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Problem Desscription

The topic of this master-project is proposed by Alva. Alva wants to develop its own series of motor controllers.
One of the key tasks is development of motor control strategy and the software. The design requirements include
high switching frequencies and high-dynamic operation - fast changes in speed and load.

The Main Target is to demonstrate the capability and customability of sensorless motor control software for
slotless permanent magnet synchronous machines (sl-PMSM) by using a commercial control platform and
converter layout. Modifications will be needed both in software and hardware.

Some sub-targets are:

• Analyse the existing SW and tools for the actual commercial control board.

• Give a detailed description of the SW as well as the hardware.

• Make the hardware modifications needed on both control board and converter board. This includes choice
of filters.

• Analyse and tune the current- and speed controllers for the actual PM-machine. Choose design rules for
the controllers.

• Implement relaiable startup routine.

• Test the motor drive in position sensorless control if sufficient time available
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Preface

This thesis is the final step to achieve a Master of Technology. The thesis describes the software and hardware of
a commercial control platform from STMicroelectronics for controlling drones. It also explores and implement a
reliable sensorless startup method in addition to implementing tuning techniques for speed and current control.
The thesis is written for Alva Industries in collaboration with the Department of Electrical Power Engineering
at Norwegian University of Science and Technology under supervisor Roy Nilsen.

The motivation behind this thesis is for Alva Industries to develop an in-house motor controller, being able to
implement and test adjustments to the control algorithms and develop its own power board in the long run. My
personal motivation writing this thesis is getting hands on experience with control platforms. Both how the
hardware and software is architectured and connecting this to the physics of a motor.

The contribution of this thesis is describing the STMicroelectronics STM32 environment as a first step on the
way to develop a control platform around an STM32-microprocessor. It also implement tuning techniques for
the speed and current controller in addition to a reliable startup routine.

I would like to thank my supervisor Roy Nilsen for helping me gain a system understanding of a motor controller
with his experience and knowledge in his field. I would like to thank Alva Industries for the objective they
provided and the summer internship. This have contributed to my increasing interest in hands on engineering. I
would also like to thank my friends for a fantastic period in Trondheim at NTNU, and my girlfriend for support,
and taking care of our puppy this last intense period.
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Abstract

Alva Industries wants to develop a control platform for their slotless permanent magnet synchronous machine
(sl-PMSM) for drones. STMicroelectronics STM32 microprocessor series is explored and documented with the
help of Nucleo STM32G431RB control board and X-Nucleo IHM08M1 power board as a first step to achieving
this. The STM32 environment provides useful tools through its Motor Control Software Development Kit
(MCSDK) with the Motor Control Workbench for fast set up of the motor control and Motor Pilot as an interface
for steering and logging. The STMCubeMX generates initializationcode for the system clock, timers, pins, etc.
At the same time, it offers high flexibility for low-level configuration. These tools generate source code for the
STM32 IDE, which can be customized. The STM32-series is a flexible system and provides the tools which
simplify further development and customization on this platform.

The current sensing circuit of the powerboard is found not to be optimal. The cut-off frequency is 333kHz, and
the gain stabilizes at −17dB for higher frequencies. This leads to unnecessary noise in the current measurement.
The input filter capacitators C3, C5 and C7 are suggested to have a capacitance of 3.5nF for a future switching
frequency. This choice will set the cut-off frequency to 70kHz, and the high-frequency gain tends to zero.

Implementing modulus optimum for the current regulator and symmetrical optimum for the speed regulator is
done successfully. The results suggest a dampening factor of ζ = 1√

64 , which results in a rise time of 0.47ms.
The lack of a filter in the speed estimation caused large speed estimation ripples resulting in a current reference
output of the speed regulator reacting to the ripple. To avoid the reaction, the symmetrical optimum β-value was
increased to 10, and the calculated proportional gain was reduced by a factor of 10. This led to an over-damped
speed regulator, which is not optimal. A filter for the speed estimation should be implemented.

I/f startup routine was implemented. The alignment stage of the startup routine resulted in oscillations around
the magnetic axes causing the startup to be unreliable. The startup was successful and reliable by adding an
external friction force in this stage.
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Sammendrag

Alva Industries ønsker å utvikle som egen kontrollplattform for deres tannløse permanent magnet synkronmaskin
for droner. STMIcroelectronics STM32 mikroprosessor serie er utforsket og dokumentert med hjelp av Nucleo
STM32G431RB kontroll brett and X-Nucleo IHM08M1 kraftelektronikk brett som et første steg for å oppnå
dette. STM32 utviklings miljøet inneholder nyttige verktøy gjennom sitt Motor Control Software Development
Kit (MCSDK) med Motor Control Workbench for å rask implementering av motor kontroll og Motor Pilot som
kan styre motoren og logge data. STMCubeMX genererer initialiseringskode for system klokken, timere med mer.
Programmene tilbyr også høy fleksibilitet. Disse verktøyene genererer kildekode til STM32 IDE. Kildekoden kan
endres direkte i STM32 IDE. STM32 serien tilbyr fleksibilitet og nyttige verktøy som gjør det enklere å utvikle
og tilpasse en kontrollplattform til sitt behov.

Strøm målings kretsen på kraftelektronikkbrettet er ikke optimal. Knekkfrekvensen er 333 kHz og forsterkningen
stabiliserer seg på -17 dB for høye frekvenser. Dette fører til unødvendig støy i strømmålingene. Inngangsfilterets
kondensatorer C3, C5 og C7, er foreslått endret til 3.5nF tilpasset en fremtidig PWM-frekvens på 60kHz. Dette
fører til en knekkfrekvens på 70kHz og forsterkningen ved høye frekvenser går mot null.

For farts og strøm regulatorene er henholdsvis symmetrical optimum og modulus optimum metodene implementert.
Resultatet er en demningsfaktor på 1√

64 og fører til at strømmen stiger fra 10 − 90% av referansen på 0.47ms.
Mangelen på et filter i estimeringen av rotasjonshastigheten førte til pulsasjoner på rotasjonshastighet estimatet
som utgangen av hastighetsregulatoren prøver å kompensere. For å unngå denne kompensasjonen øktes beta
verdien til 10 og proporsjonal forsterkningen ble senket med en faktor på 10. Det førte til en overdempet
fartsregulator. Ette er ikke optimalt og et filter for estimeringen av rotasjonshastigheten bør implementeres.

I/f oppstarts metode er implementert. Når rotor retter seg etter det magnetiske feltet førte det til svingninger
rundt den magnetiske aksen satt opp av stator. Dette gjorde oppstarten upålitelig. Oppstarten var vellykket og
pålitelig etter en ytre friksjonskraft ble påført rotor i denne fasen.
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Chapter 1

Introduction

The use case of drones is increasing every year as the technology improves. The applications range from
recreational use, delivery, military applications, and monitoring of crops. In 2020, for the first time in Norway, a
drone was used in a search and rescue mission to find a missing woman[20]. The growth is backed by Grand View
Research’s estimated compound annual growth rate (CAGR) of 57.5% from 2021 − 2028[12]. Alva Industries
wants to take a share of this market.

Alva Industries is producing low inductance slotless permanent magnet synchronous machines for drones. Off-
the-shelf controllers do the control of the machines. Alva Industries is exploring the possibility of developing a
control platform of its own. This is, among other things, to increase the possibility of testing and implementing
improvements in the control algorithm specific for their motor and application.

In 2020 Jensen [6] analyzed how increasing the switching frequency would benefit the current ripple of a low
inductance machine for Alva Industries. In 2021 as a precursor to this master project Nerbøberg [9] explored a
sensorless closed loop voltage-current model for speed and position estimation that showed high performance and
may be beneficial to implement for Alva Industries. To explore these possibilities, a control platform with high
customizability is needed to implement and test them. This thesis will explore and test if STMicroelectronics
STM32-series can achieve this.

This thesis is divided into two parts. The first part is an analysis of how the STMicroelectronics STM32 system
and environment are architectured. Some important components of the hardware of a control platform, The
software tools in the STM32 environment, and the control software is described. This provides a good foundation
for the further development of an Alva Industries control platform based on the STM32 microprocessor.

The second part contain modeling and field oriented control of a PMSM machine. The tuning techniques
modulus optimum and symmetrical optimum is explained and implemented for the current controller and a
speed controller respectively. In addition to this a reliable startup routine (I/f) is described and implemented.
An analysis of the sensing circuit input filter is done and improvements for later iterations is suggested. The
tuning techniques and startup routine is tested on the STM32 control platform described in part one. Using the
Nucleo control board and X-Nucleo powerboard from this thesis as inspiration, a custom-built control board and
power board can be developed around the STM32 microprocessor, where the end goal is an in-house control
platform.
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Part I

Research of the hardware, development
environment and control software of

STMicroelectronics as a control
platform for Alva Industries

2



Chapter 2

Key hardware components

To reach the goal of developing an in-house control platform, it is essential to have an understanding of the
hardware components. This goes for their purpose, how they work and how they may influence the control
schemes. For this reason, some of the essential hardware components will be described in this chapter.

2.1 Power MOSFET

MOSFET is an acronym for Metal Oxide Semiconductor Field Effect Transistor. A MOSFET is made from a
semiconducting material, meaning that the material has conductivity between conductors and insulators. To
make a semiconductor a good conductor, impurities are introduced into the pure crystals. This is called doping.
If the impurities are pentavalent, having valence of five, the semiconductor is N-type. In N-type semiconductors,
the majority of charge carriers are electrons. If the impurities are trivalent, the valence of three, then the
semiconductor is p-type. In P-type semiconductors, holes are the majority of charge carriers. Setting these two
types of semiconductors together, the electrons from the n-type will fill the holes of the p-type semiconductor in
the junction between them. This effect is depleting the charges near the junction and is called the depletion
region. Depending on which side that is experiencing a positive or negative charge, the depletion region will
shrink or expand. Reducing the depletion layer is called forward bias and is triggered when the connection is of
positive charge on the p-type, and of negative charge on the n-type. By flipping the polarity, the depletion layer
expands, and this is called reverse bias.[8]

MOSFETs are of two types. Enhancement and depletion type. An enhancement MOSFET is "OFF" when the
gate-source voltage (VGS) is zero. Contrary, depletion MOSFETs are "ON" when VGS is zero. Both of these
types can conduct as N-channel and P-channel. For N-channel, the source and drain are n-type semiconductors,
and the substrate is p-type. The current carrier is electrons and conducts by attracting electrons toward the
gate, creating a channel. For P-channel, the drain and source are p-type semiconductors. The current carrier
is holes and conducts by attracting positive charged holes toward the gate, creating a channel. In fig. 2.1 a
N-channel enhanced MOSFET is illustrated.

The depletion type use case is, for example, load resistors in logic circuits, start-up purposes in auxiliary power
supply circuits, and PWM ICs for flyback circuits. The Enhancement type is mostly used for electronic switching
circuits, power electronic ICs, motor drive ICs, and digital controllers [4]. The Enhancement type is hence the
best solution for the control platform prototype in this thesis.

An N-channel power MOSFET has a big advantage over P-type power MOSFET because of the higher mobility
of electrons. Because of the higher mobility, high switching devices are more suitable for the N-channel device.
The higher mobility also leads to a lower RDS,on for the same geometry of an equivalent P-channel device [18].

The MOSFET used in this thesis is STMicroelectronics N-channel 60V power MOSFET STL220N6F7.

2.2 Gate Driver

Another important component is the gate driver. A gate driver is an amplifier that takes a low power input
from a controller IC and produces a high current gate drive for a power device [7]. The use case is when a PWM
controller is not able to deliver sufficient output current to drive the gate capacitance high enough or fast enough

3



Figure 2.1: The figure illustrates how an N-channel MOSFET. Applying a positive charge at the gate attracts negative
charges to the top of the substrate.

to a power converter.

