
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Fredrik Almås

Bottom-detection in Doppler Velocity
Logs using Recurrent Neural
Networks on an embedded platform

Master’s thesis in Engineering Cybernetics
Supervisor: Jo Arve Alfredsen
Co-supervisor: Waseem Hassan
June 2022M

as
te

r’s
 th

es
is

Fredrik Almås

Bottom-detection in Doppler Velocity
Logs using Recurrent Neural Networks
on an embedded platform

Master’s thesis in Engineering Cybernetics
Supervisor: Jo Arve Alfredsen
Co-supervisor: Waseem Hassan
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Abstract

Increased use of autonomous underwater vehicles (AUVs) creates a growing demand
for underwater tracking solutions. Hence the importance of providing robust and
accurate long-term subsea navigation systems has never been greater. One of the
most common navigation methods employed by underwater vehicles consists of es-
timating position from Doppler Velocity Log (DVL) and inertial navigation (IN)
system data. The DVL sonar measures the relative velocity between an instrument
and the bottom of a body of water by estimating the Doppler shift of multiple
acoustic beams that point in different directions. In order for DVLs to measure the
velocity accurately it requires advances bottom tracking technology. Current bot-
tom tracking algorithms are heuristic algorithm that depend on history, previously
known features and requires time-consuming tuning for each instrument.

A recurrent neural network (RNN) approach to the bottom tracking task was pro-
posed. Seven different models were designed, tuned, optimised and tested on amp-
litude time series data recorded by Nortek on various Nortek DVL instruments. The
models performed binary classification to find time samples corresponding to bot-
tom echoes. The trained RNN models display competitive results as they correctly
detect bottom samples with an average accuracy of 98.22%, across all models. The
best performing model achieved an accuracy of 98.78%, tested on 247 352 unseen
examples. These models successfully detect bottom echoes in random sequences of
samples stemming from seven different Nortek DVLs without tuning for any specific
instrument.

Additionally an improved metric for interval detection was proposed. Due to only
small parts of each signal corresponding to the bottom echo a lot of imbalance was
present in the data. The overlap metric is proposed as a solution, as it only considers
how much of the detected bottom echo overlaps with the true labels. The average
overlap across all models was 82.66% with a maximum of 87.74%.

All seven RNN models were converted into tensorflow lite (tflite) models, and quant-
ised with float 16 conversion, resulting in a total of 14 tflite models. These models
were shown to have similar detection results to the original models, with some fall in
performance of the two best performing models. The tflite models were transferred
to a DIGI-CC8MNDVK board and tested for inference times and memory footprints.
They were tested on 5000 examples from the test dataset, using CPU computations
with the XNNPACK delegate. All models performed inference faster than the max-
imal ping frequency for Nortek instruments of 8 Hz. The fastest model used 5.968ms
per example and the slowest used 51.45ms. Inference times were invariant to the
float 16 quantisation and largely depended on RNN model complexity.

Sammendrag

Økt bruk av autonome undervannsfarkoster (Autonomous Underwater Vehicle, AUV)
skaper en økende etterspørsel etter systemer for undervannsnavigasjon. Derfor har
viktigheten av å tilby robuste og nøyaktige langsiktige systemer for undervannsnav-
igasjon aldri vært større. En av de vanligste navigasjonsmetodene som brukes av
undervannsfarkoster best̊ar av å estimere posisjon ved bruk av en Doppler Velo-
city Log (DVL) kombinert med treghetsnavigasjon (Inertial Navigation, IN). DVL-
ekkoloddet måler den relative hastigheten mellom instrumentet og bunnen av en
vannmasse ved å estimere Dopplerskiftet mellom flere akustiske str̊aler som peker
i forskjellige retninger. For at DVL-er skal måle hastigheten nøyaktig, krever det
avansert bunndeteksjon. Vanlige bunndeteksjonsalgoritmer er heuristiske algoritmer
som avhenger av historikk, kjente terskelverdier og krever tidkrevende kalibrering
for hvert instrument.

En tilnærming som bruker tilbakevendende nevrale nettverk (Recurrent Neural Net-
works, RNN) til bunndeteksjonsoppgaven ble foresl̊att. Syv forskjellige modeller
ble designet, optimert og testet p̊a tidsseriedata av akustiske amplitudesignal, tatt
opp med diverse Nortek DVL-instrumenter. Modellene utførte binær klassifisering
for å finne bunnekko i akustiske signaler. De trente RNN-modellene viser konkur-
ransedyktige resultater, ettersom de oppdager bunnekko med en gjennomsnittlig
nøyaktighet p̊a 98, 22%, p̊a tvers av alle modeller. Modellen som presterte best
oppn̊adde en nøyaktighet p̊a 98, 78%, testet p̊a 247 352 usette eksempler. RNN
modellene oppdaget bunnekko i tilfeldige sekvenser av signaler som stammer fra syv
forskjellige Nortek DVL-er uten tuning for et spesifikt instrument.

I tillegg ble det foresl̊att et forbedret m̊altall for intervalldeteksjon. P̊a grunn av at
kun små deler av hvert signal tilsvarer bunnekkoet var det mye ubalanse i dataene.
Overlapp er foresl̊att som en løsning. Overlapp vurderer kun hvor mye av det detek-
terte bunnekkoet som overlapper med det sanne ekkoet. Gjennomsnittlig overlapp
p̊a tvers av alle modeller var 82, 66% med et maksimum p̊a 87, 74%.

Alle de syv RNN-modellene ble konvertert til tensorflow lite (tflite)-modeller, og
kvantisert med float 16-konvertering, noe som resulterte i totalt 14 tflite-modeller.
Det ble vist at disse modellene hadde tilsvarende deteksjonsresultater som de ori-
ginale modellene, med noe fall i ytelsen til de to modellene som i utgangspunk-
tet hadde best ytelse. Tflite-modellene ble overført til et DIGI-CC8MNDVK-kort
og testet for deteksjonstid og minneavtrykk. De ble testet p̊a 5000 eksempler fra
testdatasettet, ved å bruke CPU-beregninger med XNNPACK-delegatet. Alle mod-
ellene utførte deteksjon raskere enn den maksimale ping-frekvensen for Norteks in-
strumenter, p̊a 8 Hz. Den raskeste modellen brukte 5, 968ms per eksempel og den
tregeste brukte 51, 45ms. Deteksjonstidene var invariante for float 16-kvantiseringen
og kom i stor grad an p̊a RNN-modellens kompleksitet.

Preface

This master thesis was conducted at the Norwegian University of Science and Tech-
nology (NTNU) and submitted to the Department of Engineering Cybernetics in the
spring of 2022. An external company, Nortek AS, provided the project description
and necessary data and guidance throughout the process. Nortek specialize in under-
water acoustic instruments, applying the Doppler principle to measure underwater
properties and provide sensor data for use in subsea navigation.

Throughout the research, implementation and writing of this thesis I have received
massive assistance from my advisors at Nortek. I would like to thank Waseem
Hassan and Audun Ramstad. They have provided necessary data, external tools,
introductory domain knowledge and ideas, in addition to thoroughly answering any
questions at short notice, even on weekends and during holidays. I am especially
grateful to Waseem for always being available to help. I also would like to thank
my supervisor at NTNU, Jo Arve Alfredsen for help and guidance with access to
NTNU tools used for the experiments.

i

Contents

Preface i

List of Figures iv

List of Tables v

1 Introduction 1
1.1 Motivation . 1
1.2 Literature review . 2

1.2.1 Bottom detection algorithms 2
1.2.2 Deep Learning for subsea navigation 3
1.2.3 Time series classification with recurrent neural nets 3

1.3 Research objectives . 3
1.4 Outline . 4

2 Theory 5
2.1 Subsea Navigation . 5

2.1.1 LBL, SBL and USBL acoustic positioning systems 5
2.1.2 Inertial Navigation systems 6

2.2 Doppler Velocity Log . 7
2.2.1 Norteks DVL bottom-tracking 8

2.3 Deep Learning . 8
2.3.1 Learning paradigms . 9

2.4 Neural network fundamentals . 11
2.5 Recurrent Neural Networks . 13
2.6 Embedded Machine Learning . 14

3 Recurrent Neural Networks for bottom detection 15
3.1 Problem description . 15
3.2 Data . 18

3.2.1 Data pre-pocessing . 20
3.3 Evaluation Matrix . 21
3.4 Models . 23

3.4.1 Simple RNN . 24
3.4.2 GRU . 24
3.4.3 Tuning and optimisation . 25

3.5 Inference on embedded device . 26
3.6 Implementation . 27

ii

4 Results and Discussion 28
4.1 RNN bottom-detection . 28

4.1.1 Quantitative analysis . 28
4.1.2 Qualitative analysis . 29
4.1.3 Tflite models . 30

4.2 Inference on CC8MNDVK . 31

5 Conclusion and further work 32
5.1 Conclusions . 32
5.2 Further work . 33

5.2.1 Inference on embedded GPU 33
5.2.2 Experiments with Hyperbolic Tangent activation 33
5.2.3 Neural networks with overlap loss function 34
5.2.4 Improving regularisation . 34

Bibliography 35

A Final model architectures 40

B Loss plots 44

C Quantitative results 48

D Qualitative results 52

E Inference on DIGI board 60

iii

List of Figures

2.1.1 Overview of IN system using sensor-fusion 7
2.3.1 The main learning paradigms of ML 11
2.4.1 Structure of a simple artificial neuron 12
2.4.2 Neural network with multiple hidden layers 13
2.5.1 Structures of DNN and RNN . 14

3.1.1 Example of a normalized ping with tracked label 16
3.1.2 Example of an input ping . 17
3.1.3 Example of a labelled ping . 17
3.2.1 Example of a labelled ping without bottom echo 19
3.2.2 Example ping with bottom tracking and binary label 21
3.3.1 Example ping showing overlap interval 23

A.0.1 Architecture of simple RNN model 1 40
A.0.2 Architecture of simple RNN model 2 41
A.0.3 Architecture of simple RNN model 3 41
A.0.4 Architecture of GRU model 1 . 42
A.0.5 Architecture of GRU model 2 . 42
A.0.6 Architecture of GRU model 3 . 43
A.0.7 Architecture of GRU model 4 . 43

B.0.1 Loss plot from training simple RNN model 1 44
B.0.2 Loss plot from training simple RNN model 2 45
B.0.3 Loss plot from training simple RNN model 3 45
B.0.4 Loss plot from training GRU model 1 46
B.0.5 Loss plot from training GRU model 2 46
B.0.6 Loss plot from training GRU model 3 47
B.0.7 Loss plot from training GRU model 4 47

D.0.1 Sample pings for qualitative analysis of simple RNN model 1 52
D.0.2 Sample pings for qualitative analysis of simple RNN model 2 53
D.0.3 Sample pings for qualitative analysis of simple RNN model 3 54
D.0.4 Sample pings for qualitative analysis of GRU model 1 55
D.0.5 Sample pings for qualitative analysis of GRU model 2 56
D.0.6 Sample pings for qualitative analysis of GRU model 3 57
D.0.7 Sample pings for qualitative analysis of GRU model 4 58
D.0.8 Input of pings for qualitative analysis 59

iv

List of Tables

3.2.1 Technical specifications of instruments for data collection 18
3.3.1 Evaluation matrix for binary bottom detection 22
3.4.1 Tuning scheme and final parameters for simple RNN based models . . 26
3.4.2 Tuning scheme and final parameters for GRU based models 26

C.0.1 Quantitative results for simple RNN model 1 48
C.0.2 Quantitative results for simple RNN model 2 49
C.0.3 Quantitative results for simple RNN model 3 49
C.0.4 Quantitative results for GRU model 1 50
C.0.5 Quantitative results for GRU model 2 50
C.0.6 Quantitative results for GRU model 3 51
C.0.7 Quantitative results for GRU model 4 51

E.0.1 Inference times on DIGI-CC8MNDVK board 60
E.0.2 Approximated memory footprints on DIGI-CC8MNDVK board 61

v

Abbreviations

Adam - Adaptive moment estimation

AI - Artificial Intelligence

ANN - Artificial Neural Network

AP - Acoustic Positioning

AUV - Autonomous Underwater Vehicle

BA - Binary Accuracy

BCL - Binary Crossentropy Loss

DL - Deep Learning

DNN - Deep Neural Network

DR - Dead Reckoning

DVL - Doppler Velocity Log

ES - Early Stopping

FC - Fully Connected

GPS - Global Positioning System

GPU - Graphics Processing Unit

IN - Inertial Navigation

LBL - Long Baseline

ML - Machine Learning

MSE - Mean Squared Error

NPU - Neural Processing Unit

ReLU - Rectified Linear Unit

RL - Reinforcement Learning

RNN - Recurrent Neural Network

vi

SBL - Short Baseline

SDK - Software Development Toolkit

SL - Supervised Learning

SNR - Signal to Noise Ratio

Tanh - Hyperbolic Tangent

Tflite - Tensorflow lite

UL - Unsupervised Learning

USBL - Ultrashort Baseline

VM - Virtual Machine

vii

Chapter 1

Introduction

In recent years AUVs have seen an increase in popularity. As such the demand
of providing accurate positional estimates underwater has increased. The DVL is
commonly used as a velocity-sensor in this context [1]. DVLs are highly dependent
on their bottom tracking to provide accurate velocity measurements. This thesis
aims to provide recurrent neural networks for robust sea bottom-detection in signals
stemming from a Nortek DVL1000-4000 m., DVL1000-300 m., DVL500-6000 m.,
DVL500-300m., Speed Log, Compact500, and DVL333. A reccurent neural network
model that successfully performs bottom-detection on various instruments will avoid
time-consuming work of tuning new instruments, while possibly providing increased
detection in signals that are ignored in current algorithms. The sequential nature of
bottom tracking makes recurrent networks highly relevant. The models will function
independently of external measurements, and only look at short sequences of acoustic
data. In addition these models could run on embedded devices taken underwater.
This possibility of running on-device inference has the potential to result in reduced
latency, reduced energy costs, as well as increased reliability and security.

