflow algorithm STM E1049-85 (2011)

developed by DNV (Voie and Lone 2021). It was used to quantify accumulated fatigue damage from

several cycles in the time series. The S-N curve of the mooring lines was collected from DNV’s standard

for position mooring, DNV OS E301 (DNV 2021).

4.7.3 Machine learning pipeline

Training and implementation can often be challenging when working with different machine learning

frameworks and models. Each of the frameworks needs different inputs, configurations, and different

types of handling. There needs to be sufficient abstraction for the pipeline to accommodate all of these.

One way to achieve this is through object orientation. By defining a parent class for the models and

adapting this to each specific model type, all models can be passed through the pipeline. We also define

a database object that handles adjusting the training data to the specific model and ensures there is no

data leakage between the training set and the test set.

Figure 4.19 illustrates the abstracted machine learning pipeline. Initially, the import and physical analysis

need to complete to finish the input for the models. This is, as mentioned, stored in the database object

to ensure accurate configuration. The database object is then called sequentially for each step in the ML
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pipeline, passing through the correct data and asserting that no data is leaked between the training and

test phase.
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Figure 4.19: Flowchart showing the method for data driven and hybrid modelling. Here, green denotes python,
yellow denotes objects, and the white trapezoids denote predefined configurations.
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Chapter 5
Results and discussion

5.1 Physics-based model results

The results from the two physics-based models are summarised in Table 5.1 and illustrated in Figure 5.1.

For RIFLEX PBM, both the original zero-offset position and the shifted mooring equilibrium position

are reported. MoorPy performed similarly to Riflex in the original mooring equilibrium position, and so

only the shifted MoorPy results are presented. On average, for all cases and mooring lines, an RMSE of

78.6 kN is achieved for MoorPy and 94.3 kN for Riflex in the shifted position. A significant improvement

is seen between Riflex in the original and shifted position, i.e. after re-calibrating the dGPS data. The

improvement is valid for all lines except Line 3, bridle 2, where the PBM prediction performance was

degraded.

Behind the statistical performance indices in Table 5.1, there is a greater range in the predictive perfor-

mance of the PBMs. For some lines and cases, the prediction follows the measurements closely with

little mean offset, but the deviations are more considerable for other lines. Figure 5.2 shows a well-

performing case where the PBM predicts the line tension well and a less optimal case for the prediction

RIFLEX MoorPy
Original Shifted Shifted

Line RMSE [kN] RMSE [kN] RMSE [kN]
L1B1 98.511 68.227 47.056
L1B2 62.073 45.141 36.800
L2B1 220.610 120.762 105.522
L2B2 216.286 94.848 86.585
L3B1 89.165 54.725 49.820
L3B2 94.255 182.296 145.617
Avg 130.150 94.333 78.567

Table 5.1: PBM results
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Figure 5.1: PBM results

from MoorPy. For some of the lines, the results had a constant offset, such as (b), and others were more

aligned, such as (a).

In theory, the data-driven part of the hybrid model should be capable of learning the mean offset and

then correcting the prediction. The aim of the PBM is not directly to predict the tension as accurately as

possible but to generate a robust mapping between the turbine position and the corresponding mooring

line tensions. It would be favourable with an accurate mapping, but part of the motivation behind the

hybrid model is the enable the data-driven part to learn from and correct for deviations in the mapping.

As mentioned in subsection 4.4.3 the zero-offset position of the dGPS measurements was optimised us-

ing the physical model from MoorPy. The MoorPy model may have an advantage over Riflex since the

shifted position is optimised on MoorPy. The results could have been better for Riflex if the results were

optimised with Riflex. Figure 5.3 shows the distribution of deviations between tension measurements

and physical models predictions for the same sample. MoorPy with shifted position shows a clear im-

provement in shorter tails of the distribution of errors and improved mean for all lines except L3B2, the

only line where the original position provided better predictions. Comparing the original equilibrium

position and the new shifted position for Riflex shows improvements in the error distribution and mean

deviation for all lines except L3B2.

Due to the optimisation being performed with a limited amount of experiments and samples, L3B2

may be underrepresented in the random selection of samples, causing poorer performance in the L3B2
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(a) Example of promising results for the PBM.
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(b) Example of less desirable results for the PBM.