The gate driver is sending gate signals to the MOSFET. Even though it is the timer that generates the PWM
signal that is sent to the gate, a gate driver is needed. If this signal is not processed in a circuit, the performance
will decrease significantly. This is called direct drive and is only recommended for applications where cost and
space-saving is most critical[2].

The gate driver used in the prototype is STMicroelectronics L6398. This is a high-performance gate driver for
N-channel power MOSFET.

2.3 Clocks and timers

In general

A timer is an essential part of a microcontroller. It is a hardware component that is built within a processor
chip. The timer has a register that is called a counter. The counter counts upwards or downwards to/from
its maximum value. An 8-bit timer is able to count from 0 − 255 and will start over at 0 when it reaches 255.
However, an 8-bit timer is able to count to values lower than 255 if the timer is configurable. For example, it
can start over after it has counted to 99 and will hence count 100 steps before it starts over. It is important to
notice that it is hardware and not software that increments/decrements the value in the counter register[3].

One can decide for what clock pulses the timer counter will count on by using a prescaler[3]. A prescaler can
reduce the frequency that the timer counter experience and hence slow down the clock speed. For example, with
a system clock frequency of 64MHz, the timer can operate at 32MHz by choosing a prescaler of 2. In the
STM32-series, it is both an AHB Prescaler, which is a prescaler from system clock to hardware, and an APB
prescaler, which is a prescaler to a given peripheral. The prescaler enables a trade-off between timer resolution
and timer range.

The timer resolution is affected by the clock rate since the timer will have more counts per period if the clock
rate is high. This will give a "smoother" discrete rise to the value of ARR. However, this also comes with a side
effect and will make the counter overflow or underflow faster. By thinking of an 8-bit counter register, there is
only room for 255 counts. By having a high resolution, this register will quickly overflow or underflow, depending
on the counting method.

The switching frequency is defined by the maximum system clock frequency divided by the prescaler (PSC) for
the timer used plus one and the counter period plus one. This is shown in eq. (2.1).

4



fsw = fclk

(ARR+ 1)(PSC + 1) (2.1)

Auto reload register (ARR) is a value that can be set by the programmer and will define the counter period. In
other words, how many counts it will do before it starts over. This counter period or ARR can be counted in
different ways. The counting modes available on the STM32 are as follows.

• Up-counting mode

• Down-counting mode

• center-aligned mode

Up-counting means that to start at a low value and count up to the ARR. When this is reached, it is called
overflow, and it will trigger an update event (UEV). This will make the counter register restart and start over
from 0 again.

Down-count is the opposite and starts at the ARR value and counts to 0. A counter underflow occurs when the
counter reaches zero, and an UEV is triggered. The counter then restarts at the ARR value. Up-count and
down-count are both edge-aligned counting modes, often referred to as sawtooth.

In addition to these, a center-aligned mode can be used. For the center-aligned mode, the counter operates
in up-counting mode until it reaches counter overflow. An UEV is triggered, but now the counter operates in
down-counting mode. When the counter reaches 0 and underflow, an UEV is triggered once again, and it will
operate in up-counting mode. This will create a triangular waveform and will also double the period of the
signal. Center-aligned PWM signals are often used in motor control because of their symmetrical shape, which
leads to fewer harmonics and reduces noise interference and power consumption.

If the timer is used for PWM mode, the counter register value is compared to the value stored in what is called
the compare and capture register. The compare and capture register (CRR) contains a threshold that, depending
on the PWM-mode, will generate an output that is high if the counter register is above or below the CRR. This
can be used on all three counting modes described above. It is this signal that will trigger the MOSFETs to
open/close depending on the MOSFET type (enhancement or depletion).

The output of the counter register value and the CRR register depends on the PWM mode. The two modes are
described in eq. (2.2) and eq. (2.3). Depending on the PWM mode the duty cycle are described in eq. (2.4) and
eq. (2.5) respectively.

TimerOutput(High− Truemode) =
{
Low Counterregister < CCR

High Counterregister ≥ CCR
(2.2)

TimerOutput(Low − Truemode) =
{
High Counterregister < CCR

Low Counterregister ≥ CCR
(2.3)

D = CCR

ARR+ 1 (2.4)

D = 1 − CCR

ARR+ 1 (2.5)

Dead time

When opening and closing the gates of a power MOSFET, it is essential to ensure that the current flow in the
intended loop. If two complementary MOSFETs are triggered simultaneously, there is a high probability that
they will be open simultaneously and cause a shoot-through. This is a critical fault and may lead to instant
damage to the components and malfunction. To counter this, dead time is introduced. Dead time, also called
blanking time, is the time between the closing of one and the opening of the other component [8].

5



Timer settings for the PWM generation in STM32G431RB

TIM1 is one of two advanced timers on the STM32G431RB platform[14]. It has a 16-bit counter resolution
and can count up, down, and up/down (center aligned). The prescaler can be between 1 − 65536 and has four
capture/compare channels. The maximum timer frequency is 170MHz.

The counter mode for the timer used for the PWM signal (TIM1) is in center-aligned mode. TIM1 is operating
in Low-true mode, which is called "PWM mode 1" by STMicroelectronics.

By choosing a counter period (ARR), the switching frequency can be decided. Alva has previously used a
switching frequency of 30kHz on their low inductance motors through the VESC control platform[1]. Hence
this is a good starting point for the prototype control platform. By using eq. (2.1) and the system clock
frequency 170MHz and no prescaler, the counter period is calculated to be 2833. Since the counter mode used
is center-aligned, two UEVs are needed for one PWM period. The result in an ARR of 1431.

The minimum dead time of the MOSFET is 700ns. The software inserted deadtime is set to be 800ns.

2.4 Measurements

In motor control, there are some essential parameters that the control algorithms use as input to produce the
wanted output. The position of the rotor is essential to induce a magnetic field in the stator coils. The correct
direction, amplitude, and timing are needed to spin the rotor efficiently. The current induces the magnetic field,
so this is an essential parameter for the same reasons.

In addition, it is crucial that components do not fail and are run within their limitations. These limitations are,
for example, temperature ratings and voltage ratings.

In this control platform these parameters are measured by hardware:

• Motor phase currents (ia, ib, ic)

• DC buss voltage (Vbus)

• Temperature powerboard

In addition to these measurements, the motor speed and position are estimated through STMicroelectronics
sensorless measurement scheme based on a back-emf Luenberger observer. Sensorless measurements were the
subject of the work preliminary to this thesis [9] and will not be further discussed in this thesis.

Current sensing

In order to control a motor, current is sent through the stator coil to synchronize with the rotor magnetic field.
The stator phase currents need to be efficiently and optimally monitored for optimal control. For this purpose, a
sensing circuit is implemented.

A popular way to measure current is through a current sensing resistor. This can be understood as a current to
voltage converter by thinking of the current as a linear converter from Ohms law V = IR. This voltage can
then be processed and be a reading of the current to be measured. The advantages of using current sensing
resistor circuits are that they have low costs, high measurement accuracy, measurment range from very low to
medium and can measure both DC and AC currents. The disadvantages are that it introduces a resistor into the
circuit and will result in power losses. In addition, it will affect the overall load of the system [21]. However, this
method is generally used in low to medium current sensing applications. For High current applications, another
method may be desirable.

Several sensing typologies can be used. Instrument [5] and Zhen [21] proposes some techniques for current
sensing and are discussed here. The simplest way is low-side global current sensing. This topology is cheap and
easy to implement because it only measures one phase. In addition, the common-mode voltage is close to ground
since it measures the current on the low side of the transistors. This allows a wide range of low voltage op-amps
to be used in the sensing circuit. However, this is not sufficient in the high-performance application of flying
a drone with Field oriented control (FOC) since all phase currents must be known. This leads us to the next
method.
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Low-side current sensing in each leg is commonly called low-side 3-shunt current sensing. This is similar to the
global current sensing. However, instead of measuring in a common node for all the lower three legs, the same
circuit is implemented in each low side leg. This will give the individual phase current of all three phases. This
method is commonly used in FOC applications and has many of the same benefits as the global current sensor
topology. It is sufficient to measure only two phase-currents and let the software calculate the third from the
other two. However, these methods cannot detect shortcuts to ground and are sensitive to ground variations.

One can use a high-side sensing topology to counter the problem of not detecting shortcuts to ground, and being
vulnerable to ground variations. This is because the topology places the current sensing close to the source
voltage. However, the op-amp must operate at high common-mode voltages when placing the circuit on the high
side. This topology gives stable measurements but does not give an exact match of the motor currents. This
method can also use a three-shunt topology as the low side topology.

The most accurate method is in-line phase current sensing. This is because it is measured in the motor cables
and is the best alternative for optimized performance. It uses dedicated sensing, which handles significant and
fast variations in the common-mode voltage. The shunt resistance is located with the PWM driver. Because of
the difficult measurement environment, this sets higher requirements for the current sensor.

The current measurements in the IHM08M1 are done by low-side current sensing. This sensing circuit will be
analyzed later in the thesis.

The current measurement is not only used for motor control but also as hardware protection. An over-current
protection circuit is implemented in the hardware with a detection circuit. An embedded current reference
calculated from the MCU is compared to the measured current. The output of the comparison generates a fault
condition and disables the driving signals if triggered.
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Chapter 3

STMicroelectronics support tools and
environment

STMicroelectronics has created an environment of support tools to easier get off the ground using their hardware.
This environment can set up firmware for the specific hardware and provide software for motor control. This is
done through the Cube MX and the MC workbench software tools. Both tools enable fast initialization through
known hardware but also highly customizable settings for custom hardware. How the environment operates is
shown in fig. 3.1.

3.1 From hardware to controller

The path to a functional motor controller through the STMicroelectronics support tools can be summarized in
five steps.

• Set up hardware

• Use MC workbench to configure firmware/software and the FOC library

• Customize MCU firmware through STM32 CubeMX and generate source code to IDE

• Flash the code to the MCU

Figure 3.1: Shows the structure of the STM32 environment and how the different tools is cooperating. [16]
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• Control the motor through motor pilot GUI

3.2 Set up hardware

The hardware is chosen to match the application’s intended use. The hardware is divided into three components:
the control stage, the power stage, and the motor. These can be STMicroelectronics components, or they can
be custom hardware. By choosing compatible STMicroelectronics components, the software will implement all
known parameters and ease the engineer’s workload. This accounts for both the control board and the power
board.

The control board in this prototype is the Nucleo-STM32G431RB and is compatible with the MC Workbench
and CubeMX. The support tools will hence know which timers, pins, clock frequency, etc., the MCU has and
adapt the settings to the possibilities/limitations of the control board.

The same goes for the power board. In this prototype, the power board is the IHM08M1 from STMicroelectronics
and is also compatible with both software tools. The software automatically knows the resistor values of the
sensing circuits and which MOSFETs are used.

An additional tool for the motor can be used to adapt the software to the motor to be used. This tool is Motor
profiler. The motor profiler tool automatically measures the electric parameters of a PMSM/BLDC through an
algorithm that enables running unknown motors after a short period of time. The inputs to the motor profiler is:

• Pole pairs

• Max speed

• Max peak current

• Bus voltage (optional)

The motorprofiler will than calculate the parameters needed for the motor control FOC control algorithms which
is listed below:

• Stator resistance

• Stator inductance

• B-EMF constant

• Inertia

• friction

The motor profiler measures this through the control platform and is compatible with the Nucleo-STM32G431RB
control board and the IHM08M1 power board. After the profile is created, it can be saved and used by the
Motor control Workbench in the same way as the control board and the power board. This method struggles
with low-inductance motors, and the profile was not able to be completed for the motor in this task and was set
manually.

