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Abstract

The following presents a program for the simulation of electromagnetic cascades,
consisting of photons, electrons, and positrons, on the thermal background ra-
diation from an accretion disk in an active galactic nucleus core. The program
features an adaptive propagation algorithm which iteratively moves each par-
ticle a certain step length until an interaction with the background occurs,
determined by comparing the total interaction probability at each step with a
random number. Once an interaction occurs, the interaction parameters are
determined by random sampling from their respective probability distributions.
Electrons produced below a certain threshold energy are discarded to avoid ex-
cessive production of soft photons. The simulation agrees with optical depth
calculations performed on the same system.
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Preface

I have been interested in the natural sciences for as long as I can remember. But
I can also clearly remember the two moments that violently reshaped my entire
worldview and gave me a nearly spiritual perspective on the laws and awes of
nature.

The first was upon reading Richard Dawkins’ 1976 book The Selfish Gene in
the eleventh grade. And although I would love to delve deep into the awesome
explicative power of natural selection, a topic with the potential to tear so deeply
into the philosophical questions about why you and I even exist that Dawkins
has spent most of his life arguing with people who simply refuse to believe in
it, it appears that my master’s thesis is on the topic of physics, and not on
evolutionary biology. But you need not worry that I have picked the wrong field
of study, because physics has the potential to go even deeper.

Although the planets and stars would keep hurling about even if there was
no life in the universe, it would not be as interesting to have physical laws if
no one were around to experience them. Right now, we may be living at the
first moment in the history of the entire universe that the Standard Model of
particle physics has ever been hypothesized. And the mathematical complexity
of quantum field theory would never have been able to confuse me if no one
had discovered it first. So, it appears that there is some connection between life
and physics, and this leads to the second moment to fully ignite my passion for
science.

For while life is necessary to appreciate physics, it was on my voyage through
the 1980 television series Cosmos that Carl Sagan showed me so clearly why
physics is necessary to appreciate life. Biology can merely answer how life works
and why it exists, but if one should wish to completely understand their brief
presence in this world, they inevitably need to ask how the universe works and
why it exists, too. Science is currently dealing with the how, and it has been
doing so quite efficiently in the last couple of hundred years. We now have a
pretty plausible explanation for how the universe put together all the necessary
ingredients for life on our very planet. Then evolutionary biology explains how
life occurred, and how a small strand of that life evolved into humans. And
those humans turned out to be pretty curious about stuff.

What follows in this thesis is my contribution to the collective human cu-
riosity. While it does not answer any of life’s greatest questions, it does leave
me feeling content with the five years I have spent achieving the scientific liter-
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acy needed to write something like this. It has given me tremendous pleasure
and a sense of belonging to finally feel that I understand the general picture of
everything we know about the universe so far. While Cosmos can take a lot of
credit for bringing me here, by illuminating all the major discoveries that led
us to the scientific understanding we have today, it also lends some support to
the idea that human consciousness and physics are intricately connected. For
in the words of Carl Sagan: ”We are a way for the Cosmos to know itself.”
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Chapter 1

Introduction

When looking up at the night sky, we see photons that have travelled trillions
of miles to reach our eyes. The light we observe in the visible spectrum is only a
small fraction of the vast number of particles that are launched into space from
distant cosmic sources. On their years-long journey to reach the lens of your
eye, they travel through an ocean of cosmic background radiation. Given the
right circumstances, interactions can occur, so many of the particles that reach
us are actually created during a journey through empty space.

Cascades occur when the resulting particles from an interaction can interact
further, leading to a myriad of interactions which exponentially increases the
amount of particles present. This thesis will consider such a cascade occurring
on the background radiation from the accretion disk of an active galactic nu-
cleus (AGN). It is inspired by the program ELMAG [1], which simulates electro-
magnetic cascades on the extragalactic background light (EBL). The processes
involved in these electromagnetic cascades are illustrated in Fig. 1.1.

1.1 Cascades in Extragalactic Background Light

When an ultra-high-energy photon travels through the EBL, it will interact with
background photons to produce an electron-positron pair. Hence, we cannot
observe ultra-high-energy photons from distant sources directly, since they will
undergo pair production long before they reach us. But we can observe them
indirectly, by looking at the resulting particles from their interactions.

The electrons and positrons (from now on referred to collectively as elec-
trons) can also interact with the background, through the process of inverse
Compton scattering. While Compton scattering concerns high-energy photons
hitting stationary electrons, inverse Compton scattering considers high-energy
electrons interacting with low-energy photons. The electron transfers some of its
energy to the photon, resulting in another high-energy photon that can further
contribute to the cascade.

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: To the left we see an incoming high-energy photon, in red, interact
with a low-energy background photon, creating an electron and a positron. To
the right we see the electron interact with a background photon. The electron
transfers some of its energy to the photon, resulting in yet another high-energy
photon.

1.2 Cascades in Active Galactic Nuclei

Active galactic nuclei may be one of the most epic phenomena in our universe.
At the center is a supermassive black hole, which is an unfathomable physical
construct in and of itself. Matter falling into it forms an accretion disk, which
emits immense quantities of electromagnetic energy as thermal radiation. The
power output of quasars, the most powerful of AGNs, can be larger than that
of entire galaxies [2]. AGNs perplexed scientists upon discovery, since their
brightness would necessitate an incredible power output if they were truly as
far away from Earth as their redshifts indicated. The current understanding of
AGNs, that they are fueled by accretion onto a supermassive black hole, first
appeared in the middle of the 1960s, just a few years after quasars were first
discovered [3]. The source of the energy is the loss of potential energy in the
gravitational field as matter falls inwards. Some AGNs have a pair of jets of high
energy particles which extend in opposite directions. An AGN core is illustrated
in Fig. 1.2.

Simulating an electromagnetic cascade near an AGN core presents a few
challenges compared with cascades on the EBL. Firstly, while the EBL can
be assumed to be isotropic, we cannot make such an assumption when the
source of the background radiation is an accretion disk. We will, however,
assume cylindrical symmetry, which means that any high-energy particle we are
tracking needs to travel along the axis of symmetry of the system. This is not
a terrible assumption, since jets of high-energy particles in AGNs are produced
roughly in that direction. The difference in interaction rates and interaction
parameters are assumed to be small for tiny angular deflections from this axis.
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Figure 1.2: A simplified model of an AGN core. A supermassive black hole is
surrounded by an accretion disk. The accretion disk radiates thermal photons,
shown in black. We will consider high-energy particles moving away from the
AGN core along the axis of symmetry.

The anisotropy does, however, necessitate a way of calculating the interaction
rate for anisotropic backgrounds. This was done in the project work on the
related topic of optical depth in AGN cores, which this thesis is a continuation
of. Since it is considered essential to the background theory of the master’s
thesis, this derivation will be presented in its entirety in Ch. 2.

