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Abstract

IoT technology has created new opportunities for measuring important as-
pects of nature, and is especially important as the focus on climate increases.
Water has previously proven to be challenging to monitor, but with new low-
power devices one can measure groundwater, rivers, lakes, and seawater more
accurately, and at a much larger scale than before.

In this thesis a system for collecting water level data in nature has been
designed, implemented, and tested. A PCB was designed and ordered, two
sensors have been ordered to be used alongside the designed electronics, and
a cloud service has been used to log data to some extent. The goal for the
thesis is to produce a system which can be deployed to collect water level
data for long periods of time without maintenance. The thesis investigates the
collected data, wireless technology for use in remote IoT devices, and energy
consumption.

The system succeeded to log data in nature in two separate occasions, the
longest of them lasting for seven days. Energy consumption of the system was
measured, and it was found that the system can be deployed for months. Some
improvements are left to be done, as the database and GUI for storing and
plotting the data was not fully implemented.
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Sammendrag

IoT-teknologi har skapt nye muligheter for å måle viktige aspekt i naturen,
og blir stadig viktigere ettersom fokuset på klima øker. Vann har tidligere
vist seg vanskelig å overvåke, men med ny lav-energi elektronikk kan en måle
grunnvann, elver, innsjøer, og havvann mer nøyaktig, og på en mye større skala
enn før.

Et system for innsamling av vanndata ble designet, implementert, og testet.
Et kretskort ble designet og bestilt, to sensorer ble bestilt og brukt med den
designede elektronikken, og en skytjeneste ble brukt til å loggføre dataene til
en viss grad. Målet er å produsere et system som kan bli utplassert for å samle
inn data om vannivå i lange tidsrom uten vedlikehold. Oppgaven ser på de
innsamlede dataene, trådløs kommunikasjon i IoT-enheter, og energiforbruk.

Systemet lyktes med å logge vanndata i naturen ved to separate anledninger,
hvor den lengste av dem varte i sju dager. Energiforbruket til system ble
målt, og det ble funnet at systemet kan være utplassert i måneder av gangen.
Noe arbeid gjenstår, ettersom databasen og brukergrensesnittet for lagring og
plotting av data ikke ble fullstendig implementert.
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Chapter 1
Introduction

1.1 Background

The interest for the Internet of Things (IoT) has increased over the past years.
New technology has enabled the industry to combine embedded systems and
wireless communication to create wholly new applications. These systems
are often called IoT devices. Advances in embedded engineering has created
better low-power microcontrollers, wireless communication, and sensor techno-
logy. The ability to measure and process data, and then send it wirelessly with
very low energy consumption gives us the ability to create small, cheap, and
long-lived devices for new applications. This progress has made IoT a viable
solution to many of the problems facing today’s society. IoT describes systems
utilizing sensors and communication technology which work either by them-
selves or in groups to perform tasks. This technology has a wide range of uses,
and are often employed for large scale data collection, and when small and scal-
able solutions are needed. They see use everywhere, from consumer products
to industry applications; Smart homes, health monitoring in medicine, in the
transportation industry, manufacturing, agriculture, martime systems, infra-
structure, environmental monitoring, and military operations are all fields in
which IoT has seen use.

As mentioned, there have been created numerous IoT applications for envir-
onmental monitoring and infrastructure, differing wildly in use-cases. These
include measuring the air and water quality, measuring atmospheric and soil
conditions, and early detection of earthquakes and tsunamis. These devices
can provide early warnings in the case of natural disasters or other events
which could lead to the damage of important infrastructure. By doing so,
they provide great societal benefits.

Systems for measuring water can be useful in a wide variety of cases. Ground-
water, rivers, lakes, and seawater are all important parts of nature which we
still could benefit from measuring more closely. IoT devices for measuring
groundwater can prove useful for the residents of the area. Rivers can be

1



measured to protect local infrastructure, or possibly provide warnings for an-
omalies and to prevent natural disasters.

Can a system for measuring water levels be made such that it can be placed
outdoors for prolonged periods of time to collect useful data? If so, how is such
a system designed, and what sensors should be used to make the application
both reliable and cheap? It would need to utilize wireless communication
to transmit its data to an operator’s desk. Designing such a system comes
with challenges. It needs to be created with limited resources, especially with
cost in mind to make such a product scalable. To ensure the longevity of the
system one needs to consider its power consumption and its accuracy over time.
Simultaneously it needs to be precise enough to return any meaningful data,
all while being waterproof. The system developed in this thesis will be used
to measure both water level in controlled environments, as well as in nature.
It should be able to detect water levels in both stationary waters, e.g. lakes
and ground water, as well as in more rapidly moving waters such as rivers.

1.2 Motivation

I chose this thesis due to my interest in embedded systems, as well as wanting
to expand my knowledge on wireless sensor networks. Since I started as a
student at the university I knew I wanted to work on embedded systems. I
have previously worked with sensor networks and measurements related to
water during my summer internships, and found it enjoyable.

I also wanted a practical assignment, to work with something hands-on in
the field. Collecting data in nature is vital, and especially water. Flooding,
for example, is a prevalent natural disaster and to work on systems which can
provide an early warning for such events serves as a strong motivational factor.

1.3 Limitations

The system was only tested for a week at most. Ideally the system should have
been tested for at least a month to truly test the battery time and real-time
clock drift. The test in Estenstadmarka only lasted for a few hours, due to
fear of potential theft or interference by strangers. It should also have been
tested during different weather conditions, to see how robust it truly is. Other
sensors could also have been tested, to see if the energy consumption could be
reduced, and if cheaper and less accurate sensors could be used. There was
little preexisting knowledge about LoRa, so the cloud service implementation
was somewhat done in a rush.

2



1.4 Disposition

Chapter 2 Literature Review is divided in three parts. First it contains
studies done on water level measurement, then a section on different long-range
wireless technologies, and finally theory and studies on sensors for measuring
water level, as well as a brief look at sensor systems already on the market.

Chapter 3 Design presents design specifications for a system that can meas-
ure water level in nature. It proposes a design for the complete system, from
embedded hardware and software, to the server-side software.

Chapter 4 Implementation contains the details for the implementation of
the hardware and software for the proposed system from Chapter 3.

Chapter 5 Testing and results details how the system was tested, as well
as presenting the results of said tests.

Chapter 6 Discussion discusses the findings from Chapter 5 in detail.

Chapter 7 Conclusion concludes the thesis and its findings.

Chapter 8 Future work suggests improvements that can be done to the
system that was proposed, implemented, and tested.

Appendix A contains the part list and the complete schematic for the PCB.

Appendix B contains screenshots of the TTN GUI and control panel.
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Chapter 2
Literature review

The purpose of this chapter is to investigate different measurement systems for
use in logging water levels. The literature review will discuss different aspects
of measuring water with embedded hardware.

Section 2.1 covers surveys done to compare different IoT water measurements
systems. It discusses how the systems have been implemented, based on what
hardware is used, which sensors have been chosen, and whether or not energy
consumption was considered.

Section 2.2 discusses different wireless technologies to find a good candidate
for the wireless communication module used in this thesis.

Section 2.3 investigates research done on the topic of water level measurement,
with a focus on sensors. 2.3.3 compares different already existing products on
the market to get a benchmark for what to expect of the specifications for such
a system.

2.1 Systems

2.1.1 Survey of the Systems for Water Level Detection

The following is fetched from K. S. Mehta, P. T. Maru, and N. P. Shaha, 2020
[1]

In Survey of the Systems for Water Level Detection [1], Mehta, Maru, and Shah
conducted a survey IoT device for measuring of water levels. As described in
the paper, they focused on devices which could calculate water rates. Collect-
ing quantitative data measured from different consumption units could then
be used to predict water demand. This data could then prove useful by load
sharing, making the process of supply and demand more efficient.
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The survey is relatively new, conducted in December of 2020. It compares
several different papers discussing IoT-based water level measurement. Mehta,
Maru, and Shah compare many different aspects of water level measurement,
including which microcontroller was used, which sensor the paper used, cloud
solutions, cost of production, and more. The IoT solutions compared are
listed in Table 2.1.1. As mentioned, IoT devices can support a wide array
of different types of sensors. The comparison shows that many of the papers
settled on basic ultrasonic measurement systems (UMS). Some mentioned the
use of pH sensors and water (conductivity) sensors. Some of the papers also
employed machine learning algorithms to improve the accuracy of the water
level measurement.

It was found that there are few existing systems, all with their respective
drawbacks. The survey mentions some of the challenges still left to solve for
measuring water levels using IoT-based technology. Providing viable data is
one such challenge. The survey mentioned machine learning algorithms to
improve accuracy of the measured water level. The survey also mentioned
improving or reconstructing a better IoT packet, providing offline support,
and creating a better method for prediction of water levels.

Many of the papers discussed in the survey seem to prefer Arduino or similar
boards for their solutions. While being fast to implement and easy to use, they
have a few drawbacks. The most important drawbacks for this thesis being
power consumption and real-time capabilities. The findings in this survey seem
to support the work done in the specialization project [2] concerning sensors.
As stated in the survey: “Upon review of literature it is being noticed that
ultrasonic sensor and transmission of data into cloud storage is a common
practice for these systems.” Manufactured ultrasonic sensors are often easy
to use both in software and in setup, as they provide data without being in
contact with the medium. They provide accurate and repeatable results at the
expense of requiring somewhat more current draw than other types of sensors.
The use of machine learning algorithms presented in some of these papers are
also out of scope for this thesis.

The different papers discussed in Mehta, Maru, and Shah managed to measure
water as planned. However, little thought seems to have been put into the en-
ergy consumption and longevity of their devices. The Arduinos as an example
have many features such as LEDs that draw unecessary current, as well as no
built-in deep-sleep functionality. Some devices seem to only have been tested
in a lab, and only for relatively short periods of time, or with a power supply
and not a battery.
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Table 2.1.1: Comparative Study of system for Water Level Measurement. From
[1], shortened.

[Citation] Title Approach Boards Sensors Others Cost

[3] IOT based water
level meter

To detect the water
level of the dams Node MCU -

IoT packet transmit data
to an online cloud platform
used to gather and display
data

Low

[4] Smart water
quality monitoring
and metering
using LoRa for
smart villages

To detect the
quality of water

M2M LoRa,
KT-LoRa mote

PH sensor
water quality
sensor

- High

[5] IOT based water
level monitoring
and implementation
on both agriculture
and domestic areas

To estimate water
dimension and to
improve the
moisture level of
the soil

Arduino

Ultrasonic
sensor, moisture
sensor, GSM
module

- Medium

[6] Non-Contact Water
Level Monitoring
System Implemented
using LabVIEW and
Arduino

Non-contact water
level monitoring
system

Arduino UNO Ultrasonic
sensor - Low

[7] Water Demand
Prediction Using
Support Vector
Machine Regression

Water demand
prediction using
machine learning
algorithm

- -
Machine learning
algorithm along with
support Vector Regression

-

[8] A Water Level
Detection: IoT
Platform Based on
Wireless Sensor
Network

Water detection
and transmit data
to the cloud
storage for further
analysis

Node MCU

HC-SR04
(ultrasonic),
ESP8266 WiFi
module

Thingers an online cloud
platform used for plotting
the gathered data

High

[9] A Novel ANN Based
Adaptive Ultrasonic
Measurement
System for Accurate
Water Level
Monitoring

To use ultrasonic
sensor for accurate
water measurement
and monitoring
system

Arduino UNO

HC-SR04
(ultrasonic),
Bluetooth
module,
temperature and
humidity sensor

Machine learning
algorithm ANN (artificial
neural network).

Medium

[10] Flash Flood
Detection in Urban
Cities Using
Ultrasonic and
Infrared Sensors

In this paper the
flash floods are
detected by the
author with the
help of ultrasonic
rangefinder sensor
and some infrared
temperature
sensors.

32-bit micro-
controller

Pir motion
sensor, zigbee
module, ultra-
sonic sensor,
infrared
temperature
sensor

- High

[11] Assessment of
Surface Water
Quality by Using
Satellite Images
Fusion Based on
PCA Method in the
Lake Gala, Turkey

In this proposed
system satellite
images are used
to detect water
quality of the lake

- -

Satellite images from
various satellites are used.
PCA, MLR, ANN, SVM
machine learning algorithm
used.

-

[12] Water Level
Measurement
Device And
Shoreline Extraction
Method

Water level
measurement
device and
shoreline
extraction method.

- -
Machine learning for
identifying water areas and
non-water.

