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Preface
This is the culminating work of a integrated masters program at the department of Marin Tech-

nology at the Norwegian University of Science and Technology (NTNU) in Trondheim, Norway.

The work of this thesis was started in the spring of 2021, but were postponed and finished in the

spring of 2022, due to personal matters.

The topic of this master’s thesis is that of fish locomotion, which is a cutting edge field of study in

hydrodynamics, as well as robotics and other related fields. The advent of new scientific knowl-

edge and methods in addition to technological advancements mean that bio-inspired robotics is

an up and coming field of research. The possibilities are almost endless. This is not news to Mar-

ilena Greco, who is the lead supervisor of this thesis and who works at the Centre of Excellence

NTNU AMOS. In addition I have recieved much help from Adjunct Professor Claudio Lugni at

the Italian research institute CNR-INM, but who is also employed at the department of Marine

Technology.

Knowledge about hydrodynamics, fish locomotion or machine learning is not needed to read this

thesis, although they will increase comprehension.
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Abstract
The goal of this thesis is to examine if there is a way to systematically gather data from fish

swimming experiments so that future data extraction can be much faster.

A precoursing work has been done to map out this possibility, which concluded that it should

indeed be possible, and indicated that detectron2 would be a machine learning algorithm to base

the work off of.

The purpose of this thesis is then to investigate a systematic approach to fish locomotion analysis

using machine learning object identification and segmentation to extract fish outlines from video

experiments of swimming fish. This is done using detectron2, a state of the art deep learning

framework developed by FacebookAI, for object detection and segmentation. Segmentation is

when the outline of objects are found, which is essential to what this thesis sets out to accomplish.

Once these outlines, or masks, are found, they are processed so that they are usable for data

extraction of the fish midline. The fish midline is the spine of the fish, or in other words the

middle line.

Once the masks are produced, they are handled by another program, a midline extractor. This

function extracts them by a simple algorithm which is not robust to other test setups. A much

more robust method of extraction was tried to be implemented, but it was not possible to achieve

usable results.

Lastly, the resulting midlines were processed in a simple hydrodynamical analysis to check that

they not only looked good in plots, but that the methods described above actually produce results

that can be used for research.

The thesis has been deemed a success, due to time-concerns a deeper hydrodynamical analysis

could not be performed, but the main goals of the thesis were still achieved.
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Sammendrag
Målet med denne oppgaven er å undersøke om det er en måte å systematisk samle data fra

fiskesvømmeeksperimenter slik at fremtidig datautvinning for påfølgende analyse kan foregå

mye raskere.

Det er gjort et forarbeid for å kartlegge denne muligheten, som konkluderte med at det faktisk

burde være mulig, og indikerte at detectron2 ville være en maskinlæringsalgoritme å basere ar-

beidet på.

Hensikten med denne oppgaven er deretter å undersøke en systematisk tilnærming til fiske-

bevegelsesanalyse ved bruk av maskinlæringsobjektidentifikasjon og segmentering for å trekke

ut fiskekonturer fra videoeksperimenter av svømmende fisk. Dette gjøres ved hjelp av detec-

tron2, et toppmoderne rammeverk for dyplæring utviklet av FacebookAI, for objektdeteksjon og

segmentering. Segmentering er når omrisset av objekter blir funnet, noe som er avgjørende for

hva denne oppgaven skal oppnå. Når disse konturene, eller maskene, er funnet, blir de behandlet

slik at de kan brukes til dataekstraksjon av fiskens midtlinje. Fiskens midtlinje er ryggraden til

fisken.

Når maskene er produsert, håndteres de av et annet program, en midtlinjeekstraktor. Denne

funksjonen trekker dem ut med en enkel algoritme som ikke er robust for andre testoppsett. En

mye mer robust metode for utvinning ble forsøkt implementert, men det var ikke mulig å oppnå

brukbare resultater.

Til slutt ble de resulterende midtlinjene behandlet i en enkel hydrodynamisk analyse for å sjekke

at de ikke bare så bra ut i plott, men at metodene beskrevet ovenfor faktisk gir resultater som kan

brukes til forskning.

Oppgaven har blitt ansett som en suksess, på grunn av tidsmessige bekymringer kunne en dypere

hydrodynamisk analyse ikke utføres, men hovedmålene for oppgaven ble likevel oppnådd.
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Figure 1: Graphic summarising the present thesis.

1 Introduction
To put it simply, fish move expertly through water, our creations don’t. Bio-inspired engineering

has existed for a long time, but recent improvements in technology allow us new ways to explore

this realm, which up until now has been largely theoretical in nature. The emergence of artifi-

cial intelligence, advances in robotics and new ways of analysing and gathering data allow us

exiting possibilities, opening the door for new breakthroughs. Even minor improvements in ship

propulsion and reduction in dragwould yield substantial reductions in global maritime emissions.

Alternatively, bio-inspired autonomous robots might be able to do a host of different activities,

from upholding sovereignty to monitoring wildlife, to performing search and rescue missions.

Already such implementations are being witnessed in aerial drones, marine implementations are

a logical next step.

What then, is the objective of this master’s thesis? It is to create a tool for systematically analysing

fish locomotion quantitatively and then through analysis of the findings verify that the results

are usableTODO:phrasing. A summary of the thesis can be found by inspecting figure 1. To

accurately account for the relatively unpredictable behaviour of a fish, a deep learning tool is

implemented to recognize fish and extract its outline. Then an algorithm for extracting the spine,

or the midline, of the fish is used, upon which analysis can be performed.

Also detailed are some methods that were tried but did not yield acceptable results, notably the

Medial Axis Shrinking Ball algorithm might prove to be a valuable asset once certain flaws have

been addressed. It represents the possibility of extracting midlines from fish swimming in all

directions, thus making analysis of complex movement patterns and interactions with other fish

and objects possible. The method that was alternatively implemented was a linear method as-
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Figure 2: This figure details the basic types of fish locomotion, and shows how the body of the

fish is involved in producing undulations. Adopted from (Sfakiotakis et al., 1999)

suming that the fish is oriented along the x-axis, here named the rib approximator.

1.1 Background
1.1.1 Hydrodynamics

Fish locomotion has been a subject of study for a long time, however the nature of this motion

has proved to be impossible to emulate, although several physical models have been made. This is

due to technological limitations. In this section, some of the theory describing fish locomotion is

presented, which will later be used in the analysis of the data found by using the methods devised

in this thesis.

The different types of fish locomotion can be classified into several different categories (Breder,

1926), such as listed below in figure 2

Anguilliform movement This is the type of locomotion used by eels and watersnakes, in

which the entire body generates undulations which move from the head of the body towards the

tail.

Carangiform The majority of the body is used for oscillations, but the head and fore part of

the fish does not contribute. They do, however, move as a result of the motions of the rest of the

body.
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Figure 3: Graphic detailing the basic layout of fish anatomy, adopted from (Sfakiotakis et al., 1999)

Subcarangiform This is the locomotion type that will be examined in this project thesis. A

smaller part of the body is used than in carangiform movement, but a majority is still used.

Thunniform Inspired by the locomotion of tuna, in this mode, only the tail-part of the fish is

used to generate thrust. This form is specially suited for high speeds.

Ostraciiformmovement The type of movement used by sea animals with limited bodymove-

ment, where the fins are the only part of the body generating thrust.

The subcarangiform mode, which will be analysed in this thesis, uses most of the body, except

for the front. This is known as BCF locomotion, or body-caudal-fin locomotion. The front part

is stiffer than in anguilliform locomotion, while still allowing for plenty of maneuverability. The

basics of fish physiology is described in figure 3. Note especially the caudal fin and caudal pe-

duncle. The main difference between these is that the caudal fin is not composed of any skin or

muscle and is much thinner.

