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Abstract

Heterostructures, where two or more materials are interfacially coupled together, have been gain-
ing interest due to their superconducting properties. In particular, antiferromagnetic insulators
(AFMIs) coupled to normal metals (NMs) have been shown to create a stronger magnon mediated
electron-electron (e-e) interaction through squeezing of the magnons. The squeezed magnons are
achieved by anisotropically coupling the AFMI to the NM. Squeezed magnons are achievable in
ferromagnetic insulators (FMIs) through an anisotropic exchange interaction as well. However, the
effect of squeezing on the e-e interaction is not known.

This paper studies the e-e interaction in a FMI-NM heterostructure using the BCS model. In
particular, the effect of squeezing the FMI-magnons is studied, as well as the effect of adding a
second layer to the FMI. It was shown that squeezing of magnons leads to additional spin-triplet
interactions that are studied as well. The spin-triplet interaction is found to be 1% the strength
of the spin-singlet interaction, making them negligable as contributors to the superconductivity
of the heterostructure. It was shown that adding a second layer to the FMI reduces the strength
of the interactions, and that a stronger coupling between the two FMI layers further weakens the
interactions. When varying the amount of anisotropy in the system, thus varying the amount of
squeezing, it was shown that the spin-triplet interaction grew in strength with more anisotropy.
However, the spin-singlet interaction is affected by the total amount of exchange interaction rather
than the amount of anisotropy. Interactions scattering the electrons into the first and fourth
quadrant of the Fermi surface increased in strength with increasing exchange interaction, while it
decreased in strength when scattering into the second and third quadrants of the Fermi surface.
This effect was the same for both one and two layers of the FMI.
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1 Introduction

Superconductivity is a material phase where electrons pair together to form two-particle states,
called Cooper pairs, such that the material resistivity falls to zero [1]. This has obvious uses in
the real world, as about 6% of electricity is lost to heat during transmission [2]. Superconducting
powerlines would put this loss to zero, reducing energy cost and positively impacting the environ-
ment through less energy production. Another important aspect is what is known as the Meissner
effect , where a superconductor expels all magnetic fields [3], allowing for for example magnetic
levitation, which has wide uses in high speed transportation due to the removal of friction [4].
Furthermore, superconducting magnets are some of the strongest known magnets [5], with uses in
for example magnetic imaging, like MRI/NMR [6][7], or particle accelerators, like the large hadron
collider[8]. However, superconductivity only appears below a certain temperature, called the criti-
cal temperature [1], Tc, which is typically at least 100 degrees celsius below room temperature [9].
Due to the temperature dependence, superconducting materials have yet to see large scale com-
mercial use, as the cost of cooling the superconductor outweighs the cost of the additional energy
production. However, with the issues of an emerging climate crisis and an increasing energy need,
room-temperature superconductors may be required as a part of the solution.

The phenomenon of superconductivity was first discovered in 1911 by Heike Kamerlingh Onnes who
was studying the resistivity of ultrapure Mercury at low temperatures [10], but another 46 years
would pass before it was possible to describe what was going on. As it turns out, superconductivity
is a purely quantum mechanical phenomenon, but quantum mechanics weren’t formulated until
1926 [11]. Moreover, completely new ideas had to be formulated before a theory could be put
together. A big clue came when it was discovered that the critical temperature varied with varying
isotope mass of the material [12], implying that lattice vibrations (phonons) were involved. In
1957, Bardeen, Cooper and Schrieffer published the BCS theory of superconductivity[13] where
they proposed that electrons could form pairs by interacting with a phonon coupling them together.
However, when reviewing the theory in later times, it became clear that phonons weren’t what
was required. Instead, only an attractive interaction to couple the electrons is required. These
interactions can be mediated by more exotic particles, like magnons [14][15][16], excitons [17][18]
and plasmons [19][20].

Historically, superconductors were thought to only be metallic materials. However, a new type of
superconductor was discovered in 1986 by Bednorz and Müller [21] where the critical temperature
was higher than previously thought possible. This was the beginning of high-temperature super-
conductors. The material was a copper oxide, and with this discovery, a family of copper oxide
superconductors (cuprates), and later a family of iron-based superconductors [22], were discovered.
These, together with some other materials, are known as unconventional superconductors, as the
BCS theory fails to provide an explanation for how and why these materials are superconducting.
A theory was proposed by Anderson and Baskaran in 1987, called resonating valence bond (RVB)
theory [23], focusing on explaining the cuprates, but it is still insufficient as a complete theory for
unconventional superconductors.

In common for the cuprates and iron-based superconductors is that they are layered structures,
where only specific layers are conducting, while the others serve as charge reservoirs [24]. Due to
the layered nature of these materials, it is natural to consider a wider range of layered materials
to get a better understanding of the underlying physics. A lot of work has recently been published
on heterostructures, where two or more materials are interfacially coupled together, studying their
superconducting properties [25]–[31], as well as other properties like spin pumping [32][33], spin
currents [34][35] and proximity effetcs [36][37]. Such heterostructures include ferromagnetic insul-
taors (FMIs) coupled to normal metals (NMs) [38], antiferromagnetic insulators (AFMIs) coupled
to NMs [39], topological insulators (TIs) coupled to NMs [40][41] and semiconductors coupled to
conventional superconductors [31]. In particular, AFMIs coupled to NMs have shown potential
by being able to form stronger magnon-electron couplings due to squeezing of the magnons [42].
Magnon squeezing is an effect where an anisotropic coupling to the NM in AFMIs lead to signif-
icantly enhanced attractive electron-electron (e-e) interactions in the heterostructure. Squeezed
magnons have also been reported in FMIs through an anisotropic exchange interaction [43], though
its effect on the e-e interaction in a FMI-NM heterostructure has not yet been studied.
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In most of the superconducting materials mentioned, the Cooper pairs have opposite spins, meaning
they are in a spin-singlet state. However, spin-triplet superconductivity, where the two electrons
have equal spins, has also been reported [44]–[47]. In particular, it has been found in heavy fermion
systems [48], which is another class of unconventional superconductors where the effective masses
of the conducting electrons are much larger than the electronic mass [49].

Studying the unconventional superconductors is important not only to understand the underlying
physics, but also to understand how the parameters of different materials affect their superconduc-
tivity. With the goal of engineering commercial room-temperature superconductors, understanding
the mechanisms for it to form Cooper pairs, and the effect of material parameters is crucial. The
goal of this paper is thus to contribute to the research and common understanding of superconduc-
tivity. In particular, this paper studies the e-e interactions in a FMI-NM heterostructure using the
BCS theory, and how they are affected by squeezing the magnons, as well as the effect of adding
a second layer to the FMI. The goal is to compare the interaction strengths to the unsqueezed
monolayer interaction strength.

To achieve this, the relevant theory is presented in section 2, the model for the FMI-NM heterostruc-
ture is derived in section 3, and the e-e interactions are derived in section 4. The interactions are
plotted, compared and analysed in sections 5 and 6.

2 Theory

The theory section briefly describes the Bogoliubov transformation and Schrieffer-Wolff transfor-
mation, which are needed to rewrite the system Hamiltonian. In addition, it covers the basics of the
BCS theory for superconductivity. First of all, however, the conventions used must be mentioned.

2.1 Conventions

In this paper, vectors will be denoted with arrows as x⃗, while its adjoint will be denoted x⃗†.
Matrices will be denoted as M . Correspondingly, MT will be the transpose, M∗ will be the
complex conjugate, and M† = (MT )∗ will be the adjoint matrix. The n × n identity matrix will
be denoted In. The Pauli matrices will be denoted by σ⃗T =

[
σx σy σz

]
, where the matrices are

defined in the standard way as

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
,

with i =
√
−1 being the imaginary unit.

For simplicity of notation, summing over a quantity, e.g. λ, will always be noted as
∑

λ whether λ

is a discrete or continuous quantity. Wave vectors k⃗ and q⃗ will be written as simply k and q when
used as indices or summation variables. Every sum of the type

∑
q and

∑
k means integrating over

every q⃗ or k⃗ in the first Brillouin zone (1BZ).

In this paper, the reduced Planck’s constant h̄ = h
2π is set to unity.

2.2 Bogoliubov transformation

The Bogoliubov transformation is a diagonalization of the Hamiltonian, where the transformation
works by defining new operators which are linear combinations of the original operators. Moreover,
the new operators satisfy the same commutation relation as the original operators. In this paper,
only bosonic operators are transformed, so only the bosonic transformation is presented. The
theory presented is based in its entirety on work by Tsallis, given in [50]. For further reading on
the bosonic Bogoliubov transformation, see also [51].
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2.2.1 Deriving the transformation

Assume the Hamiltonian consists of bosonic operators (a1, a2, ..., an) as well as the adjoint operators

(a†1, a
†
2, ..., a

†
n) paired up in some way. Define the vector of operators

A⃗T =
[
a1, a2, ... an, a†1, ... a†n

]
, (1)

such that the Hamiltonian can be written in the form

H = A⃗†MA⃗, (2)

where M is a Hermitian matrix. Then, since the operators are bosonic, the vectors satisfy the
bosonic commutation relation

A⃗⊗ A⃗† −
(
(A⃗†)T ⊗ A⃗T

)T
= J, (3)

where J =

[
In 0
0 −In

]
and ⊗ is the tensor product. Note that J is its own inverse, such that

J2 = I2n.

The transformation consists of finding matrices T and D such that D is a diagonal matrix and

M = TDT †. (4)

Then
H = A⃗†MA⃗ = A⃗†(TDT †)A⃗ =

(
A⃗†T

)
D
(
T †A⃗

)
. (5)

Thus, B⃗ = T †A⃗ and B⃗† = A⃗†T define a vector of new bosonic operators and its adjoint, such that
the new operators are linear combinations of the original operators. Denote these by

B⃗ =
[
b1, b2, ... bn, b†1, ... b†n

]
. (6)

For the new operators to be bosonic, they must satisfy equation 3 as well. Inserting the definitons
of the transformed operators, one finds

B⃗ ⊗ B⃗† − ((B⃗†)T ⊗ B⃗T )T = J

T †A⃗⊗ A⃗†T − (TT (A⃗†)T ⊗ A⃗TT ∗)T = J

T †A⃗⊗ A⃗†T − T †((A⃗†)T ⊗ A⃗T )TT = J

T †(A⃗⊗ A⃗† − ((A⃗†)T ⊗ A⃗T )T )T = J

T †JT = J.

Rewriting the final equality we find that T must satisfy the symplectic relationship

T † = JT−1J. (7)

Thus B⃗ = JT−1JA⃗. In terms of the column vectors of T , v⃗i, the symplectic relationship can also
be written as

v⃗i
†Jv⃗j = Jij =

{
δij , i ≤ n

−δij , i ≥ n+ 1
(8)

which is useful for determining the matrix T . Let vectors satisfying equation 8 be called Bogoliubov
orthonormal.

2.2.2 Determining D and T

To find an expression of D in terms of T , notice that

H = A⃗†MA⃗

= A⃗†(TT−1)M(J(T (JJ)T−1)J)A⃗

= (A⃗†T )(T−1MJTJ)(JT−1JA⃗)

= B⃗† T−1MJTJ︸ ︷︷ ︸
D

B⃗.

3



Thus
D = T−1MJTJ, (9)

where solving for MJ gives
MJ = T (DJ)T−1. (10)

Hence T and DJ makes up a diagonalization of the matrix MJ . DJ contain its eigenvalues and
T contains its corresponding eigenvectors.

It can be shown that the eigenvalues of MJ come in pairs of positive and negative. Denote them
by λi± = ±λi for 1 ≤ i ≤ n. As for their ordering, let λi+ be the first n eigenvalues, and λi− be
the last n eigenvalues. This guarantees that the eigenvectors are real. Since the eigenvalue matrix
is DJ = diag(λ1, ..., λn,−λ1, ...,−λn), D = (DJ)J = diag(λ1, λ2, ..., λn, λ1, ..., λn) will have all
positive elements. Inserting this into the Hamiltonian one gets

H = B⃗†DB⃗

=

n∑
i=1

(
λib

†
i bi + λibib

†
i

)
=

n∑
i=1

(
λib

†
i bi + λi(b

†
i bi + 1)

)

H =

n∑
i=1

2λi

(
b†i bi +

1

2

)
, (11)

showing that the Hamiltonian is diagonalized.

T is the eigenvector matrix of MJ . However, the eigenvectors are not generally guaranteed to be

Bogoliubov orthonormal, meaning T is not guaranteed to be symplectic. Let li =
√

v⃗†i Jv⃗i be the

Bogoliubov length of vector v⃗i. Then

x⃗i =
1

li
v⃗i (12)

constitutes a set of Bogoliubov orthonormal eigenvectors of MJ . Hence

T =
[
x⃗1 x⃗2 ... x⃗2n

]
. (13)

is symplectic, and B⃗ = JT−1JA⃗ is guaranteed to contain bosonic operators.

2.3 Schrieffer-Wolff transformation

The Schrieffer-Wolff (SW) transformation is a unitary transformation of the system Hamiltonian.
The transformation perturbatively diagonalizes the Hamiltonian via a perturbation series. The
theory presented is based on the original work by Schrieffer and Wolff [52], and only contains the
theory required to derive the e-e interactions. For a more thorough and theoretical overview of the
SW transformation, see [53].

2.3.1 Deriving the transformation

Suppose the system Hamiltonian can be written in the form H = H0 +H1, where H0 is a Hamil-
tonian with a known complete set of eigenstates {|m⟩}m=1,2,... and corresponding eigenvalues Em,
and H1 is a perturbation satisfying ⟨m|H1|m⟩ = 0 for all m. Note that such a system can always

be achieved by including the diagonal elements, Hdiag
1 , of H1 into H0. Redefine H ′

0 = H0 +Hdiag
1 ,

H ′
1 = H1 − Hdiag

1 , E′
m = Em + ⟨m|H1|m⟩, such that H = H ′

0 + H ′
1. Assume therefore that

⟨m|H1|m⟩ = 0 for all m.

Let S be the generator for the transformation. If H1 is small, then so will S be too. The transfor-
mation is then

H ′ = e−SHeS , (14)

4



where a perturbation series can be achieved by Taylor expanding the exponentials. The derivation
of the transformed Hamiltonian up to second order in interactions is done in appendix A, and the
result is

H ′ = H0 −
1

2
[S,H1], (15)

where it is required that [H0, S] = −H1.