1.1 Motivation

The demand for accurate, reliable, and long-term subsea navigation are ever increas-
ing. Use of marine environments for agriculture, energy and harvesting of resources
all require tools that depend on accurate navigation in areas where the ordinary
global positioning system (GPS) cannot be used. A common solution to determ-
ine the position of an underwater vehicle below the surface is acoustic positioning
(AP) or inertial navigation (IN) systems. However to enable individual operation
of subsea vehicles modeling of the environment and necessary sensor measurements
are required. One of the tools used for velocity measurements underwater is the
DVL. DVLs heavily rely on accurate bottom tracking algorithms in order to provide
reliable measurements. This is performed using complex heuristic algorithms which
require time-consuming tuning for each DVL instrument. Shifting to a neural net-
work assisted bottom detection model enables automatic feature-extraction to ob-
serve patterns and relations, currently not regarded in the heuristic algorithm. Ad-

1

ditionally a method that avoids tuning of parameters will reduce the workload and
provide generic performance over a set of different instruments. Such models could
also run on GPUs or NPUs on underwater appliances to provide efficient detections
with low latency and low energy costs.

1.2 Literature review

Existing bottom-detection solutions were identified to observe common practice in
this research field. In addition modern attempts on using DL within the field of
subsea navigation was explored. As the models presented are recurrent neural net-
works, an investigation into general time series classification (TSC) with RNNs was
conducted.

1.2.1 Bottom detection algorithms

Skatvedt [2] performed bottom tracking on DVL signals by using neural networks
for binary classification and regression. Skatvedt proposes two models, a one-
dimensional convolutional neural network and a fully connected neural network.
Both models were trained for both tasks, i.e. binary classification and regression.
The bottom tracking was performed in conjunction with Nortek, on Nortek DVL
data. On test data these models achieved a 98.03% and 99.35% detection rate
respectively.

Nortek DVLs obtain state-of-the-art velocity measurements, by utilizing an industry
developed bottom tracking algorithm. In 2016 Hegrenæs et.al. [3] presented trial
results obtained by running tests using the Kongsberg Maritime AUV, HUGIN with
Norteks DVL 500 kHz. However the bottom tracking algorithm used is referenced
to unpublished work.

Taudien [4] proposed a bottom detection algorithm related to the bottom tracking
technology used by Nortek. This is technology based upon correlation and covari-
ance coefficients. These methods require transmitted signals consisting of repeated
code units with specified bandwidth. In addition a hybrid algorithm was presented,
composed of bottom detection using the covariance and correlation coefficients, com-
bined with an adaptive narrowband filter to maximize signal to noise ratio (SNR).
The detection rate of the hybrid algorithm was obtained using a 614 kHz Pathfinder
DVL, detecting bottom echoes with a 90% detection rate at about 155 m. alti-
tude, which additionally was a 74% increase in altitude compared to a conventional
bottom-mode algorithm on the same instrument [4]. Taudien also provided a sum-
mary of previously published boundary detection technologies. He covers filtering
following peak-detection [5], separate optimisation of matched filter and transmit
waveform [6], beamforming and amplitude-and interferometric-detection in mult-
ibeam sonar using multiple subarrays [7], as well as logarithmic power detection
[8].

2

1.2.2 Deep Learning for subsea navigation

Machine Learning (ML) is a familiar concept within the research field of subsea nav-
igation. The company WaterLinked offers a DVL that utilizes Artificial Intelligence
(AI) technology to estimate velocity directly [9]. Neural networks have also been
applied to provide outlier detection [10], and on forecasting velocity at time-steps
to ensure reliable velocity predictions for short periods in cases of DVL malfunc-
tion [11]. Additionally neural networks have been proposed to provide assistance in
sensor-fusion [12]. Furthermore [13] proposed a modified fully convolutional neural
net have as a fault-detection method in multi-source navigation systems.

1.2.3 Time series classification with recurrent neural nets

RNNs have seen some use in classification of time series data. Smirnov et.al. [14]
experimented with 10 RNNs in the UCR Time Series Classification Archive [15],
which is a time series data collection for research. They used both LSTM as well
as simple RNN layers in their models. An earlier example of RNNs for time series
classification is detailed in [16], where the dynamic behaviour of RNNs is utilized to
categorize input sequences into different specified classes.

1.3 Research objectives

Previous works have performed bottom detection using neural networks, however no
published work on utilizing recurrent neural networks to perform bottom-detection
in acoustic signals was found. We attempt to use sequential data from time series
DVL data to achieve bottom detection to a high level on all signals, without filter-
ing out difficult samples. It is hypothesised that sequential information could help
discern bottom echoes in previously misdetected echo signals. Furthermore a new
metric for evaluating bottom detection is presented, in order to address problems of
using traditional deep learning metrics on unbalanced data. Additionally the possib-
ility of running on-device inference should be explored, with a comparison of bottom
detection performance as well as an evaluation of time and memory constraints. The
guiding questions governing the research can be stated as:

• Will recurrent neural networks perform bottom detection exceeding or match-
ing the performance of previous neural network assisted methods in processed
amplitude signals?

• Is the proposed Overlap metric a better alternative than the traditional binary
accuracy and binary cross-entropy for evaluating detection of bottom echoes
in DVL time series data?

• Can recurrent neural networks be converted and used for inference on an em-
bedded device without significant drops in performance?

3

• Are recurrent neural networks a viable alternative for on-device bottom detec-
tion inference during real-time subsea navigation operations?

1.4 Outline

This thesis is comprised of 5 chapters. Chapter 1 covers some background and mo-
tivation for the creation of new bottom-detection methods for DVLs. Moreover it
reviews various published works within themes relevant to the thesis, and estab-
lishes the objectives and research questions addressed. Relevant background theory
on subsea navigation, the DVL instrument, deep learning, recurrent neural net-
works as well as embedded inference are covered in chapter 2. Chapter 3 describes
the bottom detection task, what kind of data and data pre-processing was used,
and implementation and design of neural networks based on two different types of
recurrent layers, which performed bottom-detection. In addition the chapter goes
over execution of inference on an embedded device, as well as the tools used for
all experiments. Results and discussion of the results are provided in chapter 4,
together with a proposed metric for correct bottom interval detection. Finally con-
clusions and suggestions for future work are presented in chapter 5. The appendices
contain model descriptions, loss plots, quantitative results, examples for qualitative
analysis and finally embedded inference results.

4

Chapter 2

Theory

The theory chapter consists of an introduction on subsea navigation, followed by
an overview of the DVL-instrument and the DVLs bottom detection algorithm. In
addition basic theory on deep learning and neural networks are presented, including
a description of RNNs and embedded ML. The chapter aims to present background
information needed to understand the experiments, as well as the reasoning behind
the experiments detailed in this thesis.

2.1 Subsea Navigation

Subsea navigation technology includes various methods of tracking the position of
objects underwater. It differs from land-based navigation technology which mainly
relies on GPS, with highly accurate satellite references to provide positional estim-
ates. The damping of electromagnetic signals in liquids results in rapid attenuation
of high frequency signals, preventing the signals from propagating long distances
underwater [17]. GPS transmits and receives in microwave-frequencies, leading to
highly attenuated signals underwater. Thus positional data in subsea navigation
must be provided by physical model-based methods, for modelling of physical en-
vironments and estimation of new positions based on measured displacements.

Traditionally subsea localization and navigation technologies have been based on
AP systems or IN systems [18]. Recent research has explored ’hybrid’ navigation
systems that utilize sensor-fusion to improve state estimation further, in order to
avoid some of the shortcomings of traditional navigation solutions [19].

2.1.1 LBL, SBL and USBL acoustic positioning systems

AP systems use sound waves to estimate positions in reference to stationary transpon-
ders or transponders on the surface, located by GPS. The physical properties of
sound allows fast propagation and slow attenuation in water, enabling sound waves
to travel long distances underwater [17]. These properties encourage underwater

5

vehicle navigation to use acoustic transponders. The AP systems can be categor-
ized as Long Baseline (LBL), Short Baseline (SBL) or Ultrashort Baseline systems
(USBL) [19].

LBLs use networks of transponders on the sea bottom in fixed, known positions.
These are often used at locations where repeated operations require navigation.
The network of transponders typically surrounds the area of interest, and can be
used to determine positions within the deployed network by triangulation. These
systems generally have high accuracy. However they are generally expensive and
operationally demanding, due to the setup needed as well as requiring periodical
replacement of transponder batteries [1].

USBL and SBL systems offer greater flexibility, by using a following vehicle on the
water surface. The reference vehicle provides a mobile GPS surface reference. Based
on the GPS reference the position of a subsea vehicle is estimated by measuring the
phase-shift between the elements in USBL systems, and the position between the
transceiver and the transponder array in SBL systems. These systems lack the
same level of accuracy as LBL systems due to refraction in the water [1]. Sound
transmission over long distances travels along a path determined by the speed-of-
sound profile of the water column and its boundaries. Non-uniform speed-of-sound
profiles are always present, and when sound travels through mediums with different
speeds of sound it will refract.

2.1.2 Inertial Navigation systems

Subsea navigation is commonly based on Dead Reckoning (DR). With DR posi-
tion is estimated from an initial starting-point by adding the distance traveled in a
measured direction. IN systems are commonly used as advanced DR-devices, where
motion and direction is measured using integrated sensor-packages [19]. By integ-
rating measured velocity the displacement can be found, shown in equation 2.1.1.
Adding the displacement to the current position results in a new position estimate,
which can be used for the next estimation.

d(t) =

∫
v(t)dt = v ∗ t (2.1.1)

An IN system is commonly used as an advanced DR device, consisting of accelero-
meters paired with rotational- and heading sensors to measure angular acceleration
and velocity. Using DR with IN systems was one of the earliest approaches for
autonomous underwater vehicle (AUV) navigation [20], where integration of accel-
erometer output yields velocity and displacement measures, as shown in equation
2.1.2.

d(t) =

∫
v(t)dt =

∫ ∫
a(t)d2t (2.1.2)

This method of integrating sensor output does not require transmission or receiving

6

of signals, and uses inexpensive sensors [21]. However IN systems are unable to
detect drift caused by currents and internal sensor-inaccuracies, leading to an un-
specified bias [19]. Double integration of this time-varying bias introduces an error
in the position estimates, which grows over time. The error can be counteracted by
combining the IN system with direct, external and accurate velocity measurements
relative to the sea bottom. A Kalman Filter can then be used to fuse the different
data sources in order to estimate position [1].

Figure 2.1.1 displays a sensor fusion module featuring the commonly used Kalman
filter. Merging and processing the IN system and additional sensor data in with a
Kalman filter minimizes the errors, by introducing increased reference comparison.
The Kalman filter enhances strengths of the signals and attenuates weaknesses,
providing optimal combinations of the sensor data.

Figure 2.1.1: An overview of an IN system using a Kalman filter for sensor combin-
ation, providing positional estimates to an underwater vehicle. The illustration is
based on Figure 2.1.2 in [2].