-

[13] Smart Water Quality
Monitoring System

A smart water
quality monitoring
system used to
check the quality
of the water

32-bit micro-
controller

ESP8266 WiFi
module, GSP
module, pH
sensor,
humidity sensor

- Low
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2.1.2 IoT and ICT based Smart Water Management,
Monitoring and Controlling System: A Review

The following is fetched from H. Yasin, S. Zeebaree, M. M. Sadeeq et al., 2021
[14]

Similarly to [1], H. Yasin, S. Zeebaree, M. M. Sadeeq et al. compare different
papers on IoT-based systems which monitor and control water supplies. As
stated in their article, “intelligent monitoring is defined using different compu-
tational methods that provide the customers with relevant tools and inform-
ation in monitoring, control, manage, and optimize the network.” While the
applications for water supply monitoring and control are somewhat different to
those that only monitor water level, many of the same solutions and technolo-
gies are involved. H. Yasin, S. Zeebaree, M. M. Sadeeq et al. compare and dis-
cuss many different aspects of smart water monitoring. The articles discussed
in the paper are compared based on their chosen microcontroller, programming
language, sensors, and commuication module and protocol. Table 2.1.2 shows
a summarized comparison of various smart water applications based on IoT
technology, as done in [1].

Although many of the systems discussed in the paper were successful in their
task, few actually used a custom design. Many of the implementations relied
on popular pre-made microcontroller boards such as the Arduino, Raspberry
Pi, and NodeMCU. These are often seen as hobbyist tools due to being easy
to program and use for a specialized task, but they would not fit tasks which
require ultra low-power. These systems consume too much energy to be used
in remote locations, which would require the system to be solely powered by
battery.

Similar to the survey done by Mehta, Maru, and Shah, the systems discussed
in Yasin et al. show promising results in their collected data, but not all take
power consumption into consideration. Many were only tested in a lab, and
for short periods of time. Some of the devices discussed are expected to have a
constant voltage supply available. Some do have energy consumption in mind
however, such as [15], and state that “power consumption is a major constraint
for IoT applications, because the applications are most likely to operate on
batteries. Communication of data is a major source of power consumption.”
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Table 2.1.2: Comparison of various Smart Water Applications features based
on IoT Technologies. From [14], shortened.
[Citation] Title Microcontroller Sensors Comm. Module Protocol Result

[15] Internet of things
enabled real time water quality
monitoring system

TI CC3200

Water level,
pH, YL69,
Conductivity,
turbity

ZigBee HTTP
The low-cost water
quality control system
is less complex

[16] IoT based smart irrigation
monitoring and controlling system ATmega328

LM393,
soil moisture,
M116 water level

ZigBee HTTP

The system optimizes
the use of water for
irrigation purposes.
Furthermore, water
consumption has
decreased.

[17] A smart irrigation system
using IoT and fuzzy logic controller Mamdani Fuzzy Soil moisture,

DHT11 ZigBee HTTP
Reducing water
consumption during
irrigation.

[18] IoT based smart
water system PIC16F877 Ultrasonic,

flow, pH GSM WAP

Control the water
impurity, water
wasted, and low
water flow.

[19] Smart water management in
housing societies using IoT Raspberry Pi Ultrasonic,

turbity WiFi build-in MQTT

Enable the users to
monitor and
manage the water
management systems
remotely from their
smartphone.

[20] An IoT Based water
monitoring system for smart buildings MSP430 Flow,

pressure CC2650 MQTT

Detect water leakages,
control water wastage,
and avoid natural water
waste.

[21] Consumer’s activity
prediction in household water
consumption based-IoT

NodeMCU Flow rate ESP8266 HTTP

Increase people’s
awareness about
saving water for
sustainable water
resources.

[22] Design and development of
IOT based SMART water distribution
network for Residential areas

Raspberry Pi/Arduino Ultrasonic,
turbity, flow WiFi build-in HTTP

Distributed the same
amount of water to all
customers, maintain
water quality, and
maintain a water level
in the main water tank.

[23] IOT based smart water
management, monitoring and
distribution system for an apartment

Arduino Ultrasonic,
flow meter ESP8266 MQTT

Water wastage is fully
controlled, a cost-
effective system to save
water and money.

[24] IOT based water level
monitoring and implementation on
both agriculture and domestic areas

Arduino Ultrasonic,
soil moisture Ethernet shield HTTP

Reduce the burden of
the user in monitoring
the water level and
make it a user-friendly
system.

[25] IoT based intelligent
domestic water management system NodeMCU YF-S201 ESP8266 MQTT

Design detection model
of water usage anomaly
in households.

[26] Smart water management in
agricultural land using IoT Arduino

LM35,
DHT11,
pH,
moisture

GSM/GPRS WAP
The model is to come up
with a solution for
conserving water.

[27] IoT-based smart platform to
manage personal water usage NodeMCU pH, turbity ESP8266 MQTT

Refining the water bottle
with fuzzy theory to fine-
tune the calculation goal
of water and smartly
suggestions technique.

[28] Cloud-based internet of
things for smart water consumption
monitoring system

Raspberry Pi YF-S201 WiFi build-in HTTP

The system utilizes live
water usage data from
water flow meters at
household and draws
proper inferences from it.

[29] Exploiting constrained IoT
devices in a trustless blockchain-based
water management system

Raspberry Pi YF-201,
hall-effect RFM95W HTTP

Incur an additional 6%
of the energy consumed
for their typical interactions
with a gateway.

[30] IoT and cloud computing
based smart water metering system NodeMCU YF-S201 WiFi build-in MQTT

Detect excess water
consumption by using
machine learning.

[31] IoT based water quality
monitoring system and evaluation NodeMCU pH ESP8266 MQTT

Automatically updates
the status of water
quality, real-time monitoring,
less operational maintenance.

[32] Smart water leakage
and theft detection using IoT Arduino YF-S201 ZigBee, Rola HTTP

Save water resources in areas
where pipeline connection is
in use.

[33] The Internet of Things
(IOT) based smart rain water
harvesting system

NodeMCU
pH,
rainfall,
ultrasonic

ESP8266 MQTP
Retain the quality of precious
rainwater, collect rainwater in
areas of tiny size houses.

[34] IOT based water quality
monitoring system LPC2148

pH, EC,
turbity,
LM35

ESP8266 MQTP Low cost, efficient, real-time
water quality monitoring.
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2.2 Wireless communication

Most low-power devices consume the most energy when transferring data.
With recent advances in IoT, new low-power communication protocols have
been developed to increase the lifetime of battery powered systems. This sec-
tion will focus on these low-power communication methods. Important aspects
to consider when choosing the communication technology for an IoT-device is
quality of service (QoS), energy consumption, scalability, range, price, and de-
ployment model. The literature review will not cover short-range technologies,
as these are deemed unsuitable for systems measuring in rural outdoors loca-
tions. While it is possible to connect devices in a mesh topology to increase
range [35], only a star topology will be considered as Low Power Wide Area
Network (LPWAN) technologies were considered to be more suitable for the
system which will be designed and implemented for this thesis.

Two different LPWAN technologies are primarily used in IoT-devices to com-
municate over long distances, unlicensed LPWA and cellular technology. Sigfox
and LoRaWAN are the two main technologies used in the unlicensed LPWA
category [36]. Unlicensed LPWA has been developed for IoT-devices which
require low power usage and long range. NB-IoT is cellular technology de-
signed for use in IoT, based on a liscensed spectrum primarily used for mobile
communication [37].

The following is fetched from K. Mekki, E. Bajic, F. Chaxel, and F. Meyer,
2019 [35]

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer compare different LPWAN tech-
nologies in their paper Overview of Cellular LPWAN Technologies for IoT
Deployment: Sigfox, LoRaWAN, and NB-IoT [35]. The paper focuses on
three leading LPWAN technologies, Sigfox, LoRaWAN, and NB-IoT. The pa-
per compares quality of service, coverage, range, latency, battery life, scalabil-
ity, payload length, deployment, and cost of each communication technology.
It also considers different application scenarios and explain which of these
technolgies best fit for each application.

As described in the paper, BLE and ZigBee are not adapted for long range
transmission, and most cellular technolgies, namely 2G, 3G, and 4G consume
too much energy to be suitable for small low-power IoT-devices. Therefore they
are not included in the comparison. ZigBee and BLE can utilize mesh networks
to circumvent their lack of range. This however, comes at the cost of requiring
deployment of a large number of devices. Also, as some devices become more
congested than others, the battery lifetime is also significantly reduced in the
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most active devices. Sigfox, LoRaWAN, and NB-IoT can connect in a star
topology, to let them send data directly to a back end. This saves on energy
consumption and gives immediate access to data to an operator. Transmitting
directly to a back end that is always-on also removes the need to listen before
transmitting each message.

Comparison:

Quality of service — Quality of service (QoS) can guarantee some level of
performance to wireless communication. Sigfox and LoRaWAN both employ
an asynchronous protocol, while NB-IoT employs a synchronous protocol which
provides quality of service. Quality of services comes at the detriment of cost
however. K. Mekki et al. recommend using NB-IoT for applications which
need guaranteed QoS.

Battery life — All three technologies utilize sleep modes as much as possible,
but NB-IoT consumes additional energy due to its synchronous communication
and QoS handling. NB-IoT also has a higher peak current while sending data.
While Sigfox and LoRaWAN are useful for less power consumption, they come
at the cost of latency and connectivity.

Scalability and payload length — NB-IoT offers more connected devices per
base station and longer payload length. NB-IoT allows for 100K devices per
station, while Sigfox and LoRaWAN offer 50K per cell. NB-IoT allows for
transmission of data up to 1600 bytes, while LoraWAN allows a maximum
of 243 bytes. Sigfox has the lowest payload length of 12 bytes, which could
limit its utilization on various IoT-devices which need to send large amounts
of data.

Coverage and range — Sigfox boasts a range of >40km from a single base
station, and LoRaWAN provides a range of <20km. NB-IoT has the lowest
range of <10km. NB-IoT also does not cover regions without LTE coverage.

Deployment model — Unlike Sigfox and NB-IoT, LoRaWAN offers a local
network deployment, LAN using a LoRa gateway, as well as public network
operation via base stations.

Cost — Sigfox and LoRaWAN offer a much cheaper price, at 2 Euro per device
for Sigfox, and 3-5 Euro per device for LoRaWAN. With over 20 Euro per
deivce for NB-IoT. NB-IoT base stations cost much more, while also covering
less area. Table 2.2.1 shows a comparison of different prices for each of the
three different communication technologies.
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Table 2.2.1: Cost of Sigfox, LoRaWAN, and NB-IoT, from [35].

Spectrum cost Deployment cost End-device cost
Sigfox Free >4000 €/base station <2€

LoRaWAN Free >100 €/gateway
>1000 €/base station 3-5€

NB-IoT >500M€/MHz >15000 €/base station >20€

The work of K. Mekki, E. Bajic, F. Chaxel, and F. Meyer is summarized in
Figure 2.2.1, which visualizes the different aspects of Sigfox, LoRaWAN, and
NB-IoT. The Figure shows how NB-IoT provides better quality of communic-
ation, at the cost of energy consumption, price, and range. Table 2.2.2 shows
a more detailed comparison of the three different communication technologies.

Figure 2.2.1: Respective advantages of Sigfox, NB-IoT, and LoRaWAN, from
[35].
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Table 2.2.2: Overview of LPWAN technologies: Sigfox, LoRaWAN, and NB-
IoT, from [35].

Sigfox LoRaWAN NB-IoT
Modulation BPSK CSS QPSK

Frequency Unlicensed ISM bands
(868MHz in Europe)

Unlicensed ISM bands
(868MHz in Europe)

Licensed LTE frequency
bands

Bandwith 100Hz 250kHz and 125kHz 200kHz
Maximum data rate 100bps 50kbps 200kbps
Bidirectional Limited / Half-duplex Yes / Half-duplex Yes / Half-duplex
Maximum
messages/day 140 (UL), 4 (DL) Unlimited Unlimited

Maximum payload
length

12 bytes (UL),
8 bytes (DL) 243 bytes 1600 bytes

Range 10km (urban),
40km (rural)

5km (urban),
20km (rural)

1km (urban),
10km (rural)

Interference immunity Very high Very high Low
Authentication &
encryption Not supported Yes (AES 128b) Yes (LTE encryption)

Adaptive data rate No Yes No

Handover End-devices do not join
a single base station

End-devices do not join
a single base station

End-devices join a single
base station

Localization Yes (RSSI) Yes (TDOA) No (under specification)
Allow private network No Yes No

Standarization
Sigfox company is collaborating
with ETSI on the standardization
of Sigfox-based network

LoRa-Alliance 3GPP

2.3 Sensors

The specialization project Sensors for measuring water level in nature [2]
by Austnes investigates instrumentation for measuring water levels in rivers,
streams, and in groundwater. The goal is to investigate sensors which can
provide measurements of water level wirelessly for extended periods of time.
It examines different measurement principles, looking at the availability and
suitability of equipment, assessing robustness and energy needs.

The specialization project assignment is comprised of three parts. Firstly, a
literary study is conducted on systems used for water level measurements, with
a special focus on the sensors used for the measurement. Secondly, sensors for
a battery powered water level measurement system are proposed. Thirdly,
experiments are conducted to verify the viability of the proposed sensors.