2.3.2 Determining the generator S

Achieving the above expression requires S to satisfy [H0, S] = −H1. To guarantee this, let S have
the same operator structure as H1. In particular, suppose

H1 =
∑
i

CiaiAi, (16)

where ai is some combination of bosonic creation and annihilation operators, Ai is some combina-
tion of fermionic creation and annihilation operators, and Ci is the coefficient for that particular
combination. Then S is chosen such that

S =
∑
i

XiaiAi, (17)

where ai’s and Ai’s are the same as for H1 and Xi’s need to be determined.

2.3.3 Determining the coefficients of S

Suppose |m⟩ and |n⟩ are orthonormal eigenstates of H0. Then by the definition of S, one has

⟨n|[H0, S]|m⟩ = ⟨n| −H1|m⟩
⟨n|H0S − SH0|m⟩ = −⟨n|H1|m⟩

En⟨n|S|m⟩ − ⟨n|S|m⟩Em = −⟨n|H1|m⟩

⟨n|S|m⟩ = ⟨n|H1|m⟩
Em − En∑

i

⟨n|XiaiAi|m⟩ =
∑
i

⟨n|CiaiAi|m⟩
Em − En

(18)

Solving this equation for Xi term by term, the k’th coefficient can be found as

⟨n|XkakAk|m⟩ = ⟨n|CkakAk|m⟩
Em − En

Xk⟨n|akAk|m⟩ = Ck

Em − En
⟨n|akAk|m⟩

Xk =
Ck

Em − En
(19)

Furthermore, the energies can be determined by noticing that by the orthonormality of the eigen-
states, equation 18 is nonzero only if aiAi|m⟩ = |n⟩. Since |m⟩ and |n⟩ are many particle
states, they can be denoted by the number of particles in each single particle state. In partic-
ular |n⟩ = |nλ1 , nλ2 , ..., nλp⟩ for p particles in states λj . By the orthonormality, |m⟩ must contain
one particle in every state that gets annihilated by aiAi, while |n⟩ must contain a particle in every
state that gets created by aiAi. The many particle energy can then be found as a sum of the
energies of the single particle states multiplied by the number of particles in that state. Hence,

En =

p∑
j=1

nλj
· ελj

, (20)

where ελj
is the energy of single particle state λj .
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2.4 BCS theory

The Bardeen-Cooper-Schrieffer (BCS) theory is a microscopic theory of superconductivity that
describes the interaction between a pair of electrons when an attractive interaction is stronger
than the repulsive Coulomb interaction between them. The section is based on the original 1957
paper by Bardeen, Cooper and Schrieffer [13], as well as Cooper’s 1956 paper on the Cooper
problem [54].

2.4.1 The Cooper problem

Consider a non-interacting Fermi sea and two additional electrons in states |⃗k, ↑⟩ and |− k⃗, ↓⟩ which
only interact with each other and not the Fermi sea. The two electrons can be put in a two-particle
state which will be denoted |⃗k ↑,−k⃗ ↓⟩. After their interaction, assume they scatter into the state

|k⃗′ ↓,−k⃗′ ↑⟩. Denote this interaction by V and assume it is only present in a thin shell of width
ω0 around the Fermi surface. In this thin shell, the attractive interaction is stronger than the
Coulomb interaction. Denoting the two-particle energy by E, it can be shown that 2εF − E ≥ 0,
where εF is the Fermi energy. This means the two-particle state lies within the Fermi sea, which
seemingly violates the Pauli principle. The two electrons can therefore not be seen as fermions.
Instead, consider them as a single two-particle state with creation and annihilation operators

b†k = c†k↑c
†
−k,↓

bk′ = ck′↓c−k′,↑,
(21)

called a Cooper pair. A Cooper pair is neither a fermion nor a boson, as the operators do not
satisfy neither the fermionic nor the bosonic commutation relation. In second quantized form, the
Hamiltonian for these two particles looks like

H = εk↑ + εk↓ + V b†kbk′ (22)

2.4.2 The BCS-model

The BCS theory generalize the Cooper problem to a material containing several electrons in a thin
energy shell ω0 around the Fermi surface. In general, a pair of electrons in a two-particle state
|⃗kσ, k⃗′σ′⟩ interacting via an interaction Veff , are scattered into state |⃗k + q⃗, σ; k⃗′ − q⃗, σ′⟩. The
second-quantized Hamiltonian for the interaction can then be written as

H =
∑
k,σ

εkσc
†
kσckσ +

∑
k,k′,q,σ,σ′

Veffc
†
k+q,σc

†
k′−q,σ′ck′σ′ckσ, (23)

which is a generalization of equation 22 to multiple electrons. In general, it cannot be guaranteed
that k⃗+ q⃗ and k⃗′ − q⃗ lie within the thin shell around the Fermi surface, so taking inspiration from
the Cooper problem, let k⃗′ = −k⃗ and σ′ = σ, such that

H =
∑
k,σ

εkσc
†
kσckσ +

∑
k,q,σ

Veffc
†
k+q,σc

†
−k−q,−σc−k,−σckσ (24)

and demand that q⃗ = k⃗′−k⃗. Exchanging k⃗ and k⃗′, one achieves the BCS-model of superconductivity

H =
∑
k,σ

εkσc
†
kσckσ −

∑
k,k′

Vkk′c†k↑c
†
−k↓c−k′,↓ck′↑, (25)

with Vk,k′ = − 1
2Veff . The specification q⃗ = k⃗′ − k⃗ along with the redefinition of the momentas

when going from equation 23 to 25 is known as BCS reduction. This represents a process where a
Cooper pair in state |⃗k′ ↑,−k⃗′ ↓⟩ is scattered into state |⃗k ↑,−k⃗ ↓⟩.

With this model, the strength of Vkk′ determines the strength of the Cooper pairs. A large Vkk′

implies that it is more likely for Cooper pairs to form, which is why comparing the strengths of
Vkk′ ’s gives information about which one has the largest critical temperature.
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3 Models

The heterostructure is described by two different models. One for the ferromagnetic insulator,
HFM , and one for the normal metal, HNM . In addition, there is a term coupling the two materials,
Hc, such that the full system Hamiltonian can be written as H = HFM +HNM +Hc. The lattice
in this model is a layered square lattice with N total lattice sites in each layer, where the distance
between every nearest neighbour lattice site in the plane is set to 1.

3.1 Model of the ferromagnet

The model used for the FMI is a multilayered quasi two-dimensional Heisenberg model with spin-
anisotropic exchange and nearest neighbour interactions. Let layer 1 be at the top, and assume
there areM total layers. Suppose the FMI is magnetized towards layer 1. Each layer, k, is modelled
as

H
(k)
1 = −

∑
<i,j>

[
JSk

izS
k
jz + JxS

k
ixS

k
jx + JyS

k
iyS

k
jy

]
, (26)

where Sk
iq is the spin component in direction q at lattice site i in layer k. Furthermore, it is assumed

that Jx ̸= Jy and J > Jx, Jy. The notation < i, j > means to sum over all nearest neighbours, j,
of every lattice site, i.

The interaction between two neighbouring layers k and k + 1 is modelled by

Hk,k+1
2 = −Jp

∑
i

S⃗k
i · S⃗k+1

i , (27)

where S⃗k
i is the spin vector at site i in layer k, and Jp is the perpendicular interaction coupling

the two layers, with Jp < J . Note that it is only nearest neighbour interaction, so S⃗k
i is directly

above S⃗k+1
i .

Rewriting the Hamiltonians in terms of the spin-flip operators Sk
i± = Sk

ix ± iSk
iy, one gets

H
(k)
1 = −

∑
<i,j>

[JSk
izS

k
jz +

1

2
J(Sk

i+S
k
j− + Sk

i−S
k
j+) +

1

2
∆J(Sk

i+S
k
j+ + Sk

i−S
k
j−)], (28)

Hk,k+1
2 = −Jp

∑
i

[
Sk
izS

k+1
iz +

1

2

(
Sk
i+S

k+1
i− + Sk

i−S
k+1
i+

)]
, (29)

where 2J = Jx + Jy and 2∆J = Jx − Jy. Furthermore, let the operators (aki )
† and aki be the spin

fluctuation creation and annihilation operators respectively for the spin at lattice site i in layer k.
The Holstein-Primakoff transformation then reads as [55]

Sk
iz = S − (aki )

†aki ,

Sk
i+ =

√
2Saki ,

Sk
i− =

√
2S(aki )

†.

(30)

In addition, the inverse Fourier transforms of the lattice fluctuation operators are given by the
formulas

aki =
1√
N

∑
q

akqe
ir⃗i·q⃗,

(aki )
† =

1√
N

∑
q

(akq )
†e−ir⃗i·q⃗,

(31)

where (akq )
† and akq are the creation and annihilation operators for magnons with momentum q⃗ in

layer k. Inserting both the Holstein-Primakoff transformation and the inverse Fourier transforms,

7



the Hamiltonians become

H
(k)
1 = −JNzS2 +

∑
q

[(
JSz − JSγ(q⃗)

)(
(akq )

†akq + (ak−q)
†ak−q

)
−∆JSγ(q⃗)

(
(akq )

†(ak−q)
† + akqa

k
−q

)]
,

(32)

and

Hk,k+1
2 = −JpNS2 + JpS

∑
q

[
(akq )

†akq + (ak+1
q )†ak+1

q

]
−JpS

∑
q

[
(ak+1

q )†akq + (akq )
†ak+1

q

]
,

(33)

where γ(q⃗) =
∑

δ e
iδ⃗·q⃗ and δ⃗ are the vectors connecting lattice site i to its neighbours. Finally,

define the values
Cq = JSz − JSγ(q⃗), (34)

Dq = −∆JSγ(q⃗), (35)

∆ =
1

2
JpS (36)

and sum over all layers to get

HFM =

M∑
k=1

H
(k)
1 +

M−1∑
k=1

Hk,k+1
2

= E0 +
∑
q

{[
Cq +∆

](
(a1q)

†a1q + (a1−q)
†a1−q + (aMq )†aMq + (aM−q)

†aM−q

)

+
[
Cq + 2∆

]M−1∑
k=2

(
(akq )

†akq + (ak−q)
†ak−q

)
+Dq

M∑
k=1

(
akqa

k
−q + (akq )

†(ak−q)
†
)

−∆

M−1∑
k=1

(
(ak+1

q )†akq + (akq )
†ak+1

q + (ak+1
−q )†ak−q + (ak−q)

†ak+1
−q

)}
,

(37)

where E0 = −JNzS2M − JpNS2(M − 1).

Simplify the Hamiltonian by writing it in matrix-form. Define the vector of magnon operators and
its adjoint as

ϕ⃗T =
[
a1q, . . . aMq , (a1−q)

†, . . . (aM−q)
†] . (38)

ϕ⃗† =
[
(a1q)

†, . . . (aMq )†, a1−q, . . . aM−q

]
. (39)

The Hamiltonian can then be written as

HFM = E∗
0 +

∑
q

ϕ⃗†
[
U V
V U

]
︸ ︷︷ ︸

P

ϕ⃗, (40)

where E∗
0 = E0 −M

∑
q Cq − 2N(M − 1)∆, V = DqIM is a diagonal M ×M matrix, and U is a

tridiagonal M ×M matrix of the form

U =



Cq +∆ −∆ 0 . . . 0

−∆ Cq + 2∆ −∆
...

0
. . . 0

... Cq + 2∆ −∆
0 . . . 0 −∆ Cq +∆


, (41)

where only U11 and UMM are Cq + ∆, while all other diagonal elements are Cq + 2∆, and the
off-diagonal elements are all equal to −∆. Thus

HFM = E∗
0 +

∑
q

ϕ⃗†Pϕ⃗. (42)
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3.2 Model of the normal metal

The normal metal is modelled by a monolayer tight binding model with nearest neighbour hopping
at half filling. The Hamiltonian is then

HNM = −t
∑

<i,j>,σ

c†iσcjσ − µ
∑
i,σ

c†iσciσ − h
∑
i,σ

σc†iσciσ, (43)

where t is the energy of the hopping from lattice site i to a nearest neighbour, j, µ is the chemical
potential of the electrons, and h is some external magnetic field coupled to the spin, σ, of the
electrons. c†iσ and ciσ are the creation and annihilation operators of an electron at lattice site i
with spin σ.

The inverse Fourier transforms of the electron creation and annihilation operators are given by

ciσ =
1√
N

∑
k

ckσe
ir⃗i ·⃗k,

c†iσ =
1√
N

∑
k

c†kσe
−ir⃗i ·⃗k,

(44)

where c†kσ and ckσ are the creation and annihilation operators for electrons with momentum k⃗ and
spin σ. Inserting the inverse Fourier transforms into the equation for HNM one gets

HNM =
∑
k,σ

εkσc
†
kσckσ, (45)

where εkσ = −tγ(k⃗)− µ︸ ︷︷ ︸
εk

−σh.

3.3 Model of the coupling

The coupling between the two layers is modelled by an exchange interaction between the spins of
layer 1 of the FMI and the electron spins of the NM. The Hamiltonian is

Hc = −Jsd
∑
i

S⃗1
i · s⃗i, (46)

where Jsd is the coupling exchange interaction, S⃗1
i is the spin at lattice site i in layer 1 of the

ferromagnet, and s⃗i is the electron spin of the electron at lattice site i. The electron spin vector is
defined by s⃗i = c†iασ⃗αβciβ , where σ⃗ is the Pauli matrix and a summation over α, β is implicit.

Rewriting the Hamiltonian in terms of the spin flip operators gives

Hc = −Jsd
∑
iσ

c†iσciσ − Jsd
2

∑
i

[
S1
i+c

†
i↓ci↑ + S1

i−c
†
i↑ci↓

]
. (47)

Inserting the Holstein-Primakoff transformation given by equation 30 as well as the inverse Fourier
transforms given by equations 31 and 44 gives the full coupling Hamiltonian as

Hc = −SJsd
∑
k,σ

σc†kσckσ −
√

2S

N
Jsd

∑
k,q

[
a1qc

†
k+q,↓ck↑ + (a1−q)

†
k+q,↑ck↓

]
+
2Jsd
N

∑
k1,k2,q,σ

(a1k1
)†a1k2

c†q+k2−k1,σ
cq,σ

(48)

Define V = Jsd
√
2S/N and omit the final term of the Hamiltonian for all future calculations, as it

does not contain the interactions that are being studied. The final model for the coupling is then

Hc = −SJsd
∑
k,σ

σc†kσckσ − V
∑
k,q

[
a1qc

†
k+q,↓ck↑ + (a1−q)

†
k+q,↑ck↓

]
. (49)

The final term of this Hamiltonian is what will be considered the perturbation to the full system
Hamiltonian.
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3.4 Full system model

Combine the three Hamiltonians given by equations 42, 45 and 49 to get the full system Hamiltonian

H = HFM +HNM +Hc

= E∗
0 +

∑
q

ϕ⃗†Pϕ⃗+
∑
kσ

εkσc
†
kσckσ − SJsd

∑
kσ

σc†kσckσ − V
∑
k,q

[
a1qc

†
k+q,↓ck↑ + (a1−q)

†
k+q,↑ck↓

]
(50)

Redefine the electron energies εkσ → εk − σ(h+ SJsd) to combine sums two and three, to get the
full system Hamiltonian

H = E∗
0 +

∑
q

ϕ⃗†Pϕ⃗+
∑
kσ

εkσc
†
kσckσ − V

∑
k,q

[
a1qc

†
k+q,↓ck↑ + (a1−q)

†ck+q,↑ck↓
]
. (51)

The full system is depicted from the side in figure 1.