The way that a fish generates propulsion is by undulating in the water, as this produces both

thrust and a Karman street of vortices. When the fish undulates, it creates vortices in a different

way than when a flow encounters an inanimate object such as a cylinder. This change in the von

Karman vortex street means that more thrust is generated than in the inanimate case. In addition

to this, thrust is generated in the tail as it undulates, creating both a yaw moment on the fish

as well as sway and thrust forces. There is therefore a constantly changing flow field related to

locomotion.
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Figure 4: Illustration of how fish generate thrust. (Sfakiotakis et al., 1999)
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Mathematical descriptions

There have been many attempts to understand fish locomotion in a theoretical manner, such

as citeMaertens,Gao,Triantafyllou, titled ”Optimal undulatory swimming for a single fish-like

body and for a pair of interacting swimmers", which provides a mathematical description of fish

locomotion.

The authors ”employ travelling wave kinematics that resemble those observed in fish according

to either carangiform og anguilliform swimming, and include recoil" (Maertens et al., 2017). This

means that an expression is created containing an expression for the body deformation (h0), recoil
(B), and steering(y1), given as:

h(x, t) = h0(x, t) +B(x, t) + y1(x) (1)

= a0A(x) sin 2π(x/λ− ft+ ϕ)) +B(x, t) + y1(x) (2)

= g(x) sin 2π(ft+ ψ(x))) + y1(x) (3)

Here, a0 is a constant, and A(x) is the envelope of the backwards propogating wave, with wave-

length λ and frequency f . Note that A(1) = 1.

Recoil term: The recoil

B(x, t) = (ar + brx) sin (2π(ft+ ϕr)))

Steering term:

y1(x) = C(x2 + γx+ β)

Modal analysis of fish locomotion The midlines representing the fish motion can be ex-

pressed in both space s and time t as a matrix of dimensions S × T ,

ymidline =


yx1,t1 yx1,t2 ... yx1,tT

yx2,t1 yx2,t2 ... yx2,tT

... ... ... ...
yxS ,t1 yxS ,t2 ... yxS ,tT

 (4)

where xs, sϵ(1, 2, ..., S) make up the 20 points representing the x-position of the midline and

tn, nϵ(1, 2, ..., T ) represents time from the start of the measurments to the end. Note that to

simplify calculations only the displacement in the y-direction is accounted for. This means that

the results will not be entirely correct, but considering displacement envelopes typically exhibit

maximum displacements of around 10% of the fish bodylength, this is a reasonable enough as-

sumption.

Both the samples in space and time need to be uniform. The first objective is to find the traveling

index, which is found as
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α = 1/cond(W ) (5)

where cond(W ) is the condition number of the complex eigenvectorsW of the complex correla-

tion matrix R. To find this matrix, we first generate the analytical signal for each midline point,

as a function of time,

zs = ys(t) + iH(ys(t)) (6)

where ys(t) is the midline point corresponding to xs and tn, and i =
√
−1 and H(ys(t)) is the

Hermitian transform of ys(t). This results in a matrix similar to the one found in equation 4,

zanalytical =


zx1,t1 zx1,t2 ... zx1,tT

zx2,t1 zx2,t2 ... zx2,tT

... ... ... ...
zxS ,t1 zxS ,t2 ... zxS ,tT

 (7)

Next, we take the complex conjugate of z and transpose it, to get z̄T
. The complex correlation

matrixR is then generated as

R =
zz̄T

tT − t1
(8)

where tT − t1 is the time duration. This matrix has dimensions of S × S and is complex and

Hermitian. This matrix has S eigenvalues λs, each with a corresponding eigenvectorws of length

S. Finally, to find the traveling index, a real matrix Ws is generated for each ws, of size 2 × S,
where the first column consists of the real part of ws and the second of the imaginary part ofws.

Now the traveling index α can finally be found as described above in equation 5.

Amplitude envelope analysis

By analysing themidlinemotion envelope, the characteristics of different fish can be analysed and

compared against each other. To be able to do this effectively, it is important to scale the motions

to the body length (BL), as every fish will be of different length. The shapes of the amplitude

envelopes can be modelled as quadratic polynomials (Maertens et al., 2017) whose characteristics

can be modelled.

(Maertens et al., 2017) employs a travelling wave kinematics including terms for lateral displace-

ment, recoil and steering. This can be presented as

h(x, t) = h0(x, t) +B(x, t) + y1(x) (9)

= a0A(x) sin (2π(x/λ− ft+ ϕ)) +B(x, t) + y1(x) (10)

= g(x) sin 2π(ft+ ψ(x))) + y1(x) (11)
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where h0(x) is the lateral displacement, B is the recoil and y1 is the steering term. The lateral

displacement can be described as

h(x, t) = H(x) sin (ωt− kx) = (a1 + a2x+ a3x
2) sin (ωt− kx) (12)

which means it can be described as a quadratic envelope and a sine wave. By studying steadily

swimming fish, one can set the steering term to 0, and in this way one can approach the separa-

tiong of the recoil from the lateral displacement terms. This was what was attempted in the mas-

ter’s thesis by (Moen, 2020). Such analyses are valuable as they can give input for fish-immitating

robotics such as snake-robots and fish-robots.

By ignoring the steering term, one can, such as in (Cui et al., 2018) find the expression for the

lateral displacement envelope,G(x), which contains only the pure lateral displacement and recoil

terms. The following deduction is closely following that from Cui et al., 2018.

Firstly, to make the motion dimensionless, the wave number is scaled proportionally to the body

length,

k =
2π

λ
=

2π

s1L
(13)

here, λ is the wave length, and s1 a constant, which for carangiform and thunniform fish vary

around 1.1 to 0.9. To normalize the envelope magnitude at the head of the fish, it can be normal-

ized as

H(0)

L
=
a1
L

= s2 (14)

and, in a similar manner, at the tail,

H(L)

L
=
a1 + a2L+ a3L

2

L
= s3 (15)

thus the constants s2 and s3 represent the envelope magnitude at the head and tail, respectively.

One last parameter is needed to be able to correctly approximate the envelope, and that is the

point in which the lowest amplitudes are reached. For subcarangiform, carangiform and thunni-

form fish this point is always somewhere in the middle, never at the ends. To find this point, the

displacement is simply derivated

(
∂H

∂x

)
x=s4L

= a2 + 2a3s4L = 0 (16)

Now, the scaled midline motions can be expressed as

h(x, t) =

(
s2L+

−2s4(s3 − s2)

1− 2s4

)
sin

(
sπft− 2π

s1L
z
)

(17)
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By making x dimensionless, x∗ = x/L one instead gets a dimensionless version:

g(x, t) =
h(x, t)

L
= G(x) sin

(
2πft− 2π

s1
x∗2

)
(18)

G(x) =

(
s2 +

−2s4(s3 − s2)

1− 2s4
x∗ +

(s3 − s2
1− 2s4

x∗2
)

(19)

Where G(x) is the amplitude envelope and the instantaneous lateral displacement is given by

g(x, t) as a function of the frequency f and time t, as well as the dimensionless wave number s1
and position x∗2.

1.1.2 Deep Learning

Machine learning is not as new of a study field as some assume, originating in the last part of

the last century, but it did not achieve widespread use until the 2000’s. The advent of GPU’s

and better algorithms has resulted in huge improvements in performance. Deep learning (DL)

is a subset of machine learning (ML), which again is a subset of artificial intelligence (AI). From

Garbade, 2018, we can think of AI as a broader concept of incorporating human intelligence to

machines. AI can currently be categorized into general and narrow AI, where general AI can

solve problems while narrow AI performs specific tasks.

