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Abstract

Background Tumours are characterised by disorganised vasculature due to increased
angiogenesis, i.e. formation of blood vessels. This results in regions with low oxygen, also
called hypoxia, within the tumour. Tumour hypoxia is associated with a poor prognosis
for head and neck cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is a promising quantitative imaging modality for describing the microvasculature of
the tumour. Thus, DCE-MRI has the potential to become a prognostic and predictive
tool for head and neck cancer treatment. DCE-MR images can be analysed both semi-
quantitatively and quantitatively. Three of the most common pharmacokinetic models
used in the quantitative analysis are the Tofts model, the extended Tofts model and the
Brix model. The Tofts and extended Tofts model require an arterial input function (AIF).
The AIF is usually obtained for each patient. It is not always possible to obtain an in-
dividual AIF and thus a population AIF, based on the AIFs of other patients, is used.
The main objectives of this study were to investigate the accuracy and robustness of the
population AIF and to compare the three di↵erent quantitative models. The pharmacoki-
netic parameters found by the models were also compared to semi-quantitative parameters.

Methods DCE-MRI was performed on 20 head and neck cancer patients. Some of
the patients had malignant lymph nodes in addition to the primary tumour. Six di↵erent
population AIFs were calculated. The DCE-MR images of the lymph nodes were analysed
using the Tofts model together with the population AIFs and with the individual AIF for
each patient. The concordance correlation coe�cients (CCC) comparing the pharmacoki-
netic parameters obtained with the population AIFs and the corresponding parameters
found with the individual AIF were calculated. The DCE-MR images were also analysed
using the extended Tofts model with the individual AIF and the Brix model. Further,
the semi-quantitative parameters called the areas under the curve (AUCs) were also cal-
culated from the DCE-MR images. The analyses were performed voxel-by-voxel, meaning
the pharmacokinetic parameters from the models and the AUCs were calculated for each
voxel in the lymph node. Further, the median pharmacokinetic parameters and AUCs
over the voxels were calculated for each lymph node. In addition, a mean ROI analysis
was performed, i.e. the mean enhancement pattern over all voxels in the lymph node
was used to calculate pharmacokinetic and semi-quantitative parameters which resulted
in a single set of parameters for each lymph node. The Pearson correlation coe�cients
(CC) comparing the median and the mean ROI parameters from the quantitative and
semi-quantitative analysis were calculated.

Results The population AIF was robust. However, the pharmacokinetic parameters
found with the Tofts model using the population AIFs di↵ered substantially from the
corresponding parameters found using the individual AIF. Thus, the population AIFs did
not result in accurate pharmacokinetic parameters. The median Ktrans and median ve
from the Tofts model correlated with the corresponding parameters from the extended
Tofts model with a CCC of 0.99 and 1.00, respectively. In addition, the median Ktrans

correlated with the median ve from the Tofts model with a Pearson CC of 0.71 and 0.83,
respectively. The Pearson CC between A and Kep from the Brix model were 0.96 and
0.93 for the mean ROI and median values, respectively. The most significant correlation
between parameters from di↵erent models was the correlation between Kel from the Brix
model and Kep from the extended Tofts model. They correlated with a Pearson CC of
0.77 and 0.70 when using the mean ROI and median values, respectively. In contrast, the
pharmacokinetic parameters did not correlate with the AUCs which was unexpected.
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Conclusion The results presented in this thesis showed that the individual AIF is pre-
ferred over the population AIFs. The Tofts and extended Tofts models gave similar Ktrans

and ve values. Whether this occurred due to weakly vascularised tissue is not clear, but an
analysis of lymph node vasculature using immunohistochemistry of resected lymph node
samples would be useful and should be done in the future. The model fitting did some-
times result in invalid values which can be associated with necrosis, which also should be
investigated furher. The Kel from the Brix model correlated with the Kep from the Tofts
models. The correlation analysis was based on mean ROI and median values, future work
should also investigate the correlation between the parameters on a voxel-by-voxel basis.
Last, the parameters’ prognostic and predictive value should be investigated when the
long-term patient outcome is available.
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Sammendrag

Bakgrunn Kreftsvulster er karakterisert av uorganisert blodkarnettverk p̊a grunn av
økt angiogenese, som vil si formasjon av blod̊arer. Dette resulterer i at svulsten f̊ar omr̊ader
med lavt oksygenniv̊a, kalt hypoksi. Hypoksi i svulster er assosiert med d̊arlig prognose
for hode- og halskreft. Dynamisk kontrastforsterket magnetisk resonans avbildning (DCE-
MRI) er en lovende kvantitativ bildemodalitet for å beskrive mikrovaskulaturen til svulster.
Dermed har DCE-MRI potensialet til å bli et prognostisk og prediktivt verktøy for behan-
dling av hode- og halskreft. DCE-MR bilder kan bli analysert b̊ade semi-kvantitativt og
kvantitativt. Tre av de mest vanlige farmakokinetiske modellene brukt i kvantitativ anal-
yse er Tofts, utvidet Tofts og Brix modellene. Tofts og utvidet Tofts modellene trenger
en arteriell inputfunksjon (AIF). AIF bestemmes oftes for hver pasient. Det er ikke alltid
det er mulig å beregne en slik individuell AIF, og derfor blir en populasjon AIF som er
basert p̊a flere pasienters AIF brukt istedenfor. Hovedmålet med dette studiet var å un-
dersøke presisjonen og robustheten til populasjon AIF-en og å sammenligne de tre ulike
kvantitative modellene. De farmakokinetiske parameterne beregnet av modellene ble ogs̊a
sammenlignet med semi-kvantitative parametere.

Metode DCE-MRI ble gjennomført for 20 hode- og halskreftpasienter. Noen av pasien-
tene hadde ondartete lymfeknuter i tillegg til primærsvulsten. Seks ulike populasjon
AIF-er ble beregnet. DCE-MR bilder av lymfeknutene ble analysert med Tofts modellen
sammen med populasjon AIF-ene og med individuell AIF for hver pasient. Samsvarsko-
rrelasjonskoe�sientene, p̊a engelsk kjent som concordance correlation coe�cient (CCC),
som sammenligner de farmakokinetiske parameterne beregnet med populasjon AIF-ene
med de tilhørende parameterne beregnet med individuell AIF ble beregnet. DCE-MR
bildene ble ogs̊a analysert med den utvidete Tofts modellen ved å bruke individuell AIF
og med Brix modellen. Semi-kvantitative parametere kalt arealet under kurven (AUC) ble
ogs̊a beregnet fra DCE-MRI bildene. Analysene ble utført voxel-for-voxel, som betyr at
farmakokinetiske parametere fra modellene og AUC-ene ble beregnet for hver voxel i lym-
feknutene. Medianene over alle voxelene ble beregnet for de farmakokinetiske parameterne
for hver lymfeknute. I tillegg ble en gjennomsnittlig ROI analyse utført, det vil si lym-
feknutens gjennomsnittlige kontrastforløpet ble brukt til å beregne de farmakokinetiske
og semi-kvantitative parameterne, som resulterte i ett sett med parametere for hver lym-
feknute. Pearsons korrelasjonskoe�sienter (CC) mellom medianverdien til b̊ade de ulike
farmakokinetiske og semi-kvantitative parameterne ble beregnet. Korrelasjonskoe�sien-
tene mellom de ulike parameterne ble ogs̊a beregnet ved bruk av de gjennomsnittlige
ROI-verdiene.

Resultater Populasjon AIF-ene var robuste, men de farmakokinetiske parameterne fra
Tofts modellen brukt sammen med populasjon AIF-ene var betydelig ulike de tilhørende
parameterne beregnet med individuell AIF. Derfor gav ikke populasjon AIF-ene korrekte
farmakokinetiske parametere. Median Ktrans og median ve fra Tofts modellen korrelerte
med de tilhørende parameterne fra den utvidete Tofts modellen med en CCC p̊a hen-
holdsvis 0.99 og 1.00. I tillegg korrelerte median Ktrans med median ve fra Tofts modellen
med en Pearson CC p̊a henholdsvis 0.71 og 0.83. Pearson CC-en mellom A og Kep fra Brix
modellen var 0.96 og 0.93 for henholdsvis gjennomsnittlig ROI verdier og medianverdier.
Den sterkest korrelasjonen mellom parameterne fra ulike modeller ble funnet mellom kel
fra Brix modellen og Kep fra den utvidete Tofts modellen. De korrelerte med en Pearson
CC p̊a 0.77 og 0.70 for henholdsvis gjennomsnittlige ROI verdier og medianverdier. De
farmakokinetiske parameterne korrelerte derimot ikke med AUC-ene, noe som var uventet.
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Konklusjon Resultatene i denne oppgaven viste at individuell AIF burde brukes frem-
for populasjon AIF. Tofts og utvidet Tofts modellene ga lignende Ktrans-og ve-verdier. Det
er uklart om dette skjedde fordi vevet var svakt vaskularisert, men immunhistokjemi av
resekterte lymeknuter hadde vært nyttig for å analysere vaskulaturen i lymfeknutene og
bør utføres i senere studier. Noen ganger resulterte modelltilpasningen i ugyldige verdier,
som kan være p̊a grunn av nekrose. Dette burde undersøkes grundigere senere. Kel fra
Brix modellen korrelerte med Kep fra Tofts modellene. Korrelasjonsanalysen var basert
p̊a gjennomsnittlig ROI verdier og medianverdier. Fremtidige studier burde ogs̊a un-
dersøke korrelasjonen mellom parameterne voxel-for-voxel. Til slutt burde parameternes
prognostiske og prediktive verdi undersøkes n̊ar langtids oppfølgingsdata av pasientene er
tilgjengelige.
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1 Introduction

Worldwide, approximately 900 000 patients are diagnosed with head and neck cancer
annually and for 400 000 of them, the disease results in death [1]. Despite the advances in
cancer treatment techniques, the 5-year survival has stayed around 60 % for some time [2].
Lately, many researchers have focused on individualising the treatment using quantitative
imaging to improve patient outcomes.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a promising quan-
titative imaging modality for assessing the microvasculature, i.e. the perfusion and perme-
ability of blood vessels, within tissues. The use of DCE-MRI to study perfusion was first
introduced in the 1990s [3]. One of the hallmarks of cancer is angiogenesis, i.e. formation
of blood vessels, because the increased cell proliferation demands a high level of oxygen
supply through the blood vessels [4]. However, the increased blood vessel formation causes
the microvasculature within tumour tissue to become disorganised, resulting in hypoxic
regions, i.e. regions with low oxygen concentration. Tumour hypoxia is associated with a
poor prognosis for head and neck cancer patients. Thus, obtaining information about the
microvasculature and detecting hypoxia using DCE-MRI can potentially improve cancer
treatment by increasing the radiation dose to hypoxic regions within the tumour [5].

In DCE-MRI, a contrast agent (CA) is injected intravenously into the patient and the MRI
signal is enhanced in its presence. The signal in the tissue of interest is measured over
time before, during and after the injection of the CA, resulting in a signal enhancement
curve. Pharmacokinetic parameters that describe the microvasculature of the tissue can
be obtained by fitting suitable models to the signal enhancement curve. The three most
common models are the Tofts model, the extended Tofts model and the Brix model which
were proposed in the 1990s [6, 7].

The Tofts and extended Tofts models require an arterial input function (AIF) which is
the signal enhancement curve of a region within an artery. DCE-MR images often contain
distortions caused by unsaturated blood flow in the artery and in some cases the field of
view does not even contain an artery [8]. Thus, it is not always possible to obtain a reliable
AIF for the patient. As an alternative to the individual AIF, Parker et al proposed to
use a population AIF which is the average of the AIFs of several patients [9]. However,
the AIF of individual patients di↵er due to the interpatient variability in factors such as
kidney function and heart rate and this is not accounted for in the population AIF. The
population AIF will not be the true AIF for individual patients. Thus, the pharmacokinetic
parameters that are calculated with the population AIF will to some extent deviate from
the true values produced with the individual AIF. It is therefore important to study the
replicability of the pharmacokinetic parameters to ensure that the use of the population
AIF is valid if needed.

Most studies apply only one model to obtain pharmacokinetic parameters. The model
may vary and thus makes it more di�cult to compare the results from di↵erent studies
[10]. Therefore, it would be of interest to better understand the relationship between
the pharmacokinetic parameters obtained by di↵erent models. Although there are stud-
ies that compare the Tofts model and the Brix model for cervical carcinoma and rectal
cancer, there are to my knowledge no such studies for head and neck cancer [11, 12]. A
better understanding of the correlation between the parameters would also facilitate the
interpretation of multicenter clinical trials that apply di↵erent pharmacokinetic models.

One of the main objectives of this study was to compare the pharmacokinetic parameters
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that were produced when applying the individual AIF to the corresponding parameters
obtained using the population AIF to investigate the reliability of the population AIF.
Variations of the population AIF were implemented and the resulting parameters were
analysed, facilitating the examination of the robustness of the population AIF. In addition,
three di↵erent pharmacokinetic models were applied to head and neck cancer patients and
the correlations between the resulting pharmacokinetic parameters were studied.

In this report, the main concepts of MRI and DCE-MRI will be explained, as well as
the three pharmacokinetic models that have been used in this study. The methodology
will be described followed by a presentation and discussion of the results. At last, some
conclusions will be drawn.

2 Cancer

Cancer is a group of diseases that are characterised by abnormal cell growth. Any of
the di↵erent cell types in the body can undergo abnormal proliferation, and thus there
are a hundred distinct types of cancer with di↵erent biological behaviour and response to
treatment [13]. Cancer can be classified as benign or malignant tumours. Benign tumours
do not invade surrounding tissue and spread to distant parts of the body, and thus are
confined to their original localization. They can usually be removed surgically and there-
fore are less of a threat. Malignant tumours, on the other hand, invade surrounding tissue
and spread via the circulatory or lymphatic system to other body parts [13]. Therefore,
malignant tumours can resist localized treatment which makes them dangerous.

2.1 Head and neck cancer

Cancer can also be classified based on the tissue of origin, e.g. lung cancer, head and
neck cancer and breast cancer. Head and neck cancer was the seventh most common
cancer in the world in 2018 [14]. It includes cancer in the oral cavity, the pharynx, the
larynx and the nasal cavity [15]. Head and neck tumours tend to metastasise to lymph
nodes in the neck. The presence and number of metastasis is an important prognostic
factor that influences the choice of treatment. The treatment choice is also dependent
on the anatomical location of the tumour and the specifics of the patient [15]. Another
important prognostic factor is the human papillomavirus (HPV) infection. Head and neck
cancer patients that have an HPV infection have a higher survival rate than patients
with HPV-negative cancer. A study, done by Ang et. al., showed that the 3-year overall
survival rate for patients with HPV-positive advanced oropharyngeal cancer was 82.4% vs
57.1% for patients with HPV-negative cancer [16]. The same trend was found by Fakhry
et. al. who found that the 2-year overall survival rate was 94% and 58% for patients with
HPV-positive and HPV-negative cancer, respectively [17].

2.2 Tumour vascularisation

The uncontrolled cell growth that results in cancer occurs because the physiology and
thus the microenvironment of the cells is altered. One of the hallmarks of cancer cells is
sustained angiogenesis [4]. All cells require oxygen and nutrition to grow, which di↵use into
the cells from the vascular system. The vasculature of healthy tissue is orderly structured,

3



as seen in Figure 1, and regulated by the balance of pro-and anti-angiogenic molecular
factors to ensure even distribution of blood supply to all cells [18]. If a tumour grows
beyond 100 µm in diameter, then some of the cells will be too far away for the oxygen to
reach the cells through di↵usion [19]. Thus, hypoxic regions, i.e. regions with low oxygen
concentration are produced in the tumour. In addition, if the oxygen and nutrition supply
is insu�cient to support further cell growth, the tumour over-expresses proangiogenic
factors to induce angiogenesis, i.e. formation of new blood vessels from pre-existing vessels
[18]. As seen in Figure 1, the resulting tumour vasculature is not hierarchically organized
and the density of the vessels varies greatly compared to normal vasculature. The vessels
di↵er in diameter and the larger vessels can prevent the blood from flowing through the
smaller vessels, resulting in hypoxic regions. Hypoxia refers to the insu�cient oxygen
supply to the cells which can result in resistance to radiotherapy [20].