The second challenge is that the background radiation stemming from the
accretion disk is not uniform, an assumption we can also make for the EBL.
As particles are assumed to be moving along the axis of symmetry, we only
need to introduce one spatial coordinate, namely the height above the center of
the system. Since the interaction rate now changes as the particle moves, the
probability that the particle interacts at a certain height no longer follows an
exact exponential distribution, like it would in the uniform case. To overcome
this, we will iteratively propagate each particle over small enough distances such
that the probability of interaction in each step is small.
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Chapter 2

Theory

Simulating an electromagnetic cascade requires mathematical expressions for
the thermal background radiation and for the interaction rates of high-energy
photons and electrons moving through this background.

2.1 Thermal Radiation

In order to calculate the rate of interaction with background radiation, the
spectral photon density of the background radiation is needed. This is the
number of photons per unit volume per unit frequency, and is given by

nν =
dn

dν
=

dN

dV dν
, (2.1)

where N is the number of background photons, V is a spatial volume, and ν
is the frequency of the photons. The most important source of background
radiation in an active galactic nucleus is the accretion disk surrounding the
supermassive black hole. The electromagnetic radiation from the accretion disk
will be treated as black-body. Since the background radiation surrounding the
accretion disk is not isotropic, it is necessary to find an expression for the photon
density which does not possess this restriction. Hence, a general expression for
the spectral photon density away from a source will be derived in the following
section.

2.1.1 Spectral Intensity

A thermal source of radiation has the spectral intensity Iν , which is the radi-
ated energy per unit time per unit projected area per unit solid angle per unit
frequency. The projected area is illustrated in Fig. 2.1. The spectral intensity
is given mathematically by

Iν =
dE

dtdA⊥ dΩS dν
, (2.2)

5
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where E is the radiated energy, A⊥ is the projection of an area A on the source
onto a plane perpendicular to the direction in which it radiates, ΩS is the solid
angle element into which it radiates, and t is time.

Figure 2.1: The projected area dA⊥ is the apparent area of dA when seen from
an observer located in the solid angle element dΩS.

For a thermal source at rest, the spectral intensity is independent of direc-
tion. This means that the power per unit projected area in a given frequency
interval which is radiated into a solid angle element is constant, independent of
where the solid angle element is located.

We will now consider an observer which receives radiation from the source
on an area element dS, shown in Fig. 2.2. We can define the analogous received
spectral intensity as

IR
ν =

dE

dtdS⊥ dΩR dν
, (2.3)

where S⊥ is the projection of S and ΩR is the solid angle of A when seen from
the observer.

From conservation of energy, we know that the spectral power received at
dS from dΩR must be the same as that emitted from dA into dΩS ,

Iν dA⊥ dΩS =
dE

dtdν
= IR

ν dS⊥ dΩR. (2.4)

However, rearranging yields that

Iν
dA⊥
dΩR

= IR
ν

dS⊥
dΩS

. (2.5)
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Figure 2.2: The receiver area dS, with orthogonal projection dS⊥, and the solid
angle projection dΩR of the source area dA.

Using the definition of the steradian, we have that dA⊥/dΩR = d2 = dS⊥/dΩS,
where d is the distance between the source and the observer. The result is
that the spectral intensity received by the observer is identical to the spectral
intensity radiated by the source, and it is also independent of the distance
between source and observer. Hence, the expected 1/d2 attenuation in received
spectral power is caused by the reduction of the solid angle projection of the
source as seen from the observer, not by a reduction of the intensity.

2.1.2 Spectral Photon Density

The spectral photon density is tied to the spectral energy density, the energy
per unit volume per unit frequency, through the quantization of photon energy,
E = hν, where h is the Planck constant. In order to express the former in the
vicinity of the observer, we will derive the latter using the spectral intensity of
the source. As we saw in the previous subsection, the thermal spectral intensity
is independent of distance and direction, and this makes it a quantity we can
use to find the desired energy density.

Since radiation moves at the speed of light c, the spectral energy density
near the observer can be found by considering the energy from an angle element
dΩR which hits the surface dS in time dt. This energy must be contained in
the volume cdtdS⊥, as shown in Fig. 2.3. Hence, we get the spectral energy
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density at the observer by integrating over all solid angles dΩR, yielding

uν =
dE

dV dν
=

1

c

∫
dΩR

dE

dtdS⊥ dΩR dν
=

1

c

∫
dΩR Iν , (2.6)

where we have used Eq. (2.3) to tie the quantity to the spectral intensity. If the
source is uniform and extends in all directions surrounding the observer, this
leads to the familiar energy density of 4π Iν/c.

Figure 2.3: The volume containing the energy from dΩR which will hit the
projection of the observer, and therefore the observer, in time interval dt.

By considering that the energy of a given photon is equal to hν, we obtain
the relation uν = hν nν . Hence, the general expression for the spectral photon
density becomes

nν =
1

chν

∫
dΩR Iν . (2.7)

2.1.3 The Planck Distribution

A black body radiates with the spectral intensity Bν , which is given by the
Planck distribution:

Bν =
2h

c2
ν3

exp(hν/kT )− 1
, (2.8)

where T is the temperature of the object and k is the Boltzmann constant [4,
p. 132]. The spectral intensity of an object at T = 100 K is shown in Fig. 2.4.
It has a maximum of 1.90× 10−10 erg s−1 cm−1 sr−1 Hz−1 at 5.9× 1012 Hz.
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Figure 2.4: The Planck distribution for an object radiating at a temperature of
100 K.

2.2 Interaction Rate

We now consider a particle moving through the thermal background radiation.
To model a cascade, we need a measure for how likely it is that an interaction
happens as the particle travels a certain distance. This is quantified in the
interaction rate, which in a uniform background is the inverse of the mean free
path of the particle. Since the background in our model is not uniform, we need
to evaluate the interaction rate for different values of the distance z from the
center of the black hole.

The general expression for the interaction rate in an isotropic background of
photons is given by

R =
1

2β

∫
dν nν

∫
dµ (1− βµ)σ, (2.9)

where βc is the speed of the particle, µ = cos θ, with θ the angle between the
incident particles, and σ is the cross section of the interaction [5, p. 479]. We
will use the (1− 1− 1− 1) metric. Four-momentum is denoted by p, while ~p is
three-momentum.

2.2.1 Interaction Rate in Anisotropic Background

Since Eq. (2.9) assumes an isotropic photon density, we will now rewrite it in
such a way that it is compatible with the directional photon density derived in
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Sec. 2.1.2.

By pulling out a factor of 1/2π, we can reinstate the azimuthal angle into
the inner integral. This makes it a solid angle integral over Ω, which represents
the relative direction of the two incoming particles. Additionally, we replace
the spectral photon density with a directional variant on the form of Eq. (2.7),
yielding

R =
1

4πβ

∫
dν

∫
dΩR

dnν
dΩR

∫
dΩ (1− βµ)σ. (2.10)

By letting θ = 0 in the direction of the high-energy particle, Fig. 2.5 illus-
trates that the solid angle elements Ω and ΩR can be directly tied together,
as they are pointing in opposite directions. Let the angles Θ and Φ represent
the polar and azimuthal angles in the coordinate system of ΩR, which points
towards the source. If Θ = 0 aligns with θ = 0, the angles are related through
the transformation Θ → θ = π − Θ and Φ → φ = Φ + π. The solid an-
gle element dΩR = sin Θ dΦ dΘ is unchanged under this transformation, since
sin Θ = sin(π −Θ). Hence, we may safely rewrite the directional photon density
as

dnν
dΩ

=
1

chν
Iν , (2.11)

where the solid angle element now is defined to be pointing away from the
source, not towards it.