Figure 1: Sideview of the full system. The top layer is the normal metal with unpolarized spins
s⃗i and hopping energy t. The normal metal is coupled to the FMI by an interaction Jsd. The
FMI contains M layers coupled together by an interaction Jp between each layer. All spins S⃗i are
polarized towards the normal metal.

4 Deriving the interactions

With the relevant theory and the system Hamiltonian covered, the effective electron-electron in-
teractions can be derived. This chapter first derives the interactions for the monolayer FMI model,
and then derives the interactions for the two-layer FMI model. In addition, similarities between
the two models are noted during the derivation of the two-layer FMI interactions. In this section,
to derive the interactions, the FMI Hamiltonian is Bogoliubov transformed, the full system Hamil-
tonian is SW transformed in terms of the perturbation, and finally BCS reduced to achieve the
effective electron-electron interactions.
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4.1 Monolayer FMI model

Consider the full system model with a monolayer of the FMI. In particular, this means that Jp is
not present, so it can be set to zero, and M = 1.

4.1.1 Bogoliubov transformation of the FMI Hamiltonian

Since there is only one layer, ∆ = 0, as this comes from the interlayer coupling. Let a1q be denoted
by aq, as this is the only magnon operator in the model. Then, equation 42 reduces to

HFM = E∗
0 +

∑
q

[
a†q, a−q

] [Cq Dq

Dq Cq

] [
aq
a†−q

]
, (52)

where E∗
0 = −JNzS2 −

∑
q Cq.

Through the Bogoliubov transformation, new operators representing long-lived magnons, Aq and
A†

q, are expressed in terms of the operators aq and a†q. A detailed walkthrough of the Bogoliubov
transformation is presented in appendix B. The new operators are defined by[

A†
q, A−q

]
=

[
uqa

†
q + vqa−q, vqa

†
q + uqa−q

]
, (53)[

Aq

A†
−q

]
=

[
uqaq + vqa

†
−q

vqaq + uqa
†
−q

]
, (54)

where the coefficients are defined by

uq =

√
2Cq + ωq

2ωq
, (55)

vq =

√
2Cq − ωq

2ωq
, (56)

and

ωq = 2
√

C2
q −D2

q . (57)

The coefficients can be written in terms of the system parameters as

u2
q =

1

2
(1 +

Jz − Jγ(q)√
(Jz − Jxγ(q))(Jz − Jyγ(q))

),

v2q =
1

2
(−1 +

Jz − Jγ(q)√
(Jz − Jxγ(q))(Jz − Jyγ(q))

),

(58)

and satisfy the relationship
u2
q − v2q = 1. (59)

The Bogoliubov transformed FMI Hamiltonian is then

HFM = E∗
0 +

∑
q

ωq(A
†
qAq +

1

2
), (60)

with E∗
0 = −JNzS2 −

∑
q Cq and ωq = 2

√
C2

q −D2
q .

4.1.2 The FMI-NM coupling

Consider next the FMI-NM coupling. Before the SW transformation can be performed, the magnon
operators aq and a†q must be expressed in terms of the new operators representing long-lived
magnons. The Hamiltonian is given by

Hc = −V
∑
k,q

[
aqc

†
k+q,↓ck↑ + a†−qck+q,↑ck↓

]
. (61)
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The inverse Bogoliubov transformation is calculated in appendix B, and found to be[
aq
a†−q

]
=

[
uqAq − vqA

†
−q

−vqAq + uqA
†
−q

]
, (62)

[
a†q a−q

]
=

[
uqA

†
q − vqA−q, −vqA

†
q + uqA−q

]
. (63)

Inserting this into equation 61 we get

Hc = −V
∑
k,q

[
uqAqc

†
k+q,↓ck↑ − vqA

†
−qc

†
k+q,↓ck↑ + uqA

†
−qck+q,↑ck↓ − vqAqck+q,↑ck↓

]
, (64)

which will be used as the perturbation for the SW transformation.

4.1.3 SW transformation

After the Bogoliubov transformation, the system Hamiltonian can be written as

H = E∗
0 +

∑
q

ωq(A
†
qAq +

1

2
) +

∑
kσ

εkσc
†
kσckσ

−V
∑
k,q

[
uqAqc

†
k+q,↓ck↑ − vqA

†
−qc

†
k+q,↓ck↑ + uqA

†
−qck+q,↑ck↓ − vqAqck+q,↑ck↓

] (65)

This Hamiltonian can now be diagonalized using a SW transformation in accordance with the
method presented in section 2.3. The ground state Hamiltonian is

H0 = E∗
0 +

∑
q

ωq(A
†
qAq +

1

2
) +

∑
kσ

εkσc
†
kσckσ, (66)

the perturbation is

H1 = Hc = −V
∑
k,q

[
uqAqc

†
k+q,↓ck,↑ + uqA

†
−qc

†
k+q,↑ck,↓ − vqA

†
−qc

†
k+q,↓ck,↑ − vqAqc

†
k+q,↑ck,↓

]
, (67)

and as described in section 2.3 the generator for the SW transformation has the same operator
structure as H1, so it becomes

S = −V
∑
k,q

[
XkqAqc

†
k+q,↓ck↑ + YkqA

†
−qc

†
k+q,↑ck↓ + ZkqA

†
−qc

†
k+q,↓ck↑ +WkqAqc

†
k+q,↑ck↓

]
, (68)

where Xkq, Ykq, Zkq and Wkq need to be determined. The diagonalized Hamiltonian is then

H ′ = H0 −
1

2
[S,H1]. (69)

The coefficients of S are calculated in accordance with the method presented in section 2.3.3 in
appendix C, and are shown to be

Xkq =
uq

εk↑ − εk+q,↓ + ωq
, (70)

Ykq =
uq

εk,↓ − εk+q,↑ − ωq
, (71)

Zkq =
vq

εk+q,↓ − εk↑ + ωq
, (72)

Wkq =
vq

εk+q,↑ − εk↓ − ωq
. (73)
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Furthermore, the commutator [S,H1] is calculated in appendix D. When calculating it we find

−1

2
[S,H1] = −

∑
k,k′,q

[
V opposite
eff c†k+q,↓c

†
k′−q,↑ck↑ck′↓+V up

effc
†
k+q,↑c

†
k′−q,↑ck↓ck′↓+V down

eff c†k+q,↓c
†
k′−q,↓ck↑ck′↑

]
,

(74)
where

V opposite
eff = −V 2

2

(
Xkquq + Zkqvq − Yk′,−quq −Wk′,−qvq

)
, (75)

V up
eff = −V 2

2

(
Yk′,−qvq +Wkquq

)
, (76)

V down
eff =

V 2

2

(
Xkqvq + Zk′,−quq

)
(77)

The diagonalized system Hamiltonian is then

H = E∗
0 +

∑
q

ωq(A
†
qAq +

1

2
) +

∑
kσ

εkσc
†
kσckσ

−
∑
k,k′,q

[
V opposite
eff c†k+q,↓c

†
k′−q,↑ck↑ck′↓ + V up

effc
†
k+q,↑c

†
k′−q,↑ck↓ck′↓ + V down

eff c†k+q,↓c
†
k′−q,↓ck↑ck′↑

]
.

(78)

Most noteworthy is the fact that three different spin structures with different electron-electron
interactions appear. There is the spin-singlet | ↑, ↓⟩ → | ↓, ↑⟩ interaction that appears in the Cooper
problem, but when introducing squeezing, additional spin-triplet interactions | ↑, ↑⟩ → | ↓, ↓⟩ and
| ↓, ↓⟩ → | ↑, ↑⟩ appear. Only the spin-singlet interaction is predicted by the BCS-model. The
origin of these interactions are discussed in section 6.1.

4.1.4 BCS reduction

To guarantee that the interactions scatter the Cooper pairs onto the region of width ω0 around the
Fermi surface, the interaction term of the system Hamiltonian must be BCS reduced in accordance
with section 2.4.2. This means specifying the impulse q⃗ to scatter k⃗′ to k⃗. The procedure consists
of redefining the momentas as k⃗′ → −k⃗, setting q⃗ = k⃗′ − k⃗ and finally exchanging k⃗ and k⃗′. The
interaction term then becomes

−
∑
k,k′,q

[
V opposite
kk′ c†k,↓c

†
−k,↑ck′↑c−k′,↓ + V up

kk′c
†
k,↑c

†
−k,↑ck′↓c−k′,↓ + V down

kk′ c†k,↓c
†
−k,↓ck′↑c−k′,↑

]
. (79)

The BCS reduction of the interactions are performed in appendix E, with the result being

V opposite
kk′ =

V 2u2
k−k′ ω̃

−
k−k′

(εk − εk′)2 − (ω̃−
k−k′)2

+
V 2v2k−k′ ω̃

+
k−k′

(εk − εk′)2 − (ω̃+
k−k′)2

, (80)

V up
kk′ =

V 2uk−k′vk−k′ωk−k′

ω̃+
k−k′ ω̃

−
k−k′ + (εk − εk′)(ω̃+

k−k′ − ω̃−
k−k′)− (εk − εk′)2

, (81)

V down
kk′ =

V 2uk−k′vk−k′ωk−k′

ω̃+
k−k′ ω̃

−
k−k′ − (εk − εk′)(ω̃+

k−k′ − ω̃−
k−k′)− (εk − εk′)2

, (82)

after the coefficients are inserted. In the above expressions, εkσ has been split into εkσ =
−tγ(k⃗)− µ︸ ︷︷ ︸

εk

−(h+ 2SJsd)σ and ω̃±
q = ωq ± 2(h+ SJsd).

Note that V up
kk′ and V down

kk′ only vary by the sign of the second term in the denominator. Both these
terms are proportional to εk − εk′ , which means that for scattering at the Fermi surface, these
terms cancel out, such that the interactions are identical.
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4.2 Two-layer FMI model

Consider next the model with two layers of the FMI. With two layers, Jp is introduced into the
FMI Hamiltonian, and can not be considered zero as in the monolayer model.

4.2.1 Bogoliubov transformation of the FMI Hamiltonian

Let a1q be denoted by aq and a2q by bq for simplicity of notation. From equation 42, the two-layer
FMI Hamiltonian is

H = E∗
0 +

∑
q

[
a†q, b†q, a−q b−q

] 
Cq +∆ −∆ Dq 0
−∆ Cq +∆ 0 Dq

Dq 0 Cq +∆ −∆
0 Dq −∆ Cq +∆



aq
bq
a†−q

b†−q

 , (83)

where E∗
0 = −2JNzS2 − JpNS2 − 2

∑
q Cq − 2N∆.

As for the monolayer model, HFM is Bogoliubov transformed to be expressed in terms of operators
representing long-lived magnons. Denote the new operators by A1

q = Aq and A2
q = Bq. The

Bogoliubov transformation is performed in appendix F. The transformed Hamiltonian is

H = E∗
0 +

∑
q,i

ωqi

(
(Ai

q)
†Ai

q +
1

2

)
, (84)

where i = 1, 2, and the magnon spectras are given by

ωq1 = 2
√
C2

q −D2
q , (85)

ωq2 = 2
√
(Cq + 2∆)2 −D2

q . (86)

The transformed operators are defined in terms of the old operators as
A†

q

B†
q

Aq

Bq

 =


uq1a

†
q + uq1b

†
q + vq1a−q + vq1b−q

−uq2a
†
q + uq2b

†
q − vq2a−q + vq2b−q

uq1aq + uq1bq + vq1a
†
−q + vq1b

†
−q

−uq2aq + uq2bq − vq2a
†
−q + vq2b

†
−q

 , (87)

where the coefficients are defined by

uq1 =

√
2Cq + ωq1

4ωq1
, (88)

uq2 =

√
2(Cq + 2∆) + ωq2

4ωq2
, (89)

vq1 =

√
2Cq − ωq1

4ωq1
, (90)

vq2 =

√
2(Cq + 2∆)− ωq2

4ωq2
. (91)

These coefficients satisfy similar relationships to equation 59 in the monolayer model, namely

u2
q1 − v2q1 =

1

2
,

u2
q2 − v2q2 =

1

2
,

(u2
q1 + u2

q2)− (v2q1 + v2q2) = 1.

(92)
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Moreover, uq1 and vq1 are related to uq and vq in the monolayer model via the relations

uq1 =
1√
2
uq,

vq1 =
1√
2
vq,

(93)

while ωq1 is identical to ωq in the monolayer model. Notably, there is no dependence on Jp. When
looking at equation 87, Aq and A†

q are equally dependent on the aq and bq operators, implying
that the spins in both layers fluctuate parallel to each other, thus eliminating their interaction
with each other. Meanwhile, Bq and B†

q have opposite signs for their dependence on the aq and
bq operators, implying that the spin fluctuations in layer 2 are 180◦ out of phase with the spin
fluctuations in layer 1.

4.2.2 The FMI-NM coupling

Consider next the coupling term given by

Hc = −V
∑
k,q

[
aqc

†
k+q,↓ck↑ + a†−qk+q,↑ck↓

]
. (94)

The Hamiltonian must be expressed in terms of the new operators. The inverse Bogoliubov trans-
formation of the magnon operators is calculated in appendix F and is given by[

aq
a†−q

]
=

[
uq1Aq − uq2Bq − vq1A

†
−q + vq2B

†
−q

−vq1Aq + vq2Bq + uq1A
†
−q − uq2B

†
−q

]
. (95)

To more easily compare the two-layer FMI model to the monolayer model, write this as

aq =

2∑
i=1

(−1)i+1
[
uqiA

i
q − vqi(A

i
−q)

†], (96)

a†−q =

2∑
i=1

(−1)i+1
[
− vqiA

i
q + uqi(A

i
−q)

†], (97)

where A1
q = Aq and A2

q = Bq. Inserting them into Hc gives

Hc = −V
∑
k,q,i

(−1)i+1
[
uqiA

i
qc

†
k+q,↓ck↑−vqi(A

i
−q)

†c†k+q,↓ck↑+uqi(A
i
−q)

†ck+q,↑ck↓−vqiA
i
qck+q,↑ck↓

]
,

(98)
which has the exact same form as Hc in the monolayer model up to the summation over i.

