
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Henrik Lia

Computational Aspects of the Two-
phase Isothermal Flash

Master’s thesis in MTPROD
Supervisor: Even Solbraa
June 2022

M
as

te
r’s

 th
es

is

Henrik Lia

Computational Aspects of the Two-
phase Isothermal Flash

Master’s thesis in MTPROD
Supervisor: Even Solbraa
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

SUMMARY

Ever since the introduction of compositional modeling using equations of state in the 1950s
and 1960s, the two-phase isothermal flash calculation has been essential for predicting
the phase behavior of petroleum and other multi-component systems. Methods for
automating the procedure and decreasing the amount of time have been essential in
making compositional calculations feasible in a commercial setting.

The cubic equation of state model has proven to be both accurate and simple enough to
be used to describe most traditional petroleum fluids. The theory of cubic equation of
state calculations has been well documented in the literature. However, the numerical
aspects associated with finite-precision mathematics in modern computers have not been
emphasized to the same extent.

The flash calculation is a complex system of equations that are very sensitive to the choice
of initial estimates and solution approaches. There is a wide range of heuristics and rule
of thumbs in the literature that attempts to make the calculation as robust as possible,
while still making the calculations as fast as possible. The purpose of this thesis is to (1)
compare different methodologies provided in the literature, (2) give a workflow of how to
efficiently implement the given methodologies from a computational perspective, and (3)
develop novel methodologies where severe numerical errors occur.

First a novel, fast, and robust algorithm for determining the roots of cubic equations
of state was developed, that utilizes previously calculated roots to enhance the initial
estimates. Then a novel method is described that uses the theory of finite-precision
mathematics to avoid severe round-off errors in the solution of the material balance, and
guarantees that a numerically accurate solution is found.

A variety of methods for updating the estimated K-values have been compared in this
thesis. The methods are divided into (1) accelerated successive substitution methods,
and (2) second-order methods. A comparison was made between the standard successive
substitution, the Wegstein accelerated method, and two dominant eigenvalue-based

i

methods. Key points of investigation in this work are computational speed and the ability
of the different methods to converge to the correct solution. A second-order multivariate
Newton-Raphson method was investigated and compared to the accelerated successive
substitution methods.

When developing performance code, the most important aspect is to improve the segments
of the code that have the largest impact on performance. A framework for profiling and
quantifying performance in a consistent manner was developed using this as the guiding
principle.

ii

SAMMENDRAG

Helt siden introduksjonen av komposisjonell modellering med bruk av kubiske tilstand-
slikninger p̊a 1950- og 1960-tallet, har den to-fase isotermiske flash-beregningen vært
essensielt for å predikere faseoppførsel for petroleumsystemer og andre flerkomponent
systemer. Metoder for å automatisere prosedyren og redusere tidsbruken, har vært vik-
tig i å bidra til at komposisjonelle beregninger har blitt mulig å bruke i kommersielle
sammenhenger.

Kubiske tilstandslikninger har vist seg å være nøyaktig og enkle nok til å bli brukt
for å beskrive de fleste tradisjonelle petroleumsfluider. Teorien bak beregninger ved
bruk av kubiske tilstandslikninger er veldokumentert i litteraturen, men de numeriske
aspektene assosiert med å utføre matematikk med begrenset presisjon har ikke blitt like
godt vektlagt.

Flash-beregningen er et komplekst system med likninger som er veldig sensitive til valget av
initiale estimater og løsningstilnærminger. Det er mange strategier og tommelfingerregler
i litteraturen som prøver å gjøre beregninger s̊a robust som mulig, men som fortsatt
gjør beregningene s̊a fort som mulig. Målet ved denne oppgaven er (1) å sammenlikne
forskjellige løsningsmetoder funnet i litteraturen, (2) beskrive en metode for hvordan å
effektivt implementere de gitte metodene fra et beregningsperspektiv og (3) utvikle nye
metoder hvor alvorlige avrundingsfeil skjer.

En ny, rask og robust algoritme for å beregne røttene til en kubisk tilstandslikning har
blitt utviklet, som anvender tidligere beregnede røtter for å forbedre initialestimater.
En ny algoritme er beskrevet, som bruker flyttallsmatematikk for å unng̊a alvorlige
avrundingsfeil i beregninger av materialbalansen og garanterer at en numerisk nøyaktig
løsning er funnet.

Flere metoder for å oppdatere K-verdiestimater har blitt sammenliknet i denne oppgaven.
Metodene er delt inn i (1) akselererte suksessiv substutisjonsmetoder og (2) andreordens
metoder. En sammenlikning mellom suksessiv substutisjonsmetoden, Wegsteins akselererte

iii

metode og to dominant egenverdibaserte metoder har blitt gjort. De viktigste punktene
i sammenlikningen er beregningstid og konvergens til riktig løsning. En andreordens
multivariabel Newton-Raphson metode har blitt implementert og sammenliknet med de
akselererte suksessiv substutisjonsmetodene.

N̊ar man utvikler ytelseskritiske beregningsprogrammer er det viktig å optimalisere de
mest ytelseskritiske segmentene av programmet. En metode for å profilere og kvantifisere
ytelse p̊a et konsistent vis har blitt utviklet med dette som hovedprinsipp.

iv

ACKNOWLEDGEMENTS

First and foremost I would like to thank my great friend and colleague at Whitson AS,
Markus Hays Nielsen. He invited me to attend the course Advanced PVT and EOS Fluid
Characterization in the summer of 2021, where I was introduced to the topics of PVT and
computational thermodynamics. In the last year, Markus has been my closest collaborator
and I would like to thank him for all our interesting discussions and all his help on my
thesis work.

A special thanks goes out to my supervisor Even Solbraa for all his help and for showing
such a great interest in the various topics related to my thesis work.

I would also like to thank all my great colleagues at Whitson AS, where I have been working
part-time for the last two years. Even though I started as a pure software engineer, I have
been allowed to work more and more on topics related to thermodynamical engineering,
which have culminated in to this thesis. I am very grateful for my time as a part-time
employee at Whitson AS and I could not be more excited about my upcoming full-time
job there.

Further, I would like to acknowledge Aaron Zick of Zick Technologies, for developing and
providing a license to the excellent PVT software PhazeComp.

Finally, I also want to thank my family and friends for helping and supporting me through
my 5 years at NTNU. Without them, I would not be the person I am today.

v

vi

CONTENTS

Summary . iv
Sammendrag . iv
Acknowledgements . v
List of Tables . ix
List of Figures . xi

1 Introduction 1

2 Theory 3
2.1 Equation of State Calculations . 3

2.1.1 Equations of State . 3
2.1.2 Cubic Equations of State . 4
2.1.3 Volume Shifts . 5
2.1.4 Gibbs Energy and Equilibrium Conditions 6
2.1.5 Single-Component Systems . 6
2.1.6 Multi-Component Systems . 7
2.1.7 The Flash Calculation . 9
2.1.8 Negative Flash . 10

2.2 Floating-point Arithmetic . 12
2.2.1 Round-off Errors . 12
2.2.2 Catastrophic Cancellation . 12

2.3 Cache Storage and Branching . 14
2.3.1 Cache Locality . 14
2.3.2 Branching . 15

3 Methodology 17
3.1 Single-phase Density Calculation . 17

3.1.1 Analytical Solution . 18
3.1.2 Numerical Solution . 20

vii

CONTENTS

3.1.3 Proposed Algorithm . 21
3.2 Two-phase Flash Calculation . 22

3.2.1 Solution Strategy . 22
3.2.2 Initial K-value Estimates . 23
3.2.3 Solving the Material Balance . 25
3.2.4 Phase Property Calculations . 30
3.2.5 Successive Substitution . 31
3.2.6 The Newton-Raphson Method . 33

3.3 Data Generation . 34
3.3.1 EOS models and Compositions 34

3.4 Performance Testing . 35
3.4.1 Profiling - Callgrind . 36
3.4.2 Benchmarking - Google Benchmark 36

4 Results and Discussion 39
4.1 Cubic Solvers . 39
4.2 Rachford Rice Solvers . 40
4.3 Accelerated Successive Substitution . 42
4.4 The Newton-Raphson Method . 44

5 Conclusion 47

6 Further Work 49

Bibliography 51

Acronyms 55

Appendices 57

A Lowest Gibbs Energy Condition 59

B EOS Models 61
B.1 35-component EOS model . 62
B.2 14-component EOS model . 64
B.3 9-component EOS model . 65

C Compositions 67
C.1 Composition 1 . 68
C.2 Composition 2 . 70
C.3 Composition 3 . 72
C.4 Composition 4 . 74
C.5 Composition 5 . 76
C.6 Composition 6 . 78
C.7 Composition 7 . 80

viii

LIST OF TABLES

2.1 EOS constants for the SRK and PR models. 5
2.2 Example of catastrophic cancellation. 13

4.1 Total execution time for non-trivial flashes using different cubic solvers. . 39
4.2 Total execution time for different Rachford-Rice solvers. 41
4.3 Total execution time the Newton-Raphson method preceded by a number

of successive substitutions iterations. 45

B.1 Component properties for the 35-component PR EOS model. 62
B.2 Component BIPs for the 35-component PR EOS model. 63
B.3 Component properties for the 14-component PR EOS model. 64
B.4 Component BIPs for the 14-component PR EOS model. 64
B.5 Component properties for the 9-component PR EOS model. 65
B.6 Component BIPs for the 9-component PR EOS model. 65

C.1 Composition 1 . 68
C.2 Composition 2 . 70
C.3 Composition 3 . 72
C.4 Composition 4 . 74
C.5 Composition 5 . 76
C.6 Composition 6 . 78
C.7 Composition 7 . 80

ix

LIST OF TABLES

x

LIST OF FIGURES

2.1 Vapor pressure curve for normal pentane using the SRK EOS. 7
2.2 Phase envelope of a binary mixture containing equal molar amounts of

methane and normal pentane using the PR EOS. 8
2.3 An example of a convergence envelope and a phase envelope. 11
2.4 Simplified schematic of the CPU, cache, and main memory configuration. 14
2.5 Memory layout of a vector and a linked list in C++. 15
2.6 Erasing an element in a vector and a linked list. 15

3.1 Schematic of possible shapes of a cubic polynomial. 18
3.2 Possible locations of roots for a cubic polynomial with two extrema. . . . 18
3.3 Convergence of different initial guesses on the cubic polynomial x3 + x2 −

x− 0.5 using the Newton-Raphson method (left) and Halley’s method (right). 22
3.4 Schematic of the K-value based flash calculation procedure. 23
3.5 An example of K-values calculated with the Wilson equation vs the K-values

calculated from the flash calculations using a cubic EOS. 24
3.6 Rachford-Rice function for a six-component system. 26
3.7 Efficiently evaluating the Rachford-Rice function, its derivative, and double

derivative using Python. 27
3.8 Newton-Raphson method for the Rachford-Rice equation with a binary

mixture, failing to lower residual past ≈ 10−7. 28
3.9 Recursive Newton-Raphson method for the Rachford-Rice equation with a

binary mixture, where round-off errors are mitigated. 30
3.10 Phase envelopes of a test mixture using a 35-component EOS and two

lumped EOS models with 14 and 9 components. Note: The calculated
phase envelopes using the 35-component and 14-component models coincides
almost entirely. 35

xi

LIST OF FIGURES

4.1 Execution time of flash calculations vs temperature and pressure of compo-
sition 1 with the 35-component EOS model where different cubic equation
solving methods are used. 40

4.2 Number of Rachford-Rice iterations vs temperature and pressure of compo-
sition 4 with the 35-component EOS model where different Rachford-Rice
solving methods are used. 41

4.3 Calculated molar vapor fraction of composition 7 using 35-Component
inside the two-phase region using different successive substitution methods.
Note: Blank regions denote trivial solution or negative flash region. . . . 42

4.4 Calculated molar vapor fraction of composition 3 using 14-Component
inside the two-phase region using different successive substitution methods.
Note: Blank regions denote trivial solution or negative flash region. . . . 43

4.5 Execution time of flash calculations using composition 7 and the 35-
Component inside the two-phase region using different successive sub-
stitution methods. Note: Blank regions denote trivial solution or negative
flash region. 44

4.6 Newton-Raphson K-value update method using different numbers of initial
successive substitution steps. 45

C.1 Calculated phase envelope of composition 1. 69
C.2 Calculated phase envelope of composition 2. 71
C.3 Calculated phase envelope of composition 3. 73
C.4 Calculated phase envelope of composition 4. 75
C.5 Calculated phase envelope of composition 5. 77
C.6 Calculated phase envelope of composition 6. 79
C.7 Calculated phase envelope of composition 7. 81

xii

CHAPTER 1

INTRODUCTION

The main objective of this thesis is to investigate the computational aspects of the
two-phase isothermal flash calculation and determine the impact of different solution
approaches and their implementation on (1) performance with regards to computational
time, and (2) the ability for the calculation to converge to the correct solution. This
work was initiated through a research project proposed by Whitson AS as part of their
academic and commercial work related to phase behavior.

This work aims to aluminate issues related to the implementation of the two-phase
isothermal flash calculation that is typically not discussed or disclosed in academic
literature. These topics include (1) issues related to finite-precision mathematics such
as severe round-off error, (2) modern commercial computer architecture, (3) choice of
programming languages, and (4) workflows related to comparing and enhancing different
implementations through profiling and benchmarking.

Chapter 2 presents the theory used in the following chapters. The first section covers the
phase behavior fundamentals for single- and multi-component systems and calculational
aspects related to cubic equations of state. The second section covers the fundamentals of
floating-point arithmetic related to round-off errors and catastrophic cancellation. Finally,
modern computer architecture is described and highlights of the effect it can have on the
performance of the flash calculation are given.