Figure 2.5: The angle between the incident photons and its relationship with
the solid angle projection dΩR of the source of the background radiation.
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Redefining the directional spectral photon density lets us integrate away the
solid angle ΩR, which cancels the factor 1/4π. Hence, the final expression for
the interaction rate in an anisotropic background becomes

R =
1

β

∫
dΩ

∫
dν

dnν
dΩ

(1− βµ)σ. (2.12)

By inserting the Planck distribution into the directional spectral photon density,
we obtain

dnν
dΩ

=
2

c3
ν2

exp(hν/kT )− 1
(2.13)

for black-body radiation.

2.2.2 Pair Production

A pair of photons can produce charged particle-antiparticle pairs. Using the
theory of quantum electrodynamics (QED), the relativistic quantum field the-
ory which governs all electromagnetic interactions, one may compute the cross
section for pair production, as well as Compton scattering. Since the electron is
the lightest charged particle, the most common interaction is the creation of an
electron-positron pair (from now on this is what we mean by pair production).
The Feynman diagram for this interaction is shown in Fig. 2.6.

Figure 2.6: Two photons interact to create an electron-positron pair. This figure
shows the t-channel, the u-channel is omitted.
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The fundamental constraint for pair production is that there needs to be
enough energy present to create the rest mass of the resulting particles. Since
the energy of a particle depends on the frame of reference, we seek to express
this in a way that is Lorentz invariant. We identify the center of momentum
frame as the crucial frame of reference, because producing particles at rest in
this frame must be the interaction requiring the least amount of energy in any
frame. This leads us to the first Mandelstam variable, s. It is the squared
center of momentum energy, so, for a pair of electrons produced at rest, we
know that

√
s = 2mec

2, where me is the electron mass. The energies at which
pair production can happen must therefore satisfy

s > 4m2
ec

4. (2.14)

The pair production cross section is given by

σp =
3

4
σTh

m2
ec

4

s

[(
3− β4

e

)
ln

1 + βe

1− βe
− 2βe

(
2− β2

e

)]
, (2.15)

where

σTh =
8πα2h̄2

3m2
ec

2
(2.16)

is the Thomson cross section, with α the fine structure constant and h̄ the
reduced Planck constant, and βec is the speed of the resulting electrons in the
center of momentum frame [1, p. 4].

We can find the squared center of momentum energy from the four-momenta
of the incoming particles,

s = (p1 + p2)
2
c2 =



E/c
E/c

0
0

+


hν/c

hν cos θ/c
0

hν sin θ/c




2

c2 = 2Ehν (1− µ). (2.17)

Four-momenta are labelled according to Fig. 2.6. From conservation of energy
and momentum, we know that p1 + p2 = p3 + p4. Hence,

s = (p3 + p4)
2
c2 =

[(√
m2

ec
2 + ~p3

2

~p3

)
+

(√
m2

ec
2 + ~p4

2

~p4

)]2

c2. (2.18)

By considering the center of momentum frame, the sum ~p3 + ~p4 vanishes, since
they are equal and opposite. We may rewrite the energy components of the four-
momenta, which are identical in this frame, through the definition of relativistic
energy,

E3 = E4 = γmec
2, (2.19)

where γ is the Lorentz factor 1/
√

1− β2
e . Doing so, we obtain

s =
(
2γmec

2
)2

=
4m2

ec
4

1− β2
e

. (2.20)
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Finally, we may solve for βe, yielding

βe =

√
1− 4m2

ec
4

s
. (2.21)

By inserting Eqs. (2.13), (2.15), (2.16), and (2.17) into Eq. (2.12), and using
that β = 1 for the incoming photon, we arrive at the interaction rate

Rp =
α2h

2πc

1

E

∫
dΩ

∫
dν

ν

exp(hν/kT )− 1
fp(βe), (2.22)

where we have introduced the auxiliary function

fp(βe) =
(
3− β4

e

)
ln

1 + βe

1− βe
− 2βe

(
2− β2

e

)
. (2.23)

2.2.3 Inverse Compton Scattering

The Feynman diagram for Compton scattering is shown in Fig. 2.7. Unlike
in pair production, there is no minimal squared center of momentum energy
required for an interaction to occur. This makes sense, since there are no new
massive particles produced. In the low-energy regime, the interaction is known
as Thomson scattering.

Figure 2.7: Scattering of electrons and photons. This figure shows the t-channel,
the s-channel is omitted.
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The Compton scattering cross section is given by

σC = σTh y ·
3

4

[
− ln y

1− y

(
1− 4y (1 + y)

(1− y)
2

)
+

8y

(1− y)
2 +

1 + y

2

]
, (2.24)

where

y =
m2

ec
4

s
(2.25)

is the minimal energy fraction taken by the outgoing electron [1, p. 4].
Once again, we find the squared center of momentum energy,

s = (p1 + p2)
2
c2 =



√
m2

ec
2 + ~p1

2

|~p1|
0
0

+


hν/c

hν cos θ/c
0

hν sin θ/c




2

c2. (2.26)

Four-momenta are labelled according to Fig. 2.7. By the definiton of relativistic
momentum, we may write

|~p1| = γme|~v1| = γmec
2 β

c
= E

β

c
, (2.27)

where ~v1 is the velocity of the incoming electron. Hence, evaluating Eq. (2.26),
we get

s = m2
ec

4 + 2Ehν (1− βµ). (2.28)

From the expression

E = γmec
2 =

mec
2√

1− β2
, (2.29)

we find that in terms of E, β is given by

β =

√
1− m2

ec
4

E2
. (2.30)

By inserting Eqs. (2.13), (2.16), and (2.24) into Eq. (2.12), we arrive at the
interaction rate

RC =
4α2h2

3πm2
ec

5

1

β

∫
dΩ

∫
dν

ν2

exp(hν/kT )− 1
(1− βµ) fC(y), (2.31)

where we have introduced the auxiliary function

fC(y) = y · 3

4

[
− ln y

1− y

(
1− 4y (1 + y)

(1− y)
2

)
+

8y

(1− y)
2 +

1 + y

2

]
. (2.32)

When calculating the Compton scattering cross section using a computer,
a problem called catastrophic cancellation arises. The function fC(y) features
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two terms which go to infinity as the minimal energy fraction approaches unity.
This is not a problem in real life, since the terms very nearly cancel each other.
But when using floating point numbers, which have finite precision, to evaluate
the expression, the subtraction leads to an error which is small compared with
the individual terms, but large compared with the true value of the function.
Since

y =
m2

ec
4

m2
ec

4 + 2Ehν (1− βµ)
, (2.33)

we identify that the low-energy regime is the problem.
To correctly evaluate the function in all regions, we calculate the mathemat-

ical limit of the expression. By substituting y = 1 − x, we can calculate the
limit as x approaches 0. Rewritten in terms of x, we have for the terms in the
brackets

− ln(1− x)

x

(
1− 4 (1− x) (2− x)

x2

)
+

8 (1− x)

x2
+

2− x
2

. (2.34)

Using the Taylor expansion for the natural logarithm,

ln(1− x) = −
∞∑
n=1

xn

n
, (2.35)

which holds for −1 < x < 1, we get

x+ x2/2 + x3/3 +O
(
x4
)

x

(
1− 4 (1− x) (2− x)

x2

)
+

8 (1− x)

x2
+

2− x
2

. (2.36)

This simplifies to

1 + 2 (1− x)− 8

3
+

2− x
2

+O(x). (2.37)

As x approaches zero, this approaches 4/3. Hence, for y close to 1, we may use

fC(y) ≈ y (2.38)

to avoid catastrophic cancellation. It should come as no surprise that Eq. (2.24)
approaches the Thomson cross section in this limit.

