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Abstract

A well maintained pavement is important for road safety, and targeted
maintenance is important for maximising the socioeconomic impact from the
resources allocated. Through the project SMARTer maintenance, the Norwegian
University of Science and Technology (NTNU) and the Norwegian Public Roads
Administration target this problem by developing technology, methods and
competence to improve and streamline maintenance of Norway’s road network.

This thesis investigates the change in rut depth, the rutting, as a measure of
pavement deterioration, along the European route E16 between Bergen and Voss
in the Western part of Norway for the years 2015 to 2020. The aim is to locate
factors responsible for increased rutting, and use the results to predict the rut
depth forward in time. We investigate the effect of traffic intensity, road width,
and road cover type, being either asphalt concrete (Ab), asphalt gravel concrete
(Agb), or stone mastic asphalt (Ska). We also investigate adding spatial fields to
the model, and include a random yearly effect. A spatial stationary model, and
a spatial non-stationary model varying with the traffic intensity are presented.
The spatial fields consist of one time constant common field, and annually
varying spatial fields. The models are proposed within a Bayesian framework
as latent Gaussian models (LGMs), where the spatial fields are modeled as
Gaussian random fields (GRFs).

The results show that there are evidence that there is a spatial dependence,
and that that spatial dependence varies with the traffic intensity. The spatial
non-stationary model is therefore used for prediction. The results show that
road cover type stone mastic asphalt gives the least expected rutting, while
road cover type asphalt gravel concrete gives the most. The expected rutting
also increases with an increase in traffic intensity. When the road width is
narrower, the expected rutting increases, following from the fact that when
the road is narrow, the wheels of the vehicles lie in the same lane leading to
more stress on the road at this point. The spatial effect from the time constant
common field gives the difference from the expected rutting if there were no
spatial effect. This shows that there is less than expected rutting near Bergen,
and more than expected rutting towards Voss. Prediction of the rutting for
the European route E16 between Bergen and Voss is done for the year 2021,
allowing to calculate the predicted rut depth. Based on limits of the rut depth
before repaving, a stretch exceeding this is identified.
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Sammendrag

Et godt vedlikeholdt vegdekke er viktig for trafikksikkerheten og målrettet
vedlikehold er viktig for å maksimere den samfunnsøkonomiske effekten av
ressursene som tildeles. Gjennom prosjektet SMARTere vedlikehold har Norges
teknisk-naturvitenskapelige universitet (NTNU) og Statens vegvesen angrepet
denne problemstillingen ved å utvikle teknologi, metoder og kompetanse for å
forbedre og effektivisere vedlikeholdet av det norske vegnett.

Denne avhandlingen undersøker endringen i spordybde som mål på
vegdekkeslitasje langs Europavei 16 (E16) mellom Bergen og Voss på Vestlandet
for årene 2015 til 2020. Målet er å lokalisere faktorer som er ansvarlige for økt
spordannelse, og å bruke resultatene til å forutsi spordybden frem i tid. Vi
undersøker effekten av trafikkintensitet, vegbredde, og vegdekketype, bestående
enten av asfaltbetong (Ab), asfaltgrusbetong (Agb) eller skjelletasfalt (Ska).
Vi undersøker også å legge til romlige felt i modellen og inkluderer en tilfeldig
årseffekt. En romlig stasjonær modell og en romlig ikke-stasjonær modell som
varierer med trafikkintensiteten presenteres. De romlige feltene består av ett
tidskonstant felles felt, og årlig varierende romlige felt. Modellene er foreslått
innenfor et Bayesiansk rammeverk som latente Gaussiske modeller (LGM), hvor
de romlige feltene er modellert som Gaussiske tilfeldige felt (GRF).