Figure 1: The vascular network of normal and cancerous tissue.

The fragile blood vessels in tumour vasculature are highly permeable compared to normal
vasculature [21]. However, the permeability varies amongst tumour types, as well as
between tumours of the same type. The increased perfusion in tumours can potentially
be detected by DCE-MRI, which detects the exchange of CA between vasculature and
tissue. The knowledge of the vasculature of tumours by DCE-MRI can help to predict
and evaluate the patient’s response to treatments. It can also be a useful tool to stratify
patients for individualised treatment.

3 Magnetic resonance imaging

MRI is an imaging technique used to obtain anatomical and functional information about
the human body. This chapter will explain the basic principles of MRI and is based on
MRI in practice by Westbrook C. and Talbot J. [22] unless anything else is specified.

3.1 Fundamental principles in spin-physics

In MRI, the signal is the observations of nuclear spins, most commonly 1H (protons).
Nuclear spin is an intrinsic quantum mechanical property of nuclei. It is often thought
of as a rotational motion about an axis that produces spin angular moment, though, in
reality, it is not a physical rotation. Spin also causes spin magnetic moment, similar to
classical magnetic moment caused by the orbital motion of charged particles. The relation
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between spin ~I and spin magnetic moment ~µ is:

~µ = g
e

2mp

~I = �~I (1)

where � ⌘ gq/2m is the gyromagnetic ratio, g is called the g-factor, q is the charge and m
is the mass of the particle. The magnetic moment and spin vector are always aligned and
di↵er only by a constant. Therefore, the terms are equivalent and interchangeable, and in
MRI we measure the magnetic moment but often talk about spin.

Nuclear spins are quantized properties that take on specific values when they are measured:

Ix,y,z = mh̄, m = �I,�I + 1, ..., 0, ..., I � 1, I (2)

Protons have a spin value |m| of 1/2 and are therefore in a superposition of the two
possible spin eigenstates: spin-up (m=+1/2) and spin-down (m=-1/2). However, when
the spin is measured the wave function collapses and the proton is either in spin-down
or spin-up eigenstate. The two eigenstates have initially the same energy, resulting in an
equal distribution of spins in the two eigenstates. The energy level of the eigenstates can
however be separated if an external magnetic field ~B0 is applied due to Zeeman interaction,
as illustrated in Figure 2.

Figure 2: This figure illustrates the Zeeman splitting. The spins in both eigenstates have
the same energy when the magnetic field, B0 is zero. When a magnetic field is applied, the
spins with the spin value m=+1/2 (spin-up) and the spins with a spin value m=-1/2 (spin-
down) are divided into two di↵erent energy states: E+ = �h̄�B0/2 and E� = h̄�B0/2,
respectively. This results in an energy di↵erence �E = �h̄B0 where � is the gyromagnetic
ratio, h̄ is the reduced Planck constant.
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The energy of the spins in an applied magnetic field is:

E = �~µ · ~B0 = �mh̄�B0 (3)

where h̄ is the reduced Planck constant. The nuclear magnetic moment mimics the be-
haviour of a bar magnet: aligning itself with the magnetic field. The protons in the spin-up
(+) state will align their magnetic moment with B0, resulting in E+=-h̄�B0/2. On the
other hand, the energy of protons in the spin-down (-) state will be E� = h̄�B0/2, corre-
sponding to the magnetic moment aligning antiparallel to B0. Thus, the energy di↵erence
between the two states is h̄�B0 = h̄!0 where !0 is called the Larmor frequency or the
precession frequency.

The number of nuclei in the spin-up state, n+ and spin-down state n� is determined by
the Boltzmann distribution:

n+

n�
= e��E/kBT (4)

where �E is the energy di↵erence between the two states, kB is the Boltzmann constant
and T is the temperature. Because there is a slight preference for lower energy states, i.e.
spin-up states as shown in Figure 2, an ensemble of protons produces a net magnetisation
vector ~M that is aligned with the applied field. The strength of the MR signal depends
on the amplitude of the magnetization vector which increases with the energy di↵erence
and the density of spins. Thus, a strong magnetic field and a high gyromagnetic ratio will
produce a strong MR signal. Protons have a high gyromagnetic ratio compared to other
elements which is one of the reasons why it is common to observe the spins of protons in
MRI. The other reason is that the human body consists of a lot of water, resulting in an
abundance of protons that produce a large magnetization vector, i.e. large MR signal.

The magnetic moment of the protons does not align completely with the magnetic field but
precess around B0 with a speed determined by the precession frequency !0, as illustrated in
Figure 3a. The rotational motion of the nuclei follows the precession path. As the protons
align with B0, they will not begin at the same place on the precession path. Thus, the
protons are out of phase with each other, i.e they are incoherent, and the magnetization
vector is completely aligned with B0, as shown in Figure 3b.

(a) (b)

Figure 3: a) Precession of the magnetic moment of hydrogen nuclei. b) Precession of an
ensamble of spins, resulting in a net magnetization ~M aligned with B0.
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3.2 Signal generation and detection

Initially, the magnetic moments of the hydrogen nuclei are randomly oriented and no
magnetic e↵ect is produced. By applying an external magnetic field B0 along the z-axis,
the majority of the spins will align themself parallel and precess around B0, producing a
net magnetization vector ~M parallel to B0. However, ~M is measured by a pair of receiver
coils that lie in the XY plane, and thus the direction of ~M must be altered to obtain a
signal.

The receiver coils, as shown in Figure 4, measure the magnetization as it precesses in the
transverse plane. Faraday’s law of induction states that a change of magnetic flux through
a closed circuit induces an electromotive force, also called voltage, in the circuit. The
rotating magnetization produces a time-varying magnetic field which induces a voltage,
i.e. signal, in the coils that can be measured. The signal will have a sinusoidal shape with
amplitude and frequency. Due to the receiver coils being in the XY-plane, the amplitude
and frequency of the signal depend on the amplitude and frequency of the magnetization
vector in the transversal plane, noted M?.

As mentioned, ~M is aligned with B0 at equilibrium, resulting in no transversal magnetiza-
tion and no signal. To generate a signal, the magnetization must be tipped away from its
equilibrium position along the z-axis by transmitting a radio frequency (RF) pulse called
an RF excitation pulse, as illustrated in Figure 4b. An RF pulse is electromagnetic ra-
diation with frequency in the radiofrequency band of the electromagnetic spectrum. The
excitation pulse produces an oscillating magnetic field called B1. The B1 field has a range
of frequencies centred around the Larmor frequency of the precessing magnetization vector
and is applied at 90° to B0.

(a) Equilibrium (b) RF-pulse

Figure 4: a) The magnetic resonance system at equilibrium before b) a radiofrequency
(RF) pulse B1 turn the magnetization vector ~M down into the transverse plane.

From a quantum mechanical perspective, the protons absorb energy from the RF excitation
pulse. Because the RF pulse has the same frequency as the Larmor frequency, it delivers
quantized energy packets of h̄!0 that correspond to the energy di↵erence between the spin-
up and spin-down state. Therefore, protons in the low-energy spin-up state are excited
to the spin-down state, while protons in the spin-down state are stimulated to deexcite
to the spin-up state. This phenomenon is called resonance. There are more low-energy
spins, thus the net e↵ect is energy absorption. The longitudinal magnetization Mk, i.e.
magnetization along the B0 field, will grow shorter and even become negative if the RF
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pulse last for a long time.

From a classical view, the B1 field produces a torque that is applied to the magnetization
vector in synchrony with the precession of ~M , keeping the reorientation of the torque at
the same frequency as the Larmor frequency. This concept is similar to how torque is
applied to a spinning wheel to change its orientation. The applied B1 field results in the
magnetization spiralling downward toward the transversal plane, as illustrated in Figure
4. The RF excitation pulse also moves all the magnetic moments to the same position
on the precession path. Thus, the magnetic moments are in phase and the magnetization
vector will precess around the z-axis after the RF pulse has been applied. The precessional
transverse magnetization can then be measured by the receiver coils, resulting in an MR
signal.

To simplify the visualisation of the motion of ~M , the rotating frame of reference is often
used instead of the stationary frame. In the rotating frame, the observer rotates about
the z-axis. If the frequency of the rotating frame is the same as the Larmor frequency,
then the magnetization vector that is precessing around B0 will appear to be standing
still. However, magnetization with faster or slower precession frequency will appear to be
rotating clockwise or anticlockwise respectively. Onward, the magnetization vector will
be discussed in the rotating frame of reference, unless anything else is specified. The
spiralling motion of ~M due to the B1 field, will be seen as a rotation about B1 as it moves
down toward the transversal plane, as illustrated in Figure 4b. After the RF excitation
pulse, the magnetization vector will be at an angle to the z-axis. The angle is called the
flip angle and depends on the duration of the RF pulse. It is common for the excitation
pulse to be a 90° pulse, resulting in ~M lying in the transversal plane which produces the
highest MR signal.

3.3 Relaxation of ~M

The RF excitation pulse causes the magnetization vector to tip away from its equilibrium
position along B0. Assume the excitation pulse is a 90° pulse and ~M lies in the transversal
plane with no longitudinal component. When the B1 field is removed, two relaxation
mechanisms occur simultaneously: longitudinal and transversal relaxation.

3.3.1 Longitudinal relaxation

The RF excitation pulse excites low-energy spins in the spin-up state to the spin-down
state. These spins release energy to their surroundings and go back to the low-energy
state when the B1 field is removed to reach thermal equilibrium. This mechanism is called
longitudinal relaxation, spin-lattice relaxation or T1 relaxation. As the spins return to
their thermal equilibrium state, the longitudinal magnetization is recovered and can be
expressed by:

Mk(t) = M0

⇣
1� e�t/T1

⌘
(5)

where M0 is the magnetization at equilibrium and T1 is the T1 recovery time, i.e. the
time it takes for Mk to increase by a factor of e. The general shape of the T1 recovery
curve can be seen in Figure 5.
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Figure 5: The longitudinal magnetization Mk as a function of time after a 90° radiofre-
quency pulse was applied. After some time Mk reaches the equilibrium state M0.

3.3.2 Transverse relaxation

Simultaneously to the recovery of the longitudinal magnetization, the transversal magne-
tization decays towards zero after the B1 field is removed:

M?(t) = M?(0)e
�t/T ⇤

2 (6)

Here, M?(0) is the transverse magnetization right after the RF excitation pulse was applied
and T⇤

2 is the time it takes for the transverse magnetization to be reduced by a factor of
e. The magnetic field in the tissue is heterogenic and thus the protons will experience
slightly di↵erent magnetic fields and precess at frequencies di↵erent from the Larmor
frequency. In the rotating frame with a frequency equal to the Larmor frequency, the
magnetization vector will appear to “fan out” in the transverse plane, as illustrated in
Figure 6. The vector sum of the transverse magnetization will therefore decrease to zero
as the magnetization dephases, resulting in loss of MR signal as seen in Figure 6.

The mechanisms that cause the spins to experience di↵erent magnetic fields can be divided
into two categories: those that are fixed in time and those that vary with time. Inhomo-
geneities of the magnetic field that are fixed in time can be due to the imperfections in the
design of the magnets that produce the B0 field, among other factors. Even if the magnets
produce a perfect uniform field, the insertion of a body in the MR scanner will induce
inhomogeneities in the magnetic field. Tissue can be both paramagnetic and diamagnetic,
causing the magnetic field to increase or reduce respectively. These small variations in
the magnetic field are static in space and will cause dephasing at a constant rate. The
decay of the transverse magnetization due to static inhomogeneities is characterized by
the relaxation time T

0
2 and decay in a similar manner as the curve in Figure 6, except the

decay constant is T
0
2.
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Figure 6: Illustration of the dephasing of the transversal magnetization Mxy due to the
inhomogeneities in the magnetic field. The resulting MR signal is called the free induction
decay (FID) and the exponential decay is determined by the T⇤

2.

The inhomogeneities of the magnetic field can also vary slowly with time because neigh-
bouring protons interact with each other. Protons themselves are magnetic and increase
or decrease the magnetic field surrounding neighbouring protons. Due to the rotation and
translation of protons in tissue, the change in the magnetic field because of the magnetic
properties of protons will vary with time. The time-varying magnetic field results in de-
phasing of the magnetization and decay of signal determined by the relaxation time T2.
The total decay of the signal is determined by the relaxation time T⇤

2 in Equation (6).
The relation between the relaxation times is:

1

T ⇤
2

=
1

T
0
2

+
1

T2
(7)

Relaxation times are important parameters that influence the contrast in MR images and
can be used to detect various pathologies.

3.4 Imaging sequences

After the B0 field is removed, the dephasing of the transversal magnetization causes the
signal to decay with a decay rate determined by T⇤

2. The resulting signal is called the
free induction decay (FID) and is illustrated in Figure 6. The FID decays within 10
ms, which is too fast for image formation as will be explained later. However, there are
pulse sequences that rephase the magnetization at a later point in time, making image
formation possible. The rephasing of the transverse magnetization produces a signal called
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an echo. There exist two methods that create an echo by rephasing the magnetic moments
of hydrogen nuclei: spin-echo and gradient-echo pulse sequence.

3.4.1 Spin-echo pulse sequence

All spin-echo pulse sequences contain RF rephasing which produces a spin-echo signal.
Commonly, spin-echo pulse sequences use a 90° excitation pulse to flip the magnetization
into the transverse plane. After the RF pulse is turned o↵, T⇤

2 dephasing of the magneti-
zation occurs creating an FID signal. Another RF pulse is used after a time ⌧ to rephase
the magnetic moment of the protons. The second RF pulse is a 180° pulse and is called
the RF rephasing or refocusing pulse. The principle behind the RF refocusing pulse is
illustrated in Figure 7. The T⇤

2 dephasing causes the magnetic moments of protons to “fan
out” in the transverse plane. The protons that experienced a weaker magnetic field had
their precessional motion slowed down. These protons are blue in Figure 7 and consti-
tute the trailing edge of the fan. Other protons precess faster because they experience a
stronger magnetic field, and form the leading edge of the fan depicted in red in Figure 7.
The 180° RF rephasing pulse is applied which flips the magnetization vector 180°. Now,
the magnetic moments that formed the leading edge form the trailing edge, while those
that formed the trailing edge form the leading edge of the fan, as shown in Figure 7.
Because the direction of the precession remains the same, the trailing edge catches up
to the leading edge. At a specific time called echo time (TE), the magnetic moments of
the protons are in phase momentarily which produces a maximum signal called spin-echo
as illustrated in Figure 7. Several sequences are needed to form an image and the time
between each sequence is called the repetition time (TR).

Figure 7: Illustration of the dephasing and rephasing of the magnetic moments throughout
a spin echo pulse sequence, together with the resulting magnetic resonance signal.
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Spin-echo pulse sequences only eliminate the T
0
2 dephasing which is caused by inhomo-

geneities in the magnetic field that are fixed in time. The RF rephasing pulse does not
a↵ect the T2 decay because it is due to interactions between spins which vary with time.
Therefore, the spin-echo peak is modulated by the T2 decay, resulting in a lower amplitude
than the FID, as seen in Figure 7.

3.4.2 Gradient-echo pulse sequence

In addition to the spin-echo pulse sequences, an echo can also be produced by gradient-
echo pulse sequences using gradients to rephase the magnetic moments of the spins instead
of the RF rephasing pulses. Gradients are magnetic fields that increase or decrease, often
linearly, along an axis and are largely used for spatial encoding of MR signal which will
be explained in more detail in Section 3.5. Here, it will be explained how gradients are
used to create an echo.