Chapter 3 presents the methodology used in the implementation of different segments of
the flash calculation. The first section covers the single-phase density calculation, followed
by a section on the vapor-liquid equilibrium calculation. This section covers K-value
initial estimates, the material balance solution, phase property calculations and K-value
update methods. Finally, data generation and performance testing are described.

Chapter 4 presents the results of the various methods presented in Chapter 3. The different
sections present the results of and compare the different methods used for (1) determining

1

CHAPTER 1. INTRODUCTION

roots of the cubic equation of state, (2) solving the Rachford-Rice equation, (3) updating
K-values using accelerated successive substitution methods, and (3) updating K-values
using the Newton-Raphson method.

Chapter 5 presents the conclusion based on the results and discussion presented in Chapter
4, followed by the proposed items for further work given in Chapter 6. Appendix A derives
a simplification for the calculation of finding the minimum Gibbs energy for multiple roots.
Appendix B presents the different equation of state models used in this work and Appendix
C presents the different compositions and their respective phase envelopes.

2

CHAPTER 2

THEORY

2.1 Equation of State Calculations

2.1.1 Equations of State

EOS models commonly relates pressure (p), volume (V), temperature (T), and molar
composition (z) of a fluid. The simplest and perhaps most familiar EOS model is the
ideal gas law[1], given by

pv = RT, (2.1)

where R is the universal gas constant, and v is the molar volume defined as volume divided
by molar amount, i.e. v = V/n. The ideal gas law is inaccurate for gases at high pressures
and low temperatures. A quantity for calculating the deviation from the ideal gas law is
introduced, called the Z-factor, and is defined by

Z =
pv

RT
. (2.2)

Equation (2.2) is called the real gas law. A chart of Z-factors was developed by Standing
and Katz[2] that can be used for predicting the volumetric behavior of natural gases based
on the corresponding states principle[3]. The chart shows the Z-factor plotted versus
reduced temperature (Tr) and reduced pressure (pr), which are defined by

Tr =
T

Tc
, (2.3a)

pr =
p

pc
, (2.3b)

where Tc and pc are the temperature and pressure at the critical point of the fluid. If the gas
is a mixture of components with different critical properties, pseudo-critical temperature

3

CHAPTER 2. THEORY

and pressure are used instead. One possible method to estimate the pseudo-critical
conditions is using a linear mixing rule, given by

Tpr =
Nc∑
i=1

ziTci, (2.4a)

ppr =
Nc∑
i=1

zipci, (2.4b)

(2.4c)

where Nc is the number of components and zi is molar fraction of each component. Several
numerical approximations of the Standing-Katz chart have been developed, such as the
method described by Hall and Yarborough[4], which uses the Carnahan-Starling hard
sphere EOS. Even though the Standing-Katz chart is highly accurate for natural gases, it
can not describe liquid phases or multiphase behavior, which means that a more complex
EOS model is needed. A popular choice is the cubic EOS model.

2.1.2 Cubic Equations of State

A cubic equations of state is a model that can be expressed in the following way

Z3 + A2Z
2 + A1Z + A0 = 0. (2.5)

The two most widely used cubic EOS models in petroleum engineering are the Soave-
Redlich-Kwong[5] (SRK) and Peng-Robinson[6] (PR) equations[3].

The SRK EOS is given by

p =
RT

v − b −
a

v(v + b)
, (2.6)

where the terms a and b are defined as

a = Ωa
R2T 2

c

pc
α(Tr), (2.7a)

b = Ωb
RTc
pc

, (2.7b)

α(T) = [1 +m(ω)(1−
√
Tr)]

2, (2.7c)

where the coefficients ΩA and ΩB are listed in Table 2.1 and ω is the acentric factor. The
function m(ω) for the SRK EOS is given by

m(ω)SRK = 0.480 + 1.574ω − 0.176ω2. (2.8)

The PR EOS is given by

p =
RT

v − b −
a

v(v + b) + b(v − b) , (2.9)

4

CHAPTER 2. THEORY

where the terms a and b are also defined by Equation (2.7), but with different values for
the coefficients ΩA and ΩB. The function m(ω) for the PR EOS is defined as

m(ω)PR =

{
0.37464 + 1.54226ω − 0.26992ω2, if ω ≤ 0.49

0.3796 + 1.485ω − 0.1644ω2 + 0.01667ω3, else
(2.10)

Both the SRK and the PR EOS models can be written on a general form given by

p =
RT

v − b −
a

(v + δ1b)(v + δ2b)
, (2.11)

where δ1 and δ2 are different for the SRK and PR models and are listed in Table 2.1.
Equation (2.11) can be expressed in the form of Equation (2.5) with

A0 = −δ1δ2B3 − δ1δ2B2 − AB, (2.12a)

A1 = (δ1δ2 − δ1 − δ2)B2 − (δ1 − δ2)B + A, (2.12b)

A2 = (δ1 + δ2 − 1)B − 1, (2.12c)

where A and B are the dimensionless versions of the parameters a and b defined as

A =
ap

R2T 2
, (2.13a)

B =
bp

RT
. (2.13b)

Table 2.1: EOS constants for the SRK and PR models.

SRK PR

δ1 1 1 +
√

2

δ2 0 1−
√

2
Ωa 0.42748 0.45724
Ωb 0.08664 0.07780

2.1.3 Volume Shifts

Peneloux et al. introduced the concept of volume shifts in 1982[7] to improve the accuracy
of the predicted volumetric data of cubic EOS models. The volume shift (c) is defined
as

v = vEOS − c, (2.14)

and is often represented by the unitless parameter s, defined as s = c/b. A major advantage
of the volume shifts is that it will not influence the results of vapor-liquid equilibrium
calculations, which are typically highly accurately predicted by both the PR and SRK
EOS models for petroleum systems.

5

CHAPTER 2. THEORY

2.1.4 Gibbs Energy and Equilibrium Conditions

Calculations using cubic equations of state uses the assumption that the fluid is at
equilibrium. When the temperature and pressure of a fluid system are known, the
equilibrium conditions are determined by minimizing the Gibbs energy (G)[8]. The Gibbs
energy is a state function given by

G =
Nc∑
i=1

µini, (2.15)

where ni is the molar amounts of each component and µi is the chemical potential of the
different components. When multiple phases are present in a fluid system, the total Gibbs
energy is the sum of each phase’s Gibbs energy. If two phases are assumed to exist at
equilibrium, it can be shown that the equilibrium condition is given by[8]

nVi µ
V
i = nLi µ

L
i , (2.16)

where the superscripts V and L denote the vapor and liquid phases respectively. The
cubic equations of state model the chemical potential in the form

µi = RT ln fi + λ(T), (2.17)

where fi is the component-fugacity and λ(T) is a term that is constant for each phase at
the same temperature. Using Equation (2.17) it can be shown that the equal chemical
potential constraint given by Equation (2.16) reduces to

nVi f
V
i = nLi f

L
i . (2.18)

2.1.5 Single-Component Systems

For single-component fluids, the expression for fugacity is obtained using the relation

lnφ =
1

RT

∫ ∞
V

((
dP

dni

)
T,V

− RT

V

)
dV − lnZ, (2.19)

where φ is called the fugacity coefficient and is defined as φ = f
p

for single component

fluids. Applying Equation (2.19) to a cubic EOS with only one component results in the
following expression

lnφ = Z − 1− ln(Z −B)− 1

δ1 − δ2
· A
B

ln

(
Z + δ1B

Z + δ2B

)
. (2.20)

If a pressure and temperature are specified, the parameters A and B can be calculated,
and the Z-factor can be obtained by solving Equation (2.5). If the specified pressure and
temperature are sub-critical, Equation (2.5) can have three solutions. When this happens,

6

CHAPTER 2. THEORY

the middle root is discarded as it is unphysical, and the Z-factor with the lowest Gibbs
is chosen as the correct solution. Choosing the largest Z-factor corresponds to having a
vapor-like fluid, while the lowest Z-factor corresponds to having a liquid-like fluid.

If both roots have the same Gibbs energy, they are both valid, which means the fluid will
split into one liquid-like phase and one vapor-like phase. When this occurs, the specified
pressure is said to be the vapor pressure at that given temperature. An example of how
the vapor pressure changes with temperature can be seen in Figure 2.1.

0 25 50 75 100 125 150 175 200 225
Temperature [◦C]

0

10

20

30

40

50

Pr
es

su
re

[b
ar

]

SRK Vapor Pressure Critical Point

Figure 2.1: Vapor pressure curve for normal pentane using the SRK EOS.

2.1.6 Multi-Component Systems

The transition from a liquid-like to a vapor-like phase for mixture-fluids will generally
not occur at only one pressure but gradually over a pressure range. Given a constant
temperature, the first pressure at which liquid will form when the pressure increases is
called the dewpoint pressure, and the last pressure where vapor is observed is called
the bubblepoint pressure. An example of how the dewpoint and bubblepoint pressures
changes with temperature, often called a phase envelope, can be seen in Figure 2.2. At
a specific temperature, the bubblepoint and dewpoint pressures converge into a critical
point, where the properties of both phases converge to the same value. Only dewpoint
pressures exist at temperatures greater than the critical temperature, which means that a
liquid phase will form and disappear again as the pressure decreases. This phenomenon is
called retrograde condensation and can seem somewhat unintuitive.

7

CHAPTER 2. THEORY

0 20 40 60 80 100 120 140 160
Temperature [◦C]

0

20

40

60

80

100

120

140
Pr

es
su

re
[b

ar
]

Bubblepoint Dewpoint Critical Point

Figure 2.2: Phase envelope of a binary mixture containing equal molar amounts of methane and
normal pentane using the PR EOS.

Calculating the fluid properties outside of the two-phase region enclosed by the bubblepoint
pressures and the dewpoint pressures is similar to the description of single-component
fluids, except that a set of mixing rules are used to get the average parameters A and B
for the mixture, given by

A =
Nc∑
i=1

Nc∑
j=1

zizjAij, (2.21a)

B =
Nc∑
i=1

ziBi, (2.21b)

where Aij =
√
AiAj(1− kij). kij is a correction parameter often called binary interaction

parameters (BIPs). If multiple roots are found, the root with the lowest Gibbs energy
is chosen. To calculate the Gibbs energy of a mixture, the component-specific fugacity
coefficients are needed, which for the EOS models given by Equation (2.11) Coats[9]

8

CHAPTER 2. THEORY

summarized to be

lnφi = ln
fi
uip

=
Bi

B
(Z−1)− ln(Z−B)+

1

δ1 − δ2
A

B

(
Bi

B
− 2

A

Nc∑
j=1

ujAij

)
ln

(
Z + δ1B

Z + δ2B

)
.

(2.22)
The volume shifts are calculated using a linear mixing rule, i.e.

v = vEOS −
Nc∑
i=1

zici. (2.23)

Inside the two-phase region, the liquid and vapor phase compositions need to be determined
before the fluid properties can be calculated. This calculation is called the two-phase
isothermal flash calculation.

2.1.7 The Flash Calculation

The two-phase isothermal flash calculation is said to be the most important equilibrium
calculation[8]. The calculation inputs are pressure, temperature, the overall composition,
and the EOS parameters. The outputs are the equilibrium molar compositions of the two
phases and the molar vapor and liquid fractions, which are defined by

V =
nV

nV + nL
, (2.24a)

L =
nL

nV + nL
, (2.24b)

where nV and nL are the molar amounts of the vapor and liquid phases, respectively.

The flash calculation is constrained by equal fugacity as defined in Equation (2.18), and
a component material balance. Given an equilibrium vapor composition (yi) and an
equilibrium liquid composition (xi), the following holds

Nc∑
i=1

yi =
Nc∑
i=1

xi = 1. (2.25)

which can be rearranged to
Nc∑
i=1

(yi − xi) = 0. (2.26)

From the material balance zi = V yi +Lxi and L = 1− V , the following relationship holds

zi = V yi + (1− V)
yi
Ki

(2.27a)

zi = V Kixi + (1− V)xi, (2.27b)

9

CHAPTER 2. THEORY

where Ki is the equilibrium ratios or K-values, defined by

Ki =
yi
xi
. (2.28)

These equations can be rearranged to

xi =
zi

1 + V (Ki − 1)
. (2.29a)

yi =
ziKi

1 + V (Ki − 1)
= Kixi, (2.29b)

Inserting Equations 2.29a and 2.29b into Equation (2.26) results in the Rachford-Rice
equation, given by

h(V) =
Nc∑
i=1

zi(Ki − 1)

1 + V (Ki − 1)
, (2.30)

where the system satisfies all constraints if h(V) = 0.

If initial estimates of the K-values are given, the Rachford-Rice equation is solved, and
the fugacity coefficients of each component for both phases can be calculated using
Equation (2.22). If the equal fugacity constraint is not satisfied, the K-values are set to
Ki = φLi /φ

V
i , and the same procedure is repeated until convergence.

2.1.8 Negative Flash

In 1989 Whitson and Michelsen showed that it is possible to perform flash calculations
outside the two-phase region, called a negative flash calculation[10]. A negative flash
calculation corresponds to finding a saddle point in the Gibbs energy surface and will
always yield a vapor fraction below zero or above one. However, the equilibrium phase
compositions are non-negative, and the material balance and equal fugacity constraints
are still satisfied.

Instead of being bounded by the two-phase region, the negative flash is bounded by the
converge envelope, which can be seen in figure Figure 2.3. The convergence envelope
traces the line where the flash calculation yields a solution where Ki = 1, and it can
be seen in figure Figure 2.3 that the critical point is a special case of the convergence
envelope where it coincides with the phase envelope.

