
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jakob Eide Grepperud

Stochastic Gradient Optimization of
Petroleum Assets

Towards Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Bjarne Grimstad
Co-supervisor: Lars Imsland
June 2022

M
as

te
r’s

 th
es

is

Jakob Eide Grepperud

Stochastic Gradient Optimization of
Petroleum Assets

Towards Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Bjarne Grimstad
Co-supervisor: Lars Imsland
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

Stochastic Gradient Optimization of Petroleum Assets:
Towards Reinforcement Learning

Jakob Eide Grepperud

June 20, 2022

Preface

This thesis was written in the final semester of the Master’s programme of Cybernetics and
Robotics at the Norwegian University of Science and Technology (NTNU) in Trondheim. It
constitutes the completion of my studies at the Department of Engineering Cybernetics. The
thesis is a continuation of the project report from the fall of 2021, and is written in collabora-
tion with Solution Seeker.

The motivation for the topic of this thesis was to further build on the work done on stochastic
optimization from this fall. As reinforcement learning falls within this general term, I was very
motivated to explore this class of methods because of their potential. I am very happy that I
got a relatively creative task, allowing me to properly understand the reinforcement learning
framework which I earlier perceived as magic.

I would like to thank my supervisors, Bjarne Grimstad and Lars Imsland, for their guidance
and insight. I would especially like to thank Bjarne for formulating the project and entrusting
me with it. Thank you for the very necessary meetings and for helping me not get lost in the
forest of possible approaches.

Finally, a big thank you to my family for their continuing support.

Jakob Eide Grepperud

Trondheim, 20th June 2022

i

Abstract

A petroleum asset presents many unique challenges for real-time optimization. Developing a
process model based on first-principles is complicated and expensive due to highly complex
dynamics and a lack of available instrumentation. Furthermore, the extraction process induces
time-varying dynamics, requiring continuous calibration of the process model to remain accur-
ate. Model-free optimization methods have been receiving increased attention because of this.
However, as many of these methods fail to consider the various limitations of a production
asset, operator engineers still decide on most control changes.

In this thesis, we investigate the use of policy gradient methods for gas-lifted petroleum op-
timization. These methods form the intersection between stochastic gradient methods and
reinforcement learning – a class of machine learning whose popularity has grown exponen-
tially over recent years. Our goal was to evaluate the applicability of policy gradient methods
to real-time petroleum optimization. To the extent of our knowledge, there is yet no research
on policy gradient methods for the gas-lift problem.

Three different policy gradient algorithms, based on single-sample Monte Carlo estimators,
are tested and compared using Stochastic gradient ascent. The SPSA algorithm is used as a
benchmark, employing a stochastic finite difference gradient from two samples. Several syn-
thetic test cases are implemented to evaluate robustness against various phenomena, such as
measurement noise, time-varying optimum, and system-wide constraints.

The results show that the Actor-critic algorithm performs the best on systems with fewer wells,
using a linear approximator for the value function. The SPSA algorithm performs better with
higher dimensions. The policy gradient methods are generally more robust toward new scen-
arios than SPSA, with natural gradients accelerating the optimization process. All algorithms
converge to optimal production within a few iterations in most simulations. Although they per-
form well on the synthetic test cases, several research areas should be explored before their
applicability to real-time optimization can be concluded. However, we believe these methods
might have the potential to be a valuable tool for operators in the future.

ii

Sammendrag

Et petroleumsproduksjonssystem byr på flere unike utfordringer som gjør sanntidsoptimer-
ing vanskelig. Modellutvikling basert på fysiske lover er komplisert og kostbart på grunn av
svært kompleks dynamikk og mangel på tilgjengelig sensorikk. Ekstraksjonsprosessen fører til
tidsvarierende dynamikk som gjør at enhver prosessmodell må kontinuerlig kalibreres for å
opprettholde nødvendig nøyaktighet. Grunnet dette er det stadig ny forskning på modellfrie
optimeringsmetoder. Til tross for ny forskning utføres de aller fleste kontrollbeslutningene av
menneskelige operatører. Dette er fordi metodene sjelden tar hensyn til begrensningene som
oppstår ved optimering av produksjonssystem.

I denne oppgaven undersøker vi bruk av policy gradient-metoder for gassløftede produks-
jonssystemer. Disse metodene utgjør fellesnevneren til stokastisk gradientsøk og forsterkende
læring – en klasse av maskinlæringsmetoder som har fått eksponensielt økende oppmerksom-
het de siste årene. Vårt hovedmål var å evaluere potensialet for at policy gradient-metoder kan
passe til sanntidsoptimering av petroleumssystemer. Etter vår beste evne har vi ikke funnet
noen tidligere forskning på anvendelser på gassløft-problemet.

Tre forskjellige gradient-metoder ble implementert og testet ved bruk av en Stochastic gradi-
ent ascent-algoritme. Alle baserer seg på Monte Carlo-estimatorer som bruker kun én måling.
SPSA-algoritmen er brukt som et referansepunkt, siden den baserer seg på finite difference-
estimering, en litt annerledes tilnærming. Flere syntetiske testmodeller er konstruert for å
simulere ulike fenomener som kan skje under gassløft, inkludert støy, tidsvarierende optimum
og beskrankninger. Dette er for å evaluere robusthet.

Resultatene viser at SPSA-algoritmen yter bedre med flere antall brønner. Actor-critic algorit-
men yter best med færre brønner. Dette er en algoritme som benytter seg av en verdifunksjon
som læres underveis i simuleringen. En lineær funksjonsapproksimator brukes for å model-
lere denne. Policy gradient-metodene er generelt mer robust mot ulike scenarior enn SPSA. Vi
har brukt naturlige gradienter til å akselerere optimeringsprosessen. Algoritmene yter bra på
testmodellene. Det kreves likevel ytterlig forskning på flere områder, for å kunne konkludere
om disse metodene egner seg for sanntidsoptimering. Likevel tror vi at disse metodene kan ha
potensiale til å bli brukt som et assisterende verktøy for operatører i fremtiden.

iii

Contents

Preface . i
Abstract . ii
Sammendrag . iii
Contents . iv
Figures . vi
Tables . vii
Acronyms . viii
1 Introduction . 1

1.1 Scope and Research Objectives . 3
1.2 Outline . 4

2 Background . 5
2.1 Gas-Lifted Petroleum Optimization . 5

2.1.1 Selected Methods for Daily Production Optimization 7
2.2 Reinforcement Learning for Industry Applications 8

3 Theory . 10
3.1 Stochastic Gradient Optimization . 10

3.1.1 Stochastic Gradient Descent . 11
3.1.2 Score Function Gradient . 12
3.1.3 SPSA . 12

3.2 Reinforcement Learning Fundamentals . 13
3.2.1 Markov Decision Processes . 13
3.2.2 Value-Based Learning . 15
3.2.3 Policy Optimization . 16

3.3 The Actor-Critic Framework . 17
3.3.1 Variations of the Policy Gradient . 17
3.3.2 Natural Policy Gradients . 18
3.3.3 Constrained Policy Optimization . 19

4 Method . 21
4.1 Case Study - Gas Lifted Petroleum Asset . 21

4.1.1 Optimization Considerations . 22
4.1.2 Case 1: Static Optimization . 24
4.1.3 Case 2: Tracking . 24
4.1.4 Case 3: Tracking with System-Wide Constraints 25

4.2 Algorithms . 26
4.2.1 Score Function Gradient . 26
4.2.2 Average-Reward Actor-Critic . 27

iv

Contents v

4.2.3 SPSA . 29
4.3 Evaluation Metrics . 32

5 Simulations and Results . 33
5.1 Implementation . 33

5.1.1 Tuning Procedure and Initial Conditions . 34
5.2 Results . 34

5.2.1 Comparisons . 35
5.2.2 Behavior of the Algorithms . 40

6 Discussion . 43
6.1 Algorithm Performances . 43

6.1.1 Applicability to Daily Production Optimization 45
6.2 Further Research . 45

7 Concluding Remarks . 47
Bibliography . 48
A Derivations . 54

A.1 Derivation of the Score Function Gradient Estimator 54
A.2 The Gaussian Score Function . 55

A.2.1 Variance Map . 55
A.2.2 Behaviour of the Score Function . 56

A.3 Fisher Information Matrix . 57
B Simulations . 58

B.1 Parameter Configurations . 58
B.2 Supplementary Figures . 60

Figures

1.1 Sequential vs. simultaneous optimization of a three-well system 3

2.1 Simplified overview of a gas-lifted petroleum system 6
2.2 Agent-environment interaction . 8

3.1 Optimizing expectations in a mean-value problem (MVP) 11
3.2 Markov decision process example . 14
3.3 The CAPG estimator . 20

4.1 Illustration of a gas-lifted sub-sea petroleum well 22
4.2 Gas-lift performance curves with 5 wells . 23
4.3 Tracking with 3 wells . 25
4.4 Single-well system with augmented objective function 25
4.5 Single-well value function estimate . 29
4.6 Flowcharts of the stochastic algorithms . 31

5.1 Case 1: Median ∆Y n with low noise . 36
5.2 Case 1: Scatter plots, MAE vs. noise level . 36
5.3 Case 2: Policy behavior for a single-well system . 37
5.4 Case 2: Median ∆Y n . 38
5.5 Case 3: Median production levels . 39
5.6 Case 3: Policy behavior for single- and three-well systems 39
5.7 Case 1: Sensitivity of αµ . 40
5.8 Case 1: Fixed-variance optimization with low noise 41

B.1 Case 1: Comparisons with low noise . 60
B.2 Case 1: Scatter plots, RMSE vs. noise level . 61
B.3 Case 1: Median comparisons with no noise and high noise 61
B.4 Case 1: Percentile bands with no noise and high noise 62
B.5 Case 2: Policy behavior for a three-well system . 63
B.6 Case 1: AC and SNG under varying noise levels . 64
B.7 Case 1: SPSA under varying noise levels . 64
B.8 Case 1: Fixed-variance percentile bands . 65
B.9 Case 1: Sensitivity of ασ . 66
B.10 Case 1 and 2: Sensitivity of η . 66
B.11 Case 1 and 2: Sensitivity of σ0 . 66
B.12 Case 1: SNG policy behaviour with low noise . 67

vi

B.13 Case 1: AC policy behaviour with low noise . 68
B.14 Case 1: SPSA policy behaviour with low noise . 69

Tables

3.1 Variations of the standard Policy Gradient . 18

4.1 Static performance curve coefficients . 24
4.2 Dynamic performance curve coefficients . 24

5.1 Abbreviations of algorithms . 34
5.2 Initial conditions . 34
5.3 Case 1: Low noise . 35
5.4 Case 1: No noise . 35
5.5 Case 1: High noise . 36
5.6 Case 2: Old configurations before tuning . 37
5.7 Case 2: New configurations after tuning . 37
5.8 Case 3: Errors from augmented optimum . 38
5.9 Case 1: Fixed variance optimization with low noise 41

B.1 Parameters used with S1 . 58
B.2 Parameters used with SNG . 58
B.3 Parameters used with AC . 59
B.4 Parameters used with SPSA . 59

vii

Acronyms

A2C Advantage Actor-Critic. 18

AC Actor-Critic. 17–19, 21, 33–36, 41, 43–45, 59, 64

ACKTR Actor-Critic using Kronecker-Factored Trust Region. 19

ANN artificial neural network. 8, 16, 28, 45, 46

CAPG Clipped Action Policy Gradient. vi, 19, 20, 26, 27, 34, 43

DP dynamic programming. 8, 15

DPG Deterministic Policy Gradient. 15

ESC extremum seeking control. 7

FD finite difference. 12, 13, 16

GAE General Advantage Estimation. 18

KL Kullback-Leibler. 18, 19

LLS linear least squares. 28

MAE Mean Absolute Error. vi, 32, 34–38, 40, 41

MDP Markov decision process. 13–15, 17

MVP mean-value problem. vi, 10, 11

PG policy gradient. 16–19, 43, 45, 46

PPO Proximal Policy Optimization. 19, 20

RL reinforcement learning. 3, 4, 8–10, 13–16, 18, 19, 26, 43–45, 47

RMSE Root Mean Squared Error. 32, 34–38, 40–42, 45

RTO real-time optimization. 1, 2, 6, 16, 33

S1 Score1 with Clipped Action Policy Gradient. 34, 35, 40, 41, 43, 58

Score1 Single-Sample Score Function Gradient. 18, 27, 31, 33, 34, 40

SD standard deviation. 24, 26, 34, 43, 66–68

SGD Stochastic gradient descent. 11, 17, 21, 25, 26, 30

SNG Score1 with Natural Gradient. 34–45, 58, 63–66

SPSA Simultaneous Perturbation Stochastic Approximation. 7, 12, 13, 16, 21, 29–31, 33–45, 47, 59

TD temporal-difference. 17, 18, 27, 28, 42

TRPO Trust-Region Policy Optimization. 19

viii

Chapter 1

Introduction

Over the last decade, an emerging field of computational intelligence has shown groundbreak-
ing results, giving rise to new speculations about the thus far seemingly unachievable concept
of general artificial intelligence (Silver, Singh et al., 2021). One famous example of such a
breakthrough is AlphaGo, the first computer program to beat a human professional in the
ancient game of Go, widely considered one of the most demanding challenges of artificial
intelligence (Mandziuk, 2007; Silver, Huang et al., 2016). With a state-space short of 3361

combinations and complex tactics needed on different time scales, methods used to master
other games like chess fail to beat even intermediate players. This feat was possible not by
teaching the algorithm how to play but by letting it become its own teacher, essentially only
giving it the rules of the game. Headlines like these have received attention across all areas of
engineering, and the process industry is not an exception.

As the world population increases along with the global standard of living, the electricity de-
mand continues to outgrow the renewable energy supply. At the same time, the oil industry
might be facing a future with fewer production assets, with new reports calling for a finite end
horizon to the search and extraction of fossil fuels (HDR, 2021; IEA, 2021a,b). Thus, there is
a need for innovative solutions that fully utilize existing assets to meet a future with volatile
prices, tighter profit margins, and competitive markets. One such solution may be new ap-
proaches to daily production optimization, where control allocation and other decisions are
made to maximize production efficiency. Planning and optimizing a petroleum system is com-
plex and might happen on a time scale of years. Daily optimization happens over a time scale of
hours to days, making it equivalent to real-time optimization (RTO) from a process perspective
(Foss et al., 2018). Amongst having the potential to reduce power consumption, daily optimiz-
ation has been shown to increase production volume by 1 to 7%, as well as assist operators in
reducing workload (Krishnamoorthy et al., 2019; Palen and Goodwin, 1996). However, RTO
in the petroleum industry has yet to see widespread usage, despite being a research topic of
high-interest (Bieker et al., 2006). A petroleum asset presents a unique set of challenges that
must be addressed by any optimization method. Krishnamoorthy et al. (2019) list two of these:
offline model development and online model adjustments.

Traditional, model-based methods need accurate modeling to successfully solve numerical op-
timization problems that occur during the lifetime of the plant. Such mathematical descriptions
are notably hard to acquire, particularly for sub-sea systems. As explained by Al-Hajeri et al.
(2009), reservoirs are typically kilometers underneath the seabed. With a limited range of

1

Chapter 1: Introduction 2

available sensory equipment, modeling an oil basin based on first-principles requires interdis-
ciplinary knowledge of, e.g., mechanics, seismography, stratigraphy, and petrophysics. Even if
one obtains a highly accurate process model around the current operating point, it might not
be accurate after a control change. The extraction process alters reservoir characteristics, such
as pressures and composition of fluids. Induced transients and inevitably unmodeled disturb-
ances create a need for online model calibration. This calibration is demanding due to a lack
of available information, as we will revisit in the next chapter. If the plant-model mismatch
is significant, well-known approaches like nonlinear model predictive control might fail (e.g.,
Jahanshahi et al. (2019)). This motivates model-free optimization methods.

Model-free optimization methods do not use an underlying plant model but instead use meas-
urements to obtain gradient information about the process (Jäschke and Skogestad, 2011).
Even though research on these approaches has received increased attention, human operators
still perform most control changes in petroleum production systems. There are several reasons
for this, some of which we include here:

• Production rates must be estimated following a control change. As measurements are
affected by process dynamics, time delays, and uncertainties, the estimation typically
happens over 1-4 hours, some time after a control change has been implemented.

• Operational changes are time-consuming. Implementation of a control change by a hu-
man operator might take hours, and transient dynamics can take several hours to sta-
bilize. The production rate estimation may require several hours of measurements. Ac-
cordingly, we cannot expect to perform more than 1-2 optimization iterations per day.

• Risk of loss of revenue due to unmodeled behavior or sub-optimal production makes
every control change of high potential value. Control changes should be kept small
enough to mitigate this risk while maintaining a magnitude that causes a measurable
effect.

• There might be a multitude of oil wells connected to the same topside processing facility,
making well-specific production levels hard to estimate. It may not be desirable for a
human operator to perturb all inputs at once to maintain an overview and control of
the effects following a control change. However, not utilizing all control variables could
slow down the optimization considerably.

Due to traditions in the petroleum industry that has been beneficially operating for decades,
it is unlikely that any optimization method should be anything more than an assisting tool for
the overseeing operator. The human-in-the-loop aspect implies that different company policies
and individual operator habits lead to various control strategies being used in practice. Thus,
there is likely room for increased efficiency. One example is utilizing all control variables due to
the small number of optimization iterations per day. We illustrate in Figure 1.1 how simultan-
eous perturbations on a three-well system could increase production compared to sequential
optimization. In general, many existing works on daily production optimization do not con-
sider all of the above limitations. Therefore, it is desirable to search for optimization methods
that make few underlying assumptions.

We will investigate the applicability of model-free, stochastic optimization methods to RTO of
petroleum assets (Spall, 2012) . These are simple in nature, and the few underlying assump-
tions of these methods might make them suitable for local, iterative optimization. We will
apply stochastic gradient search techniques for optimizing problems where only noisy meas-

Chapter 1: Introduction 3

0.00

0.25

0.50

0.75

1.00

De
lta

Delta = 0.9
Sequential

0 10 20 30 40 50
n

0.00

0.25

0.50

0.75

1.00
De

lta

Delta = 0.9
Simultaneous

Figure 1.1: Sequential optimization of three different gas-lifted oil wells compared to optimiz-
ing on all wells simultaneously. Delta signifies production level and n is the iteration number.
A simultaneous approach leads to 90% production in nearly half the amount of iterations.

urements of the objective are available. As we will later see, these methods form the basis for
state-of-the-art reinforcement learning (RL) algorithms, where the maximization of a reward
signal is at the core. As stated by Petsagkourakis et al. (2020, p. 1), these constitute "one of
the few control techniques able to handle nonlinear stochastic optimal control problems." By
optimizing directly on stochastic decision policies, these algorithms can solve problems that
other machine learning methods fail to handle, such as mastering the game of Go. This is
done by estimating a policy gradient; a direction of improvement for the decision policy that
can increase the future rewards.

One major challenge with reinforcement learning is that successful applications often need
vast amounts of data for learning (Sham M. Kakade, 2003; Schulman, 2016). For instance,
tens of millions of games were used to train the AlphaGo algorithm. We will use the term
sample-efficiency to denote the ability to find optimal control policies through a small num-
ber of optimization iterations, which more or less remains an open research topic. As previ-
ously established, each control change on a petroleum asset is time-consuming, accurate meas-
urements are often unavailable, and modeling requires high maintenance and aptitude. Any
petroleum optimization method should extract as much information possible from the noisy
measurements. Furthermore, it should be able to deal with time-varying dynamics and phys-
ical constraints on the process. Finally, it should be feasible to implement online, respecting
the previously listed limitations. With these requirements in mind, we propose the following
research question:

Are policy gradient methods suitable for solving real-time production optimization
problems?