Without a gradient present, the protons will experience the same external applied magnetic
field B0 and thus precess with the same frequency (in reality this is not true because of the
inhomogeneities in the magnetic field, but these changes are small in comparison to those
produced by gradients). Once the gradients are applied, some protons will experience a
stronger magnetic field while others experience a lower field strength, which will speed
up or slow down their precession respectively, creating a “fan”. In Figure 8, the gradient
increases from left (blue) to right (red) with zero gradient at the centre. Therefore, the
magnetic moments of the protons in the blue regions are slowed down and constitute the
trailing edge of the fan. At the same time, the protons in the red region speed up and
form the leading edge of the fan, as shown in Figure 8. This results in dephasing of the
magnetization vector and loss in signal.

Figure 8: Illustration of rephasing the magnetic moments of protons using gradients. The
magnetic moments are in phase when the gradient is o↵. Once the gradient is turned on,
the magnetic moments dephase. As a gradient with opposite polarity is applied afterwards,
the leading and trailing edge slows down and speeds up, respectively. Thus, the magnetic
moments end up in phase again.

The incoherent magnetization can be rephased if another gradient is applied. The second
gradient is often of the same magnitude as the first gradient, though with the opposite
polarity. Instead of increasing the magnetic field from left to right, the second gradient
increases the field from right to left as illustrated in Figure 8. Now, the precession of
the protons in the trailing and the leading edge of the fan is sped up and slowed down,
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respectively. Thus, the trailing edge catches up with the leading edge of the fan and the
magnetization vector is rephased. Figure 9 shows that the rephasing of M? happens at
time TE where the area under the rephasing gradient curve is equal to the area under the
dephasing gradient. A maximum signal is induced in the receiver coils at time TE and is
called a gradient-echo, as illustrated in Figure 9. Gradient-echo pulse sequences do not
compensate for magnetic field inhomogeneities. Therefore, the amplitude of the gradient
echo is modulated by the T⇤

2 decay envelope, contrary to the spin-echo which is modulated
by the T2 decay envelope.

Figure 9: Schematic illustration of the gradient echo pulse sequence and the resulting
magnetic resonance signal.

3.4.3 T1- and T2-weighted images

All medical images, including MR images, must contain contrast to di↵erentiate between
anatomical features and a range of pathologies. One of the main advantages of MRI
is its excellent soft tissue discrimination. There are many variables, both intrinsic and
extrinsic, that influence the contrast in the MR images. T1 and T2 relaxation times are
two important intrinsic properties of tissues that contribute to contrast. Through proper
choices of MR pulse sequence parameters, such as TR and TE, the images can become
T1- or T2-weighted.

Di↵erent tissues exhibit di↵erent T1 properties, resulting in di↵erent decay curves as shown
in Figure 10a. At time TR, the longitudinal magnetization of some tissues will have
recovered less than others. Thus, when the longitudinal magnetization is flipped into the
transverse plane again, the signal will be lower for some tissues which results in contrast.
The same principle applies to the T2 properties of tissues. Figure 10b depicts T2 decay
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curves for two di↵erent tissues. The reduction of the transverse magnetization at TE when
the signal is measured depends on the T2 property of the tissue. Tissues with a high T2

will decay slower and thus produce a larger signal compared to tissues with a low T2. This
contributes to the contrast in MR images.

(a) (b)

Figure 10: a) The recovery of the longitudinal magnetization, Mk, and the b) decay of the
transverse magnetization, M?, for two di↵erent tissues with di↵erent relaxation times T1

and T2. Here, M0 is the magnetization at equilibrium. There will be a larger di↵erence
between the longitudinal magnetization of the two tissues at short repetition time (TR)
than at long TR. The largest di↵erence between the transversal magnetization of the two
tissues occur at long echo time (TE).

It is also possible to change the contrast in MR images using di↵erent TR and TE values.
The TR determines how the longitudinal magnetization recovers before the next RF exci-
tation pulse flips it into the transverse plane again. At the same time, the TE controls the
amount of decay of the transverse magnetization that occurs before the signal is measured.
If the TR is too long, then the longitudinal magnetization of most of the tissues will have
recovered fully and reached equilibrium, as illustrated in Figure 10a. Thus, contrast due
to the T1 properties of tissues will not be demonstrated in the image. However, if the TR
is short then the Mk of most tissues will not have reached equilibrium and the amount of
recovery will depend on the tissue, resulting in T1 contrast being present in the image.

The contrast will also depend on the TE parameter. If TE is short then the transverse
magnetization has had too little time to decay and the di↵erence between the tissues’ M?
will be small and not present in the MR image. On the other hand, a long TE will let
the transverse magnetization in di↵erent tissues decay to di↵erent degrees, resulting in
T2 contrast in the image. To obtain a T2-weighted image, where the contrast due to the
di↵erence in T2 between tissues dominates, both the TR and TE must be long. An image
where the contrast predominantly depends on the di↵erence in the T1 properties of the
tissues, i.e. a T1-weighted image, can be achieved by choosing a short TR and TE. It is also
possible to obtain an image without T1- and T2-weighting called a proton-weighted image.
A proton-weighted image is achieved with a sequence with a long TR and short TE. The
long TR and short TE ensure full recovery and limited decay of Mk and M? respectively,
producing the largest possible signal. Because the amplitude of the magnetization vector
depends on the number of protons, the di↵erence in signal strength between tissues will be
determined by their di↵erence in proton density. Thus, images obtained from sequences
with long TR and short TE are called proton-weighted images. A summary of the e↵ect
of the TR and TE parameters on the image contrast is illustrated in Figure 11.
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Figure 11: The e↵ects of the repetition time (TR) and echo time (TE) choices on the
image contrast is illustrated.

3.5 Image formation

The RF excitation pulse causes the nuclei to resonate, producing a transverse magneti-
zation. The transverse magnetization induces a voltage or signal in the receiver coils. In
contrast to other imaging modalities, the signal originates from the whole object instead
of a single point within the object. Therefore, an encoding scheme is needed to locate the
signal and obtain an image. The key to signal encoding in MRI is magnetic field gradients
which causes the protons to precess at di↵erent frequencies depending on their position.
One gradient is applied along each axis to encode the protons’ position along that axis.
Thus, three gradients in total are used in the encoding scheme, one for each step: slice
selection, frequency encoding and phase encoding. The three gradients and their timing
in a spin-echo pulse sequence are shown in Figure 12.

Figure 12: Schematic illustration of when the gradients are applied during a spin-echo
pulse sequence to encode the position of the protons.
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3.5.1 Slice selection

The first step in spatial encoding is slice selection. A gradient is applied along B0 or the z-
axis, as illustrated in Figure 13a. The precession frequency is proportional to the magnetic
field strength, thus the gradient causes the protons to precess at di↵erent frequencies
depending on their position, as shown by Figure 13b. At the same time as the gradient is
turned on, the RF excitation pulse is applied, as shown in Figure 12. The excitation pulse
will only excite the protons with the same frequency as the B1 field of the RF pulse. Thus,
a slice is selectively excited by an RF pulse that oscillates with the same frequency as the
precession frequency of the protons in the slice. The transverse magnetization created by
the excitation pulse will be the result of the magnetization of the protons in the slice.
Therefore, the signal will originate from the protons in the selected slice only.

(a) (b)

Figure 13: A slice gradient, Bslice represented by the turquoise line is applied in the z-
direction. a) Slice 1 in patient will experience a di↵erent magnetic field compared to slice
2. The precession frequency ! is linearly related to the magnetic field. Therefore, b) the
spins in slice 1 and 2 will precess at di↵erent frequencies, !.

3.5.2 Frequency encoding

After a slice is selected, the position of the signal along both axes of the image is encoded.
Usually, the position along the long axis of the anatomy is found through frequency encod-
ing. A linear gradient, called frequency gradient, is applied while the signal is measured,
as shown in Figure 12. The gradient alters the magnetic field strength, and thus alters the
precession frequency of the protons along an axis linearly and predictably. The protons
located at the low end of the gradient will experience a lower magnetic field strength and
precess slower than the protons at the high end of the gradient.

The measured signal originates from all the excited protons in the selected slice and is a
linear combination of sinusoidal signals. It is stored in a matrix called k-space. Figure
14 shows a k-space where each horizontal line is the signal as a function of time acquired
from a single measurement. The frequency of the sinusoidal signals that make up the
total signal depends on the position of the protons that give rise to each sinusoidal signal.
Thus, the frequency obtained by applying the Fourier transform can be used to encode
the position along the frequency encoding direction.
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Figure 14: An example of k-space is shown in the upper left corner. Each horizontal line
stores the signal from one measurement as a function of time. The signal is a superposition
of sinusoidal functions with di↵erent frequencies depending on the position of the protons
they originate from. The protons have di↵erent frequencies due to the frequency gradient,
shown in the figure in the lower right corner, that was applied during the measurement.
Along the phase encoding direction, the signal as a function of “indirect time” is stored
and is composed of sinusoidal functions with di↵erent indirect frequencies depending on
the position of the protons from which they originate.

3.5.3 Phase encoding

The position along the short axis of the anatomy in the selected slice is found with phase
encoding. Before the signal is measured, a linear gradient called phase gradient is turned
on for a short time, as seen in Figure 12. The precession frequency of the protons is
changed by the gradient and depends on the protons’ position. Thus, the amount of
accumulated phase along the protons’ precession path will depend on their localization.
Protons that are located at the high end of the gradient will precess at a higher speed and
accumulate more phase than the protons at the low end of the gradient.

The sequence, or measurement, is repeated and with each repetition, the magnitude of
the phase gradient is increased. In Figure 12, this is represented by the ladder of phase
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gradients. Therefore, each measurement and thus horizontal line in k-space will exhibit
a di↵erent initial phase shift. Along the y-axis, also called the phase encoding direction,
in k-space the phase changes over “indirect time”. Because the frequency is a change
of phase with time, then the phase change over “indirect time” can be thought of as a
frequency in “indirect time” called indirect frequency. The signal from the protons will
exhibit di↵erent indirect frequencies depending on the location of the protons along the
phase encoding direction.

3.5.4 Fourier transform

An example of k-space obtained from an MR acquisition is shown in Figure 14, where
each point is the signal from all spins in the selected slice. Here, each horizontal line is
the total signal measured over real-time and thus contains the direct frequencies from all
the spins in the ensemble. While the vertical lines are signals measured in “indirect time”
from the entire spin ensemble and are composed of sinusoidal waves with di↵erent indirect
frequencies. The direct and indirect frequencies of the sinusoidal waves associated with
the protons are related to their location.

To form an image, a 2D Fourier transform is performed where a Fourier transform is
applied to the acquired k-space in both the frequency and phase encoding directions.
The Fourier transform decomposes an MR signal into a sum of sinusoidal waves with
di↵erent frequencies, phases and amplitudes. Because the Fourier transform is performed
in both directions, both the direct and indirect frequencies are obtained together with
their corresponding amplitude. The amplitude of each pair of frequencies represents the
intensity of each pixel and will depend on the proton density, as well as the T1 and T2

properties of the tissue at the location determined by the indirect and direct frequencies.

3.6 Dynamic contrast-enhanced MRI

Many MRI techniques are valuable in cancer treatment, and one of them is DCE-MRI. It
is used to extract functional information regarding the microvasculature of the tissue by
analysing its temporal enhancement pattern following an injection of a paramagnetic CA
[3].

The CA used for imaging cancer usually contains Gadolinium (Gd) which is a paramagnetic
element due to its large number of unpaired electrons [23]. The strong magnetic moment
from the Gd can induce relaxation in nearby spins, which reduces the relaxation times
of the tissue. The increased magnetic field due to the presence of Gd forces the spins to
return to equilibrium faster, and thus the T1 is shortened. The CA also reduces T2 because
additional variation in the magnetic field causes the spins to dephase faster. In DCE-MRI,
the images are T1-weighted. Thus, the signal in proximity to the CA will increase because
the CA enhances the longitudinal magnetization before it is flipped into the transverse
plane and measured. Therefore, the introduction of Gd increases the intensity in the
regions where the CA is present in the DCE-MRI T1-weighted images, as illustrated by
Figure 15. Figure 15a shows a DCE-MR image before CA is administered and Figure 15b
shows the same image after the CA was injected. Some areas show an increased signal
intensity, e.g. the tumour which is indicated by the arrow.

To obtain the temporal enhancement pattern, images without CA, called baseline images,
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(a) (b)

Figure 15: A dynamic contrast-enhanced magnetic resonance image of a head and neck
cancer patient a) before and b) after contrast agent was injected. The arrow indicates the
location of the patient’s tumour.

are first acquired [10]. Then a bolus of CA is injected intravenously into the patient before
a series of images are acquired during and after the CA arrives in the tissue of interest.
Figure 16a shows an example of how the signal in a voxel evolves over time. The data
points before the sharp increase in signal constitute the baseline signal, i.e. the signal
obtained from the tissue without CA. The time from the beginning of the acquisition to
the peak of enhancement is called the time to peak (TTP). The enhancement of the signal
occurs when the CA arrives in the tissue. The time between the onset of the contrast
inflow and the peak of the enhancement is called the wash-in, and the wash-in rate is the
maximum slope during that time. As the CA leaves the tissue, the signal reduces with a
maximum slope named wash-out rate.

The shape of the time-intensity curve (TIC) is determined by the microvasculature of the
tissue [10]. Angiogenesis is one of the hallmarks of cancer and is necessary for tumours
to grow rapidly [4]. It leads to highly disorganized vasculature and the formed vessels are
of poor quality, resulting in ine�cient perfusion. The poor quality of the vessels leads to
leakage of CA into the extracellular space [24]. Thus, it takes longer for the CA to leave
cancerous tissue which results in a low wash-out rate, as illustrated in Figure 16b. In
contrast, the TIC of a large artery will have a high wash-out rate because of the e↵ective
perfusion, resulting in a narrow peak, as illustrated by Figure 16b. The wash-in and
wash-out rates are two semi-quantitative parameters used in the analysis of DCE-MRI
data. It is also common to calculate the area under the enhancement curve (AUC) [3].
The AUC is thought to reflect the tumour perfusion and permeability and has thus been
used to predict the patient outcome and evaluate treatment response. Semi-quantitative
analysis has the advantage of being easy to implement and some of the parameters are
fairly independent of injection protocols. However, the semi-quantitative parameters do
not have a clear physiological meaning.
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(a) (b)

Figure 16: a) Illustration of a signal enhancement pattern and its properties. b) Example
of the signal enhancement pattern obtained from an artery and a tumour.

4 Quantitative mapping with DCE-MRI

The induced TICs in DCE-MRI depend on microvascular parameters, e.g. permeability,
surface area of the vessels and blood flow [10]. Appropriate mathematical models can be
used to extract these parameters from the TICs to obtain parametric maps [6, 7]. One of
the most common models is the two-compartment pharmacokinetic model called the Tofts
model [6]. A more advanced Tofts model was later developed, called the extended Tofts
model. At the same time as the Tofts model was proposed, another two-compartment
model was developed by Brix et. al. [7]. This chapter will present the method of acquiring
quantitative tissue maps with the Tofts model, the extended Tofts model and the Brix
model.

4.1 Tofts and extended Tofts model

The Tofts model is a two-compartment tracer model that describes the transport of CA
between the plasma space and extravascular extracellular space (EES), depicted in Figure
17 [6]. It is assumed that the concentration of CA is uniform throughout the compart-
ments. The concentration of CA in the plasma compartment and EES is noted as Cp and
Ce, respectively. The EES is the space that leaked CA can reach and it is assumed that
the CA leaks from nearby capillaries. The model may be invalid if the CA di↵uses into
the EES from distant capillaries.

Further, the model assumes linear intercompartment flux, i.e. the flux of CA between two
compartments is proportional to the concentration gradient �C between the two com-
partments [6]. This assumption, together with the di↵usion theory of molecular transport
across a capillary wall, defines the permeability constant P as the flux per unit concentra-
tion di↵erence and unit area of permeable membrane:

flow of CA = PSMt�C (8)
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Figure 17: Schematic illustration of the Tofts model. It consists of two compartments: the
vascular plasma space and extracellular extravascular space (EES) with fractional volumes
vp and ve, respectively. Contrast agent is injected in the bloodstream. Ktrans is the volume
transfer constant from the plasma to EES and Kep is the rate constant from EES to the
plasma.