Figure 5.2: Predicted tension and measured tension over time for both line 1, bridle 1 and line 3, bridle 2

prediction. Another factor is that the optimisation may primarily optimise the worst performing lines

at line 2 and get stuck in a local minimum. It may be that shifting the position corrects underlying

errors in the physical model and does not bring the PBM closer to the ”as-installed” condition. The

yaw measurement was not correctly calibrated as discussed in the data exploration. Other causes, such

as more issues with the mapping between sensors and modelling, can also give complex errors, and

the shifting of positions might correlate with other error sources. Nevertheless, the shift did give better

results not only for the PBM but also for the subsequent hybrid models.

Another point of contention is what could be regarded as validation data leakage when shifting the

equilibrium position of the mooring system. In theory, by optimising the PBMs equilibrium position

with all available data, one could argue that we are to some extent optimising on both training and

validation data. When running the same optimisation on a case by case basis, the cases all gave similar
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optimal position, and as such running the PBM shift through CV as well was deemed unnecessary.
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Figure 5.3: Violin plot of the deviation between measured data and the proposed physics-based models. The
middle dotted line is the mean of the samples and the outer lines enclose 50% of all samples.

Figure 5.4 shows scatter plots of the predicted tensions from the PBM plotted against the measured

tension from the load cells for every line. Ideally, the predictions would be identical to the measured

results, placing all the sample points along the line x = y. As summarised in Table 5.1, mooring lines

L1B1, L1B2 and L3B1 are predicted significantly better by the PBM compared to the remaining lines.

In (c) and (d), the predictions for the bridles from Line 2 (L2B1, L2B2) show an excellent fit to the

measured tension for lower ranges of tension. The discrepancy between measurements and predictions

grows from 700-800 kN and upwards. The predicted tension shows values up to 1200 kN, while the

maximum measured tension values are capped at around 900 kN. The PBM show overall poor predictive

performance for L3B2, but the same trend as for Line 2 of increased deviation for higher tensions is also

seen on this line.

Although no causation for the degradation of results for higher tensions was found, there is a clear

correlation with the offset from the mooring equilibrium position. Figure 5.5 illustrates this correlation,

where darker red points indicate large offsets from equilibrium, while blue points are close to the mooring

equilibrium. There is a clear pattern for the least fitted points with the most significant offset. In the

lower-left corner of both (a) and (b), there is a patch of points with a large offset that is still not poorly

fit. This is due to the one case from January 6th with northern winds. Offsetting the turbine towards the

south results in less tension in the line 2 bridles and indicates a trend where the PBM is less accurate for

higher tension in the mooring lines.
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The PBM results are not as close to the measured data as hoped. For L3B2, there non-constant deviation

between measured data and the PBM. This deviation is also present for other lines in some validation

cases. For the hybrid model to be as efficient as possible, there needs to be a strong and valid foundation

in the PBM. If this strong foundation is lacking, then the hybrid model will essentially end up as a

machine learning method with unnecessary extra steps. Still, there are likely modelled correlations

between the different lines that the DDM would struggle to infer from the data, which should, in theory,

improve the model and its robustness.
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(a) L1B1
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(b) L1B2
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(c) L2B1
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Figure 5.4: PBM predicted tension vs measured tension for all lines
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(b) L2B2

Figure 5.5: Predicted tension vs measured tension for line 2. The color represents the total offset in meters from
mooring equilibrium position.
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Chapter 5. Results and discussion

5.2 Data-driven model results

To investigate the merits of a hybrid modelling approach the addition of a physical model must improve

the data-driven models predictive performance. In this section, the three implemented data-driven models

are tested without any input from the physical model, to create a foundation for comparison of the Hybrid

models.

5.2.1 Random Forest

Results from the Random Forest regressor are summarised in Table 5.2. The data-driven approach was

tested both with and without metocean data. An average of 71.8 kN in RMSE was achieved for all lines

when the training set included metocean data, and an 11% improvement in RMSE was achieved when

excluding the metocean features from the training set. Since the metocean data is constant within each

case, and relatively few cases are used in the training set, the metocean features get a low variance. This

low variance makes it challenging for data-driven methods to learn relationships between the metocean

data and desired target values. Due to the decrease in predictive performance, the metocean features

were not included in the Hybrid implementations.

There are significant individual differences in predictive performance on the mooring lines. In the best

cases for Line 1, Bridle 2 and Line 3, Bridle 1, the average RMSE is between 40-50% lower than the

other lines. While line 2, bridle 1 performs 50% worse than average. No clear trend could be found in

the differences between the predictive performance of the different lines for the random forest DDM.