3.3 Motor Control Work bench

The motor control workbench (MC WB) is the tool that helps implement the FOC firmware library to the
chosen hardware of the control platform. It enables the designer to change and adapt the default settings to the
application and its intended controller. The STM32 MC WB is an additional layer to the STM32 CubeMX.
Where the STM32 CubeMX is a tool for Hardware initialization of the MCU, the MC WB is a specific tool for
the implementation of motor control to the MCU. This reduces the time to configure the STM32 PMSM FOC
firmware. There are four groups of parameters that should be altered to fit the intended application. These are:

• Motor parameters

• Power stage parameters
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• Drive managment parameters

• Control stage parameters

However, using components compatible with the MC WB, most parameters are set automatically. A snapshot of
the GUI of the motor control workbench is shown in fig. 3.2.

The motor parameters contain parameters for safe operation of the motor and motor parameters for the FOC
control scheme set. If the motor profiler has been used on the motor for the application, the profile can be directly
uploaded here. The power stage parameters contain components like the MOSFET and sensing circuits. If the
power board chosen is compatible with MC WB these hardware settings do not need to be altered. However,
Alvas goal is to end up with its own control platform and its own power stage design. This software enables the
implementation of a custom-built power stage. The drive management parameters decide the execution rate
of the speed and torque regulators, regulator gains, and PWM frequency. The last group is the control stage
parameters which maps the stm32 peripherals and can alter timer settings and pin assignments.

The motor control workbench gives the designer a template that fits the hardware chosen and enables easy and
fast alterations so that the controller can fit the application.

When this is configured to the designer’s intention, a project can be generated to match the configuration. The
code is generated in the programming language C. The code is generated with the help of STM32CubeMX(v6.3.0),
the HAL-Libery (Hardware extraction layer), and a firmware package compatible with the chosen hardware
(STM32 FW V1.16.1). In this project Motor Control Workbench v5.Y.4 is used. The result is an ".ioc"-file,
which can be modified in CubeMX and the motor control library in C-code.

3.4 STM32CubeMX

Where the MC WB is specific for motor control, the STM32CubeMX is a GUI that offers an easy way to
configure an STM32 microcontroller or microprocessor and generate corresponding initialization C code for the
MCU. It is compatible with Arm Cortex-M and partial Linux Device Tree for Arm Cortex-A. This is done by
choosing a microcontroller/microprocessor or a development platform. After this, the GUI will show the chosen
device, and the customization possibilities are limited to the specific device. A snapshot of the GUI is shown in
fig. 3.3. This makes it easy to configure pins, timers and clock settings. When the settings are satisfying, the
CubeMX generates C code that initializes the chosen setup. This code can be altered and built upon in an IDE.
There are several compatible IDEs. One of them is STMicroelectronics own IDE STM32CubeIDE, and is the
IDE used in this project.

Figure 3.2: Shows a snapdhot of the GUI of the ST motor control workbench
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When coming from the MC WB the generated ".ioc" file is opened in STM32CubeMX. MCU hardware settings
from the motor control workbench are automatically set, such as PWM generation of the timer used, the Auto
reload register to match the frequency set in the drive management parameters in MC WB, etc. Additional
measurements, outputs and timers can be set to build upon the already chosen settings.

When all configurations are set, source code can be generated from the STM32CubeMX. This code, combined
with the MC WB code, is sent to the chosen IDE, which in this case is the STM32CubeIDE.

3.5 ST STM32CubeIDE

The ST STM32CubeIDE is a development platform that compiles code and provides debug features for STM32
MCUs. It is also integrated with the CubeMX, and the user can change configurations of the peripherals or
middleware and regenerate the code without compromising code added by the user. The code generated is
transparent and consists of thousands of lines which significantly reduces the time needed to develop a functional
motor control drive. The software can be directly adjusted and changed from this IDE and then flashed to the
MCU. This way, Alva has complete flexibility to alter the software to test if there can be any improvements.

3.6 Motor pilot

When the firmware and application software is generated and flashed to the MCU, the motor can be controlled
through the MC WB add-on "Motor Pilot". This interface can give commands, monitor, and log motor control
variables. It also provides fault words like "over-current" if it occurs.

The motor pilot can plot many of the parameters of the motor control at a sampletime of 0.2s. It also can
sample some critical parameters at the PWM frequency. Those parameters are shown in table A.8.

3.7 Some essential settings in the MC WB

This section describes some of the important settings in MC WB.

Figure 3.3: Shows a snapshot of the CubeMX GUI.
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Drive settings

The drive settings are where the parameters necessary for the drive are set. This is PWM, current reading,
control mode, regulator execution rate and regulator gains.

The PWM frequency is set to 30kHz. In an earlier study done for Alva, the optimal switching frequency in
regards to current ripple of a low inductance slotless machine model was 60kHz for a conventional MOSFET
converter [6]. A more powerful control board was intended in this thesis to be able to test this frequency.
However it was not possible to obtain. In this thesis, the focus is a functional control platform. As a starting
point, the frequency is set to 30kHz, which is the same frequency that Alvas motor has been run on earlier on
the VESC platform, as mentioned earlier.

The minimum dead time set by MC WB is 700ns. The software-induced deadtime is set to 800ns to increase
the margin. 800ns corresponds to 2.7% of the PWM period and will not significantly impact the testing done in
this thesis.

regulator settings

The control mode is set to speed control, and the speed regulator execution rate is set to 1ms corresponding
to a frequency of 1kHz. This execution rate is set through the systick timer, which is a dedicated timer for
real-time operations on the STM32G431RB control board. The execution rate of the torque/current regulator is
set to 1 PWM period.

The proportional and integral gain of the torque and flux control loop is also set here. In the MC Workbench,
it is Kp and Ki that are the regulator’s parameters. A numerator and a denominator give the values. The
denominator for the proportional gain is called Kp,div, and for the integral gain it is Ki,div. This is done to
obtain fractional values. The denominator can be a value between 1 − 16384 which is 20 − 214. In addition to
this, the integral gains are given in per PWM period. The integral gain must therefore be multiplied by the
PWM period TP W M = 1

fsw
. This result in the relation listed in eq. (3.1).

Kp = Kp,sw

Kp,div
(3.1a)

Ki = Ki,sw

Ki,div
TP W M (3.1b)

Since the motor is controlled as an SPMSM and flux weakening is not used, the flux/Id current controller is not
implemented. The gains will be calculated in a later chapter.
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Chapter 4

Control algorithms

The analysis is done by reading STMicroelectronics motor control software[15] and its user manual [16].

A simplified sketch of the control algorithm architecture is shown in fig. 4.1. The control software can be divided
into three separate lines. The first line starts with user commands. This can be: start, stop, speed reference,
etc. A user command instantly triggers functions that handle and store the information, but this line does not
execute. Then there is the medium-frequency line. This line takes care of the speed control loop and executes
speed and torque ramp calculations. This is done by running a loop checking for new commands at this "medium"
frequency defined by the speed regulator execution rate. The third line is high-frequency tasks and runs at the
ADC1/ADC2 interrupt request, corresponding to the PWM frequency. This line handles the current control
loop and the speed and angle estimation. This loop is run faster than the medium frequency loop because of the
importance of the inner control loop, which is the current control loop. This structure benefits the redundancy
and speed of the code. The most frequency crucial parts of the control scheme (speed and angle estimation and
current control) are run more often than those with a lower priority. This structure will be described in more
detail below.

4.1 The state of the machine and command state

It is needed to describe the concept state of the machine to understand the difference between executing and
setting commands. The control scheme uses the state of the machine to define what tasks that can be applied.
The state of the machine is stored in a struct called "STM_Handle_t" which is presented in table A.4. It is the
object "State_t" in "STM_Handle_t" which contains the actual state and is listed in table A.3. By defining and
using these states in the motor control scheme, the code will increase its efficiency and redundancy by limiting
its possible actions in different scenarios. The states can be either persistent or pass-through. A persistent state
needs action to move to the next state, but a pass-through state moves into the next state after finishing the
current state’s algorithm. A flowchart of the state of the machine is shown in fig. 4.2.

Another important state in the software is the state of the commands, which is listed in table A.2. This state

Figure 4.1: Brief simplified schematic of how the control algorithm functions from user input to gate signal of the
MOSFET.
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Figure 4.2: Flowchart of the state of the machine [16]

describes if there are pending commands and if the command has been executed successfully or not. If there are
pending commands, this will trigger the control algorithm to execute this command. An example is a speed ramp
command. However, to perform this command, the state of the machine needs to be in a state that allows this.

The combination of the two types of states described above forms the structure for how the control algorithm
behaves. The structure is based on changing states and informing about commands. The commands and actions
are executed by regularly checking what state the machine is in and if there are any pending commands.

4.2 Boot/start/init

When the controller is started, it initializes the whole system. This includes, among other things setting and
locking the pins on the control board, but it is also initializing the control algorithm. The initialization of the
control algorithms is essential such that the variables of the different components are set to match the motor and
the hardware. It is also essential to make the variables reachable from different parts of the control algorithm.
This is done by the function MCboot(...).

The MCboot function initializes the motor control and has two inputs and no output. The inputs are two arrays,
"pMCIList" and "pMCTList". These objects are where the function retrieves and returns information. In this
thesis, the number of motors controlled by the software is one; hence the arrays contain only one object. In
future iterations, Alva aims to control two motors from the same controller in a coaxial setup. This hardware
and software allow that.

The first parameter is the object pMCIList and is a pointer to an MCI handle of type MCI_Handle_t. MCI
stands for Motor Control Interface. The MCI_Handle_t object is used to set and hold "high-level" values and
states for the control scheme. The data it holds is listed in table A.5.

The other parameter is an object called pMCTList and is a pointer to the MCT handle of type MCT_Handle_t.
MCT stands for Motor Control Tuning. This object contains more "low level" values needed for the motor
control scheme and is listed in table A.6.

The boot function can be summarized as follows:
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• initialize the state machine by setting the State_t to IDLE and the faults to 0.

• Initialize a current limitation object with parameters from the mc_config

• PWM and current sensing component initialization

• Start timers synchronously

• PID component initialization: speed regulation

• Main speed sensor component initialization

• Main encoder alignment component initialization

• Speed and torque component initialization

• Virtual speed sensor component initialization

• PID component initialization: current regulation

• Bus voltage sensor component initialization

• Power measurement component initialization

• Temperature measurement component initialization

• The input objects are set to the private values defined at the start of the script

This initialization list is one example of the workload the software development environment reduces for the
developer.

4.3 User commands

After the boot and initialization of the control scheme are performed, a user command is needed to perform an
action. The interface written in MC_api.c is what enables the user to apply simple inputs/commands for the
operation of the motor. These can be: start, stop, speed ramps, and torque ramps. In addition, information
about the state can be retrieved. The function calls are done through the software tool motor pilot in this thesis.
However, these function calls can be implemented in a remote controller to suit Alva’s needs for future iterations.

The software architecture is set such that these function calls do not execute the wanted action but can call
functions that set the goal of the commands and sets/change the states described in the enums "State_t",
"MCI_CommandState_t" and "MCI_UserCommands_t" described in tables A.1 to A.3 respectively. These
states decide which actions are performed and are described in more detail below.

4.4 Medium frequency tasks

The medium frequency tasks can be described as the driver of the control scheme. Very simplified, the medium
frequency tasks check for speed/torque reference, run the speed regulator, and set the reference for the current
controller, which is a high-frequency task. In addition, it checks for faults and handles them. This is done
through an important function of the mc_task.c script called "MC_RunMotor_ControlTask()". This function
is run at each systick interrupt request. The systick interrupt is set to correspond with the speed regulator
execution rate. The function contains three function calls which are run if the system is booted correctly.