Here, S is the area of membrane per unit mass of tissue, Mt is the mass of the tissue of
concern and thus SMt is the unit area of the permeable membrane. Thus, the flux of CA
into the EES from the plasma can be expressed using Equation (8):

veVT
dCe

dt
= (PinCp � PoutCe)SMt (9)

Here, ve is the volume of EES per unit volume of tissue, and Pin and Pout are the perme-
ability constants for the flux of CA in and out of EES respectively. Although there may
be active transport mechanisms present or a di↵erence in di↵usion, viscosity or pressure
on each side of the membrane resulting in di↵erent permeability constants for the flux of
CA in and out of EES, Tofts models assume that Pin = Pout [6]. Thus, Equation (9) can
be rewritten to

dCe

dt
=

Ktrans

ve
(Cp � Ce) (10)

where Ktrans = PoutSMt/Vt is noted as the volume transfer constant. The CA rate
constant from the EES back to the plasma, illustrated in Figure 17, is given by Kep =
Ktrans/ve. The di↵erential equation expressed by Equation (10) can be solved with the
Laplace transform. By taking the Laplace transform and using the relation L{df(t)/dt}(s) =
sL{f(t)}(s)� f(0) we find

sL{Ce}(s)� Ce(0) =
Ktrans

ve
(L{Cp}� L{Ce}) (11)

It is reasonable to assume that Ce(0)=0. Equation (11) can then be rearranged to

L{Ce}(s) =
Ktrans/ve

1�Ktrans/ve
L{Cp} (12)
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Using the convolution theorem, i.e. L{f(t)g(t)} = f(t)⇤g(t) and that L{e�↵t} = 1/(s+↵),
the CA concentration in the EES can be expressed as

Ce(t) =
Ktrans

ve

Z t

0
Cp(⌧)e

�Ktrans

ve
(t�⌧)d⌧ (13)

The total CA concentration Ct in the tissue is a sum of the concentration of CA in the
plasma and EES:

Ct = veCe + vpCp (14)

The Tofts model assumes that the plasma volume is negligible (vp ⇡ 0), while the extended
Tofts model takes the plasma volume into account [25]. Thus, the tissue concentration
can be expressed as

Ct(t) = Ktrans
Z t

0
Cp(⌧)e

�Ktrans

ve
(t�⌧)d⌧ (15)

and

Ct(t) = Ktrans
Z t

0
Cp(⌧)e

�Ktrans

ve
(t�⌧)d⌧ + vpCp(t) (16)

by the Tofts and extended Tofts model, respectively.

4.2 Brix model

The Brix model is another popular two-compartment model applied in DCE-MRI [7]. The
main advantage of this model compared to the Tofts and extended Tofts model is that
an AIF and T1 maps are not required to calculate the pharmacokinetic parameters [25].
Similar to the Tofts and extended Tofts model, the Brix model contains two compartments:
the plasma and EES. There is a linear exchange of CA between the two compartments in
both directions [7]. Thus, the flux of CA can be expressed by the following di↵erential
equations:

dMp

dt
= Kin � (Kpe +Kel)Mp +KepMe (17a)

dMe

dt
= KpeMp �KepMe (17b)

where Kin is the infusion rate of CA, Kel is the rate constant for elimination of CA from
the plasma compartment, Kpe is the rate constant for transfer of CA from the plasma to
the EES and Kep is the rate constant in the opposite direction. The compartment model
and its rate constants are visualised in Figure 18.

Brix et. al. assumed there were no CA accumulated in the tumour [7]. Therefore, the
volume of CA in the EES Ve is insignificant compared to the CA volume in the plasma Vp

andKelMp andKepMe terms can be neglected in Equation (17). The concentrations of CA
in the plasma and EES can be expressed by Cp = Mp/Vp and Ce = Me/Ve, respectively,
resulting in Equation (17) being rearranged to:

dCp

dt
=

Kin

Vp
�KelMp (18a)

dCe

dt
=

Vp

Ve
KpeCp �KepCe (18b)
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Figure 18: Illustration of the Brix model. It consists of two compartments: the vascular
plasma space and extracellular extravascular space (EES). Contrast agent (CA) is injected
into the bloodstream with an infusion rate of Kin. The rate at which the CA is eliminated
from the plasma space is given by Kel. Kpe and Kep is the rate constant for transfer of
CA from the plasma to the EES and vice versa, respectively.

The di↵erential equations expressed by Equations (18)a,b can be solved. Using the initial
conditions Cp(0) = 0 and Ce(0) = 0, the concentrations can be expressed by

Cp(t) =
Kin

VpKel

⇣
eKelt0 � 1

⌘
e�Kelt (19a)

Ce(t) =
KinKpe

Ve

⇣
v
⇣
eKelt0 � 1

⌘
e�Kelt � u

⇣
eKept0 � 1

⌘
e�Kept

⌘
(19b)

with v = {Kel(Kep �Kel)}�1 and u = {Kep(Kep �Kel)}�1. Before all the CA has been
injected, t’=t in Equations (19)a and (19)b, while after CA has been injected t’ equals the
time at which injection of CA is finished.

The signal enhancement was assumed to be proportional to the concentration of CA in the
tissue. Thus, the enhanced signal S(t) in the EES as a function of time can be described
by:

S(t)

S(0)
= 1 +

A

Kep �Kel

0

@

⇣
eKelt0 � 1

⌘
e�Kelt

Kel
�

⇣
eKept0 � 1

⌘
e�Kept

Kep

1

A (20)

Here, S(0) is the signal from the EES in the absence of CA and A is a scalar constant.

4.3 Image acquisition

The Tofts model requires several measurements to calculate the microvascular parameters
[3]:
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(i) A map of the T1 values (T10 map) before injection of CA needs to be acquired to
calculate the concentration of CA in the tissue.

(ii) Acquisition of T1-weighted images before, during and after CA injection to obtain the
TICs. High temporal resolution is important to calculate accurate pharmacokinetic
parameters.

(iii) The AIF, i.e. the concentration of CA in the blood plasma of a feeding artery as a
function of time, is essential to calculate the parametric maps.

The T10 map can be obtained through di↵erent methods, the most common is the so-called
Look-Locker and variable flip angle (VFA) techniques [26].

4.4 Arterial input function

A key component of the Tofts models is the AIF [6]. The AIF is the concentration of
CA in a supplying artery as a function of time and can be obtained by di↵erent methods
[3]. The accuracy of the AIF significantly a↵ects the accuracy of the pharmacokinetic
parameters obtained with the Tofts model because it serves as an input to the model [27].
Therefore, it is important to generate an accurate and patient-specific AIF. It is common
to divide the methods into two groups: individual AIF and population AIF.

4.4.1 Individual and population AIF

A region of interest (ROI) within an artery, usually the coronary artery, is chosen with
a fully manual, semi-automated or fully automated approach [27]. The manual approach
has significant variability associated with it due to flow artefacts in the major arteries. If
the arterial ROI is manually selected, it is thus advisable to choose the image slice that
contains the central portion of the artery, as well as selecting the high-intensity pixels,
to minimize the partial volume e↵ects [28]. It may be better to select the ROI with a
semi-automatic tool, such as those proposed by Li X et al. [29] and Ashton E et al.[30],
to reduce the inter-operator variability in the resulting AIF. There are also some fully
automated selection tools, e.g. a conventional tool proposed by Chen J. et al. [27] and
a deep-learning-based tool proposed by Nalepa et al. [31]. They are often organ- and
sequence-specific and may need to be modified.

After choosing an ROI, the arterial TIC is calculated by averaging over the cross-section
of the arterial ROI [28]. The intensity is then converted to concentration, resulting in the
AIF. Figure 19 shows an example of a delineated artery and the resulting AIF. Most of the
semi-automatic and fully automatic tools not only determine the ROI but also calculate
the resulting AIF [27, 29, 31]

However, in some cases, there are no arteries in the proximity of the organs of interest.
Therefore, an individual AIF can not be obtained and a population AIF is used instead,
e.g. population-averaged AIF described by Parker et al. [9] or population AIF derived
from data reported by Fritz-Hansen [32]. The individual AIFs are patient-specific, and
thus in general lead to more accurate pharmacokinetic parameters than population AIFs
[9].
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Figure 19: An example of a delineated artery and the resulting arterial input function.

4.4.2 Population AIF by Parker et al.

Parker et al. proposed that the AIF is a mixture of two Gaussians in addition to an
exponential modulated by a sigmoid function [9]:

Cp(t) =
2X

n=1

An

�n
p
2⇡

e�(t�Tn)2/2�2
n + ↵

e��t

1 + e�s(t�⌧)
. (21)

Here, An, Tn and �n are the scaling constants, centers and widths of the nth Gaussian; ↵
and � are the amplitude and decay constant of the exponential; and s and ⌧ are the width
and center of the sigmoid that modulates the exponential, respectively. The population
AIF can be found by fitting Equation (21) to the mean AIF measurement of several
patients [9].

4.5 Concentration calculation

The Tofts model requires the concentration of CA as a function of time to calculate
the pharmacokinetic parameters. The CA concentration in homogeneous tissue can be
expressed as a function of post-contrast longitudinal relaxation time T1 [6]:

C(t) =
1

r1

✓
1

T1
� 1

T10

◆
(22)

Here, r1 is the specific relaxivity of the CA and T10 is the pre-contrast relaxation time.
Equation 22 is derived under the assumption of contant specific relaxivity. It is also
assumed that there is fast exchange of all mobile protons within the tissue, i.e. Gd is
evenly distributed, and thus the tissue relaxation can be described by a single T1 value
[6]. This assumption appears to hold for exchange of protons between the cellular and
extracellular spaces. However, the exchange between vascular and extravascular spaces is
slow leading to errors when modelling the concentration of Gd-DTPA in the plasma.

It is common to use a fast, low-angle shot (FLASH) sequence for pharmacokinetic analysis.
The signal equation of the FLASH sequence is

S(t) = M0sin↵
1� eTR/T1

1� cos↵e�TR/T1
(23)
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where TR is the repetition time, ↵ is the flip angle and M0 is the thermal equilibrium mag-
netization. Defining the pre-contrast signal intensity as S0=S(0), the signal enhancement
can be expressed as

S(t)

S0
=

1� e�TR/T1

1� cos↵e�TR/T1

1� e�TR/T10

1� cos↵e�TR/T10

(24)

by using Equation (23). Equation (24) can be rewritten to express the postcontrast relax-
ation time as

1

T1
= �

1

TR
ln

0

BB@
1�B

S(t)

S0

1�Bcos↵
S(t)

S0

1

CCA where B =
1� e�TR/T10

1� cos↵e�TR/T10
. (25)

The concentration can be obtained by calculating 1/T1 using Equation (25) and inserting
the values into Equation (22), together with the values from a T10 map.

5 Methods

5.1 Patient population and treatment

In this study, 20 patients from the EMINENCE study were included. The patients had
untreated head and neck cancer which was histologically confirmed as squamous cell car-
cinoma. The head and neck region includes the pharynx, larynx, oral cavity and sinonasal
area. Some of the patients had lymph node metastasis, in addition to the primary tu-
mour. The patients were treated with radiotherapy or surgery at St. Olavs Hospital with
curative intent. Some patients also got concomitant chemotherapy. Each patient gave
their written consent to be part of the study and the investigation was approved by the
Regional Committee for Medical Research Ethics in Central Norway (approval number
2019/64744).

5.2 DCE-MRI data acquisition

MRI was performed on a 1.5T MRI scanner (Magnetom Avanto, Siemens) with a head and
neck coil prior to the treatment as part of the diagnostic work-up. A VFA measurement
was acquired to calculate the T1 map and was followed by a B1 mapping acquisition. The
VFA measurement was conducted using a T1-weighted spoiled gradient-echo sequence for
five flip angles: 2, 10, 15, 20 and 25 degrees with the specifications listed in Table 1. The B1
map was acquired with a proton-weighted spoiled gradient-echo sequence with the imaging
parameters that are listed in Table 1. The T1 map was corrected for inhomogeneities in
the magnetic field using the B1 map.

DCE-MRI was performed after obtaining the T1 and B1 maps. The DCE-MRI consisted
of 60 consecutively acquired axial volumes with a temporal resolution of 3.735 s. Similar
to the VFA measurement, the DCE-MRI sequence was a T1-weighted spoiled gradient-
echo sequence with the specifications listed in Table 1. Four pre-contrast images were
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Table 1: Spesifications of the sequences that were performed to obtain maps of T1 and
B1, and the DCE-MR images.

Measurement TR (ms) TE (ms) Flip angle Matrix size Slices Voxel size (mm3) Averages

T1 map 4.76 1.95
2°, 10°, 15°,
20°, 25° 154 ⇥ 192 48 1.68 ⇥1.35⇥4 1

B1 map 3800 1.88 79.99 52 ⇥ 64 16 5.92⇥5.94⇥8 1
DCE-MRI 3.04 1.11 12 288⇥320 22 0.78⇥0.78⇥4 1

acquired, and thus the first four time frames of the signal enhancement curves constitute
the baseline. The CA, gadoterate meglumine (Clariscan), was injected automatically in
a bolus dose of 2 ml/kg of body weight with an injection rate of 3 ml/s. The injection
was followed by a 20 ml saline flush with an injection speed of 3 ml/s. The same imaging
and CA administration protocols were followed for all the patients in the study to ensure
uniform data collection.

5.3 DCE-MRI data processing and analysis

The T1 map and the DCE-MRI data were exported as DICOM files and converted to
nifti files. Before the conversion, the T1 map was reconstructed to exhibit the same
matrix size as the DCE-MR images. The data was then processed and analysed using
an in-house Python script which can be accessed from the GitHub repository https:

//github.com/martehoiskar/DCE-MRI. Part of the code required to use the Tofts models
for model fitting was taken from the GitHub repository https://github.com/welcheb/

pydcemri/blob/master/dcemri.py, though some modifications were made.

5.3.1 Extraction of the AIF

The voxels for the AIF were manually selected from the left carotid artery for each patient.
The CA arrives in the arteries first, and thus the arteries were found by observing where
the signal enhancement occurred first. The time frame with maximum signal enhancement
was used to delineate the artery. The image slice with the central portion of the artery
was selected to minimize partial volume e↵ects. Only the voxels in the centre of the artery
were included in the segmentation to ensure that all the voxels were inside the artery.
Delineation was performed in 3D Slicer with the Segmentation Editor by a single observer
and an example of the segmentation of an artery is seen in Figure 20.

The individual AIF, denoted AIFind, was calculated using the same approach for each
patient. The patient’s arterial TIC was obtained from the DCE MR images by averaging
over the TIC from each voxel in the arterial ROI of the patient, as illustrated in Figure
21. The arterial TIC was converted to tracer concentration using Equation (22) with a
specific relaxivity of 3.1 (s mM)�1 [33], a constant T10 of 1550 s as found in literature [34]
and defining S0 as the average over the first four time frames arterial TIC. The resulting
time-concentration curve (TCC) gave rise to the AIFind, as shown by Figure 21.

Six di↵erent population AIFs were obtained and the names of the AIFs were given the
subscript pop. The arterial TICs from 20 di↵erent patients were either not aligned, aligned
using the peaks or aligned using the time of wash-in of the arterial TICs. The average of the
patients’ TTP and the average of the time of wash-in were used as the new TTP and the
new time of wash-in for the population AIF composed of arterial TICs with aligned peaks
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Figure 20: An example of the delineation of the arterial region of interest used to calculate
the individual arterial input function for one of the patients. Here, the delineation is
depicted on a post-contrast T1-weighted image where the signal in the arteries was at its
strongest.