1.1 Scope and Research Objectives

Reinforcement learning techniques (as with most advanced control) can quickly get quite com-
plex. A key concern in this thesis is to keep the methods as simple as possible. We will in-
vestigate the intersection between general stochastic gradient optimization and reinforcement
learning. As the stochastic policy gradient estimates are exposed to high variance, we will

Chapter 1: Introduction 4

experiment with a learned value function, essentially an estimate of the cost function. This
is called an actor-critic approach. Although more complex methods are attractive and might
yield better results in terms of production, we deliberately avoid these to examine the most
basic underlying structures. This means we will not use adaptive optimizers or artificial neural
networks to generate policies or value functions but rather strip the algorithms down to their
basics. To confine the scope of the thesis, we define a set of research objectives that will help
us answer the research question.

Primary Objective: Evaluate the potential of policy gradient methods on real-time production
optimization.
Secondary Objectives:

• Present the theory needed to frame a production optimization problem as an RL task
• Construct a selection of optimization cases that reflect some of the challenges with daily

production optimization
• Evaluate the sample-efficiency of some selected policy gradient algorithms on these cases
• Investigate the variance-reduction potential of the actor-critic framework

Using a simplified model for a system of gas-lifted petroleum wells, we aim to optimize a
stochastic control policy in a minimal amount of iterations through stochastic gradient ascent.
We will evaluate their performance by comparing results to the SPSA algorithm, which uses
another stochastic gradient estimate based on finite differences. We review the applicability of
the methods to real-world applications in terms of performance on these synthetic test cases,
where we measure performance by the number of iterations needed for general convergence
to optimal production.

1.2 Outline

This report is structured as follows. Chapter 2 summarizes the gas-lift problem and why this
can be difficult. We briefly mention selected methods that have been used on this problem and
further motivate our approach. In Chapter 3, we present the fundamental theory of stochastic
gradient optimization and critical reinforcement learning concepts. These form the basis of the
algorithms we present in Chapter 4 along with a description of the case studies. Here, we also
describe the metrics used to evaluate the performances presented in Chapter 5. We discuss
the results in Chapter 6, where we view them in light of real-time production optimization
challenges. Finally, we conclude in Chapter 7.

Chapter 2

Background

In this chapter, we further motivate the research topic of this thesis, which is the use of policy
gradient methods for petroleum optimization. As the literature on this is sparse, we first in-
troduce more researched methods applied to the problem at hand; gas-lifted petroleum op-
timization. We then explain the fundamental idea behind reinforcement learning and current
research on its use in the process industry.

2.1 Gas-Lifted Petroleum Optimization

One of the most commonly used forms of daily production optimization is a technique called
artificial gas-lift. According to Ismail and Trjangganung (2014), about 70% of the global oil and
gas production stems from maturing oil fields, with recovery rates averaging 35%, indicating
possibilities of increased production. Over time, these maturing fields will deplete of oil, gas,
and water, decreasing reservoir pressure. As the pressure might not be sufficient to lift the
fluids to the surface, artificial lift methods have been used to counteract this for over a century
(Jadid et al., 2006; Rashid et al., 2012).

One can support and maintain oil extraction by injecting pressurized natural gases into the
petroleum wells, reducing fluid density and hydrostatic pressure drop in the well column.
However, as the injection rate grows, the friction caused by additional gas flow might grow
larger than the pressure reduction improvement, leading to decreased production. In this situ-
ation, an optimal injection flow rate for each well exists, maximizing the extraction rate and
thus profits. Furthermore, the injection gas is often shared across wells (of which there are
possibly several hundred) and of finite availability, making this a control allocation problem
(Krishnamoorthy et al., 2019; Silva and Pavlov, 2020). Figure 2.1 shows a simple illustration
of such a system. The functions relating the injection and production rates, referred to as gas-
lift performance curves, are typically nonlinear and concave (Rashid et al., 2012). Therefore,
optimizing the production would be equivalent to solving a nonlinear optimization problem
on these curves, subjected to various constraints.

Optimal control would be easier if these curves were easily obtainable. In practice, that is not
the case. As we have already established, physics-based modeling is intricate and requires pre-
cise data for model adjustments. However, the most reliable and easily obtainable production
measurements are from after topside processing and thus after re-routing of wells to shared

5

Chapter 2: Background 6

Gas-lift
controller

Processing
facilities

Natural gases

Wells

Figure 2.1: Simplified overview of a gas-lifted petroleum system

manifolds. Accurate oil rate measurements from individual wells would perhaps make model
adjustments feasible, but these are not readily available. We will briefly elaborate on why,
based on the handbook of Corneliussen et al. (2005).

A petroleum well produces water, gas, and slug in addition to oil. These phases are difficult
to distinguish before they are processed in separators, which takes time. Accurate information
about the phase flows is highly desired, making multiphase flow-metering a well-researched
discipline within the petroleum industry. Two standard tools for obtaining this information are
test-separators and multiphase flow meters.

The conventional way to characterize a specific oil well is through test separators, where phase
volumes are measured based on fluid densities. Unfortunately, this requires re-routing a well
flow, leading to reduced production, personnel intervention, and increased maintenance. Even
if accurate rate measurements were obtained for single wells through the often limited amount
of test-separators, finding optimal gas-lift allocation is nontrivial. As noted by Rashid et al.
(2012), single-well methods fail to find optimal solutions when there is a network of wells. One
reason for this is a pressure drop that arises downstream due to the routing of the wells into
shared pipelines. To be able to monitor the entire network of wells accurately is essential for
RTO. The newer approach to this is through the use of multiphase flow meters. Here, complex
measurement instruments estimate the individual phase flows based on different principles.
However, these costly flow meters are difficult to install, need to be calibrated regularly, and
their accuracy is lower than for conventional methods (Corneliussen et al., 2005; Grimstad
et al., 2021).

The impracticability of these techniques has impelled a search for new, data-driven meth-
ods that aim to utilize complex patterns in available data, as opposed to models based on
first-principles. Several companies work towards data-driven optimization, including Solution
Seeker. One approach to modeling is data-driven virtual flow-metering, where multiphase flow
rates are estimated by modeling the underlying system without explicit prior knowledge (Grim-
stad et al., 2021). Virtual flow-metering is just one example of a wide array of ongoing research
in applying machine learning principles in the industry (Mohammadpoor and Torabi, 2018;
Sircar et al., 2021). Although showing promising results, research on data-driven modeling is
still in development. Hence, there is a need for other model-free approaches to daily produc-
tion optimization that do not heavily rely on individual measurements.

Chapter 2: Background 7

2.1.1 Selected Methods for Daily Production Optimization

A model-free optimization that has been widely researched for gas-lift optimization is ex-
tremum seeking control (ESC). By applying sinusoidal perturbations to the system, a gradient
estimated from measuring the cost can be used to find an optimal input configuration (see, e.g.,
Dochain et al. (2011); Pavlov et al. (2017)). However, transient dynamics, long pipelines, and
time delays make this difficult to implement. The standard ESC is a local optimization method,
meaning it converges to local optima. Several of these might exist in a gas-lifted well network
of many wells due to noise or local non-concave regions. With few daily optimization itera-
tions and time-varying dynamics, global optimization without process models might be near
impossible. Some research is done on making ESC more robust against sub-optimal solutions.
Shu-Jun Liu (2012) introduces stochasticity in the perturbations to reduce chances of being
stuck in local optima. By doing this, we move from deterministic to stochastic optimization.

Stochastic optimization is a general term that concerns optimization with noise present or
where randomness is used in the search procedure itself (Spall, 2012). We focus on model-free
methods that only use information acquired through noisy measurement of the optimization
objective. We will delve into the details in the following chapter, but generally, a stochastic
gradient can be used to optimize the expectation of a cost function. This approach is often
referred to as stochastic gradient methods (Spall, 2012). These methods applied to the gas-lift
problem were the main topic of research for the fall project preceding this thesis (Grepperud,
2021). They offer no guarantees of global solutions, but local solutions are likely the only
possibility for real production assets.

One well-known stochastic gradient algorithm is SPSA, where a gradient is estimated by per-
turbing the process and measuring the output, based on the same principle as ESC (Spall,
1992). A few studies have discussed the use of SPSA in optimizing petroleum systems (Do
et al., 2012; Hou et al., 2015; Wang et al., 2007). However, they either assume closed-loop
optimization, i.e., an iterative two-step procedure, where one step updates prior geological
knowledge, or consider different artificial lift methods. To the best of our knowledge, there
exists no application of the SPSA algorithm on the gas-lifted optimal control problem. That is
also the case of the score function estimator (Mohamed et al., 2019), another stochastic gradi-
ent estimate we will investigate. This estimator can be used to find the optimal distributional
parameters of a probabilistic decision rule. Although widely used in machine learning, it is not
commonly used in process industries.

Implementing stochastic gradients in practice is risky in applications such as petroleum optim-
ization, where a fraction of reduction in production might lead to significant economic losses.
Furthermore, oil wells can produce complex behavior during gas-lift. As stated by Dias et al.
(2019), this could be in the form of highly oscillatory behavior, leading to sub-optimal produc-
tion, unstable process behavior, and a loss of revenue. This suggests using advanced control
strategies that stabilize the system and prevent intermittent production rather than stochastic
gradient updates, which aim to optimize an objective immediately. In the process industry,
model predictive control is the most popular technique for advanced control (Morari and H.
Lee, 1999). However, the reliability is dependent on the accuracy of the model, which we have
already established is complex to maintain.

Due to all of this, and perhaps due to a conservative industry, it is common for a human
operator to oversee and perform daily production optimization. Sub-optimal control changes
lead to loss of production, generating conservative practices, as explained in the introduction.

Chapter 2: Background 8

Senior operators use their best intuitions based on domain knowledge acquired through years
of experience, transfer of knowledge, and learning by trial and error. As stated by Herbert
Simon, "intuition is nothing more and nothing less than recognition" (Kahneman, 2011). With
immediate access to large amounts of data, could an algorithm acquire such an intuition?

This motivates our investigation into reinforcement learning, which has received increasing
attention over the last few years. The incredibly general structure of a RL problem consists of
an agent performing actions in an environment, observing rewards and states along the way,
illustrated in Figure 2.2. The historical development behind this class of machine learning is
motivated by how humans and animals learn organically - by trial and error. The agent will
seek to maximize its cumulative reward and learn what behavior is optimal over time. The
combination of reward-based behavioral studies and optimal control theory has resulted in
what is modern reinforcement learning (Sutton and Barto, 2020).

atst, rt
state, reward action

Agent

Environment

Figure 2.2: An agent interacts with an environment, observing rewards and states.

2.2 Reinforcement Learning for Industry Applications

With increasing computing power and significant advances in nonlinear function approxima-
tion through deep artificial neural networks (ANNs), reinforcement learning has shown great
success in a wide variety of applications. Some examples include beating reigning world cham-
pions in the game Dota 2 (Berner et al., 2019), solving a Rubik’s cube with a robotic hand
(OpenAI et al., 2019) and mastering the game of Go (Silver, Huang et al., 2016). Although
these examples use quite different approaches to achieve their goal, they all follow the same
principles: learn a control policy that maximizes the reward function.

The theory on optimal control in RL mainly originate from early works on dynamic program-
ming (DP) by Bellman (1957). Formulating the optimal control problem as discrete, stochastic
models named Markov decision processes, dynamic programming was long acknowledged as
more or less the only feasible way to solve such problems (Sutton and Barto, 2020). Many
theoretical advances were on performing optimal decisions under stochasticity by assigning
values to states and actions that reflect the reward function that is to be maximized. Suffer-
ing from what Bellman called "the curse of dimensionality," the significant advances in this
approach to RL has only happened recently due to the abilities of deep learning to deal with
extremely high dimensional spaces.

Much of the power of modern state-of-the-art RL methods lies in combining these approximate
DP methods using general function approximators with numerical stochastic optimization. We
focus more on the latter in this work, aiming to optimize a stochastic control policy through
policy gradient methods. The flexible structure of the agent-environment interaction allows for
incorporating model estimation into the stochastic optimization methods to accelerate learn-

Chapter 2: Background 9

ing. In this way, RL agents can learn complex, multi-stage control policies, striking a balance
between planning and learning by trial and error (Schulman, 2016; Sutton and Barto, 2020).
With the increasing attention on data-driven methods in the industry (Grimstad et al., 2021),
RL methods could exploit the already growing infrastructures.

The practical applications of RL in the process industry are still yet limited, primarily due to the
need to satisfy constraints (Pan et al., 2021). In most industrial systems, enforcing constraints
is essential to ensure viable, economic, and safe performance. Consequently, the study of safe
RL has become a discipline by itself; see e.g., Garcia and Fernandez (2015). Recent works show
that it is possible to enforce constraints with high probability (Pan et al., 2021; Petsagkourakis
et al., 2020), as well as guarantee safe policy updates (Chow et al., 2019).

Literature on applications of RL for daily production optimization is sparse. Ma et al. (2019)
investigate deep RL methods on a water-flooded system but uses implicit policy derivations
rather than direct policy optimization. Miftakhov et al. (2020) use policy gradient methods
with pixel data, also on a water-flooded system; another method for artificial lift. To the best of
our knowledge, there are yet no studies on gas-lift optimization using policy gradient methods.
Some existing works, such as Andersen and Imsland (2021) and Gros and Zanon (2019), use
the Q-learning algorithm to mitigate model uncertainty while using NMPC for the control
policy. They utilize the learning of a model through approximate DP but do not employ policy
gradient methods for optimizing the policy directly. We will introduce these methods formally
in the following chapter.

Chapter 3

Theory

Reinforcement learning (RL) is an incredibly wide and continuously expanding research topic,
making it very difficult to summarize in just a few pages. Although we cannot cover all the
interesting details, we will go as far as to introduce actor-critic methods, which we will later
use for production optimization. To justify the choice of methods, we will first make a brief
review of model-free stochastic gradient optimization, primarily based on the theory from the
preceding project assignment (Grepperud, 2021). We are interested in two ways of estimating a
gradient that can be used in a stochastic gradient ascent-framework; A likelihood-ratio gradient
based on the score function and a stochastic finite-difference gradient.

In the second part of the chapter, we shift our focus toward reinforcement learning and estab-
lish the underlying model; Markov decision processes. We explain key concepts and notation
used to frame a process optimization problem as an RL task. We introduce the principles be-
hind value-based learning and how they are used to estimate the underlying reward structures.
We then explain direct policy optimization methods, which use stochastic gradients to improve
the current control policy.

The final section focuses on how these two approaches are combined to form actor-critic meth-
ods. We will mention some variations of the "vanilla" policy gradient, as well as some ways to
include constraints in the optimization problem. We will also explain the basis for natural
policy gradients. Most state-of-the-art algorithms employ these, and we will also use these for
our numerical studies.

3.1 Stochastic Gradient Optimization

A general probabilistic objective can be written as:

F(θ) = Ex∼p(θ)
�

f (x)
�

=

∫

pθ (x) f (x)dx (3.1)

where θ are the distributional parameters of a probability density p and x is a random variable
drawn from this distribution. We refer to a problem on the above form as a mean-value problem
(MVP). The sensitivity analysis of F is

g =∇θ F(θ) =∇θEx∼p(θ)[f (x)], (3.2)

10

Chapter 3: Theory 11

Figure 3.1: Optimizing expectations in a mean-value problem (MVP), with x sampled from a
distribution p(θ)

meaning it is the gradient of an expectation with respect to the distributional parameters. In
this thesis, we are concerned with objectives on the form of eq. (3.1), where we aim to optimize
the expected value of f because we do not have access to f itself. This is a central problem in
many applications of machine learning (Buesing et al., 2016). This section and Section 3.1.2
are largely based on Mohamed et al. (2019).

A simple tool we can use to acquire knowledge about the objective is Monte Carlo estimat-
ors. By drawing independent samples x from the distribution p(θ), we can approximate the
integral by averaging over the function evaluations at x . As the number increases, we get an
approximation converging to the true value by the law of large numbers. For our purposes,
we can use Monte Carlo methods when estimating gradients that are unavailable on a closed-
form, such as in eq. (3.2). These stochastic gradients can then be used to optimize an objective,
such as the expectation of f (x) in Figure 3.1.

3.1.1 Stochastic Gradient Descent

A simple model-based optimization method is gradient descent, where one iterates towards a
minimum by moving in the direction opposite to the gradient. However, if the gradient is not
available, one can use a stochastic approximation of the gradient to form Stochastic gradient
descent (SGD):

θ̂ n+1 = θ̂ n −αn ĝn, (3.3)

Based on the stochastic approximation-framework of Robbins and Monro (1951), the iterative
algorithm converges to local minima if αn is chosen appropriately. We refer to Bottou et al.
(2016) for more on convergence properties. If we can find an unbiased estimate of eq. (3.2),
we can utilize this structure to optimize F(θ). An extension to SGD is to apply momentum,
working as an exponentially moving average of the gradient estimate:

vn+1 = γvn −αn ĝn (3.4a)

θ̂ n+1 = θ̂ n + vn+1 (3.4b)

This acts as a smoothing factor, useful for gradient estimates with high variance. For the pur-
poses of production maximization, we will consider stochastic gradient ascent, while still re-
ferring to the method as SGD. This is simply done by changing the subtraction in eq. (3.3) and
eq. (3.4a) to form addition instead.

Chapter 3: Theory 12

3.1.2 Score Function Gradient

For a probabilistic objective of the form eq. (3.1), where the function is only available through
sampling, one can use a likelihood-ratio estimator to acquire the sensitivity analysis of eq. (3.2).
This gives us the score function gradient estimator. The score of a probabilistic distribution is
defined as the gradient of the log-likelihood function wrt. the distributional parameters (Wilks,
1962):

∇θ log p(x | θ) =
∇θ p(x | θ)

p(x | θ)
. (3.5)

Using this identity, the score function gradient can be derived:

g =∇θ

∫

pθ (x) f (x)dx (3.6a)

= Ex∼p(θ)
�

∇θ log p(x | θ) f (x)
�

, (3.6b)

with the full derivation and underlying assumptions explained in Appendix A. By sampling
the system by drawing a stochastic variable from a distribution x ∼ p(θ) we get an unbiased
Monte Carlo estimator for the expression above. We call it the score function estimator:

ĝP(θ) =
1
P

P
∑

p=1

f (x p)∇θ log p(x p | θ), x p ∼ p(x | θ), (3.7)

where P is the number of samples, which is often desired to be kept at a minimum for real-
time optimization. In fact, we will later employ single-sample Monte Carlo estimates by letting
P = 1, as they are still unbiased, although of higher variance.

To reduce the variance, likelihood-ratio gradients are often modified through the use of baseline
models. Because the expectation of the score is zero, we can subtract an independent function
b from f (x) in eq. (3.6) while retaining unbiasedness:

g = Ex∼p(θ)
�

∇θ log p(x | θ) (f (x)− b)
�

. (3.8)

3.1.3 SPSA

Another approach to estimating the gradient of an unknown function is through finite-difference
(FD) methods. By evaluating a function around a point through multiple samples, a descent dir-
ection can be approximated. The Simultaneous Perturbation Stochastic Approximation (SPSA)
algorithm uses a stochastic approach to form a FD gradient estimate. Introduced by Spall
(1992), the algorithm consists of applying stochastic disturbances to the system and estimat-
ing a descent direction from measurements of the cost function. This direction can then be
used in a Robbins-Monro framework such as eq. (3.3). Two opposite perturbations are used to
estimate the gradient at iteration k, similarly to central FD methods:

ĝ(θ̂ n) =
y(θ̂ n + b∆n)− y(θ̂ n − b∆n)

2b

∆−1
n1
...
∆−1

np

 . (3.9)

The stochastic vector ∆n ∈ RM can be drawn from different distributions, but it should sim-
ultaneously perturb the current estimate θ̂ n ∈ RM in each of the M dimensions. Sadegh and

Chapter 3: Theory 13

Spall (1998) suggest using a Bernoulli ±1 distribution1, i.e., every component of ∆n takes
either a positive or negative value of 1 with equal probability. They argue that the Bernoulli
distribution form is an optimal choice for an FD gradient approximation. Neither the normal
or uniform distributions can be used with this FD approximation. This is because of infinite
inverse moments, meaning their probability mass is centered around zero, so eq. (3.9) is un-
defined on average. The major advantage of this method is that only two samples are needed
at each iteration, as opposed to 2M in a central FD estimate, but the same level of statistical ac-
curacy can be achieved. A one-measurement SPSA estimate was proposed in Spall (1997), but
is susceptible to higher variance. We focus on the two-measurement estimate, as earlier work
found it outperforming the one-measurement method on a similar problem setup (Grepperud,
2021).