4.2.3 SW transformation

The Bogoliubov transformed system Hamiltonian is

H = E∗
0 +

∑
k,σ

εkσc
†
kσckσ +

∑
q,i

ωqi((A
i
q)

†Ai
q +

1

2
)

−V
∑
k,q,i

(−1)i+1
[
uqiA

i
qc

†
k+q,↓ck↑ − vqi(A

i
−q)

†c†k+q,↓ck↑ + uqi(A
i
−q)

†c†k+q,↑ck↓ − vqiA
i
qc

†
k+q,↑ck↓

]
,

(99)

The Hamiltonian can be diagonalized by the SW transformation as described in section 2.3. The
ground state Hamiltonian is

H0 = E∗
0 +

∑
k,σ

εkσc
†
kσckσ +

∑
q,i

ωqi((A
i
q)

†Ai
q +

1

2
), (100)
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the perturbation is the interaction term

H1 = Hc = −V
∑
k,q,i

(−1)i+1
[
uqiA

i
qc

†
k+q,↓ck↑−vqi(A

i
−q)

†c†k+q,↓ck↑+uqi(A
i
−q)

†c†k+q,↑ck↓−vqiA
i
qc

†
k+q,↑ck↓

]
,

(101)
so the generator of the transformation is

S = −V
∑
k,q,i

(−1)i+1
[
Xi

kqA
i
qc

†
k+q,↓ck↑+Y i

kq(A
i
−q)

†c†k+q,↑ck↓+Zi
kq(A

i
−q)

†c†k+q,↓ck↑+W i
kqA

i
qc

†
k+q,↑ck↓

]
,

(102)
where Xi

kq, Y
i
kq, Z

i
kq and W i

kq must be determined to get the transformed Hamiltonian

H ′ = H0 −
1

2
[S,H1]. (103)

The coefficients are calculated in appendix G as described in section 2.3.3. They are

Xi
kq =

uqi

εk↑ − εk+q,↓ + ωqi
, (104)

Y i
kq =

uqi

εk↓ − εk+q,↑ − ωqi
, (105)

Zi
kq =

vqi
εk+q,↓ − εk,↑ + ωqi

, (106)

W i
kq =

vqi
εk+q,↑ − εk,↓ − ωqi

, (107)

which is the exact same form as the coefficients in the monolayer model.

The commutator is calculated in appendix H and found to be

−1

2
[S,H1] = −

∑
k,k′,q

[
V opposite
eff c†k+q,↓c

†
k′−q,↑ck↑ck′↓+V up

effc
†
k+q,↑c

†
k′−q,↑ck↓ck′↓+V down

eff c†k+q,↓c
†
k′−q,↓ck↑ck′↑

]
,

(108)
where

V opposite
eff = −V 2

2

2∑
i=1

(
Zi
kqvqi +Xi

kquqi − Y i
k′,−quqi −Wk′,−qvqi

)
, (109)

V up
eff = −V 2

2

2∑
i=1

(
W i

kquqi + Y i
k′,−qvqi

)
, (110)

V down
eff =

V 2

2

2∑
i=1

(
Xi

kqvqi + Zk′,−quqi

)
. (111)

The interactions are also identical to the interactions in the monolayer model up to the summation
over i. This includes the spin-triplet interactions, which are present in the two-layer model as well.
As previously stated, their origin is discussed in section 6.1.

4.2.4 BCS reduction

The interaction term of the Hamiltonian must be BCS reduced to guarantee that the Cooper pairs
scatter into the region of width ω0 around the Fermi surface. In accordance with the procedure
presented in section 2.4.2, this consists of redefining the momentas k⃗′ → −k⃗, setting q⃗ = k⃗′ − k⃗
and exchanging all k⃗ and k⃗′. Doing so gives the interaction term as

−1

2
[S,H1] = −

∑
k,k′,i

[
V opposite
kk′ c†k↓c

†
−k,↑ck′↑c−k′,↓+V up

kk′c
†
k↑c

†
−k,↑ck′↓c−k′,↓+V down

kk′ c†k↓c
†
−k,↓ck′↑c−k′,↑

]
.

(112)
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The BCS reduction of the interactions is performed in appendix I and gives

V opposite
kk′ =

2∑
i=1

( V 2u2
k−k′,iω̃

−
k−k′,i

(εk − εk′)2 − (ω̃−
k−k′,i)

2
+

V 2v2k−k′,iω̃
+
k−k′,i

(εk − εk′)2 − (ω̃+
k−k′,i)

2

)
, (113)

V up
kk′ =

2∑
i=1

V 2uk−k′,ivk−k′,iωk−k′,i

ω̃+
k−k′,iω̃

−
k−k′,i + (ω̃+

k−k′,i − ω̃k−k′,i)(εk − εk′)− (εk − εk′)2
, (114)

V down
kk′ =

2∑
i=1

V 2uk−k′,ivk−k′,iωk−k′,i

ω̃+
k−k′,iω̃

−
k−k′,i − (ω̃+

k−k′,i − ω̃k−k′,i)(εk − εk′)− (εk − εk′)2
, (115)

where εk = −tγ(k⃗)− µ and ω̃±
qi = ωqi ± 2(h+ SJsd). Once again, the expressions are identical to

the interactions in the monolayer model up to the summation over i.

5 Calculations and results

With all the effective electron-electron interactions derived, their strength can be calculated. This
section first approximates the Fermi surface and describes how the strengths are calculated in
section 5.1, and then plots the relevant graphs for the monolayer model in section 5.2, and two-
layer model in section 5.3.

5.1 Method of calculations

As stated in section 2.4, the interactions are only valid in a small region around the Fermi surface.
To simplify the calculations, the interactions will therefore be calculated only on the Fermi surface.
In the model for the normal metal, the Fermi energy is the chemical potential, µ. Since this is
included in the expression for εkσ, the Fermi surface is defined by the zero point of the electron
energy, given by

εkσ = −tγ(k⃗)− µ− σ(h+ SJsd) = 0, (116)

which gives a spin splitting of the Fermi surface. However, t is the dominant energy term in
the model, so the spin-dependence will be neglected for the evaluations of the interactions. As
calculated in appendix J, the Fermi surface then becomes

cos(kx) + cos(ky) = − µ

2t
. (117)

Since the maximum of cos(kx) + cos(ky) is 2, and the metal is at half filling, let the Fermi energy
be µ = −2t, such that the Fermi surface becomes

cos(kx) + cos(ky) = 1. (118)

To simplify the calculations, approximate the Fermi surface as a circle. The rightmost point on
the Fermi surface is at the point (kx, ky) = (π2 , 0), so let the radius be π

2 . The approximated Fermi
surface then becomes

k2x + k2y =
π2

4
. (119)

The original Fermi surface as well as the approximated Fermi surface compared to the original are
plotted in figure 2. The difference is small, and a circle makes it easy to express k⃗′ in terms of
the polar angle relative to k⃗. Furthermore, due to the symmetry of the circle, k⃗ can be stationary
while only k⃗′ varies. To calculate the interaction strength, let k⃗ be fixed at the point (π2 , 0) and

let k⃗′ run around the full Fermi surface. As a function of θ, k⃗′ is

k⃗′ =

[
π
2 cos(θ)
π
2 sin(θ)

]
(120)

The interaction strength is then calculated as a function of θ.
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Figure 2: Left: Plot of the Fermi surface given by equation 118. Right: Plot of the approximated
Fermi surface (purple) as calculated by equation 119 overlayed the real Fermi surface (blue).

5.2 Monolayer interactions

Consider first the monolayer model. The model parameters chosen for the calculations can be seen
in table 1. The parameter δ refers in this case to the amount of squeezing, such that Jy = δ · Jx.
With the parameter V is included a scaling factor such that the values of the interactions plotted
are of magnitude 1. V appears only as a coefficient V 2 in every interaction, so the scaling factor
does not affect the shape of the plots or the relative values of the interactions. In this section, the

Parameter Value
J 0.25
Jx 0.05
δ 0.5
Jsd 0.02
t 1
V 1.5

Table 1: Model parameters for the evaluation of the interactions.

spin-triplet interaction is compared to the spin-singlet interaction, and the effect of varying the
squeezing factor δ is studied.

5.2.1 Spin singlet compared to spin triplet

Firstly, it is useful to see if the spin-triplet interactions have a noticeable effect on the overall
superconductivity of the material. Since the interactions are evaluated along the Fermi surface,
the two spin-triplet interactions are equal in strength, as shown in section 4.1.4. Therefore only
V up
kk′ will be evaluated. All results are the same for V down

kk′ . Using the parameters in table 1,

and k⃗ and k⃗′ as described above, V opposite
kk′ and V up

kk′ are plotted together, and their relative value
calculated in figure 3.

On average along the Fermi surface, V up
kk′ is only 1.02% the strength of V opposite

kk′ , meaning the spin-
triplet interaction is on average a factor 100 weaker than the spin-singlet interaction. It is therefore
reasonable to conclude that the spin-triplet interaction does not contribute in a noticeable way to
the overall superconductivity of the FMI-NM material.
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Figure 3: Left: V opposite
kk′ (green) plotted together with V up

kk′ (blue) on the approximated Fermi

surface. Right: Plot of V up
kk′/V

opposite
kk′ .

5.2.2 Effect of squeezing

Consider next the effect of the amount of squeezing in the system on the interactions. Both
V opposite
kk′ and V up

kk′ are evaluated with squeezing factors varying from 1
4 to 4.

Figure 4 shows V opposite
kk′ on the left and V up

kk′ on the right plotted with squeezing factors 1 in blue,
1
2 in yellow, 1

3 in green, and 1
4 in red. Figure 5 shows V opposite

kk′ on the left and V up
kk′ on the right

plotted with squeezing factors 1 in blue, 2 in yellow, 3 in green, and 4 in red.

Figure 4: Left: V opposite
kk′ and Right: V up

kk′ plotted along the Fermi surface with squeezing factors 1
(blue), 1

2 (yellow), 1
3 (green) and 1

4 (red).

Figures 4 and 5 shows that the spin-triplet interaction always increases when the squeezing factor
moves further away from 1, which implies that it is directly related to the amount of squeezing.
At no squeezing, the interaction disappears. When increasing the squeezing factor above 1, the
strength increase of the interaction is also much larger than when the squeezing factor is decreased
below 1. Both plots also exhibit an absolute value-like behaviour, where the interaction is zero at
polar angles π

2 , π and 3π
2 . These results are discussed further in section 6.3.

Meanwhile, V opposite
kk′ has a more complex behaviour. When decreasing the squeezing factor below

1, the interaction strength decreases in the regions 0 to π
2 and 3π

2 to 2π, while it increases in strength
in the region π

2 to 3π
2 , with a local maximum at π. However, when increasing the squeezing factor

above 1, the behaviours change, such that the interaction increases in strength in the regions 0 to
π
2 and 3π

2 to 2π, and decrease in strength in the region π
2 to 3π

2 . This will also be discussed further
in section 6.3.
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Figure 5: Left: V opposite
kk′ and Right: V up

kk′ plotted along the Fermi surface with squeezing factors 1
(blue), 2 (yellow), 3 (green) and 4 (red).

5.3 Two-layer interactions

In the two-layer model, the parameter Jp is introduced. This is set to Jp = 0.04, while all other
parameters are the same as in the monolayer model, and given by table 1. In this section, the
two-layer interactions are compared to the monolayer interactions, the effect of Jp is studied, and
the effect of squeezing is revisited for this model.

5.3.1 Effect of multiple layers

To study the effect of including more layers of the FMI to the material, the interactions are plotted
and compared to their monolayer counterparts. Figure 6 shows V opposite

kk′ on the left, and V up
kk′ on

the right plotted in the monolayer model in blue, and the two-layer model in red.

Figure 6: Left: V opposite
kk′ and Right: V up

kk′ plotted along the Fermi surface in the monolayer model
(blue) and the two-layer model (red).

From the figure, it can be seen that both the spin-singlet and spin-triplet interactions are weaker
in the two-layer model than the monolayer model. On average along the Fermi surface, V opposite

kk′

in the two-layer model is 97.9% the strength of the monolayer model, while, V up
kk′ in the two-layer

model is 96.0% the strength of the monolayer model. Furthermore, the shape of the interactions
are unchanged in the two-layer model.
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5.3.2 Effect of Jp

With the introduction of the parameter Jp, its effect on the interaction strength is not immediately
obvious. So the interactions are evaluated at different values of Jp to better understand it. Figure

7 shows V opposite
kk′ on the left and V up

kk′ on the right plotted with Jp-values 0.1 in blue, 0.075 in
green, 0.05 in yellow, and 0.025 in red.

Figure 7: Left: V opposite
kk′ and Right: V up

kk′ plotted along the Fermi surface with Jp-values 0.1 (blue),
0.075 (yellow), 0.050 (green) and 0.025 (red).

The plots show that both the spin-singlet and spin-triplet interactions decrease in strength with
an increasing value of Jp. Going from Jp = 0.025 to Jp = 0.1, V opposite

kk′ decreases to an average
of 96.4% of its strength, while V up

kk′ decreases to an average of 93.3% of its strength. The shape of
the plots are unchanged

5.3.3 Effect of squeezing

Consider next the effect of squeezing on the two-layer FMI. The sqeezing factor varies between 1
4

and 4. Figure 8 shows V opposite
kk′ to the left and V up

kk′ to the right plotted with squeezing factors 1

in blue, 1
2 in yellow, 1

3 in green, and 1
4 in red. Figure 9 shows V opposite

kk′ on the left, and V up
kk′ on the

right plotted with squeezing factors 1 in blue, 2 in yellow, 3 in green, and 4 in red.

Figure 8: Left: V opposite
kk′ and Right: V up

kk′ plotted along the Fermi surface with squeezing factors 1
(blue), 1

2 (yellow), 1
3 (green) and 1

4 (red).

Comparing these figures with figures 4 and 5, the behaviour of the interactions at different squeezing
factors, as well as the shape of the curves are almost identical. This implies that the effect of
squeezing on the interactions does not change in a noticeable way when including a second layer
to the FMI.
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Figure 9: Left: V opposite
kk′ and Right: V up

kk′ plotted along the Fermi surface with squeezing factors 1
(blue), 2 (yellow), 3 (green) and 4 (red).