Machine learning is a subset of AI, and can be thought of as a way of empowering computers

with the ability to learn. Deep learning is an efficient way of implementing machine learning,

utilizing artificial neural networks. The workings of a deep learning network can be seen in

figure 5, where an artificial neural network with one hidden layer can be seen. The name neural

network comes from the similarity between this artificial one and the biological version that are

found inside our brains. An excelent book introducing to the topic of machine learning can be

found in (Géron, 2017), upon which the following is based.

A neural network consists of an input layer, an output layer, and hidden layers. The input layer are

simply what inputs the system recieves. In the case of DL networks trained for image recognition,

the inputs become the pixels of the image. Although the image is in two dimensions, the input

are processed as one-dimensional. This is achieved by simply lining every row of pixels after

each other.

The next layer, after the input layer, is the hidden layer. This layer is not restricted by the size

of the input layer, and can be larger. There can be as many hidden layers as the user want, some

of the leading networks today typically have everything from very few to between one and two

hunder. Such examples are ResNet34 and ResNet152 (He et al., n.d.). The total activation value

of each layer amounts to 1, or 100%, as indicated in figure 5. Note that there are two inputs, one

hidden layer with 4 neurons, and three outputs. The last layer is the output layer, which is the

classes that the network is tasked to detect. In the instance of object detection, this could be

humans, cars and stoplights, such as is already in use by Tesla electric vehicles.

The way that the neural pathways are trained is by giving the network already annotated data. In

this way, both ends of the network are already determined, and the pathways between them can
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Figure 5: An example of an artificial neural network. Also known as a deep neural network, when

the number of hidden layers increase 1. Figure from Géron, 2017

be resolved to give the correct answer. When this is done enough times, each individual neuron

will be given a preferrence to the ones that it connects to. This weighting is what it means when

a network is said to be trained. This can compared to how our own brains learn, where many

tries has to be done before an understanding of a certain subject will form.

1.2 Preliminary works
1.2.1 Deprecated method: mask generation using openCV

There are many possible ways to implement a way to extract fish locomotion from video. In the

project thesis, the first method examined was using OpenCV without any machine learning. As

a starting point, a background subtraction scheme using OpenCV in python was implemented.

Further, a Canny edge detector was also applied. Both of these yielded insufficient results.

1.2.2 OpenCV Results

By inspecting the results presented in figure 6 it is clear that neither the Background Subtraction

schemes nor the Canny edge detection schemes are good enough for the purposes in this report.

For the background subtraction, the MOG2 scheme was applied, experimenting with different

parameter values. The history was varied from 5 to 500 and the variance threshold was varied

from 5 to 30. All resulted in variations of the image presented in figure 6, in which a history of

5 and a variance threshold of 10 were used. For lower variance thresholds and histories, more

of the image is deemed to be foreground. Similar results were found using the MOG and KNN

schemes as for MOG2.

There are mainly three problems in using the OpenCV background subtractions as shown. Firstly,
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Figure 6: Top: Canny edge detection algorithm. Bottom: MOG2 background subtraction. Notice

that the fish is not fully defined in either method and the background is still featured considerably.

Implementing a midline extraction on either of these images would be difficult.

the background is almost never completely subtracted, mostly due to shaking of the camera and

the rippling effect of the flowing water. Secondly, larger bubbles are counted as foreground,

which they are, even though it is not relevant for us. Thirdly, the fish does not oscillate in a

uniform speed, and so some parts of the fish seldom move and thus is more easily recognized as

background, while other parts move quickly and are more easily recognized as foreground. As a

result of all these issues, the end result is a predicted foreground predicting of too much of the

background, bubbles which are not of interest, and too little of the fish.

The Canny edge detection algorithm is quite good at picking up the fish. It is suspected that even

more of the fish, or possible all of it, could be recognized if the parameters were tweaked more.

However, the main issue here is that the edge detection does not differentiate between fore and

background. Therefore all edges in the video are found, including a lot of the background. In

addition, the rippling effect of the flowing water is also detected as edges, which gives a lot of

noise in the picture.

Page 11 of 57



1 Introduction Eirik R. G. Søvik

1.2.3 Method Conclusion

In conclusion it can be said that both the background subtraction and the edge detection algo-

rithms are promising, but to make them work it might be necessary to combine them, or to use

them in conjunction with some bounding box or object detection method as well. This is what

led to the methods implemented in this thesis.

Page 12 of 57



2 Material Eirik R. G. Søvik

2 Material
In this thesis, only one set of video recordings of swimming fish experiments were used. The

experiment was conducted at NTNU/SINTEF Sea Lab in Trondheim, Norway in 2019. They were

conducted in a Blazka-type swim tunnel of approximately 59L. The dimensions for the area the

fish was able to freely move in was 120×16.5 cm. The aim of the experiments were ”verification

of model for swimming movement of salmon" (Xu, 2019).

By inspecting figure 7, the experiment setup can be viewed. The setup consists of a cylindrical

tank, with an inlet (to the right) and an outlet with a grid covering it, to prevent the fish from

being pushed downstream (to the left). In the captured video, the directions are reversed, so

the inlet is to the left of the image. The camera placement is directly on top of the fish, but the

distance is not known. It is assumed that the physical dimensions of the objects captured on video

are captured without distortion. It should be noted that the tank containing the fish is cylindrical,

so some optical distortion will occur as the fish swims close to the sides. In addition, there are

two plastic walls inside the swim tunnel, preventing the fish from swimming all the way to the

sides of the tunnel. The walls and the cylindrical form of the tube results in some distortion at

the sides of the tunnel.

Figure 7: Image of the experiment setup.

To minimize stress, the salmon were places in the experimental setup for 6-7 hours before the ex-

periment started so they could acclimatize and calm down to the new environment. It is believed

that stress is a large factor in such experiments and could affect the natural behaviour of the fish.

As the fish used were laboratory grown, they were not as capable swimmers as wild salmon, and
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Figure 8: Screenshot of the recorded video in the experimental setup

Table 1: The flow velocity for the specified times

Fish no. 0.5BL 1BL 1.5 BL 2 BL 2.5BL

5 10:15 10:27 10:35 10:56

could not swim faster than around 2 BL/S, meanwhile wil salmon are capable of reaching almost

3BL/S. So as not to startle the fish, and to induce as natural behaviour as possible, the inflow

velocity was only increased by increments of around 0.5BL/S, and only after the fish had shown

steady swimming for 5 minutes.

The camera capturing the video is set up directly above the fish so that it can capture the entire

space that the fish can move in, without panning. By observing figure 8, a screenshot of the

video can be seen. Information of the video material can be viewed in table 2. It should be noted

that frame rate was not completely consistent, but varied around 48 ms. Likewise, the physical

dimensions of the fish used in the experiment can be viewed in table 3. Lastly, the flow speed can

be seen in table 1. Note that only fish number 5 is mentioned, this is because this is the fish that

was selected for use in this thesis, as the other fish did not provide as clear swimming behaviour

as fish number 5.

Table 2: Data on the video from the experiment. Time is given in milliseconds

Resolution Recording time Recorded Frames Resulting Framerate Time between frames

1920 × 720 3e+06 149990 48.41 20.65
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Table 3: Descriptions of the fish used in the experiments. Length and height are given in cm and

weight in g.