3.2 Reinforcement Learning Fundamentals

Reinforcement learning is a powerful, goal-oriented approach to computational intelligence,
where an agent interacts with an environment to maximize a reward-signal. As the environment
is generally unknown or stochastic, the agent must learn from feedback signals generated from
the interactions with the environment, used to encourage or discourage certain future actions.

Although the current literature on RL often uses notation adopted from computer science (and
from Sutton and Barto (2020) specifically), it is just one approach to the more general problem
of optimal control. An agent, i.e., a controller, aims to find a control policy that optimizes some
objective function. Model uncertainties or time-varying dynamics of the environment, i.e., the
process, lead to what is essentially adaptive control. We will use notation and terms consist-
ent with most RL literature, although most expressions have an equivalent in control theory
literature (Lattimore and Szepesvari, 2020). We use capital letters for stochastic variables and
lower case for realizations.

For purposes of petroleum production, we are focusing mainly on control policy optimization,
where we are assuming that the underlying system is stochastic and not fully observable. As
we saw in Chapter 2, modern reinforcement learning has origins in dynamic programming.
Therefore, we formalize the general RL problem by introducing Markov decision processes,
central to RL and the field stochastic optimal control (Lattimore and Szepesvari, 2020).

3.2.1 Markov Decision Processes

The standard reinforcement learning problem is expressed as a learning agent interacting with
a Markov decision process (MDP) (Sutton, McAllester et al., 1999). MDPs are described by Sut-
ton and Barto (2020, p. 47) as a "mathematically idealized form of the reinforcement learning
problem for which precise theoretical statements can be made." Introduced by Bellman (1957),
an MDP is a tuple

�

S,A, Pr(s, s′, a), R(s, s′, a)
�

that denotes a discrete-time stochastic control
process, with S and A being the state- and action-spaces, respectively. At each time step, an
action a ∈A will lead to a state s′ ∈ S from the current state s ∈ S with a transition probability
Pr(s, s′, a). This transition yields a reward r from the reward distribution R(s, s′, a). The model
satisfies the Markov property, i.e., memorylessness, so the next state s′ is conditioned only
on the previous state and action s, a (Howard, 1971). Because of this property, any optimal
solution is a function of the current state. Unlike many applications of RL that consider MDPs

1also called a Rademacher distribution

Chapter 3: Theory 14

+1

+1 +1

+1

S2S1

a1 a1

a2a2

-1

-1

-1

-1

0.6 0.4

0.50.50.70.3

0.20.8

Figure 3.2: Simple stationary MDP with two possible actions in each of the two states. They
lead to either a positive (green) or negative (red) reward with probabilities marked in grey.

with terminal states, we only focus on non-episodic settings, that is, continuing tasks where
no such states exist. Although the model formally describes a fully-observable environment,
almost all RL problems can be generalized as MDPs. This includes continuous state- and action
spaces and partially observable problems (Silver, 2015), which leads to approximations of the
solutions to these models.

A toy example of a simple MDP with two states S1 and S2 is shown in Figure 3.2. The actions
a1, a2 either lead to a new state, with a positive reward, or back to the current state, with a
negative penalty. An RL agent aims to choose actions that over time maximizes the accumulated
reward. In this stationary example, meaning the reward distribution does not change, the
optimal actions are a2 for state S1, and a1 for state S2, as the expected returns are the highest
for these actions.

Rewards, Returns and Policies

The objective of an agent is to maximize the cumulative reward attained from the reward-
distribution R : S ×A→ R that might depend on states, actions, or both. The reward signal,
called the reinforcement signal, is the driving force in the learning process. To maximize the
reward, we thus let one maximization objective be the expected return, where the return G
is some function of the cumulative rewards attained from each time step (Sutton and Barto,
2020). The returns can be designed according to the application, but two formulations are
particularly common for continuing tasks: the discounted and average reward settings. At
time step n, these two can be defined recursively:

Gγn = rn + γGγn+1 =
∞
∑

n=0

γnrn+k (3.10a)

Ḡn = rn − r̄π + Ḡn+1 =
∞
∑

k=0

rn+k − r̄π (3.10b)

For the discounted setting, γ ∈ [0, 1) denotes the discount factor. Maximizing Gγn thus encour-
ages immediate rewards over long-term future rewards, particularly useful in settings with a
reward distribution that changes over time. With no terminal states, γ also ensures conver-
gence of the series.

Chapter 3: Theory 15

The average reward-formulation aims to maximize the difference between the next rewards
and the average reward-rate, which we denote as r̄π, which in turn is equivalent to maximizing
r̄π itself. This is the expected rate of rewards attained from following the current control policy
as time goes to infinity:

r̄π = lim
n→∞
Ea∼π [Rn | A0:n−1] (3.11)

An RL agent thus has a short-term objective in maximizing immediate rewards and a long-
term objective, which is to maximize returns. We will now describe how this can be achieved
– through policies and value functions.

A policy π(a | s) : S → A is a mapping from state to action, meaning it is a decision making
rule for the agent. Thus, one way of solving an MDP would be to find an optimal policy that
maximizes the reward. As done in Silver, Lever et al. (2014), we can write the performance
objective as an expectation of the return from following a specific policy:

J(π) = Ea∼π [G(s, a)] (3.12)

If the underlying system model was fully observable, such as in the toy example in Figure 3.2,
this would simply reduce to computing the MDP analytically. In most situations, including this
project, problem must be solved approximately. This leads us to two different main approaches
to deriving RL algorithms, which are policy optimization and value-based learning (Schulman,
2016).

3.2.2 Value-Based Learning

Indirect RL, or value-based RL methods, aim to learn value functions through an approximate
DP approach. Tracing its origins back to early work by Bellman (1957) and Howard (1960)
amongst others, these methods assign values to states and actions. These are predictions of
the reward the agent will receive, given a partially observable MDP (Schulman, Moritz et al.,
2016). By estimating such values (which obey certain consistency conditions like the Bellman
optimality equation, see Sutton and Barto (2020)), an optimal policy is implicitly derived
by iterating over possible combinations of states and actions, and selecting actions with the
highest value.

We are mainly interested in the state-value function V (s), which models the value of a state
s, i.e., the estimated future returns from following a policy π from s. The state-action-value
Q(a, s) is also important for decision making. It models expected return by choosing a specific
action a given state s, and then following π:

V (s) = Ea∼π [Gn | Sn = s] (3.13a)

Q(s, a) = Ea∼π [Gn | Sn = s, An = a] (3.13b)

We have dropped the π-superscript in the above equations, commonly used to indicate a spe-
cific policy (Sutton and Barto, 2020). We only consider on-policy algorithms for the purposes
of real-time production optimization, where the agent performs actions according to the best
estimated policy. This is in contrast to off-policy algorithms such as Q-learning (Watkins, 1989)
or DPG (Silver, Lever et al., 2014), where a target policy is typically updated from a different
behavioural policy.

The functions of eq. (3.13) are unknown in a partially observable MDP and must be estimated.
Historical approaches were often through linear estimators, but modern approaches typically

Chapter 3: Theory 16

utilize nonlinear approximators, such as ANNs. Q-learning is a prime example of an implicit
algorithm showing solid results in discrete domains with deep RL (Duan et al., 2016; Mnih,
Kavukcuoglu et al., 2013). For RTO, however, we will use value functions to assist the direct
optimization of a stochastic policy. This leads us to another family of methods: direct reinforce-
ment learning.

3.2.3 Policy Optimization

Policy optimization methods are the second major approach to RL, where a policyπ(θ) = πθ is
optimized directly with respect to the policy parameters θ , thus the name direct RL. As written
by Schulman (2016), this frames the RL problem as a numerical optimization problem. Within
policy optimization, we are focusing on policy gradient (PG) methods, which gradually update
the policy parameters in an estimated direction of improvement.

Policy gradient optimization assumes stochastic policies, as the theory builds on probabilistic
objectives as seen in Section 3.1. There is an inherent exploration as these policies outputs
probabilities of choosing actions, unlike deterministic policies. This property is desirable, e.g.,
to avoid local optima, or because stochastic processes might lead to outcomes that differ over
time. An advantage of these methods is that policy parametrization and approximation of a
policy is often easier than value functions, particularly for large or continuous state spaces.
PG methods also have stronger convergence properties than value-based methods by approx-
imating gradient ascent and guaranteeing on-average policy improvement (Sham M. Kakade,
2003; Sutton, McAllester et al., 1999). Prominent historic approaches are FD methods and
likelihood-ratio methods that use the score function estimator (Peters and Schaal, 2006). Most
modern methods use the latter estimator. We will henceforth refer to these methods as "policy
gradient methods", as they are derived from an important theorem.

Policy Gradient Theorem

The central theorem that enables likelihood-ratio PG methods is based on the score function
gradient estimator (Section 3.1.2). The policy gradient theorem provides an analytical expres-
sion for how to change the parameters θ to improve the policy. Sutton and Barto (2020)
presents the proof of the policy gradient, which for a continuous action space is:

g =∇θ J(π) =

∫

S
µ(s)

∫

A
∇θπθ (a | s)Q(s, a)dads

= Ea∼π
�

∇θ logπθ (a | s)Q(s, a)
�

,

(3.14)

where µ(s) is the state distribution under π. This expression is nearly identical to eq. (3.6),
where the Q-value is equivalent to the general function value f (x).

One notable work within policy gradient methods is the REINFORCE algorithm of Williams
(1992), where Q(s, a) is estimated using episodic sample returns Gγn . This algorithm is known
to suffer from very high variance and sample-inefficiency (Schulman, 2016) but has the prop-
erty that the returns are bias-free in an episodic setting. Furthermore, it does not require careful
generation of system-specific FD perturbation vectors such as SPSA (Peters and Schaal, 2006).
To better separate good actions from great actions, one can reduce variance by introducing an
arbitrary baseline function b(s) in the gradient update, such as a state-value function V (s). As
long as it does not vary with a, the PG theorem remains valid (see Section 3.1.2).

Chapter 3: Theory 17

REINFORCE utilizes sampled episodic returns2, meaning the theory is based on finite MDPs
(Sutton and Barto, 2020). A continuing implementation of this algorithm could be to view
an iteration as an episode of length one so that the episodic returns equal reward at each
time step. Initialization of a new episode, however, would introduce bias unless a new initial
state is drawn at random. Letting the next initial state be the previous terminal state leads to
what is essentially SGD with the score function gradient estimate (see Section 3.1.2). Another
approach is to drop the notion of episodes altogether. We cannot approximate Q-values bias-
freely, as we would need to look infinitely far into the future. This motivates actor-critic (AC)
methods, that use uncertain predictions to estimate the current state- and state-action-values.

3.3 The Actor-Critic Framework

Actor-critic methods combine policy gradients with value-based learning, exploiting the ad-
vantages of each method to accelerate the learning. Two different models are used: the actor,
which is the policy model performing actions, and the critic, which typically is a value function.
The critic evaluates the action done by the policy by comparing the observation (r, s′) to the pre-
dictions (Q, V). This yields a scalar value used to update subsequent estimates and inform the
actor how to modify the policy. This form of bootstrapping is called temporal-difference (TD)
learning, and is the difference between AC-methods and PGs with value-function baselines.
The one-step TD-error is defined by Sutton and Barto (2020) as

δγ = r + γV (s′)− V (s) (3.15a)

δ̄ = r − r̄π + V (s′)− V (s) (3.15b)

for the discounted- and average-return settings, respectively. The one-step TD-error can be
seen as special case of an advantage function estimate: A(s, a) = Q(s, a)− V (s) (Mnih, Badia
et al., 2016). The Q-value is approximated with rn + γV (s′) for the discounted case, which is
equal in expectation:

Q(s, a) = Ea∼π[Gn | Sn = s, An = a]

= Ea∼π[rn + γGn+1 | Sn+1 = s′]

= Ea∼π[rn + γV (s′) | Sn+1 = s′].

The advantage function is a measure of how good an action actually is, compared to an earlier
prediction, and is a generalization of the prediction-correction structure in eq. (3.15). If an
optimal policy is known, every optimal action will yield a Q-value Q(s, a) that is equal to
the state-value V (s) at that iteration; the maximum value of A(s, a) is zero. During learning,
however, A indicates if an action was better than expected, and this is used to update the
policy parameters. As shown by Sutton, McAllester et al. (1999), an advantage estimate like
the TD-error can be used directly in eq. (3.14) to optimize a policy.

3.3.1 Variations of the Policy Gradient

The policy gradient estimate can be used in a stochastic gradient ascent framework (eq. (3.3))
with

ĝ =∇θ logπθ (a | s)ψ(·) (3.16)

2Referred to as "Monte Carlo" returns by Sutton and Barto (2020), specifically meaning averaging complete
episodic returns, not to be confused with a general Monte Carlo estimator like in Section 3.1.2

Chapter 3: Theory 18

as a Monte Carlo estimator and ψ indicating some estimate of Q(s, a). As we have seen, ψ
might be a sampled episodic return, a one-step TD-error, or lower-variance advantage estim-
ates. Algorithms utilizing advantage estimates have been increasingly popular, as it "yields al-
most the lowest possible variance" for policy gradient updates, as stated by Schulman, Moritz
et al. (2016, p. 3). In their paper, they propose the GAE method, which is a common advantage
estimator choice for state-of-the-art AC algorithms. Here, they sample trajectories of observa-
tions before updating the estimate (so-called batch methods). A well-known example of batch
updates and advantage estimates for policy optimization is the Advantage Actor-Critic (A2C)
algorithm (Mnih, Badia et al., 2016), using n-step TD-updates from sampled trajectories. Batch
methods reduce variance in the policy gradient estimation, approximating the P-sample score
function estimator we saw in eq. (3.7).

The variations listed above are often referred to as "vanilla" PG (OpenAI, 2018), because they
do not modify the score function. Table 3.1 shows a selection, including the single-sample
score function estimate Score1, which we return to in Section 4.2.1.

Table 3.1: Variations of the standard Policy Gradient

Variation Q-estimate
Policy Gradient Theorem ψn =Q(s, a)
REINFORCE ψn = Gn
REINFORCE w/ baseline ψn = Gn − bn
Score1 w/ baseline ψn = y(an)− r̄
Advantage Actor-Critic ψn =Q(s, a)− V (s)
Discounted TD-AC ψn = rn + γV (s′)− V (s)
Average-Reward TD-AC ψn = rn − r̄π + V (s′)− V (s)

3.3.2 Natural Policy Gradients

One property of the score function gradient estimator is that its variance is the Fisher in-
formation (Mohamed et al., 2019). This has sub-optimal implications for Gaussian policies, a
common choice for continuous RL problems. As stated by Chou et al. (2017, p. 5), the variance
of a Gaussian PG estimator is inversely proportional to the distributional variance σ2: "as the
policy improves and becomes more deterministic, the variance of [eq. (3.7)] goes to infinity."
We may address this with natural policy gradients, which adjust the learning rate according to
the distribution. Since we are optimizing on a distributional parameter space with a different
structure than the gradient of the objective itself, the traditional gradient ascent does not al-
ways yield the steepest direction. Natural gradients, however, do precisely this by using the
Fisher information I(θ) rather than Euclidean distance as a metric (Amari, 1998; Sham M
Kakade, 2001):

gnat = I−1(θ)g (3.17)

where the Fisher information is

I(θ) = Ea∼πθ

�

∇θ logπθ (a | s)∇θ logπθ (a | s)⊤
�

. (3.18)

This approach is analogous to the second-order Newton’s method in that the Fisher information
can be derived as the Hessian of the Kullback-Leibler (KL) divergence between two distribu-
tions, as stated by Martens (2014). The natural policy gradient gnat grants a more accurate

Chapter 3: Theory 19

local approximation than the standard PG g of eq. (3.14), as it contains information about the
curvature of the parameter space. Although the Gaussian PG yields the correct direction, gnat

uses this information to find better step lengths (Chou et al., 2017). Unlike Newton’s method,
natural gradients do not assume a locally-quadratic cost-function (Amari, 1998) and they are
invariant to the policy parametrization (Martens, 2014).

State-of-the-art AC algorithms tend to utilize natural policy gradients. The TRPO (Schulman,
Levine et al., 2015) and PPO (Schulman, Wolski et al., 2017) algorithms are based on con-
straining the KL divergence between policy updates to restrict arbitrary large updates. These
trust region methods are proved efficient for continuous control, especially on locomotion tasks
(Duan et al., 2016). A more sample-efficient trust region method is the ACKTR algorithm that
optimizes value functions using Gauss-Newton approximation (Wu et al., 2017).

3.3.3 Constrained Policy Optimization

In most real-world control applications, there are often physical limitations to a system, en-
forcing constraints on the optimization problem. An example could be the maximum torque
applied to a robotic arm or the total available injection gas for a gas-lifted petroleum well.
Inherent stochasticity in the environment might make even optimal policies perform poorly in
some aspects, such as concerning risk and safety (Heger, 1994). There exists much literature
on constrained stochastic optimization and RL (see, e.g., Garcia and Fernandez (2015)), so
we only consider some intuitive methods that are easy to implement: augmented objectives,
clipped policy gradients, and bounded policies.

For applications where constraints are not safety-critical and must only be satisfied most of the
time, augmenting the reward-function might be a feasible approach. Although reward-shaping
is generally used to counter sparse reward signals (Hu et al., 2020), it can also be used to guide
the agent by penalizing constraint violations. This method works in a similar way to barrier-
methods in numerical optimization that transform a constrained optimization problem to an
unconstrained one (Nocedal and Wright, 2006). Policy gradient methods using augmented
objectives are often referred to as Lagrangian methods (Chow et al., 2019). Adjusting the
rewards is a common technique, and is often combined with only allowing small policy updates
through trust-region methods (Petsagkourakis et al., 2020).

A Gaussian policy is unbounded in its support, meaning the policy output has a non-zero
probability of being an action outside allowed bounds. In many popular algorithms, the envir-
onment clips the action within these bounds, but the agent estimates the policy gradients as
if the actions were not clipped, introducing bias (Chou et al., 2017; Duan et al., 2016). Ad-
dressing this, Fujita and Maeda (2018) proposes the unbiased, lower-variance Clipped Action
Policy Gradient (CAPG) estimator, where the score function-term ζ(s, a,θ) =∇θ logπθ (a | s)
in eq. (3.16) is replaced with

ζ̄(s, a,θ) =

∇θ logΠθ (amin | s) if a ≤ amin

∇θ logπθ (a | s) if amin < a < amax

∇θ log (1−Πθ (amax | s)) if amax ≤ a

(3.19)

This can be used in combination with any of the variations seen in Table 3.1, and the bounds
can also be specified to a specific region around the current state, inducing a trust-region
scheme. The intuition behind CAPG is that, for a policy where actions are clipped within bounds

Chapter 3: Theory 20

by the environment, the agent will observe similar rewards and thus have no information on
which direction to move the policy. Figure 3.3 illustrate how the cumulative density Πθ is used
when an action is too large.

An alternative approach to addressing bias introduced by ignoring action bounds is to use
bounded policies. Chou et al. (2017) suggests using the Beta distribution rather than the stand-
ard Gaussian for continuous control, as it takes values between zero and one. This method has
shown promising results combined with PPO (Petrazzini and Antonelo, 2021) and is quite
simple in nature. However, Gaussian policies remain the standard choice for continuous con-
trol.

Figure 3.3: The CAPG estimator uses the cumulative density if an action is outside bounds.