2.2 Doppler Velocity Log

DVLs are as mentioned commonly used in order to provide accurate data for subsea
navigation. A DVL estimates velocity relative to the sea bottom. By sending a long
pulse, a ping, along a minimum of three acoustic beams, each pointing in a different
direction, accurate velocity measures are achieved [1]. The instrument considers the
phase shift of the echo coming from the sea bottom, utilizing the Doppler shift from
all beams to calculate the corresponding velocity. It should be noted that the DVL
has to be within range of the bottom to maintain bottom tracking.

7

2.2.1 Norteks DVL bottom-tracking

The accuracy of DVL measurements is closely related to the quality of its bottom-
tracking algorithm, as any error in the bottom tracking algorithm will result in a
velocity measurement error. Hence bottom tracking is closely related to the entire
navigation systems performance. Bottom-tracking technology typically detects the
bottom by observing an amplitude derived from the correlation between the received
echo and the transmitted signal. However the correlation functions, filtering, and
general processing of the signals are generally considered trade secrets, as good
solutions improve readability of the signals [2].

Nortek utilize a complex state-of-the-art detection of threshold-values on signals
provided by a filtered and processed amplitude for bottom-detection. An example of
Norteks amplitude-signal is displayed in Figure 3.1.1. Bottom-detection performed
on amplitude signals is commonly based on threshold evaluations and properties
of previously discovered features and relations. Signal strength, amplitude, and
pattern features are utilized to generate a signal score, enabling detection of the
bottom. If the depth fully exceeds the range of the DVL the instrument will measure
velocity relative to water, known as water-tracking. However water-tracking is prone
to significant errors, and the accuracy of the measurements is consequently highly
dependent on the range of the acoustic beams [22].

2.3 Deep Learning

Deep learning (DL) is a subclass of ML, which in turn is a subset of AI. ML is based
on the idea of creating algorithms that learn from and can make predictions on data.
A common definition of ML comes from [23]:

”A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T, as measured by P, improves with experience E”

DL uses interconnected artificial neurons to form complex structures, called artifi-
cial neural networks (ANNs). The ANNs mimic the way biological learning systems
work. ANNs are built out of a interconnected set of simple units, where each unit
takes a number of real-valued inputs (possibly the outputs of other units) and pro-
duces a single real-valued output (which may become the input to many other units)
[23]. The structure of the ANNs allows them to approximate any function provided
sufficiently many units [24], however some tasks are more suited for DL. According
to [23] ANNs, and DLs, are appropriate for problems that fulfil the following:

• Instances are represented by many attribute-value pairs.

• The target function output may be discrete-valued, real-valued, or a vector of
several real- or discrete-valued attributes.

8

• The training examples may contain errors.

• Long training times are acceptable.

Essentially DL excels at tasks where you have a lot of data examples, with real
or discrete inputs and outputs and you have time to train complex models. In
addition DL models are robust to noise in the training data. Long training times
can be one of the worst drawbacks when using ANNs. Training can take anywhere
from a few minutes to several days, weeks or months, depending on the complexity
of the model and the amount of training data. Training times increase with the
increase of parameters in an ANN. This increase in training time can be mitigated
by the use of deep neural networks (DNNs). Deep networks can approximate the
class of compositional functions as well as shallow networks but exponentially lower
number of training parameters [25]. On the contrary to the long training time DNNs
often have fast inference times, in other words application of the learned function
is relatively fast. The inference times are usually considerably shorter than the
required training time, which makes the continual use of a model significantly easier
and faster than the creation and training of the model.

Furthermore DL does not require human understanding of the target function and
patterns within the data. In more traditional ML algorithms human understanding
and feature engineering are the grounds for the learning algorithms, however ANNs
and DNNs have the potential to find functions and patterns humans do not compre-
hend. Feature engineering can still be used to aid the networks, but it is not needed.
This point can be viewed as an advantage as well as a drawback. DL can find a
better estimation of the target function, although the features used and the pattern
found is often hard to understand. This often leads to a difficulty explaining why a
certain result is obtained, in turn making it hard to realize how to change inputs in
order to achieve a wanted result.

2.3.1 Learning paradigms

In ML there are three primary learning paradigms, supervised learning (SL), un-
supervised learning (UL) and reinforcement learning (RL). These paradigms differ
based on the goal, how the data is represented and how the learning process is con-
ducted [26]. The most common form of ML, deep or not, is SL [27]. SL is also
the only paradigm used for the experiments conducted in this thesis. Figure 2.3.1
illustrates the basic structure of each paradigm.

Two of the most important concepts within ML is over- and underfitting. Overfitting
refers to a model learning mappings that correspond specifically to the data it is
trained on, instead of general mappings that can be used for new, unseen data.
Underfitting is the opposite, where a model is unable to learn crucial general patterns
that are needed to make good predictions. In DL underfitting is easily prevented
by having enough layers and wide enough layers, and is generally not a problem.
Overfitting however can be troublesome and has to be considered and addressed.

As a general rule three datasets are needed when performing DL. One for training,

9

one for validation and one for testing. The training data usually contains most of
the examples and is the data used for learning. Validation data is not used for
training, instead it is used to assess changes made to the model and to compare how
the model performs compared to on the training data. The test data is kept out of
all training and model design, to only be used to evaluate how general the model
is. As mentioned overfitting is when the model overly learn patterns in the training
data. In order to monitor this the validation data can be used as a comparison. If
results on the training and validation data do not match up there is a high likelihood
of overfitting. In this case the model needs to be changed to correct the issues. The
most common ways to combat overfitting is to reduce the model complexity, or to
add regularisation to the model. Dropout is one of the regularisation techniques
used widely in deep neural networks [28]. It essentially ignores some units randomly
during the training phase of the network, which prevents complex co-adaptations
among units.

[29] defines SL as a ML paradigm for acquiring the input-output relationship in-
formation of a system based on a given set of paired input-output training samples.
As the output is regarded as the label of the input data or the supervision, an input-
output training sample is also called labelled training data, or supervised data. The
labelled data is used to measure the error between a output produced for each cat-
egory based on the input and the correctly labeled output values. As shown in
subfigure 2.3.1a the machine then modifies its internal adjustable parameters, its
weights, to reduce this error. To properly adjust the weights an optimisation al-
gorithm is used to minimize the error [27]. After training and adjusting the weights
optimally the model has learned a mapping between inputs and outputs, which lets
it infer new outputs from new unseen inputs. In order to learn this mapping a
dataset of pre-labelled data is required. Hence the main problem of SL is the time
and cost of labelling large datasets before training can start.

UL eliminates the labelling problem, as it uses no labelled data. With UL the
machine looks for intrinsic patterns within the data in order to create groups and
clusters of data points that appear similar. The clusters are found by using al-
gorithms that reward high internal similarity within and high diversity between
clusters [26]. RL relies on a feedback-loop provided by rewards or penalties on ac-
tions performed by an agent in an environment. The agent creates a mapping from
previous feedback and applies it to the current observation of the environment to re-
solve further action, thus learning how to maximize rewards and minimize penalties
[26]. UL and RL are displayed in subfigures 2.3.1b and 2.3.1b respectively.

10

(a) Supervised learning (b) Unsupervised
learning

(c) Reinforcement learning

Figure 2.3.1: Illustration of the three main learning paradigms of ML. Subfigure
2.3.1a displays the basic structure of SL, subfigure 2.3.1b displays UL and RF is
shown in subfigure 2.3.1c. The illustration is based on Figure 1 in [30]

2.4 Neural network fundamentals

As mentioned ANNs were initially constructed to resemble an overly simplified struc-
ture of biological neural networks. They work by communicating signals between
layered processing units over a large number of weighted connections [31]. The pro-
cessing units are artificial neurons and constitute the building blocks of an ANN.
Each unit has an associated input weight, bias and an activation function. The
relation between inputs and outputs from a single unit with N inputs xi, weight
matrix w, bias vector b and activation function F is described in equation 2.4.1.
The same relation is illustrated in figure 2.4.1.

11

[H]y = F

(
N∑
i=1

xi ∗wi + bi

)
(2.4.1)

Figure 2.4.1: Structure of a single artificial neuron, displaying the transformation
of inputs through weights wi, bias b and activation function F . The illustration is
based on Figure 2 in [32].

These neurons can be layered into several layers, increasing the complexity of the ML
model. The number of connections, nodes, and layers influences the transformation,
and has to be determined by an engineer or by optimising over a parametric region
of interest. The feed-forward neural network performs forward propagation. It
is regarded as a nonlinear mathematical function, where the weight parameters
influence the transformation [32]. Inputs are fed forward through the network and
transformed by every layer. A standard feedforward network is shown in figure 2.4.2.
The weight parameters are adjusted by using gradient descent algorithms in order to
minimize a predetermined loss function. Common loss functions are Mean Squared
Error (MSE) and Binary Crossentropy Loss (BCL), detailed in equations 2.4.2 and
2.4.3 respectively. After propagating the input signals through the network a final
output is traversed back using back-propagation. This allows calculation of gradients
used to adjust the weights in order to reduce the output loss. The adjustment is
done by using an algorithm based on steepest-descent minimization. Traditionally
stochastic gradient descent (SGD) was used, however newer algorithms like the
Adaptive Moment Estimator (Adam) [33] has surfaced. Adam combines adaptive
learning rates and momentum on the gradient descent in order to speed up training
significantly for most tasks.

MSE =
1

N

N∑
i=1

(yi − ŷ)2 (2.4.2)

BCL = − 1

N

N∑
i=1

yilog(ŷ) + (1 + yi)log(ŷ − 1) where

{
yi ∈ {0, 1}
ŷ = 1

1+e−x

(2.4.3)

12

Figure 2.4.2: Structure of an ANN with inputs, outputs and several hidden layers.
The illustration is based on Figure 2.3.3 in [2].

2.5 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are neural network architectures which are
mainly used to detect patterns in sequences of data [34]. They are commonly used
on data such as handwriting, genomes, text or numerical time series. By using cycles
to pass information back to itself each layer in a RNN has some form of short-term
memory. This enables them to extend the functionality of DNNs to also take into
account previous inputs [34]. Furthermore the functionality allows the networks
to handle sequences of variable length. The structural differences between DNNs
and RNNs are illustrated in figure 2.5.1. However basic RNNs have been shown
to struggle to capture long-term dependencies because the gradients tend to either
vanish (most of the time) or explode [35].

One approach to combat vanishing and exploding gradients in RNNs has been to
design more sophisticated activation functions [36]. Two main ”improved” units
resulted from this, the long short-term memory unit (LSTM) and the gated recurrent
unit (GRU). RNNs employing either of these recurrent units have been shown to
perform well in tasks that require capturing long-term dependencies see [37] and
[38]. This thesis details experiments using GRU, while Nortek has explored some
LSTM models.

13

(a) Feedforward
network

(b) Recurrent network

Figure 2.5.1: Illustration of the structure and data flow in DNNs and RNNs. Sub-
figure 2.5.1a shows the structure of a standard feedforward DNN. RNNs differ from
DNNs by the recurrent states shown in subfigure 2.5.1b. The illustration is based
on Figure 1 in [34].

2.6 Embedded Machine Learning

On device inference with ML is becoming increasingly viable, due to faster embedded
devices with more memory and computing power. In addition many devices have
a graphical processing unit (GPU) or dedicated neural processing units (NPUs).
These units specialize in parallel computations, making neural network computation
significantly more efficient. Compared to traditional cloud computing, embedded
computing has many unique advantages; including low latency, increased reliability,
running with limited or no connectivity, reduced cost and privacy as well as security
[39].

The most common framework for embedded ML is tflite [40]. Tflite allows users to
deploy tensorflow models on embedded and edge devices, by creating tflite models
or by converting existing models. This conversion can include optimisations such as
quantisation, which reduces model size and improves latency with minimal loss of
accuracy [41].

14

Chapter 3

Recurrent Neural Networks for
bottom detection

As established in section 2.2 subsea navigation using a DVL is highly dependent on
its bottom-tracking algorithm. [2] explored the possibility of bottom-tracking using a
DNN and a convolutional neural network (CNN). Due to the sequential nature of the
time series sensor data we assume that RNNs could be a suitable tool for the bottom-
tracking task. The extra information in knowing where the sea bottom appeared
in previous pings could improve upon the bottom-tracking achieved through DL.
Furthermore converting models into tflite and running inference on an embedded
device could lead to improved latency and eliminates the need for communication
with surface computers.

This chapter aims to present the steps taken in order to achieve the results presented
in the thesis. Including the methodology of designing, implementing and optimising
RNNs for bottom-tracking on amplitude-data stemming from various Nortek DVL-
instruments. The RNNs were created using two different recurrent units. In addition
the chapter covers converting these models into tflite, as well as running inference
on a DIGI-CC8MNDVK board [42].