In summary, this section has shown that the spin-triplet interaction is about 1% the strength
of the spin-singlet interaction, that the spin-triplet interaction increases in strength the further
away from 1 the squeezing factor is, that the spin-singlet interaction increases in strength with an
increasing squeezing factor in one region and decreases in strength in another region of the Fermi
surface, and that both the presence and increase of Jp reduces both interaction strengths.

6 Discussion

This section will attempt to explain why the interactions behave as they do when changing the
system parameters, as well as explain where the spin-triplet interactions come from.

6.1 Origin of the spin-triplet interaction

As reported in sections 4.1.3 and 4.2.3, the models exhibit two additional spin-triplet interactions
that are not predicted by the BCS-model.

To see where these come from, consider the original form of H
(k)
1 in the FMI model after the

spin-flip operators have been introduced. This is given by

H
(k)
1 = −

∑
<i,j>

[JSk
izS

k
jz +

1

2
J(Sk

i+S
k
j− + Sk

i−S
k
j+) +

1

2
∆J(Sk

i+S
k
j+ + Sk

i−S
k
j−)], (121)

where 2J = Jx + Jy and 2∆J = Jx − Jy. The final term is proportional to ∆J and contains
the spin-flip operator structure Sk

i+S
k
j+ + Sk

i−S
k
j−, which flips two neighbouring FMI spins up and

two down. The magnons associated with this process are kept when Bogoliubov transforming the
Hamiltonian, such that the operators representing long-lived operators, Aq and A†

q, also contain
terms that represent spin flipping two neighbouring spins either up or down. When these are
connected to the electrons of the NM via the coupling Hamiltonian

Hc = −Jsd
∑
i

S⃗1
i · s⃗i, (122)

the electrons at lattice sites i and j also flip. This is because since Jsd is positive, the energy is
minimized when the spins are parallel. A double spin flip in the top layer of the FMI then leads
to a double spin flip in the electrons as well. A double spin flip in the second layer connects to the
first layer via the interlayer coupling term

H1,2
2 = −Jp

∑
i

S⃗1
i · S⃗2

i , (123)
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and then to the electrons in the normal metal via equation 122. The magnons from the double
spin flip thus leads to spin triplet Cooper pairs.

6.2 Effect of Jp and multiple layers

In figure 6 it can be seen that both V opposite
kk′ and V up

kk′ (as well as V down
kk′ ) are weaker in the two-layer

model than the monolayer model. Furthermore, figure 7 shows that the interactions decrease in
strength with an increasing value of Jp. This section aims to provide both a mathematical and a
physical explanation for the behaviour. For the following discussion, let uq, vq and ωq refer to the
monolayer values, and let uqi, vqi and ωqi, where i = 1, 2, refer to the values in the two-layer FMI.
For simplicity of notation, write q instead of k − k′ as index.

6.2.1 Spin-singlet interaction

Consider first the spin-singlet interaction. Since the interaction is evaluated at the Fermi surface,
such that (εk − εk′) = 0, equation 113 reduces to

V opposite
kk′,2 =

2∑
i=1

[V 2u2
qi

ω̃−
qi

+
V 2v2qi

ω̃+
qi

]
, (124)

where the subscript 2 refers to this being in the two-layer model. In this expression, the only
dependence on Jp appears in the i = 2 term, through ∆ = 1

2JpS. To mathematically understand
the behaviour, the explicit dependence on ∆ will be considered. The expressions for uq2 and vq2
are

uq2 =

√
2(Cq + 2∆) + ωq2

4ωq2
, (125)

vq2 =

√
2(Cq + 2∆)− ωq2

4ωq2
, (126)

where

ωq2 = 2
√
(Cq + 2∆)2 −D2

q . (127)

All the dependence on ∆ appears as (Cq +2∆). Let there instead be a variable dependence on ∆,
by setting 2∆ → x∆, where x is a non-negative real number. The expressions then read

uq2(x) =

√
2(Cq + x∆) + ωq2

4ωq2
, (128)

vq2(x) =

√
2(Cq + x∆)− ωq2

4ωq2
, (129)

where

ωq2(x) = 2
√
(Cq + x∆)2 −D2

q . (130)

Notice that uq2(0) = uq1, vq2(0) = vq1 and ωq2(0) = ωq1. Furthermore, by the positivity of the
square root, all these functions are non-negative. This also extends to ω̃±

qi = ωqi ± 2(h+ JsdS) for

reasonable values of h and Jsd as well. Moreover, the functions Cq = JSz−JSγ(q⃗) and ∆ are also
positive within the system specifications. Differentiating the functions with respect to x, one gets

∂ωq2

∂x
=

4∆(Cq + x∆)

ωq2
> 0, (131)

∂uq2

∂x
= −

∆D2
q

4uq2ω3
q2

< 0, (132)
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∂vq2
∂x

=
uq2

vq2

∂uq2

∂x
= −

∆D2
q

4vq2ω3
q2

< 0. (133)

Thus, differentiating V opposite
kk′,2 yields

∂V opposite
kk′,2

∂x
= V 2

[2uq2ω̃
−
q2

∂uq2

∂x − u2
q2

∂ω̃−
q2

∂x

(ω̃−
q2)

2
+

2vq2ω̃
+
q2

∂vq2

∂x − v2q2
∂ω̃+

q2

∂x

(ω̃+
q2)

2

]
< 0. (134)

Every term in the numerators are negative, meaning the overall expression is negative. This shows
mathematically that V opposite

kk′,2 decreases with an increasing dependence on Jp.

Relate this to V opposite
kk′,1 by noting that since x = 0 gives the i = 1 values of the corresponding

functions, the i = 1 term of V opposite
kk′,2 is larger than the i = 2 term. In addition, as stated in section

4.2.1, one has the relationships

uq1 =
1√
2
uq,

vq1 =
1√
2
vq,

ωq1 = ωq,

(135)

meaning the i = 1 term of V opposite
kk′,2 is exactly half the value of V opposite

kk′,1 . Since the i = 2 term

is smaller, one gets that V opposite
kk′,2 must be weaker than V opposite

kk′,1 . This is a direct consequence of
introducing Jp to the system.

Physically, this can be explained by how the FMI connects to the NM. The model for the FMI-NM
coupling is

H = −V
∑
k,q

[
aqc

†
k+q,↓ck↑ + a†−qk+q,↑ck↓

]
. (136)

Since the magnons of layer 2 represented by bq are not directly coupled to the NM, they do not
directly mediate Cooper pairs. Instead, the magnons of layer 2 interact with the magnons of
layer 1 through Jp to mediate Cooper pairs. Due to the extra step, this should be a weaker
electron-magnon interaction than the direct coupling of the magnons of layer 1 to the NM. This
means that a normalized linear combination of aq and bq will be weaker than aq alone. Thus,
the normalized linear combinations, Aq and Bq, of the aq- and bq operators will in general result
in weaker interactions than the magnons represented by aq alone does. Since Jp is the exchange
interaction coupling the aq-magnons to the bq-magnons, the stronger it is, the more bq contributes
to Aq and Bq. The result is that the Aq- and Bq-magnons give rise to a weaker electron-magnon
coupling due to a larger presence of the bq-magnons when Jp increases. However, the author is
unaware of studies discussing this specific effect, meaning there is no scientific evidence to further
prove/disprove this theory.

6.2.2 Spin-triplet interaction

Consider next the spin-triplet interactions. On the Fermi surface, since (εk − εk′) = 0, the spin-
triplet interactions in the two-layer model can be written as

V up
kk′,2 = V down

kk′,2 = V 2
2∑

i=1

uqivqiωqi

ω̃+
qiω̃

−
qi

, (137)

where ω̃±
qi = ωqi ± 2m, m = h + SJsd, and the subscript 2 indicates that this is in the two-layer

model.

Let again 2∆ → x∆ and use the expressions for uq2(x), vq2(x) and ωq2(x) as given by equations
128, 129 and 130. Differentiating V up

kk′,2 with respect to x yields

∂V up
kk′,2

∂x
= −∆|Dq|(Cq + x∆)

2ω2
q2(ω̃

+
q2ω̃

−
q2)

2

(
ω2
q2 + 6m2

)
< 0, (138)
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which shows that also the spin-triplet interaction decreases with dependence on Jp. This means
that the i = 1 term is larger than the i = 2 term. The i = 1 term is also exactly half the strength
of V up

kk′,1, and since the i = 2 term is smaller, this means that V up
kk′,2 as a whole is weaker than

V up
kk′,1.

Physically, the explanation is the same as the one provided for the spin-singlet interaction in section
6.2.1.

6.3 Effect of squeezing

Consider finally how the squeezing affects the interactions. Since the effect of the squeezing did
not change when going from one to two layers, the main focus of this section is the monolayer
interactions. The arguments are identical for the two-layer interactions.

6.3.1 Spin-singlet interaction

Consider first the spin-singlet interaction. From equation 121, it can be seen that the spin-flip
operators that give rise to the spin-singlet interaction is proportional to J =

Jx+Jy

2 . Näıvely,
this should mean that the strength of the spin-singlet interaction increases when the sum Jx + Jy
increases. Thus, since a squeezing factor smaller than 1 decreases Jy, the interaction should be
weaker. Similarly, since a squeezing factor larger than 1 increases Jy, the interaction should be
stronger. However, this only applies to the regions where θ lies on the intervals 0 to π

2 and 3π
2

to 2π. On the interval π
2 to 3π

2 , the opposite is true. To explain this, consider the expression for

V opposite
kk′ on the Fermi surface, given by

V opposite
kk′ = V 2

( u2
q

ω̃−
q

+
v2q

ω̃+
q

)
. (139)

Rewrite it in terms of the values Cq, Dq and m, giving

V opposite
kk′ =

V 2

2

Cq +m

(C2
q −m2)−D2

q

, (140)

where Cq = JSz − JSγ(q⃗), Dq = −∆JSγ(q⃗) and m = h + JsdS. Differentiating this expression
with respect to Jy gives

∂V opposite
kk′

∂Jy
= Sγ(q⃗)

Jy
2

·
(Cq +m)(Cq +Dq)− ω̃+

q ω̃
−
q

(ω̃+
q ω̃

−
q )2︸ ︷︷ ︸

λq

. (141)

Setting q⃗ = k⃗ − k⃗′, where k⃗ =
[
π
2 , 0

]
and k⃗′ =

[
π
2 cos θ, π

2 sin θ
]
, the sign of λq does not change

as a function of θ. However, the sign of γ(q⃗) is positive on the intervals 0 to π
2 and 3π

2 to 2π, and
negative on the interval π

2 to 3π
2 . Thus, the interaction behaves oppositely with respect to the size

of Jy in these regions. While this can be seen as an effect of squeezing, it is not directly dependent
on the difference Jx − Jy. Instead, it depends on the value of Jy alone. Combining this with the
fact that the spin-flip operators are proportional to Jx + Jy, it seems to be more related to the
value of Jx + Jy instead of the absolute value of Jx − Jy.

Considering γ(q⃗) further, it is zero at the θ-values π
2 , π and 3π

2 , which explains why the interaction
does not vary with squeezing factor at these points.

6.3.2 Spin-triplet interaction

Consider next the spin-triplet interactions. Firstly, as discussed in section 6.1, the spin-flip opera-
tors that give rise to the spin-triplet interactions are proportional to ∆J =

Jx−Jy

2 . When Jx = Jy,
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∆J = 0, which explains why the interactions are 0 for squeezing factor 1. However, looking at
the expression for the interactions gives more information. On the Fermi surface, the expressions
reduce to

V up
kk′ = V down

kk′ = V 2uqvqωq

ω̃+
q ω̃

−
q

. (142)

Rewriting the expression in terms of Cq, Dq and m gives

V up
kk′ = V down

kk′ = V 2 |Dq|
4(C2

q −m2)− 4D2
q

, (143)

where Cq = JSz − JSγ(q⃗), Dq = −∆JSγ(q⃗) and m = h+ JsdS.

SinceDq is a real value, D
2
q = |Dq|2, which means the spin-triplet interactions are purely dependent

on |Dq| = S|∆J ||γ(q⃗)|. In particular, the spin-triplet interactions are only dependent on |∆J |, and
not ∆J . Both the numerator and the inverse of the denominator of equation 143 increase with an
increasing |Dq|, which means that V up

kk′ and V down
kk′ increase with an increasing value of |∆J |. Thus,

both reducing the squeezing factor below 1 and increasing the squeezing factor above 1 yields
a stronger interaction as |∆J | becomes larger either way. As for why the interaction increases
more when the squeezing factor is larger than 1 than when the squeezing factor is smaller than 1,
consider ∆J expressed in terms of the squeezing factor δ. The relation is

∆J =
Jx
2
(1− δ). (144)

For δ = 4, the value is |∆J(δ = 4)| = 3Jx

2 , while δ = 1
4 gives |∆J(δ = 1

4 ) =
3Jx

8 = 1
4 · |∆J(δ = 4)|.

Since the gap between Jx and Jy in absolute value is larger for squeezing factor 4 than 1
4 , |Dq|,

and in turn V up
kk′ also become larger.

This approach also explains the shape of the spin-triplet interactions. The shape comes from the
|γ(q⃗)| in the numerator. Setting q⃗ = k⃗ − k⃗′, where k⃗ =

[
π
2 , 0

]
and k⃗′ =

[
π
2 cos θ, π

2 sin θ
]
, the

zeros of |γ(q⃗)| are when θ is π
2 , π and 3π

2 , which are the same as seen in section 5.

7 Conclusion

The paper studied the magnon-mediated effective electron-electron interaction in a FMI-NM het-
erostructure using the BCS model. In particular, the effects of adding a second layer to the FMI,
and the effect of an anisotropic exchange interaction (squeezing) in the FMI on the electron-magnon
interaction were studied. In addition to spin-singlet Cooper pairs, spin-triplet Cooper pairs were
discovered in the model and found to form as a direct consequence of the squeezing. When adding
a second layer of the FMI to the model, all interactions were found to decrease in strength. This
was related to the strength of the interlayer coupling Jp, where a larger Jp lead to weaker interac-
tions. Reasons for this were discussed and shown to result in weaker interactions in the two-layer
FMI model than the monolayer model. When varying the amount of squeezing, the spin-triplet
interactions were found to increase in strength with an increasing amount of squeezing. Mean-
while, the spin-singlet interaction was found to depend on the sum of Jx and Jy instead of their
difference. On one region of the Fermi surface, it increases with an increasing sum, while on the
complementary region it decreases with an increasing sum. This was shown mathematically. The
effect of squeezing was the same for one layer as for two layers of the FMI.