Chapter 4

Method

This chapter describes the process model used for numerical simulations. We describe assump-
tions put on the model and how this will affect the algorithms used. We then explain the three
main optimization algorithms based on stochastic gradient search, where the system is subjec-
ted to perturbations to form gradient estimates. We compare a one-step policy gradient agent
to a one-step average-reward AC agent using SGD and the SPSA algorithm as a benchmark.

4.1 Case Study - Gas Lifted Petroleum Asset

Our study uses a simplified model of an artificially gas-lifted sub-sea petroleum system based
on the model of Silva and Pavlov (2020). As described in Chapter 2, gas-lift refers to the
action of injecting gases into petroleum reservoirs to help lift fluids from the seabed. The
injected flow is controlled by a valve which is called the gas-lift choke and is transported down
to the reservoir through the annulus, which reduces hydrostatic pressure in the tubing of the
well. Such a system is illustrated in Figure 4.1, courtesy of Imsland (2002). The input-output
relation between injected gas and produced oil can be expressed through gas-lift performance
curves, also called production curves (Silva and Pavlov, 2020).

Our simulation study considers a system of M = 5 petroleum wells, each with an individual
gas-lift choke. The plant input is a vector of the form u = (u1, . . . , u5), where each component
is the gas flow kgs−1 injected into the annulus. The production curves are modeled as concave
functions of the form

fi(ui) = c1,i · 10−7 · u4
i + c2,i · 10−4 · u3

i + c3,i · 10−2 · u2
i + c4,i · ui + c5,i , (4.1)

with c j,i being production curve coefficient j for well i, unknown to the optimization agent.
The output of the plant is F =

∑

fi . We have modified the coefficients from Silva and Pavlov
(2020) slightly to create performance curves with different characteristics, as well as letting
them change over time specifically for a tracking case. Due to topside processing of the oil
flow, we let the only available measurement be the total oil production flow:

Y =
M
∑

i=1

fi(ui) +η, η∼N (0,σnoise) (4.2)

21

Chapter 4: Method 22

Figure 4.1: Illustration of a gas-lifted sub-sea petroleum well (Imsland, 2002).

The expectation of Y is thus F . Based on this, we define a probabilistic objective function that
is to be maximized:

J(u) = Eu∼πθ

� M
∑

i=1

fi(ui)

�

(4.3)

4.1.1 Optimization Considerations

As motivated in Chapter 1, several challenges with real-time production optimization should
be considered, such as the process complexity and the currently existing control practices. As
previously mentioned, the only output measurement available is of the total production flow,
Y . As described in Chapter 2, rate estimation for individual wells is an open research problem,
so we will assume that only the total oil flow is measurable. For simplicity, we add white noise
to the measurements, although these are subjected to various disturbances and in practice.
The single output measurement Y means that, for a system with M wells and internal states
fi , it is (locally) observable only when M = 1 (Krener and Ide, 2009). We should thus assume
that variance in estimation and optimization performance will increase with dimensionality.

Every optimization iteration for a petroleum asset is costly in terms of potential loss of revenue
and time. Due to transient dynamics, transport, and process time, as well as delayed imple-
mentation due to the human-in-the-loop assumption, we assume that only two optimization
iterations can be done per day. Input perturbations should generally be kept small enough
to be safe but large enough to cause a measurable effect. Domain knowledge should thus be
used when designing the search variance for stochastic control policies. Observability of the
system also affects how it is controlled, with operators presumably perturbing fewer control
variables simultaneously. However, we will utilize all inputs to increase efficiency, as illustrated
in Figure 1.1.

Chapter 4: Method 23

40 60 80 100 120 140
u

40

60

80

100

120

140

oi
l f

lo
w

[k
g/

s]

u_i
well 0 : max=(83.7,124.4)
well 1 : max=(98.3,107.0)
well 2 : max=(102.0,101.0)
well 3 : max=(108.6,114.4)
well 4 : max=(79.7,105.9)

Figure 4.2: Gas-lift performance curves with M = 5 wells. Circles mark the initial input con-
figuration. Dashed lines indicate optimal input-output pairs for each well.

The production curves are only valid in the interval of 40≤ ui ≤ 140 kgs−1. In all simulations,
these individual input constraints are enforced on the controller by clipping policy outputs into
allowed bounds. We address this in Section 4.2. There might exist a multitude of other con-
straints on a real petroleum system, such as the handling capacity of water, sand, and various
gases that are by-products of oil production. Water-handling capacity constraints is considered
in Silva and Pavlov (2020). Furthermore, gas-lifted production might also be modeled as an
economic optimization problem (Jahanshahi et al., 2019) due to gas-lift cost. Instead, we are
focusing on injection gas as a limited resource in Case 3 (Section 4.1.4), making this a control
allocation problem.

Finally, the underlying dynamics are hard to model, which is the primary motivator for explor-
ing stochastic optimization. These dynamics include depletion of the reservoir, where more
gas must be injected to maintain production. Optimization algorithms should therefore have
the ability to track a time-varying optimum. As described in Chapter 2, the output is not ne-
cessarily a linear sum of the wells. Another phenomenon affecting production is the covariant
dynamics that might arise due to pressure transients in interconnected pipelines. However, we
do not consider this in our test cases.

We summarize the assumptions and simplifications made:

(i) Available measurements are the inputs ui and total production Y
(ii) Control changes are not restricted in dimension

(iii) Control changes should be kept large enough to produce an observable change
(iv) Control changes should be kept reasonably small to avoid risk
(v) Inputs must be within allowed bounds; 40≤ ui ≤ 140

(vi) There exists a maximum available injection amount Umax (Case 3 only)
(vii) The optimization horizon is N = 120, corresponding to two iterations per day for 60

days

Chapter 4: Method 24

Table 4.1: Static performance curve coefficients

c1,i c2,i c3,i c4,i c5,i

well 1 -3.9 2.1 -4.3 3.7 12.0
well 2 -1.3 1.0 -2.8 3.1 -10.0
well 3 -1.2 1.0 -2.8 3.1 -17.0
well 4 -4.0 1.8 -3.6 3.5 -16.0
well 5 -1.4 1.0 -2.9 3.0 6.0

Table 4.2: Dynamic performance curve coefficients

c1,i c2,i c3,i c4,i,start c4,i,end c5,i,start c5,i,end njump

well 1 -1.4 1.0 -2.9 2.9 3.7 16.0 -80.0 0
well 2 -3.9 2.1 -4.3 3.2 3.8 42.0 -18.0 10
well 3 -1.3 1.0 -2.8 2.6 3.2 20.0 -50.0 30

4.1.2 Case 1: Static Optimization

The simplest optimization case study consists of static performance curves in the form of
eq. (4.1). The coefficient values are found in Table 4.1. The corresponding performance curves
and a five-dimensional input configuration are seen in Figure 4.2. We let there be no system-
wide constraints on injection gas. As we only have the measurements of the total oil flow Y
and input u, we will first investigate how observability affects the controller’s performance.
We compare simulations with M = 1, 3,5 wells, respectively. As dimensionality increases, the
single-sample gradient- and value function estimates will likely suffer from more variance, as
each sample contains relatively less information.

We define three noise-settings for the simulations, affecting eq. (4.2). The no-noise setting with
σnoise = 0 yields a measurement Y =

∑

fi . In the low-noise setting, production measurements
are affected by Gaussian noise with a standard deviation (SD) σnoise of 0.1% of the production
value F . In the high-noise setting, we let σnoise = 1% of F . The low-noise setting is what we
mainly use to compare performance across algorithms. We use no- and high-noise settings to
compare robustness under noise.

4.1.3 Case 2: Tracking

To simulate a reservoir depleting over time, we have modified the well-curve coefficients to
reflect the increasing amount of injected gas required to keep production at an optimum.
The coefficients c4,i , c5,i start from an initial value and follow a linear trajectory over time.
The optimum moves non-linearly, simulating a tracking problem. Note that the dynamics are
exaggerated, with optimal injection rate nearly doubling over time. Additionally, we have im-
plemented well-specific time delays before the curves change. These delays aim to simulate
that a petroleum system might experience unpredictable and abrupt disturbances of varying
scales. In our model, this corresponds to a jump at different time steps. This is visualized in
Figure 4.3. We are only investigating a system with one and three wells without noise for this
case to isolate the effects of a moving optimum. Coefficient values are shown in Table 4.2,
along with the iteration number where the optimum starts to move.

Chapter 4: Method 25

40 60 80 100 120 140
gas injection rate [kg/s]

90

95

100

105

110

115

120

oi
l f

lo
w

[k
g/

s] n=0

120

n=10
n=0

120

n=30

n=0

120

well 0
well 1
well 2

Figure 4.3: Optima of well curves that change over time with M = 3 wells. The optimum jumps
at n= 10,30.

4.1.4 Case 3: Tracking with System-Wide Constraints

For the final case study, we extend the tracking model where an increasing amount of gas
is needed to maintain optimal production. We choose to model a system-wide constraint on
available input,

∑

ui < Umax, so that the constraint becomes active at a point during the
simulation. Our approach is to augment the objective function so that maximization of the
augmented objective will enforce constraint activation. In reinforcement learning terms, this is
called reward-shaping. Since our algorithms will use SGD, we cannot use a log-barrier method
such as in Silva and Pavlov (2020), as it may lead to infinitely large gradient updates. Instead,
the production level seen by the agents has a linear decay that is proportional to the injected
gas that surpasses Umax. The new objective becomes:

Jaug(u) =

¨

Eu∼πθ

�

Umax +
∑M

i=1 fi − ui

�

if
∑

ui ≥ Umax

J(u) otherwise
(4.4)

A visualization is shown in Figure 4.4 for a single-well system. As before, we use M = 1, 3. We
use Umax = 90 for the single-well system, and Umax = 80 ·M for the three-well system.

40 60 80 100 120 140
u

40

50

60

70

80

90

100

oi
l f

lo
w

[k
g/

s]

n = 70

u_i
well 0 : max=(100.7,92.6)
Augmented objective

Figure 4.4: Single-well system at n= 70 with augmented objective. Umax = 90. The constraint
becomes active at the optimum at n= 45.

Chapter 4: Method 26

4.2 Algorithms

In order to frame the production optimization problem as an RL problem, we first define some
key components. As we are maximizing oil flow, we can let the reward function be the measure-
ment of eq. (4.3). The reward function is intentionally kept simple to avoid "reward-hacking"
(Amodei et al., 2016) and to keep it similar to a traditional stochastic optimization objective.
For the constrained case in Section 4.1.4, we let the reward function be the measurement of
the augmented objective function of eq. (4.4). One advantage of this choice is that the agent
will observe rewards at every time step and thus hopefully learn how to improve. Following
notation from Chapter 3, the action a is the input to the system u. The state s may be defined
in several ways. We let s simply be the current input configuration, s = u.

The nature of the objective function and the symmetric policy distributions makes it so that
maximizing production roughly translates to finding an optimal mean value. All algorithms
are implemented with the momentum SGD framework of Section 3.1.1 with a weight factor
of γ to equalize variance in the gradient updates. Flowcharts of the algorithms are presented
in Figure 4.6.

4.2.1 Score Function Gradient

The first algorithm is based directly on the score function gradient estimator, using single
rewards as an approximation to the Q-value in eq. (3.14). To reduce variance, we also use a
baseline in the form of an average-reward rate r̄, gradually updated at each iteration with a
weight of η. As the action space is continuous, we use a standard diagonal Gaussian, behaving
similar to M univariate Gaussians, meaning that we estimate an optimal SD σi and mean µi
for every input dimension. This assumes that each well is decoupled, which is a simplification
only in the case of system-wide constraints. To ensure that σ > 0, we map the SD to a variable
s by using a softplus function with a small offset c > 0 and a weight factor of β:

σi =
1
β

log (1+ exp (β · si)) + c

This leads to a different analytical expression for the Gaussian score function gradient, but
it behaves similarly, as shown in Appendix A.2. We initially experimented with both softmax-
and exponential mappings but found that the linearity of the softplus makes it easy to work
with. The policy parameters are then θ = (µ, s).

We have used two different methods to compute the policy gradient. One method will be
using the CAPG estimator from Section 3.3.3. Here, the agent is aware of the individual input
bounds imposed by the environment and uses the cumulative density function when an action
is sampled out of bounds. During simulations, we found this was effective when policy updates
were small, and the mean was close to the bounds.

The other method is to use natural policy gradients (see Section 3.3.2). This means that the
Fisher information must be estimated, which may be done by directly sampling the policy
gradient, as can be seen from eq. (3.18). However, for a Gaussian policy, the expected value
can be analytically derived. Chou et al. (2017) shows that for a Normal distribution, where
l(θ) = logπθ (a | s), this is

I(θ) = −Ea∼π

�

∂ 2l(θ)
∂ θ2

�

=

� 1
σ2 0
0 2

σ2

�

. (4.5)

Chapter 4: Method 27

In practice, this is will simply scale the policy gradient with factors of σ2
i . The gradient of the

Gaussian score estimate is

∇θi
logπθi

(ai) =

�

ai −µi

σ2
i

1
σi

�

(x i −µi)2

σ2
i

− 1

�
�

, (4.6)

so the inverse Fisher partially cancels out variance terms in the denominators. The respective
derivations of Equations (4.5) and (4.6) are shown in Appendices A.3 and A.2.

Algorithm 1 shows the workflow of the algorithm using natural gradients. We name this Score1
as it uses a single-sample Monte Carlo score function estimator. CAPG may replace the natural
gradients in Algorithm 1 by substituting the inverse Fisher and score function with ζ̄ from
eq. (3.19).

Algorithm 1 Score1 with Natural Gradient and Average-Reward Baseline

Require: Differentiable policy πθ , step sizes αθ ,η > 0
for n= 1,2, ... do

Agent samples action a from policy, observing reward r and next state s′:
a ∼ πθ (s)

Compare reward with baseline:

δ = r − r̄
Compute Fisher information I(θ)
Update policy parameters using δ:

θ ← θ +αθI−1∇θ logπθ (a | s)δ
Update average reward using δ:

r̄ ← r̄ +ηδ
end for

4.2.2 Average-Reward Actor-Critic

Following an actor-critic approach, we extend Score1 by using a value function estimate to
model the reward distribution. Since our objective is production maximization, we are inter-
ested in immediate rewards. The path to the optimum itself is less important than arriving
there quickly. An option would be to employ a heavily discounted one-step TD-error for the
policy updates. However, Sutton and Barto (2020) show that the discounted return setting
can be deprecated for continuing tasks and suggest using the average-reward setting instead.
Recall the one-step TD-error for the average-reward formulation:

δ̄ = r − r̄π + V (s′)− V (s).

As we have defined s as the current control figuration u, the first two terms can be seen as
a measured error and the last two as predicted error. The terms r̄π + V (s) act as a baseline,
independent of the action taken. As we do not know r̄π, we learn it gradually from δ̄ with a
step size of η. This algorithm uses natural policy gradients as they showed promising results
during implementation of Score1. The Average-Reward Actor-Critic algorithm is presented as
Algorithm 2. In practice, this algorithm is very similar to Algorithm 1. They differ only in adding
a value function, which should accelerate the learning, given that it is modeled adequately.

Chapter 4: Method 28

Algorithm 2 Average-Reward Actor-Critic

Require: Differentiable policy π(θ), value function estimate Vw(s), step sizes αθ ,η > 0
Initialize V by perturbing the system around the initial state
for n= 1,2, ... do

Actor samples action a from policy, observing reward r and next state s′:
a ∼ πθ (s)

Critic calculates TD-error based on value function:
δ̄ = r − r̄ + V (s′)− V (s)

Compute Fisher information I(θ)
Update actor’s policy parameters using δ̄:

θ ← θ +αθI−1∇θ logπθ (a | s)δ̄
Update critic weights by fitting the last p samples:

w← LLS
�

r, a
	(p)

Update average reward using δ̄:

r̄ ← r̄ +ηδ̄
end for

Value Function Estimation

The value function models the reward distribution of the process as a function of states and
actions. With the reward defined as measured production, this roughly translates to modeling
the performance curves. Although estimation of these curves is a research topic by itself, do-
main knowledge suggests that they are generally concave, smooth, and well-behaved (Rashid
et al., 2012). By putting these basic assumptions on the underlying model, we have chosen to
use a quadratic polynomial as a function approximator rather than using an artificial neural
network (ANN). Their high capacity typically requires larger amounts of data to be accur-
ate. A quadratic polynomial was hypothesized to give a local approximation good enough to
accelerate policy updates.

The value function is estimated by using model history, i.e., actions and rewards, to fit the data
by using linear least squares (LLS) methods with L2-regularization. For a system of M wells,
a quadratic polynomial will be of d = 2M + 1 dimensions. As stated by Conn et al. (2009), a
minimum of p = d +1 samples is needed for a unique solution to exist. Such a solution might
not exist, however, if the system cannot fully be described by the linear polynomial, which is
the case here. Our approach is then to sample more data, and to fit the p samples with the
ordinary least squares solution to the system

1 a0
1 . . . a0

d
1 a1

1 . . . a1
d

...
...

...
1 ap

1 . . . ap
d

w0
...

wd

=

y0

y1

...
y p

, (4.7)

which is an optimal approach with normally distributed sample noise, by the Gauss-Markov
theorem (Gentle et al., 2012). For M wells, this yields a polynomial of the form ŷ(a) = w0 +
w1a1+w2a2+ . . .+wd a2

M . L2-regularization is applied on wi , i ̸= 0 with a penalty factor of λ,
in order to keep the curvature low. This is particularly useful when the sample variance is low,

Chapter 4: Method 29

40 60 80 100 120 140
u

100

105

110

115

120

125

130

y

n = 11

True model
Estimated V
measured y

Figure 4.5: Value function estimate for a single-well system at iteration 11. Opaque colors
indicate earlier measurements and estimates.

or if the measurements are subjected to noise. At every iteration, the value function weights
w are computed by minimizing an objective function

w = argmin
w
||yi − ŷ||2 +λ||wi||22. (4.8)

In this way, we are not learning the value function by gradual updates but instead estimating it
from recent data. The regularization introduces bias but reduces variance (Russel and Norvig,
2010). The factor λ could perhaps be derived through Lipschitz analysis of the underlying
model but was treated as a hyperparameter, and good values were found empirically during
simulations.

As the policy moves, the local quadratic approximation must be updated to represent the true
reward function better. We must therefore choose how many samples to include: pmin ≤ p ≤
pmax. Because we are updating the policy based on single samples, using more recent data will
yield a better approximation at the current iterate. However, we cannot fit the curve perfectly to
the data (due to an imperfect model and noise), so more samples would generally compensate
for this. This becomes more apparent as the dimensionality grows; using single measurements
to update the value function will give an increasing variance. Thus, there is a trade-off between
variance and bias towards older data. To strike a balance, we experimented with decaying
sample weights, weighting recent data more. We found no noticeable improvement, so it was
removed to reduce complexity.

Another assumption we have made is that historical data exists from the producing well. We
found it reasonable to let the value function be initialized by perturbing the system around
the initial state according to θ 0 = (µ0,σ0), giving some information about the input-output
relations before we begin to optimize the policy.

4.2.3 SPSA

In earlier work, the SPSA gradient estimate yielded results superior to the score function gradi-
ent estimate (Grepperud, 2021). However, constrained optimization and moving optima were
not explored. Therefore, we use an SPSA gradient estimate to benchmark the likelihood-ratio-
based algorithms above. We implement it in the form of a stochastic Bernoulli ±1 policy, which
perturbs the system twice to estimate an improvement direction for the mean.

Chapter 4: Method 30

Spall (1992) proposes a scheme for decaying gain sequences based on the theoretical conver-
gence to local optima of stochastic approximation algorithms (Robbins and Monro, 1951). For
a time-horizon of N iterations, a1:N is implemented using SGD, while b1:N represents how far
we perturb the system when estimating the gradient:

an =
a

(A+ n)α
, bn =

b
nβ

. (4.9)

A smaller bn would better approximate the true gradient in case of no noise. For a noisy setting,
one might want to design a larger bn. To ensure stable convergence, we set α≥ β as to ensure
that bn does not decay faster than an. For further details about the implementation of the
algorithm and gain sequences, we refer to Spall (1998). Algorithm 3 shows the workflow of
SPSA using eq. (4.9), where the policy parameter θ is the estimated mean.