3.1 Problem description

Norteks DVL collects data for bottom-detection consisting of time series amplitude
signals stemming from various environments. The aim was to create and train gen-
eric and accurate recurrent models to find a bottom-interval in the amplitude signals
where the echo from the sea bottom appeared. Moreover the models were to be con-
verted into tflite, exported to an embedded device and tested for inference. Nortek
provided large amounts of labelled DVL data from different DVL instruments, re-
corded in a wide range of environments. Hence the provided data allowed RNNs to
be trained with SL. Figure 3.1.1 displays an example ping before transforming the
labels into binary form. The datasets from Nortek consisted of such pings before
processing the data.

15

Figure 3.1.1: Example of a ping before labelling. The amplitude time series is
constructed from echoes received by a Nortek DVL sensor. The bottom tracking
comes from Norteks tracking algorithm.

Detecting the correct bottom-interval in the time series amplitude data was defined
as a binary classification problem. Each time-sample of the signal was considered
bottom or non-bottom for binary classification. The target values used to perform
SL were previously constructed based on Nortek bottom-tracking algorithm results.
For binary classification, binary vectors with the same length as the time series
amplitude signals were created, consisting of class labels with values 0 or 1 for
non-bottom and bottom pings respecively. The RNN models were trained using
pre-processed time series amplitude signals as input, similar to the signal exhibited
in figure 3.1.2. Outputs from the models were predictions matching the shape and
form of the target labels, with predictions close to 0 are considered non-bottom
and predictions closer to 1 are considered bottom samples. Figure 3.1.3 displays a
labelled ping, with binary labels ready to be used for SL.

16

Figure 3.1.2: Example of a ping before labelling. The amplitude time series is
constructed from echoes received by a Nortek DVL sensor. The bottom tracking
comes from Norteks tracking algorithm.

Figure 3.1.3: Example of a labelled ping, consisting of an amplitude time series from
a received echo with the sample-window detected by the Nortek algorithm together
with the constructed binary-and bottom-detection labels used to train the RNNs.

17

3.2 Data

The time series amplitude data were obtained during testing of different DVLs,
conducted by Nortek. 23 datasets from different instruments and environments
were provided, which consisted of a total of 1 158 639 pings. Out of these pings
91 973 had no bottom echo, making 7.94% of the signals in the data contain no
bottom. Figure 3.2.1 illustrates one of these no bottom pings. With such a large
part of the data being out of range from the bottom the models have the ability to
learn to predict on both bottom pings as well as non-bottom pings. The datasets
were collected using the Norteks DVLs; DVL1000-300 m. [43], DVL1000-4000 m.
[44], DVL500-300m [45] and DVL500-6000 m. [46], Speed Log, Compact500, and
DVL333. Technical specifications for each of the instruments are displayed in Table
3.2.1, as the different instruments operate within different ranges and environments.
Because of this increased variety and noise within the collective dataset is introduced.

DVL instrument Max. altitude Min. altitude
Long-term
accuracy

Max. operational
depth

DVL 1000, 300 m. 75 m. 0.2 m. ±0.1% / ±0.1 cm/s 300 m.
DVL 500, 300 m. 200 m. 0.3 m. ±0.1% / ±0.1 cm/s 300 m.
DVL 1000, 4000 m. 75 m. 0.2 m. ±0.1% / ±0.1 cm/s 4000 m.
DVL 500, 6000 m. 200 m. 0.3 m. ±0.1% / ±0.1 cm/s 6000 m

DVL 333 330 m. Unreported Unreported Unreported
Compact 500 175 m. Unreported Unreported Unreported
Speed Log 200 m. 0.3 m. ±0.1% / ±0.1 cm/s 300 m.

Table 3.2.1: Technical specifications of the Nortek DVL instruments. The DVL 333
and the Compact 500 development, hence they are unreported.

18

Figure 3.2.1: This is a labelled ping where the bottom is out of range for the DVL.
Here the labels are 0 for the entire ping, and the model is supposed to predict values
close to zero.

Any time-varying bias of the DVL can be detected by performing DR using the
DVL to measure velocity and a heading sensor to measure direction, subsequently
comparing the resulting positional estimates to an accurate GPS reference at certain
time intervals. Norteks testing was described in [2]:

”Testing is performed by mounting a DVL-instrument underneath the
Moonpool boat, avoiding noise from the motors. A 24V power supply
drives the instrument, and a computer manages the DVL via Ethernet
cable, see Figure 3.2.1. The SD-card of the DVL logs the measured and
processed data while the DVL transmits pings with specified bandwidth
and repetition period. When receiving the echo, the transducers gen-
erate an analog signal to be amplified and filtered by an anti-aliasing
filter before being digitalized at 20 MHz. Digital filters, decimating, and
quadrature demodulation are further performed to filter the signal. The
baseband signal is at the signal’s center frequency at 500 kHz, 1000kHz,
or 333kHz.”

The Nortek DVLs are usually tested in the inner Oslo Fjord with depths ranging
from 10 to 200 m, in Bunnfjorden, and in Horten. Speed Logs are mounted on
larger vessels, the Hanna Kristina ship traveled along the Norwegian coast, and
River Orashi operated in international waters.

Each time series, or ping, consists of 1990 samples. The processing, filtering, and
smoothing technique used by Nortek introduce a loss of detail and a time lag in
the signals. The time lag is incorporated into Norteks bottom-tracking algorithm,

19

implying that the true bottom window is slightly shifted to the left of where the
leading edge appears in the processed signal. Generally the shift follows a pattern
that varies based on the instrument. As a general rule the bottom-tracking window
is expanded on the leading edge with ten samples after sample 18, and 40 samples
after sample number 450 [2]. It is worth noting that the loss of detail may remove
crucial information in the peaks corresponding to the bottom echo.

3.2.1 Data pre-pocessing

Preprocessing of the data was done using many of the same methods as in [2], and
some datasets were used here as well as in [2]. The provided datasets contained nor-
malized amplitude time series of different lengths. All signals were in chronological
order. As a result the data had to be pre-processed to provide generalized lengths
and values despite coming from separate datasets. The target values also had to
be adjusted to represent target values for binary classification instead of continuous
values.

First the target values were constructed by creating binary vectors. The start and
end of the bottom detections reported by the Nortek bottom-tracking algorithm
were detected by finding indexes of the first and final non-zero values in the time
series. The indexes between the determined start and end-indexes were marked as
bottom (1), while the indexes outside the interval were marked non-bottom (0). If
no bottom was detected in the signal, the entire label vector was filled with zeros.

The range of the DVL impacts amplitude-signal length, the range is determined by
the instrument type or pre-defined by the user. Consequently the shorter signals had
to be padded with 0s to create signals with an equal length of 1990. The resulting
datasets consisted of labeled matrices, where each row represented a new ping, and
each column was a new sample in the time series. An example of labeling the same
ping with a binary vector is shown in figure 3.2.2.

20

Figure 3.2.2: An example ping to illustrate the creation of binary labels from original
bottom tracking on an amplitude signal.

The chronological ordering of the data was kept, in order to keep sequentiality in the
data for learning recurrent patterns. However some attempts were made to create
randomized input order, which promotes pattern learning instead of memorization
in the RNN models. The data was split into batches and sequences, which were
shuffled on batch level. The batch and sequence lengths varied between models as
optimisation parameters. This approach kept the sequential properties of the data,
whilst introducing randomness.

20 of the datasets were used to create training and validation sets, while 3 datasets
were kept completely separate as a test set. The test set was extracted from separate
datasets in order to simulate a real world application where new unseen data comes
in the form of new datasets. Hence the results achieved in this thesis are more likely
to represent the true generalization capabilities of presented models. This split kept
928 727 pings for training and validation, and 247 352 pings for testing. Each of the
20 datasets used for training were split into 80% for training and 20% for validation,
such that the validation set is representative of the entire training data distribution.

3.3 Evaluation Matrix

Each model was evaluated using the evaluation metrics listed in Table 3.3.1. These
metrics were used on the validation data for design and tuning, and on the test data
for evaluation of the models.

21

Binary bottom detection

Loss function BCL

Performance metrics
Average BA
Overlap

Table 3.3.1: An evaluation matrix displaying the loss-function used to train the
neural network models, as well as the metrics used to evaluate their performance on
the validation and test data. BCL and average BA are traditional metrics used in
DL. The formulas for these can be found in equations 2.4.3 and 3.3.1 respectively.
Overlap is a custom metric detailed in equation 3.3.2.

For binary classification the most popular loss function and evaluation metric are
BCL and BA. They are well established and efficiently implemented in the Keras
package. BCL is detailed in equation 2.4.3, and BA is displayed in equation 3.3.1.
For this task they were assumed to be useful, however they come with some draw-
backs. Each time series was of length 1990 and contained approximately 130 bottom
samples and 1860 non-bottom samples. Thus the dataset may be imbalanced and
yield deflated cross entropy and inflated accuracy results on incorrect detections.

BA =
1

N

N∑
i=1

ŷi where

{
ŷi = yi and

yi, ŷi ∈ 0, 1
(3.3.1)

Due to the imbalanced data a custom evaluation metric was proposed. The Overlap
metric compares the intervals of bottom detection and bottom labels, to calculate
how much of the detected bottom echo overlaps with the true labels. The size of
the overlapping interval is then normalized with respect to the longest interval out
of the detections and the labels. In the case of a ping being labelled as non-bottom
the metric is set to 0 if any bottom interval is detected by the model, and to 1 if no
bottom is detected. Equation 3.3.2 details the formula for Overlap in the case where
there is a labelled bottom, and figure 3.3.1 illustrates the interval used in overlap
calculations.

Overlap =

min
i=0,...,N
j=0,...,N

(max(i),max(j))− max
i=0,...,N
j=0,...,N

(min(i),min(j))

max
i=0,...,N
j=0,...,N

(max(i)−min(i),max(j)−min(j))
where

yi = 1

ŷj = 1

Overlap ∈ [0, 1]

(3.3.2)

22

Figure 3.3.1: Illustration of the overlapping interval used when calculating the Over-
lap metric. This is a crafted example, not an actual model output.

An attempt to use 1 − Overlap as a custom loss function was attempted, in order
to promote more precise bottom detections. However due to technical difficulties
with custom loss functions in model tuning this was not achieved, and is instead
suggested as future work.

3.4 Models

The RNN architectures used to perform bottom-detection were models using simple
RNN layers [47] and models using GRU layers [48]. All models used a fully connected
(FC) layer [49] with 1990 nodes as the output layer. The models were designed,
tuned, and trained to to classify each time sample as bottom or non bottom by
outputting a value between 0 and 1, where values closer to 1 are more likely bottom
echoes. All models took inputs in the shape (Batch size, Sequence length, 1990),
and returned outputs of length 1990. Each hidden layer used a rectified linear unit
(ReLU) for activation, while the output layers used sigmoid. Sigmoid was used in
output layers in order to output values between 0 and 1, representing the estimated
probability that the corresponding time sample is from a bottom echo. Any output
value above 0.5 is considered a bottom prediction. Higher threshold values were
tested on validation and test data, but 0.5 gave the best validation results. On
the test data higher threshold values resulted in higher Overlap, however as the
test data should not influence model parameters this was not taken into account.
Otherwise the model performance could be overestimated and not true for general

23

purposes. Adam was used for backpropagation, with a parameter selection that
commonly obtains best performance: lr = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e−07
and decay = 0.0. The models were trained for a maximum of 15 epochs.

On all models early stopping (ES) was implemented, as well as checkpointing in
order to keep the model with the lowest validation loss or the highest validation
overlap, depending on the model. ES makes training stop if the chosen metric stops
improving, keeping training times lower in addition to reducing the risk of overfitting.
Other measures taken to avoid overfitting was comparing training and validation loss
and overlap, in addition to having one model of each type with dropout between all
hidden layers.

3.4.1 Simple RNN

The first set of models experimented upon were based on simple RNN layers [47].
Models were made with 1 − 5 simple RNN layers followed by an output layer or a
FC layer in addition to the output layer. The width of each non output layer was
varied during tuning, while the output layer had a width of 1990. In the end three
different simple RNN models were trained and tested. These will be referred to as
simple RNN model 1, simple RNN model 2 and simple RNN model 3.

Simple RNN model 1 was created by using hyperband tuning with the tuning scheme
displayed in Table 3.4.1. Tuning methods are further explained in section 3.4.3. The
final model consisted of two RNN layers, with a width of 800 and 200, as well as
one FC layer for outputs. Figure A.0.1 illustrates the model architecture.