10

CHAPTER 2. THEORY

0 50 100 150 200 250 300 350 400
Temperature [◦C]

0

50

100

150

200

250

300

350

400
Pr

es
su

re
[b

ar
]

Bubblepoint
Dewpoint

Convergence Envelope Critical Point

Figure 2.3: An example of a convergence envelope and a phase envelope.

Using the negative flash, Whitson and Michelsen showed that the theoretical bounds for
the vapor fraction are given by[10]

Vmin =
1

1−Kmax

, (2.31a)

Vmax =
1

1−Kmin

. (2.31b)

Using these bounds, a solution to the Rachford-Rice equation is guaranteed to exist if
Kmin < 1 and Kmin > 0, which is not true for the positive flash bounds, i.e. 0 < V < 1.
Nichita and Leibovici later showed that a stricter solution bound is given by[11]

V NL
min = c1 + z1(cn − c1), (2.32a)

V NL
max = cn − zn(cn − c1), (2.32b)

where the subscript 1 corresponds to the component with the greatest K-value and n to
the component with the lowest K-value, and

ci =
1

1−Ki

. (2.33)

11

CHAPTER 2. THEORY

2.2 Floating-point Arithmetic

It is important to take into account that all computer calculations are performed using
finite-precision mathematics. Most modern computer languages use the IEEE 754 binary
floating-point standard for storing and calculating non-integer numbers. An arbitrary
floating point number y can be represented by[12]

y = ±m · βe, (2.34)

where β is the base, usually set to two, e is the exponent and m is the significand. The
significand has a finite number of digits and is defined as d0.d1d2d3...dp−1 where p is called
the precision and dn is an integer in the range [0, β − 1]. To ensure that all floating-point
representations are unique, the significand’s most significant digit, d0, must be set to one.
Because all floating-point numbers have a finite precision t, they can only represent a
subset of all real numbers exactly, which means that all other numbers are represented
using an approximation.

2.2.1 Round-off Errors

The approximate nature of floating-point numbers means that all floating-point calculations
can produce a small error. Using the definition from Higham[13], the floating-point error
ε of any IEEE 754 compliant arithmetic operation satisfies

fl(x op y) = (x op y)(1 + ε), |ε| ≤ u, (2.35)

where fl(·) is a floating point operation, op is either addition, subtraction, multiplication or
division, and u is the machine precision. The machine precision is usually set to 2−24 ≈ 10−7

for single-precision arithmetic and 2−53 ≈ 10−16 for double-precision arithmetic[13]. The
error produced by one arithmetic operation using single- or double-precision mathematics
is usually well within the acceptable range. However, significant errors can occur when
multiple operations are performed consecutively. Summing over a large set of numbers in
sequence is an example of this. It can be shown by applying Equation (2.35) recursively,
that adding over a set of N numbers results in

fl

(
N∑
i=1

xi

)
= x1(1 + ε)N−1 +

N∑
i=2

xi(1 + ε)N+1−i. (2.36)

This equation shows that significant errors can occur if N is large and x1 or x2 is one
of the largest numbers in the set. There are numerous ways of reducing the errors in
Equation (2.36)[13], for instance, by sorting the set in ascending order before summing.
However, the example still shows how computer calculations can produce significant errors
if the floating-point errors are not properly considered.

2.2.2 Catastrophic Cancellation

Another and often severe type of error is the error produced by catastrophic cancellation.
If the two numbers a and b are equal up to seven digits but are represented by the

12

CHAPTER 2. THEORY

floating-point approximations ã and b̃ with a significand of eight, the resulting subtraction
ã− b̃ would produce an answer with seven leading zeros and thus only have one significant
digit. This phenomenon where the subtraction of two floating-point numbers causes
a severe loss of significance is called catastrophic cancellation[12]. This means that if
a− b = ∆ and ∆̃ is the best floating-point approximation of ∆, then ã− b̃ 6= ∆̃ because
of the round-off error in floating-point numbers. An example of catastrophic cancellation
is shown in Table 2.2 where a− b is calculated to be 2.7 times larger with floating-point
numbers than with exact numbers. Note that β = 2 for IEEE 754 floating-point numbers
but is set to 10 in Table 2.2 for illustration purposes.

Table 2.2: Example of catastrophic cancellation.

Exact Number Approximation
a +2.718281828459 +2.718282 · 100

b +2.718281451231 +2.718281 · 100

a− b +3.77228 · 10−7 +1.000000 · 10−6

If the notation ã− b̃1 = ∆̃1 is introduced, then there clearly exists a floating-point number
b̃2 such that (ã − b̃1) − b̃2 = ∆̃2 where |∆̃2 − ∆̃| < |∆̃1 − ∆̃|. Note that this is only
true if the order of operations indicated by the parenthesis is respected. If ∆̃2 6= ∆̃,
the same procedure can by done again by introducing the number b̃3, which satisfies
((ã− b̃1)− b̃2)− b̃3 = ∆̃3 where |∆̃3 − ∆̃| < |∆̃2 − ∆̃|. This procedure can be extended
N times until the condition ∆̃N = ∆̃ is met. Therefore, using this approach makes it
possible to perform the subtraction a− b within machine accuracy. This means that the
floating-point number ∆̃N can be represented as ã −∑N

i=1 b̃i, or written recursively to
respect the correct order of operations

∆̃n =

{
ã− b̃1, if n = 1,

∆̃n−1 − b̃n, else.
(2.37)

A common algorithm that can, under certain circumstances, cause catastrophic cancellation
is the quadratic formulae, i.e.

x =
−b±

√
b2 − 4ac

2a
. (2.38)

If b� 4ac then
√
b2 − 4ac ≈ |b|, which means that catastrophic cancellation will happen.

However, in some instances, it is possible to reformulate algorithms to avoid catastrophic
cancellation. This is true for the described case of Equation (2.38) , which can be
reformulated as

x1 =
−b− sgn(b)

√
b2 − 4ac

2a
(2.39a)

x2 =
c

ax1
. (2.39b)

However, there exists no reformulation of Equation (2.38) which avoids catastrophic
cancellation in the case where b2 ≈ 4ac[13].

13

CHAPTER 2. THEORY

2.3 Cache Storage and Branching

When optimizing a numerical algorithm for performance, there is a wide variety of topics
to consider. Although it is important to have a mathematically efficient algorithm,
the performance can begin to stall if the algorithm is implemented without taking the
computer’s memory usage into account. Early computers were much simpler than today
and consisted of various components that were all designed to be equally efficient[14].
This is not the case with modern computers, where the memory and storage components
have not improved as much as the CPU because of reasons associated with cost[14].
Consequently, modern CPUs read data at higher rates than the main memory can provide,
leading to the introduction of cache storage. The cache is a small but highly efficient
memory component connected between the main memory and CPU, acting as a high-
frequency data buffer. A simplified schematic of how the CPU, cache, and main memory
are configured is shown in Figure 2.4. When the CPU attempts to access data, it will
first search the cache, and if the requested data is located in the cache already, a cache
hit is said to have happened. If the requested data is not found in the cache, the CPU
has to search through the much slower main memory and load it into the cache before it
can be used further, which is referred to as a cache miss. When new data is loaded onto
the cache, it replaces the data that has been unused for the longest amount of time. This
is an important optimization that enables the most frequently used data to always be
located in the cache, significantly reducing the amount of cache misses.

CPU Cache Main Memory

Figure 2.4: Simplified schematic of the CPU, cache, and main memory configuration.

2.3.1 Cache Locality

Another important cache optimization is based on the assumption that data is often
located near other related data in the main memory. The CPU will therefore load nearby
data to the cache when a cache miss occurs in addition to the necessary data. However, how
well this optimization performs is highly dependent on how the program is implemented.
A program is said to have good cache locality if related data is stored in close proximity,
which significantly reduces cache misses.

An example of the importance of cache locality is presented by Stroustrup[15]. He compares
linked lists and vectors in the C++ standard library, which are both types of dynamically
sized containers but are optimized for different use cases. A vector stores all of its elements
continuously and in the correct order in the main memory, while a linked list stores its
elements in different parts of the memory, which can be seen in Figure 2.5.

14

CHAPTER 2. THEORY

Vector Linked List

Figure 2.5: Memory layout of a vector and a linked list in C++.

Because the elements of a linked list are stored in different parts of the memory, the linked
list will have worse cache locality than a vector, but the linked list can insert and delete
intermediate elements with significantly fewer operations than a vector. This is because a
vector will have to move all succeeding elements when an element is inserted or deleted,
while a linked list can add or remove an element anywhere in the main memory without
modifying the memory location of the other elements, which is shown in Figure 2.6. This
means that the algorithms for inserting and deleting elements in a linked list are more
mathematically efficient than their vector counterparts. To test this theory in practice,
Stroustrup constructed a test case where a large set of numbers were inserted and then
deleted in random order and found that the vector outperformed the mathematically more
efficient linked list in all cases and the difference in execution time only increased with
the size of the dataset.

Remove Element

Relocate Elements

Original Vector

New Vector

Original Linked List

Remove Element

New Linked List

Linked ListVector

Figure 2.6: Erasing an element in a vector and a linked list.

2.3.2 Branching

Another optimization consideration not related to mathematical efficiency is branching.
When a computer runs machine code, which is a set of instructions, it will by default
execute the given instructions sequentially in order from top to bottom. A branch is
an instruction that makes the CPU execute other instructions in a different order than

15

CHAPTER 2. THEORY

default[16]. Examples of this are functions, which are sets of instructions not located
in the default path of the program. Whenever a function is called, the CPU will fetch
the instructions from another part of the memory and begin executing those instead.
Another example of a branch is an if-block, which conditionally tells the CPU which set
of instructions to execute.

Modern CPUs execute multiple instructions in parallel, which means that a new instruction
will start to execute before the last instruction is finished. If a program has a conditional
branch, the next set of instructions is not always possible to know, which will cause a
performance bottleneck. To combat this, modern CPUs will try to predict which branch
is most likely to be correct and then begin execution of that branch. If the prediction
turns out to be correct, the CPU continues execution as normal, but if the prediction is
wrong, the CPU discards the current instructions and begins executing the new branch.
If many branch mispredictions occur, multiple unnecessary instructions will be executed,
and as a result, the program’s overall performance will decrease. Branchless programming
is therefore often used as an optimization tool in high-performance programming. An
example of branchless programming is using the general function for a cubic EOS models
given in Equation (2.11) instead of having separate branches using Equation (2.6) for
the SRK EOS model and Equation (2.9) for the PR EOS model. It is worth noting that
branch predictors are often highly predictive, and some branches may therefore not hurt
the performance at all.

16

CHAPTER 3

METHODOLOGY

3.1 Single-phase Density Calculation

When a mixture is known to exist as only one phase, the molar volume can be calculated
using the Z-factor, which is found by solving the form of the EOS given by Equation (2.5).
In general, a cubic polynomial in the form f(x) = x3 + A2x

2 + A1x+ A0 can have three
different shapes, as shown in Figure 3.1, and will always go from negative to positive
as x goes from −∞ to ∞. Cubic polynomials with a saddle point or no extrema are
strictly monotonic, meaning there will only be one real and distinct root. However, if a
cubic polynomial has two extrema, it can have one, two, or three real roots, as shown
in Figure 3.2. Whenever three roots are found when solving Equation (2.5), the middle
root is discarded as it is deemed unphysical, and the root with the lowest Gibbs energy
is chosen. The condition of lowest Gibbs energy is also used when two roots are found.
It is shown in Appendix A that an equivalent expression to checking the root with the
lowest Gibbs energy is checking wether ln φ̄(Zlowest) < ln φ̄(Zlargest), where ln φ̄ is defined
as

ln φ̄(Z) = Z − 1− ln(Z −B)− 1

δ1 − δ2
· A
B

ln

(
Z + δ1B

Z + δ2B

)
, (3.1)

which is the same as the expression for the single component fugacity coefficient. This
equivalent condition is given by Danesh[17] and is less expensive to compute than the full
expression for the Gibbs energy.

17

CHAPTER 3. METHODOLOGY

Two Extrema One Saddle Point No Extrema

Figure 3.1: Schematic of possible shapes of a cubic polynomial.

x

y
=

0

x x x x

Figure 3.2: Possible locations of roots for a cubic polynomial with two extrema.

One potential issue with calculating the Gibbs energy or the fugacity coefficients and its
derivatives is the term Z − B, which can cause catastrophic cancellation when Z ≈ B.
However, this problem can be caused by solving for Ẑ = Z −B instead of Z. This results
in finding the roots of the following cubic polynomial instead

Ẑ3 + Â2Ẑ
2 + Â1Ẑ + Â0, (3.2)

where

Â0 = −δ1δ2B2, (3.3a)

Â1 = δ1δ2B
2 − (δ1 + δ2)B + A, (3.3b)

Â2 = (δ1 + δ2)B − 1. (3.3c)

The Z-factor can then be obtained using Z = Ẑ +B, which is free of any cancellation as
both the Z-factor and the parameter B are positive and Z > B.