2.2.4 Interaction Probability

In uniform background radiation, the distance travelled before an interaction
occurs follows an exponential probability distribution with a mean free path of
1/R,

p(z) = R exp(−Rz), (2.39)

where z is the distance travelled.
To simulate a cascade, we need a way to generate an interaction point for

each particle. In the case of the exponential distribution, these can be generated
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using the inverse transform sampling method. First, we calculate the cumulative
probability distribution,

P (z) =

∫ z

−∞
dx p(x) = 1− exp(−Rz). (2.40)

Next, we assume that we can produce a random number r from a uniform
distribution between 0 and 1. We convince ourselves, with the help of Fig. 2.8,
that the probability that P (z) is less than r is equal to r.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
z / 1

0.0

0.2

0.4

0.6

0.8

1.0

P(
z)

 / 
1

The Cumulative Probability Distribution

Figure 2.8: From the definition of the cumulative probability distribution, the
probability that Rz is less than 1 is equal to P (1/R) ≈ 0.63. The probability
that the random number r between 0 and 1 is less than 0.63 is also 0.63. Hence,
it clearly holds for any value of z that the probability that r is less than P (z)
is equal to P (z). This means that, for random values of z sampled from p(z),
P (z) and r are both uniformly distributed.

This means that we may generate a z-value by solving the following equation
for z:

1− exp(−Rz) = r. (2.41)

This amounts to inverting the function. We get that

z = − ln(1− r)
R

. (2.42)

We may simplify this slightly by recognizing that 1 − r is also uniformly dis-
tributed between 0 and 1, which allows us to substitute it with r. The result
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is

z =
1

R
ln

1

r
. (2.43)

Inverse transform sampling is the method used in ELMAG. Since the back-
ground radiation is not uniform in our model, we need to find a different strategy.
We introduce a finite step size ∆z. At each step we calculate the probability
that an interaction occurs between z and z+∆z. Should the interaction happen,
we insert the resulting particles at z + ∆z. This is illustrated in Fig. 2.9.

Figure 2.9: At each step we check if the random number r, between 0 and 1, is
smaller than the interaction probability. If it is, an interaction occurs.

If the probability is too large, we lose information about the location where
the interaction occurs. A step size of 4/R, for example, would mean that inter-
actions occur within the interval with a probability of approximately 98% if the
rate is fairly constant. The resulting interaction points, which would nearly all
be located at the end of the first step, would do a very poor job of reproducing
the correct probability distribution. We therefore require that the probability
of interaction is small in each step.

2.3 The Accretion Disk

Black-body radiation from the accretion disk makes up the thermal background
photons we will be considering. The temperature on the accretion disk can be
modeled as

T =

(
GMṀ

4πσR3

)1/4

, (2.44)

where G is the gravitational constant, M is the mass of the black hole, Ṁ is the
accretion rate, σ is the Stefan-Boltzmann constant, and R is the distance from
the center [2, p. 36]. The temperature determines the spectrum at each point
on the accretion disk through the Planck distribution, which ultimately leads
to the interaction rates for pair production and inverse Compton scattering in
Eqs. (2.22) and (2.31), respectively.
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The characteristic size of a black hole is given by its Schwarzschild radius,

RS =
2GM

c2
. (2.45)

A non-rotating black hole has an innermost stable circular orbit of 3RS [6,
p. 212]. This marks the inner edge of the accretion disk. Using Fig. 2.10, we
may find the necessary parameters for evaluating the interaction rates through
basic trigonometry.

Figure 2.10: The interaction site is located a distance z above the center of
the black hole. The incident angle between the high-energy particle and the
background radiation is θ. The background photon originates on the accretion
disk, a distance R from the center of the black hole. The spectrum of background
radiation depends on the temperature T at the point of origin. The inner radius
Ri and outer radius Ro give rise to the minimal and maximal angles, θmin and
θmax, respectively.

Azimuthal symmetry lets us express the angular limits solely in terms of the
polar angle. The lower and upper limits of µ are respectively given by

µmin = cos θmax =
1√

1 + (Ro/z)
2
, (2.46)

where Ro is the outer radius, and

µmax = cos θmin =
1√

1 + (Ri/z)
2
, (2.47)
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where Ri is the inner radius. The distance from the center of the accretion disk
is given by

R = z

√
1

µ2
− 1. (2.48)
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Chapter 3

The Program

The program is written in Fortran and can be found at github.com/vegahen
in the repository master public. It uses the Message Passing Interface (MPI),
which allows for speeding up computation with parallel processes.

Unless otherwise specified, the figures in this chapter will be made for the
values given in Tab. 3.1. The quantity M� is the solar mass, which is 2× 1033 g,
and the Schwarzschild radius is calculated from the mass using Eq. (2.45).

Parameter Value
Ri 3RS

Ro 100RS

M 109M�
Ṁ 1027 g s−1

RS 2.97× 1014 cm
z 1015 cm
E 1012 eV
µ µmax ≈ 0.75

Table 3.1: AGN parameters and variables used in illustrations.

3.1 Integration

The first thing the program needs to do is calculate the interaction rate. For
this purpose, a specialized algorithm for locating the integrand and determining
appropriate step sizes for a numerical integration routine is constructed. Inter-
action rates are tabulated at the beginning of the program to be used during
the propagation of particles.

The integration is carried out by the functions and subroutines contained
in integration101.f90. This file contains two modules, mu integration and
nu integration, in which the user parameters for the integration are defined

21
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and the function values are stored. The definite integral up to each step is
stored in order to construct the cumulative probability distributions for the
interaction parameters. Function values are stored in a dynamically allocated
array to ensure that the integration algorithm works with an arbitrary number
of steps.

3.1.1 The Integrand

We will refer to both integrands as g(ν), and they consist of all terms given
in Eqs. (2.22) and (2.31), including constants and multiplied with 2π since
we have azimuthal symmetry. The integrands are calculated in the functions
integrand pair and integrand ics. To avoid overflow, both check whether the
exponent in the Planck distribution is larger than the logarithm of the largest
double precision value, which is approximately ln

(
1.8× 10308

)
≈ 709.8.

Pair Production

It is determined whether we are above the pair production threshold. This is
done by checking if

s = 2Ehν (1− µ) > 4m2
ec

4, (3.1)

and returning zero if it is not satisfied.