In general, the Random Forest regressor performed poorly on its own as a DDM, and the other methods

presented showed significantly better results. A focus is therefore placed on discussing the results from

other methods, and the detailed plots for Random Forest DDM are found in Appendix B

Random Forest
Line With metocean data [kN] Without metocean data [kN]
L1B1 89.39 73.74
L1B2 31.74 33.66
L2B1 92.01 94.88
L2B2 89.59 72.82
L3B1 54.61 42.12
L3B2 73.25 65.79
Avg 71.76 63.84

Table 5.2: DDM Random Forest regressor RMSE results with and without metocean data
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ANN LSTM
Line RMSE [kN] RMSE [kN]
L1B1 57.770 58.986
L1B2 38.418 25.439
L2B1 55.516 61.907
L2B2 44.784 48.765
L3B1 34.134 31.120
L3B2 37.775 38.972
Avg 45.627 44.198

Table 5.3: DDM results by line

5.2.2 Neural networks

The results for the LSTM and ANN are presented in Table 5.3. For the neural networks, metocean data

did not improve the model for any run in the grid search, so these results will not be presented. With

a sufficient dropout on the input layer, the network could ignore the metocean, but this did not warrant

further investigation. The averaged results for the ANN DDM were an RMSE of 45.6 kN, a reduction

of 42% compared to the best performing PBM model, and 44.2 kN for the LSTM, a reduction of 44

% from the PBM model. When evaluating NNs, it is essential to remember that this number is a lower

bound of the performance. Tuning NN hyperparameters is a complex and time-consuming task. The

tuning was primarily solved using an extensive grid search for this thesis, one which did not include

changes to the layering of the network. Given more time and more attempts at specific tuning, all results

containing NNs would likely improve. However, the grid search gives insight into how easy a given

model is to train. For both the ANN and LSTM, reaching results within 1 kN of the presented results

proved manageable, and there were numerous combinations of parameters that gave these results.

Figure 5.6 shows the predicted tension against the measured tension for each of the lines with an ANN

network. The clustering, which can be seen in most subplots, is caused by the different cases and their

conditions. The lowest performing lines are L1B1 and L2B1, and for the former, this is primarily due

to a single case. As seen in Figure 5.6a, there is a single cluster for L1B1 with a significant offset from

the others. All this data is from a single case with an average RMSE of 252.3 kN. Compared to the

other cases, which average 34.4 kN, this is an increase of 740%. Although the same case performs

worse in general for all lines aggregated, as shown in Table 5.4, it is unclear why it performs so much

worse for L1B1 specifically. For the PBM, L1B1 performed better than the average for the same case.

The main issue when using pure DDM models is that they struggle to generalise enough to work for

unseen conditions. For a DDM model, significant deviations between measured and predicted might

occur whenever the model attempts to predict previously unseen conditions. This lack of generalisation

is unfortunate for the marine environment, where 100 or 1000 year waves would need to be observed

before they occur to model the response accurately.

The above mentioned point regarding the issue with DDM for unseen conditions is clear when comparing

Table 5.4, Figure 4.5 and Figure 4.8. Case 1 is the worst performer, and this is also the case which has
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Chapter 5. Results and discussion

Case Date RMSE [kN]
1 06.01.18 93.256
2 09.01.18 34.277
3 14.01.18 33.994
4 13.02.18 74.405
5 24.02.18 28.874
6 26.03.18 23.924
7 14.04.18 35.452
8 02.05.18 49.307
9 29.07.18 37.157

Avg 45.627

Table 5.4: ANN DDM results by case

wind coming from the opposite direction as the rest of the cases, as shown in Figure 4.5, resulting in the

outlier cluster of longitude-latitude offset as shown in Figure 4.8.
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Figure 5.6: DDM with an ANN - Predicted tension vs measured tension for all lines
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5.3 Hybrid model results

In the proposed hybrid model A the DDM predicts the deviation between the predicted tension from

PBM and the measured tension. Figure 5.7 shows how the predictions from PBM and DDM in model A

are combined to provide the hybrid model prediction. The initial PBM results are pretty inaccurate, as

presented earlier, and so the model needs to be improved upon. Given some patterns from the IMU and

dGPS, a DDM model can learn which data there is likely to be a larger or smaller deviation between the