This thesis is a natural progression of the work done in the specialization
project [2]. As the assignment consisted of performing a literature review on
systems used for water level measurement, with a special focus on the sensors
used in such systems, the literature is highly relevant for this thesis. Further,
the specialization project proposed sensors to be used in a battery powered
water level measurement system, which also proves as useful literature. For
the sake of completeness of this thesis, parts of the specialization project is
summarized here with minor changes. Sections 2.3.1, 2.3.2, and 2.3.3 are from
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the specialization project [2].

2.3.1 Virtual techniques for liquid level monitoring us-
ing differential pressure sensors

The following is fetched from G. Nikolov, B. Nikolova, 2008 [38]

G. Nikolov, B. Nikolova (2008) explore possibilities for a software centric sys-
tem for continuous liquid level measurement and monitoring of various liquids.
The reason for developing a software centric design was to simplify the equip-
ment design. By using only a few sensors one can easily extract user-defined
data from various physical phenomena using software solutions. As part of
their research, they have compared different sensors as shown in table 2.3.1.
The table compares sensors used commonly for measuring water level and
water density.

The experiment in by G. Nikolov, B. Nikolova (2008) was based on detection
by hydrostatic pressure. The experiment was conducted in a closed tank. Per-
forming experiments in such a controlled environment also allowed for a con-
trolled instrument setup. The technique was based on two differential pressure
sensors, as well as a thermocouple for temperature measurements. These were
all connected to a portable multifunction data acquisition board (DAQ). One
differential pressure sensor was mounted so to measure the difference between
the atmospheric pressure and the pressure at the bottom of the tank. The
other was mounted such that it measured the pressure difference between two
points within the liquid, with a known distance between each other. The
mounting of the equipment is shown in figure 2.3.1.
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Figure 2.3.1: Mounting of the two differential pressure sensors and the ther-
mocouple, from [38]
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Table 2.3.1: Comparison between different methods for continuous liquid level
measurement, from [38]

Meth-
od/
Sensor Advantages Disadvantages

Emerging Technologies (Time-of-Flight Measurements)

Ul-
trason-
ic/Sonic

Easy to install; Non-contact measure-
ment; No moving parts; Can measure
corrosive and volatile liquids

Need high power; Low accur-
acy; Not operate on vacuum or
high pressure applications; Ex-
pensive; Temperature correction
is needed

Laser
Level
Trans-
mitters

Use in vessels with numerous obstruc-
tions; High level of accuracy (better
than 1 mm)

Expensive; Fails if dust, smoke,
etc. are present in the vessel;
Sensitive to dirt

Radar
(Mi-
crowaves)
Level
Trans-
mitters

Non-contact measurement; The
transmission time is unaffected by
ambient temperature and pressure
fluctuations (can be used in closed
tanks, where the liquid is turbulent
and in the presence of obstructions
and steam condensate)

Internal piping and multiple re-
flections can cause erroneous
readings; Transmitter setup can
be tedious and changes in the
process environment can be prob-
lematic; The appropriate licences
have to be obtained

Level measurement by hydrostatic pressure
Bubbler-
type
sensor

Simplicity of design; Low initial pur-
chase cost

Not suitable for use in non-vented
vessels; Used gas may affect the
contents of the tank

Differ-
ential
Pressure
Silicon
Sensors

Inexpensive, Wide range measure-
ments; Can be isolated safely from
the process; Measurements can be
digitally networked for remote com-
puter access

Need power and active electronic;
Require two vessel penetrations;
Depends on the density and the
temperature of the liquid

Level Measurements by Detecting Electrical Properties
Capa-
citance
level
trans-
mitters

Suitable for use in extreme condi-
tions; Only a single tank penetration
is required

Large errors caused by coatings;
Normally limited to water-like
media; Temperature correction is
needed

RF
Capacit-
ance

Wide range of process conditions; No
moving parts; Only a single tank
penetration; Easy to use, Simple to
clean

Special considerations is needed,
to minimize errors caused by
probe movement; Specific cir-
cuitry is needed

Up thrust buoyancy (Float systems)

Displa-
cers/-
Floats

The only available technique for a
cryogenic application; Adaptable to
wide variations in fluid densities

Only for relatively clean fluids;
High installation cost; Depends
on the specific gravity of the li-
quid; Temperature correction is
needed

Mag-
neto-
strictive
Sensor

High level of accuracy; Reliable and
repeatable; Non-contact; Low main-
tenance cost; Wide operating tem-
perature range; Low and stable off-
set and low sensitivity to mechanical
stress

Can work only if the auxiliary
column and chamber walls con-
structed by nonmagnetic mater-
ial; Magnets must not be operated
beyond their Curie point

The article briefly mentions theory on hydrostatic pressure, and how to meas-
ure the liquid height based on measurements using two pressure sensors. Three
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types of pressure measurement are listed in the paper.

• Absolute pressure, which is the pressure of a medium relative to vacuum.

• Differential pressure, which is the pressure difference between two medi-
ums.

• Gage pressure, which is the differential pressure between a medium rel-
ative to the atmospheric pressure.

The paper also mentions useful parameters to compare pressure sensors by.
Designing systems with pressure sensors for high accuracy requires considering
linearity, ratiometricity, stability, repeatability, hysteresis, null set point, span
set point, and null temperature shift. G. Nikolov, B. Nikolova (2008) use
Freescale’s MPX5100DP integrated pressure sensor, which was used for liquid
level measurement. It has temperature compensation, signal conditioning,
and calibration on chip (DP2 in figure 2.3.1). A similar sensor, Freescale’s
MPXV5004DP was used to measure the liquid density (DP1 in figure 2.3.1).

By measuring the liquid density through the differential pressure in the liquid
to extract the density, as well as the pressure at the bottom of the medium,
one can extract the level. The hydrostatic pressure can be found by using
equation 2.1.

P = Patm + ρgh (2.1)

P is the pressure of the medium measured in Pa, Patm is the atmospheric pres-
sure in Pa, ρ is the mass density of the liquid, g is the gravitational constant,
and h is the vertical distance from the submerged sensor to the liquid surface.

In G. Nikolov, B. Nikolova (2008), the liquid density is found through the
differential pressure between two points in a liquid with a known distance
between them. Using 2.1 one finds that

∆P1 = ρghref (2.2)

where P1 is the measured pressure by the sensor DP1 in figure 2.3.1. This
gives the equation for the liquid density

ρ =
∆P1

ghref

(2.3)

Using this in 2.1, as well as the differential pressure measured by DP2 in figure
2.3.1 one can find the height by

h =
∆P2

ρg
=

∆P2

∆P1

href (2.4)
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This method can be used to measure the liquid level even if the density of the
medium is changing over time.

2.3.2 Water level and discharge measurements

The following is fetched from F. Larrarte, M. Lepot, F. Clemenset al., 2021 [39]

With urban drainage and stormwater management in focus, F. Larrarte et
al. (2021) discusses important aspects of collecting data from urban sewage
pipe systems. Various concepts for both water level and flow velocity are
described and discussed. This thesis is mostly concerned with measuring water
level, but the flow could also prove useful when extending the functionality
of the measurement system being proposed for this project. F. Larrarte et
al. (2021) conciders the velocity as a function of the water level. It would
however likely have hysteresis, as shown in figure 2.3.2. In conclusion it would
likely only occur in uniform steady flows, or controlled environments (in sewer
systems). They recommend to carefully select the measurement site and using
two separate sensors to measure the water level and the velocity.

Figure 2.3.2: Water level/velocity hysteresis in sewer systems, from [39].

Pressure sensors are mentioned as a method for measuring water level. For
moving liquids, the method is based on the Bernoulli relation [39]. With
conservation of the sum, the equation is given by:

P

ρg
+ z(x, y) +

V (x, y)2

2g
(2.5)
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where P is the pressure, ρ is the density, z is the water height at a point (x, y),
and V is the velocity at a point (x, y) in a cross section of the stream. One
could calculate the water level by using this relation, but this phenomenon
poses a problem for extracting water level through pressure. As the water
velocity is inversely related to the pressure, the measurement will be affected
by changing water velocity. Therefore if one wishes to measure the water level
using pressure, it needs to be placed such that the velocity of the water is
low around the sensor. As mentioned in F. Larrarte et al. (2021), a velocity
of 1m/s leads to an overestimation of the water level of 5cm, and for 2m/s
the overestimation will be 20cm [39]. These types of sensors do have benefits
however. They can often be installed into locations where ultrasonic sensors
would be too large to fit. Ultrasonic sensors also have dead zones, which could
also be problematic in tight areas.

F. Larrarte et al. (2021) also touches on ultrasonic sensors. These types of
sensors have been a well-received solution for long term monitoring stations
[39]. By measuring the travel time of acoustic waves which are emitted by the
sensor and then reflected by the water surface one can measure the distance
from the sensor to the water surface. Ultrasonic sensor mounted above water
can measure water height h through the following equation [39]:

h = h0 −
cairTr

2
(2.6)

Where h0 is the distance from the sensor to the bottom of the water, cair is
the speed of sound in air, and Tr is the travelling time of the ultrasound echo.
Likewise, the equation for the water level for ultrasonic sensors mounted at
the bottom of the water is given by [39]:

h = hs +
cwaterTr

2
(2.7)

where hs is the vertical distance between the sensor membrane and the ground
under water, cwater is the speed of sound in water, and Tr being the travelling
time of the ultrasound echo.

Aerial ultrasonic sensors, i.e. sensors mounted above in the air above the water
surface, are the most widespread [39]. According to F. Larrarte et al. (2021),
they are small, cheap, not really prone to drift and require less maintenance
than the submerged sensors. However, the measurements become inaccurate
if either foam or floating debris covers the surface below the sensor, or if
the composition, temperature, pressure, and/or moisture of the atmosphere
influences the speed of sound in air [39]. It is also mentioned that one might
not necessarily assume that the speed of sound in air is constant. Since the
temperature, pressure, composition, and/or moisture of the air could affect
the speed of sound enough to cause variations in the measurements, one might
need to account for these changes. Measuring additional parameters, such as
temperature and air humidity could partially correct these variations [39].
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A table listing the advantages and disadvantages of different types of sensors
can be found in F. Larrarte et al. (2021), as shown in table 2.3.2. As not
all of them are relevant to this paper, so only ultrasonic sensors and pressure
sensors have been listed in table 2.3.2.

Table 2.3.2: Pressure/ultrasound comparison, from [39].

Technology Advantages Disadvantages

Piezometric (pressure) sensor

- Continuous measurements
- No dead zone
- Average investment cost
- Works also for pressurized flow
- Easy to calibrate

- Contact with the water
- Requires regular maintenance as it

is sensitive to fouling
- Drifts easily

Ultrasonic sensor

- Continuous measurements
- Easy to install and maintain
- No contact with the effluent
- Low drift over time
- Rather low cost

- Presence of a dead zone
- Does not measure when the water level

goes up to the sensor
- Several disturbance factors (foams, floats,

temperature gradients, haze, etc.)

2.3.3 Systems on the market

To get a sense of what kinds of technology are used today, one can look
to complete logging systems which are available on the market. These can
provide useful benchmarks for comparison when developing a system for use
in measurement of water levels. There are many of these products to choose
from. They range heavily in size, cost, lifetime, communication technology,
and which and how many sensors they use. This section will only list a few of
these products, as these most closely would resemble the system developed in
this thesis in form factor and price.

One such system is Onset’s HOBO MX2001 [40]. They are pressure-based
and send data wirelessly with Bluetooth Low Energy (BLE). They come with
different operation ranges, the simplest having an operating range of 0 to
145kPa, approximating to 0 to 4m water depth at sea level. The resolution of
these measurements are 0.14cm depth. They weigh approximately 136g, and
are run on two AA batteries, lasting for 1 year of logging at 1 minute intervals.
The BLE transmission range is 30.5m in line-of-sight. It costs approximately
6000 NOK.
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Figure 2.3.3: MX2001, from [40].

Another such system is the EM500-SWL by Milesight [41]. It is based on
a gauge pressure sensor, with a customizable range from 0 up to 10m water
depth and a resolution of 1cm. It utilizes LoRa for wireless data transmission.
It uses an ER34615 battery, and has a lifetime of 4 years when logging at 10
minute intervals. It also costs approximately 6000 NOK.

Figure 2.3.4: EM500-SWL, from [41].

2.4 Summary of literature

The survey done by Mehta, Maru, and Shaha [1], and the survey by Yasin
et al. [14] were investigated in Section 2.1. A brief summary of their sur-
veys are shown respectively in Tables 2.1.1 and 2.1.2. The systems discussed
in these surveys are designed for different applications relating to measuring
water. Many of them do not create any custom embedded hardware for their
respective device, and instead use pre-made microcontroller boards such as
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the Arduino. This heavily restricts the system’s longevity, as these microcon-
troller boards are not meant for ultra low-power usage. This is also reflected
in that most systems discussed were only tested in controlled environments,
with a stable power supply. The devices in these papers seem to fit poorly
in an outdoor environment. Many of them do use an ultrasonic sensor, which
support the findings in the specialization project [2], where it was found that
the ultrasonic sensor provides a good trade-off between sensor accuracy and
energy consumption.