Figure 21: Flowchart of the calculation of the individual arterial input function, AIFind.
The arterial region of interest (ROI) was delineated and here it is represented by the
white circle. The time-intensity curve (TIC) was found for each voxel inside the arterial
ROI. Here, four of the voxels in the arterial ROI are drawn in di↵erent colours. Then the
mean of the TICs over the voxels in the arterial ROI was calculated, resulting in a mean
TIC for the artery. Then, the mean TIC was converted to concentration which lead to a
time-concentration curve (TCC), also called the AIFind.

and the population AIF with aligned times of wash-in, respectively. Further, for each type
of alignment (including the no alignment) the baseline was either included or removed.
The baseline refers to the first four time frames of the patients’ arterial TICs. Then, the
average of the arterial TICs from the patients was calculated and then converted to a
TCC in the same manner as the arterial TICs, resulting in six TCCs that represented the
population AIFs: AIFpop, bl, AIFpop, AIFpop, pa, bl, AIFpop, pa, AIFpop, wia, AIFpop, wia, bl.
Here, the subscripts pa, wia and bl stand for peak alignment, wash-in alignment and
baseline included, respectively. This process is also illustrated by the flowchart in Figure
22. Equation (21) was fitted to each of the six population AIFs, using Python’s curve fit

function from the scipy.optimize package, to obtain the functional form of the population
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AIFs.

Figure 22: Flowchart of the calculation of the population arterial input functions. The
arterial time-intensity curves (TICs) from 20 patients were either not aligned, aligned
using the peaks or aligned using the time of the wash-in of the time-intensity curves.
The baseline was either included or removed from the time-intensity curves. Then the
average of the patients’ time-intensity curves were taken before being converted to time-
concentration curves (TCCs), resulting in six di↵erent population arterial input functions:
AIFpop, bl, AIFpop, AIFpop, pa, bl, AIFpop, pa, AIFpop, wia, AIFpop, wia, bl.

5.3.2 Tracer kinetic modeling

Malignant lymph nodes were manually delineated by physicians at St. Olavs Hospital on
CT images. The delineations on CT images were used as guidance to discern the lymph
nodes in the DCE-MR images. The lymph nodes were manually drawn in DCE-MR images
in 2D in the 20th time frame on each image slice that contained a part of the lymph node.
The T2-weighted images were also used to provide additional information on the position
and extent of the lymph node. The delineation was performed in 3D Slicer using the
Segmentation Editor. The MultiVolumeExplorer in 3D Slicer was also used to examine
the TICs of the voxels. Voxels with TICs that had abnormal shapes for malignant lymph
nodes were discarded. Here, abnormal TICs refer to TICs without the characteristic shape
shown in Figure 16 and that look like noise instead. In total, 17 cancerous lymph nodes
were delineated.

Figure 23 shows a flowchart of the calculation of the pharmacokinetic parameters and the
AUCs. The calculation of the parameters was divided into two steps: calculating enhance-
ment curves and model fitting or AUC calculation. The parameters were calculated both
on a voxel-by-voxel basis and on an ROI basis. Calculations on a voxel-by-voxel basis
mean that the model fitting or integration over the enhancement curve was done for the
enhancement curve of each voxel in the delineated lymph node. This results in parametric
3D maps of the lymph node for each of the pharmacokinetic parameters and AUCs, as
illustrated in Figure 24a. While calculations on a mean ROI basis mean that the mean
enhancement curves of all voxels in the lymph node ROI were calculated and then the
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model fitting or AUC calculation was conducted, resulting in a single set of parameters
for each lymph node ROI, as shown by Figure 24b

Figure 23: Flowchart of how the pharmacokinetic parameters and the areas under the curve
(AUCs) were calculated. The enhancement curves, represented by time-concentration
curves (Tofts or extended Tofts model), signal ratios (Brix model) or contrast index (AUC
calculations), were obtained for each voxel in the delineated lymph node in the DCE-MR
images. Model fitting of the TCCs using the Tofts or extended Tofts model resulted in the
parameters Ktrans and ve or Ktrans, ve and vp, respectively. The parameters A, Kel and
Kep were obtained from the model fitting of the signal ratio curves with the Brix model.
The areas under the curve were calculated by integrating over the contrast index (CI)
curve. For each of the parameters, a 3D parametric map of the lymph node was created.
In addition, a mean region of interest (ROI) analysis calculated the mean enhancement
curves over the voxels in the lymph node. The model fitting or AUC calculations were
performed on the mean ROI enhancement curves, resulting in a single set of parameters
for the lymph node.

The Tofts model and the extended Tofts model were applied to calculate the pharmacoki-
netic parameters for each patient. Model fitting was first performed on a voxel-by-voxel
basis within the lymph node volume for each patient. The TICs for each voxel in the
lymph node were converted to TCCs using Equation (22) with a specific relaxivity of 3.1
(s mM)�1. The T10 value in Equation (22) was determined by the T1 map and S0 was de-
fined as the average over the first four time frames. By applying the Levenberg-Marquardt
least-squares minimization method with the curve fit function from the scipy.optimization

package in Python, curves were fitted to the TCC using Equation (15) and (16) to ob-
tain the pharmacokinetic parameters expressed by the Tofts and extended Tofts model,
respectively. Both the Tofts and extended Tofts model extract the parameters Ktrans and
ve, but the extended Tofts model additionally extracts vp. Kep was then calculated us-
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(a) Voxel analysis

(b) Mean ROI analysis

Figure 24: Illustration of a) the voxel analysis and b) the mean region of interest (ROI)
analysis. In a voxel analysis, the enhancement pattern is calculated for each voxel in the
lymph node region of interest and then model fitting is performed for each voxel. This
results in a parametric map of the lymph node for each parameter. In contrast, the mean
ROI analysis average over the enhancement patterns of the voxels in the lymph node ROI.
This results in a mean ROI enhancement pattern which the model fitting is performed for
and a single set of parameters is obtained for the lymph node.

ing the relation Kep = Ktrans/ve. The individual AIF was used as the Cp in Equation
(15) and (16). The integrals in Equation (15) and (16) were calculated numerically with
the Python function simps from the scipy.integrate package which applies the composite
Simpson’s rule. The initial guesses for the parameters were Ktrans = 0.01s�1, ve = 0.1 and
vp = 0.1. The values were chosen to have the same order of magnitude as found in the
literature. Small variations of the initial guess did not have any e↵ect on the fit. Although
some of the parameter values were unphysical, the curve fitting was applied without any
constraints to the numeric values of the pharmacokinetic parameters to avoid dictating
the results. Thus, the unphysical values could be used to observe regions where the models
failed.

The enhancement of the signals from the lymph nodes did not occur immediately after
the injection as can be observed in Figure 25a. The curve fitting was done on the curve
with and without the baseline present for one of the patients to see if the removal of the
baseline improved the goodness of the fit. Figure 25 shows the mean TCC for the whole
lymph node with and without the baseline and the corresponding fitted curves. The R2

value for the fitted curves with and without the baseline was 0.91 and 0.74, respectively.
Thus, the baseline was included in the TCC because it gave a higher R2 value.
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(a) (b)

Figure 25: Plots of the mean time-concentration curve for a single lymph node and the
corresponding curve fit which was found using the Tofts model. The curve fit was done a)
with and b) without the baseline and had the R2 value of 0.91 and 0.74, respectively.

Similar to model fitting with the Tofts and extended Tofts model, the model fitting with
the Brix model was performed on a voxel-by-voxel basis. The signal ratio S(t)/S(0) was
calculated for each voxel with S(0) defined as the average over the first four time frames.
The curve defined by Equation (20) was fitted to the signal ratio using the curve fit function
from Python to obtain the pharmacokinetic parameters: A, Kep and Kel. The initial guess
for the parameters was A = 2, Kep = 1s�1 and Kel = 0.01s�1 which had the right order
of magnitude to achieve a fit. The curve fitting was performed on the curve with and
without the baseline present for one of the patients to determine if the baseline should be
removed. Plots of the mean relative signal intensity for the whole tumour as a function of
time are shown in Figure 26, together with the corresponding fitted curves. By removing
the baseline, the R2 value improved from 0.85 to 0.98 and the increased goodness of fit can
also be observed in Figure 26. Hence, model fitting with the Brix model was performed
on the signal ratio curves without the baseline present.

(a) (b)

Figure 26: Plots of the mean relative signal ratio for a single lymph node as a function of
time and the corresponding curve fit which was found using the Brix model. The curve
fit was done for the mean relative signal ratio curve a) with and b) without the baseline
present and had the R2 value of 0.85 and 0.98, respectively.

In addition to the voxel-by-voxel analysis, a mean ROI analysis was performed for each
patient as mentioned previously. For each lymph node, the mean TCC and mean S(t)/S0
of all voxels were calculated. Then, the Tofts and extended Tofts model were fitted to the
mean TCC of the lymph node ROI using the AIFind of the patient. The Tofts model was
also fitted using the six di↵erent population AIFs given by their functional forms. When
the population AIFs that contained no baseline were used, the baseline was removed from
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the mean TCC before curve fitting was performed. In addition, the Brix model was fitted
to the mean S(t)/S0 of the lymph node ROI. This resulted in a set of pharmacokinetic
parameters, denoted with the prefix mean ROI, for each lymph node.

5.3.3 AUC calculations

Common semi-quantitative parameters are the AUC60, AUC90 and AUC120, which are
the area under the contrast index (CI) curve for the first 60, 90 and 120 s after the time
of contrast arrival to the lymph node, respectively. In accordance with Matsuzaki et. al.

[35], the CI:

CI =
S � S0

S0
(26)

was calculated. Here, S and S0 are the signal intensity and the baseline, i.e. the mean signal
intensity of the first four time frames, respectively. The AUC60, AUC90 and AUC120 were
calculated using the Python function simpson from the scipy.integrate package which uses
the composite Simpson’s rule to integrate over the CI curve. The AUC calculations were
also performed on both a voxel-by-voxel basis and a mean ROI basis. The voxel-by-voxel
analysis calculated the AUCs for each voxel in the lymph node ROI, resulting in parametric
maps of the lymph node for each AUC. The mean ROI analysis calculated the mean CI of
the voxels in the ROI and then calculated the AUCs of the mean CI, resulting in a single
set of AUCs for each lymph node.

5.4 Statistical analysis

After the semi-quantitative and quantitative analysis was performed, a statistical analysis
was conducted to investigate the di↵erent AIFs and compare the di↵erent pharmacokinetic
parameters, as well as the AUCs.

5.4.1 Comparison between the di↵erent AIFs

The mean ROI analysis with the Tofts model produced Ktrans and ve for each of the AIFs:
AIFind, AIFpop, bl, AIFpop, AIFpop, pa, bl, AIFpop, pa, AIFpop, wia, AIFpop, wia, bl.

The correlation between the parameters, Ktrans and ve, obtained with the population
AIFs and the corresponding parameters obtained with the individual AIF was studied to
better understand which population AIF we should use in further analysis. The linear
relationship between the parameters from calculations with the population AIFs and the
corresponding parameters calculated with individual AIF was determined by performing
linear regression with Python’s function linregress from the scipy.stats library which pro-
duced slopes and intercepts. The individual- and population AIFs can also be compared
quantitatively through the concordance correlation coe�cient (CCC). The CCC between
the two variables x and y was defined by Lawrence Lin [36]:

CCC =
2�x,y

�2
x + �2

y + (µx � µy)2
. (27)

Here, �xy is the covariance, µx and µy are the means for the variables x and y, respectively,
and �2

x and �2
y are the corresponding variances. The CCC quantify the degree to which
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the pair of two variables (x and y) fall on the line which goes through the origin and
produce a 45° angle with the x-axis. The CCC between the parameters calculated with
the individual AIF and the corresponding parameters calculated using the population AIF
was obtained for all the population AIFs.

5.4.2 Correlation between pharmacokinetic parameters

The Pearson product-moment correlation test was used to study the linear correlation
between both the pharmacokinetic parameters and the AUCs. The median Ktrans

IndAIF, TM,

ve, IndAIF, TM, Kep, IndAIF, TM Ktrans
IndAIF, ETM, ve, IndAIF, ETM, vp, IndAIF, ETM, Kep, IndAIF, ETM,

Kep, Brix, Kel, A, AUC60, AUC90 and AUC120 over all voxels in the lymph node ROI were
calculated for each lymph node. Then, the Pearson correlation coe�cients (CC) compar-
ing these parameters were obtained with Python’s function pearsonr from the scipy.stats

library, together with the corresponding p-values. The pharmacokinetic parameters pro-
duced by fitting the models to the mean enhancement curves for each the lymph node
were calculated as well and denoted as mean ROI values. Similar to the median values,
the Pearson CCs comparing both the mean ROI pharmacokinetic parameters and mean
ROI AUCs were calculated, together with the corresponding p-values.

6 Results

6.1 Arterial input function

The individual AIFs that contributed to the population AIFs were plotted as a function
of time, as shown in Figure 27, together with one of the population AIFs, AIFpop, bl. The
individual AIFs that belonged to patients 31, 38, 41 and 42 deviated strongly from the
population AIFs. Table 2 lists the baseline value, S0, for each patient. Note that the
individual AIFs that deviated most from the population AIFs belonged to the patients
with the lowest S0 values.

Table 2: The baseline value, S0, that was used to convert the magnetic resonance signal
to concentration is listed for each patient.

Patient 1 2 5 7 8 11 16 20 22 23 26 31 32 38 39 41 42 44 45 48
S0 103 113 126 119 114 108 121 110 109 119 105 62 117 80 108 79 64 127 92 100

Six di↵erent population AIFs were obtained: AIFpop, bl, AIFpop, AIFpop, pa, bl, AIFpop, pa,
AIFpop, wia, bl and AIFpop, wia. The parameter values for the functional form, defined by
Equation (21), of each population AIF are listed in Table 3, together with the popula-
tion AIF presented by Parker et. al. [9]. The population AIFs as a function of time are
presented in Figure 28. There were some small deviations between the di↵erent popu-
lation AIFs. The AIFs obtained after aligning the arterial TICs using the peaks or the
start of the wash-in had a higher maximum than the AIFs found without any alignment.
The curve of AIFpop, pa, bl and AIFpop, pa also had a larger dip after the first-pass peak
compared to the other population AIFs.
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Figure 27: The individual arterial input functions (AIFs) that contributed to the popula-
tion AIFs were plotted as a function of time. The AIF for patient n was denoted AIFind, n.
One of the six population AIFs, AIFpop, bl was also plotted.

Table 3: Parameter values for the functional form of the population-based arterial in-
put functions (AIFs): AIFpop, bl, AIFpop, AIFpop, pa, bl, AIFpop, pa, AIFpop, wia, bl and
AIFpop, wia are listed, together with the corresponding standard deviations. The pa-
rameters were defined by Equation (21). In addition, the parameter values and their
corresponding standard deviations that describe the population AIF obtained by Parker
et. al., AIFParker are included.