The function consists of a modified photon density, in which a factor of ν has
been cancelled when dividing by s in the cross section, multiplied with fp(βe),
which is shown in Fig. 3.1.

Inverse Compton Scattering

The function consists of the photon density multiplied with 1− βµ and fC(y).
The y-value above which the alternate expression in Eq. (2.38) is used is defined
in the parameter thomson tol. In Fig. 3.2 we observe the effect of using this
substitution for y > 0.999.

3.1.2 Locating the Inner Integrand

The integrals with respect to ν are done in the functions integrate nu pair and
integrate nu ics. The strategy used is roughly the same for both interactions,
with minor differences to account for the properties of the cross sections.

Pair Production

We start by calculating the photon background frequency of the pair production
cutoff. By solving s = 4m2

ec
4 for ν, we find that this is given by

νcutoff =
2m2

ec
4

Eh (1− µ)
. (3.2)
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Figure 3.1: The terms in the brackets of the pair production cross section. We
note that the function is zero below a certain frequency. This is what causes
the pair production cutoff.
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Figure 3.2: The dimensionless terms in the Compton scattering cross section.
The gray curve shows catastrophic cancellation in fC(y) when using the full
expression at lower frequencies.
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The cutoff frequency is multiplied with the parameter entrynu scale factor,
which is slightly smaller than 1, to ensure that the initial point we inspect is
always below the pair production cutoff. The result is stored in the variable
nu prev.

Next we find a ν-value where g(ν) > 0. Since the smallest possible floating
point double precision value is ε = 4.9× 10−324, which we store in the parameter
epsilon, we add some extra steps to ensure that we do not miss an integrand
which has simply approached zero too quickly. The initial guess is twice that of
νprev, and each guess follows the formula

νcurr =
(
1 + 2−i

)
νprev, (3.3)

where i runs from 0 to the parameter entrynu searches. Note that νprev does
not change here. Once the first frequency to yield a nonzero function value is
found, it remains stored in the variable nu curr. If none of the guesses yield a
nonzero value, the function is assumed to be zero.

Inverse Compton Scattering

For inverse Compton scattering, there is no cutoff at lower frequencies of the
background radiation. In order to locate the function, we instead consider
Wien’s displacement law, which states that the frequency at which the spectral
photon density has its peak is given by

νWien = 5.879× 1010 Hz K−1 · T. (3.4)

Since g(ν) is the spectral photon density multiplied with 1 − βµ, which does
not depend on ν, and fC(y), we can assume that the peak of the function is
located near νWien. The frequency is stored in the variable nu curr. Looking
at Fig. 3.2, we see that νWien must always fall to the right of the peak, because
fC(y) is strictly decreasing. Since we intend nu prev to be on the left side of
the peak, we make an initial guess of νWien/10.

3.1.3 Locating the Peak of the Inner Integrand

In order to determine a suitable step size for estimating the value of the inner
integral, we locate the peak of g(ν). Once νprev and νcurr have been determined,
we add two more points between them such that the four are equidistant in ν.
The ν-values are stored in the variables b left, b midleft, b midright, and
b right, illustrated in Fig. 3.3. The function g(ν) has the property that there is
only one maximum, something it inherits from the photon density. It is therefore
possible to close in on the peak by looking at these four values of ν and their
associated function values.

In order to start narrowing in on the peak, we need to ensure that bleft <
bmidleft and bright < bmidright. If this is not the case, the algorithm incrementally
moves the four points in the appropriate direction until the peak is enveloped.
We then know that that the peak must be located between bleft and bright.
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Figure 3.3: By evaluating the function at four different points and making sure
that the peak is located between the outer points, we can always move closer to
the peak by comparing the inner points.

We can approach the peak by comparing the function values of the middle
points. If g(bmidleft) < g(bmidright), we know that the peak must be located to
the right of bmidleft, hence we may set bleft = bmidleft. If the opposite is true, we
set bright = bmidright. The process is then repeated until we are arbitrarily close
to the peak.

The parameters peak tol nu pair and peak tol nu ics specify how pre-
cisely we wish to locate the peak. Their values are compared with the variable
peak proximity, which is equal to

min(g(bleft), g(bright))

max(g(bmidleft), g(bmidright))
. (3.5)

Once the proximity is greater than the specified tolerance, the variable nu b
is set equal to either bmidleft or bmidright, depending on which yields the larger
function value.

3.1.4 Locating the Left Limit of the Inner Integrand

Pair Production

For pair production, the left limit of the integrand is located through a bisection
technique. The variables a left and a right envelop the ν-value where the
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integrand becomes zero, illustrated in Fig. 3.4. The function is then evaluated
at νcurr = (aleft + aright)/2. If g(νcurr) is zero, we set aleft = νcurr, otherwise
aright = νcurr. The process is then repeated until we are arbitrarily close to the
true pair production cutoff.

0.0 0.2 0.4 0.6 0.8 1.0
 / Hz 1e16

0

1

2

3

4

5

g(
) /

 c
m

1
Hz

1

1e 26 Locating the Left Limit
aleft

curr
aright

b

Figure 3.4: Bisecting to find the left limit of the inner integral.

The parameter foot tol nu pair specifies how precisely we wish to locate
the cutoff. Its value is compared with the variable peak proximity, which is
equal to

g(aright)

g(νb)
. (3.6)

Once the proximity is smaller than the specified tolerance, the variable nu a is
set equal to aright.

The program has the potential to get stuck once the function values get
close to ε. If ε/g(aright) is greater than the tolerance, further iterations will not
improve the proximity. In order for the program to continue, we stop bisecting
after a certain number of loops with g(aright) = ε, specified in the parameter
epsilon loops.

Inverse Compton Scattering

Since inverse Compton scattering has no cutoff, the left limit can be arbitrarily
close to ν = 0. The left limit is chosen by dividing aright by ten until the
variable peak proximity, given by Eq. (3.6), is smaller than the parameter
foot tol nu ics. Afterwards, the variable nu a is set equal to aright.
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3.1.5 Estimating the Inner Integral

We will refer to the inner integral as h(µ) in both interactions. With the left
limit νa and the peak νb located, we may compute an initial estimate of the
integral. This will be done using the trapezoid rule, which states that it is
approximately equal to

hT
est(µ) =

n∑
i=1

∆hT
i =

n∑
i=1

1

2
(νi − νi−1) (g(νi−1) + g(νi)). (3.7)

The general shape of g(ν) does not change as z, E, and µ are varied. We
can therefore use νa and νb to determine appropriate step sizes ∆νi = νi−νi−1.
The initial step sizes used are ∆ν1 = (νb − νa)/15 for pair production and
∆ν1 = (νb − νa)/19 for inverse Compton scattering. The initial step size is
small to account for the sharp initial rise, and step sizes are doubled during the
next two steps, after which it stays constant until i = 8 for pair production and
i = 9 for inverse Compton scattering. For the remaining steps, the step sizes
are ∆νi = (νi − νa)/5 for pair production and ∆νi = (νi − νa)/6 for inverse
Compton scattering. The routine is illustrated in Fig. 3.5.
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Figure 3.5: The initial step size is calculated based on νb − νa and gradually
increases.