3.1.1 Analytical Solution

The roots of a cubic polynomial can be found analytically using Cardano’s algorithm.
The algorithm is given in Numerical Recipes and is formulated as follows[18]:

18

CHAPTER 3. METHODOLOGY

1. Compute

Q =
A2

2 − 3A1

9
, (3.4a)

R =
2A3

2 − 9A2A1 + 27A0

54
. (3.4b)

2.a. If R2 < Q3, the cubic equation has three real roots which is found by calculating

x1 = −2
√
Q cos

(
θ

3

)
− A1

3
, (3.5a)

x2 = −2
√
Q cos

(
θ + 2π

3

)
− A1

3
, (3.5b)

x3 = −2
√
Q cos

(
θ − 2π

3

)
− A1

3
, (3.5c)

where

θ = arccos

(
R√
Q3

)
. (3.6)

2.b. If R2 >= Q3, then the cubic equation has only one real root, which is found by
calculating

x1 = (A+B)− A1

3
, (3.7)

where

A = −sgn(R)
(
|R|+

√
R2 −Q3

1/3
)
, (3.8a)

B =

{
Q/A, if A 6= 0

0, if A = 0
(3.8b)

(3.8c)

3. If multiple roots are found, discard the middle root and choose the root with the lowest
Gibbs energy using Equation (3.1).

As with the analytical solution of quadratic equations, the explicit formula for solving
cubic equations can suffer from catastrophic cancellation. Deiters reports that liquid
volumes obtained using Cardano’s formula can have relative errors up to 10−8 when the
theoretical precision is set to approximately 10−15[19]. As a solution, he proposes to follow
the calculation of cubic roots with a single Newton-Raphson iteration, i.e.

x = xC −
f(xC)

f ′(xC)
, (3.9)

where xC is the solution obtained from Cardano’s algorithm, and x is the solution with a
reduced round-off error. This step is often referred to as numerical refinement. Another
potential problem with the analytical formula is the computational cost associated with
evaluating expensive trigonometric functions and square roots.

19

CHAPTER 3. METHODOLOGY

3.1.2 Numerical Solution

A numerical algorithm can potentially be more beneficial when solving cubic equations
because of the round-off errors and computational cost of Cardano’s algorithm. Deiters
proposes the following numerical algorithm[19]:

1. Select an initial guess from the following formula

x(0) =

{
−r, if f(x∗) > 0

r, if f(x∗) ≤ 0
, (3.10)

where
r = 1 + max(|A0|, |A1|, |A2|), (3.11)

and x∗ is the location of the inflection point, which is given by x∗ = −A2/3.

2. Find the first root x1 using Halley’s method, which is given by

xn+1 = xn − f(xn)f ′(xn)

f ′(xn)2 − 1
2
f(xn)f ′′(xn)

. (3.12)

3. The remaining roots is found by deflating the cubic polynomial, which is an algorithm
that finds the quadratic polynomial h(x) that satisfies f(x) = (x − x1)h(x). This is
done by the following formula

h(x) = B2x
2 +B1x+B0, (3.13)

where

B2 = 1, (3.14a)

B1 = B2x1 + A2, (3.14b)

B0 = B1x1 + A1. (3.14c)

The potential roots of the quadratic polynomial h(x) are then found using the improved
quadratic formula given in Equation (2.39).

4. If multiple roots are found, discard the middle root and choose the root with the lowest
Gibbs energy using Equation (3.1).

Michelsen shows that a hybrid solution using Cardano’s algorithm to find one root and
deflating the cubic to obtain the remaining roots is as fast as the numerical approach[20],
but does not mention the potential round-off errors that can occur using the analytical
expression.

20

CHAPTER 3. METHODOLOGY

3.1.3 Proposed Algorithm

One potential disadvantage of the aforementioned methods is that they are not able to
utilize initial guesses from previous calculations. In a two-phase flash algorithm, the cubic
equation is solved once for each phase per iteration, and if the calculated Z-factors do not
change substantially from one iteration to the next, an initial guess-based approach using
the previous calculated Z-factors can decrease the computational time significantly. A
new algorithm utilizing initial guesses is therefore proposed.

1. Find all local extrema of the equation by solving the quadratic equation f ′(x) = 0 using
Equation (2.39).

2.a. If no extrema are found, the cubic will only have one real root. Find the root by
using the Newton-Raphson method or Halley’s method with the initial guess set to
the previously calculated value. If no previous value exists, use the inflection point, i.e.
x(0) = −1/3A2

2.b. If the cubic equation has local extrema, it can have multiple solutions. If the left-most
extremum is positive, a root is found using the Newton-Raphson method or Halley’s
method with the initial guess set to

x(0) =

{
xprevious, if xprevious < xmax

xmax − 1, else
(3.15)

where xmax is the location of the left-most extremum.

If the right-most extremum is negative, a root is found by using the Newton-Raphson
method or Halley’s method with the initial guess set to

x(0) =

{
xprevious, if xprevious > xmin

xmin + 1, else
(3.16)

where xmin is the location of the right-most extremum. Note that using xmax − 1 and
xmin− 1 as potential initial guesses is an arbitrary choice, but is guaranteed to converge
to the correct root.

3. If multiple roots are found, choose the root with the lowest Gibbs energy using Equa-
tion (3.1).

Another advantage of this algorithm is that no computational effort is used to calculate
unphysical middle roots. When initial guesses are chosen according to Equation (3.15) or
Equation (3.16), the left-most or right-most root is guaranteed to be found[19]. This can
be seen in Figure 3.3, where all initial guesses to the left of the local maximum converge
to the smallest root, while all initial guesses to the right of the local minimum converge
to the largest root.

21

CHAPTER 3. METHODOLOGY

−4 −2 0 2 4

−4

−2

0

2

4

Newton-Raphson Method

Converges to smallest root
Converges to middle root
Converges to largest root

−4 −2 0 2 4

−4

−2

0

2

4

Halley’s Method

Converges to smallest root
Converges to middle root
Converges to largest root

Figure 3.3: Convergence of different initial guesses on the cubic polynomial x3 + x2 − x− 0.5
using the Newton-Raphson method (left) and Halley’s method (right).

3.2 Two-phase Flash Calculation

3.2.1 Solution Strategy

There are several ways to perform an isothermal flash calculation, but the most common
solution algorithms available in the literature consist of the following four parts:

1. Obtaining initial K-values

2. Solving a material balance

3. Calculating phase properties

4. Updating the K-values

This procedure is shown in Figure 3.4 and represents the proposed methods by Michelsen[21],
Mehra el al.[22], Ammar and Renon[23], and Whitson and Brulé[3]. This procedure is
sometimes referred to as the equation-solving approach[24] and uses the K-values as
primary variables. Other methods also exist, such as the second-order minimization
method, which integrates the material balance step, and the reduced flash method, which
requires a small number of non-zero BIPs to be more efficient than the equation-solving
approach[25].

22

CHAPTER 3. METHODOLOGY

Set P, T, zi
Guess K-values

Solve Material Balance

Calculate Phase
Properties

Equal Fugacities?

Calculation Finished

Update K-values

Yes

No

Figure 3.4: Schematic of the K-value based flash calculation procedure.

3.2.2 Initial K-value Estimates

When performing a flash calculation, a set of initial K-values is needed. If the initial
K-value guess is too far away from the solution, the calculation can converge to a false
trivial solution, which is when Ki = 1 for all components. A solution where Ki = 1 means
that zi = xi = yi, which indicates that a phase can form an equilibrium with itself and is
therefore not a very useful result. To combat this, different methods of obtaining K-value

23

CHAPTER 3. METHODOLOGY

initial estimates have been developed.

The most common way of obtaining an initial guess of the K-values is through the use of
the Wilson equation[26]

Ki =
1

pri
exp

[
5.37(1 + ωi)

(
1− 1

Tri

)]
. (3.17)

The Wilson equation is inversely proportional with pressure, making it linear on a log-log
plot, and is therefore not able to predict the non-linear behavior of K-values at high
pressures. This can be seen in Figure 3.5, where the Wilson equation is only able to
estimate the K-values somewhat accurately at pressures below 10 bar. Because of this
limitation, K-values obtained by Equation (3.17) can cause the flash calculation to converge
to a trivial solution when a non-trivial solution exists, i.e. a non-trivial solution.

10−3 10−2 10−1 100 101 102 103

Pressure [Bar]

10−10

10−8

10−6

10−4

10−2

100

102

104

106

K
-v

al
ue

[-
]

K-values Wilson K-values

Figure 3.5: An example of K-values calculated with the Wilson equation vs the K-values
calculated from the flash calculations using a cubic EOS.

Another approach for obtaining initial K-values is by performing a stability analysis
calculation. The stability analysis calculation was first formulated by Michelsen[27] and is
based on the Gibbs tangent plane criterion presented by Baker et al.[28]. The stability

24

CHAPTER 3. METHODOLOGY

analysis calculation determines the correct number of phases at equilibrium but will also
provide a good approximation for the K-values. Using the K-values from a stability
analysis calculation as the initial K-values of a flash calculation is guaranteed to converge
to a non-trivial solution under certain conditions[3]. However, the stability analysis
calculation is as complex and can be as computationally intensive as the flash calculation
itself and is therefore not mentioned further in this work.

In most situations, the best estimates for the initial K-values are the K-values from a
previous flash calculation at nearby pressure and temperature conditions. Using the
previous flash calculation K-values are a good assumption n most practical applications
of the flash calculations. Examples include most standard PVT depletion experiments,
separator calculations and miscibility calculations to mention a few.

3.2.3 Solving the Material Balance

The most common solution approach to obey the material balance is to obtain the vapor
molar fraction by solving the Rachford-Rice equation and use the solution to calculate
the equilibrium phase compositions (xi, yi). Solving the material balance consist of
solving the Rachford-Rice equation and then obtaining the molar compositions of the two
phases. Muskat and McDowell published an equivalent formulation of Equation (2.30)
in 1949[29]. They developed a phase equilibrium solver that replaced the trial and error
methods that were used at the time[29]. Their solution for solving the equation was
to construct an equivalent electrical circuit where they could vary the voltage until the
measured current was zero. Three years later, in 1952, Rachford and Rice published
Equation (2.30) and proposed a bisection algorithm that could find its root automatically
using a computer[30].

An example of how the Rachford-Rice equation varies with vapor molar fraction is shown
in Figure 3.6. If Equation (2.30) is rearranged to

h(V) =
Nc∑
i=1

zi
V − ci

, (3.18)

the vertical asymptotes seen in Figure 3.6 corresponds to all component’s ci values. From
this, it is possible to show that the Rachford-Rice equation has Nc asymptotes, and
because of the monotonic behavior between asymptotes, there will be Nc − 1 roots.

25

CHAPTER 3. METHODOLOGY

-10 -5 Vmin 0 Vmax 5 10
Vapor Fraction, V

−10

−5

0

5

10

h(
V

)

Figure 3.6: Rachford-Rice function for a six-component system.

Equation (3.18) is often solved using the Newton-Raphson method

V (n) = V (n−1) − h(V (n−1))

h′(V (n−1))
, (3.19)

where

h′(V) = −
Nc∑
i=1

zi
(V − ci)2

. (3.20)

Other higher order root finding methods, such as Halley’s method, are also possible to
use without increasing the computational cost significantly. This is because higher order
derivatives of the Rachford-Rice equation are given by

hk(V) = (−1)n
Nc∑
i=1

zi
(V − ci)(k+1)

, (3.21)

where the sum can be efficiently calculated with the same for-loop as the sum in the
Rachford-Rice equation. En example of how this can be implemented in the Python
programming language is shown in Figure 3.7, where only one extra multiplication and
one extra addition for each component are required to calculate a derivative.

26

CHAPTER 3. METHODOLOGY

Figure 3.7: Efficiently evaluating the Rachford-Rice function, its derivative, and double derivative
using Python.

1 def evalute_rachford_rice(K_values , composition , V):

2 h = 0 # Rachford -Rice function

3 dh = 0 # Rachford -Rice derivative function

4 ddh = 0 # Rachford -Rice double derivative function

5 for i in range(len(composition)):

6 zi = composition[i]

7 Ki = K_values[i]

8 common_term = (Ki - 1) / (1 - V * (Ki - 1))

9

10 # Calculate and add RR term

11 rachford_rice_term = common_term * zi

12 h += rachford_rice_term

13

14 # Calculate and add derivative term

15 derivative_term = -rachford_rice_term * common_term

16 dh += derivative_term

17

18 # Calculate and add double derivative term

19 double_derivative_term = -derivative_term * common_term

20 ddh += double_derivative_term

21

22 return h, dh , ddh

The number of iterations of the root finding method is dependent on the initial guess
V (0). A common initial estimate is the midpoint of the negative flash solution space, given
by

V (0) =
1

2
(Vmin + Vmax). (3.22)

More accurate but more computationally heavy initial estimates also have been pro-
posed[11]. However, a good initial guess is often the calculated value of V at the previous
iteration of the flash.

The Newton-Raphson method generally requires few iterations but can sometimes overshoot
the bounds given by the negative flash region[8]. One way of avoiding this is to do a
bisection step if V is predicted below Vmin or above Vmax and continuously update the
bounds at each iteration. However, this approach can make the solution procedure slow,
especially if multiple bisection steps are needed. Michelsen and Mollerup[8] suggest starting
over again with a better initial guess if overshooting occurs. If the root-solving method
overshoots such that V < Vmin a better initial guess is then V NL

min , and if overshooting
occurs such that V > Vmax a new initial guess is then V NL

max. It can, in fact, be proven
that using the bounds V NL

min and V NL
max is guaranteed to converge if the Newton-Raphson

method is used.

However, while this is true mathematically, it is not necessarily true if the computation is

27

CHAPTER 3. METHODOLOGY

performed using finite-precision mathematics. An example of the Newton-Raphson failing
to converge to within machine-accurate precision is shown in Figure 3.8.

0 2 4 6 8 10
Iterations

10−16

10−13

10−10

10−7

10−4

10−1

|h
(V

)|

Nc = 2
z1 = 1−10−10, z2 = 10−10

K1 = 10, K2 = 10−10

Newton-Raphson

Figure 3.8: Newton-Raphson method for the Rachford-Rice equation with a binary mixture,
failing to lower residual past ≈ 10−7.