Fish number Fork length Height Side Weight

1 43.5 11.5 6.5 1153.6

2 43 10.5 6 1127.5

3 37

4 42.1 9 4 932

5 29 6.2 2.5 319.5
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3 Results

3.1 Mask identification
To be able to convert videos of fish swimming into usable datasets, a machine learning deep

learning network was trained. The main advantage to using deep learning networks is that once

trained theymake acquiring new datasets very simple, the end result in this thesis was that videos

could be processed directly, the only requirement being that the video snippets be of suitable

length and quality.

The deep learning network chosen in this thesis is Detectron2 (Yuxin Wu et al., 2019), described

as ’Detectron2 is Facebook AI Research’s next generation library that provides state-of-the-art

detection and segmentation algorithms.’ on the official detectron2 github repository (Yuxin Wu

et al., 2019).

There are two sides to using machine learning, one is training a suitable model on manually

annotated data so that it can learn to recognize what you want it to, and the other is using the

model on raw, unannotated data. In this thesis, both steps were done. To get an understanding

of the process of the systematic analysis method, refer to figure 9.

It is important to stress that although deep learning has been successfully implemented in this

thesis, the process of actually training a deep learning model is still treated as a ’black box’.

Machine learning is a different field of expertise than hydrodynamics, so it is used as a tool.

Therefore, the verification of the results of detectron2 are mainly visual, and in the ’Verification’

section the end result is analysed to verify whether the results are usable or not.

3.1.1 Installation

Detectron2 is recommended to be run in a Linux or macOS enivornment. In addition to this, for

calculations to be performed at optimal speed, they need to be run on the graphical processing

unit (GPU). In detectron2’s case, it is optimized for utilizing CUDA, which is a parallel comput-

ing platform, for use on NVIDIA GPU’s. The choice of linux operating system naturally fell on

Ubuntu as it has good support for CUDA. In addition to this, detectron2 needs Python as well

as PyTorch, torchvision and OpenCV. The official installation page
1
should be consulted for an

in-depth description of the installation process. Installation will not be trivial if you do not have

experience with Linux, python or the command line.

3.1.2 Training a deep learning model

To start, a model had to be trained, and as such it needs annotated images to train on. Luck-

ily, it is possible to add on to previously trained models, which can be accessed within detec-

tron2’s own api. It should be noted that details pertaining to the different models one can use

is hard to obtain, so it can be difficult to know exactly what data a specific model is built on.

For reference, the model used as a building block is accessed as ’COCO-InstanceSegmentation/

mask_rcnn_R_50_FPN_3x.yaml’, and is known as ’model_final_f10217’. The COCO dataset is a

1
https://detectron2.readthedocs.io/en/latest/tutorials/install.html
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Figure 9: Flowchart detailing the process for systematic extraction of locomotion used in this

thesis.
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large and well respected dataset used as a frame of reference for many of the leading machine

learning networks.

The model was chosen as it is provided in the detectron2 documentation, (Detectron2, n.d.) and

instantly provided good results. Futher training of the is done by adding a manually annotated

dataset of the fish from the video later that is to be analysed. Models trained on the COCO dataset

have already been trained with huge amounts of data.

Preprocessing data

To be able to run a deep learning on the fish experiments, it is necessary to do some augmenting

to the data. To train the neural network it first needs manmade input in the form of annotations

and segmentations of fish outline. In the figure 9, detailing the pipeline of workflows, the steps 2

through 5 detail this work.

VoTT: Video annotation software

There are many ways of annotating images or videos, the chosen method in this master’s thesis

is by utilizing Microsoft’s Visual Object Tagging Tool, which is "an open source annotation and

labeling tool for image and video assets" (Microsoft, 2019), which includes the ability to export

annotated datasets to local storage.

Figure 10: Screenshot of an segmented annotation of a fish used for training detectron2. Note

that 27 points have been placed manually to outline the fish, to give more accurate training data

for the neural network training process

By inspecting figure 10 an one can see how the annotation process is carried out. Note that the
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pectoral fins of the fish are not part of the annotation and are ignored henceforth, as they are not

necessary for approximating the midline of the fish.

Converting dataset format to COCO format

COCO, which stands for ´´Common Objects in Context”, is a well know and highly regarded

dataset containing 330 000 images, with 200 000 of them being labeled. It is a ´´Large-scale
object detection, segmentation and captioning dataset”(Lin et al., 2015)

For detectron2 to be able to recognize and train on the annotated images, they can either be ported

to a format that detectron2 already recognizes, or alternatively, new methods can be written

for detectron2 to recognize whatever format they already are in. Luckily, there exists such a

reposirory, found on github, called VoTT2COCO (Ptak, n.d.). By utilizing this option, detectron2

must be set up to take a custom dataset in the COCO format, which makes training easier.

To use the script, the setupfile must be edited so that the source "path" variable goes to the dataset

in VoTT-format, which must contain one directory labelled "images" with all the images and

one directory with all the annotations, labelled "annotations". The destination "path" variable

must point to a directory containing one directory labelled "images". The script will generate

annotations.json in the destination directory, a single file containing all annotations.

Training

This is a thesis in hydrodynamics, and some parts of the machine learning implementation pro-

cess must be regarded as a ´black box’. Some parts of the setup of the detectron2 model config

is therefore treated as a ´black box’, and as the end result is good enough for the scope of this

thesis, are not investigated further. Note, however, that if the methods of this thesis are to be

further examined, this section in particular should be examined further, as it is probable that

changes to the configuration of the setup and implementation of the training can result in better

segmentation masks, and thus better midline approximations.

By setting up the config of the model to be used, it is possible to adjust certain parameters to

adjust how it is to be applied. The ´´num_workers” option is used for setting the number of CPU

cores to use. In this case, as the CPU has 16 cores, half of them are allocated to the deep learning

task. It is important to not use all of them, as this will make the computer crash. A key aspect of

choosing the current setup of Linux and detectron2 is to use the CUDA capabilities it offers. The

time difference for training to be performed is big, although luckily building upon previously built

models lessens the need for training considerably. In this case, a model was trained on a dataset

consisting of 28 images on the CPU, which took around 28 minutes. In comparison, training a

model on the GPU took around 1 minute and 20 seconds. This results in an increase in efficiency

of around 20 times! The number of images per batch, max iterations, and batch size all impact

training time and also depend on the amount of RAM the GPU has.

To choose a model to build upon, the line ´´cfg.merge_from_file” calls on a model. There are sev-

eral models to choose from which are incorporated into detectron2’s structure. It is also possible

to call on your own models. Note that the chosen model is based on the COCO format, which

is the same as the format that the annotated data was converted to. Specific information on the
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different models are hard to find, but the COCO datasets are well regarded and used throughout

the machine learning, as detailed aboce in section 3.1.2.

cfg = get_cfg()
cfg.MODEL.DEVICE = "cuda"
cfg.merge_from_file(model_zoo.get_config_file("COCO-InstanceSegmentation/

mask_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TRAIN = ("salmon_train",)
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 8
cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url(

"COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml") # Let
training initialize from model
zoo

cfg.SOLVER.IMS_PER_BATCH = 6
cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR
cfg.SOLVER.MAX_ITER = 400
cfg.SOLVER.STEPS = [] # do not decay learning rate
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
os.makedirs(cfg.OUTPUT_DIR, exist_ok=True)

3.1.3 Inference

Inference is when a model generated by training a neural network is applied to an image, and it

then guesses what is in the image. In our case, the model used is built upon already made models,

where a new class of fish outlines has been created. This means that the model will be able to

identify these types of fish outlines as well as every other class it has been trained on.

To use add the custom model trained previously, it is necessary to include the config setup as

described in the previous section, as it sets up detectron2 to work in the desired way. In addition

to this, the previously trained model must be loaded.

cfg.MODEL.WEIGHTS = os.path.join("output/Models/30des2021model.pth")

Once a model has been loaded, using it for inference is a matter of a few lines of code.