The integrand decreases exponentially as ν becomes large. This lets us
terminate when the average function value during the last step is smaller than
some fraction of the average function value so far. This fraction is defined
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in the parameters estimate tol nu pair and estimate tol nu ics. Stated
mathematically, the criterium for terminating after step j is that

∆hT
j /∆νj∑j

i=1 ∆hT
i /(νj − νa)

, (3.8)

which is stored in the variable estimate proximity, is smaller than the speci-
fied tolerance.

The trapezoid algorithm described above provides adequate precision for our
present purposes, with an error of about 1%. The parameters nnu factor pair
and nnu factor ics let us specify a smaller step size for the trapezoid rule if
needed. When they are set equal to integer numbers larger than 1, each step in
the original routine is divided into the specified number of steps. If they were for
example set equal to 3, the steps 1, 2, and 3 would be of length 1/3·(νb − νa)/15
for pair production and 1/3 · (νb − νa)/19 for inverse Compton scattering, while
steps 4, 5, and 6 would be double of this. If it were of interest to compute
the interaction rates more precisely, it would be better to implement a higher
order method, e.g. Simpson’s 3/8 rule. The step size could be determined in a
similar way, initially as a fraction of νb − νa followed by progressive increases,
or it could be determined through an adaptive method.

3.1.6 Estimating the Outer Integral

The integrals with respect to µ are done in the functions integrate mu pair
and integrate mu ics. They are much less complicated compared with those
for ν, since the integral always runs between µmin and µmax, which are be-
tween 0 and 1. The estimate again uses the trapezoid rule, but this time
with a constant step size and with the number of steps defined in the param-
eters nmu estimate pair and nmu estimate ics. The function is shown in
Fig. 3.6.

Unlike for the inner integrand g(ν), the general shape of h(µ) varies for
different values of the height z and the energy E and between the two different
interactions. The maximum can be at either border of the interval or somewhere
in the middle. At some heights and energies, the integrand is sharply peaked, so
the error in the trapezoid estimate may become a problem. To check whether the
number of steps is appropriate for the relevant heights and energies, one could
compare the resulting interaction rates with those computed with a smaller step
size, to see if the change is significant.

An attempt is made to increase the precision of the estimate slightly by
determining the left and right limits where h(µ) goes to zero, stored in p left
and p right. If the number of nonzero function values are less than the param-
eters consecutivenonzeros tol pair and consecutivenonzeros tol ics, the
estimate is computed again with pleft and pright as the integration limits.
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Figure 3.6: The µ-integrand in the interaction rate.

3.1.7 Sampling the Angle and Frequency

Once it has been determined during propagation that an interaction between
a photon or an electron with the background radiation happens, we need to
determine the energy of the background photon and the relative angle between
them. Since the location and width of the integrands on the frequency axis have
a lot of variation, we will use the numerical version of the inverse transform
sampling technique to determine the energy. For simplicity, this method is also
used to sample the outer integral, but this leads to a considerable increase in
runtime, since it involves many evaluations of the inner integral.

The unnormalized cumulative probability distributions are stored during in-
tegration in the arrays mu est and nu est. The subroutines init integration,
delete integration, increase mu, increase nu, add mu, and add nu man-
age the dynamically allocated arrays in the integration modules. The integers
smu and snu are the size of the dynamic arrays, while nmu and nnu are the
number of elements currently stored. The arrays have dimension s× 2, where s
is the size, the first element of each subarray is the µ- or ν-value, and the second
is the definite integral up to this step.

Sampling of µ and ν is done by interpolating the cumulative probability dis-
tributions from the integration. The integration functions take the float values
ran mu and ran nu as input. If these are equal to −1, no sampling is per-
formed and the arrays are overwritten during the next integral without having
been used. This is the case during tabulation of the interaction rates at the
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beginning of the program. As particles interact, however, the integration func-
tions are called with two random numbers between 0 and 1. These correspond
to the percentiles of the cumulative probability distributions at which µ and ν
are sampled, illustrated in Fig. 3.7. The resulting interaction parameters are
returned through the parameters mu int and nu int.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
 / 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

h(
) /

 c
m

1

1e 15 Sampling 
r = 0.69

Figure 3.7: With a random number r, we choose the µ-value where the area
to the left is a fraction r of the total area below the curve. This sampling was
performed in pair production for a photon with energy 1010 eV.

3.2 Propagation

The subroutine propagate repeatedly moves particles a small distance ∆z along
the z-axis, where it is ensured that the probability of interaction is less than a
certain threshold. In addition to the constraint on the probability of interaction,
there is a constraint on how much the interaction rate changes at each step. The
particles are propagated either until they interact with the background photons,
or until they escape to a specified distance z max from the center of the black
hole. The particles that initate the cascades are injected at a height of z initial.

3.2.1 Step Size

The initial step size is calculated using the interpolated interaction rate for the
particle’s height and energy. The interaction rate is stored in the variable r1.
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Since the interaction rate is small, we may approximate it as

P (∆z) = 1− exp(−R∆z) ≈ R∆z. (3.9)

The probability which we consider sufficiently small is stored in the parameter
tol prob. Based on Eq. (3.9), we choose

∆z = 0.95 · ptol

R
(3.10)

as the initial step size, with ptol the specified tolerance. If the interaction rate
is zero, it instead uses for ∆z the parameter incr lots multiplied with z. The
height z+ ∆z is stored in the variable z next, and the interpolated interaction
rate at this location is stored in the variable r2.

In addition to the restriction on the probability of interaction during a step,
we also place a restriction on the change of the interaction rate from z to z+∆z.
This change is stored in the variable rise, on the form∣∣∣∣ln R1

R2

∣∣∣∣, (3.11)

and is assured to be less than the parameter tol rise. Should the probabil-
ity of interaction drop below the parameter tol prob highrise, this criterium
is ignored to avoid slowing down the propagation. Similarly, if either R1 or
R2 is zero, the step is accepted if the probability is less than the parameter
tol prob zero.

Since we have a restriction on the change in the interaction rate, using
Eq. (3.10) at each step would fail if the rate changes too rapidly. Instead, we
will use an adaptive routine where the change in the step size depends on the
outcome in the previous iteration. If the previous step failed, the step size
is reduced by a factor stored in the parameter decr and another attempt is
made. Should the probability of interaction be zero in the previous step, it
will use for ∆z, as it did initially, the parameter incr lots multiplied with the
current height z. If the probability was less than tol prob verylow, the step
size is increased by the parameter incr more. Otherwise, it is increased by the
parameter incr.

3.2.2 Interactions

For a given step, the probability of interaction used is (R1 +R2)/2 · ∆z. A
random number is generated for each accepted step, and an interaction occurs
if it is smaller than this probability.

Interactions are handled by the subroutine interaction agn. First, two
random numbers are generated, followed by a call to either integrate mu pair
or integrate mu ics to sample the interaction parameters µ and ν. Next, the
energy fractions taken by the resulting particles are sampled. This is done
by the functions zpair and zics, which are taken directly from ELMAG. The
distributions for the energy fractions are shown for several energies in Figs. 3.8
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and 3.9. The sampling was done after picking the most likely value of µ followed
by picking the most likely value of ν at the specified energies, with 10 million
samples for each curve.