K. Mekki, E. Bajic, F. Chaxel, and F. Meyer [35] compare different LP-
WAN technologies and focuses on Sigfox, NB-IoT, and LoRaWAN as they are
the leading long-range low-power communication technologies. They compare
quality of service, coverage, range, latency, battery life, scalability, payload
length, deployment, and cost of each of the three technologies. A simple com-
parison of the advantages of Sigfox, NB-IoT, and LoRaWAN are shown in
Figure 2.2.1. Based on what is discussed in Section 2.2, it seems that LoRa
is the best option for the system in this thesis. It provides ample range, with
both low energy consumption and low cost of implementation.

Section 2.3 discusses different sensors for use in measuring water level and is
based on the work in the specialization project [2]. Two articles are discussed
in this section. The first by G. Nikolov, B. Nikolova [38], which implement a
system to measure water level in tanks. They also provide a brief comparison of
different sensors with their respective advantages and disadvantages, as shown
in Table 2.3.1. From this, it again seems that ultrasonic sensors are favored
for measuring water level in nature, as they provide a non-contact method for
measurement, with no moving parts.

The second article, by F. Larrarte et al. [39], discusses aspects of measur-
ing water in urban sewage pipe systems. It mentions both ultrasonic sensors
and pressure sensors as good candidates for the measurement of water level.
Ultrasonic sensors, again, for providing non-contact measurements which im-
ply easy deployment and less maintenance. Ultrasonic sensors however, have
dead zones in which they cannot provide measurements. They can also be dis-
turbed by several factors, such as foams, floats, temperature gradients, haze,
etc. [39]. Pressure sensors are favored where the smaller form factor is advant-
ageous. Pressure sensors can also be used to extract the flow of the water if
two sensors are used. This can be done by measuring the pressure in opposite
directions, both towards and away from the flow of water. Pressure sensors
are however, more susceptible to drifting.
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Chapter 3
Design

This chapter covers the functional specification, technical specification, accept-
ance criteria, and design. The requirements for the complete system will be
discussed and a proposal for implementation will be given.

3.1 Overview

A battery powered embedded system is to be designed in this thesis, complete
with sensors and a communication module. It is based on the work done in
the specialization project [2], where different sensors were tested for how viable
they were for measuring water levels. This thesis will continue the work from
the specialization project. The goal is to design and implement a complete
system for measuring water levels, with a focus on the embedded device.

The system will be designed such that it can be placed in some remote location
to collect water level data. It should then transmits its data wirelessly to a
LoRa gateway, which then forwards it to an operator’s desk with a user inter-
face. The operator’s interface in this case can be a computer with a standard
operating system, running a custom application. The user interface should
allow the the user to view the collected data, as well as to send configuration
messages back to the system. Messages are mainly sent back to synchronize
the time on the device, or to adjust the sampling interval. Figure 3.1.1 shows
a simple block diagram of how the end-device sends and receives data from
the user.
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Figure 3.1.1: Block diagram of the system, from sensors to operator’s desk.

3.2 Functional specification

The embedded system must be able to collect data outdoors without main-
tenance. This requires it to be waterproof, and battery powered with a focus
on low energy consumption. The system should have a battery life spanning
months to be useful. It also needs a wireless communication module such
that it can send and receive data. Since many different sensors can be used
to measure water level, the system should allow for multiple communication
protocols, and preferably simultaneously for the sake of testing. The system
should also utilize accurate sensors, which produce repeatable results over long
time. To make it more customizable and future proof, it should support easy
reprogramming and debugging. The system should also have reset functional-
ity, both manual and through a watchdog timer in case it stops working while
deployed. It should have a small form factor such that it can be deployed more
easily, and have a relatively low cost to alternatives already on the market. In
the case that the wireless link is broken, it should be able to operate without
LoRa coverage by saving its data in a non-volatile storage. Table 3.2.1 shows
a list of the functional specifications for the system.

Table 3.2.1: Functional specification of the system.

1. The system should be able to withstand harsh weather conditions.

2. The system should support multiple types of sensors.

3. The system should accurately represent water level.

4. The system should be accurate over time.

5. The system should operate wirelessly.

6. The system needs 2-way communication for remote access of data.

7. The system should be capable of being reset.

8. The system needs functionality for reprogramming and debugging.

9. The system should be able to operate for long periods of time without
maintenance.
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10. The system should have a small form factor (portable).

11. The system should be scalable (cheap).

12. The system should be able to store data in local non-volatile memory.

3.3 Technical specification

3.3.1 Hardware

Based on the functional specification in Table 3.2.1, the technical specifications
for the embedded hardware should be as given in Table 3.3.1.

Table 3.3.1: Technical specification of the system hardware.

1. The system should be placed in a waterproof package.

2. The system should cost approximately 1000 NOK.

3. The system should be battery powered.

4. The system should support multiple types of sensors simultaneously.

5. The system should support reading analog voltages.

6. The system should support I2C, UART, and SPI interfaces.

7. The system should have multiple UART interfaces.

8. The sensors should have an accuracy of ±1cm to provide useful data.

9. The system should support an SD card for data storage.

10. The system should be designed such that it has a lifetime of at least a
few months.

11. The chips and sensors should have low operating voltage and current
draw.

12. The system needs to support a range of input voltages to be more com-
patible with batteries.

13. The system should have a reset button.

14. The system should support debugging interfaces, along with LEDs to be
easy to use and test.
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15. The system should have a USB connection for both debugging and char-
ging.

16. The system should have a LoRa module for sending and receiving data.

3.3.2 Software

Based on the functional specification in Table 3.2.1 and hardware specification
in Table 3.3.1, the software specifications for the embedded system is as shown
in Table 3.3.2.

Table 3.3.2: Technical specification of the system software.

1. The system should utilize a sleep mode to save energy.

2. The system must be able to acquire and process sensor data.

3. The system should be able to send and receive messages through the
LoRa module.

4. Should have a real-time clock which is synchronized by incoming mes-
sages.

5. The system must be able to store data to the SD card.

6. The system should reset in case of unexpected errors.

7. Support debugging through some interface.

3.3.3 Operator’s interface

Based on the functional specification in Table 3.2.1, the technical specification
for the operator’s interface is as shown in Table 3.3.3.

Table 3.3.3: Technical specification of the operator’s interface (user interface).

1. The user interface needs to be able to send time data to the system.

2. The user interface needs to be able receive data from the system.

3. The user interface needs to display the collected data in a GUI.

4. The user interface needs to store the received data in a non-volatile way.
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3.4 Acceptance criteria

Based on the technical specifications listed in Tables 3.3.1, 3.3.2, and 3.3.3, the
acceptance criteria for the complete system are listed in Table 3.4.1. These
will be used as basis for the testing in Chapter 5 to verify the functionality of
the system.

Table 3.4.1: Acceptance criteria for the complete system.

Label Description
AC1 The system can send sensor data wirelessly.
AC2 Data collected by the system can be received and displayed on a computer.
AC3 The system can store data on a SD card.
AC4 The system supports most sensor interfaces, such as analog, I2C, and UART.
AC5 The system can detect water level with centimeter accuracy.
AC6 The system can be deployed anywhere with LoRa coverage.

AC7 The system can survive harsh weather conditions, including heavy rain
and wind.

AC8 The system can operate for months without maintenance.
AC9 The system can be configured wirelessly.
AC10 The system has a local clock which can be synchronized.
AC11 The system has LEDs which indicate its status.
AC12 The system utilizes sleep modes to save energy.
AC13 The system can reset on unexpected errors.
AC14 The system can send status data wirelessly.
AC15 The system should cost less than 1000 NOK to produce.

3.5 Design

3.5.1 Hardware

A PCB design has been proposed based on the specifications above. Figure
3.5.1 shows a block diagram of the proposed design, and is further detailed
in section 4.1.7. The PCB should be powered by an external battery, which
is connected to a voltage regulator. The voltage regulator ensures that a
variety of inputs are supported, and transforms the voltage to a value which
can be used by all components and sensors. A microcontroller must be chosen
to support the functionality required by the system. All GPIO pins on the
MCU are connected to header pins such that they can be accessed in case
the system requires more functionality than expected. A LoRa transmitter
is also needed to send measurements wirelessly such that the system can be
placed in a remote location. An SD card is also suggested along with the RF
transmitter for backing up data in case the wireless communication fails. An
array of LEDs are also present on the board to help in both debugging and
testing.
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Figure 3.5.1: PCB design block diagram.

Low-power wireless protocols were discussed in the literature review. LoR-
aWAN was ultimately chosen to be the wireless commuication protocol due
to its combination of both cost, coverage, and low energy consumption. It
provides an easy to implement solution for energy efficient two-way commuic-
ation.

3.5.2 Sensors

This section covers some sensors considered for the system, and discusses how
viable they are for measurement of water level in nature for long periods of
time. The task for this section is to choose two different sensors, one ultrasonic
and one pressure sensor, to be implemented with the system.

The reason for choosing two different sensors is that they both possess their
respective advantages and disadvantages, as discussed in the literature review,
and as tested in the specialization project [2]. Ultrasonic sensors are easy
to use and deploy, provide solid measurements, but are expensive in energy
consumption. Pressure sensors provide a smaller form factor and less energy
consumption, but the sensor needs to be in contact with the medium and the
measurements need to be derived from the pressure. The latter can result in
more variable measurements due to changes in the liquid. The system does
not strictly need both sensors simultaneously. The final product would only
need one of these in fact. However, testing them both at the same time could
be beneficial such that one could compare data from both sensors given the
same environment. The tests could also provide useful information on which
of the two sensors could best satisfy the requirements for the system.

The following paragraphs on ultrasonic sensors are from the specialization
project [2], as it would be reasonable to continue using sensors which have
proven to be viable from the specialization project.
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Ultrasonic sensors

MaxBotix’s MB7092 from the XL-MaxSonar series [42] is a weather resistant
ultrasonic distance sensor, with an IP67 waterproof grade. It has an operating
voltage between 3 to 5.5V, with a average current draw of 2.1mA and a current
peak of 50mA. It can operate in temperatures between −40 to 65°C. The
MB7092 can measure from 20cm up to 765cm. It costs approximately 900
NOK, depending on vendors. The specifications of the MB7092 make it a
good candidate for measuring water level. It is resistant to harsh weather
conditions, and has a long enough range to be placed in a more safe location.
Its power consumption is also relatively low compared to other sensors of its
price range.

Figure 3.5.2: MB7092 sensor, from [42].

DFRobot’s A01NYUB [43] ultrasonic sensor is somewhat similar to MaxBotix’s
MB7092. It boasts waterproofness with an IP67 grade, and an operating
temerature of −15 to 60°C. Its operating voltage is between 3.3V to 5V, with
an average current draw of 15mA. It has a detection range of 28 to 750cm. It
costs approximately 300 NOK. The A01NYUB is very similar to the MB7092
in specifications, but the the main difference this project is concerned about is
the conciderably higher current draw.

Figure 3.5.3: A01NYUB, from [43].
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Pressure sensor

CUI Devices’ PS02-G350KP-4W is a pressure sensor with a range of 35kPa,
which is equivalent to 0.35 bar or approximately 3.5m depth in water. It is
powered with a 3.3V supply, and has an operating range from −40 up to 105°C.
It is interfaced with I2C. It has a small form factor compared to the ultrasonic
sensors, and costs approximately 750 NOK. The sensor seems fit for measuring
shallow waters.

Figure 3.5.4: PS02, from [44].

The A01NYUB ultrasonic sensor used in the specialization project [2] was also
chosen to be used for this thesis, as it has proven to reliably collect useful
data as demonstrated in [2]. The pressure sensor tested in the specialization
project was discarded due to its high measurement range and relatively low
resolution. The pressure sensor replacing it is the PS02 as shown above. It
was chosen as due to it being a waterproof pressure sensor, able to be powered
by 3.3V. It was also chosen for its low measurement range, as this provides a
better resolution when measuring water level only a few meters deep.

3.5.3 The Things Network

The Things Network (TTN) is a global LoRaWAN network for IoT devices. It
is possible to use private LoRa gateways for communicating with end-devices,
but TTN was chosen for its coverage. It allows the system to broadcast to
its messages to be picked up by any gateway in reach. While using TTN
somewhat limits the customizability of the gateway, it is outweighed by the
fact that it allows the system to be deployed in many more locations due its
wide coverage. The Things Network also has an online console which can be
used for faster implementation, and an API. The API can be used with HTTP
or MQTT, such that messages can be sent to TTN from a back-end and then
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forwarded to the embedded system.