# path to the model just trained
cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth")
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 # set a custom testing threshold
predictor = DefaultPredictor(cfg)
from detectron2.utils.visualizer import ColorMode
dataset_dicts = get_balloon_dicts("balloon/val")
for d in random.sample(dataset_dicts, 3):

im = cv2.imread(d["file_name"])
outputs = predictor(im)
v = Visualizer(im[:, :, ::-1],

metadata=balloon_metadata,
scale=0.5,
instance_mode=ColorMode.IMAGE_BW

)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])
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As can be seen, using inference is simply amatter of writing a few lines of code. The real challenge

lies in understanding the entire framework and setting everything up correctly.

3.1.4 Mask results

The pure output produced by detectron2 needs some work before it can be imported into the

midline extraction algorithm. First, let us investigate how detectron2 performs on the chosen

dataset. The object detection and segmentation algorithm works very well, except for the two

problem areas of the tail and the head. To be able to accurately capture the locomotion of the fish,

both these areas need to be captured. Luckily they are captured every time, it is just that some

information is lost which will affect the end result.

By looking at figure 11 the masks that detectron2 generate can be viewed. The images are chosen

as they represent both the strengths and the weaknesses of the trained model. It is clear that the

nose outermost part of the nose of the fish is not accounted for, however the discrepancy here

is mostly small, there are only some instances where this is significant. The greater discrepancy

is in the tail region. In the first image the tail is fully represented, in the second one the trend is

represented but the mask does not cover all. In the third case, the fin is bent in such a way that it

is pointing opposite of the body part of the tail. This is not represented, and will probably affect

any analysis that is performed, however to what degree is hard to say.
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Figure 11: The top three images show how detectron2 applies masks, on top of the image the

mask was generated from. The bottom image shows only the points making up the mask. Note

that the bottom image does not correspond to the above images.
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Figure 12: The data points of the mask applied by detectron2
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Mask post-processing

By inspecting the last figure in 11, it is clear that themasks are sometimes lacking points in certain

areas, also areas that are well represented when the masks are overlaid on their corresponding

images. This would become a problem later, when the midline is to be extracted, as an even

distribution of points is necessary. To combat this, a smoothing spline is made, and new points

are made along this spline. To create such a spline, it is necessary that the vector containing the

mask points is made to be closed. As such, the first point of the python array containing the

masks are appended to the last.

The spline is then made using the scipy library of python, utilising the scipy UnivariateSpline

function. From the scipy docs, the spline is a ”1-D smoothing spline fit to a given set of data

points´´ (scipy, n.d.). The spline can be of order between 1 and 5, with the default being a cubic

spline (k=3). The best results were found by setting k=1. The smoothing factor s was not found

to have much impact on the smoothness of the spline, this might be because the order was linear

and the distance between each point low. The spline was applied as following:

splines = [UnivariateSpline(distance,coords, k=1,s=s) for coords in points.T]

alpha = np.linspace(0, 1, N)
points_fitted = np.vstack(spl(alpha) for spl in splines).T

where distance is the calculated distance along the coordinates, N is the number of new points,

set to 400, and points_fitted are the smoothed coordinate points. The new, smoothed masks are

vastly superior to the raw output of detectron2. By inspecting figure 12 the difference becomes

apparent. Not only are all points now evenly spaced around the entire circumference of the mask,

the points are also smoother, as can be seen in the lower of the two images. In addition, the large,

empty areas have been filled in by straight lines.
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3.2 Midline extraction
3.2.1 Medial Axis Shrinking Ball Implementation

Motivation

By utilising a method capable of finding the midline on a fish moving in any direction, analysis

of much more complex movements than simply a fish moving in a fixed direction are possible.

As such, the methods in this thesis could be built upon to analyse fish moving in more complex

manners.

Installation

The algorithm implemented was based on the method described by (Ma et al., 2011), titled ”3D

Medial axis point approximation using nearest neighbors and the normal field´´. Researchers
at Delft University applied in 2014 the this method in a python repository found on GitHub,

titled masbpy (Peters & Ledoux, 2014). In 2015 a faster, more robust version was made in C++

instead, also found on GitHub (Peters et al., 2015), called masbcpp. Note that while both of these

repositories were made for 3D implementation, they can also work for 2 dimensions.

Firstly, the C++ implementation was attempted to download and run. Immediately there were

problems, as it was not possible to install the software. After some cumbersome googling, a

solution was found and the program was ran on a simple tutorial case. The program did not run

and did not give any useful information out to the user, so debugging was very difficult to do. It

was therefore decided to instead try the python version.

The masbpy repository also presented immediate problems. These were possible to debug, how-

ever, so it was decided to try. The masbpy repository is written in the not supported python2,

which has been deprecated in favour of python3. Luckily, there exists certain scripts to convert

python2 to python3, this is included in the tools/scripts directory of python3 and is called by

$ 2to3 --output-dir=python3-version/mycode ...
-W -n python2-version/mycode

After this had been done, many more errors were encountered. After a time-consuming effort

had been conducted, a working version of the program was made.

Method

Masbpy works by taking in a set of input coordinates, and outputting the set of internal and

external midpoints corresponding to them. To do this, it first generates a set of normal vectors

for each point, and then based on this a ball is made whose tangent is at the relevant point.

This ball is then shrunk until it only touches one other point in the structure. The process is

illustrated in figure 13, where the normal vectors are overlaid on the coordinate points making

up the structure. Then, shrinking balls are laid for each point, one pointing internally and one

externally. In this way the internal and external points are found.

In the picture to the left of figure 13, the internal points are found, the algorithm has started at

the top, worked its way down the right and is now moving towards the underside towards the
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Figure 13: Example of how the masbpy algorithm works. These two images are screenshots of

the example video by Peters (Peters, 2014)

left. In the picture to the right, almost all internal and external points have been found, and the

complete results can be seen. The lines through the working coordinate (red point) indicate the

direction that the normal vector is pointing. One side is the internal and the other the external

direction.

Implementation

The first thing that must be done is to make the normal vectors. This is done using k-d trees,

which is a way of searching for nearest neighbors in both 2- and 3-dimensional space. In the

application of the masbpy application, this was done by the compute_normals function:

def compute_normals_my_func(coord, k=10):
kd_tree = KDTree(coord)
neighbours = kd_tree.query(coord, k + 1)[1]
neighbours = coord[neighbours]

p = Pool()
normals = p.map(compute_normal, neighbours)
normals = np.array(normals, dtype=np.float32)
return normals

The main problem encountered was that the normals would often not point in the correct direc-

tion. This is due to how the k-d tree works. Depending on how many neighbours were chosen,

different results were achieved. Sometimes, the normal direction alternated 180 degrees every

other point, but the more reliable results were of a nature akin to that presented in figure 15.

There, most of the normals are correct, but in the nose and tail region there are errors. If the

only issue was the vectors pointing in the directly opposite way, i.e. the internal and external

directions being switched, finding the midline could still be achieved by choosing the midline as

only the points inside the body boundary. In the head region the normal vectors are pointing

almost tangentially to the outline, producing garbage results in those cases.

Page 26 of 57



3 Results Eirik R. G. Søvik

Figure 14: Initial result of using the masbpy algorithm. Too many coordinate points results in

inaccurate midline approximation.

After the normals had been computed, another problemwas encountered. The shrinking balls did

not operate correctly. As there were toomany points, they shrunk somuch that they did not reach

the opposite side of the fish, but instead got so small they touched their actual nearest neighbors.