In conclusion, the strongest e-e interaction is achieved by having a monolayer FMI where both the
anisotropic exchange interactions, Jx and Jy, are maximized. Since the spin-triplet interaction is
1% the strength of the spin-singlet interaction, the contributions to the overall superconductivity is
negligable. Thus, the superconducting properties of the FMI-NM heterostructure are maximized
when the spin-singlet interaction is prioritized. Hopefully, this can provide further insight into
superconductivity and some day even contribute to room-temperature superconductors.
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Appendix

A Deriving the SW transformation

Let S be the generator for the transformation. If H1 is small, then so will S be too. The transfor-
mation is then

H ′ = e−SHeS . (145)

Taylor-expand the exponentials and gather the terms to get

H ′ = (1− S +
1

2
S2 − ...)(H0 +H1)(1 + S +

1

2
S2 + ...)

= H0 +H1 +H0S − SH0 +H1S − SH1 +
1

2
H0S

2 − SH0S +
1

2
S2H0 +O(H3

1 )

= H0 +H1 + [H0, S] + [H1, S] +
1

2
[H0, S]S − 1

2
S[H0, S] +O(H3

1 )

= H0 +H1 + [H0, S] + [H1, S] +
1

2
[[H0, S], S] +O(H3

1 ) (146)

Choose S such that [H0, S] = −H1 and the expression collapses into

= H0 +H1 −H1 + [H1, S] +
1

2
[−H1, S] +O(H3

1 )

= H0 +
1

2
[H1, S] +O(H3

1 ) (147)

The Schieffer-Wolff transformed Hamiltonian is then

H ′ = H0 −
1

2
[S,H1], (148)

where the order of the commutator is changed.

B Bogoliubov transformation of HFM in monolayer model

The FMI-Hamiltonian in the monolayer model is given by

HFM = E∗
0 +

∑
q

[
a†q, a−q

] [Cq Dq

Dq Cq

] [
aq
a†−q

]
, (149)

where E∗
0 = −JNzS2−

∑
q Cq. Following the method presented in section 2.2, this section derives

the Bogoliubov transformed Hamiltonian. The matrix

PJ =

[
Cq −Dq

Dq −Cq

]
(150)

has eigenvalues λ1 =
√
C2

q −D2
q

λ2 = −
√

C2
q −D2

q

, (151)

which will be denoted by ±λ, where λ =
√

C2
q −D2

q . The corresponding eigenvectors are

v⃗1 =

[
Cq+λ
Dq

1

]
(152)

v⃗2 =

[
Cq−λ
Dq

1

]
(153)

30



for λ and −λ respectively. The Bogoliubov lengths are

l1 =

√
(Cq + λ)2

D2
q

− 1,

l2 =

√
1− (Cq − λ)2

D2
q

,

(154)

such that the Bogoliubov orthonormal vectors are

x⃗1 =

[
Cq+λ
Dql1
1
l1

]
, (155)

x⃗2 =

[
Cq−λ
Dql2
1
l2

]
. (156)

The transformation matrix is then

T =
[
x⃗1 x⃗2

]
=

[
Cq+λ
Dql1

Cq−λ
Dql2

1
l1

1
l2

]
. (157)

Define the values

uq =
1

l2
=

Cq + λ

Dql1
=

√
Cq + λ

2λ
, (158)

vq =
1

l1
=

Cq − λ

Dql2
=

√
Cq − λ

2λ
, (159)

which satisfy the relationship

u2
q − v2q =

Cq + λ

2λ
− Cq − λ

2λ
= 1. (160)

Furthermore, expanding these expressions, we find

u2
q =

1

2

(λ
λ
+

Cq

λ

)
=

1

2

(
1 +

Cq√
C2

q −D2
q

)
=

1

2

(
1 +

1√
1−D2

q/C
2
q

)
. (161)

Dq

Cq
=

S∆Jγ(q)

JSz − SJγ(q)

=
∆Jγ(q)

Jz − Jγ(q)
. (162)

1−
D2

q

C2
q

=
(Jz − Jγ)2 −∆J2γ2(q)

(Jz − Jγ(q))2

=
(Jz − Jγ(q)−∆Jγ(q))(Jz − Jγ(q) + ∆Jγ(q)

(Jz − Jγ(q))2

=
(Jz − Jxγ(q))(Jz − Jyγ(q))

(Jz − Jγ(q))2
. (163)

Inserting this into 161 gives

u2
q =

1

2
(1 +

Jz − Jγ(q)√
(Jz − Jxγ(q))(Jz − Jyγ(q))

) (164)
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and

v2q = u2
q − 1 =

1

2
(−1 +

Jz − Jγ(q)√
(Jz − Jxγ(q))(Jz − Jyγ(q))

) (165)

in terms of the system parameters.

Inserting equations 158 and 159 into the transformation matrix yields

T =

[
uq vq
vq uq

]
(166)

and

T−1 =

[
uq −vq
−vq uq

]
. (167)

Define the vectors of transformed operators

ϕ⃗† =
[
A†

q, A−q

]
, (168)

ϕ⃗ =

[
Aq

A†
−q

]
(169)

By the Bogoliubov transformation, these are[
A†

q, A−q

]
= Φ⃗†T =

[
uqa

†
q + vqa−q, vqa

†
q + uqa−q

]
(170)[

Aq

A†
−q

]
= JT−1JΦ⃗ =

[
uqaq + vqa

†
−q

vqaq + uqa
†
−q

]
(171)

with inverse transformations [
aq
a†−q

]
= JTJϕ⃗ =

[
uqAq − vqA

†
−q

−vqAq + uqA
†
−q

]
, (172)

[
a†q a−q

]
= ϕ⃗†T−1 =

[
uqA

†
q − vqA−q, −vqA

†
q + uqA−q

]
. (173)

The diagonal matrix is D = diag(λ, λ), such that

HFM = E∗
0 +

∑
q

ϕ⃗†Dϕ⃗ = E∗
0 +

∑
q

λ
(
A†

qAq +A−qA
†
−q

)
= E∗

0 +
∑
q

λ(A†
qAq +A†

−qA−q + 1
)
= E∗

0 +
∑
q

2λ
(
A†

qAq +
1

2

)
Hence, the transformed ferromagnet Hamiltonian is

HFM = E∗
0 +

∑
q

ωq(A
†
qAq +

1

2
), (174)

where E∗
0 = −JNzS2 −

∑
q Cq and ωq = 2

√
C2

q −D2
q .

C Calculating coefficients for SW transformation in monolayer model

In the monolayer model, the perturbation is given by

H1 = Hc = −V
∑
k,q

[
uqAqc

†
k+q,↓ck,↑+uqA

†
−qc

†
k+q,↑ck,↓−vqA

†
−qc

†
k+q,↓ck,↑−vqAqc

†
k+q,↑ck,↓

]
, (175)

and the generator by

S = −V
∑
k,q

[
XkqAqc

†
k+q,↓ck↑ + YkqA

†
−qc

†
k+q,↑ck↓ + ZkqA

†
−qc

†
k+q,↓ck↑ +WkqAqc

†
k+q,↑ck↓

]
. (176)
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From 2.3.3, the equation for the coefficients is

Xk =
Ck

Em − En
. (177)

All terms that contain a particle ñ−q uses the relation ω−q = ωq to calculate the energy.

Start with the term withXkq as coefficient. The operators areAqc
†
k+q,↓ck↑. Thus |m⟩ = |nk↑, nk+q,↓, ñq⟩ =

|1, 0, 1⟩ and |n⟩ = |0, 1, 0⟩. This gives

Em − En = εk↑ − εk+q,↓ + ωq

From H1, one has C = uq, such that the coefficient is

Xkq =
uq

εk↑ − εk+q,↓ + ωq
(178)

Consider next the term with Ykq as coefficient. Here the operators are A†
−qc

†
k+q,↑ck↓. Thus |m⟩ =

|nk↓, nk+q,↑, ñ−q⟩ = |1, 0, 0⟩ and |n⟩ = |0, 1, 1⟩, such that

Em − En = εk↓ − εk+q,↑ − ωq.

From H1, one has C = uq, so the coefficient becomes

Ykq =
uq

εk,↓ − εk+q,↑ − ωq
(179)

Consider next the term with Zkq as coefficient. The operators are A†
−qc

†
k+q,↓ck↑, so the states are

|m⟩ = |nk↑, nk+q,↓, ñ−q⟩ = |1, 0, 0⟩ and |n⟩ = |0, 1, 1⟩. Thus

Em − En = εk↑ − εk+q,↓ − ωq

From H1, one has C = −vq, such that

Zkq =
vq

εk+q,↓ − εk↑ + ωq
(180)

Lastly, consider the term with Wkq as coefficient. The operators are Aqc
†
k+q,↑ck↓, so the states

become |m⟩ = |nk↓, nk+q,↑, ñq⟩ = |1, 0, 1⟩ and |n⟩ = |0, 1, 0⟩. Thus

Em − En = εk↓ − εk+q,↑ + ωq.

From H1 one has C = −vq, so the coefficient is

Wkq =
vq

εk+q,↑ − εk↓ − ωq
(181)

D Calculating SW transformation in monolayer model

In the monolayer model, the perturbation is given by

H1 = Hc = −V
∑
k,q

[
uqAqc

†
k+q,↓ck,↑+uqA

†
−qc

†
k+q,↑ck,↓−vqA

†
−qc

†
k+q,↓ck,↑−vqAqc

†
k+q,↑ck,↓

]
, (182)

and the generator by

S = −V
∑
k,q

[
XkqAqc

†
k+q,↓ck↑ + YkqA

†
−qc

†
k+q,↑ck↓ + ZkqA

†
−qc

†
k+q,↓ck↑ +WkqAqc

†
k+q,↑ck↓

]
. (183)

In this section, the commutator − 1
2 [S,H1] is calculated.

33



To more easily calculate the commutator, the calculation can be performed in general first, and
then applied to the relevant terms. Let a and b be operators representing magnons, and let A and
B be two fermionic operators each. Then

[aA, bB] = aAbB − bBaA = abAB − baBA

= abAB + (−baAB + baAB)− baBA

= (ab− ba)AB + ba(AB −BA)

= [a, b]AB + ba[A,B]

In this case, the terms of the form ba[A,B] are not used, so discard these. Then we have [aA, bB] =

[a, b]AB. Note that if a = Aq, b = Aq′ or a = A†
−q, b = A†

−q′ then [a, b] = 0. If a = Aq, b = A†
−q′

then [a, b] = δq′,−q, and if a = A†
−q, b = Aq′ , then [a, b] = −δq′,−q. This covers all possible cases

in this commutator. Let a and A be the operators in S and let b and B be the operators in H1.
Thus, the fermionic anticommutation relation is treated as {c†λ, cλ′} = 0.

By the bilinearity of commutators, the commutator can be calculated term-by-term by commuting
the terms with each other. There are then eight terms to calculate. Pair the first term of S with
the second and third terms of H1 and calculate their commutator to get

−δq′,−qXkqV
2vq′c

†
k+q,↓ck↑c

†
k′+q′,↓ck′↑ + δq′,−qXkqV

2uq′c
†
k+q,↓ck↑c

†
k′+q′,↑ck′↓. (184)

Pair the second term of S with the first and fourth terms of H1 to get

−δq′,−qYkqV
2uq′c

†
k+q,↑ck↓c

†
k′+q′,↓ck′↑ + δq′,−qYkqV

2vq′c
†
k+q,↑ck↓c

†
k′+q′,↑ck′↓. (185)

Pair the third term of S with the first and fourth terms of H1 to get

−δq′,−qZkqV
2uq′c

†
k+q,↓ck↑c

†
k′+q′,↓ck′↑ + δq′,−qZkqV

2vq′c
†
k+q,↓ck↑c

†
k′+q′,↑ck′↓. (186)

Lastly, pair the fourth term of S with the second and third terms of H1 to get

−δq′,−qWkqV
2vq′c

†
k+q,↑ck↓c

†
k′+q′,↓ck′↑ + δq′,−qWkqV

2uq′c
†
k+q,↑ck↓c

†
k′+q′,↑ck′↓ (187)

Collect all terms and sum over all the variables:

−1

2
[S,H1] = −V 2

2

∑
k,k′,q,q′

[
− δq′,−qXkqvq′c

†
k+q,↓ck↑c

†
k′+q′,↓ck′↑ + δq′,−qXkquq′c

†
k+q,↓ck↑c

†
k′+q′,↑ck′↓

−δq′,−qYkquq′c
†
k+q,↑ck↓c

†
k′+q′,↓ck′↑ + δq′,−qYkqvq′c

†
k+q,↑ck↓c

†
k′+q′,↑ck′↓

−δq′,−qZkquq′c
†
k+q,↓ck↑c

†
k′+q′,↓ck′↑ + δq′,−qZkqvq′c

†
k+q,↓ck↑c

†
k′+q′,↑ck′↓

−δq′,−qWkqvq′c
†
k+q,↑ck↓c

†
k′+q′,↓ck′↑ + δq′,−qWkquq′c

†
k+q,↑ck↓c

†
k′+q′,↑ck′↓

]
(188)

Gather all terms with similar spin structure in the fermionic operators and use the fact that
u−q = uq and v−q = vq to get

−1

2
[S,H1] = −V 2

2

∑
k,k′,q

[
Xkquqc

†
k+q,↓ck↑c

†
k′−q,↑ck′↓ − Ykquqc

†
k+q,↑ck↓c

†
k′−q,↓ck′↑

+Zkqvqc
†
k+q,↓ck↑c

†
k′−q,↑ck′↓ −Wkqvqc

†
k+q,↑ck↓c

†
k′−q,↓ck′↑

]
−V 2

2

∑
k,k′,q

[
Ykqvqc

†
k+q,↑ck↓c

†
k′−q,↑ck′↓ +Wkquqc

†
k+q,↑ck↓c

†
k′−q,↑ck′↓

]
+
V 2

2

∑
k,k′,q

[
Xkqvqc

†
k+q,↓ck↑c

†
k′−q,↓ck′↑ + Zkquqc

†
k+q,↓ck↑c

†
k′−q,↓ck′↑

]
(189)
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Consider the first sum first. In the second and fourth terms exchange k⃗ and k⃗′ and let q⃗ → −q⃗ to
get

−V 2

2

∑
k,k′,q

[
Xkquqc

†
k+q,↓ck↑c

†
k′−q,↑ck′↓ − Yk′,−quqc

†
k′−q,↑ck′↓c

†
k+q,↓ck↑

Zkqvqc
†
k+q,↓ck↑c

†
k′−q,↑ck′↓ −Wk′,−qvqc

†
k′−q,↑ck′↓c

†
k+q,↓ck↑

] (190)

In these terms, anticommute c†k+q,↑ck↓ to the front and ignore all extra terms that arise from the
anticommutation. The result is∑

k,k′,q

[ V 2

2

(
Yk′,−quq +Wk′,−qvq −Xkquq − Zkqvq

)
︸ ︷︷ ︸

Vopposite
eff

c†k+q,↓ck↑c
†
k′−q,↑ck′↓

]
(191)

Consider next the second sum. In the first term, exchange k⃗ and k⃗′ and let q⃗ → −q⃗ to get

−V 2

2

∑
k,k′,q

[
Yk′,−qvqc

†
k′−q,↑ck′↓c

†
k+q,↑ck↓ +Wkquqc

†
k+q,↑ck↓c

†
k′−q,↑ck′↓

]
(192)

Anticommute c†k+q,↑ck↓ to the front to get

∑
k,k′,q

[
−V 2

2

(
Yk′,−qvq +Wkquq

)
︸ ︷︷ ︸

Vup
eff

c†k+q,↑ck↓c
†
k′−q,↑ck′↓

]
(193)

In the third sum exchange k⃗ and k⃗′ as well as letting q⃗ → −q⃗ in the second term and anticommute
c†k+q,↓ck↑ to the front to get

∑
k,k′,q

[ V 2

2

(
Xkqvq + Zk′,−quq

)
︸ ︷︷ ︸

Vdown
eff

c†k+q,↓ck↑c
†
k′−q,↓ck′↑

]
. (194)

In total, this gives the commutator as

−1

2
[S,H1] =

∑
k,k′,q

[
V opposite
eff c†k+q,↓ck↑c

†
k′−q,↑ck′↓+V up

effc
†
k+q,↑ck↓c

†
k′−q,↑ck′↓+V down

eff c†k+q,↓ck↑c
†
k′−q,↓ck′↑

]
.