Algorithm 3 SPSA with decaying gain sequences

Require: Bernoulli ±1 policy π(θ), gain coefficients a, A,α, b,β > 0
for n= 1,2, ... do

Set current gains an, bn:

an =
a

(A+ n)α
, bn =

b
nβ

Sample a stochastic vector ∆n:

∆n ∼ π(θ)
Perturb the system, observe rewards r+, r−:

r+ = y(θ + bn∆n)
r− = y(θ − bn∆n)

Compute stochastic gradient:

ĝ =
r+ − r−

2bn
∆−1

n

Update policy parameters using ĝ:

θ ← θ + an ĝ

end for

Chapter 4: Method 31

Sample
action

Evaluate
action

Compute PG

Gradient
ascent

Update

(a) Score1 with Natural gradient (Algorithm 1)

Sample
action Evaluate action Compute PG

Gradient
ascent

Update

Update

(b) Average-Reward Actor-Critic (Algorithm 2)

Sample
vector

Compute

Gradient
ascent

Object

Function

Values

Next iteration

(c) SPSA (Algorithm 3)

Figure 4.6: Flowcharts of the stochastic algorithms

Chapter 4: Method 32

4.3 Evaluation Metrics

We employ three different metrics for measuring performance. We use mean absolute error
(MAE) as a measure of the general performance throughout the simulation horizon of N = 120,
corresponding to 60 days:

MAE=
1
N

N
∑

n=1

|Fmax,n − Yn|, (4.10)

where Yn is measured production and Fmax,n is maximal production at time n. Minimizing MAE
is analogous to maximizing overall production, as all errors are weighted equally.

As a second metric, we use Root Mean Squared Error (RMSE):

RMSE=

√

√

√

√

1
N

N
∑

n=1

�

Fmax − Yn

�2
. (4.11)

As RMSE penalizes larger errors more, it will be most affected by early iterations in the static
case. A lower error will generally mean more efficient initial behavior. We use this as the
primary metric for the tracking cases. Because we initialize the policies closer to the optimum,
we are interested in how well the agents can track the optimum rather than general total
production.

The final metric acts as a measure of distance between the initial and the optimal produc-
tion levels. The value of ∆Y n thus typically takes values between zero and one. We will use
this distance as a way to normalize figures, making it easier to compare performance across
algorithms. We use the actual production level rather than measured production due to this:

∆Y n =
Fmax,n − Fn

Fmax,0 − F0
(4.12a)

∆end =
1

10

N
∑

n=N−9

∆Y n (4.12b)

where Fn =
∑

fi(ui,n). The value of ∆end is the mean value of ∆Y n over the last 10 iterations.
We use this as a metric to evaluate the ability for an agent to stay at (or track) the optimum
in later iterations. Thus, the three metrics emphasize the total, initial, and end performances,
respectively.

Chapter 5

Simulations and Results

In this chapter, we present the simulations performed following the methodology of the last
chapter. We begin with a brief implementation description and explain the overall tuning pro-
cedure. We then present the results by comparing each test case’s performance and then report
on algorithm-specific behavior, including some remarks on sensitivity.

The purposes of these simulations are to evaluate the applicability of minimal policy gradi-
ent optimization methods on production RTO. To do so, we have used the SPSA algorithm
as a benchmark for comparing the policy gradient methods Average-Reward AC and Score1.
Through the synthetic test cases, we try to capture a few phenomena that might occur on a
petroleum asset, such as varying noise levels, non-static optima, and constraints. We mainly
look for sample-efficiency and adaptability to these disturbances.

5.1 Implementation

All simulations have an optimization horizon of N = 120, corresponding to 60 days. The per-
formance metrics are evaluated from the median data over 50 simulations. The median is used
instead of the ensemble average because simulations showed that it often yielded worse per-
formance than the median, implying that the performance distribution is negatively skewed.
The models were implemented using python3.9 (Van Rossum and Drake, 2009). We have used
the PyTorch (Paszke et al., 2019) library for policy distributions and automatic differentiation.
scikit-learn (Pedregosa et al., 2011) was used for regularized linear regression.

Although there are possible variations of the algorithms that are interesting to compare, we
focus mainly on comparisons between Score1 with natural gradients, average-reward AC and
SPSA. The simulated algorithms are referred to by the abbreviations in Table 5.1. "Score1"
refers to both variations described in Section 4.2.1. To further investigate these, we have also
simulated with a fixed, decaying search variance similar to SPSA.

33

Chapter 5: Simulations and Results 34

Table 5.1: Abbreviations of algorithms

S1 Score1 with CAPG
S1µ Score1 with CAPG, fixed-variance
SNG Score1 with Natural Gradient
SNGµ Score1 with Natural Gradient, fixed-variance
AC Average-Reward Actor-Critic
SPSA Simultaneous Perturbation Stochastic Approximation

Table 5.2: Initial conditions

(a) Initial means: µ0

Case µ1 µ2 µ3 µ4 µ5

Case 1 120 55 70 75 100
Case 2 75 65 85 - -
Case 3 75 65 85 - -

(b) Initial perturbation sizes: σ0 or b0

Noise setting 1D 3D 5D
No noise 2 2 3

Low noise 2 2 3
High noise 3.5 4 6

5.1.1 Tuning Procedure and Initial Conditions

The algorithms were tuned by trial, error, and educated guesses. All parameter configurations
are shown in Appendix B.1. Due to the stochasticity of the algorithms, and particularly for the
Gaussian agents, we simulated each parameter configuration 50 times to find a less-variant
median. We initially used 25 simulations but this still gave a too varying median. Some para-
meters had more influence on performance than others, but a feasible range of values for each
parameter and each of the three methods was fairly easy to find. However, due to the num-
ber of parameters per algorithm and the potential for local optima when tuning one by one,
we implemented a random search to ensure good performance. This was done by specifying
a range of possible values, simulating randomly picked configurations, and comparing their
median MAE. We present the results in the order that we simulated them. Therefore, we will
later comment on some observations regarding the choice of parameters and tuning for the
different cases and dimensions.

The initial policy means, i.e., initial inputs u, are kept constant regardless of noise or dimen-
sions. See Table 5.2a, or Figure 4.2 for a visualization with five wells. The initial perturbation
magnitudes b and σ0 are adjusted according to the noise level – as the signal gets obscured
by noise, a higher initial search variance is needed. These are shown in Table 5.2b. Thus, we
treat the decaying SPSA perturbation magnitudes bn as if they were Gaussian SDs, although
this translation is not necessarily optimal. SPSA performs better with larger initial searches
in 3- and 5-dimensional systems, whereas the Gaussian algorithms work better with smaller
variances. We have restricted the magnitudes somewhat, according to Assumption (iii). These
values are based on what we deemed as a reasonable search magnitude.

5.2 Results

The bold entries in tables indicate the best performance, i.e., the lowest MAE and RMSE, or the
highest ∆end. We write 1D, 3D and 5D to indicate the number of wells M . Figures for Cases
1 and 2 are normalized to take values (mostly) between 0 and 1. This is done by graphing
∆Y n, which measures the distance between initial and optimal production. The distance will

Chapter 5: Simulations and Results 35

differ slightly for systems of different numbers of wells due to distinct production curves and
initial conditions. Thus, comparing simulations done with the same dimensionality is more in-
formative. Due to the skewed performance distribution across simulations, it is interesting to
compare ensemble variances. This is done visually in some figures, where the top and bottom
20th percentiles are shown with colored bands. For figures showing inputs, these percentile
bands signify the variance across simulations, not perturbation variances. We write "perform-
ance variance" when referring to the spread of the percentiles. Most figures capture the tran-
sient behavior by showing only early iterations. For Case 3, the later iterations are visualized
as the constraint becomes active. We present the essential figures in this chapter. Additional
figures are found in Appendix B.2.

5.2.1 Comparisons

Case 1: Static Optimization

The results of low-noise simulations are summarized in Table 5.3. The AC and SPSA algorithms
achieve the lowest errors. We notice two things specifically for the 1D systems: AC performs
better than the rest, and SNG outperforms S1. As the number of wells increases, SPSA performs
better, achieving the lowest errors on a 5D system. At the same time, the performance gap in
MAE between S1 and SNG diminishes. This can be seen from Figure 5.1. All algorithms achieve
high∆end, indicating good end convergence. The SPSA performance variance increases notably
in higher dimensions, despite good median performance. Figure B.1 shows this.

Simulations without noise result in a similar performance, as can be seen from Table 5.4. The
SNG and AC methods improve less than SPSA, which achieves noticeably lower errors. SPSA
is the only method that reaches a ∆end of 1 with five wells. Figure 5.2 presents scatter plots of
the median MAE of the three algorithms under varying values of σnoise, corresponding to no-,
low- and high-noise settings. Here, we can see how AC is the least affected by high noise in
lower dimensions. The SPSA production is comparatively impaired the most, as can be read
from the MAE of Table 5.5. Overall, high noise evens out performance in high dimensions.
Scatter plots of RMSE under varying noise levels are shown in Figure B.2. Figures of medians
and simulation variances with and without noise is presented in Figures B.3 and B.4.

Table 5.3: Case 1: Low noise

Model
1D 3D 5D

MAE RMSE ∆end MAE RMSE ∆end MAE RMSE ∆end

S1 0.63 1.5 0.99 3.7 7.5 0.99 6.0 11.4 0.98
SNG 0.46 1.3 0.99 3.6 7.3 0.99 5.9 10.8 0.98
AC 0.36 1.1 0.99 3.1 6.9 0.99 5.6 10.8 0.99

SPSA 0.44 1.3 0.99 3.1 7.4 0.99 5.2 10.4 0.97

Table 5.4: Case 1: No noise

Model
1D 3D 5D

MAE RMSE ∆end MAE RMSE ∆end MAE RMSE ∆end

SNG 0.43 1.3 1.0 3.6 7.4 1.0 5.8 10.7 0.99
AC 0.31 1.0 1.0 2.9 7.0 1.0 5.5 10.7 0.99

SPSA 0.35 1.3 1.0 2.5 6.5 1.0 3.9 9.8 1.0

Chapter 5: Simulations and Results 36

Table 5.5: Case 1: High noise

Model
1D 3D 5D

MAE RMSE ∆end MAE RMSE ∆end MAE RMSE ∆end

SNG 0.96 1.6 0.97 6.4 8.4 0.84 10.8 14.0 0.88
AC 0.74 1.2 0.94 4.9 7.4 0.93 11.0 14.3 0.92

SPSA 0.98 1.7 0.89 5.6 8.4 0.93 10.4 13.5 0.92

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1
AC

(a) 1D

0 10 20 30 40 50 60
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1
AC

(b) 3D

0 10 20 30 40 50 60
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1
AC

(c) 5D

Figure 5.1: Case 1: Median ∆Y n with low noise

0 0.1 1
noise

0.4

0.6

0.8

1.0

M
AE

SPSA
SNG
AC

(a) 1D

0 0.1 1
noise

3

4

5

6

M
AE

SPSA
SNG
AC

(b) 3D

0 0.1 1
noise

4

6

8

10

M
AE

SPSA
SNG
AC

(c) 5D

Figure 5.2: Case 1: Median MAE against measurement noise level σnoise

Chapter 5: Simulations and Results 37

Table 5.6: Case 2: Old configurations before tuning

Model
1D 3D

MAE RMSE ∆end MAE RMSE ∆end

SNG 0.13 0.15 0.26 1.2 1.7 0.46
SPSA 0.22 0.31 -1.1 1.9 2.2 0.72

Table 5.7: Case 2: New configurations after tuning

Model
1D 3D

MAE RMSE ∆end MAE RMSE ∆end

SNG 0.10 0.12 0.63 1.0 1.4 0.65
SPSA 0.19 0.23 -0.51 1.0 1.3 0.52

Case 2: Tracking

Two parameter configurations were used for the SNG and SPSA algorithms for the tracking
case. Table 5.6 shows the performance of the algorithms using the parameters from the static
simulations without noise. Table 5.7 shows performance after tuning to the dynamic optimum.
Figure 5.3 shows how the policy means and input track the optimum for a single-well system
after tuning.

Before tuning, SNG achieves about half the errors of SPSA with one well. It also finishes closer
to the optimum. SPSA finishes twice as far off as the initial distance in terms of production.
With three wells, SPSA finishes closer to the optimum with a higher∆end, but still tracks worse
overall. See Figures 5.4a and 5.4b. The figures also shows a large variance across simulations
in the 3D case, particularly following n= 10, 30 where the optimum abruptly moves.

SPSA improves noticeably with new parameters adapted to a dynamic optimum. Although
it still fails to track as good as SNG in the 1D case, they perform on the same level in 3D.
Furthermore, the performance variance is drastically reduced. As Figures 5.4c and 5.4d show,
this is also the case of SNG, although the median performance improvement of SNG is scarcely
noticeable. See Figure B.5 for the three-well system.

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_tot
u_opt

0 20 40 60 80 100 120
n

75

100

125

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_0
opt_0

(a) 1D: SNG, new configuration

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_tot
u_opt

0 20 40 60 80 100 120
n

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_0
opt_0

(b) 1D: SPSA, new configuration

Figure 5.3: Case 2: SNG and SPSA inputs u and policy means µ (mu) for a single-well system.
The optimal inputs are marked in dotted lines.

Chapter 5: Simulations and Results 38

0 20 40 60 80 100 120
n

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

De
lta

SNG
SPSA

(a) 1D: Old configuration

0 20 40 60 80 100 120
n

1.0

0.5

0.0

0.5

1.0

De
lta

SNG
SPSA

(b) 3D: Old configuration

0 20 40 60 80 100 120
n

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

De
lta

SNG
SPSA

(c) 1D: New configuration

0 20 40 60 80 100 120
n

1.0

0.5

0.0

0.5

1.0

De
lta

SNG
SPSA

(d) 3D: New configuration

Figure 5.4: Case 2: Tracking performance of SNG and SPSA measured by∆Y n. In both systems,
the optimum moves immediately. In the 3D system, the optimum also jumps at n= 10,30.

Case 3: Tracking with System-Wide Constraints

In the last test case, the SNG and SPSA algorithms track a moving, constrained optimum with
M = 1, 3 wells. The constraint becomes active at n= 45 for a single-well system. At this point,
the optimal production level decreases steadily while the optimal input remains at u = 90.
The errors from the augmented single-well optimum are presented in Table 5.8. Both methods
achieve errors in the same range, with SPSA performance slightly better. Figure 5.5a shows
the production levels. Figures 5.6a and 5.6b show how the mean inputs adjust to the new
optimum, which can be compared to the unconstrained case of Figure 5.3.

The trajectory of the three-dimensional augmented optimum is not calculated as it requires
solving a non-linear constrained optimization problem at each iteration. However, Figure 5.5b
allows us to inspect the behavior visually. The optimum is assumed to follow a similar, near-
linear trajectory as in the 1D case. Figures 5.6c and 5.6d show policy means and the total
inputs nearing the soft constraint before stabilizing. We see how SNG has a higher ensemble
variance of policy means than SPSA.

Table 5.8: Case 3: Errors from augmented optimum

Model
1D

MAE RMSE ∆end

SNG 0.14 0.18 0.18
SPSA 0.13 0.16 0.22

Chapter 5: Simulations and Results 39

40 50 60 70 80 90 100 110 120
n

80

82

84

86

88

90

92

94

96

98

oi
l f

lo
w

[k
g/

s]

y_max
Constrained y_max
SNG
SPSA

(a) 1D

20 40 60 80 100 120
n

260

270

280

290

300

310

oi
l f

lo
w

[k
g/

s]

y_max
SNG
SPSA

(b) 3D

Figure 5.5: Case 3: SNG and SPSA production subjected to constraints. In the single-well sys-
tem, we plot the augmented optimal production.

75

80

85

90

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_tot
u_max

0 20 40 60 80 100 120
n

80

90

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_0
opt_0

(a) 1D: SNG

75

80

85

90

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_tot
u_max

0 20 40 60 80 100 120
n

80

90

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_0
opt_0

(b) 1D: SPSA

210

220

230

240

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_tot
u_max

80

90

mu_0
opt_0

60

70

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_1
opt_1

0 20 40 60 80 100 120
n

70

80
mu_2
opt_2

(c) 3D: SNG

210

220

230

240

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_tot
u_max

80

90

mu_0
opt_0

60

70

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_1
opt_1

0 20 40 60 80 100 120
n

70

80
mu_2
opt_2

(d) 3D: SPSA

Figure 5.6: Case 3: SNG and SPSA inputs (u) and policy means µ (mu) with M = 1,3. The
unconstrained optimal inputs and Umax are marked in dotted lines.

Chapter 5: Simulations and Results 40

5.2.2 Behavior of the Algorithms

Score1

The performance of the Score1 algorithms is mostly impeded by the high-noise setting. Sim-
ulation comparisons of SNG under varying levels of noise are presented in Figure B.6, where
the low- and no-noise settings mainly differ on the five-well system. SNG surprisingly achieves
the same or lower RMSE in 1D and 3D systems with low noise compared to no noise. See the
scatter plots in Figure B.2 for a visual overview. The policy behavior of the low-noise simula-
tions is shown in Figure B.12. There is a general trade-off between rapid initial convergence
and more stable but slower convergence, resulting in either lower RMSE or MAE, respectively.

For the Gaussian agents, the step size of the mean αµ influences performance the most. This is
especially true for higher dimensions and increasing noise, where too high values may result
in unstable policy updates. Simulating with high noise for a 5D system, the highest MAE was
achieved with αµ = 0.04, as opposed to αµ = 0.35 without noise. High values sometimes yield
low RMSE but increase the simulation variance. The variance update size ασ also impacts the
stability. We found that it was necessary to keep ασ low to limit the possibility of exploding
variances that could occur, particularly in higher dimensions. Due to this, the policy SDs in the
multi-well systems remain more or less constant. The impact of the average-reward baseline
can be seen from how errors increase with decreasing η in Figure B.10

To further evaluate sensitivity, we measured performance by adjusting specific parameters
while keeping the rest fixed. Figure 5.7 shows the sensitivity of αµ for S1 and SNG on a 3D
system. We see how the two variants of Score1 yield patterns that are near equivalent by
a scaling factor. Despite this, SNG achieves much lower errors than S1 on a 1D system. We
hypothesized that this was due to the value of ασ, which was intentionally kept very low
in multi-well systems to reduce errors. The justification for this is shown in Figure B.9. By
keeping ασ = 10−3 in most simulations, the inverse Fisher (eq. (4.5)) works more or less as a
constant. In 1D systems, a higher value for ασ is used. Furthermore, the best performance of
S1 is generally seen with policy updates that do not take the mean far out of bounds, so the
clipped action policy gradient is rarely active.

We experimented with fixed-variance optimization for Score1, where the policy SDs decay
according to the same sequence as the SPSA gains bn (eq. (4.9)). This was mainly to see if
the performance would increase with fewer parameters to estimate, but also to investigate
the differences between S1 and SNG, as mentioned above. Table 5.9 and Figure 5.8 show how

0.0 0.5 1.0 1.5 2.0 2.5
mean

0

5

10

15

20

m
ed

ia
n

M
AE

S1

0.2 0.4 0.6 0.8
mean

SNG

Figure 5.7: Case 1: Sensitivity of αµ for S1 and SNG, comparing median MAE to parameter
value. Different scales on x-axes.