3.5.4 Software

The software required on the embedded system has to be made to periodically
perform five tasks:

1. Handle incoming configuration messages

2. Retrieve data from sensors

3. Transmit the sensor data

4. Save data to an SD card

5. Sleep

Due to the simplistic flow of operations, it would be reasonable to implement
the as a state machine. The details of the software implementation are dis-
cussed in detail in section 4.2.1.

The complete system also needs software to send receive data on the user end.
This back end application should be able to communicate with TTN, to be
able to send messages to, and receive messages from, the system. A database
could prove useful for storing large amounts of data. Since the collected data
mostly consists of measurements from two different sensors, a database with
two tables would suffice. A simple database schema is proposed and shown in
Figure 3.5.5. The user end application should also have some GUI to allow for
plotting of collected data.

Figure 3.5.5: Database diagram.

A simple GUI is proposed to be implemented as shown in Figure 3.5.6 such
that the collected sensor data can be retrieved from the database and displayed
with ease.
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Figure 3.5.6: Proposed design for a GUI displaying collected sensor data.
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Chapter 4
Implementation

This chapter covers how the system was implemented. It covers how the cir-
cuitry was made as well as a detailed explanation of the accompanying soft-
ware. The PCB was designed in EasyEDA and the software for the device
written in C++ using Microchip Studio. The user back end was made with
Python.

4.1 Description of hardware

The embedded hardware for the system is based on the work done in the spe-
cialization project [2]. The PCB design is similar, with both new and improved
features. The remaining hardware for this thesis is already implemented in the
sense that The Things Network’s gateways and sky service are used, and any
common computer can be used to run the back-end software. This section
covers the implementation of the embedded hardware.

4.1.1 Components

ATmega324PB

The ATmega324PB is an 8-bit microcontroller based on the AVR RISC archi-
tecture, and was developed by Microchip. It features 32KB of flash program
memory, 1KB EEPROM, and 2KB SRAM. It supports three programmable
serial USART interfaces, two SPI interfaces, and two I2C interfaces. It also
has an internal ADC, GPIO, 8 and 16 bit timers/counters, sleep mode, and
more. It was primarily chosen for two reasons. Firstly due to time constraints
for the implementation of the system. The ATmega324PB was used previously
in the specialization project [2], as well as other courses. The previous exper-
ience with the ATmega made it an easy choice for this reason. Secondly, it
was chosen due to the lack of availability. Many newer and more suitable mi-
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crocontrollers were out of stock with long lead times during the developement
of this system. Microcontrollers from STMicroelectronics and the EFM32 by
Silicon Labs support the same features as the ATmega324PB, but with lower
power consumption. These were also considered in the process of making the
system.

LDL1117S33R

The LDL1117 by STMicroelectronics supports input voltages between 2.6 and
18V. The LDL1117 has several models with different fixed output voltages.
An output voltage of 3.3V was chosen to be suitable for this system, such to
provide all electronics with the correct voltage. It was also chosen for its low
quiescent current to save on energy consumption, as a part of the specification.

MCP73830L

The MCP73830L is a single-cell li-ion battery charge management controller
made by Microchip. It requires few external components, and the constant-
current value is set by one external resistor. The chip supports charge currents
up to 1000mA. It supports input voltages between 3.75 and 6V, meaning that
the battery can be charged with 5V supplied through USB.

CH340C

The CH340 is a USB bus conversion chip, creating USB to UART interfacing.
It supports both 5V and 3.3V power voltage. The CH340C model has a built-in
crystal, reducing the number of components needed to realize the implement-
ation. It was chosen to create a simple USB-UART interface to connect the
system to a computer through USB for debugging.

74LVC1G125QW5-7

The 74LVC1G125Q is a non-inverting buffer/bus driver with a 3-state output.
Its operating voltage ranges from 1.65V to 5.5V. The inputs support voltages
up to 5.5V, allowing the device to support a mixed-voltage environment. It is
used together with the CH340C to implement the USB-UART interface.

RN2483A

The RN2483 by Microchip is a low-power LoRa transceiver module. It features
an on-board LoRaWAN protocol stack and ASCII command interface over
UART. It operates on voltages between 2.1 and 3.6V, the typical being 3.3V.
It has an integrated MCU, crystal, EUI-64 node identity serial EEPROM, radio
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transceiver with analog front end, and matching circuitry. It features 14 GPIO,
and 13 analog inputs. It was chosen due to being an easy-to-use, low-power
solution for LoRa data transmission. The typical idle current consumption
is 2.8mA, the typical transmit current being 38.9mA, and sleep current at
approximately 16µA. It is however an old model. The main drawback of this
chip is that it has relatively high energy consumption compared to newer LoRa
modules. One such newer chip being Microchip’s WLR089U0. The RN2483
was chosen mainly because of the lack of availability for other LoRa modules.

4.1.2 Power circuit

The schematic for the power circuit is as shown in Figures 4.1.1 and 4.1.2. JP1
represents a screw terminal which can be connected to a battery. The battery
is then connected to the voltage regulator U6 and the battery charging circuit
which is shown in Figure 4.1.2. The voltage regulator U6 supports a wide
range of input voltages, ranging between 2.6 and 18V as stated in the data
sheet [45]. It outputs 3.3V which powers the rest of the system excluding
the battery charging circuit. Both the input and the output of the voltage
regulator are decoupled with capacitors C4 and C7. LED3 from Figure 4.1.3
is used to indicate that the system is powered on.

Figure 4.1.1: Schematic of battery connection and voltage regulator.

As an optional feature, a Li-Ion battery charging circuit was implemented as
shown in Figure 4.1.2, similar to what was done by Rasmussen [46]. This was
done to simplify the use of the system, but not strictly required. For instance,
it is not needed in the case a non-Li-Ion battery is used, or in the case that the
USB connection is used without the need to recharge the battery. It was also
made optional because the MCP73830L available for order had a very small
footprint. As the board was to be soldered by reflow (by hand), it was made
optional in the case that the soldering was not good enough.
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Figure 4.1.2: Schematic of battery charging circuit.

The battery charger can be used by connecting the VBAT output of the PMIC1
in the charging circuit to the battery through the jumper U5. The charging
circuit is powered by the 5V provided through the USB connection USB1 as
shown in Figure 4.1.6. The battery charge management controller is connected
similarly to what is suggested in its data sheet [47]. C19 and C20 were used
to create a low impedance path to reduce noise, and the resistor R14 is used
to control the charge current. The charge current was selected by using the
following formula:

Icharge =
1000

R
(4.1)

where Icharge is the charge current in mA, and R is the value of the resistor
R14 in Ω in the schematic. R14 was chosen to be 2kΩ to provide a charge
current of 0.5mA. Additionally, LED6 is used to indicate the charging status.

Figure 4.1.3: Schematic of two LEDs used for showing status.

4.1.3 RF circuit

Figure 4.1.4 shows the schematic for the LoRa transmitter module. The
RN2483 was chosen to allow for wireless communication. RFH and RFL on
the RN2483 are connected to two antenna connectors, JP2 and JP3. The
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module’s power inputs are decoupled with C5 and C6 to provide a more stable
power voltage. The RN2483 is interfaced with UART to the ATmega324PB,
with resistors R6 and R19 with a value of 0Ω. The resistors were used in case
the two UART lines needed to be swapped or used for something else. The
LoRa module is also connected to the global reset button.

There was an oversight made when designing the circuitry around the RN2483.
The ICSP pins are not connected, but according to the data sheet [48] this
should not pose a problem. As stated in the data sheet: “PGC_INT (Pin 30)
and PGD_INT (Pin 31) are internal program pins used during manufacturing.
For normal operation, these pins can be left unconnected. The normal firmware
upgrade method is through the internal bootloader of the module via the
UART. The method is documented in the [data sheet]. However, for backup
firmware update purposes the user can place a 6-pin ICSP header on their host
PCB with PGC_INT (Pin 30), PGD_INT (Pin 31), RESET (Pin 32), power
and ground.” As such, the ICSP pins are not strictly necessary for this system.

Figure 4.1.4: Schematic of LoRa transmitter module.

4.1.4 Microcontroller

The schematic surrounding the micro controller is shown in Figure 4.1.5. The
supply voltage inputs on the ATmega have been decoupled with several capa-
citors to provide a more stable voltage level. C10, C12, C13 have been used to
decouple VCC, AVCC and AREF on the ATmega. While the ATmega has an
internal oscillator, an external crystal X1 has been added in case it is needed.
This is connected to capacitors C8 and C9 to reduce noise.

All useable pins on the micro controller have been connected to header pins so
they are readily available in case any of them are needed. This was done to
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provide a more flexible design for testing, and many of them are not strictly
needed. The pins include PA0-7, PB0-7, PC0-7, and PD0-7. PB0 is also
connected to LED4 as shown in Figure 4.1.3. This is to make debugging
slightly easier, as the pin can be made to signal that the system is running
correctly after being deployed. The micro controller is also connected to the
J1 and H1 headers. These are respectively the AVR ISP and JTAG headers,
to allow for programming and debugging.

Figure 4.1.5: Schematic of ATmega324PB.

4.1.5 USB

The schematic for connecting the ATmega to an USB interface is shown in
Figure 4.1.6. This circuitry has been included to allow for easier connection to
a PC to allow for live debugging. The USB port is connected to the CH340C
with a fuse F1. VCC on the CH340C is also decoupled with capacitor C11.
Both U2 and U3 are 74LVC1G125QW5-7 bus drivers to interface the CH340C
with the ATmega. U2 and U3 have been connected to LED1 and LED2, which
respectively indicate data transfer on TX and RX on the ATmega. U2’s and
U3’s VCC pin have also been decoupled with capacitors C2 and C3.
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Figure 4.1.6: Schematic showing the circuitry required for USB connection.

4.1.6 Peripherals

A reset button has been implemented as shown in Figure 4.1.7. The RST line
is usually pulled up through the resistor R4, and can be pulled low using the
RESET button. This passes current through LED5 to indicate that the system
is being reset. The capacitor C1 is used as a low-pass filter to smooth out the
voltage drop.

Figure 4.1.7: Schematic of reset button.

The ATmega has been connected to an SD card using the micro controller’s
SPI interface, with pins PB4, PB5, PB6, and PB7 on the ATmega. This
is shown in Figure 4.1.8. The resistors R2, R3, R11, and R12 pull up each
pin. The resistors R7, R15, R16, and R17 are 0Ω resistors, which provide
a footprint on the PCB to reconnect the SPI lines in case they have been
connected incorrectly.
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Figure 4.1.8: Schematic of SD card insert.

4.1.7 Printed circuit board

The circuit board was designed as a 4-layer PCB. The top and bottom layers
were used for traces, while the two middle planes were used as a 3.3V power
plane and a ground plane to simplify routing. The top plane has also been
covered with a ground area. An image of the final PCB is shown in 4.1.9. The
traces for the PCB, excluding the middle planes and top layer area is shown
in Figure 4.1.10.

Figure 4.1.9: Image showing the final PCB.
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Figure 4.1.10: PCB trace without planes.

The PCB was designed in EasyEDA, and ordered from JLCPCB at https:
//jlcpcb.com/. The EasyEDA Designer is a well-known web-based PCB design
tool found at https://easyeda.com/. Most parts were also ordered from LCSC
found at https://lcsc.com/. All three companies are owned by the JLC Group,
based in Shenzhen, China, which made the ordering process somewhat easier.
Some parts were also ordered from Mouser, based in Texas, USA. Their website
can be found at https://no.mouser.com/. The header pins, jumper cables, and
the RN2483A were bought at the electrical workshop on campus. The last
component due to limited availability online. The part list for the PCB can
be found in Appendix A.

The RF traces were chosen to be 0.34mm to impedance match the antennas,
using JLCPCB’s impedance calculator. As JLCPCB manufactured the PCB,
it was a natural choice to calculate the trace width with their tool. The routing
was mainly done through EasyEDA’s routing tool, which automatically routes
selected labels. Some manual rework was performed on the traces to simply
the routing, as the automatic routing tool was not deemed optimal. Several
vias were also placed near the antenna connectors to reduce noise.

All SMD components were soldered on through reflow. The paste was applied
by hand, and an oven at the electrical workshop on campus was used to heat
the board up to the correct temperature.

A feature which was implemented only after ordering the PCB was to use a
transistor to toggle the sensors on and off with each measurement. This was
done as it was realized only after ordering, and ordering a new PCB at the time
would not be feasible due to time constraints. By connecting one of the GPIO
pins of the ATmega to the transistor, one can toggle whether or not the sensor
is connected to the voltage supply. This is shown in Figure 4.1.11. The sensors
need some time to adjust after being turned on, but this is outweighed by the
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fact that they draw very little current when the system is sleeping, which is
considerably longer than the time it takes to sample data. After testing, this
proved to save some energy consumption. This is further discussed in Chapter
5.