This has been reported several times before, most notably in the Rachford-Rice contest
from 1995 issued by Curtis Whitson[31]. The contest challenged the participants to
solve a set of compositions without violating the material balance and achieve as low
computational time as possible. Only two of the submissions beat Zick’s algorithm and
were also the only two to produce machine-accurate results. However, they were not
submitted by students and were also never published.

The only published literature to have claimed to fix the round-off error is the 1997
conference paper by Wang et al.[32]. However, they only considered the round-off errors in
the Rachford-Rice equation and not in the calculation of xi and yi. Equations 2.29a and
2.29b are used to calculate xi and yi, and are also used in the derivation of Equation (2.30).
Any round-off issues occurring in Equation (2.30) will therefore occur in the calculation
of the equilibrium phase compositions, which can lead to further inaccuracies when
calculating phase properties.

The material balance issues in the Rachford-Rice equation are due to Catastrophic
cancellation when V ≈ ci. A novel solution approach is presented by representing the
terms V −ci in a similar manner as in Equation (2.37). This means that the vapor fraction

28

CHAPTER 3. METHODOLOGY

needs to be represented as a sum

V =
N∑
n=0

δ(n). (3.23)

If the Newton-Raphson method converges after N iterations, the vapor molar fraction is
set to V (N). Using this fact together with Equation (3.23), the following definition can be
introduced

δ(n) = V (n) − V (n−1), (3.24)

and Equation (3.19) can be rewritten as

δ(n) = −h
(
V (n−1)) [dh

dV

(
V (n−1))]−1 . (3.25)

To make δ(n) a function δ(n−1), h can be replaced with

hn(δ) =
Nc∑
i=1

zi

δ − d(n)i

, (3.26)

where

d
(n)
i = ci −

n−1∑
k=0

δ(k). (3.27)

Equation (3.26) is a Rachford-Rice type equation and has the properties

hn(0) = h(V (n−1)), (3.28a)

dkhn
dδk

(0) =
dkh

dV k
(V (n−1)), (3.28b)

which means that Equation (3.25) can be written as

δ(n) = −hn(0)

[
dhn
dδ

(0)

]−1
. (3.29)

This can be presented in the following recursive notation

d
(n)
i =

{
ci, if n = 0,

d
(n−1)
i − δ(n−1), else.

(3.30a)

δ(n) =

{
V (0), if n = 0,

−hn(0)
[
dhn
dδ

(0)
]−1

, else.
(3.30b)

The recursive Newton-Raphson method given in Equation (3.30a) is written in the same
form as Equation (2.37), and will therefore mitigate any errors due to round-off. This can
been seen Figure 3.9, where the recursive Newton-Raphson method is applied to the same
case as in Figure 3.8 and no round-off issues are seen.

29

CHAPTER 3. METHODOLOGY

0 2 4 6 8 10
Iterations

10 16

10 13

10 10

10 7

10 4

10 1

|h
(V

)|

Nc = 2
z1 = 1 10 10, z2 = 10 10

K1 = 10, K2 = 10 10

Newton-Raphson Recursive Newton-Raphson

Figure 3.9: Recursive Newton-Raphson method for the Rachford-Rice equation with a binary
mixture, where round-off errors are mitigated.

After the recursive Newton-Raphson method have converged, the equilibrium phase
compositions can be calculated by

xi =
zici
dNi

, (3.31a)

yi = Kixi = Ki
zici
dNi

. (3.31b)

Equations 3.31a and 3.31b contains no additions or subtractions, which means that the
calculation of xi and yi is correct within machine precision[12].

3.2.4 Phase Property Calculations

The flash calculation is driven by the equal fugacity constraint, therefore the fugacities
of each phase must be calculated, given by Equation (2.22). To calculate the fugacity,
the Z-factor needs to be calculated using Equation (2.5), which requires the average A
and B parameters for each phase. These parameters are obtained using Equation (2.21),
and because the temperature and pressure are constant in every iteration of the flash,
the parameters Aij and Bi are constant for all iterations. The A parameter is calculated
using a quadratic mixing rule, which causes the calculation time to increase quadratically
with the number of components. By using the fact that zi = Lxi + V yi, Michelsen showed

30

CHAPTER 3. METHODOLOGY

that the computation time could be decreased by using the following equation

AVi =
Nc∑
j=1

yjAij =
1

V

(
Nc∑
j=1

zjAij − L
Nc∑
j=1

xjAij

)
=

1

V

(
Azi − LALi

)
. (3.32)

The feed composition zi is constant, which means that Azi is only needed to be calculated
once and AVi can be calculated directly from Equation (3.32) instead of computing the
full sum. A for the vapor and liquid phase, AV and AL, can then be calculated by

AV =
Nc∑
i=1

yiA
V
i , (3.33a)

AL =
Nc∑
i=1

xiA
L
i . (3.33b)

When the parameters A and B are obtained, the Z-factors for each phase are found using
one of the algorithms described in Section 3.1.

3.2.5 Successive Substitution

After the component fugacities are calculated, a new set of K-values can be found using
the equation

K
(n+1)
i =

(φLi)(n)

(φVi)(n)
. (3.34)

The residuals (rni) of the flash calculation at iteration n can be defined as

r
(n+1)
i = ∆ lnK

(n+1)
i = (lnφLi)(n) − (lnφVi)(n) − lnK

(n)
i . (3.35)

The equal fugacity constraint cna then be represented by

||ri|| < ε, (3.36)

where ε is an arbitrary convergence criteria set to 1−12 in this work. One choice for the
vector norm in Equation (3.36) is the infinity norm defined as

||Xi|| = max
i
|Xi|. (3.37)

If Equation (3.36) is not fulfilled, the material balance is again solved using the K-
values from Equation (3.34). This method of updating the K-values is called successive
substitution, which is a first-order fixed point method[21]. The rate of convergence of the
successive substitution method is determined by the largest eigenvalue (λl) of the matrix
S[21], defined by

Sij =

(
∂ lnKn+1

i

∂ lnKn
j

)
n→∞

, (3.38)

31

CHAPTER 3. METHODOLOGY

where the rate of convergence becomes worse as |λl| gets closer to 1. Whitson and Michelsen
show that as the pressure and temperature approach critical conditions, two eigenvalues of
S approach 1[10]. This means that the successive substitution method becomes very slow
near critical points, where thousands of iterations may be needed[3]. Various accelerated
fixed-point methods are therefore often used when updating K-values.

Prausnitz et al. recommends to use Wegstein’s method, given by

x(n+1) =
x(n−1)g(x(n))− x(n)g(x(n−1))

x(n−1) + g(x(n))− x(n) − g(x(n−1))
, (3.39)

where x is the primary variable and g(x) is a function with a fixed point at the solution. In

the case of the isothermal flash, x = lnKi and g(x) = (lnφLi)(n)−(lnφVi)(n) = lnK
(n)
i +r

(n)
i ,

and Equation (3.39) reduces to

r(n+1) = − r
(n)
i r

(n−1)
i

r
(n)
i − r(n−1)i

, (3.40)

where the residuals r
(n)
i and r

(n−1)
i is calculated using the successive substitution method.

Another accelerated method, which is recommended by [21], is the dominant eigenvalue
method (DEM) developed by Orbach and Crowe, given by

r(n+1) =
r(n)

1 + µ
, (3.41)

where

µ = −
√
b00
b11
, (3.42a)

bii =
Nc∑
j=1

(
r
(n−i)
j

)2
. (3.42b)

Equation (3.41) approximates the result where the successive substitution method is
applied infinite times, assuming that the matrix S is only dominated by one eigenvalue.
However, as mentioned previously, there exist two eigenvalues of the same magnitude
near the critical point. Because of this, Michelsen suggests that the general dominant
eigenvalue method (GDEM) by Nishio and Crowe[33] can be even more efficient[21].

The GDEM method generalizes the DEM to work with multiple dominant eigenvalues
and reduces to the following expression if two dominant eigenvalues are assumed.

r(n+1) =
r
(n)
i − µ2r

(n−1)
i

1 + µ1 + µ2

, (3.43)

32

CHAPTER 3. METHODOLOGY

where µ1 and µ2 are given by

µ1 =
b02b12 − b01b22
b11b22 − b212

, (3.44a)

µ2 =
b01b12 − b02b11
b11b22 − b212

, (3.44b)

where

bij = 〈r(n−i), r(n−j)〉. (3.45)

The symbol 〈·, ·〉 denotes the inner product given by

〈x,y〉 = xTWy, (3.46)

where W is a positive diagonal weighting matrix usually set to the identity matrix[21].

A common problem with accelerated methods is that they can often overshoot, which
causes the calculation to converge to a false trivial solution. This is not true when using
only successive substitution iterations, and it is therefore important to consider the ratio
between the number of accelerated iterations and successive substitution iterations. All
the mentioned accelerated successive substitution methods require that the previous
iterations are done using successive substitution. The procedure of first performing a
number of successive substitution iterations and then doing an accelerated step is often
called a promotion step. Michelsen and Mollerup recommend performing five successive
substitution iterations at each promotion step[8], but it is possible to use any number
greater than or equal to four.

3.2.6 The Newton-Raphson Method

Another method of updating K-values is by using the Newton-Raphson method. Michelsen
suggests using the following formulation of the Newton-Raphson method

Jij · ri = −gi, (3.47)

where ri = ∆ lnKi and gi = ln fVi − ln fLi and the jacobian matrix is defined by

J = BA−1 (3.48)

with

Aij =
zi
xiyj

δij − 1, (3.49a)

Bij = Aij + L
∂ lnφVi
∂nVj

+ V
∂ lnφLi
∂nLj

, (3.49b)

33

CHAPTER 3. METHODOLOGY

where δij is the Kronecker delta defined as

δij =

{
1, if i = j,

0, if i 6= j.
(3.50)

The fugacity coefficient derivatives in Equation (3.49b) can be found using the approach
given by Mollerup and Michelsen[34], and the system of linear equations given in Equa-
tion (3.47) can be solved by using the decomposition

B = LDLT , (3.51)

where L is a lower triangular matrix and D is a positive diagonal matrix. The two matrices
are found by the following formulas[35]

Dii = Bii −
i−1∑
k=0

B2
ikBkk, (3.52a)

Lij =

(
Bij −

i−1∑
k=0

BikDkkBjk

)
1

Dii

. (3.52b)

When the two matrices L and D are obtained, Equation (3.47) can be solved by

r = −AL−TD−1L−1g (3.53)

The Newton-Raphson method is a second-order method and will therefore generally
converge in fewer iterations than any successive substitution method. However, the
Newton-Raphson method is significantly more computationally expensive as it requires
storing matrices, performing matrix operations, and calculating fugacity derivatives. In
addition, the Newton-Raphson method can fail to converge if the initial guess is too far
from the solution because the jacobian matrix might not be positive definite[8]. Michelsen,
therefore, advises starting with either two or three accelerated successive substitution
promotion steps before the Newton-Raphson method is used[8].

3.3 Data Generation

3.3.1 EOS models and Compositions

Testing of the various methods was performed by using three PR EOS models, which
can be found in Appendix B. The first model is a 35-component model, while the two
others are lumped versions of that EOS. Lumping an EOS means reducing the number
of components, which is done by grouping certain components together into one pseudo-
component[9]. For instance, it is common to lump ethane and CO2 together because they
have similar phase properties. Using a lumped EOS will reduce computational time, but
the accuracy of the model will generally be worse. The two lumped EOS models have 14

34

CHAPTER 3. METHODOLOGY

and 9 components and are made using the default lumping method in PhazeComp. To
get an indication of how similar the different EOS models are, the phase envelopes of a
given test composition are shown in Figure 3.10.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

35-Component EOS
14-Component EOS
9-Component EOS

Critical Point, 35-Component EOS
Critical Point, 14-Component EOS
Critical Point, 9-Component EOS

Figure 3.10: Phase envelopes of a test mixture using a 35-component EOS and two lumped EOS
models with 14 and 9 components. Note: The calculated phase envelopes using the 35-component
and 14-component models coincides almost entirely.

To test how the flash calculations methods perform with different fluid systems, seven
synthetic compositions have been generated using whitson+[36]. The different compositions
can be found in Appendix C as well as their calculated phase envelopes using the three
EOS models.

3.4 Performance Testing

C++ is a compiled programming language, which means that all code is translated to
machine instructions before the code is executed. Examples of non-compiled languages

35

CHAPTER 3. METHODOLOGY

are Python and MATLAB, which are both examples of interpreted languages. They
both translate code into machine instructions while the programming is running. This
translation is costly, and compiled languages are often faster than interpreted languages
because of this. Another benefit of compiled languages such as C++ is that extensive code
optimization is performed before code is turned into machine instructions. But because
different implementations are easier to optimize than others, it will make it harder to know
what will make a program run faster without actually testing it. Therefore, it is beneficial
to use performance testing tools when writing performance-critical code in C++.

3.4.1 Profiling - Callgrind

Callgrind is an open-source profiling tool part of the Valgrind tool package, which tracks
the function calls of a program and outputs how long each function runs. This enables
programmers to identify the functions that are potential performance bottlenecks of
a program. For instance, a 20% reduction of a function that uses 40% of the total
computation time will reduce the overall run time by 8%, while a 99% reduction of
a function that uses 1% of the total computation time will only reduce the overall
computation time by 0.99%. When a program is used together with Callgrind, it will
run significantly slower, meaning that the reported execution time of each function is
not a meaningful metric, and the percentage of the total execution time should be used
instead.