• MC_Scheduler() - Motor control scheduler

• TSK_SafetyTask() - Executes safety checks

• UI_Scheduler() - User interface scheduler
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The motor control scheduler keeps track of a task counter and calls the function "TSK_MediumFrequencyTaskM1()".
This function is the backbone of the control algorithm and is based on a switch statement that checks for which
state the machine is in and runs code accordingly.

After the motor control scheduler, "TSK_safetyTask()" is called. It is run right after the MC_Scheduler() such
that it can handle eventual faults that occur after actions performed in "TSK_MediumFrequencyTaskM1()". The
function checks for over-voltage and high temperature and turns off the PWM generation if the fault condition
is triggered.

Now the UI_Scheduler is ran and keeps track of three counters:

• bUITaskCounter

• bCOMTimeoutCounter

• bCOMATRTimeCounter

4.5 High frequency task

The high-frequency task line runs the tasks that need precise timing. This is mainly the FOC current control
loop control algorithm, but it also has some fault handling and estimates the speed and position from the
sensorless algorithm. This is done through the function "TSK_HighFrequencyTask()" and is run at the ADC
interrupt request, corresponding to the PWM frequency. In addition, it calculates the motor’s position through
the back-emf luenberger observer. Fault handling is also done if the duration of the current controller calculations
took longer than the time before the next PWM signal occurred.

The output of the current control loop is reference voltages in α, β-frame. This reference is input to the function
PWMC_SetPhaseVoltage(...). This function calculates the phase voltages corresponding to the α, β voltages.
This is then sent to a function that generates gate signals to the MOSFET from the reference voltages. These
voltages are applied through a six-sector PWM generation control scheme. This is illustrated in fig. 4.3.

Assuming that only one of the transistors in a two-level bridge leg can be open at any given time (which is how
we want to operate), a schematic of a two-level inverter can be simplified to fig. 4.4. Now the switches have two
possible positions. Either current runs through the upper bridge leg into the motor or current runs through the
lower bridge leg out from the motor. This can be described in binary terms as 1 and 0, respectively. Applying
this logic to all the three inverter legs the six vectors v1 − v6 in fig. 4.3 can be applied as shown in table table 4.1.
In addition, two zero vectors can be applied (111 and 000)[11].

The accuracy of six steps is not sufficient for precise control. This problem can be solved and is illustrated by
the sectors in fig. 4.3. The two basis vectors encapsulating a given vector can be combined to give any point
inside the sector. For example, a voltage vector with maximum amplitude at 30◦ can be applied by applying
v1(001) at 50% of the time and v2(010) 50% of the time.

4.6 PID controller

Now that the structure of the control scheme is described, the controllers can be described. All the control loops
are based on a struct called "PID_Handle_t". This struct is listed in table A.7 in appendix. By creating an

Table 4.1: Shows how the different basis vectors can be created by how the inverter is operated.

Vector Code
v0 000
v1 001
v2 011
v3 010
v4 110
v5 100
v6 101
v7 111
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Figure 4.3: Shows the space vector that can be generated by a two-level inverter.

Figure 4.4: Shows a simplified inverter model to illustrate how different space vecors is created based on which bridge
leg is connected to the upper or lower level. This example correspond to V5 (100).
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object of type "PID_Handle_t" all necessary information to run a proportional control loop, PI control loop,
and PID control loop is in that object. This way, a unique "PID_Handle_t" object targeted for the current
control loop and one object for the speed control loop object can be created.

By running the function "PI_controller(...)" with a "PID_Handle_t" and an error as input, an output is retrieved.
This is shown in fig. 4.5.

Figure 4.5: A schematic of how the digital PI controller is run in the control software.
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Part II

Implementation of tuning techniques,
startup routine, analysis and testing on

the STMicroelectronics
controlplattform

19



Chapter 5

Motor modeling and control

This chapter describes the modeling of a motor and field oriented control (FOC). In addition, control theory for
startup, current control, and speed control is laid out.

5.1 Modeling of a Permanent magnet machine

The modeling of a machine is done the same way now as in the preceding work by the same author[9], and this
section is reused here.

An essential concept in the control of AC-machine drives is space vectors. Space vectors enable the description
of the currents, voltages, and flux linkages as an amplitude and an angle in a reference frame of the stator
phases.[10]. The result is that a phase of the machine can be described as in eq. (5.1).

Ia = Iaa
s (5.1a)

Ψa = LaIa (5.1b)

Ua = RaIa + dΨa

dt
(5.1c)

By setting a sinusoidal current in the stator windings for a 3-phase machine, the current space vectors can be
drawn as in fig. 5.1. By summing the three-phase currents a resultant stator current Is

s can be expressed as in
eq. (5.2). This is also transferable to the voltage and the flux linkage, and the stator referred space vectors can
be expressed as in eq. (5.3).

Is
s = Iaa

s + Ibb
s + Icc

s (5.2)

Is
s =

[
Ia Ib Ic

]T (5.3a)

Us
s =

[
Ua Ub Uc

]T (5.3b)

Ψs
s =

[
Ψa Ψb Ψc

]T (5.3c)

For a permanent magnet synchronous machine Ψs
s is defined as in eq. (5.4), where Ψs

m is the permanent magnet
flux linkage and is described as in eq. (5.5) where θ is the rotor position. Ls is the inductance matrix and
depends on the machine’s position and the machine itself. The inductance matrix is thoroughly described by
Nilsen [10].

Ψs
s = Ls

sI
s
s + ψs

m
(5.4)

Ψs
m = Ψm

 cos(θ)
cos

(
θ − 2π

3
)

cos
(
θ + 2π

3
)

 (5.5)
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Figure 5.1: The figure shows the currents of a three phase machine expressed in space vectors when the current in
phase a is at its peak.

The motor model can now be described as in eq. (5.6).

Us
s = RsI

s
s + dΨs

s

dt
(5.6)

This way of expressing the motor model makes it easy to transform it into both the αβ-frame and the dq-frame.

The αβ-frame is a two-phase reference frame where the α-axis is aligned with as and the β-axis is set 90◦ ahead
of the α-axis. It is a stator-oriented reference frame. The three-phase reference frame can be transformed to the
αβ reference frame by using the transformation matrix in eq. (5.7).

T s
s = 2

3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(5.7)

The dq reference frame is a two-phase reference frame where the d-axis is aligned with the rotor magnetic axis.
This means that it is a rotor-oriented rotating reference frame. The q-axis is 90◦ ahead of the d-axis. The
transformation matrix to this reference frame is seen in eq. (5.8).

T r
s = 2

3

[
cos(θ) cos

(
θ − 2π

3
)

cos
(
θ + 2π

3
)

− sin(θ) − sin
(
θ − 2π

3
)

− sin
(
θ + 2π

3
) ]

(5.8)

The reference frames are drawn in comparison to each other in fig. 5.2.

5.2 Field Oriented Control

This section is reused with minor changes from the preceding work by the same author[9].

There are several ways to control the torque and flux of electrical drives. The most common are field-oriented
control (FOC), and direct torque control (DTC). Furthermore, with the increased computational capabilities
of microprocessors, model predictive control (MPC) is also starting to gain interest [11]. In this study, a FOC
scheme for a PMSM is used.

FOC is a scheme that transforms the stator currents to a stationary two-phase current vector. The two axes in
this reference frame are d and q, described in the previous section. By controlling Id and Iq, the machine’s flux
and torque can be controlled.

Two common methods for calculation of the reference currents Id,ref and Iq,ref are UPF and MTPA [10]. UPF
Control stands for unity power factor and calculates reference currents to obtain unity power factor of +/− 1.
Unity power factor is achieved by aligning the voltage and the current vector. However, the control strategy in
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Figure 5.2: The figure shows how the reference frames abc, αβ, and dq are placed in comparison to each other for an
SPMSM outrunner.

this study is maximum torque per ampere control(MTPA). The idea is to maximize the torque output from
the stator current. It is known that the stator current copper losses are proportional to I2

s . This strategy will
therefore minimize the ohmic losses in the machine. MTPA is a good strategy if copper losses are a significant
part of the losses in the machine. The reference is dependent on what machine is to be controlled. Assuming the
machine does not operate in field weakening, the reference currents are calculated as in eq. (5.9) for an SPMSM.
Here Te,ref is the reference electrical torque set by for example, a torque controller or a manual input.

Id,ref = 0 (5.9a)

Iq,ref = Te,ref
3
2pΨm

(5.9b)

5.3 PI regulator

A PI regulator is a component in the control circuit that tries to ensure that the system’s output value is
behaving as intended. This is done through a proportional term and an integral term. The proportional term is
just a multiplication of the error. The integral term is time-dependent and removes stationary discrepancies.
The PI controller transfer function is typically described as in eq. (5.10).

hP I(s) = Kp + Ki

s
(5.10)

By using the integral time Ti by describing Ki as in eq. (5.11), the equation can be rewritten to eq. (5.12).

Ki = Kp

Ti
(5.11)

hP I(s) = Kp
1 + Tis

Tis
(5.12)
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This is convenient since the integral time can be linked to other time constants of the system that is controlled.
By choosing the gain and the integral time, the designer can choose for which frequencies the controller shall be
effective and what the gain of the error shall be.

5.4 Current Control using modulus optimum

This section contains the control theory and implementation of the tuning technique modulus optimum described
by Nilsen [10].

When the open-loop transfer function of a system with a PI regulator can be described as in eq. (5.13) a control
technique called modulus optimum[10] can be implemented. This technique is based upon canceling the largest
time constant in the open-loop transfer function by choosing the integral time in the regulator to be the same as
the dominant time constant T1. The other time constants can be summed up to one time constant Tsum. Ks is
a multiplication of all the constants in the transfer function.

h0( s) = Kp
1 + Tis

Tis
Ks

1
1 + Tsums

1
1 + T1s (5.13)

When Ti is chosen to be T1, the dominant time constant is canceled with the numerator of the PI regulator
term. The open-loop transfer function can now be written as eq. (5.14).

h0(s) = KpKs

T1

1
1 + Tsums

(5.14)

by using the identity in eq. (5.15) the closed loop transfer function can be described as eq. (5.16)[10].

M(s) = h0(s)
1 + h0(s) (5.15)

M(s) = 1
1 + T1

KpKs
s+ T1Tsum

KpKs
s2

= 1

1 + 2ζ s
ω0

+
(

s
ω0

)2 (5.16)

Comparing the second-order transfer function expressed with crossover frequency ω0 and dampening coefficient
ζ with the closed-loop transfer function of the modulus optimum, the identities in eq. (5.17) is found. By
choosing a dampening factor ζ, the only unknown in the equation is the proportional gain, and by rearranging
the equation, the proportional gain can be calculated. This results in both the proportional gain and integral
time being calculated as in eq. (5.18).

ω0 =
√

KpKs

T1Tsum
(5.17a)

ζ = 1
2

√
T1

KpKsTsum
(5.17b)

Kp = T1

4ζ2KsTsum
(5.18a)

Ti = T1 (5.18b)

If the controller is digital, the modulus optimum must be discretized. By using discretization by the trapezoidal
rule, the expressions for the integrator time and the gain can be described as in eq. (5.19) [10]. Tsamp,i is the
execution rate of the current regulator. It is noticed that when Tsampl => 0 the controller is the continuous
version. Since the dominant time constant T1 often is significantly larger than the Tsamp

2 it is often neglected.
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Kp =
T1 − Tsamp,i

2

2Ks(Tsum + Tsamp,i

2 )
≈ T1

2Ks(Tsum + Tsamp,i

2 )
(5.19a)

Ti = T1 − Tsamp,i

2 ≈ T1 (5.19b)

5.5 Symetrical optimum

This section contains the control theory and implementation of the tuning technique symmetrical optimum
described by Nilsen [10].