Chapter 5: Simulations and Results 41

Table 5.9: Case 1: Fixed variance optimization with low noise

Model
1D 3D 5D

MAE RMSE ∆end MAE RMSE ∆end MAE RMSE ∆end

S1µ 0.60 1.4 0.99 3.6 7.6 0.99 6.6 11.6 0.99
SNGµ 0.45 1.3 0.99 3.3 7.0 1.0 5.5 10.6 0.99
SPSA 0.55 1.4 1.0 2.7 6.4 0.99 5.1 10.7 0.99

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1

0 5 10 15 20 25 30 35 40
n

1.25

1.50

1.75

2.00

va
lu

e

(a) 1D: β = 0.15

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1

0 10 20 30 40 50 60 70 80
n

2.4

2.6

2.8

3.0
va

lu
e

(b) 5D: β = 0.05

Figure 5.8: Case 1: Fixed-variance optimization with decay factor β for S1, SNG and SPSA.
Low noise. Showing median ∆Y n and values of σn, bn

SNG outperforms S1 with decaying variances in a low noise-setting, also in higher dimensions.
For performance variances and 3D simulations, see Figure B.8.

The SNG algorithm achieves a low error in the tracking case, even with parameters tuned to a
static optimum. The adjustments needed for good performance are few. The average-reward
weight η is increased to give a more efficient baseline. The initial SD σ0 favors a lower value
than in the static case, but a likely cause is that the initial distance to the optimum is much
shorter in the tracking case. For sensitivity plots of η or σ0, see Figures B.10 and B.11. There is
only slight improvements after tuning to the dynamic optimum, with the higher value of ∆end
being the most noticeable. Adding constraints to the system did not call for adjustments except
a decrease in αµ for the 1D system. In general, using a lower αµ gives slower convergence but
makes the algorithm more robust towards changes in the process model. The algorithm is
sensitive to inconsistent magnitude of the TD-errors from Cases 2 and 3, as we can see from
the increased performance variance after n= 10, 30.

Actor-Critic

The actor-critic algorithm behaves similar to SNG in most cases but tends to perform better in
lower dimensions and with high noise. As with SNG, the differences between using σnoise = 0
or 0.1 are slight when compared to the high-noise setting. For one- and three-well systems, AC
generally achieves lower RMSE than SPSA and SNG due to the efficiency of initial iterations.
See Figure B.2 for comparisons. For a performance overview of AC under varying noise levels,
see Figure B.6. The policy behavior of the low-noise simulations is shown in Figure B.13.

Chapter 5: Simulations and Results 42

Adding a value function introduces three new parameters that must be considered; λ, pmin
and pmax. We found that the regularization factor λ should mainly be set according to the
dimension of the system. Regularization is barely needed for a 1D case with low or no noise,
but we still kept it in case of low sample variance. For the multi-well systems, λ ∈ [0.1, 0.35]
shows good performance. Furthermore, pmin and pmax do not affect performance too much,
as long as neither too few nor too many samples are included. The heuristics pmin = 2M + 5
and pmax = 3M +10 seems to function across different number of wells. The other parameters
were kept mostly similar to SNG, except for αµ, which should be decreased to match the larger
TD-error resulting from the addition of a value function.

SPSA

The SPSA method shows good performance overall. The algorithm converges rapidly in higher
dimensions but is impacted by noise more than the other methods. The gap to the other al-
gorithms shrinks in the case of high noise. However, this is affected to a large extent by the
perturbation magnitudes bn. For example, the initial update step sizes with 1D systems are
a = 15 or 10, but the RMSE is the same as SNG or higher, despite SNG having more conser-
vative step sizes. This can be seen, e.g., in Figures B.2a, B.4a and B.4b. The policy behavior of
the low-noise simulations is shown in Figure B.14.

The search for parameters gave the lowest errors from using very high search variances, i.e.,
bn of magnitude ±10. However, this was deemed inconsistent with Assumption (iii). We re-
stricted the initial search magnitude b according to Table 5.2b while adjusting the remaining
coefficients. The fixed-variance optimization for the three-well case illustrates this. Compar-
ing Table 5.3 to Table 5.9, the latter achieves a smaller error due to a larger initial search
magnitude b. Figure B.8 shows how SPSA compares to Score1 with a fixed variance decay.

The tracking abilities of the SPSA algorithm are highly dependent on the gain sequences. The
coefficient values giving good results in the static case benefit from decaying gains, but this
decay impedes tracking performance, as seen in Figure 5.4a. The best performance is seen
when drastically reducing the decay factor β . The algorithm tracks better than SNG in the 3D
case but not in the 1D case. Introducing soft constraints requires higher decay rates α,β . If
the values are kept as in Case 2, the mean estimate fails to converge but jumps around the
optimum, inducing high average errors. SPSA achieves lower errors and ensemble variance
after tuning, which can be seen from the inputs in Figure 5.6.

Chapter 6

Discussion

As presented in the previous chapter, the SPSA and AC algorithms achieve the lowest errors
depending on the dimensionality and measurement noise. As they are based on two different
gradient estimation principles, they inherit different characteristics, strengths, and weaknesses
when considering applicability to real-time production optimization. We begin this chapter by
interpreting some key findings before discussing the methods in light of the general challenges
of production optimization listed in Chapter 1.

6.1 Algorithm Performances

The Score1 algorithm shows the strength of its simplicity when adapting to new scenarios. An
interesting result is the performance differences between SNG and S1. The natural gradient
results in better performance and seemingly accelerated learning in simulations where the
policy SD varies, but not so much otherwise. This correlation is coherent with the structure
of the normal Fisher information (eq. (4.5)). As the policy variance decreases over time, so
will αµ for SNG. This allows for larger initial step sizes while avoiding unstable behavior at
the optimum. Thus, it counters the increasing policy gradient variance due to decreasing policy
variance of the standard PG. However, this becomes more significant as σ approaches zero.
Furthermore, Martens (2014) argues that smaller updates lead to better approximations of
the true natural gradients, which are only approximated with our stochastic single-sample
methods. As the coefficient values were larger in our simulations, we have likely not seen the
potential of this method.

Experimenting with CAPG close to the input bounds showed its ability to direct the policy
back into safe ranges. However, too large policy updates might make the policy stuck out of
bounds. This happens as the log-likelihood function approaches zero when the policy mean
moves further out of bounds. Step sizes were chosen to avoid this, so the performance disparity
between SNG and S1 is probably caused by the natural PG. Still, the CAPG estimator seems
to work better with smaller policy updates, such as those typically used with deep RL. For
applications such as RTO, where samples are limited, a better way to implement input limits
may be through a bounded Beta policy or just naively clipping actions as done with SNG.

Small policy updates appear to be a common factor across most practical RL implementations
(e.g., Duan et al. (2016)). As we have employed a single-sample estimator, we are severely

43

Chapter 6: Discussion 44

exposed to high variance, but smaller updates could conflict with Assumption (iv) and reduce
efficiency. Although we did not study it for the policy gradient methods in this project, using
more samples per iteration will reduce the variance of any Monte Carlo estimator (Mohamed
et al., 2019). However, the trade-off between efficiency and variance persists. Earlier work
(Grepperud, 2021) found that a dual-sample score-function estimator converged slower.

Two techniques that evidently work well to mitigate variance are the average-reward baseline
and the value function critic. By combining these, the AC algorithm achieves lower errors,
although mostly in lower dimension systems. This was expected since the multi-well critics
use samples from further back in time. As the policy means shift to increase production, the
local approximation is less precise and does not improve performance much.

The performance gap to SNG seems to increase with noise (except for the 5D case), suggesting
that the critic compensates for higher measurement variance. This smoothing effect demon-
strates how raw sample data can be combined with model estimation for faster and more stable
learning. However, the critic does not track well. The curve coefficients change too rapidly for
the value function to be modeled from the measurements. We did not want to impose many
assumptions on the model, so we only assumed the production curves were well-behaved. We
could also have enforced negative squared coefficients to ensure concavity, though this alone
would probably not be enough to model the fast-moving curves.

Where AC performs the best in lower dimensions, SPSA achieves the lowest errors in higher di-
mensions. The SPSA algorithm is easy to tune due to the predictability of the fixed perturbation
distribution. The gradient updates can be efficient with large perturbations, which are needed
with high noise. Allowing arbitrarily large step sizes, SPSA achieves similar results as AC in
the lower dimensions. As they apply different estimation techniques, they do not necessarily
share the same optimal initial perturbation variance or other parameter configurations. How-
ever, the fixed search magnitudes lead to application-specific tuning, making SPSA seemingly
less robust towards new scenarios. It generally needs more adjustments than SNG to deal with
tracking and constraints. A reason for lower tracking performance could also be that the un-
derlying cost function changes during the two-sided perturbation, resulting in a less accurate
estimate.

The efficiency of SPSA in higher dimensions might be due to the structure of FD methods and
the sampling distribution. The Bernoulli distribution can be designed to guarantee a certain
perturbation magnitude. In contrast, Gaussian distributions have the probability mass centered
around the mean, often leading to minor perturbations. Furthermore, the FD structure can
ensure some distance between samples, which the average-reward baseline can not. The lower-
variance gradient estimates compensate for the two perturbations per iteration and improve
performance in higher-dimensional spaces. Buesing et al. (2016) propose an FD score function
estimator that combines the two estimation techniques, giving potentially lower variance while
allowing for a greater variety of distributions.

A drawback with multi-sample methods is that they do not work with general RL problems,
as each sample theoretically induces a transition to a new state. For our synthetic test cases
and state definition, this does not matter. With a more complex state formulation, two samples
per iteration might require some adjustments to work. Furthermore, multi-sample estimates
might not work if more advanced control strategies are required or there is hysteresis in the
process. This brings us to whether or not it makes sense to use policy gradient methods for
real-time production optimization at all.

Chapter 6: Discussion 45

6.1.1 Applicability to Daily Production Optimization

As we have seen, the methods are straightforward. Except for baselines and critics, policy up-
dates happen solely from the last observations. Consequent high variance suggests that we
cannot expect to find optimal policies as fast as model-based methods. Nevertheless, our in-
terpretation is that they are relatively sample-efficient. With 120 iterations, the policy means
converge to high production levels, although the optimal policy variances are harder to es-
timate within this time horizon. As a point of reference, Duan et al. (2016) benchmarks RL
algorithms, including REINFORCE, using 25 million samples. Their control policies are far
more complex than ours, but it is still a substantial amount.

Besides sample efficiency, the applicability of the methods depends on their adaptability and
how easy they are to implement. Where the SPSA algorithm is efficient for specific cases but not
as adaptable, the PG methods are general but more susceptible to high variance. This variance
also makes them slightly harder to tune. However, despite that parameter values were found
using random search, most values ended near our initial guesses. With proper care, the tuning
should be feasible to implement online.

Based on results in the last test case, the PG methods show a potential for necessary adaptabil-
ity to unmodeled disturbances. Still, we cannot trivially translate the results onto a production
asset. The final test case presents various challenges, but these are hand-designed and do not
nearly represent all of the limitations described in Chapter 1, nor present them accurately. Fur-
thermore, the individual effects of some challenges, e.g., constraints, were not isolated. More
advanced simulators should be used to verify the performance of these methods. In addition,
the median of 50 simulations still resulted in varying median performances. The slightly lower
RMSE with low noise compared to no noise Figure B.2 for SNG and AC is likely due to this.
Several potential areas for future research should be explored to make policy gradient methods
considerable for daily production optimization.

6.2 Further Research

A central future objective is to reduce the variance of gradient estimates. As our results suggest
that a functioning baseline critic makes the PG algorithms more robust, modeling the value
functions is a potential research area. Gradual weight updates (rather than discarding old
data as we did), combined with higher-capacity approximators (e.g., ANNs), would allow for
a more complete mapping of the environment. This could be useful as a real system is not fully
decoupled, and various system-wide constraints might exist. However, time-variant dynamics
imply that a global map of the reward distribution is complicated to attain.

Different policy distributions should be further investigated as they directly influence the al-
gorithm behavior. One candidate would be the Beta distribution (see Section 3.3.3) as it nat-
urally constrains the action space. Furthermore, it can be skewed, a property that could be
exploited to direct the perturbations towards seemingly better regions. A potentially desired
property of a policy could be a lower probability mass around zero to ensure a measurable
effect by the perturbations. This could also lead to more noise-robust behavior. The policies
could also be conditioned on a more complete state formulation, incorporating real-time meas-
urements (such as pressures and temperatures) and other observations that affect operation.

The policy updates are also of high variance. One way to address this could be with trust-region

Chapter 6: Discussion 46

policy updates, which restrict or penalize large updates. Although momentum SGD leads to
exponentially weighted updates, a policy network that learns from trajectories of observations
could also learn multi-stage control policies (Schulman, 2016). This would be useful for real-
time dynamic control that might be required, e.g., during oscillating production caused by
gas-lift (Dias et al., 2019).

Using ANNs for policies and value functions could be helpful in learning from the large amounts
of accumulated historical data. Actor-critic PG methods could benefit from either being integ-
rated with ongoing research on data-driven modeling, or learning through simulators. The
general agent-environment structure allows for adapting to new situations, potentially integ-
rating domain knowledge, and learning from monitoring current operator policies.

Chapter 7

Concluding Remarks

Breakthroughs in reinforcement learning have demonstrated the ability to find super-human
control policies without relying on detailed instructions, unlike e.g., supervised learning. Silver,
Singh et al. (2021) argue that a reward signal can be enough to extract any desired behavior
from a learning agent. However, research on applications to process industries is still young.
The unique challenges of a petroleum asset, which many other optimization methods do not
sufficiently consider, motivate our study of policy gradient RL methods and how suitable they
are for real-time production optimization.

For this purpose, we framed a gas-lift optimization problem as a reinforcement learning task,
constructing a selection of test cases that simulate some of the challenges of daily produc-
tion optimization. By using the score function estimator, the policy gradient algorithms find
optimal, stochastic control policies for unmodeled processes. This very general estimator –
commonly used in machine learning – had not yet been used for optimal control of artificial
gas-lift.

Our results suggest that these methods can be as efficient as the SPSA method, which is well-
researched for related optimization problems. The policy gradient algorithms show greater ro-
bustness towards different process disturbances and constraints by requiring fewer parameter
adjustments. The actor-critic framework allows for efficient baselines that reduce the variance
of the single-sample estimators. Critic modeling should be further researched, but we have
seen how a simple linear approximator can accelerate learning with hardly any assumptions
about the process. Furthermore, methods needing multiple samples per iteration are unlikely
to be applied on a petroleum asset, as they often require perturbing the system in a sub-optimal
direction. As control changes are of high value, algorithms based on single perturbations, such
as actor-critic, could be realistic candidates for future real-world implementation.

Further research should be conducted on policy optimization, distributions, and critic design
before this may be considered for real-time optimization. Still, we remain optimistic. The meth-
ods are relatively sample-efficient and adaptable, even as they are simple and easy to imple-
ment. However, our synthetic test cases are far less complex than real applications, making it
difficult to conclude if the methods are suitable for real-time optimization. This thesis should
be seen as a positive first step in investigating their applicability. We have demonstrated that,
despite its simplicity, the underlying mathematical framework of the policy gradient methods
works.

47

Bibliography

Amari, Shun-ichi (1998). ‘Natural Gradient Works Efficiently in Learning’. In: MIT Press: Neural
Computation 10.

Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman and Dan Mané
(2016). ‘Concrete Problems in AI Safety’. In: CoRR. arXiv: 1606.06565. URL: http://arxiv.
org/abs/1606.06565.

Andersen, Joakim Rostrup and Lars Imsland (2021). ‘Application of Data-Driven Economic
NMPC on a Gas Lifted Well Network’. In: IFAC-PapersOnLine 54.3. 16th IFAC Symposium
on Advanced Control of Chemical Processes ADCHEM 2021, pp. 275–280. ISSN: 2405-
8963. DOI: https://doi.org/10.1016/j.ifacol.2021.08.254.

Bellman, Richard (1957). ‘A Markovian Decision Process’. In: Journal of Mathematics and Mech-
anics.

Berner, Christopher, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefow-
icz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oli-
veira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon
Sidor, Ilya Sutskever, Jie Tang, Filip Wolski and Susan Zhang (2019). ‘Dota 2 with Large
Scale Deep Reinforcement Learning’. In: CoRR abs/1912.06680. arXiv: 1912.06680. URL:
http://arxiv.org/abs/1912.06680.

Bieker, Hans Petter, Olav Slupphaug and Tor Johansen (Apr. 2006). ‘Real-Time Production
Optimization of Offshore Oil and Gas Production Systems: A Technology Survey’. In: DOI:
10.2523/99446-MS.

Bottou, Léon, Frank E. Curtis and Jorge Nocedal (2016). Optimization Methods for Large-Scale
Machine Learning. DOI: 10.48550/ARXIV.1606.04838. URL: https://arxiv.org/abs/
1606.04838.

Buesing, Lars, Theophane Weber and Shakir Mohamed (2016). ‘Stochastic Gradient Estimation
With Finite Differences’. In: NIPS 2016: Advances in Approximate Bayesian Inference.

Chou, Po-Wei, Daniel Maturana and Sebastian Scherer (2017). ‘Improving Stochastic Policy
Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distri-
bution’. In: Proceedings of the 34th International Conference on Machine Learning.

Chow, Yinlam, Ofir Nachum, Aleksandra Faust, Mohammad Ghavamzadeh and Edgar A. Duéñez-
Guzmán (2019). ‘Lyapunov-based Safe Policy Optimization for Continuous Control’. In:
CoRR abs/1901.10031. arXiv: 1901.10031. URL: http://arxiv.org/abs/1901.10031.

Conn, Andrew R., Katya Scheinberg and Luis N. Vicente (2009). Introduction to Derivative Free
Optimization. SIAM, pp. 23–31.

Corneliussen, Sidsel, Jean-Paul Couput, Eivind Dahl, Eivind Dykesteen, Kjell-Eivind Froysa,
Erik Malde, Hakon Moestue, Paul Ove Moksnes, Lex Scheers and Hallvard Tunheim (2005).

48

https://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
http://arxiv.org/abs/1606.06565
https://doi.org/https://doi.org/10.1016/j.ifacol.2021.08.254
https://arxiv.org/abs/1912.06680
http://arxiv.org/abs/1912.06680
https://doi.org/10.2523/99446-MS
https://doi.org/10.48550/ARXIV.1606.04838
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1606.04838
https://arxiv.org/abs/1901.10031
http://arxiv.org/abs/1901.10031

Bibliography 49

Handbook of Multiphase Flow Metering. The Norwegian Society for Oil and Gas Measure-
ment, pp. 18–25.

Dias, Ana Carolina Spindola Rangel, Felipo Rojas Soares, Johannes Jäschke, Maurício Bezerra
de Souza Jr. and José Carlos Pinto (2019). ‘Extracting Valuable Information from Big Data
for Machine Learning Control: An Application for a Gas Lift Process’. In: Processes. DOI:
10.3390/pr7050252.

Do, Sy T., Fahim Forouzanfar and Albert C. Reynolds (2012). ‘Estimation of Optimal Well Con-
trols Using the Augmented Lagrangian Function with Approximate Derivatives’. In: Pro-
ceedings of the 2012 IFAC Workshop on Automatic Control in Offshore Oil and Gas Produc-
tion.

Dochain, Denis, Michel Perrier and Martin Guay (2011). ‘Extremum seeking control and its ap-
plication to process and reaction systems: A survey’. In: Mathematics and Computers in Sim-
ulation 82.3. 6th Vienna International Conference on Mathematical Modelling, pp. 369–
380. ISSN: 0378-4754. DOI: https://doi.org/10.1016/j.matcom.2010.10.022.

Duan, Yan, Xi Chen, Rein Houthooft, John Schulman and Pieter Abbeel (2016). ‘Benchmarking
Deep Reinforcement Learning for Continuous Control’. In: CoRR abs/1604.06778. arXiv:
1604.06778.

Foss, Bjarne, Brage Rugstad Knudsen and Bjarne Grimstad (2018). ‘Petroleum production op-
timization – A static or dynamic problem?’ In: Computers & Chemical Engineering 114.
FOCAPO/CPC 2017, pp. 245–253. ISSN: 0098-1354. DOI: https://doi.org/10.1016/j.
compchemeng.2017.10.009.

Fujita, Yasuhiro and Shin-ichi Maeda (2018). Clipped Action Policy Gradient. DOI: 10.48550/
ARXIV.1802.07564. URL: https://arxiv.org/abs/1802.07564.