This resulted not inmidline points but simply a set of points near themask coordinates. This effect

can be seen in figure 14, where the midline points do not line the outline coordinates perfectly

as described, but rather form patterns based on imperfections in the outline points and which

happened to be the closest. Such a result is not usable in any further analysis.

As the results by the methods described above were non-satisfactory, one last attempt was made.

As the shrinking balls were touching the neighbors, a solution was sought by decimating the

coordinate vectors. In this way, the set of 400 points were reduced to 15 points instead. This gave

results such as in figure 15.

The approach comprised of subdividing the coordinate points of the fish outline into N arrays,

each array containing every N point in the original prediction mask from detectron2. For each

array a midline was calculated, which were then superimposed together to form one midline

for each frame. The idea is that the fewer number of coordinates in each subdivision will yield

clearer results. To counter the loss of information by creating vectors of only every Nth element,

the combined midline points were fitted by linear interpolation. To put it simply, for the original

coordinate vector containing N points, N/n different variations of figure 15 were created, using

n different coordinate points each. Then the midline points from all these N/n variations were

combined into one midline.

Steps detailing the final method of implementation

1. import coordinates

2. create normals vector from original coordinates

3. decimate normals vector into N/n vectors containing n points

4. produce midline points for each decimated normal vector

5. combine all midline points

6. filter midlines
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Figure 15: Masbpy results for a decimated coordinate array. Note the algorithm is able to predict

a midline in the center of the fish

Page 28 of 57



3 Results Eirik R. G. Søvik

Final results

By inspecting figure 16 it is clear that the masbpy method results in uneven result even when

substantial effort has been made to correct for the weaknesses of the method. The end results are

better than what was initially achieved, and in figure 16 the area around the dorsal fin is predicted

quite well, however the rest of the midline exhibits too much variation for a stable result. It was

therefore decided to drop this method in favour of an easier one.

Figure 16: Implementation of computing normal vectors for the fish outline produced by detec-

tron2. Notice how there are errors in the computations in the tail and head region.
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3.2.2 Simple approximation

As more complicated methods were not working, a simpler way to estimate the midline was

implemented. By dividing the fish into n sections, it is possible to simply find the average x- and

y-position for each section. This means that the resulting midline will contain n-1 points. The

method is extremely fast and fairly accurate. The midline rib approximation method requires the

fish to be aligned alond the x-axis, thus it cannot swim in arbitrary directions.

Method description:

Below is printed the method for extracting the midline from each individual mask, calculated for

each image frame by detectron2.

1. set start values
2. import coordinates ported from detectron2
3. calculate centroid based on coords
4. calculate midline based on coords

4.1 Create x-vector of N+1 points over the length of the fish
4.2 find each point in the coordinates where the x-coordinate

is within the current interval of the x-vector generated.
4.3 set midline point as mean of x- and y-values in each of

the N intervals
4.3 if interval is at the start or end of the fish, set the

x-value equal to the end-point, and the y-value equal to
the mean

5. calculate angles and change of angles between each midline
point. (Unused feature)

Another limitation that must be addressed is how the endpoints are calculated. Initially they

were simply calculated as the mean x- and y-position, this resulted in the head and tail not being

properly approximated. The problems with this is that the fish is a fixed length and so the midline

must not change in length, in addition the tail especially is hard to accurately predict and the last

part may not be accurately accounted for in this method. The method employed instead, see fig.

18, aims to account for constant fish length but as a result gives skewed endpoint directions. Due

to time concerns better alternatives could not be produced.
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Figure 17: The fish body is divided in n points, and for each section, the mean point is found as in

the first, leftmost section. The result is shown as x’s. Note how this method does not incorporate

the extremes of the fish.
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Figure 18: Example of how the ends of the fish are not always accounted for properly.
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3.3 Verification
In this section an analysis is performed on the data gathered by utilizing the systematic approach

detailed in the previous two sections of the results section. This is an important part of the process

as it verifies that the results gotten from the the mask application and midline extraction are

usable. Themain point of this section is thus not to do an in-depth analysis of fish hydrodynamics

for the salmon in the experiment detailed in the Material section, but rather to verify that the

output of the method is usable. Had more time been available, a more in-depth analysis would

have been performed, but the previous steps were heavily time-consuming.

3.3.1 Choosing data to analyse

To be able to do any sort of analysis, it is important to choose a meaningful dataset. As has

been detailed in section 2, there were originally several fish that were in the SeaLab experiment,

however one fish, fish 5, had clearer results than the others so only this fish was chosen. In

addition to this, to get a clear result it is necessary to find a time framewhere the fish is swimming

as steadily as possible. Such a time-section was found, and it aligns with when the inflow velocity

was at 1 BL/s. The chosen time-section was therefore from 10.15-10.20.

By importing the midlines it could be verified that the dataset was quite good. To further chose

a dataset where the fish was swimming as close to absolutely steady as possible, the first 1.6

seconds were chosen. One way to glean a quick overview over the movement of the fish is to

plot the position of the centroid in the x- and y-direction as a function of time. In figure 19 this

movement can be seen. The centroid is simply calculated as the mean of every coordinate point

in both the x- and y-direction. Both of these graphs indicate that there is significant movement in

the dataset, so to get as clear a dataset as possible, the first 5 oscillations of the fish were chosen.

This corresponds to frame 3 to 83, and a duration of 80/50=1.6 seconds. The whole dataset has in

comparison 228 frames which corresponds to 4.56 seconds.

Figure 19: Movement of the centroid of the fish as a function of time. The graph to the left

indicates the x-position of the centroid, and the one on the right indicates the y-position. Position

0 indicates the first point of the centroid vector, i.e. x-component, as does -1 indicate y-component

The now smaller dataset has been reviewed as an animated plot, however the format of a written

Page 33 of 57



3 Results Eirik R. G. Søvik

Figure 20: The position of the fish for the start and end of the chosen frames for the analysis.

Start frame is frame 3 and end frame is 83.

thesis does not allow for easy verification by such means. However, the first and last frames of

the dataset has been printed superimposed on each other in figure 20. In addition, the midlines

and centroids are present. As can be clearly seen, the fish is almost in exactly the same position

and shape, so this is deemed to be a reasonable dataset for carrying out further analysis. For the

analysis, the y-coordinates of the midlines are more of interest. This is a simplification, but as the

fish only does steady swimming in the chosen time frame, all lateral displacements are relatively

small and as such the impact of including the x-direction can be neglected. To see then see how

the fish moves over time, the y-position of every midline point is printed for each time instant in

figure 21. As can be seen, there are 5 undulations and stays almost in the exact same spot. This

corresponds well to what was seen in figure 19, but the centroid point does not necessarily reflect

the whole midline so it is important to check.

Dataset quality

To start off the analysis of the data the quality will be assessed. The statistics the midline lengths

over time are presented in table 4. There is certainly some deviation in the midline length, and

specially in the midline sections. For the chosen time frame, there is less variation, signifying

a better approximation of the fish in this section. The sources of this deviation are discussed in

section 4, but they are most probably from detectron2 having trouble recognizing the entire tail

region.

The fork length of the fish has been measured to be 29 cm, with this information, if we assume
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Figure 21: For each frame of video in the section, every midline point is plotted. This gives good

insight into the motion of the fish, and a trend can be seen where the fish moves in a straight line

with little deviation.
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Table 4: The statistics of the length of the midline over time are presented below. Midline sections

refers to the length between each individual midline point. Mean and Std are given as pixels, and

Std(%) is given as percentage of the mean.