PBM and the measured data. The middle plot for Figure 5.7 shows precisely this process, while the final

plot shows how much the prediction has improved.
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Figure 5.7: Step-by-step results of how hybrid model A combines PBM and DDM predictions. The top plot
shows the PBM prediction vs the measured tension, the middle plot shows the DDM predicted deviation between
PBM and measured tension, and the bottom plot shows the combination of DDM and PBM compared to measured
tension.
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5.3.1 Random Forest

Table 5.5 summarises the results from hybrid modelling using model A and model B, with Random

Forest algorithm. Model A shows better predictive performance for all lines and gets a 36% lower

average RMSE than model B. The largest improvement occurs on the northern lines (see Figure 4.2)

L1B1 and L3B2, where the average RMSE is improved by 67% and 44% respectively.

Hybrid model B performs marginally better than DDM alone for the random forest algorithm. This indi-

cates that PBM features may not be weighted enough to improve the hybrid model B results. Both hybrid

models prove significantly better predictive performance than the physical-based models presented in Ta-

ble 5.1.

Hybrid model A Hybrid model B
Line RMSE [kN] RMSE [kN]
L1B1 27.61 74.88
L1B2 27.39 33.09
L2B1 63.55 92.50
L2B2 50.23 70.48
L3B1 34.66 42.26
L3B2 43.35 60.51
Avg 41.13 62.29

Table 5.5: Random Forest hybrid model results

5.3.2 Neural networks

Hybrid model A Hybrid model B
Line RMSE [kN] RMSE [kN]
L1B1 25.562 64.666
L1B2 29.337 29.237
L2B1 54.688 49.674
L2B2 47.132 46.476
L3B1 38.598 33.226
L3B2 40.005 38.707
Avg 39.220 43.665

Table 5.6: ANN hybrid model results

Figure 5.8 shows the predicted tension from ANN hybrid model A, vs. the measured tensions. Compared

to the equivalent Figure 5.4 for PBM, there is an overall improvement for all lines. L1B1 (a) shows the

most promising results, with a good fit for lower tension measurements and a slight under-prediction for

higher tension measurements. The increased deviations seen for L2B1 and L2B2 at higher tensions in the

PBM is corrected for by the hybrid method, and the predictions are improved across the entire tension

range. The worst performing line in the PBM, L3B2, has a 73% decrease in RMSE for hybrid model A,

but still predicts too high tensions for the upper ranges of measured tension.
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Chapter 5. Results and discussion

The metrics of the ANN are presented in Table 5.6 for both methods A and B. The best performing hybrid

model was ANN hybrid model A, with an RMSE of 39.2 kN. The ANN likely performed the best due

to the less complex tuning process than the LSTM. The grid search did not find an equally performing

set of hyperparameters for model B. Although this might be because model A is easier to train, it could

also be caused by the grid search not covering optimal parameters for model B. In general, the same

information is contained in models A and B, so it should, in theory, be able to perform as well as model

A when disregarding the time until convergence during training.

Hybrid model A Hybrid model B
Line RMSE [kN] RMSE [kN]
L1B1 28.213 55.531
L1B2 30.965 30.530
L2B1 68.439 62.091
L2B2 47.894 45.014
L3B1 41.357 34.750
L3B2 42.013 32.889
Avg 43.147 43.467

Table 5.7: LSTM results for hybrid model A and B

For the LSTM network, the results for both methods is presented in Table 5.7. Both model A and model

B underperformed compared to the best results for the Random Forest and for the ANN. In addition to

this, the LSTM was significantly more time consuming to train, with the grid search being very com-

putationally heavy. There are several reasons why the LSTM might have underperformed. Firstly, the

historic sequences might not significantly impact the tension for each time step. Initially, we thought

that the previous time steps would improve the model. However, for both the ANN and the LSTM, the

models’ accuracy decreased as the sequence length increased. Secondly, the LSTM is undoubtedly the

most complex to tune. The grid search might not have been a sufficient tuning method, and more work

could potentially improve the performance. Nevertheless, within the confines of this thesis, the LSTM

proved to be the least successful hybrid method.
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Figure 5.8: ANN, hybrid model A, predicted tension vs measured tension for all lines
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5.4 Fatigue life estimation

The estimated accumulated fatigue damage is calculated using DNV developed QATS library (Voie and

Lone 2021) as described in subsection 4.7.2. The accumulated fatigue damage of the 9 cases was esti-

mated for the measured tension, simulated tension from best performing PBM (MoorPy), and the best

performing hybrid models. The percentage-wise deviation in accumulated fatigue damage between mea-

sured and estimated tension for each line and method is presented in Table 5.8.