Garcia, Javier and Fernando Fernandez (2015). ‘A comprehensive survey on safe reinforcement
learning’. In: J. Mach. Learn. Res. 16, pp. 1437–1480. DOI: 10.5555/2789272.2886795.

Gentle, James E., Wolfgang Härdle and Youchi Mori (2012). Handbook of Computational Stat-
istics. Concepts and Methods. Springer.

Grepperud, Jakob E. (2021). ‘Stochastic Optimization for Petroleum Production Assets’.
Grimstad, Bjarne, Mathilde Hotvedt, Anders T. Sandnes, Odd Kolbjørnsen and Lars Struen

Imsland (2021). ‘Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study’.
In: CoRR abs/2102.01391. arXiv: 2102.01391. URL: https://arxiv.org/abs/2102.01391.

Gros, Sébastien and Mario Zanon (2019). ‘Data-driven Economic NMPC using Reinforcement
Learning’. In: CoRR abs/1904.04152. arXiv: 1904.04152.

Al-Hajeri, Mubarak, M. Saeed, Jan Derks, Thomas Fuchs, T. Hantschel, Armin Kauerauf, Martin
Neumaier, Oliver Schenk, Oliver Swientek and N. Tessen (June 2009). ‘Basin and petro-
leum system modeling’. In: Oilfield Rev. 21.

Heger, Matthias (1994). ‘Consideration of Risk in Reinforcement Learning’. In: Machine Learn-
ing Proceedings 1994. Ed. by William W. Cohen and Haym Hirsh. San Francisco (CA): Mor-
gan Kaufmann, pp. 105–111. ISBN: 978-1-55860-335-6. DOI: https://doi.org/10.1016/
B978-1-55860-335-6.50021-0.

Hou, Jian, Kang Zhou, Xian-Song Zhang, Xiao-Dong Kang and Hai Xie (2015). ‘A review of
closed-loop reservoir management’. In: Petroleum Science 12. DOI: 10.1007/s12182-014-
0005-6.

Howard, Ronald A. (1960). ‘Dynamic Programming and Markov Processes’. In: The MIT Press.
Howard, Ronald A. (1971). Dynamic Probabilistic Systems. Vol II: Semi-Markov and Decision

Processes. Dover Publications.

https://doi.org/10.3390/pr7050252
https://doi.org/https://doi.org/10.1016/j.matcom.2010.10.022
https://arxiv.org/abs/1604.06778
https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.10.009
https://doi.org/https://doi.org/10.1016/j.compchemeng.2017.10.009
https://doi.org/10.48550/ARXIV.1802.07564
https://doi.org/10.48550/ARXIV.1802.07564
https://arxiv.org/abs/1802.07564
https://doi.org/10.5555/2789272.2886795
https://arxiv.org/abs/2102.01391
https://arxiv.org/abs/2102.01391
https://arxiv.org/abs/1904.04152
https://doi.org/https://doi.org/10.1016/B978-1-55860-335-6.50021-0
https://doi.org/https://doi.org/10.1016/B978-1-55860-335-6.50021-0
https://doi.org/10.1007/s12182-014-0005-6
https://doi.org/10.1007/s12182-014-0005-6

Bibliography 50

Hu, Yujing, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu
and Changjie Fan (2020). ‘Learning to Utilize Shaping Rewards: A New Approach of Re-
ward Shaping’. In: CoRR abs/2011.02669. arXiv: 2011.02669. URL: https://arxiv.org/
abs/2011.02669.

Human Development Reports (2021). Human Development Index. Accessed: 2022-06-01. URL:
https://hdr.undp.org/data-center/human-development-index#/indicies/HDI.

Imsland, Lars (2002). ‘Output Feedback Stabilization and Control of Positive Systems’. PhD
thesis. Norwegian University of Science and Technology.

International Energy Agency (2021a). ‘Electricity Market Report’. In: URL: https://www.iea.
org/reports/electricity-market-report-july-2021.

International Energy Agency (2021b). ‘Net Zero by 2050’. In: URL: https://www.iea.org/
reports/net-zero-by-2050.

Ismail, Wan Rokiah and Kukuh Trjangganung (2014). ‘Mature Field Gas Lift Optimisation:
Challenges & Strategies, Case Study of D-field, Malaysia’. In: Conference Paper; Interna-
tional Petroleum Technology Conference, Kuala Lumpur.

Jadid, Maharon Bin, Arne Lyngholm, Morten Opsal, Adam Vasper and Thomas White (2006).
‘The Pressure’s On: Innovations in Gas Lift’. In: Oilfield Review, pp. 44–53.

Jahanshahi, Esmaeil, Dinesh Krishnamoorthy, Andrés Codas, Bjarne Foss and Sigurd Skogestad
(2019). ‘Plantwide Control of an Oil Production Network’. In: Computers and Chemical
Engineering 136.

Jäschke, Johannes and Sigurd Skogestad (2011). ‘NCO tracking and self-optimizing control in
the context of real-time optimization’. In: Journal of Process Control 21.10, pp. 1407–1416.
ISSN: 0959-1524. DOI: https://doi.org/10.1016/j.jprocont.2011.07.001.

Kahneman, Daniel (2011). Thinking, Fast and Slow. Farrar, Straus and Giroux.
Kakade, Sham M (2001). ‘A Natural Policy Gradient’. In: Advances in Neural Information Pro-

cessing Systems. Ed. by T. Dietterich, S. Becker and Z. Ghahramani. Vol. 14. MIT Press.
Kakade, Sham M. (2003). ‘On the Sample Complexity of Reinforcement Learning’. PhD thesis.

University College London.
Krener, Arthur J. and Kayo Ide (2009). ‘Measures of unobservability’. In: Proceedings of the 48h

IEEE Conference on Decision and Control (CDC), pp. 6401–6406. DOI: 10.1109/CDC.2009.
5400067.

Krishnamoorthy, Dinesh, Kjetil Fjalestad and Sigurd Skogestad (2019). ‘Optimal operation of
oil and gas production using simple feedback control structures’. In: Control Engineering
Practice 91, p. 104107. ISSN: 0967-0661. DOI: https://doi.org/10.1016/j.conengprac.
2019.104107.

Lattimore, Tor and Csaba Szepesvari (2020). Bandit Algorithms. Cambridge University Press.
Ma, Hongze, Gaoming Yu, Yuehui She and Yongan Gu (Sept. 2019). ‘Waterflooding Optimiza-

tion under Geological Uncertainties by Using Deep Reinforcement Learning Algorithms’. In:
SPE Annual Technical Conference and Exhibition. D031S043R001. DOI: 10.2118/196190-
MS.

Mandziuk, J. (2007). ‘Challenges for Computational Intelligence’. In: Springer. Chap. Compu-
tational Intelligence in Mind Games.

Martens, James (2014). ‘New insights and perspectives on the natural gradient method’. In:
Journal of Machine Learning Research 21. DOI: 10.48550/ARXIV.1412.1193.

Miftakhov, Ruslan, Abdulaziz Al-Qasim and Igor Efremov (Jan. 2020). ‘Deep Reinforcement
Learning: Reservoir Optimization from Pixels’. In: IPTC. DOI: 10.2523/IPTC-20151-MS.

https://arxiv.org/abs/2011.02669
https://arxiv.org/abs/2011.02669
https://arxiv.org/abs/2011.02669
https://hdr.undp.org/data-center/human-development-index#/indicies/HDI
https://www.iea.org/reports/electricity-market-report-july-2021
https://www.iea.org/reports/electricity-market-report-july-2021
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
https://doi.org/https://doi.org/10.1016/j.jprocont.2011.07.001
https://doi.org/10.1109/CDC.2009.5400067
https://doi.org/10.1109/CDC.2009.5400067
https://doi.org/https://doi.org/10.1016/j.conengprac.2019.104107
https://doi.org/https://doi.org/10.1016/j.conengprac.2019.104107
https://doi.org/10.2118/196190-MS
https://doi.org/10.2118/196190-MS
https://doi.org/10.48550/ARXIV.1412.1193
https://doi.org/10.2523/IPTC-20151-MS

Bibliography 51

Mnih, Volodymyr, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver and Koray Kavukcuoglu (2016). ‘Asynchronous Methods for Deep
Reinforcement Learning’. In: CoRR abs/1602.01783. arXiv: 1602.01783. URL: http://
arxiv.org/abs/1602.01783.

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra and Martin A. Riedmiller (2013). ‘Playing Atari with Deep Reinforcement Learn-
ing’. In: CoRR abs/1312.5602. arXiv: 1312.5602. URL: http://arxiv.org/abs/1312.5602.

Mohamed, Shakir, Mihaela Rosca, Michael Figurnov and Andriy Mnih (2019). ‘Monte Carlo
Gradient Estimation in Machine Learning’. In: DOI: 10.48550/ARXIV.1906.10652. URL:
https://arxiv.org/abs/1906.10652.

Mohammadpoor, Mehdi and Farshid Torabi (Dec. 2018). ‘Big Data analytics in oil and gas
industry: An emerging trend’. In: Petroleum 6. DOI: 10.1016/j.petlm.2018.11.001.

Morari, Manfred and Jay H. Lee (1999). ‘Model predictive control: past, present and future’.
In: Computers & Chemical Engineering 23.4, pp. 667–682. ISSN: 0098-1354. DOI: https:
//doi.org/10.1016/S0098-1354(98)00301-9.

Nocedal, Jorge and Stephen J. Wright (2006). Numerical Optimization. Springer.
OpenAI (2018). Spinning Up - Vanilla Policy Gradient. https://spinningup.openai.com/en/

latest/algorithms/vpg.html. [Online; accessed 20-May-2022].
OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Ar-

thur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider,
Nikolas Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba
and Lei Zhang (2019). ‘Solving Rubik’s Cube with a Robot Hand’. In: CoRR abs/1910.07113.
arXiv: 1910.07113. URL: http://arxiv.org/abs/1910.07113.

Palen, W. and A. Goodwin (1996). ‘Increasing Production in a Mature Basin: "The Choke
Model"’. In: SPE Europec featured at EAGE Conference and Exhibition All Days. SPE-36848-
MS. DOI: 10.2118/36848-MS. URL: https://doi.org/10.2118/36848-MS.

Pan, Elton, Panagiotis Petsagkourakis, Max Mowbray, Dongda Zhang and Ehecatl Antonio del
Rio-Chanona (2021). ‘Constrained model-free reinforcement learning for process optimiz-
ation’. In: Computers & Chemical Engineering 154, p. 107462. ISSN: 0098-1354. DOI: https:
//doi.org/10.1016/j.compchemeng.2021.107462.

Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai and Soumith Chintala (2019). ‘PyTorch: An Imperative
Style, High-Performance Deep Learning Library’. In: Advances in Neural Information Pro-
cessing Systems 32. Curran Associates, Inc., pp. 8024–8035. URL: http://papers.neurips.
cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-
library.pdf.

Pavlov, Alexey, Mark Haring and Kjetil Fjalestad (Dec. 2017). ‘Practical extremum-seeking
control for gas-lifted oil production’. In: pp. 2102–2107. DOI: 10.1109/CDC.2017.8263957.

Pedregosa, Fabian, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg et al.
(2011). ‘Scikit-learn: Machine learning in Python’. In: Journal of machine learning research
12.Oct, pp. 2825–2830.

Peters, Jan and Stefan Schaal (Nov. 2006). ‘Policy Gradient Methods for Robotics’. In: vol. 2006,
pp. 2219–2225. DOI: 10.1109/IROS.2006.282564.

https://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.48550/ARXIV.1906.10652
https://arxiv.org/abs/1906.10652
https://doi.org/10.1016/j.petlm.2018.11.001
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00301-9
https://doi.org/https://doi.org/10.1016/S0098-1354(98)00301-9
https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://spinningup.openai.com/en/latest/algorithms/vpg.html
https://arxiv.org/abs/1910.07113
http://arxiv.org/abs/1910.07113
https://doi.org/10.2118/36848-MS
https://doi.org/10.2118/36848-MS
https://doi.org/https://doi.org/10.1016/j.compchemeng.2021.107462
https://doi.org/https://doi.org/10.1016/j.compchemeng.2021.107462
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/CDC.2017.8263957
https://doi.org/10.1109/IROS.2006.282564

Bibliography 52

Petrazzini, Irving and Eric Antonelo (2021). ‘Proximal Policy Optimization with Continuous
Bounded Action Space via the Beta Distribution’. In: arXiv:2111.02202v1 [cs.LG].

Petsagkourakis, Panagiotis, Ilya Orson Sandoval, Eric Bradford, Federico Galvanin, Dongda
Zhang and Ehecatl Antonio del Rio-Chanona (2020). ‘Chance Constrained Policy Optimiz-
ation for Process Control and Optimization’. In: DOI: 10.48550/ARXIV.2008.00030.

Rashid, Kashif, William Bailey and B. Couet (June 2012). ‘A Survey of Methods for Gas-Lift
Optimization’. In: Modelling and Simulation in Engineering 2012. DOI: 10.1155/2012/
516807.

Robbins, Herbert and Sutton Monro (1951). ‘A Stochastic Approximation Method’. In: The
Annals of Mathematical Statistics.

Russel, Stuart and Peter Norvig (2010). Artificial Intelligence: A Modern Approach. Prentice
Hall.

Sadegh, P. and J. Spall (1998). ‘Optimal random perturbations for stochastic approximation
using a simultaneous perturbation gradient approximation’. In: IEEE Transactions on Auto-
matic Control 43.10, pp. 1480–1484. DOI: 10.1109/9.720513.

Schulman, John (2016). ‘Optimizing Expectations: From Deep Reinforcement Learning to
Stochastic Computational Graphs’. PhD thesis. Berkeley, University of California.

Schulman, John, Sergey Levine, Philipp Moritz, Michael Jordan and Pieter Abbeel (2015).
‘Trust Region Policy Optimiization’. In: Proceedings of the 31st International Conference on
Machine Learning.

Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan and Pieter Abbeel (2016).
‘High-Dimensional Continuous Control Using Generalized Advantage Estimation’. In: ICLR
Conference Paper.

Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford and Oleg Klimov (2017). ‘Prox-
imal Policy Optimization Algorithms’. In: arXiv:1707.06347 [cs.LG].

Shu-Jun Liu, Miroslav Krstic (2012). Stochastic Averaging and Stochastic Extremum Seeking.
Springer London, pp. 11–17. DOI: https://doi.org/10.1007/978-1-4471-4087-0.

Silva, Thiago and Alexey Pavlov (2020). ‘Dither signals optimization in constrained multi-agent
extremum seeking control’. In: IFAC Papers.

Silver, David (2015). Lectures on Reinforcement Learning. URL: https://www.davidsilver.
uk/teaching/.

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy
Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel and Demis Hassabis (2016).
‘Mastering the game of Go with deep neural networks and tree search’. In: Nature.

Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra and Martin Riedmiller
(2014). ‘Deterministic Policy Gradient Algorithms’. In: Proceedings of the 31 st International
Conference on Machine Learning.

Silver, David, Satinder Singh, Doina Precup and Richard S. Sutton (2021). ‘Reward is enough’.
In: Artificial Intelligence 299. ISSN: 0004-3702. DOI: https://doi.org/10.1016/j.
artint.2021.103535.

Sircar, Anirbid, Kriti Yadav, Kamakshi Rayavarapu, Namrata Bist and Hemangi Oza (2021).
‘Application of machine learning and artificial intelligence in oil and gas industry’. In: Pet-
roleum Research 6.4, pp. 379–391. ISSN: 2096-2495. DOI: https://doi.org/10.1016/j.
ptlrs.2021.05.009.

https://doi.org/10.48550/ARXIV.2008.00030
https://doi.org/10.1155/2012/516807
https://doi.org/10.1155/2012/516807
https://doi.org/10.1109/9.720513
https://doi.org/https://doi.org/10.1007/978-1-4471-4087-0
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://doi.org/https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/https://doi.org/10.1016/j.artint.2021.103535
https://doi.org/https://doi.org/10.1016/j.ptlrs.2021.05.009
https://doi.org/https://doi.org/10.1016/j.ptlrs.2021.05.009

Bibliography 53

Spall, J. (1992). ‘Multivariate Stochastic Approximation Using a Simultaneous Perturbation
Gradient Approximation’. In: IEEE Transactions on Automatic Control.

Spall, J. (1997). ‘A One-measurement Form of Simultaneous Stochastic Approximation’. In:
Automatica.

Spall, J. (1998). ‘Implementation of the Simultaneous Perturbation Algorithm for Stochastic
Optimization’. In: IEEE Transactions on Aerospace and Electronic Systems.

Spall, J. (2012). ‘Handbook of Computational Statistics’. In: ed. by James E. Gentle, Wolfgang
Härdle and Youchi Mori. Springer. Chap. 7.

Sutton, Richard S. and Andrew G Barto (2020). Reinforcement Learning: An Introduction. Second.
MIT press.

Sutton, Richard S., David McAllester, Satinder Singh and Yishay Mansour (1999). ‘Policy Gradi-
ent Methods for Reinforcement Learning with Function Approximation’. In: Proceedings of
the 12th International Conference on Neural Information Processing Systems.

Van Rossum, Guido and Fred L. Drake (2009). Python 3 Reference Manual. Scotts Valley, CA:
CreateSpace. ISBN: 1441412697.

Production Optimization in Closed-Loop Reservoir Management (Nov. 2007). Vol. All Days. SPE
Annual Technical Conference and Exhibition. SPE-109805-MS. DOI: 10.2118/109805-MS.
URL: https://doi.org/10.2118/109805-MS.

Wasserman, Larry (2013). All of Statistics: A Concise Course. Springer, pp. 126–134.
Watkins, Christopher (1989). ‘Learning from Delayed Rewards’. PhD thesis. King’s College.
Wilks, S. S. (1962). Mathematical Statistics. J. Wiley and Sons.
Williams, Ronald J. (1992). ‘Simple statistical gradient-following algorithms for connectionist

reinforcement learning’. In: Mach Learn.
Wu, Yuhuai, Elman Mansimov, Shun Liao, Roger Grosse and Jimmy Ba (2017). ‘Scalable trust-

region method for deep reinforcement learning using Kronecker-factored approximation’.
In: arXiv:1708.05144v2 [cs.LG].

https://doi.org/10.2118/109805-MS
https://doi.org/10.2118/109805-MS

Appendix A

Derivations

A.1 Derivation of the Score Function Gradient Estimator

The score function is given by

∇θ log p(x | θ) =
∇θ p(x | θ)

p(x | θ)
. (A.1)

By manipulating the expression for the expected value of f , and inserting the score function,
we can find an unbiased estimator for the stochastic gradient g :

g =∇θEx∼p(θ)[f (x)] =∇θ

∫

p(x | θ) f (x)d x (A.2a)

=

∫

f (x)∇θ p(x | θ)d x (A.2b)

=

∫

p(x | θ) f (x)∇θ log p(x | θ)d x (A.2c)

= Ex∼p(θ)
�

f (x)∇θ log p(x | θ)
�

(A.2d)

This derivation is valid when the the measure pθ (x) = p(x | θ) satisfies three conditions:

1. p(x | θ) must be continuously differentiable in θ
2. f (x)p(x | θ) is differentiable and integrable for all θ
3. supθ ∥ f (x)∇θ p(x | θ)∥1 ≤ g(x)∀x for some integrable function g(x)

An implicit assumption is also made on absolute continuity, meaning that p(x | θ + h) > 0
where p(x | θ) > 0. This holds for most distributions of interest. A counter-example is the
uniform distribution, since θ defines its support. This can lead to a biased gradient estimate.
We refer to Mohamed et al. (2019) for more details.