Model/Parameter A1 A2 T1 T2 �1 �2 ↵ � s ⌧

AIFpop, bl
Value 0.84 0.46 0.547 0.78 0.070 0.13 1.59 0.230 28 0.900
Std 0.03 0.04 0.002 0.10 0.001 0.01 0.04 0.010 6 0.1

AIFpopl
Value 0.72 0.49 0.293 0.47 0.066 0.13 1.54 0.241 30 0.618
Std 0.06 0.06 0.001 0.02 0.002 0.01 0.03 0.008 4 0.008

AIFpop, pa, bl
Value 0.89 0.40 0.572 0.78 0.067 0.13 1.59 0.240 40 0.900
Std 0.07 0.07 0.002 0.03 0.002 0.02 0.07 0.020 11 0.020

AIFpop, pa
Value 0.70 0.50 0.315 0.45 0.061 0.11 1.59 0.260 124 0.620
Std 0.10 0.10 0.002 0.03 0.003 0.02 0.05 0.020 1600 0.040

AIFpop, wia, bl
Value 0.90 0.46 0.539 0.78 0.069 0.14 1.59 0.230 23 0.910
Std 0.05 0.06 0.002 0.02 0.002 0.02 0.06 0.020 9 0.030

AIFpop, wia
Value 0.79 0.45 0.284 0.45 0.064 0.12 1.57 0.250 38 0.590
Std 0.08 0.08 0.002 0.03 0.002 0.02 0.03 0.010 6 0.010

AIFParker
Value 0.81 0.33 0.170 0.37 0.056 0.13 1.05 0.169 38 0.483
Std 0.04 0.04 0.001 0.03 0.001 0.02 0.02 0.006 19 0.015
Units mmol.min mmol.min min min min min mmol min�1 min�1 min
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The Tofts model was applied to the mean ROI TCC for 16 lymph nodes to calculate the
pharmacokinetic parameters: Ktrans and ve. The calculation was performed using each of
the six population AIFs and the individual AIF. Figure 30 shows the mean ROI Ktrans

values calculated using each of the six di↵erent population AIFs plotted against the mean
ROI Ktrans value found using the individual AIF. The linear regression line is also presented
in the plots. The slope, intercept and CCC range between 0.31-0.35, 0.33-0.36 and 0.41-
0.43, respectively. It can also be observed that the plots for each population AIF are
similar, suggesting that the di↵erent population AIFs produced similar pharmacokinetic
parameters. Similar plots of ve is presented by Figure 31. Here, the slope, intercept and
CCC range between 0.37-0.38, 0.24-0.25 and 0.52-0.53, respectively. The plots of ve for
each population AIFs in Figure 31 are also similar.

Figure 28: The population arterial input functions: AIFpop, bl, AIFpop, AIFpop, pa, bl,
AIFpop, pa, AIFpop, wia, bl and AIFpop, wia as a function of time.
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6.2 Comparison of Tofts and extended Tofts model

Both the Tofts model and extended Tofts model were applied to calculate Ktrans and ve
voxel-by-voxel for 16 lymph nodes. The median Ktrans and ve over the voxels in the lymph
node ROI were calculated for each lymph node. In Figure 29, the median Ktrans

IndAIF, TM
and ve, IndAIF, TM for each lymph node were plotted against the corresponding median
Ktrans

IndAIF, ETM and ve, IndAIF, ETM respectively. The linear regression lines were also included
in the plots, and their slopes and intercepts were close to 1 and 0, respectively. Thus,
pairs of the median Ktrans

IndAIF, TM and Ktrans
IndAIF, ETM, and pairs of the median ve, IndAIF, TM

and ve, IndAIF, ETM fell almost perfectly on the 45° line. This was also expressed by the
CCC. The CCCs comparing median Ktrans

IndAIF, TM and median Ktrans
IndAIF, ETM, and median

ve, IndAIF, TM and median ve, IndAIF, ETM were 0.99 and 1.00, respectively.

(a) (b)

Figure 29: a) The median Ktrans
IndAIF, TM were plotted against the median Ktrans

IndAIF, ETM,
together with the linear regression line. The slope and intercept of the regression lines are
listed in the textbox, together with the CCC.
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(a) AIFpop vs AIFind (b) AIFpop, bl vs AIFind

(c) AIFpop, pa vs AIFind (d) AIFpop, pa, bl vs AIFind

(e) AIFpop, wia vs AIFind (f) AIFpop, wia, bl vs AIFind

Figure 30: The Tofts model was applied to the mean region of interest (ROI) time-
concentration curve for each of the 16 cancerous lymph nodes using the individual arterial
input function (AIF) and all six population AIFs. The resulting mean ROI Ktrans from
using a) AIFpop, bl, b) AIFpop, c) AIFpop, pa, bl, d) AIFpop, pa, e) AIFpop, wia, bl and f)
AIFpop, wia were plotted with errorbars against the mean ROI Ktrans calculated using
AIFind. The linear regression line is also shown and its slope and intercept are listed
in the textbox. In addition, the textbox includes the concordance correlation coe�cient
(CCC).

38



(a) AIFpop vs AIFind (b) AIFpop, bl vs AIFind

(c) AIFpop, pa vs AIFind (d) AIFpop, pa, bl vs AIFind

(e) AIFpop, wia vs AIFind (f) AIFpop, wia, bl vs AIFind

Figure 31: The Tofts model was applied to the mean region of interest (ROI) time-
concentration curve for each of the 16 cancerous lymph nodes using the individual arterial
input function (AIF) and all six population AIFs. The resulting mean ROI ve from using
a) AIFpop, bl, b) AIFpop, c) AIFpop, pa, bl, d) AIFpop, pa, e) AIFpop, wia, bl and f) AIFpop, wia

were plotted with errorbars against the mean ROI ve calculated using AIFind. The linear
regression line is also shown and its slope and intercept are listed in the textbox. In
addition, the textbox includes the concordance correlation coe�cient (CCC).
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6.3 Correlation between pharmacokinetic parameter

Figure 32a shows a single time frame of a single slice through the lymph node of patient 1.
The red region is the delineated lymph node volume. Parametric images of Ktrans

IndAIF, TM,

ve, IndAIF, TM, Ktrans
IndAIF, ETM, ve, IndAIF, ETM, Kep, IndAIF, TM, AUC60, vp, IndAIF, ETM,

Kep, IndAIF, ETM, A, Kel and Kep, Brix for the lymph node volume marked in Figure 32a are
presented in Figure 32b-l. Most of the parametric images had extreme values in the same
regions of the lymph node.

The parametric images for all lesions were used to investigate the relationship between the
di↵erent parameters from the Tofts models, extended Tofts models, Brix model and AUC
calculations. Heat maps of the Pearson CCs and the corresponding p-values comparing
both the median pharmacokinetic and median semi-quantitative parameters are shown in
Figure 33. Similar heat maps are presented in Figure 34, though it is the pharmacokinetic
and semiquantitative parameters from the model fitting to the mean TCC or mean S(t)/S0,
the mean ROI values, that are compared. Only the parameters from the Tofts models using
AIFind were used in the comparison because the parameters from using the population
AIFs deviated substantially from the parameters found using AIFind. The correlation
coe�cients comparing Kep, IndAIF, TM and Kel, Kep, IndAIF, ETM and Kel, Kep, Brix and A,
Ktrans

IndAIF, TM and ve, IndAIFT, TM and Ktrans
IndAIF, ETM and ve, IndAIFT, ETM were high for both

the ROI and median values, and the corresponding p-values were low. In contrast, none
of the pharmacokinetic parameters correlated significantly with the AUCs, as shown by
the heat maps in Figure 33 and 34. The heat maps also show that the AUC60, AUC90
and AUC120 correlate almost identically with the pharmacokinetic parameters.

In Figure 35, the mean ROI Kel and median Kel are plotted against the mean ROI
Kep, IndAIF, ETM and median Kep, IndAIF, ETM, respectively. It shows that Kel increases
together with Kep, IndAIF, ETM, which agrees well with the positive Pearson CC of 0.77
and 0.7 for the mean ROI and median values, respectively. The correlation comparing
mean ROI Kep, Brix and median Kep, Brix with the corresponding A is 0.96 and 0.93, re-
spectively, which agrees well with the plot of Kep, Brix against A in Figure 36.

The two parameters, Ktrans and ve, produced by the Tofts and extended Tofts model are
also correlated. Figure 37 shows the ROI and median Ktrans

IndAIF, TM plotted against the ROI
and median ve, IndAIF, TM, respectively. The plots show that ve, IndAIF, TM increases with
Ktrans

IndAIF, TM, resulting in a positive correlation of 0.71 and 0.83 for the ROI and median
values, respectively.
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Figure 32: a) Dynamic contrast-enhanced magnetic resonance image for a single time frame
and slice. The delineated malignant lymph node volume is represented by the red region.
Parametric images of b) Ktrans

IndAIF, TM, c) ve, IndAIF, TM, d) Ktrans
IndAIF, ETM, e) ve, IndAIF, ETM,

f) Kep, IndAIF, TM, g) AUC60, h) vp, IndAIF, ETM, i) Kep, IndAIF, ETM, j) A, k) Kel and l)
Kep, Brix for the lymph node volume are presented.
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(a) Pearson correlation coe�cients

(b) P-values

Figure 33: Heat map of the a) correlation coe�cients comparing both the median pharma-
cokinetic parameters and semiquantitative parameters over the voxels in the lymph nodes.
The model fitting of the enhancement curves were done for each voxel in the lymph nodes
before the median value for each lymph node was found. The corresponding b) p-values
are also presented with a heat map.
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(a) Pearson correlation coe�cients

(b) P-values

Figure 34: Heat map of the a) correlation coe�cients comparing both the pharmacokinetic
parameters and semiquantitative parameters obtained from fitting the models to the mean
region of interest (ROI) enhancement curves for the lymph nodes. The corresponding b)
p-values are also presented with a heat map.
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(a) (b)

Figure 35: a) The mean region of interest (ROI) and b) median Kel from the Brix model
were plotted against the mean ROI and median Kep, IndAIF, ETM from the extended Tofts
model, respectively. Linear regression was applied to the pairs of observations and the
resulting regression lines were also plotted.

(a) (b)

Figure 36: a) The mean region of interest (ROI) and b) median Kep, Brix were plotted
against the mean ROI and median A, respectively. Linear regression was applied to the
pairs of observations and the resulting regression lines were also plotted.
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(a) (b)

Figure 37: a) The mean region of interest (ROI) and b) median Kep, Brix were plotted
against the mean ROI and median A, respectively. Linear regression was applied to the
pairs of observations and the resulting regression lines were also plotted.

7 Discussion

7.1 Population AIF

There are patient cases where it is di�cult to obtain an AIF, either because there are no
arteries in the field of view or there are artefacts from patient motion or blood flow present
in the images [9]. Several studies have performed DCE-MRI analysis using a population
AIF to investigate the potential of applying a population AIF instead of an individual
AIF for the model fitting [9, 28, 37]. Another advantage of applying a population AIF is
that it would not be essential to use a DCE-MRI acquisition method with a high temporal
resolution. The CA kinetics of the tissue is much slower than blood CA kinetics, and thus
the tumour signal enhancement curve can be obtained with a lower temporal resolution
compared to the resolution required to obtain an accurate AIF [29]. Without the need to
obtain an individual AIF, the temporal resolution can be lowered and the spatial resolution
can be increased.

In this work, the population AIF was derived using di↵erent methods, resulting in six di↵er-
ent population AIFs: AIFpop, AIFpop, bl, AIFpop, pa, AIFpop, pa, bl, AIFpop, wia, AIFpop, wia, bl.
The parameters that describe the functional form of the population AIFs are listed in Ta-
ble 3, together with the parameters for the population AIF proposed by Parker et. al.

which is a commonly used population AIF [9]. The parameters for each of the population
AIFs are of the same order of magnitude as the corresponding parameters that describe
AIFParker, except the s-value for AIFpop, pa. AIFpop, pa has a high s-value of 124 min�1

compared to AIFpop, pa, bl with an s-value of 40 min�1. The s-value represents the width
of the sigmoid. A large s-value result in a sigmoid curve with a sharp ”S”-shaped curve
and thus small width. Hence, the large s-value of AIFpop, pa may be the reason why the
dip after the first-pass peak is larger compared to the dip of the AIFpop, pa, bl, as seen in
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Figure 28. Although all the parameters, except one, have the same order of magnitude,
some parameters di↵er significantly between the population AIFs. The T1 and T2-values
are largest for AIFpop, bl, AIFpop, pa, bl and AIFpop, wia, bl. This is expected because these
population AIFs have the baseline included, and thus the centre of the Gaussians, which
is represented by T1 and T2, occur at a later time. The same argument applies to the
centre of the sigmoid which explains the high ⌧ -value for AIFpop, bl, AIFpop, pa, bl and
AIFpop, wia, bl.

7.1.1 Robustness of population AIF

Similar to Parker et. al. [9] and Li et. al. [29], AIFpop, pa and AIFpop, pa, bl were obtained
by aligning the peaks of the patients’ arterial time-intensity curves before taking the mean
and converting the signal to CA concentration. This is the most common approach for
calculating the population AIF. However, to investigate the robustness of the population
AIF, the patient’s arterial time-intensity curves were also not aligned and aligned using the
start of wash-in as the alignment criteria. Further, two population AIFs were obtained
for each alignment technique: one with and one without the baseline included. Figure
28 shows that there are some deviations between the population AIFs. AIFpop, pa and
AIFpop, pa, bl have the highest peaks as expected because the peaks were aligned. The
characteristics of the AIF, such as the peak, are believed to be essential for the DCE-MRI
quantification to be reliable [38]. Thus, the alignment of the peaks may be the superior
method for obtaining the population AIF.

Although there were some deviations between the population AIFs, Figure 30 and 31 show
that the deviations were not large enough to have a significant e↵ect on the Ktrans and
ve that were found using the Tofts model on the mean ROI enhancement curves for the
lymph nodes. This suggests that the choice of population AIF was not vital and thus the
robustness of the population AIF was high. However, the population AIF does not take
interpatient variability into account. Patient specifics such as the heart rate and kidney
function lead to di↵erences in the true AIF between patients, and hence the population AIF
may not be representative for all patients. Figure 27 shows that individual AIFs for four
of the patients were substantially di↵erent from the population AIFs. The same patients
also exhibited low baseline values, presented in Table 2, that were used to convert the MR
signal to CA concentration and thus may be the explanation behind the large deviations
from the population AIF. The large deviations could also be due to errors in the MRI
signal which would have been enhanced when the signal was converted to concentration
[8], though this is unlikely since no abnormalities in the images were observed.

7.1.2 Comparison between population AIF and individual AIF

The pharmacokinetic parameters that were found using the population AIFs were com-
pared to the corresponding values found using the patients’ individual AIFs. Although
the individual AIF for just four of the patients deviated largely from the population AIF,
few of the pharmacokinetic parameters that were found using the population AIF agreed
with the corresponding values obtained using the individual AIFs. This can be observed
in Figure 30 and 31 where the regression lines do not follow the 45° line and the CCC is
low for all the population AIFs. Thus, the population AIF should be avoided if possible.
This is easier for some cancer types, such as head and neck cancer, compared to other
cancer types because they are more likely to have an artery in the field of view. Since
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the individual AIF is preferred over the population AIF, more research into increasing the
robustness of the individual AIF extraction should be done. To minimize inter-observer
variability and increase the repeatability of the AIF, semi-automatic and automatic AIF
extraction have been proposed by several studies [37, 27]. An extensive study comparing
di↵erent methods for extracting the individual AIF for head and neck cancer should be
conducted to better understand which is the preferred method. This could also lead to
an AIF extraction method that could become the gold standard in DCE-MRI analysis,
making it easier to compare di↵erent studies.

Visual inspection of Figure 30 and 31 also indicate that ve is closest to the 45° line and thus
has the highest CCC. This agrees well with the study by Shukla-Dave et. al. which showed
that the di↵erence between ROI ve values is larger than the di↵erence between the mean
ROI Ktrans values found using the population AIF and the individual AIF [28]. In contrast,
the results from Li et. al. showed that the mean ROI ve deviates the most from the 45°
line [29]. Both Li et. al. and Shukla-Dave et. al. also investigated the correlation between
the pharmacokinetic parameters found using the population AIF and the corresponding
parameters obtained with the individual AIF on a voxel-by-voxel-basis [29, 28]. This could
be done for this study as well, as part of future work, to see if the correlation between the
results from the population AIF and individual AIF changes compared to the mean ROI
analysis.

7.2 Limitations of the Tofts and extended Tofts model

The Tofts models could not be fitted to the enhancement curves for all voxels, suggest-
ing that the models were not valid in those regions. Several assumptions were made to
construct the Tofts models. The models assume that the parameters that describe the
compartments are constant during the acquisition time [6]. In most cases, this is a valid
assumption. However, acute hypoxia is more frequently present in tumours than in normal
tissues. Acute hypoxia can be due to sudden blockage of blood vessels and sometimes lasts
only for a few minutes. Thus, the sudden change in the vasculature in tumours can make
the model fitting di�cult.