Figure 4.1.11: Transistor connected to ATmega GPIO pin, Vcc, and the sensor
voltage input.

The complete schematic for the circuit board is shown in Figure 4.1.12, and a
higher resolution schematic can be found in Appendix A.
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Figure 4.1.12: Complete schematic of the system.

4.1.8 Battery

The USB connection was not implemented due to time constraints. This meant
that the recharging IC did not get the 5V it needed to recharge batteries.
Therefore, an easier solution would be to use a power bank, which can easily
be recharged by a computer. A 10Ah power bank was chosen as the battery
for the system.
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4.1.9 Box

A container and stand was made to store the embedded hardware. Figure
4.1.13 shows a simple schematic for the setup, and Figure 4.1.14 shows the
final result, and figures 4.1.15a and 4.1.15b show images of the box with sensors
mounted to it and hardware inside. It was made at NTNU’s workshop in the
Electrical Engineering building.

Figure 4.1.13: Simple schematic showing the container and stand for the em-
bedded hardware.
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Figure 4.1.14: Image of the final container and stand for the embedded hard-
ware.

(a) Image of box for containing
hardware.

(b) Image of box for containing
hardware.

Figure 4.1.15: Sensors mounted for long term testing outdoors.
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4.2 Description of software

The software for the ATmega was developed using Microchip Studio 7.0, and
flashed and debugged using a JTAGICE3. Microchip Studio allows for both
programming and debugging of the device, as it provides direct support of the
JTAGICE3. The software was written in C++. Examples from the RN2483
code examples [49] and the A01NYUB ultrasonic sensor documentation [50]
were used as inspiration to create the software necessary to operate the RN2483
LoRa module and the ultrasonic sensor respectively. The following sections
cover the implementation of the software for the system.

4.2.1 State machine

This section covers the software for the system, implemented as a state machine
as proposed in Section 3.5.4. Figure 4.2.1 shows the state diagram of the
system, excluding the ISR. The ISR is described in detail in Section 4.2.1.

INIT

Init drivers

Connect to station with LoRa

IDLE

Perform tasks as needed:

Handle downlink (no state change)

Read sensors (state = MEASURE)

Transmit message (state = TRANSMIT)

Save to SD (state = SAVE)

Sleep if all is done (state = SLEEP)

state = TRANSMIT

SAVE

Write to SD

Empty buffer

state = IDLE

TRANSMIT

Convert data to msg

Wake up LoRa module

Transmit

Retry if fail

Put LoRa module to sleep

state = IDLE

SLEEP

Put MCU to sleep

Wait for wakeup from ISR

Wake up MCU

state = IDLE

MEASURE

Wake sensors

Read data

state = IDLE

state = IDLE

state = IDLE

state = MEASURE state = SLEEP

state = IDLE

state = IDLE

state = SAVE

Figure 4.2.1: State diagram of the system’s normal state flow.
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Idle state

The idle state functions as the main state which checks a set of conditions
and sets the new state accordingly. The program has to go through the idle
state to reach all other states except for the initialization. The system is
designed to perform a few simple tasks as needed, and then go to sleep for
some time. Therefore it would be natural to implement the idle state as it
is. The tasks which need to be performed by the system include handling
configuration messages, reading the sensor values, sending those values, and
saving those values to the SD card. After there is nothing left to do, it goes
into the sleep state.

The conditions which the idle state checks are as illustrated in the flowchart
in Figure 4.2.2. Firstly, it checks if there are new downlinks received by the
LoRa module. Secondly, the sensors are read if they have not already been
read this wake cycle. Then, if the sensors have been read, those messages
are sent wirelessly through the LoRa module. The sensor data is stored in a
buffer temporarily, and if that is full, the data is then stored to the SD card.
This is to avoid writing to the SD card more times than necessary. Lastly, if
everything is complete, the system goes to sleep.
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Downlink 
recieved? State = IDLEYes

Update local time 
and sample rate

Sensors read 
in this cycle?

Message sent 
in this cycle?

Space left in
buffer?

State = MEASURENo

No State = SAVE

Yes

Yes

No

Yes

State = TRANSMITNo

State = SLEEP

Figure 4.2.2: Flowchart of the operations in the system’s idle state.

Measure state

The measure state is used to retrieve data from both the ultrasonic sensor,
the pressure sensor, and the ADC. The ADC is used to read the battery level
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of the system. Firstly, the state powers up the sensors. The ultrasonic sensor
requires reading four bytes over UART per measurement, two of which are
used for error detection in the data. If the system is configured to average
over several samples, the sensor data is stored, and more is collected until
it is sufficient. The state then moves on to collect the pressure sensor data.
This requires two bytes over I2C. As with the ultrasonic sensor, more data is
collected and averaged if needed. The ADC is then read to extract the battery
level. This measurement is averaged regardless, due to the built-in ADC in
the ATmega being noisy. Finally, the sensors are put to sleep, and the state
is changed to idle again. The functionality of the measure state is as shown in
the flowchart in Figure 4.2.3.

Wake up sensors 

Store ultrasonic
sensor value

State = IDLE

Store pressure
sensor value

Store battery level

Put sensors in sleep
mode

Figure 4.2.3: Flowchart of the operations in the system’s measure state.
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Transmit state

Before each transmit, the software converts the local timestamp, battery level,
ultrasonic measurement, and pressure measurement into a message payload.

Table 4.2.1: Table of the data packed for the LoRa message payload.

Uplink message payload
Unix timestamp
(4 Bytes)

Battery level
(1 Byte)

Ultrasonic data
(2 Bytes)

Pressure data
(2 Bytes)

Bit 31-24 bit 23-15 Bit 15-8 Bit 7-0 Bit 7-0 Bit 15-8 Bit 7-0 Bit 15-8 Bit 7-0

Afterwards, the RN2483 is woken up and the message is sent. The system
then waits for a confirmation message. If no confirmation message is received,
the message is resent until either a confirmation is received or too many retries
have been attempted. The LoRa module is then put into sleep mode to save
on energy consumption.

A separate “alive” message is not sent by the system to tell whether it still
functions. The sensor data transmission is the only message that is sent by
the system, and therefore it also functions as a “alive” message. This leaves
the user with less information about whether the system is operating or not,
but it is a trade-off made to save on energy consumption. No single data
point is considered valuable enough to be sent indefinitely, so it is better to
discard a message and move on to the next one rather than to resend it until
the measurements are outdated. The functionality of the transmit state is as
shown in the flowchart in Figure 4.2.4.
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Convert data to
message format

Message ack?

Wake up LoRa
module

State = IDLE

Transmit message

Yes

Put LoRa module in
sleep mode

Too many
attempts?No

No

Store message failure

Yes

Figure 4.2.4: Flowchart of the operations in the system’s transmit state.

Save state

The save state is entered when the buffer of sensor data is full. Here, the
buffer is transferred to the non-volatile memory of the SD card, and the buffer
is emptied. This is done to avoid writing to the SD card more than necessary,
as it could reduce the lifespan of the card. A flowchart of the functionality of
the save state is as shown in Figure 4.2.5.
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Write buffer to SD
card

Empty buffer

State = IDLE

Figure 4.2.5: Flowchart of the operations in the system’s save state.

Sleep state

The sleep state utilizes the ATmega’s power-down mode, as described in the
data sheet [51]. This is to significantly save on energy consumption while the
system is in essence just waiting for some time to pass before performing the
next measurement. While in this mode, however, the MCU can only be woken
up by an interrupt. Timer 2 can still run in power-down mode, so the ISR
can continue to keep track of time and be responsible for waking up the MCU
after enough time has passed. This functionality is further explained below.
A flowchart of the functionality of the sleep state is as shown in Figure 4.2.6.
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Put MCU in sleep
mode

wakeup == True

State = IDLE

Yes

Wake up MCU

No

Figure 4.2.6: Flowchart of the operations in the system’s sleep state.

ISR

The ISR serves as a way to both maintain a real-time clock, and to wake
the microcontroller up from sleep mode. It uses Timer 2 on the ATmega to
increment the unix_time variable. The variable holds seconds in unix time,
as described in section 4.2.2. It increments the unix time every time it is
called, and then, if the MCU is currently sleeping, it compares the current
time to the scheduled wake-up time. If sufficient amount of time has passed,
it will schedule a new wake-up time and start the MCU again to take new
measurements.
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wakeup == True

State == SLEEP

unix_time >=
wakeup_time

No

Yes

No

unix_time++

wakeup == False

Yes

Schedule wake up
time

Figure 4.2.7: Flowchart of the operations in the system’s ISR.

4.2.2 RTC

The system requires some knowledge about time to be able to store and send
sensor data, as well as to sleep for a designated amount of time. An imple-
mentation of a real-time clock for the ATmega was done by Rasmussen [46].
A similar design has been chosen to be implemented for this system as well.
As done in [46], the RTC utilizes Timer 2 on the ATmega, and an ISR to keep
track of time. A timer with millisecond resolution was created by Rasmussen,
but it was chosen to only implement a whole second timer for this system.
The decision was made as it was not deemed strictly necessary to utilize so
small time increments. The system satisfies its acceptance criteria even though
it can only sleep for integer amount of seconds. The measurements are also
deemed accurate enough when the time of measurement is rounded to seconds.

The real-time clock is implemented using Timer 2, an 8-bit timer, on the
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ATmega, using a 32.768kHz crystal. The reason for choosing Timer 2, is that
it is still enabled in power-down mode, as described in the data sheet [51].
This is the easiest way to trigger a timed interrupt while the MCU is sleeping.
The crystal frequency value was chosen as it is equivalent to 215, as done in
[46]. This proves useful as the 8-bit timer can have its prescaler set to 128,
such that it overflows every second. This can then be used to call the ISR,
which increments the unix time by a second, as described in 4.2.1. A prescaler
of 64 was used in [46], such that the timer overflows every 0.5 second. This
resolution was again deemed unnecessary for the system in this thesis.

4.2.3 Watchdog

The ATmega has a built-in watchdog timer, as described in the data sheet [51].
It uses a 128kHz internal oscillator with a prescaler between 2K and 10K. This
can provide a timeout between 16ms and 8s. The timeout can then trigger
either a reset, ISR, or both. As it could take more than 8 seconds to receive
an acknowledgement, a longer period must be used for a watchdog timeout.
Similarly as implemented in [46], an ISR was created to count how many
timeouts have been called, and to then trigger a reset if a certain threshold
of timeouts have been called. The watchdog could prove useful in the case of
deadlocks, or bugs in the code which could cause the program to spin. Due to
the long waiting time for acknowledgement messages, the timeout was chosen
to be 180 seconds.

4.2.4 ADC

The ATmega has 7 channels with 10-bit ADC as described in the data sheet
[51]. This can be used to read the battery voltage using a voltage divider.
This lets the user see how much battery life the system has left.

4.2.5 Other drivers

A UART driver had to be written for the system. The ATmega has three sep-
arate UART channels, where UART0 and UART1 are used for the ultrasonic
sensor and the RN2483 LoRa module respectively. UART0 is used to read
four bytes at a time from the ultrasonic sensor, such that it can retrieve the
distance information from the sensor.

UART1 is used to send commands to the RN2483. It has a multitude of com-
mands, ranging from setting communication parameters, sending and receiving
data, and also putting it into sleep mode. The sleep mode is important as it
saves on energy consumption while the system is not active. It was imple-
mented based on documentation (code examples) from Microchip [49]. The
RN2483 was set up for OTAA join procedures, with the keys auto-generated
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by TTN. When a message is received, an internal flag is set such that the
received message can be handled by the state machine. This is described fur-
ther in 4.2.1. The RN2483 also allows for sending and receiving messages on
different ports, but this was not implemented due to time constraints.

Since LED4 was connected directly to the GPIO pin PB0, a simple driver was
written to make it blink when booting, to signal that the initialization was
successful. It was also used for some simple testing, such as making sure the
real-time clock ticked every second.

4.3 Recieving data on computer

A working GUI and database was not implemented due to time constraints. A
Python script was used to fetch data through TTN’s API and stored the data
in a file.

TTN provides an easy way to connect LoRa nodes to a computer/server. TTN
was used to set up an application server, which multiple end-devices can con-
nect to. It generates EUIs and access keys automatically for the application,
as well as supports APIs such as MQTT, as described in 3.5.3. The console
itself can also be used as a GUI for configuring the devices. Screenshots of the
TTN GUI can be found in Appendix B.

The Python script was made using the TTN library1. It was used to retrieve
data from the embedded system through the API provided by TTN, and the
script wrote the retrieved data to a file on the computer it was running on. A
simple script was also made to send clock synchronization data for when the
end-device boots up.

When storing the data, the computer’s timestamp is also stored along with
the message that was received. The log file was made in .csv format, with
comma-separated columns. Table 4.3.1 shows how the data is stored.