Resultatene viser at det er tegn for at det er en romlig avhengighet,
og at den romlige avhengigheten varierer med trafikkintensiteten. Den
romlige ikke-stasjonære modellen brukes derfor til prediksjon. Resultatene
viser at vegdekketypen skjelettasfalt gir minst forventet spordannelse, mens
vegdekketypen asfaltgrusbetong gir mest. Forventet spordannelse øker også
med økt trafikkintensitet. Når vegbredden er smalere, øker den forventede
spordannelsen, som følger av at når vegen er smal ligger hjulene på kjøretøyene
i tilnærmet samme posisjon hele tiden, som fører til mer belastning på denne
delen av vegen. Den romlige effekten fra det tidskonstante felles feltet gir
forskjellen fra forventet spordannelse dersom det ikke var inkludert en romlig
effekt. Dette visert at det er ventet mindre enn antatt spordannelse nær Bergen,
og at det er ventet mer enn antatt spordannelse mot Voss. Prediksjon av
spordannelse for E16 mellom Bergen og Voss gjøres for år 2021, som gjør det
mulig å beregne forventet spordybde. Basert på grenser spordybden kan bli før
asfaltering må skje, identifiserer en strekning som overskrider denne og trenger
asfaltering.
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CHAPTER 1

Introduction

The project SMARTer maintenance (SMARTere vedlikehold) is a collaboration
between the Norwegian Public Roads Administration (Statens vegvesen, NPRA),
the Norwegian University of Science and Technology (NTNU), and NTNU
Technology Transfer AS. This project aims to develop technology, methods and
competence to improve and streamline maintenance of Norway’s road network
(Norwegian University of Science and Technology, 2022b). This Master’s thesis
considers the rutting, that is, the change in rut depth, along European route
E16 between Bergen and Voss in the western most part of Norway. The aim is to
locate effects responsible for increased rutting, and also to investigate whether
spatial properties of the road impacts the rutting. In addition to spatial effects
and yearly random effects, the traffic intensity, road cover type, and road width
is used for inference and prediction of the rutting.

The road network in Norway had an estimated value of NOK 1600 billion in
2015 (Norwegian University of Science and Technology, 2022a), and the total cost
to eliminate the maintenance backlog on the national and county road network
lies between NOK 70 billion and NOK 115 billion (Sund, 2012; Sund, 2013). For
the national road network, about 25 percent of this cost is related to pavements
and draining, while the number is about 46 percent for the county road network.
Over NOK 7 billion is spent annually for operation and maintenance of the
national road network to ensure safety and accessibility (Norwegian Public Roads
Administration, 2020). As the Norwegian road network falls under increasing
strain from increased traffic intensity and challenging weather conditions, the
roads lifetime could be reduced, and continuous maintenance is required.

Under ideal conditions, a solid pavement has an expected lifetime of between
20 and 30 years (Myre and Refsdal, 2005). Aurstad et al. (2016) finds that
repavement occurs for Norwegian roads after around 15 years, which is between
5 and 15 years of pavement lost compared to ideal conditions. The rut depth
(spordybde) is often used for measuring the condition of the surface of the
pavement, and this is a measurement of the surface depression in the wheel path
(Saba et al., 2006). These rut depths in the pavement may be caused by several
factors, where we postulate that the traffic intensity, the road cover type, the
road width, and spatial effects play a part. An increased rut depth prevents
drainage, which causes hydroplaning and further deteriorates the road. We
quantify the change in rut depth from the summer of one year to the summer
of the next year, labeled as the rutting. The rutting for the year 2020 will then
be defined as the change in rut depth between the summer of 2019 and the
summer of 2020.
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The study area is the European route E16 between Bergen and Voss, which
constitutes about 80 kilometers of road. This road stretch is located in the
western part of Norway, which is one of the places in Norway with the most
annual precipitation. As increased water on the road decreases its lifetime
(Aurstad et al., 2016), this stretch of road is suitable for the exploration of the
rutting. The road stretch is divided into road segments of length 20 meters for
which the rutting is calculated. The road measurements are measured by the
NPRA, and Vedvik (2021) provided these for the years 2015 to 2020.

On the road in the study area, European route E16 between Bergen and Voss,
there are three types of road cover, asphalt concrete (asfaltbetong, Ab), asphalt
gravel concrete (asfaltgrusbetong, Agb), and stone mastic asphalt (skjelettasfalt,
Ska). Usually asphalt concrete or stone mastic asphalt are used on roads with
a high traffic intensity, while asphalt gravel concrete is used on roads with a
low traffic intensity. There are several criteria for choosing the right road cover,
including the traffic intensity, cost, access to materials, local conditions, and
suitable properties such as noise, deformation and aging (Norwegian Public
Roads Administration, 2022a). One would, according to spokespeople the
NPRA, expect an increased rutting for the asphalt gravel concrete, compared
to the two other road cover types.