The models also assume that the CA distribution in the compartments is homogeneous,
and thus CA di↵usion within the compartments is neglected. This assumption makes
it possible to calculate the tracer concentration by using the linear relationship between
concentration and change in longitudinal relaxation which is expressed by Equation (22)
[39]. This assumption is not valid for tumour tissues that are necrotic [40]. Schimpf
et. al. investigated the validity of the extended Tofts model for partly necrotic tumours,
and they found that the model overestimated the volume fraction of the extravascular
extracellular space [40]. In a voxel-by-voxel analysis, the models will not be invalid for
all voxels, just the voxels with necrosis. Thus, the models can still be used to calculate
the pharmacokinetic parameters for the malignant lymph nodes and regions with invalid
parameter values may suggest necrosis. For the mean ROI analysis, the signal is averaged
across all the voxels in the lymph node. Lymph nodes with a high degree of necrosis may
result in a mean enhancement curve that makes model fitting di�cult and the parameters
may not be valid. Thus, leading to inaccurate conclusions. As part of future work, the
e↵ect of necrosis on pharmacokinetic analysis should be investigated.

The two-compartment exchange model (2CXM) is a generalization of the Tofts models
and can be applied to all tissue types. Sourbron and Buckley identified which tissue types
the Tofts model and the extended Tofts model are valid for[25]. 2CXM produces the same

47



results as the Tofts and extended Tofts model in weakly vascularized tissues where vp = 0.
For intermediate or highly vascularized tissues, the extended Tofts model may be applied
but only in tissues with high perfusion. Tumours are heterogeneous and thus contain
regions with high vascularization and other regions with poor vascularization. The state
of the tissue is usually not known a priori, making it di�cult to say with certainty that
the Tofts models are valid.

For some regimes, e.g. highly vascularized tissues, the Tofts models provide a fitted curve
that closely matches the data, even though the models are not valid under these conditions.
In these cases, it is often a problem of interpretation. Sourbron and Buckley provided an
example for highly vascularized tissues where the Ktrans-value found by the Tofts models
was close to the flow of plasma into the capillary bed, Fp [25]. The expression for the Ktrans

also contains a parameter that represents the permeability of the blood vessel. Thus, the
Ktrans-value provided by the Tofts models for highly vascularized tissue was misinterpreted
to include the permeability. The good fitness of the curves does not indicate that the results
are misinterpreted. This is a significant limitation of the Tofts models.

Immunohistochemistry analysis of the tissue can provide information about the character-
istics of the blood vessels. Such an analysis could have made it possible to determine if the
models were valid and the parameters were interpreted correctly. Bakke et. al. performed
an immunohistochemistry analysis to obtain data on microvessel density and blood vessel
size, in addition to pharmacokinetic parameters from the DCE-MRI analysis [41]. They
showed that the correlation between the pharmacokinetic parameters varied extensively
between tumours with low and high blood flow. Thus, the correlation between the parame-
ters could be used as an indicator of the state of the tissue to avoid immunohistochemistry
analysis. The patients in the study had rectal cancer. It should be confirmed that the
correlation applies to blood flow for head and neck cancer, as well, before it is used to
indicate the state of the tissue.

7.3 Tofts vs extended Tofts model

The CCC comparing median Ktrans
IndAIF, TM and Ktrans

IndAIF, ETM, and median ve, IndAIF, TM

and ve, IndAIF, ETM were 0.99 and 1.00, respectively. This suggests that the Tofts model
and extended Tofts model produce similar results, which can also be observed in Figure
29. Figure 32 also shows that the parametric maps of Ktrans and ve obtained using the
Tofts and extended Tofts models are similar. If the tissue is weakly vascularised, then the
extended Tofts model is reduced to the Tofts model, and it is expected that the two models
produce the same Ktrans and ve values [25]. However, the vp values found by the extended
Tofts model are not close to zero, suggesting that the tissue is not weakly vascularised. If
that is the case, there is a possibility that the parameters will be misinterpreted. Some
of the vp values did also take on unphysical values outside the range from zero to one.
By adding more free parameters to the model, more data points are needed to estimate
the parameters. Therefore, it is more likely that the parameters obtained by the extended
Tofts model converge to unrealistic values due to the shortcomings of the nonlinear least-
squares fitting algorithm, compared to the Tofts model. If the fitting algorithm is not able
to correctly determine the vp, the tissue may still be weakly vascularised.
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7.4 Correlation between both AUCs and pharmacokinetic parameters

The heat maps of the correlation matrices comparing the di↵erent pharmacokinetic pa-
rameters, as well as the AUCs, are shown in Figure 34a and 33a. The Pearson CCs in
Figure 34a have been found using the parameters calculated from the average enhance-
ment curves of each lymph node, while the Pearson CCs in Figure 33a are based on the
median values found for each lymph node. Both figures show similar Pearson CCs for all
of the parameters. As already discussed, the Ktrans, ve and Kep values obtained with the
Tofts model are highly correlated with the corresponding values found by the extended
Tofts model. This was expected because the two models are similar, and the parameters
found by the Tofts model and the corresponding ones that are produced by the extended
Tofts model are supposed to describe the same characteristics of the two-compartment
model.

The Ktrans is also highly correlated with the ve which is shown more clearly in Figure
37. As Ktrans increases, so does the ve values. The Ktrans represents the blood flow into
the EES, and thus also reflects the oxygen supply to the tumour. Gaustad et. al. found
that Ktrans correlates with the hypoxic fraction of the tumour; low Ktrans is associated
with a high hypoxic fraction [42]. The hypoxic fraction refers to the fraction of cells with
low oxygen concentration in the tumour. It has also been shown that tumours with a
high fraction of hypoxic cells also have low ve. This can be explained by noting that
tumours with low ve have a high cell density and oxygen consumption, which leads to low
oxygen tension and a high hypoxic fraction [43]. Since both Ktrans and ve are inversely
proportional to the hypoxic fraction, it is expected that the correlation of Ktrans with ve
is positive. The correlation between Ktrans and ve could also be the result of the two
variables being part of the same model and are thus related through Equation (10). For
example, if the CA concentration curves for the plasma space and EES are approximately
similar then an increase in Ktrans would lead to an increase in ve as seen in Figure 37.

The parameters Kep and A from the Brix model are also correlated with a high positive
Pearson CC of 0.96 and 0.93 for the mean ROI and median values, respectively. Again,
this correlation could occur due to the parameters being related through Equation (20).
However, it is not obvious from Equation (20) that an increase in A would lead to an
increase in Kep, even if the concentration curves stay constant. The Kep represents the flux
of CA into the plasma space from the EES and depends on di↵erent vascular properties,
such as the blood perfusion, the permeability of the blood vessels and the vessel density
[44]. A on the other hand is a scaling factor and does not have an intuitive physiological
meaning. However, A is a↵ected by several physiological properties, e.g. the size of the
EES, the blood vessel permeability and blood perfusion [44]. Hence, both Kep and A
are dependent on some of the same vascular properties which could explain why they are
correlated. To my knowledge, there are no studies that present the correlation between
the Brix parameters.

The most interesting correlation was between Kel from the Brix model and Kep from both
Tofts models. Figure 35 shows that Kel increases with Kep, IndAIF, ETM, which is also true
for Kep, IndAIF, TM. The flux of CA from the EES to the plasma space is represented by
Kep. The elimination rate, Kel represents the rate at which the CA is eliminated from
the plasma space. An increase in Kep would lead to a higher concentration of CA in
the plasma space, and thus the CA can leave the plasma space at a higher rate. To my
knowledge, no studies on the correlation comparing Kel from the Brix model and Kep

from the Tofts models have been conducted. Most studies perform correlation analysis
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to compare pharmacokinetic parameters with prognostic factors instead of comparing the
di↵erent models.

The Tofts models and Brix model have their advantages and disadvantages. The Brix
model does not need an AIF or require the signal to be converted to concentration using
T1-maps, as opposed to the Tofts models. The accuracy of the AIF greatly a↵ects the
accuracy of the pharmacokinetic parameters obtained by the Tofts models. The AIF
can also be obtained using several methods, e.g. population AIF or individual AIF. The
Brix model could be more robust because it is less influenced by AIF variations and their
accuracy [45]. Further, errors in the T1 map leads to additional errors in the concentration
calculations which again leads to errors in the pharmacokinetic parameters [46]. This is
another reason why the Brix model may be more robust compared to the Tofts model.
However, the Brix model does not calculate Ktrans which is thought of as a significant
limitation because Ktrans has been shown to exhibit great prognostic value [10].

The p-values associated with the high Pearson CCs comparing Ktrans with ve, Kep with A
and Kel with Kep from the Tofts models were low. The p-value is the probability that the
current corresponding Pearson CC would have been found if the Pearson CC in reality
was zero [47]. Thus, low p-values are desired because they tell us that the Pearson CCs
are significant results.

An unexpected result was the low correlation between the pharmacokinetic parameters
found by Tofts and the AUCs. Walker-Samuel et. al. studied the relationship between
the AUC60 and the parameters Ktrans, ve and vp by performing simulations of DCE-MRI
data [48]. They showed that the AUC is dependent on all three parameters, but can be
directly correlated to Ktrans or ve under certain conditions. For example, for large Ktrans

and small ve AUC is proportional to ve, while AUC is proportional to Ktrans when Ktrans

is small and ve is larger. This held for all types of AUC, though how large or small Ktrans

and ve had to be depended on the type of AUC. Figure 34 and 33 show low correlation
between the AUC and the parameters Ktrans and ve. One of the reasons there is a low
correlation could be that the conditions for the Ktrans and ve were not fulfilled. Although,
the study by Walker-Samuel et. al. were based on simulations and may not apply to in vivo

DCE-MRI measurements, there is a study that shows a correlation between the AUC60
and Ktrans for abdominal cancer and glioma tumours in the brain [49]. The correlation
between Ktrans and AUCs could be cancer-specific and may not exist for head and neck
squamous cell carcinoma, which was used in our study, though it exists for other cancer
types. Also, the AUC does not have a clear physiological meaning but is influenced by
several physiological factors such as the blood flow, vessel permeability and interstitial
space [38]. Hence, it is not obvious that AUC should have a linear correlation with the
pharmacokinetic parameters.

The AUC60, AUC90 and AUC120 correlate almost identically with the pharmacokinetic
parameters. The AUC60, AUC90 and AUC120 are almost perfectly correlated with a
Pearson CC close to one, which can be observed in the heat maps in Figure 33 and
34. This means that they di↵er by a certain factor, meaning AUC90 or AUC120 can be
obtained by multiplying AUC60 by a certain factor. The Pearson CC is una↵ected by
linear transformations, i.e. the CC does not change if the parameters are multiplied by a
constant and/or a constant is added to the parameter. Thus, the almost perfect correlation
between the AUC60, AUC90 and AUC120 could explain why they exhibit almost identical
correlations with the pharmacokinetic parameters.

The di�culty of relating semi-quantitative parameters, e.g. AUC, directly to underlying
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physiology is one of the main disadvantages of semi-quantitative analysis. The main ad-
vantage, on the other hand, is that it is less complicated and prone to errors [50]. Hence,
the semi-quantitative parameters are often more robust compared to pharmacokinetic
parameters. A semi-quantitative analysis is also less time-consuming because fewer and
simpler numerical calculations are required [50]. Therefore, it would be beneficial to use
semi-quantitative parameters if possible. There are studies where semi-quantitative pa-
rameters have been used to identify cancer and di↵erentiate between benign and malignant
cancer [50]. In addition, semi-quantitative parameters can also be used as a prognostic
factor [51, 52]. However, the pharmacokinetic parameters describe the vasculature of the
tumour better, e.g. hypoxia, and thus could be better suited to be biomarkers used to
individualise treatment.

The models were fitted to the TCC for each voxel in the lesions and then the median values
of the resulting pharmacokinetic parameters were calculated for each lesion. The median
values of the pharmacokinetic parameters were then used to calculate the Pearson CCs
comparing the di↵erent parameters. In addition, the mean TCC for each lymph node ROI
was found and then the models were fitted to the mean TCC for each lymph node. The
Pearson CCs were also calculated using these mean ROI values. The Pearson CCs obtained
using the median and mean ROI values were similar. This is expected because both the
median and mean ROI values represent the vasculature of the whole tumour. A drawback
with such an analysis is that it does not capture the heterogeneity of the lymph nodes
and valuable information could be lost [53]. A voxel-by-voxel analysis, on the other hand,
can capture the heterogeneity of the lymph node. The parameters most likely correlate
on the voxel level as well because several of the parametric maps in Figure 32 show the
same pattern. The Pearson correlation between parameters obtained with a voxel-by-voxel
analysis should be calculated as part of further work to see if the correlations still hold. It
is possible that the correlation will be di↵erent for di↵erent patients and could give further
information about each individual.

7.5 Clinical aspects

As discussed previously, the Tofts models are not valid for necrotic tumour tissues. The
presence of necrosis is associated with poorer overall survival and recurrence-free survival
for cancer patients which was supported by the study conducted by Ling et. al. [54]. The
fraction of voxels with invalid parameters, e.g. volume fractions less than zero and larger
than one, may be used as a measure of necrosis. This should be investigated. In future
work, the correlation between patient outcome and the fraction of invalid voxel parameters
should also be investigated to see if the fraction of voxels with invalid parameters can be
used as a prognostic factor. Thus, turning the weakness of the model into a strength.

Many studies evaluate the prognostic value of the pharmacokinetic parameters that are ob-
tained with DCE-MRI analysis. Tumours are biologically heterogeneous and imaging the
vascular heterogeneity using DCE-MRI can be a useful tool to predict patient outcomes
[55, 56]. The heterogeneity may be better represented by the distribution of pharmacoki-
netic parameters than by the corresponding mean and median values [57]. Shukla-Dave
et. al. showed that the skewness of Ktrans correlated with both the progression-free sur-
vival and overall survival and thus may play an important role in deciding the patient’s
prognosis [57]. Therefore, as part of future work, the correlation between the distribution
of the pharmacokinetic parameters and the patient outcome should be investigated to
study the prognostic value of the parameters for head and neck cancer.
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Pharmacokinetic parameters can also have a predictive value and be used as an imag-
ing biomarker for tumour treatment response [39]. As an example, Ktrans from the Tofts
models correlates with angiogenic activity and tumour aggressiveness, and hence Ktrans

has been shown to predict response to neo-adjuvant treatments, e.g. chemotherapy [58].
Another example is from the study by Halle et. al. which showed that the parameter, A,
from the Brix model is associated with tumour aggressiveness [59]. Tumours with low A
values appeared to be more aggressive. In radiotherapy, hypoxic tumours are di�cult to
treat because they are more resistant to radiation. Pharmacokinetic parameters describe
the vasculature of the tumour and can potentially provide information about the hypoxic
state of the tumour. This was confirmed by Gaustad et. al. who found that Ktrans re-
flected hypoxia in tumours [42]. Therefore, the pharmacokinetic parameters, especially
Ktrans, have the potential of being used as predictive biomarkers in radiotherapy. Predic-
tive biomarkers can both be used as a tool for deciding which treatment modality is the
better choice, e.g. tumours with poor perfusion and hypoxia are generally radioresistant
and should thus be surgically removed instead. It is also possible to use the predictive
biomarkers to determine the individual dose used in radiotherapy [60].

Tumours are heterogeneous with regions of low and high radiosensitivity. A high dose
should be delivered to regions with low radiosensitivity, e.g. hypoxic regions, in tumours
to ensure cell killing. Today’s technology in radiotherapy facilitates heterogeneous dose
distribution, also called dose-painting. Thus, it is possible to deliver a dose distribution
that complements the heterogeneity of the tumour if the heterogeneity is quantified. Pre-
dictive imaging biomarkers can be used to quantify tumour heterogeneity. As an example,
Ktrans is thought to reflect hypoxia and can create a map of hypoxic regions which can
then be used to determine the dose distribution. However, there are several challenges
associated with studying the application of biomarkers to dose-painting, as described by
Gurney-Champion et. al. [60]. First, it is challenging to know which voxels did or did
not respond to radiation and thus relate the parameters associated with the voxels to the
outcome. Secondly, some regions in the tumour may get a lower dose which makes it
di�cult to draw conclusions from the dose-response relations. Therefore, the trial design
needs to be planned carefully.