Property Mean Var Var(%)

All frames

Midline length 725.28 19.04 2.62

Midline sections 38.17 5.61 14.6

Frames 3-83

Midline length 727.63 16.34 2.24

Midline sections 38.30 5.64 14.7

that the mean length of the midline is somewhat accurate, we can say that 725 pixels is 29 cm.

If this is true, then the standard deviation of the midline length is around 0.76 cm, or 2.2% of the

total length.

3.3.2 Analysis of data

The current midline has not been smoothed it is the pure output of the method described in

section 3.2.2. It is will therefore contain the noise from any distortion in the actual image that the

camera recorded in the lab, the noise from any imperfections in creating the detectron2 mask,

and noise from the simple midline extraction method. One way to smooth out this noise would be

to employ some sort of smoothing function over the midline. Another version is to use a Fourier

transform to extract the frequencies of the midline motion and the remove the frequencies higher

than the dominating frequency.

Fourier analysis

Using python, both the Fourier transform and the corresponding phase can be found by utilising

the numpy library’s fft and phase functions. The fft function uses the fast Fourier transform.

By taking the fft of each midline point as a function of time, we can find the Fourier transform.

Fourier analysis requires a periodic signal, but luckily the chosen dataset is now periodic with a

period of 5, so there is no need to alter the input data. By processing the Fourier transform we

can print the fft amplitude, presented in figure 22. The dominating frequency is found at 3.125

Hz for all midline points. This corresponds well with the data as this frequency multiplied with

the duration of the signal gives 5 periods.

In figure 23 the Fourier signal has been scrubbed, meaning that all signals higher than the domi-

nating frequency have been removed. This means that the resulting Fourier transform will look

exactly like figure 22, except that from 5 Hz and up, the amplitude is 0. Whether the amplitude is

correct can be quickly visually checked by seeing that the magnitude of the highest peak, which

is the one corresponding to the tail end, is around 55, and that the amplitude of the oscillations

of the same point, as seen in figure 23, also is around this number.
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Figure 22: Amplitude of the fourier transform for the chosen dataset. There are two main peaks

near origo, one indicating the slower periodic motion of the fish in sway, the other the dominating

locomotion frequency.
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Figure 23: Fourier approximation of the last midline point, on the tail, overlaid the recorded

position.
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Figure 24: Phase of the dominating frequency as a function of midline x-position

Phase

The phase is found by computing the angle of the fourier transform. It correlates to the phase

shift of the signal. In figure 24 it is seen that the phase of the dominating frequency is linearly

shifting from 5.19 to -1.4, the difference is equal to 2π. Note that as the phase is circular as it

comes from sinusoidal motion, there is a shift which is corrected by simply multiplying the first

section by 2π. The actual values of the phase are only dependent on where the fish is in the

motion.

Wave number and wave length

From the phase, the wave number is found, and likewise the wave length.

k = −d(phase)
dx

(20)

In our case, as the length of the fish is simply the unit length, the difference of the first and the last

point in 24 are 6.602, which is 95% the value of 2π. Similarly, as they are inversely proportional,

the wave length is found as

λ =
2π

k
(21)

which gives a value of 0.95. This value is in relation to the body length, so it is 95% of the body

length.
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Figure 25: Amplitude envelope of the midline motion. Both estimations using time-analysis and

fourier analysis have been used. Notice that the fourier estimation is significantly higher.

Amplitude envelope

The amplitude envelope says a great deal about the locomotion of the fish. As discussed in section

1.1.1 this envelope can be described by equation 19:

G(x) =

(
s2 +

−2s4(s3 − s2)

1− 2s4
x∗ +

(s3 − s2
1− 2s4

x∗2
)

(19)

The displacement envelope G(x) has been found for the chosen dataset. It can be seen in figure

?? where the 20 midline points can be found as well as polynomial functions approximated in

python.

Firstly, the method for finding the envelope by time-analysis was based on

for s in range(space):
y_mean = np.mean(midlines_y[:,s])
y_displacement[s] = (np.abs(np.max(midlines_y[:,s]))-y_mean)/mean_length

where space the for loop loops over each of the 20 midline points, mean_length is the mean

midline length discussed above, and the amplitude envelope is found as y_displacement. For the

fourier-based method, the envelope was found by

for s in range(space):
max_y[s] = np.max(f_y)/mean_length

where f_y is the amplitude of the Fourier transform. From (Cui et al., 2018) we know that the

parameters s2 and s3 can be read directly from the dimensionless amplitude envelope. This is
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Table 5: Results from the analysis of the displacement envelope. The polynomials are of the form

p = ax2 + bx+ c. For the parameters to the right, the values are listed under which method they

were found by. All values are normalized in reference to the midline length. The left number for

the travelling index is with all points averaged, the right is with all non-zero points averaged.

Method a b c s2 s3 s4 k λ travelling index

Time 0.1389 -0.0746 0.0259 0.0259 0.09023 0.2684 - - 0.688 / 0.725

Freq. 0.1301 -0.0694 0.0184 0.0184 0.07911 0.2666 6.602 0.951 -

achieved by calculating the polynomials for both the time and the frequency approximation for

the head and the tail, to gain the values of s2 and s3, respectively. Now, by inspecting equation

19, we see that s4 can be found easily by inspecting the term in front of the squared x. We see

that

a =
s3 − s2
1− 2s4

(22)

And since we already have a from the polynomial, we can now find s4. The results are posted in

table 5, where also the wave number k, wave length λ and the travelling index are listed. Note

that all values are normalized in reference to the midline length.

The travelling index is found by the samemethod as outlined in 1.1.1. The analytic signal is found

below. Notice that the mean of the midline points are subtracted from the to gain normalized

values, as the hilbert function of numpy already produces the analytic signal.

for s in range(space):
analytic_signal[:, s] = hilbert(midlines_y[:, s] - np.mean(midlines_y[:, s

]))

From this the travelling index can be found as detailed in sectinon 1.1.1. By inspecting figure 26

one sees that a travelling index is actually found for each midline point, which alternates around

a midline point. As presented in table 5 the mean of the travelling index is found as two different

numbers depending on whether the first point should be counted or not.

Lastly, it is fitting to compare the findings of the current analysis with data from Cui et al., 2018,

to see whether the results are reasonable. The found s2 is squarely in the middle of the chosen

species in table 6. For s3, the values are actually outside what is found for the other subcarangi-

form species, but a better fit for carangiform species. s4 is a good fit for all the entries. Lastly

wave length and travelling index both agree with the other results.
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Figure 26: The travelling index of each midline point, from head to tail.

Table 6: A selection of characteristics from Cui et al., 2018. All units are dimensionless. s indicates

a relative value which is independent of the traveling index.

Species s2 s3 s4 λ travelling index

Subcarangiform species:

Rainbow trout 0.0 0.12 0.0 0.7-1.3 0.61-0.77

Rainbow trout 0.156s 0.936 0.25 0.95 0.626

Rainbow trout 0.358s 0.994 0.2 0.9 0.777

Leopard shark 0.0 0.16-0.24 0.0 0.63-0.91 0.68-0.78

Zebrafish 0.0 0.275 0.2 1.0 0.665

Goldfish 0.058 0.174 0.337 0.882 0.623

Carangiform species:

Largemouth bass 0.004 0.024 0.25 0.9 0.638

Largemouth bass Swim at 0.7 BL/s 0.0041 0.0472 0.3 0.590.83 0.580.68

Largemouth bass Swim at 1.2 BL/s 0.0053 0.0576 0.3 0.590.83 0.580.68

Saithe and mackerel 0.02 0.1 0.25 0.891.1 0.620.66
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4 Discussion
There main goal of this thesis was to investigate a systematic approach to fish locomotion anal-

ysis.