3.4.2 Benchmarking - Google Benchmark

Another tool that can be used in tandem with Callgrind is Google’s Benchmark C/C++
library. The library can be used to create benchmarks that times a specific part of a
program multiple times and that output the average execution time. Multiple bench-
marks can run in series, which makes it easy to test different implementations of the
same functionality. A code optimization strategy that proved to be very effective when
implementing the flash calculation is given below.

1. Make flash calculation benchmarks at some specified temperatures and pressures.

2. Run the benchmarks while running Callgrind and find a function that uses a significant
amount of the total execution time.

3. Try to write a more efficient implementation of the function. As mentioned earlier,
there is no predictable way of improving the performance of a program, but trying to
improve cache locality, removing branches, or changing an algorithm can all potentially
lead to a performance increase.

4. Make a benchmark of the new function and run it with Callgrind to see if the new
implementation’s execution time is lower than that of the old implementation.

5. Run both the old and new benchmarks to see if overall execution time went down. To
get accurate execution times, it is important to run the benchmarks without Callgrind.

36

CHAPTER 3. METHODOLOGY

6. If a performance increase is detected, the new optimized function is used. If no
performance benefits are found, the new implementation is discarded if it makes the
code harder to read or maintain.

37

CHAPTER 3. METHODOLOGY

38

CHAPTER 4

RESULTS AND DISCUSSION

The data used for testing in the following sections were generated by performing multiple
flash calculations in a pressure and temperature grid, ranging from 1 bar to 500 bar
and 0oC to 500oC with a step size of 2 units for both axes. All flash calculations were
initialized with the results of an a priori flash calculation performed at 100oC and 150
bar. This choice will ensure that the successive substitution method will converge to a
non-trivial solution for every flash calculation inside the convergence envelope, and will
highlight issues related to convergence to false trivial solutions.

4.1 Cubic Solvers

Four different cubic equation solving methods were tested: Deiters’ numerical method,
Michelsen’s hybrid method, and two different versions of the numerical method described
in subsection 3.1.3 using the Newton-Raphson method and Halley’s method. In Table 4.1
it can be seen that the initial guess-based Newton-Raphson method performed the best out
of all methods. The difference in the results of the three other methods is not conclusive.
This is in line with the conclusion described by Michelsen[20]. Figure 4.1 shows that the
choice of a cubic equation solver does not impact the overall flash calculation performance
behavior.

Table 4.1: Total execution time for non-trivial flashes using different cubic solvers.

Execution Time (ms) Flashes per second
Method 35C 14C 9C Total Total
Newton-Raphson 66103 19503 12322 97929 6259
Halley 76015 20314 11987 108318 5659
Deiters 71402 21234 14545 107182 5719
Michelsen 73138 23533 15283 111955 5475

39

CHAPTER 4. RESULTS AND DISCUSSION

Shading artifacts are seen in Figure 4.1. This is due to the uncertainty in the run time
caused by external factors. External factors may be related to other programs running
simultaneously, heat, etc. The total execution time reported in Table 4.1 will average
these effects to some extent.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
104

105

106

107

108

(a) Michelsen’s hybrid method.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
104

105

106

107

108

(b) Deiters’ method.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
104

105

106

107

108

(c) Initial-guess based Newton-Raphson method.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
104

105

106

107

108

(d) Initial-guess based Halley’s method.

Figure 4.1: Execution time of flash calculations vs temperature and pressure of composition 1
with the 35-component EOS model where different cubic equation solving methods are used.

4.2 Rachford Rice Solvers

Three different methods for solving the Rachford-Rice equation were tested for performance:
The Newton-Raphson method, Halley’s method, and the novel recursive Newton-Raphson
method. Table 4.2 shows that the recursive Newton-Raphson method is significantly
faster than the Newton-Raphson method by approximately 6% and Halley’s method by
approximately 8% on the total runtime of the flash calculation for the 35-component
EOS.

40

CHAPTER 4. RESULTS AND DISCUSSION

The difference in execution time is less significant with decreasing amount of components.
This is expected because the number of operations in the Rachford-Rice equation linearly
increases with the number of components.

Table 4.2: Total execution time for different Rachford-Rice solvers.

Execution Time (ms) Flashes per second
Method 35C 14C 9C Total Total
Newton-Raphson 75574 19499 12063 107137 5720
Halley 76584 22191 14842 113619 5394
Recursive Newton-Raphson 71162 18615 12095 101873 6017

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Rachford-Rice Iterations

101

102

103

104

105

(a) Newton-Raphson method.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Rachford-Rice Iterations

101

102

103

104

105

(b) Halley’s method.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Rachford-Rice Iterations

101

102

103

104

105

(c) Recursive Newton-Raphson method.

Figure 4.2: Number of Rachford-Rice iterations vs temperature and pressure of composition 4
with the 35-component EOS model where different Rachford-Rice solving methods are used.

The number of Rachford-Rice iterations increases near the phase boundary and the converge

41

CHAPTER 4. RESULTS AND DISCUSSION

pressure because the number of flash iterations increases near these boundaries.

4.3 Accelerated Successive Substitution

Three different accelerated successive substitution methods were tested and compared to
the standard successive substitution method. These acceleration methods are Wegstein’s
method, DEM and GDEM. Five successive substitution steps were used before performing
the acceleration step. This procedure was used for all methods.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

1.0

(a) Successive Substitution.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

1.0

(b) DEM.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

1.0

(c) GDEM.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

1.0

(d) Wegstein’s method

Figure 4.3: Calculated molar vapor fraction of composition 7 using 35-Component inside the
two-phase region using different successive substitution methods. Note: Blank regions denote
trivial solution or negative flash region.

Figures 4.3 and 4.4 shows that the robustness of the successive substitution method is
lost when applying acceleration methods. The DEM acceleration has the most severe loss
of robustness. The GDEM and Wegstein’s method have comparable area of convergence,

42

CHAPTER 4. RESULTS AND DISCUSSION

meaning that a similar amount of the total flash calculations performed converges to
non-trivial solutions. However, the GDEM has a more continuous area of convergence
and is therefore more predictable than the Wegstein’s method.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

(a) Successive Substitution.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

(b) DEM.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

(c) GDEM.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Vapor Fraction Positive Flash

0.0

0.2

0.4

0.6

0.8

(d) Wegstein’s method

Figure 4.4: Calculated molar vapor fraction of composition 3 using 14-Component inside the
two-phase region using different successive substitution methods. Note: Blank regions denote
trivial solution or negative flash region.

As expected based on the extensive literature, the successive substitution method is
slower than all the acceleration methods. The GDEM is the fastest when converging to a
non-trivial solution, however, the DEM and Wegstein’s method are also comparable.

43

CHAPTER 4. RESULTS AND DISCUSSION

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(a) Successive Substitution.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(b) DEM.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(c) GDEM.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]
Execution time

ns
103

104

105

106

107

108

(d) Wegstein’s method

Figure 4.5: Execution time of flash calculations using composition 7 and the 35-Component
inside the two-phase region using different successive substitution methods. Note: Blank regions
denote trivial solution or negative flash region.

4.4 The Newton-Raphson Method

The Newton-Raphson K-value update method was tested and compared to the successive
substitution method without acceleration. The different cases use an increasing amount of
successive substitution steps before initiating the Newton-Raphson method. The number
of successive substitution steps was set to 20, 30, 40, and 50.

44

CHAPTER 4. RESULTS AND DISCUSSION

Table 4.3: Total execution time the Newton-Raphson method preceded by a number of successive
substitutions iterations.

Execution Time (ms) Flashes per second
SS iterations 35C 14C 9C Total Total
Only SS 66103 19503 12322 97929 6259
20 61649 15424 5062 82137 7356
30 58619 14994 5531 79144 7568
40 54035 14696 5756 74488 8007
50 56601 15631 6971 79204 7511

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(a) Only successive substitution.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(b) 20 successive substitution steps.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(c) 30 successive substitution steps.

0 100 200 300 400 500
Temperature [◦C]

100

200

300

400

Pr
es

su
re

[b
ar

]

Execution time

ns
103

104

105

106

107

108

(d) 40 successive substitution steps.

Figure 4.6: Newton-Raphson K-value update method using different numbers of initial successive
substitution steps.

Figure 4.6 shows that the Newton-Raphson method is as robust as the successive substi-
tution method.

45

CHAPTER 4. RESULTS AND DISCUSSION

Table 4.3 shows that the Newton-Raphson method decreases execution time compared
to the successive substitution method. Comparing Figures 4.5 and 4.6, the GDEM is
faster than the Newton-Raphson method for most cases where the GDEM converges.
Table 4.3 shows that there exist an optimal number of successive substitution steps
between 30 and 50. Table 4.3 also shows that the reduction in execution time for the
Newton-Raphson method significantly increases as the number of components decreases.
This is as expected because the number of operations in the Newton-Raphson method is
quadratically proportional to the number of components.

46

CHAPTER 5

CONCLUSION

1. A framework for developing a performant implementation of the two-phase isothermal
flash calculation was proposed. Aspects of modern computer architecture and pro-
gramming are discussed, such as cache locality, branching, compiled versus interpreted
programming languages and profiling.

2. A novel method for solving for the roots of the cubic equation of state was developed
and was shown to have a better performance than Deiters’ numerical method and
Michelsen’s hybrid method.

3. A novel method for solving the Rachford-Rice equation without severe round-off errors
was proposed and was shown to have a better performance than the conventional
Newton-Raphson method and Halley’s method.

4. The DEM, GDEM and Wegstein’s method were implemented and was shown to in-
crease performance, but was also shown to be less robust than the standard successive
substitution method. Of the three acceleration methods, the GDEM was shown to have
the best overall performance.

5. The Newton-Raphson K-value update method was implemented and shown to be as
robust as the successive substitution method with a better performance.

6. No conclusive results were found to show that accelerated successive substitution or the
Newton-Raphson method is superior in all cases. This indicates that a heuristic-based
hybrid model will yield the best overall performance.

47

CHAPTER 5. CONCLUSION

48

CHAPTER 6

FURTHER WORK

Based on the results in this thesis, a list of items for further investigation is proposed
below.

1. Develop a heuristic-based hybrid algorithm utilizing the best aspects of accelerated
successive substitution methods and the Newton-Raphson method.

2. Implement and test the stability analysis calculation and determine how the resulting K-
value estimates will impact the performance of the two-phase isothermal flash calculation.

3. Implement and test the second-order Gibbs minimization method developed by Michelsen[20]
and compare the results to the equation-based approach proposed in this work.

49

CHAPTER 6. FURTHER WORK

50

BIBLIOGRAPHY

[1] Émile Clapeyron. “Mémoire sur la puissance motrice de la chaleur”. In: Journal de
l’École polytechnique 14 (1834), pp. 153–190.

[2] Marshall B Standing and Donald L Katz. “Density of natural gases”. In: Transactions
of the AIME 146.01 (1942), pp. 140–149.

[3] C.H. Whitson and M.R. Brulé. Phase Behavior. Henry L. Doherty Series. Henry
L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers, 2000. isbn:
9781555630874.

[4] K. R. Hall and L. Yarborough. “A new equation of state for Z-factor calculations”.
In: Oil Gas J 71 (1973), p. 82.

[5] G. Soave. “Equilibrium constants from a modified Redlich-Kwong equation of
state”. In: Chemical engineering science 27 (1972), pp. 1197–1203. doi: https:
//doi.org/10.1016/0009-2509(72)80096-4.

[6] D. B. Robinson and D. Y. Peng. The characterization of the heptanes and heavier
fractions for the GPA Peng-Robinson programs. Gas processors association, 1978.

[7] A. Péneloux, E. Rauzy, and R. Fréze. “A consistent correction for Redlich-Kwong-
Soave volumes”. In: Fluid phase equilibria 8 (1982), pp. 7–23. doi: https://doi.
org/10.1016/0378-3812(82)80002-2.

[8] M.L. Michelsen and J.M. Mollerup. Thermodynamic Models: Fundamentals & Com-
putational Aspects. Tie-Line Publications, 2007. isbn: 9788798996132. url: https:
//books.google.no/books?id=qjmeOgAACAAJ.

[9] Keith H Coats. “Simulation of gas condensate reservoir performance”. In: Journal
of Petroleum Technology 37.10 (1985), pp. 1870–1886.

[10] Curtis H Whitson and Michael L Michelsen. “The negative flash”. In: Fluid phase
equilibria 53 (1989), pp. 51–71. doi: https://doi.org/10.1016/0378-3812(89)
80072-X.

[11] Dan Vladimir Nichita and Claude F Leibovici. “A rapid and robust method for
solving the Rachford–Rice equation using convex transformations”. In: Fluid Phase

51

https://doi.org/https://doi.org/10.1016/0009-2509(72)80096-4
https://doi.org/https://doi.org/10.1016/0009-2509(72)80096-4
https://doi.org/https://doi.org/10.1016/0378-3812(82)80002-2
https://doi.org/https://doi.org/10.1016/0378-3812(82)80002-2
https://books.google.no/books?id=qjmeOgAACAAJ
https://books.google.no/books?id=qjmeOgAACAAJ
https://doi.org/https://doi.org/10.1016/0378-3812(89)80072-X
https://doi.org/https://doi.org/10.1016/0378-3812(89)80072-X

BIBLIOGRAPHY

Equilibria 353 (2013), pp. 38–49. doi: https://doi.org/10.1016/j.fluid.2013.
05.030.

[12] David Goldberg. “What every computer scientist should know about floating-point
arithmetic”. In: ACM computing surveys (CSUR) 23.1 (1991), pp. 5–48.