O’Connor et. al. suggest two translational gaps that need to be closed before imaging
biomarkers can be used in the clinics [61]. The biomarkers must first show value in both
experimental models and patients. Currently, most biomarkers have only been evaluated
by single-centre studies with a limited number of patients and thus the first gap is still
not completely closed for most biomarkers. Single-centre studies make it di�cult for
the parameters to demonstrate su�cient performance [60]. Further, they tend to tweak
the analysis method, e.g. tweaking the post-processing method and the definition of the
region of interest, in such studies which results in overestimation of the performance of the
parameters. The second gap is closed when the biomarkers are fully implemented in the
treatment of patients. Multi-centre studies with large statistical power are required before
integrating biomarkers in patient care. Such studies are extensive and time-consuming,
and thus the parameter of interest should be carefully selected. The O’Connor et. al. also
described three types of studies that need to be performed while closing both translational
gaps: technical validation, biological and clinical validation and cost-e↵ectiveness [61].
Technical validation refers to studying whether the biomarker can be measured precisely
and accurately, while biological and clinical validation refers to whether the biomarker can
measure a useful biological feature or predict an outcome. It is also important to study
the cost-e↵ectiveness to show that the use of an imaging biomarker is beneficial in terms
of health economics.
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8 Conclusion

The results presented in this thesis show that although the population AIF is robust, it
should not be used instead of individual AIF because the parameters calculated using the
Tofts models with the population AIF di↵er substantially from the corresponding values
calculated using the individual AIF. The models could not be fitted to the enhancement
curves for all voxels due to the models’ limitations. The Tofts models may not be valid
if the tumour is necrotic and thus failed fitting could be a measure of necrosis. Further,
the Tofts models are both valid for weakly vascularized tissue, though the extended Tofts
model is also valid for tissues with high perfusion. The state of the tissue is usually not
known a priori and thus it can be di�cult to know with certainty that the Tofts models are
valid and lead to misinterpretation of the parameters. The Tofts and extended Tofts model
give similar values for Ktrans and ve. The vp from the extended Tofts model are not close
to zero, suggesting that the tissue is not weakly vascularized. Therefore, the parameters
from the Tofts model may be misinterpreted. It could also be that the nonlinear least-
squares fitting algorithm is not able to correctly determine the vp because the model has
too many free variables. Immunohistochemistry analysis of resected tumour samples could
shed some light on tissue biology and help determine if the tissue is weakly vascularised.

The Pearson CCs comparing Ktrans with ve from the Tofts model or extended Tofts model,
A with Kep from the Brix model and Kep from the Tofts models with Kel from the Brix
model were high. In contrast, the correlations between the pharmacokinetic parameters
found with the Tofts models and the AUCs were low for all pharmacokinetic parameters
which were not supported by other studies. However, it is not obvious that the AUCs are
supposed to linearly correlate with the pharmacokinetic parameters because the AUCs do
not have a clear physiological meaning. The Pearson CCs were based on the mean ROI
values or the median values over the voxels in the lymph nodes. The same correlation
analysis should later be performed voxel-by-voxel to investigate if the correlations still
hold.

Further work should also consist of investigating the correlation between necrosis and
invalid pharmacokinetic parameters. In addition, the prognostic value of the pharma-
cokinetic parameters should be studied when the long-term patient outcome is available.
Though it requires a more extensive study, the predictive values of the pharmacokinetic
parameters should also be investigated. The predictive biomarkers could be used for strat-
ification and more advanced dose escalation which would individualise treatment and may
lead to better survival for head and neck cancer patients.

53



References

[1] Global Burden of Disease 2019 Cancer Collaboration. “Cancer Incidence, Mortality,
Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years
for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global
Burden of Disease Study 2019”. In: JAMA oncology 8.3 (2022), pp. 420–444. doi:
10.1001/jamaoncol.2021.6987.

[2] Hesham Elhalawani et al. “Dynamic contrast-enhanced magnetic resonance imaging
for head and neck cancers”. In: Scientific Data 5.1 (2018), p. 180008. doi: 10.1038/
sdata.2018.8.

[3] Yaron Gordon et al. “Dynamic contrast-enhanced magnetic resonance imaging: fun-
damentals and application to the evaluation of the peripheral perfusion”. In: Cardio-
vascular diagnosis and therapy 4.2 (2014), pp. 147–164. doi: 10.3978/j.issn.2223-
3652.2014.03.01.

[4] Douglas Hanahan and Robert A. Weinberg. “Hallmarks of Cancer: The Next Gen-
eration”. In: Cell 144.5 (2011), pp. 646–674. doi: 10.1016/j.cell.2011.02.013.

[5] Richard A. Popple, Roger Ove, and Sui Shen. “Tumor control probability for selective
boosting of hypoxic subvolumes, including the e↵ect of reoxygenation”. In: Interna-
tional Journal of Radiation Oncology - Biology - Physics 54.3 (2002), pp. 921–927.
doi: 10.1016/S0360-3016(02)03007-9.

[6] Paul S. Tofts. Modeling Tracer Kinetics in Dynamic GdlDTPA MR Imaging. 1997.
doi: 10.1002/jmri.1880070113.

[7] Gunnar Brix G et al. “Pharmacokinetic parameters in CNS Gd-DTPA enhanced
MR imaging”. In: Journal of computed assisted tomography 15.4 (1991), pp. 621–
628. doi: 10.1097/00004728-199107000-00018.

[8] Harrison Kim. “Modification of population based arterial input function to incor-
porate individual variation”. In: Magnetic resonance imaging 45 (2018), pp. 44–71.
doi: 10.1016/j.mri.2017.09.010.

[9] Geo↵ J.M. Parker et al. “Experimentally-derived functional form for a population-
averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced
MRI”. In: Magnetic Resonance in Medicine 56 (5 2006), pp. 993–1000. doi: 10.
1002/mrm.21066.

[10] Toru Chikui et al. “The Principal of Dynamic Contrast Enhanced MRI, the Method
of Pharmacokinetic Analysis, and Its Application in the Head and Neck Region”.
In: International Journal of Dentistry (2012). doi: 10.1155/2012/480659.

[11] Tanja Gaa et al. “Comparison of perfusion models for quantitative T1 weighted
DCE-MRI of rectal cancer”. In: Scientific Reports 7.1 (2017), p. 12036. doi: 10.
1038/s41598-017-12194-w.

[12] Alexander R. Haug et al. “A Comparative Study of Two-Compartment Exchange
Models for Dynamic Contrast-Enhanced MRI in Characterizing Uterine Cervical
Carcinoma”. In: Contrast Media & Molecular Imaging 2019 (2019), p. 3168416. doi:
10.1155/2019/3168416.

[13] Geo↵rey M Cooper. “Cancer”. In: The Cell: A Molecular Approach. Sinauer Asso-
ciated, 2000. Chap. 15.

[14] Freddie Bray et al. “Global cancer statistics 2018: GLOBOCAN estimates of inci-
dence and mortality worldwide for 36 cancers in 185 countries”. In: CA: A Cancer

Journal for Clinicians 68.6 (2018), pp. 394–424. doi: 10.3322/caac.21492.

54

https://doi.org/10.1001/jamaoncol.2021.6987
https://doi.org/10.1038/sdata.2018.8
https://doi.org/10.1038/sdata.2018.8
https://doi.org/10.3978/j.issn.2223-3652.2014.03.01
https://doi.org/10.3978/j.issn.2223-3652.2014.03.01
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/S0360-3016(02)03007-9
https://doi.org/10.1002/jmri.1880070113
https://doi.org/10.1097/00004728-199107000-00018
https://doi.org/10.1016/j.mri.2017.09.010
https://doi.org/10.1002/mrm.21066
https://doi.org/10.1002/mrm.21066
https://doi.org/10.1155/2012/480659
https://doi.org/10.1038/s41598-017-12194-w
https://doi.org/10.1038/s41598-017-12194-w
https://doi.org/10.1155/2019/3168416
https://doi.org/10.3322/caac.21492


[15] Laura Q.M. Chow. “Head and Neck Cancer”. In: New England Journal of Medicine

382.1 (2020), pp. 60–72. doi: 10.1056/NEJMra1715715.

[16] K. Kian Ang et al. “Human Papillomavirus and Survival of Patients with Oropha-
ryngeal Cancer”. In: New England Journal of Medicine 363.1 (2010), pp. 24–35. doi:
10.1056/NEJMoa0912217.

[17] Carole Fakhry et al. “Improved Survival of Patients With Human Papillomavirus–Positive
Head and Neck Squamous Cell Carcinoma in a Prospective Clinical Trial”. In: Jour-
nal of the National Cancer Institute 100.4 (2008), 261–269. doi: 10.1093/jnci/
djn011.

[18] Dietmar W. Siemann. “The unique characteristics of tumor vasculature and preclin-
ical evidence for its selective disruption by Tumor-Vascular Disrupting Agents”. In:
Cancer Treatment Reviews 37.1 (2011), pp. 63–74. doi: 10.1016/j.ctrv.2010.05.
001.

[19] August Krogh. “The supply of oxygen to the tissues and the regulation of the cap-
illary circulation”. In: The Journal of Physiology 52.6 (1919), pp. 457–474. doi:
10.1113/jphysiol.1919.sp001844.

[20] Kaitlin Graham and Evan Unger. “Overcoming tumor hypoxia as a barrier to radio-
therapy, chemotherapy and immunotherapy in cancer treatment”. In: International
journal of nanomedicine 13 (2018), pp. 6049–6058. doi: 10.2147/IJN.S140462.

[21] Baris Türkbey et al. “The role of dynamic contrast-enhanced MRI in cancer diagno-
sis and treatment”. In: Diagnostic and interventional radiology 16.3 (), pp. 186–192.
doi: 10.4261/1305-3825.DIR.2537-08.1.

[22] Westbrook Catherine and Talbot John. MRI in Practice. Vol. Fifth edition. Wiley-
Blackwell, 2019. isbn: 9781119391968. url: https://search.ebscohost.com/
login.aspx?direct=true&db=nlebk&AN=1863403&site=ehost-live.

[23] Yu-Dong Xiao et al. “MRI contrast agents: Classification and application”. In: Inter-
national Journal of Molecular Medicine 38.5 (2016), pp. 1319–1326. doi: 10.3892/
ijmm.2016.2744.

[24] Doenja M.J. Lambregts et al. “Magnetic Resonance Imaging and Other Imaging
Modalities in Diagnostic and Tumor Response Evaluation”. In: Seminars in Radia-

tion Oncology 26.3 (2016), pp. 193–198. doi: 10.1016/j.semradonc.2016.02.001.

[25] Steven P. Sourbron and David L. Buckley. “On the scope and interpretation of
the Tofts models for DCE-MRI”. In: Magnetic Resonance in Medicine 66.3 (2011),
pp. 735–745. doi: 10.1002/mrm.22861.

[26] Wen Li, Mark Griswold, and Xin Yu. “Rapid T1 mapping of mouse myocardium
with saturation recovery look-locker method”. In: Magnetic Resonance in Medicine

64.5 (2010), pp. 1296–1303. doi: 10.1002/mrm.22544.

[27] Jeremy Chen, Jianhua Yao, and David Thomasson. “Automatic determination of
arterial input function for dynamic contrast enhanced MRI in tumor assessment”.
In: Medical Image Computing and Computer-Assisted Intervention 11.Pt 1 (2008),
pp. 594–601. doi: 10.1007/978-3-540-85988-8_71.

[28] Amita Shukla-Dave et al. “Average arterial input function for quantitative dynamic
contrast enhanced magnetic resonance imaging of neck nodal metastases”. In: BMC

medical physics 9 (May 2009), p. 4. doi: 10.1186/1756-6649-9-4.

[29] Xia Li et al. “A novel AIF tracking method and comparison of DCE-MRI parameters
using individual and population-based AIFs in human breast cancer”. In: Physics
in Medicine and Biology 56 (17 Sept. 2011), pp. 5753–5769. doi: 10.1088/0031-
9155/56/17/018.

55

https://doi.org/10.1056/NEJMra1715715
https://doi.org/10.1056/NEJMoa0912217
https://doi.org/10.1093/jnci/djn011
https://doi.org/10.1093/jnci/djn011
https://doi.org/10.1016/j.ctrv.2010.05.001
https://doi.org/10.1016/j.ctrv.2010.05.001
https://doi.org/10.1113/jphysiol.1919.sp001844
https://doi.org/10.2147/IJN.S140462
https://doi.org/10.4261/1305-3825.DIR.2537-08.1
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1863403&site=ehost-live
https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1863403&site=ehost-live
https://doi.org/10.3892/ijmm.2016.2744
https://doi.org/10.3892/ijmm.2016.2744
https://doi.org/10.1016/j.semradonc.2016.02.001
https://doi.org/10.1002/mrm.22861
https://doi.org/10.1002/mrm.22544
https://doi.org/10.1007/978-3-540-85988-8_71
https://doi.org/10.1186/1756-6649-9-4
https://doi.org/10.1088/0031-9155/56/17/018
https://doi.org/10.1088/0031-9155/56/17/018


[30] Edward Ashton, Teresa McShane, and Je↵rey Evelhoch. “Inter-operator variability
in perfusion assessment of tumors in MRI using automated AIF detection”. In: Med-

ical Image Computing and Computer-Assisted Intervention 8.Pt 1 (2005), pp. 451–
458. doi: 10.1007/11566465_56.PMID:16685877.

[31] Jakub Nalepa et al. “Fully-automated deep learning-powered system for DCE-MRI
analysis of brain tumors”. In: Artificial Intelligence in Medicine 102 (2020), p. 101769.
issn: 0933-3657. doi: 10.1016/j.artmed.2019.101769.

[32] Thomas Fritz-Hansen et al. “Measurement of the arterial concentration of Gd-DTPA
using MRI: a step toward quantitative perfusion imaging”. In: Magnetic resonance

in medicine 36.2 (1996), pp. 225–231. doi: 10.1002/mrm.1910360209.

[33] MR Technology Information Portal. Clariscan. url: https://www.mr-tip.com/
serv1.php?type=db1\&dbs=Clariscan\%26trade\%3B.

[34] Robert L. Greenman et al. “Double inversion black-blood fast spin-echo imaging of
the human heart: A comparison between 1.5T and 3.0T”. In: Journal of Magnetic

Resonance Imaging 17.6 (2003), pp. 648–655. doi: 10.1002/jmri.10316.

[35] Hidenobu Matsuzaki et al. “Diagnostic value of dynamic contrast-enhanced MRI
for submucosal palatal tumors”. In: European Journal of Radiology 81.11 (2012),
pp. 3306–3312. doi: 10.1016/j.ejrad.2012.04.009.

[36] Lawrence I-Kuei Lin. “A concordance correlation coe�cient to evaluate reproducibil-
ity”. In: International Biometric Society 45.1 (1989), pp. 255–268. doi: 10.2307/
2532051.

[37] Thomas Koopman et al. “Repeatability of arterial input functions and kinetic pa-
rameters in muscle obtained by dynamic contrast enhanced MR imaging of the head
and neck”. In: Magnetic Resonance Imaging 68 (2020), pp. 1–8. doi: 10.1016/j.
mri.2020.01.010.

[38] Je↵rey L. Evelhoch. “Key factors in the acquisition of contrast kinetic data for
oncology”. In: Journal of Magnetic Resonance Imaging 10.3 (1999), pp. 254–259.
doi: 10.1002/(SICI)1522-2586(199909)10:3<254::AID-JMRI5>3.0.CO;2-9.

[39] Chun-Hao Wang et al. “Review of treatment assessment using DCE-MRI in breast
cancer radiation therapy”. In: World journal of methodology 4.2 (2014), pp. 46–58.
doi: 10.5662/wjm.v4.i2.46.

[40] Olga Schimpf, Stefan Hindel, and Lutz Lüdemann. “Assessment of micronecrotic
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