Unfortunately, none of the models presented provides an adequately accurate estimate of fatigue damage

in the given cases. As shown in Figure 5.9 the PBM underestimates the fatigue on the north-west facing

lines (L1B1 and L1B2) while overestimating the fatigue for the remaining lines. The south facing lines,

L2B1 and L2B2, get the highest deviation, with a 2-6 times higher estimated fatigue than the measure-

ments. The total percentage deviation is misleading as the fatigue on L1B1, L1B2, L2B2 and L3B1

are underestimated by all hybrid models. At the same time, L2B1 and L3B2 are overestimated by the

Random Forest and LSTM hybrid model causing the contributions to total deviation to mostly cancel

out.

Line PBM
(MoorPy)

Random Forest
(Hybrid model A)

ANN
(Hybrid model A)

LSTM
(Hybrid model A)

L1B1 -68,09 % -56,84 % -58,31 % -61,47 %
L1B2 -54,96 % -53,57 % -62,97 % -68,19 %
L2B1 607,22 % 52,76 % 10,98 % 36,33 %
L2B2 193,93 % -6,06 % -50,75 % -29,05 %
L3B1 26,85 % -21,85 % -43,54 % -29,02 %
L3B2 53,28 % 18,88 % -9,03 % 2,29 %
Total 159,70 % -5,64 % -34,13 % -20,72 %

Table 5.8: Deviations from estimated fatigue life from measured tensions

Even though ANN hybrid model A perform best with the performance metrics set (RMSE) for tuning the

machine learning models, the Random Forest implementation achieves better predictions of the accumu-

lated fatigue damage. More favourable fatigue estimation performance may be achieved if a custom error

measure, including the fatigue estimation performance, was implemented in the training of the DDM.

As the 10 cases included in this case study only cover 5 hours over six months, the value of looking

at estimated fatigue may be limited. Given that the fatigue damage calculated in each 30min case is

relatively small, slight deviations in the estimated tension cause quite large deviations in the fatigue

results. Fatigue damage accumulates over more extended periods, and so to evaluate the true potential

for fatigue monitoring, a longer time frame of data is needed.

In Figure 5.10, the biggest challenge with predicting tension measurements for fatigue estimation is

presented. The predictive model needs to predict the larger drifts accurately and differentiate between

small wave motions and sensor noise. None of the above-presented methods manages to do so in any

meaningful way, which is likely the reason for the large deviations in estimated fatigue. The models try

to minimise the mean error and, in doing so, cannot capture the smaller cycles, some of which are noise
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and some of which are changes caused by wave motions.
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Figure 5.9: Estimated accumulated fatigue damage. Note the axis break, and the difference in scale after the break.
The accumulated fatigue is on a scale from 0 to 1, where 1 means complete fatigue of the line.
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Line RMSE [kN]
L1B1 14.903
L1B2 15.441
L2B1 24.522
L2B2 28.824
L3B1 16.912
L3B2 16.435
Avg 19.506

Table 5.9: ANN hybrid A results with random sampling CV.

5.5 Discussion around validation scheme

Previously, we introduced the CV scheme, split case by case. Each fold in the CV is validated on a

previously unseen half hour of continuous data. This approach allows for a more thorough comparison

of the robustness added from the PBM. The result was less important than the comparison between

methods for this thesis, so the used scheme was deemed appropriate. However, there are some downsides

to this approach that need to be addressed. A FOWT would likely spend almost all of its lifetime in a

condition that it has previously experienced. In other words, the cases in which a FOWT experiences

new conditions are rare after startup and become increasingly rarer throughout its lifetime. With this in

mind, the results presented previously in this chapter are not comparable to a model trained in a larger

dataset with the most potential conditions.

In subsection 1.2.11, we briefly discussed how the results from Walker et al. (2021) are not directly

comparable to the results in this thesis. However, training on a randomly sampled set of points has its

merits: it is a good indication of how a model would behave in more known conditions, i.e. with more

available data for the domain it operates in. Table 5.9 shows the results for the ANN hybrid model

A, using grid search for parameters and random sampling CV as a validation scheme. The results are

substantially better than the ones presented previously.
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Chapter 6
Conclusion

The aim of this master thesis was to develop a digital twin framework for mooring system monitoring of

floating wind turbines. The objective was to predict the top tension of the mooring lines using positional

sensor data from the wind turbine. Utilising a novel hybrid modelling approach, the predictions of a

physics-based model were combined with a data-driven model to improve the predictions robustness and

accuracy of data-driven models alone.