4.1 Swimming experiment
There is some variation of the frame rate, but this should not be a problem as it is relatively

fast. Still, the fish does move enough between each frame that a more detailed movement pattern

would be documented had it been even higher. Importantly, the images are not blurred and the

motion is captured sufficiently.

There are several factors that limit the usefulness of the experiment. However, as the main goal

of this thesis is to create a systematic approach to salmon locomotion extraction, it is enough to

simply be able to analyze the resulting midline to verify that the approach is valuable and can be

used in further studies.

If fish locomotion studies are to be done in the future, there are certain aspects that should be

improved. For one, the size of the tank relative to the fish should be larger, as in the current setup

there are many instances where the fish is swimming close to the surface of the tank. This creates

surface effects which interfere with the pure, unaffected inflow which is sought. In addition to

this, the curved glass does not offer any advantages in terms of optical distortions. Onemight also

wonder how the flow Reynolds number affects the fish locomotion. As salmon naturally travel in

both rivers and the open ocean, it can reasonably be assumed that tight, turbulent spaces are not

an unnatural habitat for the fish, but a glass or plastic tank is not a natural environment and will

undoubtedly induce stress in addition to interfering with the pure, unaffected steady locomotion

that is sought.

4.2 Mask identification
Deep learning is in large part treated as a black box in this thesis. Deep learning is a complex

subject and the tools required to wield it are difficult to understand, install and run. Even so,

quite good results were achieved by someone with limited knowledge. The major weakness in

the implementation was that the details of the model used to build on was unknown, the variables

in the configuration of the model were unknown, and the dataset trained on was limited. Even

so, with under 30 annotated images to train on, the results were usable. This is very promising

to the future of mahcine learning implementations of fish locomotion.

The post-processing part of the process is all in all not a significant contributor to noise. Although

the smoothing function of the mask was not perfect, the improvements gained by improving the

way the model predicted the mask points are much more significant. The fact that the masks

were completely lacking points in large areas, and quite consistently misrepresented both the tail

and the head region means that improvements here would yield vastly better results.

Other types of deep learning networks are also worth to investigate, however the benefits of

sticking to detectron2 is that a working implementation has now been made, and improving this

might give a better yield for less work. There are also versions of detectron2 that simply build

Page 43 of 57



4 Discussion Eirik R. G. Søvik

on it, but use the same framework. There are also different networks that specialize in different

things, such as sharp edges for the tail.

4.2.1 MASB

If complex movements are ever to be analysed, then future implementations of the masbpy al-

gorithm are a viable options. There were many problems with the masbpy implementation. The

masbcpp version, which uses C++ was not able to run at all. As this is the newest version, it

might be that it actually will work except for some simple bug. At any rate, converting the mas-

bpy framework from python2 to python3, and then having to rewrite most of the functions was

highly time consuming and should have been dropped earlier in the process. The idea of having

a much more robust tool was what made dropping the method harder.

The main problem lies in the normal vectors rarely working perfectly, as well as the shrinking

balls connecting to the neighbouring points and thus giving wrong results. One might wonder

if much better performance might be had if detectron2 had given better output. This is hard to

know for certain, but might be unlikely as masbpy did not perform well even with few coordinate

points to work on. The example videos show masbpy and masbcpp working very well even with

large datasets, which makes it perplexing that it did not work even for something that should

have been relatively simple.

In the end, other methods should be investigated before this is attempted again. The method

might give good results but hopefully better alternatives exist.

4.2.2 Simple approximation

The main disadvantage to this method it is not suitable to scale to more advanced methods of

fish locomotion analysis. This method is linked to the limitations of the experiment it is based

on, which for our case is fine enough, but it would have been better to make the MASBY method

work as it is a more robust mehtod and would be possible to implement in future cases also.

One disadvantage of this method is how it locks the user into only analysing fish aligned along

the x-direction. For the specifics of this thesis, this was not a problem and as such

4.2.3 Verification

Very large variance. This can is probably from the inaccuracy of the midline predictions of the

tail. 0.76 cm st. deviation of midline length probably affects the results, and it should be better.

This is a deviation of almost 3%, for a truly accurate analysis this should be improved.

Phase: The fact that the line is not completely straight is probably due to noise, although it could

technically also be due to the fish.

4.3 Further works
As knowledge of bio-inspired robotics improves, it is reasonable to want to study body interac-

tions with varying flow fields, such as swimming around objects, navigating through obstacles or
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interacting with other swimmers (the task is left to the reader). I believe that filming fish swim-

ming in the wild would provide very good research material. Although this might be difficult to

implement in the near future, larger tanks with more space for the fish to swim in are definitely

possible. Also, rectangular tanks allowing for maneuvering would also be highly beneficial for

study of locomotion which is to include steering. In addition, a higher resolution camera with an

even better frame rate would also be better for getting as accurate results as possible for the deep

learning algorithm.

The detectron2 algorithmmust be improved if better results are to be had. There aremany aspects

that could be improved, such as has been identified in the discussion previously. However, for

proper results, it would be best to involve someone with a proper understanding of machine

learning. There is no substitute for experience, and if detectron2 were to be fine-tuned it will

most probably deliver better, faster results.

The only thing remaining is for others to take the system into use, so that it can be optimized for

further data extraction.
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5 Conclusion
The goals of this thesis were 1. to summarize the findings of the project thesis, 2. to describe the

performed fish swimming experiments, 3. create a working environment in python using MLAs

and apply it to the experiments, 4. to attempt a validation of the method created in step 3, and

finally 5. to draw conclusions from the studies.

The first two goals have been achieved in the first section of the thesis.

The main goal is goal 3. It proved to be a massive undertaking to create an environment which

could utilize MLAs for fish locomotion analysis. This is because deep learning is a demanding

subject and the tools used to wield it are difficult to master. Due to the nature of framework of

detectron2, a robust system had to be made, so that the amounts of data could be transferred from

one step in the process to the next. If this information pipeline was not robust, there would have

been no point in trying to automate the process to begin with.

The systematic approach has proved to be successful, as it is now relatively easy to get as much

data as one would want. Due to time concerns, not much time was left to further analyse the data

to gleam something meaningful into the experiments, but since the systematic approach actually

works, now other can. There are certainly many points of improvements to the systematic ap-

proach, such as investigating further implementation of detectron2; improved training data and

altered configuration setup, as well as possibly augmenting detectron2 with newer versions built

upon it.

Goal 4 could have been implemented better, such as by using the least squares method to separate

recoil from the transverse locomotion. But given the circumstances it served its purpose to show

that the results from the systematic approach are usable and not garbage.

All in all the goals of the thesis have been adequately met. The systematic approach produced

results and they were verified against other data. Now all that remains is for the approach to be

utilised to produce usable result in more detailed research.
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Figure 27: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 1 of 19.

Part I

Appendix
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Figure 28: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 2 of 19.

Figure 29: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 3 of 19.

Page 49 of 57



Eirik R. G. Søvik

Figure 30: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 4 of 19.

Figure 31: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 5 of 19.
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Figure 32: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 6 of 19.

Figure 33: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 7 of 19.
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Figure 34: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 8 of 19.

Figure 35: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 9 of 19.
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Figure 36: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 10 of 19.

Figure 37: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 11 of 19.
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Figure 38: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 12 of 19.

Figure 39: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 13 of 19.
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Figure 40: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 14 of 19.

Figure 41: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 15 of 19.
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Figure 42: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 16 of 19.

Figure 43: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 17 of 19.
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Figure 44: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 18 of 19.

Figure 45: Midline y-displacement and fourier approximation using only the dominating fre-

quency of 3.125Hz for position 19 of 19.
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