The road width, which is the width of one lane of the road, also varies along
the study area. With a low road width one would expect the vehicles driving
on the road to lie in roughly the same position, giving more strain on this part
of the road. With an increase in the road width the vehicles would be able to
move more freely and use more of the width of the road. This would in turn
result in the stress on the road being more distributed, and thus a lower rutting
would be expected for a wider road.

Saba et al. (2006) showed that the observed average rutting increased with
respect to an increasing traffic intensity. This is in accordance with Ebrahimi
et al. (2019), which found that roads exposed to greater traffic volumes are more
prone to shorter lifetimes. The traffic intensity is reported as the annual average
daily traffic (AADT), which is defined as the average 24 hour traffic volume
at a given location over a full 365 days per year (Molugaram and Rao, 2017).
The AADT varies between the different road cover types and road widths, so
looking at the interaction between the AADT and these other effects would be
of interest.

According to guidelines, the maximum allowed rut depth is 25 millimeters for
road stretches with an AADT of lower than 5000, while the maximum allowed
rut depth is 20 millimeters for road stretches with an AADT of higher than
5000 before repaving (Norwegian Public Roads Administration, 2014). The
rutting for 2021, for which there is no data available for us, will be predicted
through the proposed model, and the results will be interpreted to determine
whether repaving is necessary.

The use of studded tires on Alaskan roads was investigated by Lundy et
al. (1992), and they found that the use of studded tires contribute greatly to
the development of ruts in pavement. This, however, is difficult to quantify
in this study, and is therefore not included. This also applies to the share
of heavy traffic vehicles operating on the study area, where Sinkhonde and
Ngoma (2020) found an increase in rutting with a higher share of heavy traffic
vehicles. These two effects, among the other ones which are not explained, will
then be explained through uncertainty in the model.

2



Svenson et al. (2016) considers roads in Sweden, using mixed proportional
hazards models with random effects in addition to an intrinsic conditional
autoregressive model to evaluate the spatial correlation between road segments.
This resulted in the estimation that 17 percent of the unexplained variation in the
lifetime between road segments was explained by the spatial correlation between
the road segments. Another conclusion was that the spatial correlation between
road segments existed up to 4 kilometers. Studies by Lea and Harvey (2015a)
and Lea and Harvey (2015b) have also examined the spatial variability, which
concluded with the correlation scale being less than approximately 50 meters.

The objective of this thesis is to develop a model for the rutting with
uncertainty on Norwegian roads using available data from European route E16
between Bergen and Voss in the years 2015 to 2020. This may allow the NPRA
to be able to identify areas for which the rutting is greater than expected, and
also areas in need of repaving. Another objective is to investigate the spatial
dependencies along the road, and whether this spatial dependence is stationary
or non-stationary.

We propose three models for the rutting, where one is without spatial effects,
and two includes spatial effects. The spatial effects are modeled as Gaussian
random fields (GRFs), where we include one spatial field for each of the years
2017 to 2020 in the study period, and one time constant common spatial field.
The framework introduced by Ingebrigtsen, Lindgren and Steinsland (2014) and
Ingebrigtsen, Lindgren, Steinsland and Martino (2015) is used for including
explanatory variables in the dependence structure of a GRF. We include the
traffic intensity (AADT) to model the spatial non-stationarity.

For the non-spatial model, a Bayesian linear regression is preformed, while
for the spatial models a Bayesian three-stage hierarchical model is used as latent
Gaussian models (LGMs). A Gaussian random field (GRF) is included in the
latent field in the LGM, making the model flexible. Through the stochastic
partial differential equation (SPDE) approach to spatial modeling, the GRF is
represented as a Gaussian Markov random field (GMRF) with Matérn covariance
function (Lindgren, Rue and Lindström, 2011). This allows for the use of the
integrated nested Laplace approximation (INLA), which is computationally
superior to the more traditional Markov chain Monte Carlo (MCMC) methods
(Rue, Martino and Chopin, 2009), implemented in the R-INLA package in R.

The rest of the text is organised as follows:

Chapter 2 consists of a description of the study area and an exploratory
data analysis. The study area, the European route E16 between Bergen
and Voss, is described including the road measurements, rutting, traffic
intensity, road cover, and road width. An exploratory data analysis is
then preformed where the variables are discussed in more detail, and
spatial dependencies are discussed.