(195)
Anticommute all creation operators to the left to get the commutator

−1

2
[S,H1] = −

∑
k,k′,q

[
V opposite
eff c†k+q,↓c

†
k′−q,↑ck↑ck′↓+V up

effc
†
k+q,↑c

†
k′−q,↑ck↓ck′↓+V down

eff c†k+q,↓c
†
k′−q,↓ck↑ck′↑

]
.

(196)

E BCS reduction, monolayer model

The BCS reduction is performed by first considering the interactions, inserting the BCS reduction
and then rewriting every term before combining and simplifying the expressions. The index changes
are k⃗′ → −k⃗, then defining q⃗ = k⃗′ − k⃗ and lastly exchanging k⃗ and k⃗′.

From equations 75, 76 and 77 the interactions are as

V opposite
eff = −V 2

2

(
Xkquq + Zkqvq − Yk′,−quq −Wk′,−qvq

)
, (197)

V up
eff = −V 2

2

(
Yk′,−qvq +Wkquq

)
, (198)
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V down
eff =

V 2

2

(
Xkqvq + Zk′,−quq

)
(199)

Inserting the variable changes, the BCS-interactions become

V opposite
kk′ = −V 2

2

(
Xk′,k−k′uk−k′ + Zk′,k−k′qvk−k′ − Y−k′,k′−kuk−k′ −W−k′,k′−kvk−k′

)
, (200)

V up
kk′ = −V 2

2

(
Y−k′,k′−kvk−k′ +Wk′,k−k′uk−k′

)
, (201)

V down
kk′ =

V 2

2

(
Xk′,k−k′vk−k′ + Z−k′,k′−kuk−k′

)
(202)

To proceed, rewrite every coefficient. The fermion energies are given by

εkσ = εk − σm, (203)

where
εk = −tγ(k⃗)− µ, (204)

m = h+ SJsd. (205)

Also define the offset magnon energies given by

ω̃±
q = ωq ± 2m. (206)

The spin is defined as σ = 1 for spin up and σ = −1 for spin down. One can then write Xkq as

Xkq =
uq

εk↑ − εk+q,↓ + ωq
=

uq

εk −m− εk+q −m+ ωq

=
uq

(εk − εk+q) + ω̃−
q

(207)

Doing the same for Ykq one gets

Ykq =
uq

εk↓ − εk+q,↑ − ωq
=

uq

εk +m− εk+q +m− ωq

=
uq

(εk − εk+q)− ω̃−
q

(208)

For Zkq one gets

Zkq =
vq

εk+q,↓ − εk↑ + ωq
=

vq
εk+q +m− εk +m+ ωq

=
vq

(εk+q − εk) + ω̃+
q

(209)

And Wkq becomes

Wkq =
vq

εk+q,↑ − εk↓ − ωq
=

vq
εk+q −m− εk −m− ωq

=
vq

(εk+q − εk)− ω̃+
q

(210)

Starting with the expression for V opposite
kk′ , inserting the reduced coefficients gives

V opposite
kk′ = −V 2

2

( u2
k−k′

(εk′ − εk) + ω̃−
k−k′

−
u2
k−k′

(εk′ − εk)− ω̃−
k−k′

+
v2k−k′

(εk − εk′) + ω̃+
k−k′

−
v2k−k′

(εk − εk′)− ω̃+
k−k′

)
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which can be simplified further

V opposite
kk′ = −V 2

2

(u2
k−k′

(
(εk′ − εk)− ω̃−

k−k′ − (εk′ − εk)− ω̃−
k−k′

)
(εk′ − εk)2 − (ω̃−

k−k′)2
+

v2k−k′

(
(εk − εk′)− ω̃+

k−k′ − (εk − εk′)− ω̃+
k−k′

)
(εk − εk′)2 − (ω̃+

k−k′)2

)

V opposite
kk′ =

V 2u2
k−k′ ω̃

−
k−k′

(εk − εk′)2 − (ω̃−
k−k′)2

+
V 2v2k−k′ ω̃

+
k−k′

(εk − εk′)2 − (ω̃+
k−k′)2

(211)

Performing the same procedure for V up
kk′ , one gets

V up
kk′ = −V 2

2

( uk−k′vk−k′

(εk′ − εk)− ω̃−
k−k′

− uk−k′vk−k′

(εk′ − εk) + ω̃+
k−k′

)
which can be simplified as

V up
kk′ = −V 2

2

uk−k′vk−k′
(
(εk′ − εk) + ω̃+

k−k′ − (εk′ − εk) + ω̃−
k−k′

)(
(εk′ − εk)− ω̃−

k−k′

)(
(εk′ − εk) + ω̃+

k−k′

)
V up
kk′ = − V 2uk−k′vk−k′ωk−k′

(εk − εk′)2 − (ω̃+
k−k′ − ω̃k−k′)(εk − εk′)− ω̃+

k−k′ ω̃
−
k−k′

(212)

Similarly, for V down
kk′ one gets

V down
kk′ =

V 2

2

( uk−k′vk−k′

(εk′ − εk) + ω̃−
k−k′

− uk−k′vk−k′

(εk′ − εk)− ω̃+
k−k′

)
which simplifies to

V down
kk′ =

V 2

2

uk−k′vk−k′
(
(εk′ − εk)− ω̃+

k−k′ − (εk′ − εk)− ω̃−
k−k′

)(
(εk′ − εk) + ω̃−

k−k′

)(
(εk′ − εk)− ω̃+

k−k′

)
V down
kk′ = − V 2uk−k′vk−k′ωk−k′

(εk − εk′)2 + (ω̃+
k−k′ − ω̃k−k′)(εk − εk′)− ω̃+

k−k′ ω̃
−
k−k′

(213)

F Bogoliubov transformation of HFM in two-layer model

In the two-layer model, the FMI-Hamiltonian is given by

H = E∗
0 +

∑
q

[
a†q, b†q, a−q b−q

] 
Cq +∆ −∆ Dq 0
−∆ Cq +∆ 0 Dq

Dq 0 Cq +∆ −∆
0 Dq −∆ Cq +∆



aq
bq
a†−q

b†−q

 , (214)

where E∗
0 = −2JNzS2 − JpNS2 − 2

∑
q Cq − 2N∆. This section follows the same procedure as in

appendix B. The eigenvalues of PJ are

λ1± = ±λ1 = ±
√
C2

q −D2
q , (215)

λ2± = ±λ2 = ±
√
(Cq + 2∆)2 −D2

q . (216)

and the corresponding eigenvectors are

v⃗1 =


Cq+λ1

Dq
Cq+λ1

Dq

1
1

 (217)
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v⃗2 =


−Cq+2∆+λ2

Dq
Cq+2∆+λ2

Dq

−1
1

 (218)

v⃗3 =


Cq−λ1

Dq
Cq−λ1

Dq

1
1

 (219)

v⃗4 =


−Cq+2∆−λ2

Dq
Cq+2∆−λ2

Dq

−1
1

 (220)

Define next the Bogoliubov lengths of the four eigenvectors of PJ

l1 =

√
2
(Cq + λ1)2

D2
q

− 2, (221)

l2 =

√
2
(Cq + 2∆+ λ2)2

D2
q

− 2, (222)

l3 =

√
2− 2

(Cq − λ1)2

D2
q

, (223)

l4 =

√
2− 2

(Cq + 2∆− λ2)2

D2
q

, (224)

as well as the values

uq1 =
1

l3
=

1

2

√
Cq + λ1

λ1
, (225)

uq2 =
1

l4
=

1

2

√
Cq + 2∆+ λ2

λ2
, (226)

vq1 =
1

l1
=

1

2

√
Cq − λ1

λ1
, (227)

vq2 =
1

l2
=

1

2

√
Cq + 2∆− λ2

λ2
(228)

which satisfy the relationships

u2
q1 − v2q1 =

1

2
,

u2
q2 − v2q2 =

1

2
,

(u2
q1 + u2

q2)− (v2q1 + v2q2) = 1.

(229)

The Bogoliubov orthonormalized eigenvectors are then

x⃗T
1 =

[
uq1 uq1 vq1 vq1

]
, (230)

x⃗T
2 =

[
−uq2 uq2 −vq2 vq2

]
, (231)

x⃗T
3 =

[
vq1 vq1 uq1 uq1

]
, (232)

x⃗T
4 =

[
−vq2 vq2 −uq2 uq2

]
, (233)
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such that the transformation matrix becomes

T =
[
x⃗1 x⃗2 x⃗3 x⃗4

]
=


uq1 −uq2 vq1 −vq2
uq1 uq2 vq1 vq2
vq1 −vq2 uq1 −uq2

vq1 vq2 uq1 uq2

 , (234)

and its inverse is

T−1 =


uq1 uq1 −vq1 −vq1
−uq2 uq2 vq2 −vq2
−vq1 −vq1 uq1 uq1

vq2 −vq2 −uq2 uq2

 (235)

Define the vector of operators representing long-lived magnons as

ϕ⃗† =
[
A†

q, B†
q , A−q, B−q

]
. (236)

The Bogoliubov transform then becomes

ϕ⃗∗ =


A†

q

B†
q

A−q

B−q

 = (Φ⃗†T )T =


uq1a

†
q + uq1b

†
q + vq1a−q + vq1b−q

−uq2a
†
q + uq2b

†
q − vq2a−q + vq2b−q

vq1a
†
q + vq1b

†
q + uq1a−q + uq1b−q

−vq2a
†
q + vq2b

†
q − uq2a−q + uq2b−q

 , (237)

ϕ⃗ =


Aq

Bq

A†
−q

B†
−q

 = JT−1JΦ⃗ =


uq1aq + uq1bq + vq1a

†
−q + vq1b

†
−q

−uq2aq + uq2bq − vq2a
†
−q + vq2b

†
−q

vq1aq + vq1bq + uq1a
†
−q + uq1b

†
−q

−vq2aq + vq2bq − uq2a
†
−q + uq2b

†
−q

 , (238)

with diagonal matrix

D =


λ1 0 0 0
0 λ2 0 0
0 0 λ1 0
0 0 0 λ2

 . (239)

The Hamiltonian thus becomes

H = E∗
0 +

∑
q

[
λ1

(
A†

qAq +A−qA
†
−q

)
+ λ2

(
B†

qBq +B−qB
†
−q

)]
= E∗

0 +
∑
q

[
λ1

(
A†

qAq +A†
−qA−q + 1

)
+ λ2

(
B†

qBq +B†
−qB−q + 1

)]
= E∗

0 +
∑
q

[
2λ1

(
A†

qAq +
1

2

)
+ 2λ2

(
B†

qBq +
1

2

)]
.

Define the values ωqi = 2λi, such that

H = E∗
0 +

∑
q,i

ωqi

(
(Ai

q)
†Ai

q +
1

2

)
, (240)

with A1
q = Aq, A

2
q = Bq and E∗

0 = −2JNzS2 − JpNS2 − 2
∑

q Cq − 2N∆.

The required inverse transformation is given by[
aq
a†−q

]
=

[
uq1Aq − uq2Bq − vq1A

†
−q + vq2B

†
−q

−vq1Aq + vq2Bq + uq1A
†
−q − uq2B

†
−q

]
. (241)

G Determining coefficients for SW transformation in two-layer model

In the two-layer model, the perturbation is given by

H1 = Hc = −V
∑
k,q,i

(−1)i+1
[
uqiA

i
qc

†
k+q,↓ck↑−vqi(A

i
−q)

†c†k+q,↓ck↑+uqi(A
i
−q)

†c†k+q,↑ck↓−vqiA
i
qc

†
k+q,↑ck↓

]
,

(242)
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and the generator by

S = −V
∑
k,q,i

(−1)i+1
[
Xi

kqA
i
qc

†
k+q,↓ck↑+Y i

kq(A
i
−q)

†c†k+q,↑ck↓+Zi
kq(A

i
−q)

†c†k+q,↓ck↑+W i
kqA

i
qc

†
k+q,↑ck↓

]
.