When the open-loop transfer function of a system with a PI regulator can be described as in eq. (5.20) using
modulus optimum canceling 1 + Tsum will lead to a phase shift of −180◦ and hence a phase margin of 0 on
the open-loop transfer function. This system will be on the stability limit and would not be a good solution.
We need another method to find the PI parameters for systems like this. This method is called symmetrical
optimum [10].

h0(s) = Kp
1 + Tis

Tis
Ks

1
1 + Tsums

1
T1s

(5.20)

The idea behind the symmetrical optimum is to use the numerator in the PI regulator to increase the phase
margin in the frequency range the system should operate. Using the identity in eq. (5.15) and introducing the
factor β the closed-loop transfer function of eq. (5.20) can be described as in eq. (5.21)[10].

M(s) = 1 + Tis

1 + Tis+ T1Ti

KpKs
s2 + T1TiTsum

KpKs
s3

= 1 + βTsums

1 + βTsums+ β
√
βT 2

sums
2 + β

√
βT 3

sums
3 (5.21)

By comparing the two expressions in eq. (5.21) the integrator values is defined as

Ti = βTsum (5.22a)

Kp = T1

Ks

√
βTsum

(5.22b)

(5.22c)

It is seen that the choice of β increases the integration time, leading to the widening of the interval where the
phase margin is increased. The highest phase margin is obtained at the cross over frequency corresponding to

1√
βTsum

. Increasing the proportional gain and not β will move the crossover frequency to a higher frequency,
and the crossover will not occur at the maximum phase margin.

If the controller is digital, the controller needs to be discretized. By using discretization by the trapezoidal rule
the PI parameters can be calculated as in eq. (5.23)[10].

Ti = β(Teq + Tsample,n

2 ) (5.23a)

Kp = T1

Ks

√
β(Teq + Tsample,n

2 )
(5.23b)

(5.23c)
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Chapter 6

Implementation of tuning methods,
startup and analysis of the current
sensing circuit

6.1 Current controller

In fig. 6.1 a simple schematic of the current control loop is shown. The input is a current reference, and the
output is the current that is the rotor referred q-component of the stator current. The model is decoupled, and
the units used in the software need no conversion in this control loop. Each of the blocks in the block diagram
can be described by the transfer functions shown in eq. (6.1).

PI : Kp
1 + Tis

Tis
(6.1a)

Inverter :
3
2UDC

1 + Tdelays
(6.1b)

Plant :
1

Rs

1 + τes
(6.1c)

Sensing : 1
1 + Tsenses

(6.1d)

In power electronic systems, one can often end up with a dominant time constant and several smaller ones[10].
In this system, the dominant time constant is the electrical time constant τe, and the smaller ones is the filter
time constant from the sensing circuit and the inverter switching delay. Writing the open-loop transfer function
and gathering the smaller time constants, one can obtain eq. (6.2).

h0(s) = Kp
1 + Tis

Tis

3UDC

2Rs

1
1 + (Tdelay + Tsense)

1
1 + τes

(6.2)

Comparing this to modulus optimum in eq. (5.13) one can obtain the parameters in eq. (6.3).

Figure 6.1: Shows a block diagram of the current control loop.
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Ks = 3UDC

2Rs
(6.3a)

Tsum = Tdelay + Tsense (6.3b)
T1 = τe (6.3c)

Using the modulus optimum and knowing the controller is digital, the gain and the integral time can be calculated
as in eq. (5.19) when eq. (6.3) is inserted in eq. (5.18).

Kp = Rsτe

6ζ2UDC(Tdelay + Tsense + Tsamp,i

2 )
(6.4a)

Ti = τe (6.4b)

A typical value of the dampening coefficient is 1√
2 which is used to obtain critical dampening.

6.2 speed regulator

In the speed regulator the plant comes from the relationship between torque and inertia seen in eq. (6.6).
The closed current control loop is modeled as a first order representation with the time constant Teq, which
corresponds to two times the current controller Tsum,i as in eq. (6.5)[10]. Tsum,i is defined in eq. (6.3).

Teq = 2Tsum,i (6.5)

A simplified speed control loop block diagram is shown in fig. 6.2. The units between the transfer functions must
be correct to calculate the correct PI parameters. The speed error input to the speed regulator is in the unit
01Hz. This unit is much used in the software and is defined as one-tenth of a hertz. In eq. (6.6) the unit for the
speed is in rad

s . To go from rad
s to 01Hz we divide by 2π to get Hz and multiply by 10 to get 01Hz. This result

in a conversion factor as shown in eq. (6.7).

The output of the speed PI regulator is Iq,ref expressed in digits and corresponds to Te,ref expressed in digits.
However to obtain the Iq current in Amps as the input to the plant equation eq. (6.6) a conversion constant is
also needed here. This factor (Kamp) is dependent on the values in the current sensing circuit shown in fig. 6.5.
The factor is shown and calculated in eq. (6.7). VADC,ref 3.3V , Rshunt = 0.01Ω and the opAmp amplification
KopAmp = 5.18. KT is the torque constant and J is the motor inertia.

Jω̇mech = Te − TL (6.6)

Kamp = VADC,ref

65536RshuntKopAmp
= 0.000972 (6.7a)

Kfreq = 10
2π (6.7b)

Figure 6.2: Shows a blockdiagram of the speed control loop.
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PI : Kp
1 + Tis

Tis
(6.8a)

Currentcontroller : KAmp

1 + Teq
(6.8b)

Plant : KT

Js
(6.8c)

Unitconversion : Kfreq (6.8d)

By combining the equations in eq. (6.8) the open-loop transfer function of the speed regulation loop is obtained
as in eq. (6.9)

h0(s) = Kp
1 + Tis

Tis

Kamp

1 + Teq

KT

Js
Kfreq (6.9)

It is noticed that the open loop transfer function has two integrators and hence symetrical optimum is chosen
for this regulator. Comparing eq. (5.20) and eq. (6.9) the constants in eq. (6.10) is found.

Ks = KampKTKfreq (6.10a)

T1 = 1
J

(6.10b)

Tsum = Teq (6.10c)

Knowing the controller is digital the speed regulator parameters can be calculated as in eq. (6.11) by inserting
eq. (6.10) into eq. (5.23).

Ti = βTeq (6.11a)

Kp = T1

KampKTKfreq

√
β(Teq + Tsamp

2 )
(6.11b)

(6.11c)

6.3 Startup

In this section both the theory of the starup and the implementation is described. When using sensorless
algorithms based on the back-emf of the motor, the angle estimation is insufficient at low angular velocity. It
does not function at zero speed since there is no back emf. Because of this, a startup method needs to be
implemented to find an initial angle and set an initial spin to the rotor such that the sensor-less back-emf method
can take over and continue with FOC. One way to do this for PMSM is I/f control described by Wang et al. [19]
and is tried implemented here.

The method can be divided into four parts. First, it aligns the rotor to an initial angle. This is done by setting a
DC current in the stator a-phase. By doing this, the rotor will be locked in a known position. This is illustrated
in fig. 6.3.

The second leg of the startup is to start rotating the stator’s magnetic field. When the stator magnetic field
starts rotating, the rotor will follow. This will give an initial spin to the machine, which will give a back-emf
such that the sensor-less algorithm can estimate the rotor position and run the motor on FOC.

The third leg is lowering the current in the stator windings such that the switchover to FOC will not cause large
current ripples. The fourth leg is the FOC switchover.
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To describe the startup method Wang et al. [19] use both a rotor refered d − q reference frame and a stator
refered d∗ − q∗ reference frame. These frames is illustrated in fig. 6.4.

Implementation

Stage 1:

As shown in fig. 6.3 a magnetic field is set up by the stator a-phase DC current. This aligns the rotor d− axis
with the stator a− axis with the permanent magnet’s magnetic field but in the opposite direction. Effectively
this sets the stator Iq current to be lagging the rotor reference frame by 90◦. This will result in a torque of zero.
If the rotor is not perfectly aligned with the a− axis, the Iq current will not be lagging by 90◦ and will produce
a torque on the rotor that is directed back to perfectly aligned. This can be shown by the equation in eq. (6.12),
and is further illustrated in fig. 6.4[19].

Te = 3
2PI

∗
q cos θL

(
Ψm + (Ld − Lq) I∗

q sin θL

)
≈ KT I

∗
q cos θL (6.12)

Here P is nuber of pole pairs and KT the torque constant. If θL is 90◦ this will result in a torque of 0.

Stage 2:

During the ramp-up of the speed, the amplitude of Iq is kept constant with the value used in the alignment
stage of Inom

2 and Id is 0(SPMSM). When the stator current Iq starts to spin θL < 90◦ which leads to Te > 0 in
eq. (6.12). θL will increase until the torque is high enough to get the rotor to start rotating. If the load is too
high to get the rotor to start spinning, higher torque can be obtained by increasing the current, or a lower load
torque can be obtained by lowering the acceleration.

It is important to notice that if θL becomes negative, meaning that the q ∗ −axis leads the q − axis rotor frame
in fig. 6.4, the torque will become negative while the stator reference frame is increasing its speed. The two
reference frames will lose sync, and the startup will fail. Since the torque needed to accelerate the rotor depends
on the product between Iq and cos(θL), the torque needed to spin the rotor can be obtained by a smaller θL

by increasing Iq. This means that a higher Iq will give a lower probability of Iq leading I∗
q . This will be more

important when the blades from the helicopter are attached since this will need a higher load torque.

Baring this in mind, the steepness of the ramp has to be limited. This can be done by introducing a factor Kω

that defines a linear ramp of the electric frequency ωe as in eq. (6.13) where t is time in seconds.

ωe = Kωt (6.13)

To find this constant, the plant equation from the speed controller, eq. (6.6), is modified to be expressed with
electric angular velocity as in eq. (6.14).

Figure 6.3: Illustrates how the stator is aligned with the rotor such that the rotor is locked in the alignment stage.
.
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Figure 6.4: Shows how θL is affecting the discrepancy between the rotor reference frame and the stator reference frame.
. .

J

p
ω̇e = Te − TL (6.14)

Since the final speed is dependent on the average effective speed, a simplification is made such that the average
electric torque is defined in eq. (6.15).

Te,avg = KT Iq cos(θL,avg) (6.15)

The average load torque is the friction torque. When a load is implemented, the average torque from the propeller
curve of the drone blades between 0 and FOC switch over speed should be added here.

Inserting eq. (6.15) in eq. (6.14) the result is eq. (6.16).

ω̇e = p

J
(KT Iq cos(θL,avg) − TL,avg) (6.16)

By integrating this equation eq. (6.13) is obtained where Kω and is eq. (6.17).

Kω = p

J
(KT Iq cos(θL,avg) − TL,avg) (6.17)

As described above, a negative θL will make the startup routine fail. By setting θL = 0 this gives the relation in
eq. (6.18).

Kω <
p

J
(KT Iq − TL,avg) (6.18)
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stage 3:

The rotor should now have a spin that enables sufficient sensing of the back-emf. However, the reference frame
d− q and d∗ − q∗ are almost 90◦ shifted from each other, and the amplitude of Iq is high. This may lead to
problems like high current ripples[19].

To counter this, the current is gradually decreased. This is done such that θL also decrease - balancing the loss
in torque from decreasing the current with a decreasing θL. The FOC implemented for this motor control directs
all the torque-producing current in the q − axis as described earlier. The idea is to get close to this state before
switching. This is done with a linear decrease and can be described with the help of Ki as in eq. (6.19).

I∗
q (t) = Iq0 −Ki(t− t0) (6.19)

Here Ki describes the rate at which the current decrees from its value at the alignment and the ramp-up to
the value for the FOC switchover. Since the speed is constant through the decrease in current, there is no
acceleration hence eq. (6.6) is 0. The load torque will be the same after the ramp-up. Using this and inserting
eq. (6.12) into eq. (6.6) and integrating it eq. (6.20).