Chapter 3 introduces the mathematical background needed in the thesis. It
introduces the concept of Bayesian statistics and latent Gaussian models
(LGMs), before Gaussian random fields (GRFs) and Gaussian Markov
random fields (GMRFs) are introduced. Laplace approximations, and a
discussion around the integrated nested Laplace approximation (INLA)
framework follows before the chapter concludes with the stochastic
differential equation (SPDE) approach for spatial modeling, and an
introduction of different model assessment criteria.

3



Chapter 4 describes the different statistical models for the rutting. A non-
spatial model is first introduced, with a discussion of the choice of priors
for the parameters. A model with fixed effects, random effects, and
stationary GRFs is then introduced. The choice of priors for this model
is then discussed. Then, a non-stationary model is introduced, where
the non-stationarity is modeled as an effect of varying traffic intensity.
The choice of priors for the non-stationary model is then discussed. Both
spatial models are fitted as latent Gaussian models, where the stochastic
partial differential equation method for spatial modeling ensures fast
Bayesian inference using the integrated nested Laplace approximation
framework. The chapter is concluded with a discussion of the inference
and prediction of the models, and the software used, including a link to
GitHub where relevant code and data can be found.

Chapter 5 shows the results of the models introduced in the previous chapter.
The results of the rutting is presented for the fixed, random, and spatial
effects, where parameter estimates are given with credible intervals. A
comparison of the models are then given, looking at model selection
criteria, the effect of adding spatial fields, and the effect of the non-
stationarity. The chapter is concluded with a prediction of the rutting
and rut depth of the European route E16 between Bergen and Voss for
2021 with uncertainty.

Chapter 6 gives a discussion, some concluding remarks, and some suggestions
for further work.

Appendix A shows the methods for approximating the posterior marginals for
the hyperparameters and the posterior marginals for the latent field for
using the integrated nested Laplace approximation.

Appendix B lists the estimates of the parameters for the spatial effects for
the stationary and non-stationary models. Credible intervals of the
estimates are discussed, and also the reasonability of a non-stationary
model compared to a stationary model.

Appendix C contains the results for the spatial effects of the spatial stationary
and spatial non-stationary models when using a sum-to-zero constraint on
the spatial effects. The reasonability of using this constraint is discussed,
along with why we chose not to use it.
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CHAPTER 2

Study Area, Data, and Exploratory
Data Analysis

In this chapter, the study area and characteristics about the road measurements
are presented. The rutting, traffic intensity, road cover type, and road width are
discussed along the study area. The chapter concludes with an exploratory data
analysis of the rutting with summary statistics, together with spatial variability,
and the relation between the traffic intensity and road cover type.

2.1 European Route E16 Between Bergen and Voss

The study area is the European Route E16 between Bergen and Voss in the
western part of Norway, in Vestland county, enclosed in the area shown in
Figure 2.1. A map of the road is shown in Figure 2.7, and from this it is
clear that the road lies in an area with a lot of fjords and mountains, an
illustration of which is shown in Figure 2.2, where the road lies close to the fjord
in mountainous terrain. The road in question is approximately 80 kilometers
long, and lies mostly in rural areas with steep slopes. The road is divided into

Figure 2.1: The study area, enclosed in the green box, is located in the western
part of Norway, in Vestland county.
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2.2. Rutting

Figure 2.2: An illustration of the road on the European route E16 between
Bergen and Voss. The road lies close to the fjord, and in mountainous terrain.
(Photo: Øystein H. Brekke. Published: Wikimedia Commons.)

road segments of length 20 meters where the measurements are reported. This
is the main road going east to west in Norway, and connecting Bergen to the
capital Oslo.

2.2 Rutting

2.2.1 Data

The rut is a long track made by the repeated passage of the wheels of vehicles,
and we consider the change in rut dept between each consecutive year as a
metric for road deterioration. We quantify the change in rut depth from the
summer of one year to the summer of the next year, labeled as the rutting.
The rutting for the year 2020 will then be defined as the change in rut depth
between the summer of 2019 and the summer of 2020. Letting dit be the rut
depth for road segment i = 1, . . . , n in year t = 1, . . . , T , the rutting rit is then
defined as

rit = dit − di,t−1,

for road segment i = 1, . . . , n in year t = 1, . . . , T .
Data on the rutting for each segments and each year from 2015 to 2020 was

provided courtesy of Vedvik (2021), however we use the rutting from year 2017
to 2020, which is obtained in the data cleaning described in Section 2.2.2. The
density of the rutting for each of the years 2017 to 2020 is shown in Figure 2.3.
From this the rutting for 2019 is larger than for the other years, and the
variability also seams greatest for this year, while the rutting for 2020 has the
lowest variability.