Table 4.3.1: Table of how the log file sorts incoming data.

Log file columns
Computer timestamp
(Unix timestamp)

Message timestamp
(Unix timestamp)

Battery level
(%)

Ultrasonic data
(Meter)

Pressure data
(Bar)

The name of the file was changed manually, such that the data from the three
tests that were performed could be easily distinguishable. The tests and the
data collected from them is further discussed in Chapter 5.

1https://www.thethingsnetwork.org/docs/applications/python/
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4.4 Location

The device was placed and tested in three different locations. First, a test
in a tank at NTNU, then in Estenstadmarka, and finally in Nidelva. Figure
4.4.1 shows a map of where the three tests were conducted. Figures 4.4.2
and 4.4.3 shows a closeup of the test locations in Estenstadmarka and Nidelva
respectively. The tests are further discussed in Chapter 5.

Figure 4.4.1: Map of all test locations.
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Figure 4.4.2: Map showing the test location in Estenstadmarka.

Figure 4.4.3: Map showing the test location in Nidelva.
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Chapter 5
Testing and results

This chapter covers the testing and results of the system. The chapter is
divided in three parts. First the implemented embedded system is tested
against the acceptance criteria from 3.4, Then, the sensor data collected by
the system is presented. Finally, a test is performed to measure the current
draw of the embedded system.

5.1 Hardware

After the PCB was soldered, it was thoroughly tested using an oscilloscope.
The power and data lines were scoped to verify AC4. Simple software was
programmed on the ATmega to test the individual function of the PCB. This
includes collecting data with the sensors, and sending that data wirelessly
using the LoRa module. This data was then compared to the data written
on the SD card to verify AC1, AC3, AC6, and AC14. The data was received
through the TTN console. The system was also programmed to toggle the
LED lights on certain conditions, to verify that the LEDs were working as
intended, confirming AC11. AC13, concerning the watchdog timer was tested
by making the hardware spin in a while loop, and to blink an LED if the
watchdog was triggered.

The battery was supposed to be connected to one of ATmegas ADC inputs, but
this was not done as it was not prioritized. This means that the system could
not send its status wirelessly, as stated in AC14. However, as the messages are
expected to be delivered on a pre-programmed interval, it is possible to use
each message as a heartbeat to indicate that the system is still operational.

Messages were sent to the device using the TTN to verify that the system
could be configured while active. This was done by using a Python script and
the TTN API. AC2, which states that “Data collected by the system can be
received and displayed on a computer.” fails in the sense that there was no
database or GUI was implemented to display the data. The data could be
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received however. This proved that the system could change sampling time, as
well as received a timestamp to synchronize its clock. This verified AC9 and
AC10.

5.2 Sensor data

Three tests were performed where the system was to collect data outdoors, to
verify AC5 and AC7. These tests were:

1. A test in an indoor environment

2. A test in a small water stream

3. A test in a river

The test indoors was conducted to verify the repeatability and accuracy of the
sensors. It provided proof that the sensors could in fact measure water level
and send the data wirelessly for longer periods of time. The outdoor tests
were conducted to verify that the system can collect data from various types
of waters in outdoor conditions. The first outdoor test was conducted in a
small stream in Estenstadmarka in Trondheim, and the second was conducted
in Nidelva in Trondheim. No averaging was done on the collected data, the
sensors only sampled once and then turned off until the next cycle.

5.2.1 Indoor test

Test procedure

The indoor test was performed in a water tank at the university. The ultrasonic
sensor was mounted approximately 51cm above the water surface, and the
pressure sensor was fastened approximately 30cm below the water surface.
The test was conducted for 24 hours and 9 minutes, which is roughly 86940
seconds. The sensors were sampled every 10 seconds. It was done to test the
drift and accuracy of both sensors. This was done to provide more information
on the reliability of the data collected when measuring in nature.

Results

Figures 5.2.1 and 5.2.2 show the data collected from the ultrasonic and pressure
sensor respectively.
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Figure 5.2.1: Ultrasonic sensor data from logging in an indoor environment.

Figure 5.2.2: Pressure sensor data from logging in an indoor environment.
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5.2.2 Stream test

Test procedure

To verify that the system can collect data in an unpredictable environment,
it was placed alongside a small stream in Estenstadmarka. The test was con-
ducted between 10:54 and 15:27 on the 14. of May. It lasted approximately
4 hours and 33 minutes, which is roughly 16380 seconds. The water level was
sampled every 20 seconds. The ultrasonic sensor was mounted approximately
114cm above the water surface at the start of the test, and the pressure sensor
was placed approximately 31cm below the water surface at the start of the
test. Figure 5.2.3 shows the system as it was set up in Estenstadmarka.

Figure 5.2.3: Image of the system deployed in a stream in Estenstadmarka.

Results

Figures 5.2.4 and 5.2.6 show the data collected from the ultrasonic and pressure
sensor respectively when logging the water level in a stream in Estenstadmarka.
Note that the ultrasonic sensor data is flipped, as the sensor measures distance
from the water surface, and not the water level itself. Assuming that the water
level was 31cm from the stream bed at the start of the test, Figure 5.2.5 shows
the water level data collected by the ultrasonic sensor.
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Figure 5.2.4: Ultrasonic sensor data from logging in a stream in Estenstad-
marka.
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Figure 5.2.5: Adjusted ultrasonic sensor data from logging in a stream in
Estenstadmarka.
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Figure 5.2.6: Pressure sensor data from logging in a stream in Estenstadmarka.
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5.2.3 River test

Test procedure

A final test was conducted in Nidelva, to measure water levels for a week. The
test lasted from 18:03 on the 25. of May 2022 until 14:23 on the 1. of June
2022. This corresponds to approximately 591600 seconds. The water level was
sampled every 100 seconds. The ultrasonic sensor was mounted approximately
3.3 meters above the river bed, with the pressure sensor on the river bed at
the same location. Figure 5.2.7 shows the location of where the system was
placed. The image was taken at low tide.

Figure 5.2.7: Image of the location measured in Nidelva.

Note that since the system needs to be placed close to land, the sensors can
not reach far enough out to measure the lowest point of the tide. Figure 5.2.8
shows how the sensors cannot detect water levels below a certain threshold.
The principle applies both to the ultrasonic and pressure sensor, as they cannot
be placed far out on the river bed.
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Figure 5.2.8: Illustration of how the sensors can only detect water level above
a certain level.

Results

Figures 5.2.9 and 5.2.11 show the data collected from the ultrasonic and pres-
sure sensor respectively when logging the water level in Nidelva. Note that
the ultrasonic sensor data is flipped, as the sensor measures distance from the
water surface, and not the water level itself. Correcting for this, Figure 5.2.10
shows the water level data collected by the ultrasonic sensor.

Figure 5.2.9: Ultrasonic sensor data from logging in Nidelva.
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Figure 5.2.10: Adjusted ultrasonic sensor data from logging in Nidelva.

Figure 5.2.11: Pressure sensor data from logging in Nidelva.
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5.3 Power consumption

To verify AC8 and AC12, several tests were conducted to measure the power
consumption of the system. By knowing how much energy the system con-
sumes for each action, and for how long each action is performed, one can
calculate the lifespan of the system.

During testing it was found that acknowledging messages takes a long time,
as well as consumes a lot of unnecessary energy. It was chosen to discard the
acknowledgement of messages and simply send 10 messages without waiting
for acknowledgement.

5.3.1 Test procedure

To test the current draw of the system, Nordic Semiconductor’s Power Profiler
Kit II was used. It has µA accuracy, and can provide its own voltage supply.
The kit can sample up to 100 000 times/second. It has its own software and
is interfaced to a computer using an USB cable, which can be used to extract
the measured current draw. Figure 5.3.1 shows an image of the Power Profiler
Kit.

Figure 5.3.1: Image showing Nordic’s Power Profiler Kit II.

It was connected to the PCB and the kit’s own voltage supply was used and
set to 3.3V through Nordic’s provided software. An image of the system being
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tested is shown in Figure 5.3.2.

Figure 5.3.2: Image showing the system being tested while transmitting data
on the RN2483.

5.3.2 Results

Four different functionalities were measured for their current draw. This in-
cludes the RN2483 while it was sending, the sensors when they sampled data,
sleep mode on both the ATmega and the RN2483, and when the system was
running through its idle state. The last includes writing to the SD card.

Figure 5.3.3 shows the current draw while transmitting data on the RN2483,
and a closeup of one message being sent is shown in Figure 5.3.4. In Figure
5.3.4, the RN2483 is woken up from sleep at 2.7 ∗ 104ms, and the transmission
starts at 2.8 ∗ 104ms. A single send draws 12.65mA on average and lasts
approximately 2.5 seconds. The spreading factor is 7, with a bandwidth of
125kHz, and with a physical bit rate of 5470 bit/s.
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Figure 5.3.3: RN2483 power consumption during sending.

Figure 5.3.4: Power consumption of the RN2483 during a single send.
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Figures 5.3.5 shows the current draw for the system while the ultrasonic sensor
is sampling and being toggled off by the transistor as described in Chapter 4.
5.3.6 shows the current draw for a single sample being taken by the ultrasonic
sensor. The current draw is 18.6mA on average, and drops to approximately
8mA when turned off. The pressure sensor was measured to draw a constant
10.2mA when on. Table 5.3.1 summarizes the average current draw for the
different operations performed by the system.
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Figure 5.3.5: Power consumption of the ultrasonic sensor.
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Figure 5.3.6: Power consumption of the ultrasonic sensor during a single
sample.

Table 5.3.1: Summary of the system’s average current draw for different oper-
ations.

Operation Current draw Time 1 cycle
Message transmission 12.65mA 2.5s
Sensor sample 18.6mA 120ms
Other operations 8mA 100ms
Sleep 743uA (Cycle time - 2.72s)
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Chapter 6
Discussion

This chapter discusses the obtained results from Chapter 5. First, a discussion
on how well the system fulfilled the acceptance criteria as stated in 3.4, as well
as a discussion on design flaws and possible improvements which can be done.
Then the sensor data is discussed and analyzed, then a brief discussion on the
system’s power consumption.

6.1 System

The system has proven to be able to measure water levels in remote locations,
and has potential to be useful for measuring sea level, rivers, drainage system,
road ditches, and more. The cost of the system came at less than 1000 NOK
per device assuming only one sensor is used. This fulfills AC15. It would likely
be much cheaper to produce for large scale water monitoring, as the unit price
for each component is much higher when only producing a single device. It
fulfills most acceptance criteria except for AC2, as a database and GUI is left
to be desired. Handling files manually is much harder than if they were stored
in a database, especially if multiple devices are deployed and the devices log
data for longer periods of time. A lack of a user interface also makes checking
the data harder, as it needs to be imported into Matlab or a Python script for
further processing. The end goal for the system would be that it only needs
to be configured once and deployed, and then for the logs to be automatically
created for the user to review or otherwise use.

There are also other aspects of the system which could be improved upon. The
tests that were performed in this thesis only took a single sample for each data
point. By sampling a few more times and averaging the results, one could
possibly have removed outliers gotten a more reliable result. The sampling
period was relatively small, up to 100 seconds. For testing in Nidelva this
should be enough to provide a clear picture of how the water level changes,
as no sudden changes are expected to take place within a 100 second span.
While measuring road ditches, streams connected to dams, etc., the sampling
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period should be increased to detect and warn about sudden changes faster.
Shorter periods in between sampling increases the amount of messages sent
however. This is by far the biggest factor in energy consumption as seen
in Chapter 5. Decreasing the period would also mean that each data point
is less important. More data means that each single data point is of less
importance, and averaging over samples would not be as necessary to combat
sensor inaccuracy as this could be done in the back end.

Another way to save energy is to implement the system with more efficient
hardware. The implementation of the system is this thesis is limited both by
previous knowledge and the currently high lead times on integrated circuits.
The ATmega324PB, for example, was chosen as it was deemed good enough
for this thesis, and also due to familiarity. There are newer microcontrollers on
the market today which are both easier to work with and more energy efficient,
such as the EFM32 produced by Silicon Labs. Another improvement which
could have been made is to put the unnecessary circuitry on its own power
line, for instance the LEDs. There is currently no way to turn off the LEDs
to reduce current draw, other than physically removing them from the circuit.
Including an optional jumper which could supply voltage to a seperate power
line could make the strictly unnecessary circuitry optional such that it is only
active while debugging. This would save on energy consumption as the extra
functionality could be turned completely off.

Some flaws in the design were also found only after ordering the board. One
of them being that thicker traces should have been used for the power lines,
for less resistance and heat buildup. The screw terminal also had the wrong
footprint to that which was ordered, which led to header pins being used
instead. This makes the system as a product significantly worse, as the power
connection is much easier to disconnect. The USB-connectors which were
ordered also had the wrong footprint, and is due to the vendor shipping the
wrong item. As there was not enough time to order new ones, the USB-
connection was not implemented. This also meant that the recharging circuitry
did not work, as it relied on the 5V supplied through USB. This however, is
not strictly needed, and is the reason it was discarded.