The second simple RNN model was created by using Random search tuning with
the tuning scheme displayed in Table 3.4.1. The final model consisted of one RNN
layers, with a width of 200, as well as two FC layers, one with width 400 and one
for outputs. Figure A.0.2 illustrates the model architecture.

Simple RNN model 3 uses the same architecture and parameters as simple RNN
model 2, with the addition of dropout layers [50]. Dropout layers with a dropout
rate of 0.3 was placed between the simple RNN layer and the first FC layer, as well
as between the two FC layers. The dropout rate was chosen for validation results
after experimenting with values between 0.2 and 0.5 Figure A.0.3 illustrates the
model architecture.

3.4.2 GRU

Gru layers were used for the second set of models [48]. These were assumed to
perform better than the simple RNN models, due to the problems explained in
section 2.5. The model structures match the structures used for simple RNN models,
and they were tuned in the same fashion. In addition two GRU models were tuned
for maximizing overlap, as the overlap metric was assumed to be a better indicator
of good bottom detections than the standard BCL. This assumption was based on
problems explained in section 3.3. In total four GRU based models were created.

24

They will be referred to as GRU model 1, GRU model 2, GRU model 3 and GRU
model 4.

GRU model 1 was created by using hyperband tuning with the tuning scheme dis-
played in Table 3.4.2. This model was tuned for maximized validation overlap
instead of minimized loss. GRU model 1 consisted of one GRU layer, with a width
of 200, as well as two FC layers of width 600 and 1990. Figure A.0.4 illustrates the
model architecture.

The second GRU model used random search tuning for maximized overlap. Table
3.4.2 shows the tuning scheme. In the end it consisted of two GRU layers, both
with a width of 200. Following the GRU layers were two FC layers of width 800 and
1990. Figure A.0.5 illustrates the model architecture.

GRU model 3 was made with hyperband tuning for minimized validation loss. Table
3.4.2 shows the tuning scheme. The model includes two GRU layers, of width 800
and 200 and two FC layers of width 400 and 1990. Figure A.0.6 illustrates the model
architecture.

The final GRU model is similar to GRU model 1, but with additional dropout layers
like in simple RNN model 3. The same dropout rates were used, however for the
GRU models the parameter was not varied. The main reason for adding dropout
was to examine if the dropout layers would influence the validation results, not to
create fully optimised models, hence the focus was not on tuning the dropout rate.
Figure A.0.7 illustrates the model architecture.

3.4.3 Tuning and optimisation

Two different hyperparameter tuning methods were explored in the experiments.
The random search tuner [51] and the hyperband tuner [52]. These tuners allow
training many models for a few epochs each, to see which hyperparameters give
the best results. Random search tuning chooses parameters at random, within the
tuning scheme given. It always chooses a set of parameters that have not been used
yet in the tuning run. Random search was used to train 80 models for 5 epochs each.
The hyperband tuner also samples parameters randomly, however it uses Successive
Halving [53] in order to choose which models to stop training early. By doing this
it can cover the search space more efficiently than the random search. Li et.al.
[54] observed an order-of-magnitude speedup over competing tuning algorithms on
a variety of deep-learning problems.

25

Tuning parameter Potential values
Final value

Simple RNN model 1
Final value

Simple RNN model 2

Number of
RNN layers

1-5 2 1

RNN width 200-1000
Layer 1: 800
Layer 2: 200

Layer 1: 200

Number of
FC layers

1-2 1 2

FC width 200-1000 Layer 1: 1990
Layer 1: 400
Layer 2: 1990

Batch size 16-96 80 48

Sequence length 2-10 4 6

Table 3.4.1: Table displaying the tuning scheme and the final parameters used for
the simple RNN based models. FC layers with a width of 1990 are output layers.
The final values for the two models are listed. These models were chosen based on
having the lowest validation loss.

Tuning parameter Potential values
Final value

GRU model 1
Final value

GRU model 2
Final value

GRU model 3

Number of
GRU layers

1-5 1 2 2

GRU width 200-1000 Layer 1: 200
Layer 1: 200
Layer 2: 200

Layer 1: 800
Layer 2: 200

Number of
FC layers

1-2 2 2 2

FC width 200-1000
Layer 1: 600
Layer 2: 1990

Layer 1: 800
Layer 2: 1990

Layer 1: 400
Layer 2: 1990

Batch size 16-96 64 80 96

Sequence length 2-10 8 8 4

Table 3.4.2: Table displaying the tuning scheme and final parameters used for the
GRU based models. FC layers with a width of 1990 are output layers. The final
values for the three models are listed. Model 1 and 2 were chosen based on having the
highest validation overlap, while model 3 was chosen for having the lowest validation
loss.

3.5 Inference on embedded device

The seven models covered in section 3.4 were all converted into tflite. In addition
post-training float 16 quantisation was performed on the same set of models, result-
ing in a total of 14 tflite models, seven of which used float 32 and seven using float 16.

26

As a result the quantised models were halved in storage size, in comparison to the
unquantised models. The models were then transferred to the DIGI-CC8MNDVK
board together with 5000 pings from the test dataset. Using these 5000 pings infer-
ence was run on each model, testing the average inference time. This was done with
python on CPU, using the XNNPACK delegate as in [55]. Attempts were made to
run inference with C++ on both CPU and GPU, using the NNAPI delegate [56].
However due to technical issues with the C++ library version on the DIGI board
and the software development toolkit (SDK) used this was not achieved. C++ code
and a compiled binary for this was made, based on the example code provided from
tensorflow [57]. Completing this task is left as further work. Another test was ran on
each of the tflite models, which assessed the memory usage when running inference
with the models. This test came with the CC8MNDVK board and approximates
memory footprint from running a model.

3.6 Implementation

Python [58] was used for all programming tasks regarding data processing, visual-
ization and model engineering. The data processing was done by using the Numpy
package [59]. Visualization of data utilized the packages Matplotlib [60] and Pandas
[61], whilst visualization of models was performed with the tool Netron [62]. All
work of designing, implementing and optimising models was done using the pack-
ages Tensorflow [63], Keras [64] and KerasTuner [65]. Converting and quantisation
of models was done with the package tensorflow lite [40]. Training, tuning and
testing of models was done on the NTNU Idun GPU cluster [66].

In order to run on-device inference a google VM [67] with Linux was used, for
building executable binaries. The binaries were created based on C++ [68] code
and CMake [69] build tools.

27

Chapter 4

Results and Discussion

This chapter aims to present and discuss the results obtained from training, val-
idation and testing of the seven models detailed in section 3.4. The models were
trained to solve the binary classification bottom-detection task on Norteks processed
amplitude signals. Both a quantitative and a qualitative approach to analysing the
results was performed. Both analysis and discussion of the evaluation metrics focus
on the Keras version of each model, while the tflite results are used for a comparison
to see if conversion and quantisation impacts model performance. All training and
validation loss results are displayed in Appendix B, while the quantitative results
from testing are displayed in Appendix C.

4.1 RNN bottom-detection

All models were evaluated on the metrics listed in the evaluation matrix in Table
3.3.1. The quantitative results presented are the BCL, average BA and Overlap on
three different datasets, training, validation and test. The main points for analysis
and discussion were comparing training, validation and test results to assess whether
or not the models are overfitting, as well as evaluating the test results that stem from
inference on completely unseen data. In addition some randomly selected pings, both
correctly and incorrectly detected, will be qualitatively analysed in section 4.1.2.

4.1.1 Quantitative analysis

The training and validation BCL obtained during training of the binary classification
models are displayed in Appendix B. For all models with no dropout there is a
significant gap between training loss and validation loss. Meanwhile for the two
models using dropout the losses are far more similar, and for GRU model 4 the
validation loss is lower than the training loss. This indicates that there could have
been some overfitting on the training data for models without dropout. All models
have a very low BCL, implying that the classifications on training and validation
data were successful. However due to the imbalance in data discussed in section 3.3

28

this could be caused by the nature of the data format.

Further quantitative results are presented in the tables of Appendix C. It is worth
noting that all models performed significantly better on the training and validation
data compared to the test data, in all evaluation metrics. This further indicates
that there has been overfitting to the training data. Some difference was expected,
however the differences here were significant enough to assume there has been some
overfitting. In addition simple RNN model 3 performed notably better than simple
RNN model 2, even though they shared architectures except for the dropout layers.
For GRU model 1 and 4, which also share the same connection, the dropout layers
did not cause any improvement on average BA and caused a decrease in Overlap.
This implies that simple RNN model 2 was overfitting, while GRU model 1 is not
overfitting or overfitting less. Moreover GRU model 3 performed similarly to simple
RNN model 3 without having dropout, while also being the model with the most
model parameters. This means the model should be more prone to overfitting.
Thus GRU models might be less prone to overfitting than the simple RNN models.
Further experimentation on dropout or other regularisation methods is suggested
for further work, as the improvements from dropout, especially on the simple RNN
models, is promising.

The best performing models were simple RNN model 3 and GRU model 3. There
are no significant differences between the performance of these two models. Hence
the assumption raised in section 3.4 seems to be wrong for this task. One possible
reason for this is the short sequence lengths used. As mentioned in section 2.5
simple RNN layers struggle to capture long-term dependencies. With short sequence
lengths there are no long-term dependencies to capture, there are instead short-term
dependencies. There might be some more information to gain by having longer
sequence lengths for GRU layers. However short sequences are desirable in order to
be able to predict bottom echoes quickly after starting DVLs, and to quickly detect
the DVL going outside or back into its operating range.

Overlap was assumed to be a more valuable metric than BA. The highest test
Overlap achieved was for GRU model 3. This is also the metric with the most
variance between models, with an average overlap of 0.8266 and a standard deviation
of 0.03524 on the test set. In comparison average BA across all models was 0.9822
with a standard deviation of 0.00463. Because of the large difference in variances the
assumption is considered valid, and we conclude that overlap gives more information
about model performance than average BA for the bottom detection task.

4.1.2 Qualitative analysis

Based on the quantitative results, all the binary classification models and the correct
bottom-intervals in most signals from the test set. However the overlap values indic-
ate that some detections are totally missed or shifted. To qualitatively evaluate the
predictions performed by the models, the original amplitude signal, the annotated
bottom-interval, and the detected bottom were plotted for a random selection of six
pings. Two pings were completely random, two were no-bottom pings and two pings
were chosen from the faulty detections of the best performing model, GRU model

29

3. 200 000 pings from the test dataset were tested and the sample pings were picked
at random from those.

Appendix D displays the selected pings with predictions from each model. All the
models perform really well on the randomly selected pings, which have clear bottom
echoes with amplitude peaks. The models also all predict the selected non bottom
pings correctly. Some models have a slight increase in the bottom echo probability
around time samples 1450 - 1500, most notably simple RNN model 1 and GRU
model 1. The examples with faulty predictions differ a lot more between models.
Simple RNN model 1 continues over predicting and predicts a bottom echo in both
samples. Simple RNN model 2 underpredicts, and also predicts the bottom echoes
a bit earlier than the others. Other underpredicting models, on these samples, are
simple RNN model 3, GRU model 2 and GRU model 4. GRU model 1 predicts a
bottom for both examples, similarly to simple RNN model 1. Finally GRU model 3
detects wrong for both, which was the criteria for how these pings were chosen.

From the qualitative results it appears that all seven models are good at detecting
samples with a strong amplitude peak at the bottom echo. They are also capable
of detecting non-bottom pings with relatively high certainty, unless the pings have
tiny amplitude peaks around time sample 1450 - 1500. For the badly detected
pings no model correctly detected both samples. The models either overpredicted
or underpredicted these pings. However the bottom echo in sample ping 5 is not
distinguishable to the human eye, and as such it seems likely that the models struggle
on this ping. There might be some sequential info which is not taken into account
here, although that would most probably make some of the models be more certain
of a bottom echo.

The difficulties of the two selected bad detects could be due to the DVL being at
the very edge or outside its operating range. Seeing as the difficult part of the signal
is so far to the right, it is an echo that has traveled far. Thus the bottom, if it is a
bottom echo, must be far away. In addition the echo gets attenuated more by the
surrounding water after more time passes, making it harder to distinguish. Another
possibility is the chance of faulty labelling. Labelling was done by Norteks heuristic
algorithm. Since there are too many pings to manually label them this currently
the best available option. In addition manual labelling could likely be worse, as it
is very hard to distinguish if there is an amplitude peak or not. Even so it is not
perfect, and can make mistakes just like the models experimented upon here.