Performing a summary statistic on the rutting each year gives the results
in Table 2.1. The mean of the rutting is largest in 2019, followed by 2017.
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2.2. Rutting
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Figure 2.3: The density of the rutting for each of the years from 2017 to 2020.

Year Mean Standard
deviation Minimum Maximum Missing

observations
2017 1.14 1.05 −5.7 12.4 1778
2018 0.96 0.92 −3.3 14.0 73
2019 1.77 1.20 −4.5 28.5 117
2020 0.84 0.89 −5.8 11.8 347

Table 2.1: The summary statistic for the rutting in the years 2017 to 2020.

The average annual rutting for each segment, and the corresponding density of
this average rutting, over the years 2017 to 2020, is shown in Figure 2.4. The
average annual rutting is mostly positive, and mostly lies below 2.5 millimeters.
It is in general greater closer to Bergen with some spikes distributed along the
road.

2.2.2 Cleaning of Data

Annual road condition measurements are made available for the years 2015
to 2020 along the European route E16 between Bergen and Voss courtesy of
Vedvik (2021). These measurements measure the rut depth, and are made
available each 20 meters.

The measurements does not start at the exact same location every year, and
thus the measurements for the year 2020 is used as a basis for creating each
of the road segments (Vedvik, 2021). For each of the years 2015 to 2019, the
road segments corresponding to the road segment in 2020 is then found as the
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(a) The average annual rutting.
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Figure 2.4: The average annual rutting for each road segment, and the density
of the average rutting, over the years 2017 to 2020.

0

10

20

30

40

50

2015 2016 2017 2018 2019
Year

D
is

ta
nc

e 
(m

et
er

)

Figure 2.5: The Euclidean distance between the road segments in 2020 to those
in 2015 to 2019.

one with the lowest Euclidean distance to the basis. If no errors are present
this distance should not exceed 10 meters, but as Figure 2.5 shows, there are
some larger distances, especially for the years 2015 to 2018. A visual inspection
reveal that the reason for this may be that the road has been slightly altered
during this period (Vedvik, 2021).

Summarizing the measurements, some are incomplete, namely those in 2015
and 2016. In the years from 2018 to 2020 there are 4032 road segments with
valid measurements, while there is 4022 road segments with valid measurements
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2.3. Traffic Intensity

in 2017. The European route E16 between Bergen and Voss consists of 4032
road segments in total, so for these years there is very little missing segments.
For the years 2015 and 2016 however, there are 2600 and 2789 road segments
with valid measurements, respectively. This corresponds to 35.4% and 30.8%
missing segments. Thus, all the data presented in the following are based on the
measurements from 2017 to 2020, and not including the years 2015 and 2016.
This is the reason 2017 is the year with the most missing rutting observations
in Table 2.1, because there are little data for the rut dept in 2016 to calculate
the rutting in 2017.

The interest for road deterioration lies in positive values for the rutting, as
negative values may occur from repaving or uncertainty in the measurements
of the rut depth, coming from the position of the measurements or the
measurements themselves. To separate out these values the filtering

rit =
{
rit if rit ≥ −dit/2,
NaN otherwise,

is applied to the rutting. That is, if the rutting is at least half the rut depth the
value is kept, otherwise the rutting for segment i in year t is set to a missing
value. Performing this filtering on the data gives 2315 NaN values over all
the years in the study period, constituting approximately 16.8% of the road
segments.

The rut dept and the rutting for a subset of the study area1 containing
250 road segments, constituting 5 kilometers, in proximity to Ytre Arna in
Bergen municipality is shown in Figure 2.6. The rut dept increases for each
year between 2017 and 2019, however, for large amounts of the road stretch,
the rut dept decreases in 2020, indicating maintenance. Corresponding to these
decreases in rut depth, the rutting is set to missing values, indicating that the
filtering works as it should.