∫ t0+Tset

t0

I∗
q (t) cos (θL(t)) dt = I∗

q0 cos
(
θL(t0)

)
Tset (6.20)

Here θL is also modeled as a linearly decreasing function as in eq. (6.21), and Tset is the time θL use to go to
zero.

θL(t) = θL (t0) − θL (t0)
Tset

(t− t0) (6.21)

Inserting eq. (6.19) and eq. (6.21) into eq. (6.20) Ki is obtained as in eq. (6.22) where Kθ = θL(t0)
Tset

.

Ki = I∗
q0
θL(t0) cos

(
θL(t0)

)
− sin

(
θL(t0)

)
cos

(
θL(t0)

) Kθ (6.22)

For this application, θL will be close to 90◦ since the motor is running in no-load. Using the friction torque from
the datasheet of Tfr = 3.53mNm to balance eq. (6.14) this gives a θL of 89.64◦. The division of cos(θL) will
result in a Ki that is very high. This means that this method will not be suited for no-load operation. In Wang
et al. [19] eq. (6.22) is said to be a rough estimate. A fast transition is not needed, and a Ki of 4 is chosen for
this project. When load is added to the system, the calculation of Ki could be tried once more.

Stage 4:

The last step is to switch from the rev-up routine to FOC. The stages above are designed to make this switch
possible. In Wang et al. [19] a load angle θL < 5◦ is used as a trigger the switch to FOC. The way MC WorkBench
implements the rev-up routine, the load angle can not be used to trigger this. This can be added to the software
but was not prioritized. Instead, the sensorless algorithm is set to start after the current is lowered to a set
value. This value is set to be 0.1A and calculated from eq. (6.14) balancing the friction torque assuming θL = 0
at the end of the down ramp. The low current will result in a low θL such that the intention of the method is
maintained.

The switchover is implemented through the function "REMNG_ExecRamp(...)". This sets Iq,ref to the measured
Iq current at the moment where the FOC switch over is triggered with a ramp time of 25ms.

6.4 Analysis of the current sensing circuit in IHM08M1

A simplified drawing of the IHM08M1 with a 3-shunt low-side sensing circuit is shown in fig. 6.5 for one of the
three identical shunts.
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Figure 6.5: Schematic of one of the three shunts in the three shunt sensing circuit[13]

To study how the sensing circuit is affected by the switching frequency the transferfunction of the sensing
circuit from V shunt_1 to Output in fig. 6.5 is calculated. The transferfunction is given in eq. (6.23), where the
constants are given in eq. (6.24).

H(s) = Kp
T1s+ 1

(T2s+ 1)(T3s+ 1) (6.23)

Kp = R4

(R1 +R2)(R4 +R5) (6.24a)

T1 = R4R5C4

R5 +R4
(6.24b)

T2 = R5C4 (6.24c)

T3 = R1R2C3

R1 +R2
(6.24d)

The Bode plot of the transfer function is seen in fig. 6.6 marked as ”C3 = 15nF”, with the hardware component
values listed in table 6.1. It is seen that the sensing circuit is stable, but the cutoff frequency fc, which is defined
as the frequency for which the gain has dropped by −3dB, is 17kHz. This means that currents with higher
frequencies will be filtered out, resulting in PWM frequencies over this will likely have a bad performance. If a
switching frequency of 17kHz and higher is wanted, another sensing circuit is needed. Since the inductance of
slotless machines usually is low, a high current ripple will be a problem for such motor types. One solution for
this is using a high switching frequency [6].

Since this motor is supposed to run for higher frequencies C3, C5 and C7 was removed resulting in the input

Table 6.1: The values of the hardware components in the sensing circuit of the IHM08M1 hardware[13].

Component Value Unit
R1 6800 Ω
R2 680 Ω
R4 1000 Ω
R5 4700 Ω
C3 15 nF
C4 100 pF
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filter being removed. Whats left of the sensing circuit transferfunction when removing C3 is seen in eq. (6.25)
where the constants in eq. (6.24) still counts.

H(s) = Kp
T1s+ 1

(T2s+ 1) (6.25)

This gives a frequency response as shown in fig. 6.6 marked as C3 = 0. The cutoff frequency ωc is 333kHz.
This is way higher than the controller intended for and may introduce unnecessary noise because of the lack of
filtering. It is also noticed that the gain stabilizes at −15dB corresponding to a factor of 0.18 and will lead to
high-frequency noise that will not be filtered and affect the measurements. However, the sensing is stable, and
the motor operates with this setup.

Further, in developing this control platform, the input filter capacitance should be reevaluated. Jensen [6]
proposed a switching frequency of 60kHz for slotless motors. Adding a margin of 10kHz, achieving a fc of
70kHz the capacitance in the input filter should be 3.5nF . The bode plot of a sensing circuit with C3 = 3.5nF
is shown in fig. 6.6. It is seen that decreasing the value of C3 will shift the gain to a higher frequency. This
makes it easy to choose a suitable sensing circuit when the switching frequency for the next iterations is decided.
This discussion assumes this is 60kHz.

Since this hardware is a development powerboard meant to suit several needs, some alterations may be done to
fit the application. In this thesis, we were not able to change the capacitators and test how this affected the
current measurement. To run the control scheme at 30kHz removal of C3, C5, and C7 is done, knowing this is
not optimal.
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Figure 6.6: Bodeplot of the current sensing circuit with three different values of the input filter capacitance C3, C5 and
C7 of 15nF , 3.5nF and 0nF . The cutoff frequency for the different options is 17kHz, 70kHz and 333kHz respectively.
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Chapter 7

Testing and results

7.1 Preparations Hardware

The control in this thesis is developed for a PMSM machine. The motor available for testing was a BLDC[17] and
is hence used. The testing is run on the STMicroelectronics control platform made from the control board Nucleo
STM32G431RB[14] and the powerboard X-Nucleo IHM08M1[13]. The system is run on STMicroelectronics
control software. The hardware components and the software is described in part I.

7.1.1 Nucleo board

On the Nucleo board, set jumpers JP1 open. This is only closed if the Nucleo board and the extension board
power consumption is lower than 100mA and is provided through the CN1 USB input.

JP5 is set to the setting E5V and lets the Nucleo board and the extension board be powered by the J1 DC input
connector. Internal voltage regulation is connected through the R170 0Ω resistor on the power board. This keeps
the voltage between 4.75 − 5.25V . This resistor can be removed to obtain higher voltages but is not done here.

JP6 is closed. This is used to measure the power consumption of the Nucleo board and can be done by connecting
an ammeter in series between the pins on JP6. This is not done here and is therefore closed with a jumper.

7.1.2 Powerboard

J9 is set to open. This jumper is closed if supplying the Nucleo board directly from the J1 DC supply is wanted.
This must be done in combination with removing R170 mentioned above. This possibility is not used here.

JP3 is closed. This enables pull-up resistor in the hall/encoder detection circuit and is used to help define which
state the PIN connected is in to determine the motor spin. This setting has no effect on the setup for the testing
in this thesis since the speed and position are estimated.

FOC jumpers JP1 and JP2 are closed, and the J5 and J6 solder bridge are switched from the 1-Sh side to the
3-Sh side. This makes the sensing circuit measure all three phases as described in section 2.4.

7.1.3 Physical changes of the powerboard

To make the powerboard work for the intended application, some additional alterations are done to the off-the-
shelf powerboard. A zero-ohm resistor R181 and the capacitators C1, C2, and C3 are removed. The soldering of
a 1-shunt/3-shunt jumper is moved from 1-shunt to 3-shunt. The equipment and powerboard is shown in fig. 7.1
and the alteration is shown in fig. 7.2.

The equipment used is:

• Soldering bolt

• Solder suck wire
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• tweezers

The removal of R181 removes the usage of a potentiometer on PA4 and enables the usage of DAC instead. The
alteration of the soldering to 3-sh enables 3-shunt current sensing, which is crucial for FOC. The removal of the
capacitances changes the filter as described in section 6.4.

7.1.4 Motor

The motor profile in the software is implemented with the values listed in table 7.1.

Table 7.1: Shows the motor data needed by the Motor Control Work Bench to calculate control parameters[17]

Parameter Value Unit
Pole pairs 4
Max application speed 7500 RPM
Nominal current 21 Apk
Nominal DC Voltage 24 V
Rs 0.1 Ω
Ls 0.02 mH
B-Emf constant 5 V rms

krpm

Figure 7.1: The equipment used to alter the powerboard to fit the application
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(a) 3Sh (b) R181 (c) C3, C5, C7

Figure 7.2: Shows the physical alterations done on the IHM08M1 powerboard. The components that was altered is
marked in yellow.

7.2 Results

7.2.1 Start up

All startup tests are done with the current regulator and speed regulator values listed in table 7.2.

Table 7.2: This table show the speed and the current controller gains used when the startup method is tested. The
values are listed as they are used in the software.

Controller Kp Kp, div Ki Ki,div

Current 1819 16384 334 16384
Speed 2321 4 2166 128

Test 1:

Table 7.3: The table shows the start up parameters of test 1.

Stage time [ms] Iq,ref [A] speed [RPM]
Alignment 0-500 0-10.5 0
Speed ramp 500-1869 10.5 0-1000
Current down ramp 1869-4244 10.5-0.1 1000
Switch over - - -
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Figure 7.3: Shows the speed and current ramp with the rev-up scheme of table 7.3

Figure 7.3 shows that the startup succeed when the startup sequence in table 7.3 is implemented. A current
spike in the switchover is noticed.

Test 2:

Table 7.4: The table shows the start up parameters of test 2.

Stage time [ms] Current reference [A] speed [RPM]
Alignment 0-500 10.5 0
Speed ramp 500-1869 10.5 1000
Current down ramp 1869-4244 0.1 1000
Switch over 4244-4269 measured -
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Figure 7.4: Shows the speed and current ramp with the rev-up scheme of table 7.5

Figure 7.4 shows that the startup succeed when the startup sequence in table 7.4 is implemented. A large current
spike in the switchover is noticed.

Test 3:

Table 7.5: The table shows the start up parameters of test 2.

Stage time [ms] Current reference [A] speed [RPM]
Alignment 0-500 10.5 0
Speed ramp 500-1869 10.5 1000
Current down ramp 1869-4244 1 1000
Switch over 4244-4269 measured -
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Figure 7.5: Shows the speed and current ramp with the rev-up scheme of table 7.5

Figure 7.5 shows that the startup succeed when the startup sequence in table 7.5 is implemented. The transition
in the switch over is smooth.

7.2.2 Current controller

All current regulator tests are done with the speed regulator values listed in table 7.6.

Table 7.6: This table show the speed controller gains used when the current controller is tested. The values are listed as
they are used in the software.

Controller Kp Kp, div Ki Ki,div

Speed 2321 4 2166 128

Table 7.7: Shows the values used for the testing of the current regulator. For the software converted values Kpdiv,i and
Kidiv,i is 16384.

ζ Kp Ti[ms] Ki

1√
2

Calculated 0.0070 0.182 38.23
Converted for SW 114 21

1√
4

Calculated 0.0139 0.182 76.45
Converted for SW 206 42

1√
8

Calculated 0.0278 0.182 152.90
Converted for SW 455 84

1√
16

Calculated 0.0565 0.182 305.81
Converted for SW 926 167

1√
32

Calculated 0.111 0.182 611.62
Converted for SW 1819 334

1√
64

Calculated 0.223 0.182 1223.24
Converted for SW 3654 668
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Figure 7.6: This figure shows how the choice of six different ζ values affect the response to a maximum current reference
Iq,ref . The reference is achieved by setting a reference of 3000RP M whit an initial rotation of 1000RP M .