4.1.3 Tflite models

The main points of interest regarding the tflite models is how they compare to the
original Keras models, in addition to evaluating the effects of float 16 quantisation.
Five of the models experience no significant change in performance on conversion to
tflite, however the two models with the best results have significant drops in both
average BA and Overlap. This makes GRU model 1 the best performing tflite model,
with an average BA of 0.9795 and Overlap of 0.8225. Overlap values for the two
best keras models, simple RNN model 3 and GRU model 3, are very similar for both
the Keras version as well as the tflite versions of the models. Thus an explanation

30

for the drop in performance could be that there are pings where both models barely
predict correct bottom echoes. With a small change in outputs these pings could be
incorrect predictions, hurting the performance. These pings are likely the same set
of pings for both models, due to the similar results and performance drop.

Float 16 quantisation is not observed to have any effect on performance. All models
performed on the same level for both the unquantised and quantised tflite models.

4.2 Inference on CC8MNDVK

For inference on the DIGI-CC8MNDVK board inference times and memory usage
was tested. All models exceed their test results when inferring on 5000 pings, im-
plying that the models perform as well on the DIGI board as on the Idun cluster.
Appendix E includes results from testing embedded inference. Inference times are
presented in Table E.0.1, while Table E.0.2 display memory footprints. These times
are from running inference on the CPU on the DIGI board, using a python script.
It is assumed that running inference with C++ code on the GPU would result in
inference times faster by magnitudes, however this was not tested due to challenges
mentioned in section 3.5.

All models run inference relatively fast, with little to no difference between quantised
or unquantised models. The smaller models run the fastest, with simple RNN model
3 running at 5.975 ms per ping. GRU model 3 is the largest model, and as such the
slowest with 51.35 ms per ping. However the nortek DVLs used for data collections
have a maximum ping rate of 8 Hz [43], [44], [45], [46], or once per 125 ms. Hence all
the models are fast enough to continuously detect bottom echoes, even when running
on the CPU. In a real scenario there might be several DVLs used together, in which
case the slower models would not be able to keep up. Even so they should be able
to run faster on GPU, which would make them viable for multi DVL inference.
Memory usage also reflects upon the model size, with quantised models having a
slightly higher memory footprint. This increased memory usage came during the
initialization of the quantised models in all cases, with unquantised models usually
having a larger footprint after initializing.

31

Chapter 5

Conclusion and further work

In this thesis, seven recurrent neural networks were designed to perform bottom de-
tection in acoustic signals provided by the Nortek DVL1000-4000 m. [45], DVL1000-
300 m. [44], DVL500-6000 m. [47], DVL500-300m. [46], Speed Log, Compact500,
and DVL333. They propose alternatives to the current state-ofthe-art heuristic
bottom-tracking algorithm, as well as the models presented in [2]. The network ar-
chitectures were based on simple RNN layers [47] and GRU layers [48]. All models
performed binary classification on amplitude-data, tasked with finding the interval
of the signal corresponding to sea bottom echos. Models were trained and validated
on a total of 928 727 acoustic signals, and tested on 247 352 signals. For the binary
classification task all models performed with high accuracy and a high Overlap rate.
The best model achieved a test accuracy of 98.78% and an overlap of 87.74%.

All models were tested on a DIGI CC8MNDVK board using CPU with the XN-
NPACK delegate. Inference times and memory footprints were tested, and all mod-
els achieved inference times below maximum ping rate of Nortek DVLs.

5.1 Conclusions

Following the results and discussions presented in chapter 4, this thesis concludes
that the recurrent neural networks trained on amplitude signals successfully detect
bottom intervals. The models performed accurate detections on data from Nortek
DVL1000-4000 m., DVL1000-300 m., DVL500-6000 m., DVL500-300m., Speed Log,
Compact500, and DVL333 without any instrument specific tailoring. The highest
average test accuracy achieved was 98.78%. Claims that the presented overlap metric
was a better indicator for precise bottom detection were supported by the achieved
results. The highest test overlap achieved was 87.74%, which is deemed sufficient
after the qualitative analysis, in section 4.1.2, detailing the miniscule differences
between some non-bottom and bottom pings.

Due to the imbalanced nature of the data, as well as differences in datasets used, it
is difficult to conclude whether the presented models outperform previous bottom
detection algorithms and current state-of-the-art methods. [2] reported a maximum

32

test accuracy of 99.3% on binary classification. The maximum accuracy achieved
here is comparable, while testing on a larger dataset, with a higher ratio of non-
bottom signals and signals where a bottom echo was barely distinguishable. Results
from the RNN models also exceed those of Taudien [4]. However as both the in-
strument and environment used for testing differed this is considered an observation
and a reference instead of a conclusion, like mentioned by Skatvedt [2].

We also conclude that recurrent neural networks can be converted and quantised
and still keep a high level of performance. The best performing models presented did
experience a drop in performance, however they still performed on a high level. The
maximal test accuracy for tflite converted models was 97.95% and the highest overlap
was 82.25%. Float 16 quantisation showed no drop in performance when compared
to tflite models using float 32 data. As such model conversion and quantisation using
tflite is considered to be a valid solution in order to obtain models for embedded
inference.

Finally the testing of embedded inference showed that it is possible to use RNNs
for on device inference in subsea bottom tracking applications. All models reported
inference times faster than the ping frequency of Norteks DVL instruments, while
running on CPU. Such embedded inference could yield reduced latency, reduced
energy usage as well as increased reliability and security in underwater operations.
It is hypothesised that the inference times can be reduced by magnitudes by running
inference on GPUs or NPUs, due to the parallel nature of computations needed.
This hypothesis further supports the possibility for embedded inference. As such
pre trained RNNs are considered a viable option for on-device bottom detection
inference during real-time subsea navigation operations.

5.2 Further work

5.2.1 Inference on embedded GPU

GPU inference on the DIGI board was not achieved in these experiments. It was
attempted, however it was not succesful due to technical difficulties with versioning
as well as time constraints. It is believed to be a relatively small task to achieve
this after managing CPU inference with python, however a SDK that builds bin-
aries working with Glibc version 2.32 or older is required. We assume that GPU
usage leads to faster and more efficient inference, having the potential to both re-
ducing latency and energy costs. Both of which are crucial for efficient underwater
operations.

5.2.2 Experiments with Hyperbolic Tangent activation

All presented models used ReLU as the activation function in all recurrent layers.
Previous research suggests that the Hyperbolic Tangent (tanh) function works well
with RNNs [70]. Most RNNs use either the ReLU or the tanh for activation and the

33

ReLU was chosen in these experiments. Further experimentation with activation
functions or different model architectures could lead to interesting results.

5.2.3 Neural networks with overlap loss function

The overlap metric proposed in the thesis proved to be a promising evaluation metric
for the bottom detection models. This was due to the imbalance in the data, causing
traditional binary classification metrics to be less informative. Imbalanced data also
influences BCL, which was used as the loss function for the presented models. As
such using an overlap based loss function, (1− Overlap), could encourage learning
new patterns, that help distinguish difficult bottom echoes that the presented models
struggle with.

5.2.4 Improving regularisation

As discussed in section 4.1.1 there is a high likelihood that some of the models were
overfitting the training data. Some experimentation with dropout for regularisation
was performed, however there seems to be potential for great increase in results
from improving the regularisation used on the models. All models saw significantly
better validation results compared to test results, suggesting that there is a lot to
gain from imrpoved regularisation, with dropout or other regularisation methods.
Better regularisation would lead to a greater capability of creating general models
that work for new, unseen data.

34

Bibliography

[1] N. AS. ‘New to subsea navigation?’ (2021), [Online]. Available: https://www.
nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation (visited on
25/04/2022).

[2] M. Skatvedt, ‘Deep neural network assisted sea bottom- and stable phase-
detection using data from doppler velocity logs’, M.S. thesis, NTNU, 2021.
[Online]. Available: https://hdl.handle.net/11250/2828953.

[3] Ø. Hegrenæs, A. Ramstad, T. Pedersen and D. Velasco, ‘Validation of a
new generation dvl for underwater vehicle navigation’, in 2016 IEEE/OES
Autonomous Underwater Vehicles (AUV), 2016, pp. 342–348. doi: 10.1109/
AUV.2016.7778694.

[4] J. Y. Taudien, ‘Doppler velocity log algorithms: Detection, estimation, and
accuracy’, The Pennsylvania State University, Jun. 2018. [Online]. Available:
https://etda.libraries.psu.edu/catalog/15530jyt106.

[5] A. D. W. Robert N. McDonough, Detection of Signals in Noise. May 1995.

[6] T. G. Kincaid, ‘Optimum waveforms for correlation detection in the sonar
environment: Noise-limited conditions’, 258, vol. 43, 1968. doi: 10.1121/1.
1910775.

[7] L. Yang and T. Taxt, ‘Multibeam sonar bottom detection using multiple subar-
rays’, in Oceans ’97. MTS/IEEE Conference Proceedings, vol. 2, 1997, 932–938
vol.2. doi: 10.1109/OCEANS.1997.624116.

[8] K. L. Deines and S. J. Maier, ‘United states patent nr. 5,122,990’, Jun. 1992.

[9] Waterlinked. ‘Waterlinked, dvl a50’. (2021), [Online]. Available: https : / /
waterlinked.com/dvl/ (visited on 13/06/2022).

[10] N. Davari and A. P. Aguiar, ‘Real-time outlier detection applied to a doppler
velocity log sensor based on hybrid autoencoder and recurrent neural network’,
IEEE Journal of Oceanic Engineering, vol. 46, no. 4, pp. 1288–1301, 2021. doi:
10.1109/JOE.2021.3057909.

[11] W. Li, M. Chen, C. Zhang, Z. Lundong and R. Chen, ‘A novel neural network-
based sins/dvl integrated navigation approach to deal with dvl malfunction
for underwater vehicles’, Mathematical Problems in Engineering, vol. 2020,
pp. 1–14, Jul. 2020. doi: 10.1155/2020/2891572.

[12] P. Li, X. Zhang and X. Xu, ‘Novel terrain integrated navigation system using
neural network aided kalman filter’, vol. 1, Aug. 2010, pp. 445–448. doi: 10.
1109/ICNC.2010.5583345.

35

https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation
https://www.nortekgroup.com/knowledge-center/wiki/new-to-subsea-navigation
https://hdl.handle.net/11250/2828953
https://doi.org/10.1109/AUV.2016.7778694
https://doi.org/10.1109/AUV.2016.7778694
https://etda.libraries.psu.edu/catalog/15530jyt106
https://doi.org/10.1121/1.1910775
https://doi.org/10.1121/1.1910775
https://doi.org/10.1109/OCEANS.1997.624116
https://waterlinked.com/dvl/
https://waterlinked.com/dvl/
https://doi.org/10.1109/JOE.2021.3057909
https://doi.org/10.1155/2020/2891572
https://doi.org/10.1109/ICNC.2010.5583345
https://doi.org/10.1109/ICNC.2010.5583345

[13] H. Xu and B. Lian, ‘Fault detection for multi source integrated navigation
system using fully convolutional neural network’, IET Radar, Sonar & Navig-
ation, vol. 12, Mar. 2018. doi: 10.1049/iet-rsn.2017.0424.

[14] D. Smirnov and E. Mephu Nguifo, ‘Time series classification with recurrent
neural networks’, Sep. 2018.

[15] H. A. Dau, E. Keogh, K. Kamgar et al., The ucr time series classification
archive, https://www.cs.ucr.edu/∼eamonn/time series data 2018/, Oct. 2018.

[16] M. Hüsken and P. Stagge, ‘Recurrent neural networks for time series classific-
ation’, Neurocomputing, vol. 50, pp. 223–235, Jan. 2003. doi: 10.1016/S0925-
2312(01)00706-8.

[17] G. Taraldsen, T. A. Reinen and T. Berg, ‘The underwater gps problem’, in
OCEANS 2011 IEEE - Spain, 2011, pp. 1–8. doi: 10.1109/Oceans-Spain.2011.
6003649.

[18] K. Gade, ‘Inertial navigation — theory and applications’, NTNU, 2018. [On-
line]. Available: https : / /ntnuopen . ntnu . no/ntnu - xmlui / bitstream/handle /
11250/2491714/Kenneth%5C%20Gade fulltext.pdf?sequence=7.

[19] J. González-Garćıa, A. Gómez-Espinosa, E. Cuan-Urquizo, L. G. Garćıa-Valdovinos,
T. Salgado-Jiménez and J. A. E. Cabello, ‘Autonomous underwater vehicles:
Localization, navigation, and communication for collaborative missions’, Ap-
plied Sciences, vol. 10, no. 4, 2020, issn: 2076-3417. doi: 10.3390/app10041256.
[Online]. Available: https://www.mdpi.com/2076-3417/10/4/1256.