2.3 Traffic Intensity

The traffic intensity is measured in the annual average daily traffic (AADT),
where different methods for calculating the AADT is discussed in Giæver
and Johansen (2011). The AADT is extracted from Norwegian Public Roads
Administration (2022b), and is reported as stretches of one kilometers of road
with the same intensity, based on measuring points along the road. Figure 2.7
shows the AADT along the study area, and we observe a decrease in the AADT
from west to east, with the lowest value of 4500 vehicles in the easternmost part
close to Voss, and the highest value of 17200 vehicles close to Bergen in the
west. The density of the different values of the AADT can be seen in Figure 2.8,
and this shows that most of the road stretch has an AADT below 6000 vehicles.

The AADT is assumed to be equal for each of the years in the study period,
and by manually checking the AADT at eleven measuring locations along the
road, available for each of the years, the maximal difference in AADT is only
between 5.9% and 13.4% (Norwegian Public Roads Administration, 2022b).
This makes the assumption of equal traffic intensity for each of the years in the
study period plausible.

1This subset has a high annual average daily traffic, ranging from 15000 to 17200 vehicles.
Traffic intensity is discussed more in Section 2.3.
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(a) The rut depth.
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Figure 2.6: The rut depth and rutting over the years 2017 to 2020 for a subset
of the road containing 250 road segments in a high traffic intensity area in
proximity to Ytre Arna in Bergen municipality.

Figure 2.7: The AADT along the study area.
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Figure 2.8: The mean daily traffic intensity.

2.4 Road Cover Type

The upper layer of the road surface is called the road cover, and for the
European route E16 between Bergen and Voss there are three different road
cover types (Norwegian Public Roads Administration, 2022b). These are shown
in Figure 2.9, and are asphalt concrete (asfaltbetong, Ab), asphalt gravel concrete
(asfaltgrusbetong, Agb), and stone mastic asphalt (skjelettasfalt, Ska). Most of
the road is covered in asphalt concrete, while some smaller parts are covered in
asphalt gravel concrete and stone mastic asphalt.

The road cover types are equal for the years in the study period, meaning
that if maintenance occurred, the same road cover type was used for the same
locations. According to the NPRA, the expectation is that there is more rutting
for road cover type asphalt gravel concrete, than for the other two road cover
types.

2.5 Road Width

The road width is the width of one lane, and for the study area it lies between
3.5 meters and 6.6 meters (Norwegian Public Roads Administration, 2022b).
The road width is shown in Figure 2.10, where the road goes from Bergen to
Voss on the first axis. From this we see that there are some parts of the road
where there are missing data for the road width, that is about 10 kilometers
from Bergen to about 20 kilometers from Bergen, and close to Voss. This
missing data constitutes about 13.5% of the total amount of road segments.
The expectation is that there is less rutting when the road is wide as the vehicles
have more room to move sideways. This contrary to narrow roads where the
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2.6. Exploratory Data Analysis

Figure 2.9: The three road covers in the study area, asphalt concrete (Ab),
asphalt gravel concrete (Agb), and stone mastic asphalt (Ska).

AADT interval Mean Standard deviation Number of segments
[4500, 5000] 0.90 1.06 3035
[5000, 7040] 0.82 1.14 3035

(7040, 12100] 1.37 1.15 247
(12100, 14700] 1.54 1.43 200
(14700, 17200] 1.21 1.19 548

Table 2.2: The summary statistic for the rutting grouped by the AADT.

vehicles have to lay in almost the same place, increasing the amount of stress
on the pavement.

2.6 Exploratory Data Analysis

A summary statistic of the rutting using some intervals of the AADT as a
grouping, is shown in Table 2.2. From this, there are most road segments having
a low AADT, concurring with the observations in Section 2.3. The mean and
standard deviation increases with the AADT, except for the decrease moving
to the highest AADT interval. This is also shown in Figure 2.11, where the the
rutting over all the years is shown using boxplots for the same intervals of the
AADT.

Road cover type asphalt gravel concrete is typically used for road stretches
with an AADT of less than 1500 vehicles, while for higher values of the AADT,
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Figure 2.10: The road width along the road from Bergen to Voss.
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Figure 2.11: The rutting over all the years for some intervals of the AADT.