Table 7.8: Shows the rise time and the risetime devided by Tsum.

ζ Trise (10 − 90%) [ms] Trise/Tsum
1√
2 15.20 418.34

1√
4 8.63 237.52

1√
8 3.86 106.24
1√
16 1.73 47.61
1√
32 0.90 24.77
1√
64 0.47 12.85

Figure 7.6 shows the step response of the current regulator when tested with the gains in table 7.7. The risetime
from 10% − 90% is listed in table 7.8 in ms and in number of Tsum.

7.2.3 Speed control

All speed regulator tests are done with the current regulator values listed in table 7.9. The values used for the
three tests of the speed regulator is shown in table 7.10.

Table 7.9: This table show the speed controller gains used when the current controller is tested. The values are listed as
they are used in the software.

Controller Kp Kp, div Ki Ki,div

Current 1819 16384 334 16384
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Table 7.10: Shows the calculated values for the testing of the speed regulator.

β Kp Ti[ms] Ki

4 Calculated 5753 2.16 2666505
Converted for sw 5753 711

10 Calculated 3638 5.39 674578
Converted for sw 3638 180

10 Kp/10 363.8 5.39 67495
Converted for sw 36 18

Test 1: β = 4

fig. 7.7 and fig. 7.8 shows the estimated speed and measured q − axis current respectively plotted with its
references when a β of 4 is used in the symmetrical optimum method.
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Figure 7.7: The figure shows the response in the estimated speed when a reference of 3000RP M is set from the initial
rotation of 1000RP M . The regulator is tuned with symmetrical optimum with a β-value of 4.
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Figure 7.8: The figure shows the response in the q-axis current reference and measurement when a reference of 3000RP M
is set from the initial rotation of 1000RP M . The regulator is tuned with symmetrical optimum with a β-value of 4. The
plot between 0.2 − 0.3s is enlarged

Test 2: β = 10

fig. 7.9 and fig. 7.10 shows the estimated speed and measured q − axis current respectively plotted with its
references when a β of 10 is used in the symmetrical optimum method.
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Figure 7.9: The figure shows the response in the estimated speed when a reference of 3000RP M is set from the initial
rotation of 1000RP M . The regulator is tuned with symmetrical optimum with a β-value of 10.

41



                      

        

   

   

   

   

  

 

 

  

  

  

  

 
 
  
 
 
  
  
 

                                          

        

   

   

   

  

 

 

  

  

  

 
 
  
 
 
  
  
 

Figure 7.10: The figure shows the response in the q-axis current reference and measurement when a reference of
3000RP M is set from the initial rotation of 1000RP M . The regulator is tuned with symmetrical optimum with a β-value
of 10. The plot between 0.2 − 0.3s is enlarged

Test 3: β = 10, Kp/10

fig. 7.9 and fig. 7.10 shows the estimated speed and measured q − axis current respectively plotted with its
references when a β of 10 is used in the symmetrical optimum method in addition to decreasing the proportional
gain by a factor of 10.
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Figure 7.11: The figure shows the response in the estimated speed when a reference of 3000RP M is set from the
initial rotation of 1000RP M . The regulator is tuned with symmetrical optimum with a β-value of 10 and dividing the
proportional gain Kp by a factor of 10 keeping the integral time Ti.
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Figure 7.12: The figure shows the response in the q-axis current reference and measurement when a reference of
3000RP M is set from the initial rotation of 1000RP M . The regulator is tuned with symmetrical optimum with a β-value
of 10 and dividing the proportional gain Kp by a factor of 10 keeping the integral time Ti. The plot between 0.2 − 0.3s is
enlarged

43



Chapter 8

Discussion

8.1 Start up

For early tests of the startup routine, it was observed that the rev-up seceded inconsistently. By visual observation,
the failure rate was high when the rotor wobbled in the alignment stage. A theory of why this happened is that
if the position of the rotor is such that when the DC current in the alignment stage is pressed, the rotor will
accelerate to the center of the magnetic field pressed in the coil of phase a. However the rotor has now kinetic
energy and will swing right through the equilibrium and start decelerating. Because of the low friction of this
motor, this oscillation will have almost no dampening. If the swing is in the opposite direction of the spin of the
stator magnetic field when it starts to accelerate, the rotor falls off the stator magnetic field rotation ωe.

The oscillation will dampen, and the rotor will be properly aligned when the stator magnetic field starts rotating
by applying a temporary friction force on the rotor in the alignment stage. This was tested by lightly pressing
rubber on the rotor to increase the dampening of the oscillation until it started to spin. The result was 100%
success rate when testing the startup 10 times. The oscillation was also tried to minimize by both increasing
and decreasing the alignment DC current without any significant increase in success rate. This problem may not
occur when the blades of the drone are attached to the rotor since this will introduce some energy loss because
of air resistance on the larger area and the longer moment arm of the friction force on the blades. If this is not
solved by adding load, another approach to the alignment phase must be considered.

In fig. 7.3 it is seen that the implementation of the startup from table 7.3 succeeds. The alignment phase works
well by adding some friction, as discussed earlier. The current down ramp also has no problems. However,
the current reference falls quickly when the FOC switchover occurs. The FOC switchover is triggered when
the rotation exceeds 1000RPM , and this value is measured by the sensorless estimation. When the sensorless
speed estimation is triggered, which is the case when the current down ramp succeeds, the speed estimation
quickly estimates a speed of over 1000RPM , and the FOC is triggered. However, the estimation at this moment
has a significant overshoot as seen in fig. 7.3. Since the FOC starts simultaneously as the sensorless algorithm
overshoots its estimation, the current reference is set to about negative 7A to decelerate the motor. Since
the overshoot comes from the incorrect estimation and is not too high, this compensation is unnecessary and
unwanted. By looking at the response in fig. 7.3 it was seen that the estimation overshoot came down to the
correct speed of 1000RPM after 20ms. A switchover time was set to 25ms such that the speed estimation
should settle and give it time to stabilize before the FOC kicks in. This was implemented in test 2.

The results of the adjustment done from test 1 to test 2 did not give the expected results. The current reference
after switchover was still significantly negative, and in addition a large current spike in the current measurement
was experienced. This is seen in fig. 7.4. The same spike was observed when plotting the a and b phase currents
directly. Since the current spike vastly exceeded the reference, and the current at switchover being close to zero,
it was suspected that the measurement of the current, which is used as a reference in the current regulator in
the switchover period, is inaccurate. In addition to be inaccurate, it may be amplified by the negative reference.
It may also come from a θL that may go negative or have some oscillation at the moment it is switched over.
As a response to this, increasing the amperage to 1A was done to avoid being close to 0A. The new current
reference of 1A is implemented in test 3.

In test 3 big ripple effect in the switch over period is not observed. This is seen in fig. 7.5. It can be observed
that the switchover current ramp is lower than 1A leading to a decrease in the current Iq in this period. This
indicates that the load angle θL was not close to 0 at the switchover, but this did not seem to cause any problems
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since it was close enough when the switchover kicked in.

A problem with the implementation of startup through the GUI is that the possibilities are limited. The FOC is
triggered by a minimum RPM. In the startup strategy I/f this speed is obtained with a current lag that is almost
90◦ because of the low friction and no-load. This resulted in the over current protection kicking in because of
large current spikes if the sensorless scheme was not postponed to after the current down ramp. Since the sensor
less speed estimation is not activated from the start, the result in an estimation overshoot when it is activated.

Even though a satisfying result was obtained in fig. 7.5 a shift to trigger the algorithm by a small θL instead
of a RPM may be beneficial because this will consistently result in a small discrepancy between the current
Iq,ref before and after the switch. If the trigger is set to happen at a θL = 5◦ the discrepancy is very small since
cos(5◦) = 0.996.

8.2 Current controller

The current controller gains were calculated through the modulus optimum control scheme. Testing different ζ
values the result is plotted in fig. 7.6 and the rise times are listed in table 7.8. The ζ value of 1√

2 is a typical
value for this method since it corresponds to critical dampening. However, the results indicate that this ζ
gave a significant over-dampening. In addition to this, the climb to the reference is uneven. By decreasing the
dampening coefficient ζ, the trend is that the respons become smoother and faster. However non of the values
overshoots the reference indicating that they still are underdamped. Based on the risetimes in table 7.8 it seems
like the calculated gain is too low considering the positive effect of decreasing ζ.

Looking at the rise times in they are larger than expected. The rise time of the dampening factor ζ = 1√
2 should

corresponds to 4.7Tsum[10]. In table 7.8 the rise time of the same dampening coefficient is 413.34. The reason
for this may be many. Tsum,i may be too low because of some delays that may be overlooked. The noise in the
measurement is significant and in the sensing circuit analysis, it is found that it is not optimal. Changing the
input filter to suit the switching frequency will increase Tsum and reduce noise.

Another observation is that the dampening coefficients 1√
2 and 1√

4 do not reach the reference and end up with a
stationary offset. In addition, there are significant oscillations in the measurements. This may be improved by
including a better filter, as mentioned in section 6.4. The constant high-frequency gain of −15dB in addition to
a large cut-off frequency of the sensing circuit filter, is not optimal and will affect the current measurements.
This will affect the regulation of the current. The general noise may come from the lack of a filter in the input of
the sensing circuit.

By looking at fig. 7.6 the response of ζ = 1√
32 gives a smooth and relatively fast ramp. The response of ζ = 1√

64
is even faster but is not as smooth. It is hard to decide which of these responses have the best performance
without testing with load. Table 7.8 shows that the ζ = 1√

64 it is almost twice as quick. Testing this on no-load
thees results may be significantly different when a load is attached. The current controller should be tuned after
the propeller is attached. However the framework is set from this task.

8.3 Speed controller

The speed controller was first tested with a β value of 4. This resulted in a large ripple in the speed as seen in
fig. 7.7. By looking at the current reference in fig. 7.8, which is the output of the speed controller, it is seen that
the ripple causes the current reference to go from maximum positive current to minimum current. This leads to
the speed oscillating with max acceleration around the speed reference. This is ineffective and will wear out the
components of the system. It is also observed significant vibration noise running with these speed regulation
settings. The symmetrical optimum method can lead to very high gains and is seemingly what happens here.
The high gain amplifies the reaction to the speed estimation ripple and sets the current reference to its maximum.

In an attempt to counter this effect, but keeping the symmetrical design of the raise of the phase margin, the β
value was increased to 10. This increases the interval of the phase raise, but it also reduces the gain since β is in
the numerator in the calculation of Kp,n as seen in eq. (5.23). The result is seen in fig. 7.9. The result is similar
to the result with β = 4. In fig. 7.10 the ripple still causes the current reference output of the speed regulator to
react and counter the estimated speed when it is too high or low. The difference is in the amplitude of the ripple
and the frequency. The frequency of the ripple is almost doubled. However the ripple is still strongly affected by
the current reference. This is backed by the same increase in the frequency of the current reference.
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A larger increase of the β would increase the rise of the phase margin in an unnecessary large interval. Based on
the previous results, it seems like the problem is with the high gain. Therefore the proportional gain is divided
by a factor of 10 without changing the integral time constant Ti,n. The result is seen in fig. 7.11. The ripple in
the speed estimation is now almost gone. In fig. 7.12 the speed controller output current reference is acting
predictably with a step function followed by a logarithmic decline when the speed is getting close to the speed
reference. Even though this solution enables the speed controller to function without significant stress on the
system, it is not a good solution. It is seen that the response is significantly over-damped because of the low
gain.