[20] J. J. Leonard, A. A. Bennett, C. M. Smith, H. Jacob and S. Feder, ‘Autonom-
ous underwater vehicle navigation’, in MIT Marine Robotics Laboratory Tech-
nical Memorandum, 1998.

[21] T. Nicosevici, R. Garcia, M. Carreras and M. Villanueva, ‘A review of sensor
fusion techniques for underwater vehicle navigation’, vol. 3, Dec. 2004, 1600–
1605 Vol.3, isbn: 0-7803-8669-8. doi: 10.1109/OCEANS.2004.1406361.

[22] Y. R. Petillot, G. Antonelli, G. Casalino and F. Ferreira, ‘Underwater ro-
bots: From remotely operated vehicles to intervention-autonomous underwater
vehicles’, IEEE Robotics & Automation Magazine, vol. 26, no. 2, pp. 94–101,
2019. doi: 10.1109/MRA.2019.2908063.

[23] T. M. Mitchell, Machine Learning. McGraw Hill, 1997.

[24] K. Hornik, ‘Approximation capabilities of multilayer feedforward networks’,
Neural Networks, vol. 4, no. 2, pp. 251–257, 1991. [Online]. Available: https:
//arxiv.org/pdf/2001.03329.

[25] H. Mhaskar, Q. Liao and T. Poggio, ‘When and why are deep networks bet-
ter than shallow ones?’, Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, Feb. 2017.

[26] J. D. Kelleher, Machine Learning. MIT Press, 2019.

[27] Y. LeCun, Y. Bengio and G. Hinton, ‘Deep learning’, Nature, no. 521, pp. 436–
444, 2015. doi: 10.1038/nature14539.

[28] S. Salman and X. Liu, ‘Overfitting mechanism and avoidance in deep neural
networks’, CoRR, vol. abs/1901.06566, 2019. arXiv: 1901 . 06566. [Online].
Available: http://arxiv.org/abs/1901.06566.

36

https://doi.org/10.1049/iet-rsn.2017.0424
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://doi.org/10.1016/S0925-2312(01)00706-8
https://doi.org/10.1016/S0925-2312(01)00706-8
https://doi.org/10.1109/Oceans-Spain.2011.6003649
https://doi.org/10.1109/Oceans-Spain.2011.6003649
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2491714/Kenneth%5C%20Gade_fulltext.pdf?sequence=7
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2491714/Kenneth%5C%20Gade_fulltext.pdf?sequence=7
https://doi.org/10.3390/app10041256
https://www.mdpi.com/2076-3417/10/4/1256
https://doi.org/10.1109/OCEANS.2004.1406361
https://doi.org/10.1109/MRA.2019.2908063
https://arxiv.org/pdf/2001.03329
https://arxiv.org/pdf/2001.03329
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1901.06566
http://arxiv.org/abs/1901.06566

[29] Q. Liu and Y. Wu, ‘Supervised learning’, Jan. 2012. doi: 10.1007/978-1-4419-
1428-6 451.

[30] S. Wang, W. Chaovalitwongse and R. Babuska, ‘Machine learning algorithms
in bipedal robot control’, IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), vol. 42, no. 5, pp. 728–743, 2012.
doi: 10.1109/TSMCC.2012.2186565.

[31] B. Kröse and P. van der Smagt, ‘An introduction to neural networks’, J Com-
put Sci, vol. 48, Jan. 1993.

[32] C. M. Bishop, ‘Neural networks and their applications’, Review of Scientific
Instruments, vol. 65, Mar. 1994. doi: 10.1063/1.1144830.

[33] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization’, 2014.
doi: 10.48550/ARXIV.1412.6980. [Online]. Available: https://arxiv.org/abs/
1412.6980.

[34] R. M. Schmidt, ‘Recurrent neural networks (rnns): A gentle introduction and
overview’, CoRR, vol. abs/1912.05911, 2019. arXiv: 1912.05911.

[35] Y. Bengio, P. Simard and P. Frasconi, ‘Learning long-term dependencies with
gradient descent is difficult’, IEEE Transactions on Neural Networks, vol. 5,
no. 2, pp. 157–166, 1994. doi: 10.1109/72.279181.

[36] J. Chung, Ç. Gülçehre, K. Cho and Y. Bengio, ‘Empirical evaluation of gated
recurrent neural networks on sequence modeling’, CoRR, vol. abs/1412.3555,
2014. arXiv: 1412.3555. [Online]. Available: http://arxiv.org/abs/1412.3555.

[37] A. Graves, ‘Supervised sequence labelling with recurrent neural networks’,
Stud Comput Intell, vol. 385, Jan. 2012. doi: 10.1007/978-3-642-24797-2.

[38] I. Sutskever, O. Vinyals and Q. V. Le, ‘Sequence to sequence learning with
neural networks’, 2014. doi: 10.48550/ARXIV.1409.3215. [Online]. Available:
https://arxiv.org/abs/1409.3215.

[39] M.-A. A’râbi and V. Schwarz, ‘General constraints in embedded machine learn-
ing and how to overcome them — a survey paper’, Jul. 2019. doi: 10.13140/
RG.2.2.14747.21280.

[40] Tensorflow. ‘Tensorflow lite’. (2022), [Online]. Available: https://www.tensorflow.
org/lite (visited on 25/04/2022).

[41] ——, ‘Tensorflow lite guide’. (2022), [Online]. Available: https://www.tensorflow.
org/lite/guide (visited on 25/04/2022).

[42] DIGI. ‘Digi embedded documentation portal’. (2022), [Online]. Available: https:
//www.digi.com/resources/documentation/digidocs/embedded/index.html (vis-
ited on 21/05/2022).

[43] Nortek. ‘Dvl1000 - 300 m’. (2021), [Online]. Available: https://www.nortekgroup.
com/products/dvl-1000-300m (visited on 19/05/2022).

[44] ——, ‘Dvl1000 - 4000 m’. (2021), [Online]. Available: https://www.nortekgroup.
com/products/dvl1000-4000m (visited on 19/05/2022).

[45] ——, ‘Dvl1000 - 300 m’. (2021), [Online]. Available: https://www.nortekgroup.
com/products/dvl500-300-m (visited on 19/05/2022).

37

https://doi.org/10.1007/978-1-4419-1428-6_451
https://doi.org/10.1007/978-1-4419-1428-6_451
https://doi.org/10.1109/TSMCC.2012.2186565
https://doi.org/10.1063/1.1144830
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1912.05911
https://doi.org/10.1109/72.279181
https://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.48550/ARXIV.1409.3215
https://arxiv.org/abs/1409.3215
https://doi.org/10.13140/RG.2.2.14747.21280
https://doi.org/10.13140/RG.2.2.14747.21280
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite
https://www.tensorflow.org/lite/guide
https://www.tensorflow.org/lite/guide
https://www.digi.com/resources/documentation/digidocs/embedded/index.html
https://www.digi.com/resources/documentation/digidocs/embedded/index.html
https://www.nortekgroup.com/products/dvl-1000-300m
https://www.nortekgroup.com/products/dvl-1000-300m
https://www.nortekgroup.com/products/dvl1000-4000m
https://www.nortekgroup.com/products/dvl1000-4000m
https://www.nortekgroup.com/products/dvl500-300-m
https://www.nortekgroup.com/products/dvl500-300-m

[46] ——, ‘Dvl500 - 6000 m’. (2021), [Online]. Available: https://www.nortekgroup.
com/products/dvl500-6000-m (visited on 19/05/2022).

[47] Keras. ‘Simplernn layer’. (2022), [Online]. Available: https ://keras . io/api/
layers/recurrent layers/simple rnn/ (visited on 21/05/2022).

[48] ——, ‘Gru layer’. (2022), [Online]. Available: https : //keras . io/api / layers/
recurrent layers/gru/ (visited on 21/05/2022).

[49] ——, ‘Dense layer’. (2022), [Online]. Available: https://keras.io/api/layers/
core layers/dense/ (visited on 02/06/2022).

[50] ——, ‘Dropout layer’. (2022), [Online]. Available: https://keras.io/api/layers/
regularization layers/dropout/ (visited on 02/06/2022).

[51] ——, ‘Randomsearch tuner’. (2022), [Online]. Available: https://keras.io/api/
keras tuner/tuners/random/#randomsearch-class (visited on 02/06/2022).

[52] ——, ‘Hyperband tuner’. (2022), [Online]. Available: https ://keras . io/api/
keras tuner/tuners/hyperband/#hyperband-class (visited on 02/06/2022).

[53] K. G. Jamieson and A. Talwalkar, ‘Non-stochastic best arm identification and
hyperparameter optimization’, CoRR, vol. abs/1502.07943, 2015. arXiv: 1502.
07943. [Online]. Available: http://arxiv.org/abs/1502.07943.

[54] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh and A. Talwalkar, ‘Hy-
perband: A novel bandit-based approach to hyperparameter optimization’,
CoRR, vol. abs/1603.06560, 2016. arXiv: 1603.06560. [Online]. Available: http:
//arxiv.org/abs/1603.06560.

[55] N. Semiconductors, ‘I.mx machine learning user’s guide’, Dec. 2021. [Online].
Available: https : / / www . nxp . com / docs / en / user - guide / IMX - MACHINE -
LEARNING-UG.pdf.

[56] Tensorflow. ‘Tensorflow lite nnapi delegate’. (2022), [Online]. Available: https:
//www.tensorflow.org/lite/android/delegates/nnapi (visited on 05/06/2022).

[57] ——, ‘Tensorflow lite examples’. (2022), [Online]. Available: https://github.
com/ fredralm/ tensorflow/ tree /master / tensorflow/ lite / examples (visited on
05/06/2022).

[58] Python. ‘Python’. (2022), [Online]. Available: https://www.python.org/about/
(visited on 25/04/2022).

[59] Numpy. ‘Numpy’. (2022), [Online]. Available: https://numpy.org/ (visited on
21/05/2022).

[60] Matplotlib. ‘Matplotlib: Visualization with python’. (2022), [Online]. Avail-
able: https://matplotlib.org/ (visited on 21/05/2022).

[61] Pandas. ‘Pandas’. (2022), [Online]. Available: https : / / pandas . pydata . org/
(visited on 21/05/2022).

[62] L. Roeder. ‘Netron, visualizer for neural network, deep learning, and machine
learning models’. (2022), [Online]. Available: https://netron.app/ (visited on
21/05/2022).

[63] Tensorflow. ‘Tensorflow, an end-to-end open source machine learning plat-
form’. (2022), [Online]. Available: https ://www. tensorflow.org/ (visited on
21/05/2022).

38

https://www.nortekgroup.com/products/dvl500-6000-m
https://www.nortekgroup.com/products/dvl500-6000-m
https://keras.io/api/layers/recurrent_layers/simple_rnn/
https://keras.io/api/layers/recurrent_layers/simple_rnn/
https://keras.io/api/layers/recurrent_layers/gru/
https://keras.io/api/layers/recurrent_layers/gru/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/layers/regularization_layers/dropout/
https://keras.io/api/keras_tuner/tuners/random/#randomsearch-class
https://keras.io/api/keras_tuner/tuners/random/#randomsearch-class
https://keras.io/api/keras_tuner/tuners/hyperband/#hyperband-class
https://keras.io/api/keras_tuner/tuners/hyperband/#hyperband-class
https://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1502.07943
http://arxiv.org/abs/1502.07943
https://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
https://www.nxp.com/docs/en/user-guide/IMX-MACHINE-LEARNING-UG.pdf
https://www.nxp.com/docs/en/user-guide/IMX-MACHINE-LEARNING-UG.pdf
https://www.tensorflow.org/lite/android/delegates/nnapi
https://www.tensorflow.org/lite/android/delegates/nnapi
https://github.com/fredralm/tensorflow/tree/master/tensorflow/lite/examples
https://github.com/fredralm/tensorflow/tree/master/tensorflow/lite/examples
https://www.python.org/about/
https://numpy.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://netron.app/
https://www.tensorflow.org/

[64] Keras. ‘Keras, the python deep learning api’. (2022), [Online]. Available: https:
//keras.io/ (visited on 21/05/2022).

[65] ——, ‘Kerastuner’. (2022), [Online]. Available: https://keras.io/keras tuner/
(visited on 21/05/2022).

[66] M. Själander, M. Jahre, G. Tufte and N. Reissmann, ‘EPIC: An energy-
efficient, high-performance GPGPU computing research infrastructure’, 2019.
arXiv: 1912.05848 [cs.DC].