A physics-based model of a floating wind mooring system was modelled in MoorPy, a python framework

for solving catenary equations, and Riflex, a FEM solver for slender marine structures. In total, three

different data-driven models, a Random Forest regressor, an LSTM, and an ANN were implemented

to predict the top tension in lines both as a stand-alone model and in a hybrid approach in combina-

tion with the physics-based model. Two methods for combining the PBM and DDM predictions were

implemented, referred to as model A and model B.

The proposed framework was tested on operational data from a wind turbine at Hywind Scotland. For

the PBM an average RMSE of 79 kN was achieved with Moorpy. Out of the three DDMs the LSTM

performed best achieving an average RMSE of 44 kN, a significant improvement over the PBM. For the

hybrid models, the Random Forest implementation performed significantly better with model A com-

pared to model B. The neural net methods proved more robust to the choice of hybrid approach, but

still model A achieved slightly lower average RMSE. ANN Hybrid model A achieved the best average

RMSE out of all implemented models with 39 kN RMSE, an 11% improvement compared to the best

performing data-driven model.

Overall the proposed digital twin framework achieved a good approximation of tension measurement.

However, it is not suitable for fatigue estimation at current state. The method may prove more valuable

for fatigue estimation given more training data. More promising results from the randomly sampled data

points, indicating the potential performance of the hybrid model trained on a larger training set.
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6.1 Further work

One of the most important steps for improved overall performance is further tuning of the PBM. There

are several deviations that we simply could not account for, and at times the measured tension and

the movement currently appears not to be coupled at all. There is several steps that can be taken to

accomplish this, starting with more in-depth analysis of how the data couples with the tension. Next,

improved accuracy of the sensors, the resolution for the dGPS in particular, could also have a significant

impact on the model. Other options, like a synthetic upsampling, could give some of the same benefits.

In general, a more thorough end-to-end physical modelling should give both increased robustness and

accuracy of the hybrid model.

Another issue with the PBM the approach for placing the lines and supernodes, as described in subsec-

tion 4.5.4. Investigation into a more physically accurate course of action, i.e. displacing the lines using

forces rather than coordinates, could significantly improve the PBM, although we have not made enough

progress in this area to be certain.

For further work on hybrid modelling for mooring system monitoring more data should be gathered to

build a wider foundation of environmental conditions and floater responses. By collecting longer time-

series the performance for changing weather conditions may be quantified. This will of course improve

the DDM part of the hybrid model, as more training data is always better within ML. In addition to this,

more data for more sea conditions might also make the issues with the PBM more apparent.

The work in itself is more valuable if it can help reduce the necessity for direct tension measurement

sensors. Investigations should therefore be conducted into how well the hybrid model framework gener-

alises for FOWTs in the same floating wind farms. Is it possible to only equip a subset of the FOWTs

with tension sensors, train a hybrid model on these, and then accurately predict the tension using the

dGPS and IMU sensor data from FOWTs with tension sensors?

A coupled analysis model for extreme conditions could be applied to train the model on severe but rare

storm conditions such as environmental conditions with a 10-year or higher return period.

For further work to enable real time monitoring the physical model must be converted to create a look-

up table, A methodology for continuous training of the DDM should be implemented to continuously

increase foundation of data the model is trained upon. A method weighting recent measurements above

old ones would be valuable to be able to adapt to changes in the mooring system over time, such as

drift-off or marine growth.
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Appendix

A Data exploration

Figure 1: Distribution and correlation plot. For higher resolution image see attached zip file.
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B Additional results
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(f) L3B2

Figure 2: Random Forest, DDM, predicted tension vs measured tension for all lines
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(f) L3B2

Figure 3: Random Forest, DDM with meta data, predicted tension vs measured tension for all lines
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(f) L3B2

Figure 4: Random Forest, hybrid method A, predicted tension vs measured tension for all lines
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(f) L3B2

Figure 5: Random Forest, hybrid method B, predicted tension vs measured tension for all lines
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(f) L3B2

Figure 6: LSTM, hybrid method A, predicted tension vs measured tension for all lines
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