(243)
The equation used to determine the coefficients is

Xk =
Ck

Em − En
. (244)

Consider firstXi
kq. The operators are A

i
qc

†
k+q,↓ck↑. The states are |m⟩ = |nk+q,↓, nk↑, ñqi⟩ = |0, 1, 1⟩

and |n⟩ = |1, 0, 0⟩. Then
Em − En = εk↑ − εk+q,↓ + ωqi, (245)

and C = uqi, such that the coefficient is

Xi
kq =

uqi

εk↑ − εk+q,↓ + ωqi
. (246)

Consider next Y i
kq. It is the coefficient of the operators (Ai

−q)
†c†k+q,↑ck↓, so the states are |m⟩ =

|nk+q,↑, nk↓, ñqi⟩ = |0, 1, 0⟩ and |n⟩ = |1, 0, 1⟩. The energies become

Em − En = εk↓ − εk+q,↑ − ωqi, (247)

and C = uqi, such that the coefficient is

Y i
kq =

uqi

εk↓ − εk+q,↑ − ωqi
. (248)

Consider next Zi
kq, with operators (Ai

−q)
†c†k+q,↓ck↑. The states are |m⟩ = |nk+q,↓, nk↑, ñqi⟩ =

|0, 1, 0⟩ and |n⟩ = |1, 0, 1⟩. The energies become

Em − En = εk↑ − εk+q,↓ − ωqi, (249)

and C = −vqi, such that the coefficient is

Zi
kq =

vqi
εk+q,↓ − εk,↑ + ωqi

. (250)

Lastly, consider W i
kq with operators Ai

qc
†
k+q,↑ck↓. The states are |m⟩ = |nk+q,↑, nk↓, ñqi⟩ = |0, 1, 1⟩

and |n⟩ = |1, 0, 0⟩. Then
Em − En = εk↓ − εk+q,↑ + ωqi, (251)

and C = −vqi, such that the coefficient is

W i
kq =

vqi
εk+q,↑ − εk,↓ − ωqi

. (252)

H SW transformation, two-layer model

The perturbation is given by

H1 = −V
∑
k,q,i

(−1)i+1
[
uqiA

i
qc

†
k+q,↓ck↑−vqi(A

i
−q)

†c†k+q,↓ck↑+uqi(A
i
−q)

†c†k+q,↑ck↓−vqiA
i
qc

†
k+q,↑ck↓

]
,

(253)
and the generator by

S = −V
∑
k,q,i

(−1)i+1
[
Xi

kqA
i
qc

†
k+q,↓ck↑+Y i

kq(A
i
−q)

†c†k+q,↑ck↓+Zi
kq(A

i
−q)

†c†k+q,↓ck↑+W i
kqA

i
qc

†
k+q,↑ck↓

]
.

(254)
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These calculations follow the same rules as presented in appendix D. Furthermore, there are
no crossterms since [Ai

q, (A
j
q)

†] = δij , meaning the i = 1 and i = 2 terms can be calculated
simultaneously. Once again, all terms that arise from anticommuting the fermionic operators will
be neglected.

Due to the reasons stated above, the only terms that will actually contribute to the commutator
are the combinations of terms with magnon operators of the form Ai

q(A
i
−q)

† and (Ai
−q)

†Ai
q, as

only these are nonzero. Note further that since the factor (−1)i+1 is equal in the two terms, when
multiplying them together they disappear, such that the sign of all expressions for i = 2 are the
same as those for i = 1.

Start by commuting the first term of S with the second and third terms of H1, giving

2∑
i=1

[
−Xi

kqvq′i
(
Ai

q(A
i
−q′)

† − (Ai
−q′)

†Ai
q

)
c†k+q,↓ck↑c

†
k′+q′,↓ck′↑ +Xi

kquq′i

(
Ai

q(A
i
−q′)

† − (Ai
−q′)

†Ai
q

)
c†k+q,↓ck↑c

†
k′+q′,↑ck′↓

]

= δq′,−q

2∑
i=1

[
−Xi

kqvq′ic
†
k+q,↓ck↑c

†
k′+q′,↓ck′↑ +Xi

kquq′ic
†
k+q,↓ck↑c

†
k′+q′,↑ck′↓

]
(255)

Commute next the second term of S with the first and fourth terms of H1, giving

2∑
i=1

[
Y i
kquq′i

(
(Ai

−q)
†Ai

q′ −Ai
q′(A

i
−q)

†)c†k+q,↑ck↓c
†
k′+q′,↓ck′↑ − Y i

kqvq′i
(
(Ai

−q)
†Ai

q′ −Ai
q′(A

i
−q)

†)c†k+q,↑ck↓c
†
k′+q′,↑ck′↓

]

= δq′,−q

2∑
i=1

[
− Y i

kquq′ic
†
k+q,↑ck↓c

†
k′+q′,↓ck′↑ + Y i

kqvq′ic
†
k+q,↑ck↓c

†
k′+q′,↑ck′↓

]
(256)

Commute next the third term of S with the first and fourth terms of H1, giving

2∑
i=1

[
Zi
kquq′i

(
(Ai

−q)
†Ai

q′ −Ai
q′(A

i
−q)

†)c†k+q,↓ck↑c
†
k′+q′,↓ck′↑ − Zi

kqvq′i
(
(Ai

−q)
†Ai

q′ −Ai
q′(A

i
−q)

†)c†k+q,↓ck↑c
†
k′+q′,↑ck′↓

]

= δq′,−q

2∑
i=1

[
− Zi

kquq′ic
†
k+q,↓ck↑c

†
k′+q′,↓ck′↑ + Zi

kqvq′ic
†
k+q,↓ck↑c

†
k′+q′,↑ck′↓

]
(257)

Lastly, commute the fourth term of S with the second and third terms of H1, giving

2∑
i=1

[
−W i

kqvq′i
(
Ai

q(A
i
−q′)

† − (Ai
−q′)

†Ai
q

)
c†k+q,↑ck↓c

†
k′+q′,↓ck′↑ +W i

kquq′i

(
Ai

q(A
i
−q′)

† − (Ai
−q′)

†Ai
q

)
c†k+q,↑ck↓c

†
k′+q′,↑ck′↓

]

= δq′,−q

2∑
i=1

[
−W i

kqvq′ic
†
k+q,↑ck↓c

†
k′+q′,↓ck′↑ +W i

kquq′ic
†
k+q,↑ck↓c

†
k′+q′,↑ck′↓

]
. (258)

Gather all the terms, sum over k⃗, k⃗′, q⃗, q⃗′ and multiply by the constants to get

−1

2
[S,H1] = −V 2

2

∑
k,k′,q,i

[
Xi

kquqic
†
k+q,↓ck↑c

†
k′−q,↑ck′↓ − Y i

kquqic
†
k+q,↑ck↓c

†
k′−q,↓ck′↑

+Zi
kqvqic

†
k+q,↓ck↑c

†
k′−q,↑ck′↓ −W i

kqvqic
†
k+q,↑ck↓c

†
k′−q,↓ck′↑

]
−V 2

2

∑
k,k′,q,i

[
Y i
kqvqic

†
k+q,↑ck↓c

†
k′−q,↑ck′↓ +W i

kquqic
†
k+q,↑ck↓c

†
k′−q,↑ck′↓

]
V 2

2

∑
k,k′,q,i

[
Zi
kquqic

†
k+q,↓ck↑c

†
k′−q,↓ck′↑ +Xi

kqvqic
†
k+q,↓ck↑c

†
k′−q,↓ck′↑

]
,

(259)
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where the result is split into three sums depending on their spin structure.

In terms two and four in the first sum, and term one in the second and third sum, anticommute the
two last fermionic operators to the left and redefine the variables by letting q⃗ → −q⃗ and k⃗′ → k⃗.
This gives

−1

2
[S,H1] = −V 2

2

∑
k,k′,q,i

(
Xi

kquqi + Zi
kqvqi − Y i

k′,−quqi −Wk′,−qvqi
)
c†k+q,↓ck↑c

†
k′−q,↑ck′↓

−V 2

2

∑
k,k′,q,i

(
Y i
k′,−qvqi +W i

kquqi

)
c†k+q,↑ck↓c

†
k′−q,↑ck′↓

+
V 2

2

∑
k,k′,q,i

(
Zk′,−quqi +Xi

kqvqi
)
c†k+q,↓ck↑c

†
k′−q,↓ck′↑

(260)

Define the three interactions

V opposite
eff =

V 2

2

2∑
i=1

(
− Zi

kqvqi −Xi
kquqi + Y i

k′,−quqi +Wk′,−qvqi
)
, (261)

V up
eff = −V 2

2

2∑
i=1

(
W i

kquqi + Y i
k′,−qvqi

)
, (262)

V down
eff =

V 2

2

2∑
i=1

(
Xi

kqvqi + Zk′,−quqi

)
, (263)

and anticommute all the creation operators to the front. The full commutator then becomes

−1

2
[S,H1] = −

∑
k,k′,q,i

[
V opposite
eff c†k+q,↓c

†
k′−q,↑ck↑ck′↓

+V up
effc

†
k+q,↑c

†
k′−q,↑ck↓ck′↓ + V down

eff c†k+q,↓c
†
k′−q,↓ck↑ck′↑

] (264)

I BCS reduction, two-layer model

This procedure is identical to the one performed in appendix E, as everything is identical up to the
summation over i. The procedure starts with considering the effective interactions and inserting
the variable changes defined by k⃗′ → −k⃗, requiring k⃗ = k⃗′ − k⃗ and then exchange k⃗ and k⃗′.

From equations 109, 110 and 111 the interactions are given by

V opposite
eff = −V 2

2

2∑
i=1

(
Zi
kqvqi +Xi

kquqi − Y i
k′,−quqi −Wk′,−qvqi

)
, (265)

V up
eff = −V 2

2

2∑
i=1

(
W i

kquqi + Y i
k′,−qvqi

)
, (266)

V down
eff =

V 2

2

2∑
i=1

(
Xi

kqvqi + Zk′,−quqi

)
, (267)

Inserting the variable redefinitons yields

V opposite
kk′ = −V 2

2

2∑
i=1

(
Zi
k′,k−k′vk−k′,i +Xi

k′,k−k′uk−k′,i − Y i
−k′,k′−kuk−k′,i −W−k′,k′−kvk−k′,i

)
,

(268)

V up
kk′ = −V 2

2

2∑
i=1

(
W i

k′,k−k′uk−k′,i + Y i
−k′,k′−kvk−k′,i

)
, (269)
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V down
kk′ =

V 2

2

2∑
i=1

(
Xi

k′,k−k′vk−k′,i + Z−k′,k′−kuk−k′,i

)
, (270)

Rewrite every coefficient as

Xi
kq =

uqi

εk↑ − εk+q,↓ + ωqi
=

uqi

εk −m− εk+q −m+ ωqi

=
uqi

(εk − εk+q) + ω̃−
qi

, (271)

Y i
kq =

uqi

εk↓ − εk+q,↑ − ωqi
=

uqi

εk +m− εk+q +m− ωqi

=
uqi

(εk − εk+q)− ω̃−
qi

, (272)

Zi
kq =

vqi
εk+q,↓ − εk↑ + ωqi

=
vqi

εk+q +m− εk +m+ ωqi

=
vqi

(εk+q − εk) + ω̃+
qi

, (273)

W i
kq =

vqi
εk+q,↑ − εk↓ − ωqi

=
vqi

εk+q −m− εk −m− ωqi

=
vqi

(εk+q − εk)− ω̃+
qi

, (274)

where εk = −tγ(k⃗)− µ, m = h+ SJsd and ω̃±
qi = ωqi ± 2m.

Starting with the expression for V opposite
kk′ , inserting the reduced coefficients gives

V opposite
kk′ = −V 2

2

2∑
i=1

( u2
k−k′,i

(εk′ − εk) + ω̃−
k−k′,i

−
u2
k−k′,i

(εk′ − εk)− ω̃−
k−k′,i

+
v2k−k′,i

(εk − εk′) + ω̃+
k−k′,i

−
v2k−k′,i

(εk − εk′)− ω̃+
k−k′,i

)
which can be simplified further

V opposite
kk′ = −V 2

2

2∑
i=1

(u2
k−k′,i

(
(εk′ − εk)− ω̃−

k−k′,i − (εk′ − εk)− ω̃−
k−k′,i

)
(εk′ − εk)2 − (ω̃−

k−k′,i)
2

+
v2k−k′,i

(
(εk − εk′)− ω̃+

k−k′,i − (εk − εk′)− ω̃+
k−k′,i

)
(εk − εk′)2 − (ω̃+

k−k′,i)
2

)

V opposite
kk′ =

2∑
i=1

( V 2u2
k−k′,iω̃

−
k−k′,i

(εk − εk′)2 − (ω̃−
k−k′,i)

2
+

V 2v2k−k′,iω̃
+
k−k′,i

(εk − εk′)2 − (ω̃+
k−k′,i)

2

)
(275)

Performing the same procedure for V up
kk′ , one gets

V up
kk′ = −V 2

2

2∑
i=1

( uk−k′,ivk−k′,i

(εk′ − εk)− ω̃−
k−k′,i

− uk−k′,ivk−k′,i

(εk′ − εk) + ω̃+
k−k′,i

)
which can be simplified as

V up
kk′ = −V 2

2

2∑
i=1

uk−k′,ivk−k′,i

(
(εk′ − εk) + ω̃+

k−k′,i − (εk′ − εk) + ω̃−
k−k′,i

)(
(εk′ − εk)− ω̃−

k−k′,i

)(
(εk′ − εk) + ω̃+

k−k′,i

)
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V up
kk′ =

2∑
i=1

V 2uk−k′,ivk−k′,iωk−k′,i

ω̃+
k−k′,iω̃

−
k−k′,i + (ω̃+

k−k′,i − ω̃k−k′,i)(εk − εk′)− (εk − εk′)2
(276)

Similarly, for V down
kk′ one gets

V down
kk′ =

V 2

2

2∑
i=1

( uk−k′,ivk−k′,i

(εk′ − εk) + ω̃−
k−k′,i

− uk−k′,ivk−k′,i

(εk′ − εk)− ω̃+
k−k′,i

)
which simplifies to

V down
kk′ =

V 2

2

2∑
i=1

uk−k′,ivk−k′,i

(
(εk′ − εk)− ω̃+

k−k′,i − (εk′ − εk)− ω̃−
k−k′,i

)(
(εk′ − εk) + ω̃−

k−k′,i

)(
(εk′ − εk)− ω̃+

k−k′,i

)
V down
kk′ =

2∑
i=1

V 2uk−k′,ivk−k′,iωk−k′,i

ω̃+
k−k′,iω̃

−
k−k′,i − (ω̃+

k−k′,i − ω̃k−k′,i)(εk − εk′)− (εk − εk′)2
(277)

J Calculating the Fermi surface

The Fermi surface is determined by the equation

εk = −tγ(k⃗)− µ = 0, (278)

where
γ(k⃗) =

∑
δ⃗

eiδ⃗·⃗k, (279)

and δ⃗ is a vector from a lattice site to a neighbouring lattice site. As stated in the model, the
lattice is a square 2D lattice with lattice constants a = 1. The four lattice vectors are therefore
[1, 0], [−1, 0], [0, 1] and [0,−1]. Defining

k⃗ =

[
kx
ky

]
, (280)

the gamma term can be calculated as

γ(k⃗) = eikx + e−ikx + eiky + e−iky

= 2 cos(kx) + 2 cos(ky). (281)

When inserted into equation 278, the equation for the Fermi surface becomes

cos(kx) + cos(ky) = − µ

2t
(282)
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