As seen in Fig. 3.9, interactions of lower-energy electrons will result in soft
photons, which are photons scattered with energies much lower than that of
the initial electron. This poses a problem to the simulation because very many
interactions will happen without significantly changing the energy of the elec-
tron. In ELMAG this is solved by computing a modified interaction rate which
contains a maximum energy fraction ymax. This eliminates the contribution
from interactions that yield low energy photons, and the interaction rate goes
to zero somewhere in the Thomson regime. Instead, we specify the two param-
eters electron energythr and photon energythr. Whenever an interaction
produces a particle with an energy below threshold, the particle is discarded in-
stead of being tracked further. When looking at the resulting photon spectrum,
we should therefore keep in mind that for photon energies below Ethr, e (1− y),
where y is calculated for the electron energy threshold, the spectrum is no longer
accurate.

3.2.3 Storing Particles

All data associated with a particle is stored in the custom data type event,
which is equivalent to the one event data type in ELMAG. The integer icq con-
tains the particle type, with 0 for photons, 1 for electrons, and −1 for positrons.
Each particle has a unique value of the integer id, which is given in ascending
order as particles are created, starting with the number 1. The variables z and
e contain the height above the accretion disk and the energy of the particle,
respectively, while w is a weight given to each particle.

The weight w can be used to implement weighted sampling, something that
was done in ELMAG. It is also used during injection, to let us use a power
law spectrum of particles to initiate cascades. The energy of injected particles
is determined in the subroutine inject. Since we are interested in how initial
energies across several decades affect the interactions of the cascade, these are
sampled uniformly on a logarithmic scale. Uniform logarithmic sampling cor-
responds to a power law spectrum of dN/dE = E−1. In order to obtain an
arbitrary E−α power law spectrum from this, each particle is given a weight
which is proportional to E−(α−1).

Once particles are created, they are stored in a dynamic heap structure. It
is a min heap which arranges particles based on their energies, which means
that the first element in the dynamic list of particles is always the particle with
the smallest energy. This is done to limit the number of particles that need to
be stored at any given time, by always propagating the particle with the lowest
energy first to avoid a buildup of low-energy particles in the heap.

The heap itself is located in the module heap agn. The variable s is the size
of the dynamic array of event structures, while n is the number currently stored.
The file heap101.f90 contains both the subroutines that handle the dynamic
array and the subroutines that handle the insertion and removal of elements.



3.2. PROPAGATION 33

0.0 0.2 0.4 0.6 0.8 1.0
Energy Fraction

Pr
ob

ab
ilit

y 
De

ns
ity

Energy Fraction in Pair Production
E = 109 eV
E = 1010 eV
E = 1011 eV
E = 1012 eV
E = 1014 eV

Figure 3.8: The probability distributions for the energy fraction taken by one of
the electrons in pair production. The probability densities are not in proportion
with one another.
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Figure 3.9: The probability distributions for the energy fraction taken by the
electron in inverse Compton scattering. The probability densities are not in
proportion with one another.
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The module also contains integer variables for the number of particles injected,
the number of particles created (the number which at any time represents the
id value of the most recently created particle), the number of particles that
have escaped, and the number of particles that have been ignored due to having
energies below threshold.

Once a particle escapes to the specified distance z max, the energy and
weight of the particle is added to the resulting spectrum in the subroutine
store. The weights of the particles are added to energy bins which are of equal
size on the logarithmic scale. The spectrum is stored on the form E2 dN/dE.
To achieve this with energy bins which have a width already proportional to E,
we only need to multiply with one additional factor of E.

3.3 Program structure

User variables are found in the file modules101.f90, with the exception of inte-
gration parameters, which are found in integration101.f90, and the injection
energies, which can be changed directly in the inject subroutine in init101.f90.
The primary user variables are found in the module user variables. The pa-
rameter n start specifies the number of particles which are injected in each set,
while n sets is the number of sets. At the start of the program, the subroutine
init in init101.f90 is called to initialize the necessary variables for the simula-
tion. The seed for the pseudo-random number generator, iseed, is different for
each parallel process when using MPI.

Interaction rates tabulated for interpolation are calculated at the start of
the program. This is done on a grid of heights and energies which are both
spread uniformly on the logarithmic scale. They are stored in the files specified
by agn pair filename and agn ics filename, and in subsequent runs they
can be read from these files by letting the parameter readagnfit be true. The
filenames, as well as the following grid parameters, are found in the module
agn fit. The parameters zmin pair and emin pair specify the logarithm of
the minimal heights and energies which the rates are calculated for in pair
production, while d zpair and d epair specify the number of gridpoints per
decade, and n zpair and n epair specify the total number of gridpoints. For
example, a minimum energy of 8 with d = 10 and n = 31 would produce a
grid with energies ranging from 108 eV to 1011 eV. Equivalent parameters are
used for the inverse Compton scattering grid. The heights, energies and rates
are stored as logarithms to simplify the interpolation subroutines, which are
found in interpolation101.f90, since the interpolation is done linearly on the
logarithmic scale.

The modules internal and result contain the variables used to create the
spectrum of escaping particles. The minimal energy on the spectrum is given
in e min, while dn is the width of each energy bin on the logarithmic scale
(for example, 0.1 means that there are 10 bins per decade), and n enbin is the
total number of energy bins. If MPI is used, the results for different processes
are added to the array en f tot at the end of each set. The spectra are written
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to text files in output101.f90, and the files are stored in the ”Data” folder in
the project directory. We are only interested in the photon spectrum, which has
”gam” in its name. The first and second columns are the primary and secondary
axes of the spectrum, the primary in units of electronvolts, and the secondary
in arbitrary units. The third and fourth columns are the logarithms of the first
and second.

Mass, accretion rate, and accretion disk size are found in the agn data
module. Constants are stored in the module constants. The parameters for
the propagation subroutine are found in the module propagation params.

The module test module is used for debugging the program. The param-
eter show interactions prints all particles as they are removed from, added
to, or ignored by the heap. The parameter show propagation wr prints the
parameters of each interaction. The parameter show propagation i makes
the program interactive by waiting after each interaction. The user inputs a
number which specifies the next interaction to stop at, but it can be turned
off by entering a number smaller than 1. The parameter show iterations lets
us interactively look through each step in the propagation. Entering a number
smaller than 1 turns off this functionality. The parameter show integration
prints all values added to the integration lists.
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Chapter 4

Results and Discussion

The escaping photon spectrum for the parameters specified in Tab. 3.1 is shown
in Fig. 4.1. It is the result of injecting 10 photons at 3RS = 8.91× 1014 cm with
energy 1013 eV using an electron energy threshold of 107 eV. 43 million particles
are created.

104 105 106 107 108 109 1010

E / eV

E2  d
N

/d
E

~E 1.5

Spectrum of Photons that Escape

Figure 4.1: The spectrum that result from cascades started by 10 photons with
energy 1013 eV.