A better real-time clock and clock synchronization method could also have
been implemented. The implemented RTC only has 1 second resolution, and
the clock synchronization does not account for the skew that appears in sending
data to and from the device. The watchdog timer could also have been more
thoroughly tested, but this was not prioritized.

As the ADC was not connected to the battery, it was not possible to receive
battery status. This was not prioritized, as it was only a minor feature. If
one were to implement this, it would likely suffice to use a voltage divider to
lower the voltage such that it is tolerated by the ATmega’s ADC. The battery
itself also an area of improvement; A regular battery could be used instead of
a power bank.

Table 6.1.1 shows a table that summarizes the acceptance criteria again for
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the sake of readability, and whether or not the system passed each criteria.

Table 6.1.1: Table showing the acceptance criteria and whether or not the
system passed.

Label Description Passed
AC1 The system can send sensor data wirelessly. Yes
AC2 Data collected by the system can be received and displayed on a computer. No
AC3 The system can store data on a SD card. Yes
AC4 The system supports most sensor interfaces, such as analog, I2C, and UART. Yes
AC5 The system can detect water level with centimeter accuracy. Yes
AC6 The system can be deployed anywhere with LoRa coverage. Yes

AC7 The system can survive harsh weather conditions, including heavy rain
and wind. Yes

AC8 The system can operate for months without maintenance. Yes
AC9 The system can be configured wirelessly. Yes
AC10 The system has a local clock which can be synchronized. Yes
AC11 The system has LEDs which indicate its status. Yes
AC12 The system utilizes sleep modes to save energy. Yes
AC13 The system can reset on unexpected errors. Yes
AC14 The system can send status data wirelessly. Yes
AC15 The system should cost less than 1000 NOK to produce. Yes

6.2 Sensor data

The data analysis assumes that the pressure is approximately linearly propor-
tional to the water depth such that 1Bar =⇒ 10m, as no measurements of
the flow of the water was done.

6.2.1 Estenstadmarka

Figure 6.2.1 shows the data collected in Estenstadmarka. Here the two data
sets are overlapping such that the data from the ultrasonic sensor and the
pressure sensor can be compared. The results from the specialization project
[2] support that the chosen ultrasonic sensor is very accurate, and should be
used as a baseline for comparing the other sensor. The noise in the ultrasonic
measurements might be due to more more bubbles, ripples, and floating debris
in the stream. The most notable features from 6.2.1 are that the pressure
sensor is more noisy, and that it deviates from the ultrasonic sensor, especially
as the water level increased. The fact that the pressure sensor is more noisy
than the ultrasonic sensor is also reflected in the test done indoors, as shown
in Figures 5.2.1 and 5.2.1. The flow of water in the stream can also contribute
to both the noise and the deviation from the measurements. As the water
moves more rapidly, the pressure drops, and this can significantly affect the
pressure measurements [39]. During the first hours, the pressure sensor is
approximately 2cm below what is measured by the ultrasonic sensor, and then
deviates by up to 4cm when the water level is at its peak.
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Figure 6.2.1: Ultrasonic and pressure sensor data from logging in Estenstad-
marka.

6.2.2 Nidelva

One of the reasons Nidelva was chosen was due to the fact that Kartver-
ket provides tidal data on their website at https://www.kartverket.no/. This
provides a useful baseline for comparing both the ultrasonic sensor and the
pressure sensor to more reliable data. Figure 6.2.2 shows tidal data provided
by Kartverket between 00:00 on 25. of May 2022 until 23:59 on the 1. of June
2022.

Figure 6.2.2: Measured tide by Kartverket [52].
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The tidal data can be downloaded directly from their website, but it only
provides a sample for every hour. To be able to better visualize the data,
some work had to be done. The 193 samples provided from Kartverket in this
one week period was interpolated in Matlab using spline interpolation, and
the result is shown in 6.2.3. The Figure shows the downloaded data as blue
circles, and the interpolated data in orange. The interpolation was only done
on the data between 18:03 on the 25. of May and 14:23 on the 1. of June, as
this was when the system was active.

Figure 6.2.3: Spline interpolation of tide data from Kartverket.

Figure 6.2.4 shows the collected ultrasonic sensor data compared to the in-
terpolated data from Kartverket. 6.2.5 shows the first two tides of that data.
Figure 6.2.6 shows only the first high tide in the data set, and shows that
the ultrasonic sensor closely follows the data from Kartverket, only deviating
with approximately 2cm. The second high tide is shown in 6.2.7 and again
shows that the ultrasonic sensor tracks the water level in Nidelva extremely
well, with only a deviation of approximately 4cm at worst.

However, as explained with Figure 5.2.8, the low tides are not detectable, as
the ultrasonic sensor points at the river bed below a certain water level. This
explains the flat regions when the water level is less than approximately 0.95m.
This could have been fixed by pointing the ultrasonic sensor at a slight angle,
such that it measures in the middle section of the river, but it was chosen to
set it pointing vertically, such that the data did not skew.
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Figure 6.2.4: Ultrasonic sensor data from logging in Nidelva compared to data
from Kartverket.

Figure 6.2.5: First two tides measured with ultrasonic sensor in Nidelva com-
pared to Kartverket.
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Figure 6.2.6: First high tide measured with ultrasonic sensor in Nidelva com-
pared to Kartverket.

Figure 6.2.7: Second high tide measured with ultrasonic sensor in Nidelva
compared to Kartverket.
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Figure 6.2.8 shows the measured pressure in Nidelva compared to the inter-
polated data from Kartverket. Figure 6.2.9 shows the two first tides from the
same data set. Again, the pressure data is more noisy, as expected from the
results from both the indoor test and the test in Estendstadmarka. The pres-
sure sensor was placed at the river bed directly below the ultrasonic pressure,
so the same flat line is to expected during low tide. The pressure sensor is how-
ever very noisy during this period, as seen in 6.2.9 at around 3 ∗ 104 seconds
after starting the test.

Figure 6.2.8: Pressure sensor data from logging in Nidelva compared to data
from Kartverket.
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Figure 6.2.9: First two tides measured with pressure sensor in Nidelva com-
pared to Kartverket.

Finally, the two data sets are compared in Figure 6.2.10. From previous tests,
and from the specialization project [2], it is likely that the ultrasonic sensor
gives a more accurate representation of the water level that the pressure sensor.
The water level from the pressure sensor is significantly lower that what is
measured by the ultrasonic sensor. This could be due to the drop in pressure
from water flow, or maybe a poorly calibrated sensor. The latter is unlikely,
as the static test showed that the sensor neither drifts, and can represent the
water level if the water is still.
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Figure 6.2.10: Ultrasonic and pressure sensor data from logging in Nidelva
compared to eachother.

6.3 Energy consumption

By looking at current draw data collected with the power profiler kit in Table
5.3.1, the average current draw of the system can be calculated with the fol-
lowing formula:

12.65mA ∗ 2.5s + 18.6mA ∗ 0.12s + 8mA ∗ 0.1s + 0.743mA ∗ (Cycle time − 2.72s)
Cycle time

(6.1)

The cycle time is the time between each sensor sample and transmission. As-
suming only one message is sent every time, by choosing a cycle time of 10
seconds gives an average current draw of 4.00mA. A cycle time of 100 seconds
gives an average current draw of 1.07mA.

Batteries of 10Ah on the market today are both cheap and portable enough
to be used alongside this system. This would offer a life expectancy of 104
days with a 4.00mA current draw, and 389 days for an average current draw of
1.07mA. This should be more than enough to satisfy AC8, which states that
the system should be able to operate for months without maintenance.
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However, this life expectancy is a best-case scenario. Several factors could
affect the longevity of the system. If data from the sensors should be averaged
before sending, the sensors need to stay active for longer, and if more that one
message is sent, significantly more current is drawn. The same applies to if
the messages are acknowledged. In the case for this system, it was deemed
unnecessary to acknowledge each message, as a single data point is not worth
the extra cost of more energy consumption. Very little package loss was ex-
perienced during testing, but in case the system is located somewhere with
poor LoRa coverage, it is expected to lose a significant amount of messages.
Therefore either more messages need to be sent, or acknowledged. In case 20
messages need to be sent each time with a sample interval of 100 seconds, the
average current draw would be approximately 6.73mA. With a 10Ah battery,
this implies a life expectancy of approximately 62 days at best, and would not
satisfy AC8 to the same degree. Sending more messages also limits the sample
interval. With the current system, if 20 messages are sent, the system can only
sample every 50 seconds at best.

The battery size could be increased, of course, Doubling the battery size would
in theory also double the longevity, but comes at the cost of both price and
portability. The system could also utilize solar energy to recharge itself during
sunny days, but this would not alleviate the problem if the system is to be
deployed during rainy periods, or winter months.
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Chapter 7
Conclusion

A system for the purpose of measuring water levels in nature has been designed
and implemented. Some modifications were done to the original design dur-
ing implementation, and some features were not fully implemented. Mostly,
a thorough implementation of the serverside software is lacking. The data-
base for storing collected data, and the GUI for plotting said data were not
implemented due to time constraints for this thesis.

The embedded system was placed in both Estenstadmarka and by Nidelva to
log water levels. The longest test was conducted by Nidelva, and lasted for
a week. Properties such as data accuracy, and device life expectancy were
investigated. The system can detect water levels in nature with high accuracy,
assuming an ultrasonic sensor is used, and can operate for long periods of time
without maintenance as planned in the acceptance criteria. The collected data
has shown that it is possible to deploy the system in unstable environments,
such as streams, or larger bodies of water such as rivers.

The system was made by designing and ordering a custom PCB, and ordering
sensors which can be used to measure water levels. Most acceptance criteria
were fulfilled, but there are still some improvements which can be done how-
ever.
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Chapter 8
Future work

The following is a list of suggestions and improvements which can be imple-
mented based on the discussion in Chapter 6.

More energy efficient IC and sensors — It is worth looking into more en-
ergy efficient hardware. More specifically, replacing the microcontroller, LoRa
module, and sensors with an equivalent that draws less current. As an added
benefit to this, newer ICs are often easier to work with and have less clunky
toolchains.

Redesign PCB — Parts of the PCB design draw unnecessary current, such as
the LEDs, and the USB-serial interface. Both were made to make debugging
easier, but they are not needed for the system to operate normally. These
could be removed to make the system more energy efficient. A more general
redesign could also be done to

New battery — A power bank is used currently. This could be swapped out
with a regular battery. It should also be connected to the microcontroller’s
ADC such that the battery level can be read and broadcast.

Concider solar energy — Solar energy can be used in conjunction with a bat-
tery to further increase the life expectancy of the embedded system.

An integrated cloud solution — As the database and user interface is lacking
in this thesis, it is suggested to create a better implementation for storing the
collected data.

Improve the real-time clock — Currently, the real-time clock only has a res-
olution of 1 second. This needs be further improved if data with higher time
resolution is needed.
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Deploy several devices — It would be interesting to see if the system is useful
when deployed on a larger scale.
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Appendix A

A1: Parts list

Designator Description Footprint Value
X1 Crystal SMD2520-4P
H1 Male Header 2.54 2x5 Through-hole
J1 Male Header 2.54 2x3 Through-hole
RX,TX,PWR,PB0,RST,CHR SMD LED LED0603
ATM32 ATMEGA324PB-AN 44-TQFP
C1,C2,C3,C5,C6,C10,C11,C14,C16,C17,C18,C19,C20,C21 SMD capacitor C0603 100nF
C4,C7 SMD capacitor D7343 100uF
C8,C9 SMD capacitor C0603 5pF
C12 SMD capacitor C0603 1uF
C13,C15 SMD capacitor C0603 10nF
CARD1 SD card holder SD-SMD
F1 Fuse F1812
JP1 Screw terminal Through-hole
JP2,JP3 Antenna connector U.FL-R-SMT-1(10)
P1,P2,P3,P4,P5 Female header 2.54 1x8 Through-hole
PMIC1 MCP73830L charge manager TDFN-6
R1,R5,R8,R9,R10,R13 SMD resistor R0805 1K
R2,R3,R4,R11,R12 SMD resistor R0805 10K
R6,R7,R15,R19,R16,R17 SMD resistor R0805 0
R14 SMD resistor R0805 2K
RESET Switch SMD
RN1 LoRa Module RM
U1 USB bus converter CH340C SOP-16
U2,U3 Bus driver 74LVC1G125QW5-7 SOT-25-5
U5 Male Header 2.54 1x3 Through-hole
U6 Voltage regulator LDL1117S33R SOT-223-4
USB1 USB connector Micro-USB through-hole

A2: Schematic
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Appendix B

B1: TTN server GUI

B2: TTN device control panel
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