54

Chapter A: Derivations 55

A.2 The Gaussian Score Function

Consider a stochastic variable X = (X1, ..., Xn)⊤ where each component X i is normally dis-
tributed, so that the vector follows a multivariate Gaussian distribution, X ∼ N (µ,Σ). The
probability density function of X can be written out as

pX (x1, ..., xn;µ,Σ) =
1
p

(2π)n|Σ|
exp
§

−
1
2
(x −µ)⊤Σ−1(x −µ)

ª

, (A.3)

with |Σ| representing the determinant of Σ. If we let every pair of variables (X i , X j) be in-
dependent, the multivariate distribution simplifies to a product of univariate distributions; a
diagonal Gaussian distribution. The determinant of the covariance matrix Σ is the product of
the diagonal entries. To derive the score function with respect to the parameters θ = (µ,Σ),
we use the log-likelihood:

log pθ (x) = −
n
2

log(2π)−
1
2

log(|Σ|)−
1
2
(x −µ)⊤Σ−1(x −µ) (A.4a)

= −
n
2

log(2π)−
1
2

log
�

n
∏

i=1

σ2
i

�

−
1
2

n
∑

i=1

(x i −µi)2

σ2
i

(A.4b)

= const−
1
2

n
∑

i=1

�

log(σ2
i) +

(x i −µi)2

σ2
i

�

(A.4c)

The derivatives of the log-likelihood with respect to θ are:

∂

∂ µi
log pθ (x) =

x i −µi

σi
, (A.5a)

∂

∂ σi
log pθ (x) = −

1
2

�

2
σi
−

2(x i −µi)2

σ3
i

�

(A.5b)

=
1
σi

�

(x i −µi)2

σ2
i

− 1

�

(A.5c)

This gives us the diagonal Gaussian score function:

∇ log pθ (x) =

x1 −µ1

σ2
1

1
σ1

�

(x1 −µ1)2

σ2
1

− 1

�

...
...

xn −µn

σ2
n

1
σn

�

(xn −µn)2

σ2
n

− 1

�

. (A.6)

A.2.1 Variance Map

In a discretized system, one might want to ensure positive-definiteness of the diagonal covari-
ance matrix. This can be done e.g., by using an exponential mapping σ = es+ c, with c ≥ 0 as
a stability constant. We derive a new expression for the score function:

log pθ (x) = −
n
2

log(2π)−
1
2

log
�

n
∏

i=1

(esi + c)2
�

−
1
2

n
∑

i=1

(x i −µi)2

(esi + c)2
(A.7a)

= const−
1
2

n
∑

i=1

�

2 log (esi + c) +
(x i −µi)2

(esi + c)2

�

(A.7b)

Chapter A: Derivations 56

Differentiating with respect to the new parameters θ = (µ, s), with a diagonal covariance
matrix gives us that

∂

∂ µi
log pθ (x) =

x i −µi

(esi + c)2
, (A.8a)

∂

∂ si
log pθ (x) = −

esi

esi + c
+

2esi (x i −µi)2

(esi + c)3
(A.8b)

=
esi

esi + c

�

2(x i −µi)2

(esi + c)2
− 1

�

, (A.8c)

which replace the expressions of eq. (A.6). For other mappings of the variance, the same pro-
cedure is followed to derive the gradient expressions.

A.2.2 Behaviour of the Score Function

These gradients can be used to update the distributional parameters θ . We can see that the
gradient component for µi is negative when

x i −µi

σ2
i

< 0

x i −µi < 0,

meaning that the mean is shifted towards the variable x i and is scaled with the variance.
Likewise, the gradient component for the variance σ2

i is negative when

1
σi

�

(x i −µi)2

σ2
i

− 1

�

< 0

(x i −µi)
2 < σ2

i
�

�x i −µi

�

�< σi .

We thus have that the standard deviationσi will be decreased if the Euclidean distance between
µi and x i is lower than the standard deviation σi , and increases in the opposite case, inversely
proportional to the size of σ2

i . This holds true regardless of any mapping applied to σ2, in-
cluding softplus, softmax, or exponential, which can be seen if inserting the mapping into the
above inequalities.

For a policy gradient update (see Section 3.2.3), the gradient is multiplied with a feedback-
signal (e.g. R,δ), so the sign might change, depending on the reward. For instance, if a sample
is far from the mean, and gives a positive reward change, the variance is increased. If a sample
closer to the mean yields positive feedback, variance is decreased.

Chapter A: Derivations 57

A.3 Fisher Information Matrix

The Fisher information matrix (Sham M Kakade, 2001) of a distribution p(x | θ) is defined
as:

I(θ) = Ex∼p(θ)

�

∂ log p(x | θ)
∂ θ i

∂ log p(x | θ)
∂ θ j

�

(A.9a)

= Ex∼p(θ)
�

∇θ log p(x | θ)∇θ log p(x | θ)⊤
�

, (A.9b)

which can be approximated by a Monte Carlo estimator.

For a Gaussian distribution, we can derive the expressions for the derivatives of the log-
likelihood l(θ) = log p(x | θ) analytically, as done in Chou et al. (2017):

I(θ) = Ex∼p(θ)

∂ 2l
∂ µ2

∂ 2l
∂ µ∂ σ

∂ 2l
∂ µ∂ σ

∂ 2l
∂ σ2

(A.10a)

= Ex∼p(θ)

−
1
σ2

−2(x −µ)
σ3

−2(x −µ)
σ3

−3(x −µ)2

σ4
+

1
σ2

=

1
σ2

0

0
2
σ2

 (A.10b)

This holds under certain regularity conditions, that are essentially just smoothness conditions
on p(x | θ) (Wasserman, 2013).

Appendix B

Simulations

B.1 Parameter Configurations

Unless stated otherwise, the simulations are for the static Case 1 (Section 5.2.1). The asterisk
(*) indicates a fixed standard deviation decay factor β .

Table B.1: Score1 with Clipped Action Policy Gradient (S1)

Simulation References αµ ασ γ η

1D
Low noise Tab 5.3, Fig 5.1a 3.6 0.1 0.5 0.7
Fixed-variance Tab 5.9, Fig B.8a 3.6 0.15* 0.6 0.6

3D
Low noise Tab 5.3, Fig 5.1b 1.7 0.01 0.6 0.6
Fixed-variance Tab 5.9, Fig B.8c 1.6 0.10* 0.5 0.6

5D
Low noise Tab 5.3, Fig 5.1c 1.3 0.001 0.4 0.6
Fixed-variance Tab 5.9, Fig B.8e 0.25 0.05* 0.5 0.6

Table B.2: Score1 with Natural Gradient (SNG)

Simulation References αµ ασ γ η

1D

No noise Tab 5.4, Fig B.6a 1.2 0.05 0.6 0.7
Low noise Tab 5.3, Fig B.12a 1. 0.05 0.6 0.7
High noise Tab 5.5, Fig B.6a 0.2 0.01 0.6 0.7
Fixed-variance Tab 5.9, Fig B.8a 2.2 0.15* 0.6 0.6
Tracking Tab 5.7, Fig 5.4c 1. 0.01 0.7 0.95
Constrained Tab 5.8, Fig 5.6a 0.7 0.01 0.7 0.95

3D

No noise Tab 5.4, Fig B.6c 0.55 0.001 0.5 0.6
Low noise Tab 5.3, Fig B.12b 0.5 0.001 0.5 0.6
High noise Tab 5.5, Fig B.6c 0.13 0.001 0.5 0.6
Fixed-variance Tab 5.9, Fig B.8c 0.3 0.10* 0.5 0.6
Tracking Tab 5.7, Fig 5.4d 0.45 0.001 0.6 0.9
Constrained Tab 5.8, Fig 5.6c 0.45 0.001 0.6 0.9

5D

No noise Tab 5.4, Fig B.6e 0.35 0.001 0.3 0.6
Low noise Tab 5.3, Fig B.12c 0.25 0.001 0.3 0.6
High noise Tab 5.5, Fig B.6e 0.04 0.001 0.4 0.6
Fixed-variance Tab 5.9, Fig B.8e 0.25 0.05* 0.5 0.6

58

Chapter B: Simulations 59

Table B.3: Actor-Critic (AC)

Simulation References αµ ασ γ η pmin pmax λ

1D
No noise Tab 5.4, Fig B.6b 1.2 0.05 0.5 0.7 7 13 0.02
Low noise Tab 5.3, Fig B.13a 1. 0.01 0.5 0.7 7 13 0.02
High noise Tab 5.5, Fig B.6b 0.2 0.01 0.6 0.7 7 13 0.05

3D
No noise Tab 5.4, Fig B.6d 0.35 0.01 0.4 0.6 11 19 0.1
Low noise Tab 5.3, Fig B.13b 0.25 0.001 0.4 0.6 11 19 0.1
High noise Tab 5.5, Fig B.6d 0.05 0.001 0.4 0.6 11 19 0.2

5D
No noise Tab 5.4, Fig B.6f 0.2 0.001 0.4 0.5 15 25 0.2
Low noise Tab 5.3, Fig B.13c 0.12 0.001 0.4 0.4 15 25 0.2
High noise Tab 5.5, Fig B.6f 0.015 0.001 0.4 0.4 15 25 0.3

Table B.4: Simultaneous Perturbation Stochastic Approximation (SPSA)

Simulation References a A α b β γ

1D

No noise Tab 5.4, Fig B.7a 15 1 0.3 2 0.3 0.5
Low noise Tab 5.3, Fig B.14a 15 1 0.4 2 0.2 0.6
High noise Tab 5.5, Fig B.7a 9 1 0.4 3.5 0.2 0.5
Tracking Tab 5.7, Fig 5.4c 7 1 0.05 2 0.05 0.5
Constrained Tab 5.8, Fig 5.6b 5 1 0.2 2 0.2 0.5

3D

No noise Tab 5.4, Fig B.3c 12 1 0.2 2 0.2 0.5
Low noise Tab 5.3, Fig B.14b 10 6 0.2 2 0.2 0.5
High noise Tab 5.5, Fig B.3d 5 3 0.3 4 0.1 0.5
Tracking Tab 5.7, Fig 5.4d 5 1 0.05 2 0.01 0.4
Constrained Tab 5.8, Fig 5.6d 5 1 0.1 2 0.1 0.3

5D
No noise Tab 5.4, Fig B.7b 10 3 0.2 2 0.2 0.5
Low noise Tab 5.3, Fig B.14c 10 6 0.2 3 0.2 0.3
High noise Tab 5.5, Fig B.7b 5 3 0.3 6 0.1 0.5

Chapter B: Simulations 60

B.2 Supplementary Figures

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0
De

lta

AC

0 5 10 15 20 25 30 35 40
n

0.0

0.5

1.0

De
lta

SPSA

(a) 1D: 80-20 percentiles

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 10 20 30 40 50 60 70 80
n

0.0

0.5

1.0

De
lta

SPSA

(b) 3D: 80-20 percentiles

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 20 40 60 80 100
n

0.0

0.5

1.0

De
lta

SPSA

(c) 5D: 80-20 percentiles

Figure B.1: Case 1: Comparisons of SNG, AC and SPSA algorithms with low noise.

Chapter B: Simulations 61

0 0.1 1
noise

1.0

1.2

1.4

1.6

RM
SE

SPSA
SNG
AC

(a) 1D

0 0.1 1
noise

6.5

7.0

7.5

8.0

RM
SE

SPSA
SNG
AC

(b) 3D

0 0.1 1
noise

10

11

12

13

14

RM
SE

SPSA
SNG
AC

(c) 5D

Figure B.2: Case 1: Median RMSE against measurement noise level σnoise

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
AC

(a) 1D: No noise

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0
De

lta

SPSA
SNG
AC

(b) 1D: High noise

0 10 20 30 40 50 60 70 80
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
AC

(c) 3D: No noise

0 10 20 30 40 50 60 70 80
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
AC

(d) 3D: High noise

0 20 40 60 80 100 120
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
AC

(e) 5D: No noise

0 20 40 60 80 100 120
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
AC

(f) 5D: High noise

Figure B.3: Case 1: Median comparisons with no noise and high noise. Percentiles are shown
in Figure B.4.

Chapter B: Simulations 62

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 5 10 15 20 25 30 35 40
n

0.0

0.5

1.0

De
lta

SPSA

(a) 1D: No noise

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 20 40 60 80 100
n

0.0

0.5

1.0

De
lta

SPSA

(b) 1D: High noise

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 20 40 60 80 100 120
n

0.0

0.5

1.0

De
lta

SPSA

(c) 3D: No noise

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 20 40 60 80 100 120
n

0.0

0.5

1.0

De
lta

SPSA

(d) 3D: High noise

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 20 40 60 80 100 120
n

0.0

0.5

1.0

De
lta

SPSA

(e) 5D: No noise

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

AC

0 20 40 60 80 100 120
n

0.0

0.5

1.0

De
lta

SPSA

(f) 5D: High noise

Figure B.4: Case 1: Medians and percentiles with no and high noise (ref. Figure B.3
and Tables 5.4 and 5.5)

Chapter B: Simulations 63

200

225

250

275

300

325

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_opt
u_tot

80

100

120

mu_0
opt_0

60

70

80

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_1
opt_1

0 20 40 60 80 100 120
n

80

100

mu_2
opt_2

(a) 3D: SNG, new configuration

200

225

250

275

300

325

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

u_opt
u_tot

80

100

120

mu_0
opt_0

60

70

80

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

mu_1
opt_1

0 20 40 60 80 100 120
n

80

100

mu_2
opt_2

(b) 3D: SPSA, new configuration

Figure B.5: Case 2: SNG and SPSA inputs (u) and means (mu) tracking the optimum with
M = 3. The optimal inputs are marked in dotted lines.

Chapter B: Simulations 64

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(a) 1D: SNG

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(b) 1D: AC

0 10 20 30 40 50 60 70 80
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(c) 3D: SNG

0 10 20 30 40 50 60 70 80
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(d) 3D: AC

0 20 40 60 80 100 120
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(e) 5D: SNG

0 20 40 60 80 100 120
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(f) 5D: AC

Figure B.6: Case 1: Comparisons of SNG and AC under the three different levels of noise.
Lighter colors indicate more noise.

0 5 10 15 20 25 30 35 40
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(a) 1D: SPSA

0 20 40 60 80 100 120
n

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

No
Low
High

(b) 5D: SPSA

Figure B.7: Case 1: SPSA under different levels of noise. Lighter colors indicate more noise.

Chapter B: Simulations 65

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

S1

0 10 20 30 40 50 60
n

0.0

0.5

1.0

De
lta

SPSA

(a) 1D: Medians and 80-20 percentiles

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1

0 5 10 15 20 25 30 35 40
n

1.25

1.50

1.75

2.00

va
lu

e
(b) 1D: Medians and σn, bn with β = 0.15

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

S1

0 10 20 30 40 50 60 70 80
n

0.0

0.5

1.0

De
lta

SPSA

(c) 3D: Medians and 80-20 percentiles

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1

0 10 20 30 40 50 60
n

2.0

2.5

3.0

va
lu

e

(d) 3D: Medians and σn, bn with β = 0.10

0.0

0.5

1.0

De
lta

SNG

0.0

0.5

1.0

De
lta

S1

0 20 40 60 80 100
n

0.0

0.5

1.0

De
lta

SPSA

(e) 5D: Medians and 80-20 percentiles

0.0

0.2

0.4

0.6

0.8

1.0

De
lta

SPSA
SNG
S1

0 10 20 30 40 50 60 70 80
n

2.4

2.6

2.8

3.0

va
lu

e

(f) 5D: Medians and σn, bn with β = 0.05

Figure B.8: Case 1: Fixed-variance optimization for S1, SNG and SPSA. Low noise. Figures (b)
and (f) are duplicates of Figure 5.8.

Chapter B: Simulations 66

0.0 0.5 1.0 1.5 2.0 2.5
mean

0

5

10

15

20

m
ed

ia
n

M
AE

S1

0.2 0.4 0.6 0.8
mean

SNG

Figure B.9: Case 1: Sensitivity of ασ for S1 and SNG. Comparing median MAE to parameter
value. Logarithmic scale on x-axis.

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

m
ed

ia
n

M
AE

SNG

(a) 3D: Static optimum

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

m
ed

ia
n

RM
SE

SNG

(b) 3D: Dynamic optimum

Figure B.10: Case 1 and 2: Sensitivity of average-reward weight η for SNG. Median over 30
simulations.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

5

10

15

20

m
ed

ia
n

M
AE

SNG

(a) 3D: Static optimum

0.5 1.0 1.5 2.0 2.5 3.0 3.5
0

0

5

10

15

20

25

m
ed

ia
n

RM
SE

SNG

(b) 3D: Dynamic optimum

Figure B.11: Case 1 and 2: Sensitivity of initial SD σ0 for SNG. Median over 30 simulations.

Chapter B: Simulations 67

80

90

100

110

120
ga

s i
nj

ec
tio

n
flo

w
[k

g/
s]

µ_0

0 20 40 60 80 100 120
n

1.8

1.9

2.0

st
d

std_0

(a) 1D

60

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0
µ_1
µ_2

0 20 40 60 80 100 120
n

1.95

2.00

st
d

std_0
std_1
std_2

(b) 3D

60

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0
µ_1
µ_2
µ_3
µ_4

0 20 40 60 80 100 120
n

2.95

3.00

st
d

std_0
std_1
std_2
std_3
std_4

(c) 5D

Figure B.12: Case 1: SNG policy means and SDs with low noise (from Table 5.3)

Chapter B: Simulations 68

80

90

100

110

120
ga

s i
nj

ec
tio

n
flo

w
[k

g/
s]

µ_0

0 20 40 60 80 100 120
n

1.98

1.99

2.00

st
d

std_0

(a) 1D

60

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0
µ_1
µ_2

0 20 40 60 80 100 120
n

1.96

1.98

2.00

st
d

std_0
std_1
std_2

(b) 3D

60

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0
µ_1
µ_2
µ_3
µ_4

0 20 40 60 80 100 120
n

2.9

3.0

st
d

std_0
std_1
std_2
std_3
std_4

(c) 5D

Figure B.13: Case 1: AC policy means and SDs with low noise (from Table 5.3)

Chapter B: Simulations 69

0 20 40 60 80 100 120
n

80

90

100

110

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0

(a) 1D

0 20 40 60 80 100 120
n

60

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0
µ_1
µ_2

(b) 3D

0 20 40 60 80 100 120
n

60

80

100

120

ga
s i

nj
ec

tio
n

flo
w

[k
g/

s]

µ_0
µ_1
µ_2
µ_3
µ_4

(c) 5D

Figure B.14: Case 1: SPSA policy means with low noise (from Table 5.3)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Jakob Eide Grepperud

Stochastic Gradient Optimization of
Petroleum Assets

Towards Reinforcement Learning

Master’s thesis in Cybernetics and Robotics
Supervisor: Bjarne Grimstad
Co-supervisor: Lars Imsland
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Scope and Research Objectives
	Outline

	Background
	Gas-Lifted Petroleum Optimization
	Selected Methods for Daily Production Optimization

	Reinforcement Learning for Industry Applications

	Theory
	Stochastic Gradient Optimization
	Stochastic Gradient Descent
	Score Function Gradient
	SPSA

	Reinforcement Learning Fundamentals
	Markov Decision Processes
	Value-Based Learning
	Policy Optimization

	The Actor-Critic Framework
	Variations of the Policy Gradient
	Natural Policy Gradients
	Constrained Policy Optimization

	Method
	Case Study - Gas Lifted Petroleum Asset
	Optimization Considerations
	Case 1: Static Optimization
	Case 2: Tracking
	Case 3: Tracking with System-Wide Constraints

	Algorithms
	Score Function Gradient
	Average-Reward Actor-Critic
	SPSA

	Evaluation Metrics

	Simulations and Results
	Implementation
	Tuning Procedure and Initial Conditions

	Results
	Comparisons
	Behavior of the Algorithms

	Discussion
	Algorithm Performances
	Applicability to Daily Production Optimization

	Further Research

	Concluding Remarks
	Bibliography
	Derivations
	Derivation of the Score Function Gradient Estimator
	The Gaussian Score Function
	Variance Map
	Behaviour of the Score Function

	Fisher Information Matrix

	Simulations
	Parameter Configurations
	Supplementary Figures