[13] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.
[14] Ulrich Drepper. “What every programmer should know about memory”. In: Red

Hat, Inc 11 (2007), p. 2007.
[15] Bjarne Stroustrup. Bjarne Stroustrup: Why you should avoid linked lists. July 2012.

url: https://www.youtube.com/watch?v=YQs6IC-vgmo&ab_channel=
AlessandroStamatto.

[16] Techopedia. What is a branch? - definition from Techopedia. Sept. 2016. url:
https://www.techopedia.com/definition/18058/branch.

[17] Ali Danesh. PVT and phase behaviour of petroleum reservoir fluids. Elsevier, 1998.
[18] Saul A Teukolsky et al. “Numerical recipes in C”. In: SMR 693.1 (1992), pp. 59–70.
[19] Ulrich K Deiters. “Calculation of densities from cubic equations of state”. In: AIChE

Journal 48.4 (2002), pp. 882–886.
[20] Michael L Michelsen. “Speeding up the two-phase PT-flash, with applications for

calculation of miscible displacement”. In: Fluid Phase Equilibria 143.1-2 (1998),
pp. 1–12.

[21] Michael L Michelsen. “The isothermal flash problem. Part II. Phase-split calculation”.
In: Fluid phase equilibria 9.1 (1982), pp. 21–40.

[22] Rakesh K Mehra, Robert A Heidemann, and Khalid Aziz. “An accelerated successive
substitution algorithm”. In: The Canadian Journal of Chemical Engineering 61.4
(1983), pp. 590–596.

[23] MN Ammar and H Renon. “The isothermal flash problem: new methods for phase
split calculations”. In: AIChE journal 33.6 (1987), pp. 926–939.

[24] YS Teh and GP Rangaiah. “A study of equation-solving and Gibbs free energy
minimization methods for phase equilibrium calculations”. In: Chemical Engineering
Research and Design 80.7 (2002), pp. 745–759.

[25] Michael L Michelsen, Wei Yan, and Erling H Stenby. “A comparative study of
reduced-variables-based flash and conventional flash”. In: SPE Journal 18.05 (2013),
pp. 952–959.

[26] Grant M Wilson. “A modified Redlich-Kwong equation of state, application to
general physical data calculations”. In: 65th National AIChE Meeting, Cleveland,
OH. Vol. 15. 1969.

[27] Michael L Michelsen. “The isothermal flash problem. Part I. Stability”. In: Fluid
phase equilibria 9.1 (1982), pp. 1–19.

[28] Lee E Baker, Alan C Pierce, and Kraemer D Luks. “Gibbs energy analysis of phase
equilibria”. In: Society of Petroleum Engineers Journal 22.05 (1982), pp. 731–742.

[29] M Muskat and JM McDowell. “An electrical computer for solving phase equilibrium
problems”. In: Journal of Petroleum Technology 1.11 (1949), pp. 291–298. doi:
https://doi.org/10.2118/949291-G.

52

https://doi.org/https://doi.org/10.1016/j.fluid.2013.05.030
https://doi.org/https://doi.org/10.1016/j.fluid.2013.05.030
https://www.youtube.com/watch?v=YQs6IC-vgmo&ab_channel=AlessandroStamatto
https://www.youtube.com/watch?v=YQs6IC-vgmo&ab_channel=AlessandroStamatto
https://www.techopedia.com/definition/18058/branch
https://doi.org/https://doi.org/10.2118/949291-G

BIBLIOGRAPHY

[30] Henry H Rachford and JD Rice. “Procedure for use of electronic digital computers
in calculating flash vaporization hydrocarbon equilibrium”. In: Journal of Petroleum
Technology 4.10 (1952), pp. 19–3. doi: https://doi.org/10.2118/952327-G.

[31] Curtis Whitson. The Rachford-Rice Contest. 1995. url: http://www.ipt.ntnu.
no/~curtis/courses/Rachford- Rice- Contest/RRcontest.pdf (visited on
12/07/2021).

[32] A New Generation EOS Compositional Reservoir Simulator: Part I - Formulation
and Discretization. Vol. All Days. SPE Reservoir Simulation Conference. SPE-37979-
MS. June 1997. doi: 10.2118/37979-MS. eprint: https://onepetro.org/spersc/
proceedings- pdf/97RSS/All- 97RSS/SPE- 37979- MS/1940265/spe- 37979-

ms.pdf. url: https://doi.org/10.2118/37979-MS.
[33] Cameron M Crowe and Masatoshi Nishio. “Convergence promotion in the simulation

of chemical processes—the general dominant eigenvalue method”. In: AIChE Journal
21.3 (1975), pp. 528–533.

[34] Jorgen M Mollerup and Michael L Michelsen. “Calculation of thermodynamic
equilibrium properties”. In: Fluid phase equilibria 74 (1992), pp. 1–15.

[35] Aravindh Krishnamoorthy and Deepak Menon. “Matrix inversion using Cholesky
decomposition”. In: 2013 signal processing: Algorithms, architectures, arrangements,
and applications (SPA). IEEE. 2013, pp. 70–72.

[36] Bilal Younus. Fluid definition module. url: https://manual.whitson.com/

modules/fluid-definition/#initial-gor-and-stock-tank-api.

53

https://doi.org/https://doi.org/10.2118/952327-G
http://www.ipt.ntnu.no/~curtis/courses/Rachford-Rice-Contest/RRcontest.pdf
http://www.ipt.ntnu.no/~curtis/courses/Rachford-Rice-Contest/RRcontest.pdf
https://doi.org/10.2118/37979-MS
https://onepetro.org/spersc/proceedings-pdf/97RSS/All-97RSS/SPE-37979-MS/1940265/spe-37979-ms.pdf
https://onepetro.org/spersc/proceedings-pdf/97RSS/All-97RSS/SPE-37979-MS/1940265/spe-37979-ms.pdf
https://onepetro.org/spersc/proceedings-pdf/97RSS/All-97RSS/SPE-37979-MS/1940265/spe-37979-ms.pdf
https://doi.org/10.2118/37979-MS
https://manual.whitson.com/modules/fluid-definition/#initial-gor-and-stock-tank-api
https://manual.whitson.com/modules/fluid-definition/#initial-gor-and-stock-tank-api

BIBLIOGRAPHY

54

ACRONYMS

BIPs Binary Interaction Parameters.
DEM Dominant Eigenvalue Method.
EOS Equation of State.
GDEM General Dominant Eigenvalue Method.
PR Peng-Robinson.
SRK Soave-Redlich-Kwing.

55

Acronyms

56

Appendices

57

58

APPENDIX A

LOWEST GIBBS ENERGY CONDITION

When solving the Z-factor equation given by Equation (2.5), multiple solutions can exists.
The correct solution is the Z-factor with the lowest Gibbs energy, which can be determined
using the following equation

G(Z1,u, p) < G(Z2,u, p), (A.1)

where Z1 and Z2 are two different solutions of Equation (2.5) and

G(Z,u, p) = RT
Nc∑
i=1

ui ln(fi(Z,u, p)), (A.2)

where fi(Z,u, p) is the component fugacity given by

fi(Z,u, p) = φi(Z,u) · ui · p. (A.3)

Combining Equations A.2 and A.3 results in the following expression

G(Z,u, p) = RT

Nc∑
i=1

ui lnφi(Z,u) +RT

Nc∑
i=1

ui lnui +RT

Nc∑
i=1

ui ln p, (A.4)

where φi(Z,u) is calculated by the expression

lnφi(Z,u) =
Bi

B
(Z − 1)− ln(Z −B) +

1

δ1 − δ2
A

B

(
Bi

B
− 2

A

Nc∑
j=1

ujAij

)
ln

(
Z + δ1B

Z + δ2B

)
.

(A.5)

Because
∑Nc

i=1 ui = 1,
∑Nc

i=1 ui
Bi

B
= 1, and

∑Nc

i=1 ui
∑Nc

j=1 uj
Aij

A
= 1 it can be shown

that

Nc∑
i=1

ui lnφi(Z,u) = Z − 1− ln(Z −B)− 1

δ1 − δ2
A

B
ln

(
Z + δ1B

Z + δ2B

)
= ln φ̄(Z), (A.6)

59

APPENDIX A. LOWEST GIBBS ENERGY CONDITION

where φ̄(Z) is the function for the pure-component fugacity, which means that Equa-
tion (A.4) can be expressed as

G(Z,u, p) = RT ln φ̄(Z) +RT

Nc∑
i=1

ui lnui +RT

Nc∑
i=1

ui ln p. (A.7)

If a constant composition and pressure is given, Equation (A.7) can be expressed as

G(Z,u, p) = RT ln φ̄(Z) +RT · C(u, p). (A.8)

Because the term C(u, p) only varies with composition and pressure and RT > 0, an
equivalent condition for Equation (A.1) is therefore

ln φ̄(Z1) < ln φ̄(Z2). (A.9)

60

APPENDIX B

EOS MODELS

The following sections give the component properties and binary interaction parameters for
the 35-component, 14-component, and 9-component PR EOS models. The 35-component
EOS is the parent model from which the 14- and 9-component EOS models were lumped
from using the PhazeComp default lumping procedure.

61

APPENDIX B. EOS MODELS

B.1 35-component EOS model

Table B.1: Component properties for the 35-component PR EOS model.

Component MW pc (bar) Tc (K) ω s
N2 28.01400 33.98012 126.20000 0.037000 -0.167580

CO2 44.01000 73.74011 304.12222 0.225000 0.001910
H2S 34.08200 89.62977 373.40000 0.090000 -0.044700
C1 16.04300 45.99010 190.56111 0.011000 -0.149960
C2 30.07000 48.71973 305.32222 0.099000 -0.062800
C3 44.09700 42.47998 369.82778 0.152000 -0.063810

i-C4 58.12300 36.40018 407.85000 0.186000 -0.061970
n-C4 58.12300 37.95977 425.12222 0.200000 -0.053930
i-C5 72.15000 33.80982 460.38889 0.229000 -0.056460
n-C5 72.15000 33.70019 469.70000 0.252000 -0.029270
C6 84.02100 34.22764 514.62222 0.235610 -0.030240
C7 97.79100 31.74415 550.36667 0.270550 -0.017110
C8 111.72700 29.26962 581.42222 0.309140 -0.001000
C9 125.70600 27.05985 609.00000 0.348500 0.015340
C10 139.69500 25.12794 633.78889 0.387890 0.031050
C11 153.68400 23.44217 656.28333 0.427050 0.045820
C12 167.66900 21.96669 676.82778 0.465860 0.059490
C13 181.65100 20.67048 695.70556 0.500430 0.072000
C14 195.62800 19.52664 713.14444 0.536440 0.083320
C15 209.60100 18.51242 729.32778 0.571690 0.093460
C16 223.57000 17.60921 744.40000 0.606170 0.102460
C17 237.53700 16.80252 758.50000 0.639880 0.110370
C18 251.50000 16.07926 771.72778 0.672810 0.117230
C19 265.46100 15.42840 784.17222 0.704960 0.123110
C20 279.42000 14.84027 795.92222 0.736350 0.128080
C21 293.37700 14.30731 807.04444 0.766980 0.132190
C22 307.33300 13.82399 817.58889 0.796860 0.135510
C23 321.28800 13.38272 827.61667 0.826000 0.138100
C24 335.24200 12.98007 837.17222 0.854420 0.140010
C25 349.19600 12.61051 846.28889 0.882120 0.141290
C26 363.15000 12.27129 855.00556 0.909130 0.142000
C27 377.10300 11.95896 863.36111 0.935450 0.142180
C28 391.05600 11.67075 871.37222 0.961100 0.141870
C29 405.01000 11.40393 879.06667 0.986090 0.141120

C30+ 550.00000 9.50235 944.87222 1.210620 0.114130

62

APPENDIX B. EOS MODELS

Table B.2: Component BIPs for the 35-component PR EOS model.

N2 CO2 H2S C1 C2 C3 i-C4 n-C4 i-C5 n-C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30+
N2 0.00 0.00 0.13 0.03 0.01 0.09 0.10 0.10 0.10 0.11

CO2 0.00 0.00 0.14 0.11 0.13 0.13 0.12
H2S 0.13 0.14 0.00 0.07 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.05
C1 0.03 0.11 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.10
C2 0.01 0.13 0.09 0.00
C3 0.09 0.13 0.08 0.00

i-C4 0.10 0.12 0.08 0.00
n-C4 0.10 0.12 0.08 0.00
i-C5 0.10 0.12 0.07 0.00
n-C5 0.11 0.12 0.07 0.00
C6 0.11 0.12 0.06 0.00
C7 0.11 0.12 0.05 0.03 0.00
C8 0.11 0.12 0.05 0.03 0.00
C9 0.11 0.12 0.05 0.03 0.00
C10 0.11 0.12 0.05 0.04 0.00
C11 0.11 0.12 0.05 0.04 0.00
C12 0.11 0.12 0.05 0.05 0.00
C13 0.11 0.12 0.05 0.05 0.00
C14 0.11 0.12 0.05 0.05 0.00
C15 0.11 0.12 0.05 0.06 0.00
C16 0.11 0.12 0.05 0.06 0.00
C17 0.11 0.12 0.05 0.06 0.00
C18 0.11 0.12 0.05 0.07 0.00
C19 0.11 0.12 0.05 0.07 0.00
C20 0.11 0.12 0.05 0.07 0.00
C21 0.11 0.12 0.05 0.07 0.00
C22 0.11 0.12 0.05 0.07 0.00
C23 0.11 0.12 0.05 0.08 0.00
C24 0.11 0.12 0.05 0.08 0.00
C25 0.11 0.12 0.05 0.08 0.00
C26 0.11 0.12 0.05 0.08 0.00
C27 0.11 0.12 0.05 0.08 0.00
C28 0.11 0.12 0.05 0.09 0.00
C29 0.11 0.12 0.05 0.09 0.00

C30+ 0.11 0.12 0.05 0.10 0.00

63

APPENDIX B. EOS MODELS

B.2 14-component EOS model

Table B.3: Component properties for the 14-component PR EOS model.