[67] Google. ‘Google cloud platform’. (2022), [Online]. Available: https://console.
cloud.google.com/ (visited on 21/05/2022).

[68] C++. ‘Cplusplus’. (2022), [Online]. Available: https://cplusplus.com/ (visited
on 21/05/2022).

[69] CMake. ‘Cmake’. (2022), [Online]. Available: https://cmake.org/ (visited on
21/05/2022).

[70] T. Szandala, ‘Review and comparison of commonly used activation functions
for deep neural networks’, CoRR, vol. abs/2010.09458, 2020. arXiv: 2010 .
09458. [Online]. Available: https://arxiv.org/abs/2010.09458.

39

https://keras.io/
https://keras.io/
https://keras.io/keras_tuner/
https://arxiv.org/abs/1912.05848
https://console.cloud.google.com/
https://console.cloud.google.com/
https://cplusplus.com/
https://cmake.org/
https://arxiv.org/abs/2010.09458
https://arxiv.org/abs/2010.09458
https://arxiv.org/abs/2010.09458

Appendix A

Final model architectures

Figure A.0.1: Illustration of the final architecture of simple RNN model 1, displaying
inputs, layers, widths and outputs.

40

Figure A.0.2: Illustration of the final architecture of simple RNN model 2, displaying
inputs, layers, widths and outputs.

Figure A.0.3: Illustration of the final architecture of simple RNN model 3, displaying
inputs, layers, widths and outputs.

41

Figure A.0.4: Illustration of the final architecture of GRUmodel 1, displaying inputs,
layers, widths and outputs.

Figure A.0.5: Illustration of the final architecture of GRUmodel 2, displaying inputs,
layers, widths and outputs.

42

Figure A.0.6: Illustration of the final architecture of GRUmodel 3, displaying inputs,
layers, widths and outputs.

Figure A.0.7: Illustration of the final architecture of GRUmodel 4, displaying inputs,
layers, widths and outputs.

43

Appendix B

Loss plots

Figure B.0.1: Loss plot from training simple RNN model 1, comparing training and
validation loss

44

Figure B.0.2: Loss plot from training simple RNN model 2, comparing training and
validation loss

Figure B.0.3: Loss plot from training simple RNN model 3, comparing training and
validation loss

45

Figure B.0.4: Loss plot from training GRU model 1, comparing training and valid-
ation loss

Figure B.0.5: Loss plot from training GRU model 2, comparing training and valid-
ation loss

46

Figure B.0.6: Loss plot from training GRU model 3, comparing training and valid-
ation loss

Figure B.0.7: Loss plot from training GRU model 4, comparing training and valid-
ation loss

47

Appendix C

Quantitative results

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0098 Not tested Not tested

BCL
validation data

0.0123 Not tested Not tested

BCL
test data

0.1026 Not tested Not tested

Average BA
training data

0.9960 Not tested Not tested

Average BA
validation data

0.9955 0.9955 0.9955

Average BA
test data

0.9770 0.9770 0.9770

Overlap
training data

0.9533 Not tested Not tested

Overlap
validation data

0.9507 0.9508 0.9508

Overlap
test data

0.8018 0.8023 0.8023

Table C.0.1: Table displaying the quantitative results for simple RNN model 1.

48

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0108 Not tested Not tested

BCL
validation data

0.0134 Not tested Not tested

BCL
test data

0.1284 Not tested Not tested

Average BA
training data

0.9957 Not tested Not tested

Average BA
validation data

0.9952 0.9950 0.9950

Average BA
test data

0.9743 0.9743 0.9743

Overlap
training data

0.9496 Not tested Not tested

Overlap
validation data

0.9478 0.9462 0.9462

Overlap
test data

0.7831 0.7837 0.7837

Table C.0.2: Table displaying the quantitative results for simple RNN model 2.

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0157 Not tested Not tested

BCL
validation data

0.0159 Not tested Not tested

BCL
test data

0.0428 Not tested Not tested

Average BA
training data

0.9940 Not tested Not tested

Average BA
validation data

0.9947 0.9946 0.9946

Average BA
test data

0.9863 0.9769 0.9769

Overlap
training data

0.9287 Not tested Not tested

Overlap
validation data

0.9403 0.9394 0.9394

Overlap
test data

0.8764 0.8102 0.8102

Table C.0.3: Table displaying the quantitative results for simple RNN model 3.

49

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0109 Not tested Not tested

BCL
validation data

0.0159 Not tested Not tested

BCL
test data

0.1056 Not tested Not tested

Average BA
training data

0.9930 Not tested Not tested

Average BA
validation data

0.9926 0.9953 0.9953

Average BA
test data

0.9820 0.9795 0.9795

Overlap
training data

0.9496 Not tested Not tested

Overlap
validation data

0.9490 0.9482 0.9482

Overlap
test data

0.8222 0.8225 0.8225

Table C.0.4: Table displaying the quantitative results for GRU model 1.

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0104 Not tested Not tested

BCL
validation data

0.0127 Not tested Not tested

BCL
test data

0.0672 Not tested Not tested

Average BA
training data

0.9931 Not tested Not tested

Average BA
validation data

0.9929 0.9943 0.9943

Average BA
test data

0.9857 0.9795 0.9795

Overlap
training data

0.9507 Not tested Not tested

Overlap
validation data

0.9500 0.9354 0.9354

Overlap
test data

0.8134 0.8139 0.8139

Table C.0.5: Table displaying the quantitative results for GRU model 2.

50

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0098 Not tested Not tested

BCL
validation data

0.0123 Not tested Not tested

BCL
test data

0.0573 Not tested Not tested

Average BA
training data

0.9934 Not tested Not tested

Average BA
validation data

0.9930 0.9953 0.9953

Average BA
test data

0.9878 0.9782 0.9782

Overlap
training data

0.9534 Not tested Not tested

Overlap
validation data

0.9508 0.9492 0.9492

Overlap
test data

0.8774 0.8101 0.8101

Table C.0.6: Table displaying the quantitative results for GRU model 3.

Performance metric Keras model Tflite model Quantized tflite model

BCL
training data

0.0180 Not tested Not tested

BCL
validation data

0.0156 Not tested Not tested

BCL
test data

0.0734 Not tested Not tested

Average BA
training data

0.9887 Not tested Not tested

Average BA
validation data

0.9882 0.9942 0.9942

Average BA
test data

0.9827 0.9762 0.9762

Overlap
training data

0.9207 Not tested Not tested

Overlap
validation data

0.9375 0.9360 0.9360

Overlap
test data

0.7954 0.7958 0.7958

Table C.0.7: Table displaying the quantitative results for GRU model 4.

51

Appendix D

Qualitative results

(a) Sample ping 1, simple RNN model 1 (b) Sample ping 2, simple RNN model 1

(c) Sample ping 3, simple RNN model 1 (d) Sample ping 4, simple RNN model 1

(e) Sample ping 5, simple RNN model 1 (f) Sample ping 6, simple RNN model 1

Figure D.0.1: Sample pings for qualitative analysis of simple RNN model 1.

52

(a) Sample ping 1, simple RNN model 2 (b) Sample ping 2, simple RNN model 2

(c) Sample ping 3, simple RNN model 2 (d) Sample ping 4, simple RNN model 2

(e) Sample ping 5, simple RNN model 2 (f) Sample ping 6, simple RNN model 2

Figure D.0.2: Sample pings for qualitative analysis of simple RNN model 2.

53

(a) Sample ping 1, simple RNN model 3 (b) Sample ping 2, simple RNN model 3

(c) Sample ping 3, simple RNN model 3 (d) Sample ping 4, simple RNN model 3

(e) Sample ping 5, simple RNN model 3 (f) Sample ping 6, simple RNN model 3

Figure D.0.3: Sample pings for qualitative analysis of simple RNN model 3.

54

(a) Sample ping 1, GRU model 1 (b) Sample ping 2, GRU model 1

(c) Sample ping 3, GRU model 1 (d) Sample ping 4, GRU model 1

(e) Sample ping 5, GRU model 1 (f) Sample ping 6, GRU model 1

Figure D.0.4: Sample pings for qualitative analysis of GRU model 1.

55

(a) Sample ping 1, GRU model 2 (b) Sample ping 2, GRU model 2

(c) Sample ping 3, GRU model 2 (d) Sample ping 4, GRU model 2

(e) Sample ping 5, GRU model 2 (f) Sample ping 6, GRU model 2

Figure D.0.5: Sample pings for qualitative analysis of GRU model 2.

56

(a) Sample ping 1, GRU model 3 (b) Sample ping 2, GRU model 3

(c) Sample ping 3, GRU model 3 (d) Sample ping 4, GRU model 3

(e) Sample ping 5, GRU model 3 (f) Sample ping 6, GRU model 3

Figure D.0.6: Sample pings for qualitative analysis of GRU model 3.

57

(a) Sample ping 1, GRU model 4 (b) Sample ping 2, GRU model 4

(c) Sample ping 3, GRU model 4 (d) Sample ping 4, GRU model 4

(e) Sample ping 5, GRU model 4 (f) Sample ping 6, GRU model 4

Figure D.0.7: Sample pings for qualitative analysis of GRU model 4.

58

(a) Sample ping 1, input (b) Sample ping 2, input

(c) Sample ping 3, input (d) Sample ping 4, input

(e) Sample ping 5, input (f) Sample ping 6, input

Figure D.0.8: Input of the pings used for qualitative analysis.

59

Appendix E

Inference on DIGI board

Inference times
Model name Average (ms) Total (s)

Simple RNN
Model 1

17.71 88.5331

Simple RNN
Model 1 quantized

17.67 88.3420

Simple RNN
Model 2

6.829 34.1470

Simple RNN
Model 2 quantized

6.845 34.2273

Simple RNN
Model 3

5.975 29.8748

Simple RNN
Model 3 quantized

5.968 29.8407

GRU model 1 21.91 109.5638

GRU model 1 quantized 22.05 110.2580

GRU model 2 26.40 132.0006

GRU model 2 quantized 26.41 132.0514

GRU model 3 51.35 256.7456

GRU model 3 quantized 51.45 257.2596

GRU model 4 21.97 109.8654

GRU model 4 quantized 21.92 109.6121

Table E.0.1: Table displaying the average and total inference times for each model.
All inference times are from testing on 5000 pings from the test dataset using python
code running on CPU.

60

Model name Initialization footprint (MB) Total footprint (MB)

Simple RNN
Model 1

50.78 50.78

Simple RNN
Model 1 quantized

56.81 56.81

Simple RNN
Model 2

19.83 22.86

Simple RNN
Model 2 quantized

25.29 25.54

Simple RNN
Model 3

19.04 19.04

Simple RNN
Model 3 quantized

20.74 21.00

GRU model 1 59.57 59.94

GRU model 1 quantized 64.53 64.79

GRU model 2 67.99 71.18

GRU model 2 quantized 79.03 79.29

GRU model 3 157.39 157.71

GRU model 3 quantized 141.33 143.23

GRU model 4 70.68 71.53

GRU model 4 quantized 78.22 78.49

Table E.0.2: Table displaying approximate memory footprints for each model.

61

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Fredrik Almås

Bottom-detection in Doppler Velocity
Logs using Recurrent Neural
Networks on an embedded platform

Master’s thesis in Engineering Cybernetics
Supervisor: Jo Arve Alfredsen
Co-supervisor: Waseem Hassan
June 2022M

as
te

r’s
 th

es
is

	Preface
	List of Figures
	List of Tables
	Introduction
	Motivation
	Literature review
	Bottom detection algorithms
	Deep Learning for subsea navigation
	Time series classification with recurrent neural nets

	Research objectives
	Outline

	Theory
	Subsea Navigation
	LBL, SBL and USBL acoustic positioning systems
	Inertial Navigation systems

	Doppler Velocity Log
	Norteks DVL bottom-tracking

	Deep Learning
	Learning paradigms

	Neural network fundamentals
	Recurrent Neural Networks
	Embedded Machine Learning

	Recurrent Neural Networks for bottom detection
	Problem description
	Data
	Data pre-pocessing

	Evaluation Matrix
	Models
	Simple RNN
	GRU
	Tuning and optimisation

	Inference on embedded device
	Implementation

	Results and Discussion
	RNN bottom-detection
	Quantitative analysis
	Qualitative analysis
	Tflite models

	Inference on CC8MNDVK

	Conclusion and further work
	Conclusions
	Further work
	Inference on embedded GPU
	Experiments with Hyperbolic Tangent activation
	Neural networks with overlap loss function
	Improving regularisation

	Bibliography
	Final model architectures
	Loss plots
	Quantitative results
	Qualitative results
	Inference on DIGI board