The theoretical prediction for a uniform background is that there should be
a power law spectrum with α = −1.5 at lower energies [1, p. 2]. The photon
spectrum deviates slightly from the E−1.5 power law between 107 eV and 109 eV.
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By analyzing the interactions at an electron energy of 107 eV, we find that
the probability distribution for ν is shifted to higher energies as µ increases.
At µ = µmax, the 99th percentile of the frequency of the background photons
which interact with electrons is 2.25× 1016 Hz, suggesting that this is close to
the maximal background frequency contributing to interactions. The minimal
energy fraction found using this frequency, from Eq. (2.33), is y = 0.998, sug-
gesting that photons with an energy below approximately 2× 104 eV could still
be produced from discarded electrons. Looking at the spectrum in Fig. 4.1, the
curve bends slightly in this area, supporting the idea that photons are missing.
Decreasing the electron energy threshold does indeed straighten the curve in
this region.

Particles are propagated to zmax = 1016 cm, but most of the interactions
happen near 1015 cm. To see this we could simply change the value of zmax

and compare the results, or we could store the z-values at each interaction, the
result of which is shown in Fig. 4.2.
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Figure 4.2: The distribution of interaction points, with two nonphysical trailing
cascades.

The cutoff in pair production happens around 7× 109 eV in the simulation
above. The two trailing sub-cascades are initiated by photons with energies
of about 6× 109 eV, but these interactions are caused by step sizes that are
too large, and therefore overestimate the interaction probability. This happens
because the algorithm ignores the criterium on the change in the interaction
rate if the probability is very small, which is the reason it only happened twice.
We could adjust the propagation parameters to reduce this effect, but always
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insisting that the rate cannot change much will drastically increase the number
of steps.

The pair production rate near cutoff as a function of the height, seen in
Fig. 4.3, shows that it is virtually impossible that the two photons interact where
they do. The reason they appear in this region is that interactions happen at
the end of the propagation step, while the probability is calculated using the
average of R1 and R2. From the inverse Compton scattering rate in Fig. 4.4, we
also see that the scattering rate is much smaller in the second trailing cascade
than in the first. This explains why the Compton scattering interactions in the
second cascade happen further apart, as we can see from the smaller density of
interaction points.
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Pair Production Rate at E = 7 × 109 eV

Figure 4.3: The pair production rate as a function of the height near the pair
production cutoff energy.

We may compare the pair production cutoff with that of the project thesis,
which was on the topic of optical depth in the same AGN system. The optical
depth was calculated from the center of the system, so if we inject particles at
smaller z-values, we should get similar results. The cutoff in pair production
with zinitial = 0.03RS = 8.91× 1012 cm happens at around 3× 109 eV. The
optical depth was found to be of order 1 near 4× 109 eV in the project.

Although the interaction rates close to the pair production cutoff energy
change very rapidly as z increases, the rate at other energies can be fairly
constant across the typical interaction length. A more effective propagation
algorithm in these regions could be to locally use inverse transform sampling,
instead of using many propagation steps to traverse a region with nearly constant
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Figure 4.4: The inverse Compton scattering rate as a function of the height for
electrons produced close to the pair production cutoff.

rates. This would allow for much larger step sizes that are only limited by the
change in the interaction rate, making it much more effective when the rate is
so large that step sizes determined by the probability tolerance, roughly given
by Eq. (3.10), are much smaller than the length over which the rate changes
considerably.

The most time consuming part of the program is currently interactions,
since it calculates the rate to sample µ. The simulation above created more
than 40 million particles, but the vast majority of these are low energy photons
produced in the Thomson scattering regime. By choosing to not keep some of
the electrons with lower energies and increasing the weight of the electrons we do
keep, the number of interactions could be decreased drastically. This is weighted
sampling, which is has been implemented in ELMAG. Yet another way to speed
up calculations would be to construct a more effective way to sample µ, such
as by storing the probability distributions during tabulation and interpolating
them later, or by using a more effective Monte Carlo method.

To obtain a smooth and detailed spectrum from a Monte Carlo simulation,
we need a large number of photons created in each region. Although weighted
sampling has not been implemented, we can obtain a more detailed spectrum
manually by combining the spectra made with different electron energy thresh-
olds. This way, we can ensure that many photons are created in all the different
energy regimes. The result is shown in Fig. 4.5. The general relationship found
between the threshold and the number of particles is that they are inversely
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proportional to each other, so if the electron energy threshold is reduced by a
factor of ten, there will be approximately ten times as many particles created.
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Figure 4.5: A spectrum obtained by combining simulations with different elec-
tron energy thresholds. As the threshold increases, we increase the number of
injected particles to ensure that enough photons are created in each region. A
total of 2 billion particles were created to produce this plot.

As seen in Fig. 4.3, the program is able to calculate interaction rates that are
incredibly small. A simpler method for calculating the rate used in the project
thesis, where step sizes do not depend on heights nor energies, is compared with
the new method in Fig. 4.6, as functions of energy. It is Eq. (3.3) that can take
the credit for finding the smaller integrands. The step size in the simple method
is so large that at lower energies it misses the integrand completely. In fact, the
new method is able to calculate pair production rates down to approximately
10−275 cm−1, but this is of course not useful in any practical sense.

The inverse Compton scattering rate as a function of energy is shown in
Fig. 4.7. We note that the interaction rate is constant in the Thomson scattering
regime, but as the energy approaches the rest mass of the electron, it starts to
increase.



42 CHAPTER 4. RESULTS AND DISCUSSION

109 1010 1011 1012 1013 1014 1015

E / eV

10 50

10 45

10 40

10 35

10 30

10 25

10 20

10 15

10 10
p /

 c
m

1
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Figure 4.6: The pair production rate computed using a traditional integration
routine, in red, versus computed using the program described in this thesis.
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Figure 4.7: The inverse Compton scattering rate computed with the program
described in this thesis.
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Conclusion

The program is designed to be a robust algorithm which solves the problem
presented. Considerable effort has been made to ensure that interaction rates
can be computed accurately for nearly any parameters and that the algorithm
works for any type of changing interaction rates. It should be possible to expand
the program to work for arbitrary backgrounds without too much effort, easily
so if there is azimuthal symmetry. There is considerable potential for improving
the runtime, but the initial version can serve as a baseline to check that the
methods used to speed up calculations are working as they should.

Weighted sampling could be implemented to remove many of the particles
at lower energies. Since every interaction results in two particles, the number of
low-energy particles grows extremely large as the cascade progresses. By only
keeping a certain fraction of representative low-energy particles and modifying
their weight to make up for those lost, the runtime could be drastically improved.

The µ-value could be sampled in a more effective way. The current program
computes the rate at the interaction point in order to construct the probability
distribution, which is very computationally intensive and the current bottleneck
of the entire program. One possibility is to store the probability distributions
along with the tabulated interaction rates and interpolate them later. Another
is to use an altogether different Monte Carlo method.

Instead of a purely stepwise propagation of particles, one could implement
a hybrid approach which uses inverse transform sampling to find interaction
points on an interval where the rate is almost constant. In many situations the
interaction rate does not change much during a typical interaction length, which
means that locally we could consider it to be uniform.
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