Component MW pc (bar) Tc (K) ω s
N2 28.014 33.9801 126.200 0.03700 -0.16758

CO2 44.010 73.7401 304.122 0.22500 0.00191
H2S 34.082 89.6298 373.400 0.09000 -0.04470
C1 16.043 45.9901 190.561 0.01100 -0.14996
C2 30.070 48.7197 305.322 0.09900 -0.06280
C3 44.097 42.4800 369.828 0.15200 -0.06381
C4 58.123 37.6661 421.872 0.19736 -0.05545
C5 72.150 33.7552 465.334 0.24112 -0.04201

C6-C7 88.943 33.2777 527.723 0.24831 -0.02511
C8-C10 122.388 27.5105 602.370 0.33974 0.01259
C11-C14 173.003 21.4311 683.873 0.48103 0.06507
C15-C19 234.953 16.9440 755.671 0.63385 0.10890
C20-C29 334.713 13.0230 836.308 0.85238 0.13793

C30+ 550.000 9.5023 944.872 1.21062 0.11413

Table B.4: Component BIPs for the 14-component PR EOS model.

N2 CO2 H2S C1 C2 C3 C4 C5 C6-C7 C8-C10 C11-C14 C15-C19 C20-C29 C30+
N2 0.00000 0.00000 0.13000 0.03000 0.01000 0.09000 0.10000 0.10532 0.11000 0.11000 0.11000 0.11000 0.11000 0.11000

CO2 0.00000 0.00000 0.14000 0.11000 0.13000 0.13000 0.12000 0.12000 0.12000 0.12000 0.12000 0.12000 0.12000 0.12000
H2S 0.13000 0.14000 0.00000 0.07000 0.09000 0.08000 0.08000 0.07000 0.05612 0.05000 0.05000 0.05000 0.05000 0.05000
C1 0.03000 0.11000 0.07000 0.00000 0.00000 0.00000 0.00000 0.00000 0.01163 0.03265 0.04734 0.06388 0.07845 0.10000
C2 0.01000 0.13000 0.09000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C3 0.09000 0.13000 0.08000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C4 0.10000 0.12000 0.08000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C5 0.10532 0.12000 0.07000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

C6-C7 0.11000 0.12000 0.05612 0.01163 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C8-C10 0.11000 0.12000 0.05000 0.03265 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C11-C14 0.11000 0.12000 0.05000 0.04734 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C15-C19 0.11000 0.12000 0.05000 0.06388 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C20-C29 0.11000 0.12000 0.05000 0.07845 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

C30+ 0.11000 0.12000 0.05000 0.10000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

64

APPENDIX B. EOS MODELS

B.3 9-component EOS model

Table B.5: Component properties for the 9-component PR EOS model.

Component MW pc (bar) Tc (K) ω s
H2S 34.082 89.6298 373.400 0.09000 -0.04470

N2-C1 16.045 45.9876 190.547 0.01100 -0.14996
C2-CO2 30.079 48.7254 305.289 0.09903 -0.06277

C3 44.097 42.4800 369.828 0.15200 -0.06381
C4 58.123 37.6661 421.872 0.19736 -0.05545
C5 72.150 33.7552 465.334 0.24112 -0.04201

C6-C9 99.086 31.2513 552.116 0.27667 -0.01197
C10-C29 229.682 17.2362 746.545 0.62281 0.10424

C30+ 550.000 9.5023 944.872 1.21062 0.11413

Table B.6: Component BIPs for the 9-component PR EOS model.

H2S N2-C1 C2-CO2 C3 C4 C5 C6-C9 C10-C29 C30+
H2S 0.00000 0.07000 0.08996 0.08000 0.08000 0.07000 0.05355 0.05000 0.05000

N2-C1 0.07000 0.00000 -0.00001 0.00001 0.00001 0.00001 0.01934 0.06354 0.10000
C2-CO2 0.08996 -0.00001 0.00000 0.00000 -0.00001 -0.00001 -0.00001 -0.00001 -0.00001

C3 0.08000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C4 0.08000 0.00001 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C5 0.07000 0.00001 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

C6-C9 0.05355 0.01934 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
C10-C29 0.05000 0.06354 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

C30+ 0.05000 0.10000 -0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

65

APPENDIX B. EOS MODELS

66

APPENDIX C

COMPOSITIONS

The following section contains the different molar compositions used in this work and
their respective phase envelopes generated using the equations of state models given in
Appendix B. The compositions were generated using a GOR recombination method in
whitson+.

67

APPENDIX C. COMPOSITIONS

C.1 Composition 1

Table C.1: Composition 1

Component zi Component zi
N2 0.000100 C14 0.002782

CO2 0.000100 C15 0.002635
H2S 0.000010 C16 0.002099
C1 0.527534 C17 0.001963
C2 0.151570 C18 0.001941
C3 0.115419 C19 0.001754

i-C4 0.013518 C20 0.001441
n-C4 0.058222 C21 0.001344
i-C5 0.016890 C22 0.001238
n-C5 0.018721 C23 0.001148
C6 0.018418 C24 0.001056
C7 0.010245 C25 0.001000
C8 0.009987 C26 0.000943
C9 0.006180 C27 0.000902
C10 0.004967 C28 0.000852
C11 0.003845 C29 0.000803
C12 0.003105 C30+ 0.014043
C13 0.003226

68

APPENDIX C. COMPOSITIONS

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(b) 14-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.1: Calculated phase envelope of composition 1.

69

APPENDIX C. COMPOSITIONS

C.2 Composition 2

Table C.2: Composition 2

Component zi Component zi
N2 0.000000 C14 0.014193

CO2 0.000000 C15 0.013463
H2S 0.000000 C16 0.010738
C1 0.302785 C17 0.010051
C2 0.090750 C18 0.009948
C3 0.075527 C19 0.009004

i-C4 0.010212 C20 0.007403
n-C4 0.049152 C21 0.006910
i-C5 0.020518 C22 0.006375
n-C5 0.026113 C23 0.005913
C6 0.041915 C24 0.005449
C7 0.035526 C25 0.005164
C8 0.043930 C26 0.004876
C9 0.029884 C27 0.004666
C10 0.024837 C28 0.004410
C11 0.019454 C29 0.004163
C12 0.015783 C30+ 0.074457
C13 0.016434

70

APPENDIX C. COMPOSITIONS

0 100 200 300 400 500 600
Temperature [◦C]

0

50

100

150

200

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 100 200 300 400 500 600
Temperature [◦C]

0

50

100

150

200

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(b) 14-component EOS.

0 100 200 300 400 500 600
Temperature [◦C]

0

50

100

150

200

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.2: Calculated phase envelope of composition 2.

71

APPENDIX C. COMPOSITIONS

C.3 Composition 3

Table C.3: Composition 3

Component zi (%) Component zi (%)
N2 0.000000 C14 0.011165

CO2 0.000000 C15 0.010414
H2S 0.000000 C16 0.008171
C1 0.426327 C17 0.007532
C2 0.104258 C18 0.007334
C3 0.075707 C19 0.006528

i-C4 0.010628 C20 0.005283
n-C4 0.040873 C21 0.004859
i-C5 0.015399 C22 0.004415
n-C5 0.019543 C23 0.004036
C6 0.027027 C24 0.003665
C7 0.031248 C25 0.003422
C8 0.038117 C26 0.003183
C9 0.025477 C27 0.003001
C10 0.020820 C28 0.002793
C11 0.016045 C29 0.002595
C12 0.012823 C30+ 0.034167
C13 0.013145

72

APPENDIX C. COMPOSITIONS

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(b) 14-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.3: Calculated phase envelope of composition 3.

73

APPENDIX C. COMPOSITIONS

C.4 Composition 4

Table C.4: Composition 4

Component zi Component zi
N2 0.000000 C14 0.007698

CO2 0.000000 C15 0.007035
H2S 0.000000 C16 0.005411
C1 0.542823 C17 0.004894
C2 0.110948 C18 0.004673
C3 0.071655 C19 0.004075

i-C4 0.010374 C20 0.003234
n-C4 0.032767 C21 0.002921
i-C5 0.011415 C22 0.002608
n-C5 0.014463 C23 0.002340
C6 0.017561 C24 0.002088
C7 0.024758 C25 0.001914
C8 0.029652 C26 0.001749
C9 0.019383 C27 0.001619
C10 0.015514 C28 0.001478
C11 0.011720 C29 0.001348
C12 0.009197 C30+ 0.013434
C13 0.009249

74

APPENDIX C. COMPOSITIONS

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(b) 14-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.4: Calculated phase envelope of composition 4.

75

APPENDIX C. COMPOSITIONS

C.5 Composition 5

Table C.5: Composition 5

Component zi Component zi
N2 0.000000 C14 0.006006

CO2 0.000000 C15 0.005380
H2S 0.000000 C16 0.004060
C1 0.606607 C17 0.003606
C2 0.109830 C18 0.003379
C3 0.065728 C19 0.002888

i-C4 0.009769 C20 0.002251
n-C4 0.026984 C21 0.001997
i-C5 0.009118 C22 0.001751
n-C5 0.011629 C23 0.001545
C6 0.013326 C24 0.001354
C7 0.021504 C25 0.001221
C8 0.025736 C26 0.001096
C9 0.016573 C27 0.000997
C10 0.013030 C28 0.000894
C11 0.009663 C29 0.000800
C12 0.007451 C30+ 0.006468
C13 0.007358

76

APPENDIX C. COMPOSITIONS

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(b) 14-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.5: Calculated phase envelope of composition 5.

77

APPENDIX C. COMPOSITIONS

C.6 Composition 6

Table C.6: Composition 6

Component zi Component zi
N2 0.000000 C14 0.004803

CO2 0.000000 C15 0.004269
H2S 0.000000 C16 0.003198
C1 0.638750 C17 0.002820
C2 0.111245 C18 0.002621
C3 0.064832 C19 0.002224

i-C4 0.009635 C20 0.001720
n-C4 0.025483 C21 0.001516
i-C5 0.008379 C22 0.001320
n-C5 0.010620 C23 0.001156
C6 0.011556 C24 0.001007
C7 0.018642 C25 0.000901
C8 0.021786 C26 0.000804
C9 0.013814 C27 0.000726
C10 0.010748 C28 0.000646
C11 0.007904 C29 0.000574
C12 0.006050 C30+ 0.004320
C13 0.005931

78

APPENDIX C. COMPOSITIONS

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(b) 14-component EOS.

0 100 200 300 400 500
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.6: Calculated phase envelope of composition 6.

79

APPENDIX C. COMPOSITIONS

C.7 Composition 7

Table C.7: Composition 7

Component zi Component zi
N2 0.000000 C14 0.004103

CO2 0.000000 C15 0.003581
H2S 0.000000 C16 0.002635
C1 0.669039 C17 0.002285
C2 0.108464 C18 0.002088
C3 0.060470 C19 0.001739

i-C4 0.009132 C20 0.001322
n-C4 0.022268 C21 0.001147
i-C5 0.007243 C22 0.000982
n-C5 0.009235 C23 0.000847
C6 0.009832 C24 0.000725
C7 0.017270 C25 0.000639
C8 0.020376 C26 0.000561
C9 0.012805 C27 0.000498
C10 0.009818 C28 0.000436
C11 0.007103 C29 0.000381
C12 0.005351 C30+ 0.002470
C13 0.005158

80

APPENDIX C. COMPOSITIONS

0 50 100 150 200 250 300 350 400
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(a) 35-component EOS.

0 50 100 150 200 250 300 350 400
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint

(b) 14-component EOS.

0 50 100 150 200 250 300 350 400
Temperature [◦C]

0

50

100

150

200

250

300

350

400

Pr
es

su
re

[b
ar

]

Bubblepoint Dewpoint Critical Point

(c) 9-component EOS.

Figure C.7: Calculated phase envelope of composition 7.

81

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Henrik Lia

Computational Aspects of the Two-
phase Isothermal Flash

Master’s thesis in MTPROD
Supervisor: Even Solbraa
June 2022

M
as

te
r’s

 th
es

is

	Summary
	Sammendrag
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Theory
	Equation of State Calculations
	Equations of State
	Cubic Equations of State
	Volume Shifts
	Gibbs Energy and Equilibrium Conditions
	Single-Component Systems
	Multi-Component Systems
	The Flash Calculation
	Negative Flash

	Floating-point Arithmetic
	Round-off Errors
	Catastrophic Cancellation

	Cache Storage and Branching
	Cache Locality
	Branching

	Methodology
	Single-phase Density Calculation
	Analytical Solution
	Numerical Solution
	Proposed Algorithm

	Two-phase Flash Calculation
	Solution Strategy
	Initial K-value Estimates
	Solving the Material Balance
	Phase Property Calculations
	Successive Substitution
	The Newton-Raphson Method

	Data Generation
	EOS models and Compositions

	Performance Testing
	Profiling - Callgrind
	Benchmarking - Google Benchmark

	Results and Discussion
	Cubic Solvers
	Rachford Rice Solvers
	Accelerated Successive Substitution
	The Newton-Raphson Method

	Conclusion
	Further Work
	Bibliography
	Acronyms
	Appendices
	Lowest Gibbs Energy Condition
	EOS Models
	35-component EOS model
	14-component EOS model
	9-component EOS model

	Compositions
	Composition 1
	Composition 2
	Composition 3
	Composition 4
	Composition 5
	Composition 6
	Composition 7