The low gain is necessary to avoid the controller reaction to speed ripple. However, a drone needs a fast and
dynamic response because of the environment it operates. A better solution would be to implement a filter on
the speed estimation. This would filter out the ripple such that the current regulator would not react to the
ripple, allowing a higher gain. For this to happen, the frequency of the ripple must be found, and a filter for this
frequency be implemented. This would enable a higher gain and the symmetrical optimum method, including a
filter, can be tried again.
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Chapter 9

Conclusion

This thesis has explored and described the hardware, software, and support tools for a control platform based on
the STM32-series from STMicroelectronics. It is found that the STMicroelectronics STM32 series offers high
customizability and helpful support tools to develop an in-house control platform for Alva Industries. In addition
to this, it offers a highly configurable motor control software library.

For the hardware, it is found that the input filter of the sensing circuit is not sufficient. To be able to run the
motor control at a switching frequency of 30kHz the input filter had to be removed. Doing this the cut-off
frequency of the sensing circuit changed from 17kHz to 333kHz. To obtain better measurements, the input
filter capacitance should be changed to 3.5nF resulting in a cut-off frequency of 70kHz in the current sensing
circuit. This will enable a good filtration for a future switching frequency of 60kHz.

The startup routine was successfully implemented. However, the alignment stage of the startup routine results
in the motor swinging around the initial angle like a pendulum and leads to inconsistent results in the startup.
The swings dampen by applying an external friction force in this stage, and the startup routine is successful.

The current controller is too slow by choosing a ζ = 1√
2 resulting in an overdamped response with a rise time

corresponding to 418Tsum. The dampening factor was lowered until the response was close to the expected ratio
of 4.7Tsum. This resulted in a ζ of 1√

64 and resulted in a rise time of 12.85Tsum.

The speed controller calculations resulted in large ripples in the speed, leading to the output current reference
oscillating from negative maximum to positive maximum current. This may be solved by implementing a filter
on the speed estimations. For the current controller to function, the β was increased to 10 in the symmetrical
optimum method. In addition, the proportional gain was reduced by a factor of 10. This resulted in a functional
speed controller but should be improved by adding a filter.
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Chapter 10

Further Works

The STMicroelectronics STM32-series platform showed promising potential. Suggestions for further development
is listed below.

• Set up the control platform for Alva Industries sl-PMSM.

• Switch the control board to STM32F746ZG to increase the switching frequency, and test at 60kHz.

• Implement the suggested input filter for the current sensing and a filter for the speed estimation.

• Test the system with load and perform efficiency test.

• Implement sensorless algorithms from the analysis done by Nerbøberg [9].

• Develop power board and control board based around the STM32 microprocessor.
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Appendix A

Important structs and enums in
software

Table A.1: MCI_UserCommands_t: Enum showing the states dependent on user commands[15].

Type Description
MCI_NOCOMMANDSYET No command has been set by user
MCI_EXECSPEEDRAMP Speedramp comand coming from user
MCI_EXECTORQRAMP Torqueramp comand coming from user
MCI_SETCURRENTREFERENCES Current reference comand coming from user

Table A.2: MCI_CommandState_t: Enum showing the state of the commands[15].

Type Description
MCI_BUFFER_EMPTY No buffered command has been called
MCI_COMMAND_NOT_ALREADY
_EXECUTED The buffered command condition has not occured yet

MCI_COMMAND_EXECUTED
_SUCCESFULLY Buffered command has been executed successfully

MCI_COMMAND_EXECUTED
_UNSUCCESFULLY Buffered command has been executed unsuccesfully
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Table A.3: State_t [15]

State Number Type Description Next state
ICLWAIT 12 Persistant Inrush current lim-

iter is active
IDLE

IDLE 0 Persistant Idle IDLE_START,
IDLE_ALIGNMENT

IDLE_ALIGNMENT 1 Pass-through A pass through
state that is used
for encoder align-
ment etc.

ALIGN_CHARGE_BOOT_CAP,
ALIGN_OFFSET_CALIB,
ANY_STOP

ALIGN_CHARGE
_BOOT_CAP

13 Persistant Gate driver boot ca-
pacitators is charg-
ing

ALIGN_OFFSET_CALIB,
ANY_STOP

ALIGN_OFFSET
_CALIB

14 Persistant Offset of motor cur-
rents measurements
is calibarated

ALIGN_CLEAR,
ANY_STOP

ALIGN_CLEAR 15 Pass-through Object is cleared
and set for startup

ALIGNMENT,
ANY_STOP

ALIGNMENT 2 Persistant encoder are prop-
erly proporley
aligned to set
mechanical angle

ANY_STOP

IDLE_START 3 Pass-through containg the code
to be executed only
once after start mo-
tor command

CHARGE_BOOT_CAP,
OFFSET_CALIB,
ANY_STOP

CHARGE_BOOT
_CAP

16 Persistant Gate driver boot ca-
pacitators is charg-
ing

OFFSET_CALIB,
ANY_STOP

OFFSET _CALIB 17 Persistant Offset of motor cur-
rents measurements
is calibarated

CLEAR,
ANY_STOP

CLEAR 18 Pass-through Object is cleared
and set for startup

START,
ANY_STOP

START 4 Persistant the motor start-up
is intended to be ex-
ecuted

SWITCH OVER,
RUN

START_RUN 5 Pass-through executed only once
between START
and RUN

SWITCH_OVER 19 TBD TBD TBD
RUN 6 Persistant Motor is running ANY_STOP
ANY_STOP 7 Pass-through Code to be exe-

cuted only once be-
tween any state and
STOP

STOP 8 Persistant STOP_IDLE
STOP_IDLE 9 Pass-through Code to be exe-

cuted only once be-
tween STOP and
IDLE

IDLE

FAULT_NOW 10 Persistant A fault is present FAULT_OVER
FAULT_OVER 11 Persistant State after a fault

has disappeared
STOP_IDLE

WAIT_STOP
_MOTOR

20
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Table A.4: STM_Handle_t [15]

Type Variable name Description
enum State_t Variable containing the state ma-

chine current state
uint16_t hFaultNow Bit fields variable containing faults

currently present
uint16_t hFaultOccured Bit fields variable containing fault

history

Table A.5: MCI_Handle_t[15]

Type Variable name Description
STM_Handle_t * pSTM pointer to state machine object
SpeednTorqCtrl_Handle_t * pSTC pointer to speed and torque con-

troller object
pFOCVars_t * pFOCVars pointer to FOC variables used by

the MCI
MCI_UserCommands_t lastCommand Last command coming from user

int16_t hFinalSpeed Final speed of last executed speed ramp
command

int16_t hFinalTorque Final torque of last executed torque
ramp

qd_t Iqdref The q and d reference current of last current
reference command

uint16_t hDurationms Duration in ms of last executed torque ramp
command

MCI_CommandState_t CommandState Status of the buffered command

STC_Modality_t LastModalitySetByUser Last modality set by user
(torque mode/speed mode)
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Table A.6: MCT_Handle_t[15]

Type Variable name Description
PID_Handle_t * pPIDSpeed pointer to a speed controller object
PID_Handle_t * pPIDIq pointer to a q-axis current con-

troller object
PID_Handle_t * pPIDId pointer to a d-axis current con-

troller object
PID_Handle_t * pPIDFluxWeakening pointer to flux weakening controller

object

PWMC_Handle_t * pPWMnCurrFdbk handles the data of an instance of the PWM
& Current Feedback component

RevUpCtrl_Handle_t * pRevupCtrl Denne må undersøkes nærmere, men mulig
det er FOC control til startup, evt akselerasjon

SpeednPosFdbk_Handle_t * pSpeedSensorMain holds data to decode and store the data from
position and speed sesnor

SpeednPosFdbk_Handle_t * pSpeedSensorAux holds data to decode and store the data from
auxilliary position and speed sesnor

VirtualSpeedSensor_Handle_t * pSpeedSensorVirtual holds data to decode and store the data from
virtual position and speed sesnor

SpeednTorqCtrl_Handle_t * pSpeednTorqueCtrl Holds all data for speed control and torque
control

STM_Handle_t * pStateMachine Provides the state of the machine

NTC_Handle_t * pTemperatureSensor holds data to decode and store the data from
temperature sensor

BusVoltageSensor_Handle_t * pBusVoltageSensor holds data to decode and store the data from
bus voltage sensor

DOUT_handle_t * pBrakeDigitalOutput Digital output handler
DOUT_handle_t * pNTCRelay Digital output handler
MotorPowMeas_Handle_t * pMPM Handles motor power measurment
FW_Handle_t * pFW fluxweakening control component

handle
FF_Handle_t * pFF Feed forward component
PosCtrl_Handle_t * pPosCtrl position control handle

SCC_Handle_t * pSCC Holds max values, estim. and meas.
of the motor and control parameters

OTT_Handle_t * pOTT One touch tuning parameters
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Table A.7: PID_Handle_t [15]

Type Variable name Descreption
int16_t hDefKpGain Default proportional gain
int16_t hDefKiGain Default integral gain
int16_t hKpGain Proportional gain used by PID

component
int16_t hKiGain Integral gain used by PID compo-

nent
int32_t wIntegralTerm Integral term
int32_t wUpperIntegralLimit Upper limit for saturation of the

integral term
int32_t wLowerIntegralLimit Lower limit for saturation of the

integral term
int16_t hUpperOutputLimit Upper limit for saturation of the

output
int16_t hLowerOutputLimit Lower limit for saturation of the

output

uint16_t hKpDivisor A divisor to obtain fractional
values of the proportional gain

uint16_t hKiDivisor A divisor to obtain fractional
values of the integral gain

uint16_t hKpDivisorPOW2 hKpDivisor expressed as power of
two

uint16_t hKiDivisorPOW2 hKiDivisor expressed as power of
two

int16_t hDefKdGain Default derivative gain
int16_t hKdGain Derivative gain used by PID com-

ponent

uint16_t hKdDivisor A divisor to obtain fractional
values of the derivative gain

uint16_t hKdDivisorPOW2 hKdDivisor expressed as power of
two

int32_t wPrevProcessVarError
previous process variable used
by the derivative part of the PID
component
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Table A.8: Parameters availible for high frequency logging.[15]

Parameter Unit Description
I_A s16A Measured phase current in phase

A
I_B s16A Measured phase current in phase

B
I_ALPHA_MEAS s16A Alpha component of the Clarke

transformed measured phase cur-
rent

I_BETA_MEAS s16A Beta component of the Clarke
transformed measured phase cur-
rent

I_Q_MEAS s16A q component of the Clarke and
park transformed measured phase
current

I_D_MEAS s16A d component of the Clarke trans-
formed measured phase current

I_Q_REF s16A Reference of the q-component of
the stator current

I_D_REF s16A Reference of the d-component of
the stator current

V_Q s16V q component of the voltage
V_D s16V d component of the voltage
V_ALPHA s16V α component of the voltage
V_BETA s16V β component of the voltage
ENCODER_EL_ANGLE s16degree Encoder measured electrical angle
ENCODER_SPEED s16speed Encoder measured mechanical

speed
STOPLL_EL_ANGLE s16degree Estimated electrical angle (PLL)
STOPLL_ROT_SPEED s16speed Estimated mechanical speed (PLL)
STOPLL_BEMF_ALPHA s16V Observed α component of the esti-

mated back emf (PLL)
STOPLL_BEMF_BETA s16V Observed β component of the esti-

mated back emf (PLL)
STOCORDIC_EL_ANGLE s16degree Observed electrical angle

(CORDIC)
STOCORDIC_ROT_SPEED s16speed Observed mechanical speed

(CORDIC)
STOCORDIC_BEMF_ALPHA s16V Observed α component of the esti-

mated back emf (CORDIC)
STOCORDIC_BEMF_BETA s16V Observed β component of the esti-

mated back emf (CORDIC)
HALL_EL_ANGLE s16degree Hall sensor measured electrical an-

gle
HALL_SPEED s16speed Hall sensor measured mechanical

speed
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