13



2.6. Exploratory Data Analysis

0

500

1000

1500

4000 8000 12000 16000
Mean daily traffic intensity

N
um

be
r 

of
 s

eg
m

en
ts

Ab Agb Ska

Figure 2.12: The number of road segments with different values of the AADT
for each of the road cover types.

asphalt concrete and stone mastic asphalt is used (Norwegian Public Roads
Administration, 2022a). Figure 2.12 shows how many segments there are that
has a certain AADT for the different road cover types. This shows that the
road cover type asphalt gravel concrete is used outside its regular usage here.
For the road cover type stone mastic asphalt, the AADT is low, and it lies
in the range 4500 to 4892. The other two road cover types are more spread
out, and having a greater range of the AADT, this especially for road cover
type asphalt concrete. Mainly for road cover type asphalt concrete and asphalt
gravel concrete it would therefore be of interest to examine the interaction
between the road cover type and the AADT.

A semivariogram, showing the spatial variability in the annual rutting, is
shown in Figure 2.13 for the different years in the study period. From this, most
of the variograms increase before level out at a short distance indicating spatial
dependence, with the exception of the variogram for 2019 that has sudden
spikes for the semivariance also for increasing distances. This is in agreement
with Figure 2.3 and Table 2.1, where 2019 is shown to have a larger variance
than the rest of the years.
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Figure 2.13: The variogram of the annual semivariance for rutting in the years
2017 to 2020.
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CHAPTER 3

Background

In this chapter, the theoretical background needed to describe the statistical
methods and models presented in Chapter 4 are introduced. The chapter
starts with an introduction to Bayesian inference, and its application to latent
Gaussian models (LGMs). Following this, Gaussian random fields (GRFs) are
defined, and a brief explanation as to why Gaussian Markov random fields
(GMRFs) are important is given. Laplace approximations, a central part of the
integrated nested Laplace approximation (INLA) framework, is then described,
before the INLA framework is covered. Theory around the stochastic partial
differential equation (SPDE) approach to spatial models, is then presented,
before some theory about different model assessment criteria is discussed.

3.1 Bayesian Inference

The Bayesian statistical domain treats the model parameters as unknown
random variables, where in the frequentist framework these parameters are
considered as fixed unknown values. Central in Bayesian inference is Bayes’
theorem, where, following Givens and Hoeting (2012), the prior beliefs of the
model parameter vector x, given the vector of observed data y, gives the
posterior distribution of the model parameters as

p(x | y) = p(y | x)p(x)
p(y) ,

where p described a probability mass function or a probability density function.
The prior distribution is p(x), which represents the prior belief, the likelihood
function is p(y | x), and the marginal distribution of the data is p(y). As the
marginal distribution of the data is independent of x, the factor 1/p(y) can be
viewed as a normalizing constant. Thus, Bayes’ theorem can be written in the
form

p(x | y) ∝ p(y | x)p(x), (3.1)

Bayesian hierarchical models are often encountered in applications, and these
are models where the parameters are defined on different stages. A three-stage
hierarchical model consists of a likelihood function, a latent field1, and priors
for the hyperparameters (Blangiardo and Cameletti, 2015). This gives these

1In one dimension, a latent field is called a latent process.
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3.2. Latent Gaussian Models

models the form:

Likelihood: y | x,θ ∼ p(y | x,θ),
Latent field: x | θ ∼ p(x | θ),

Hyperparameters: θ ∼ p(θ).

In this case the vector of hyperparameters, θ, controls the priors of the model
parameters, p(θ).

3.2 Latent Gaussian Models

It is for the class of latent Gaussian models (LGMs) that INLA is applicable, and
we introduce this following Blangiardo and Cameletti (2015); Rue, Martino and
Chopin (2009); Rue, Riebler et al. (2017). This introduction is also based on the
preliminary work in Olsen (2021). The LGMs is a class of Bayesian three-stage
hierarchical models consisting of a likelihood model, a latent Gaussian field, and
a vector of hyperparameters. The data y is also assumed to be conditionally
independent given the latent Gaussian field x. The mean µi = E(yi) is connected
to a Gaussian linear predictor ηi through a link function g, such that g(µi) = ηi.
Given that µ is the overall intercept, x are fixed covariates with linear effects
{βj}, and the εi’s are unstructured terms, this linear predictor is additive having
the form

ηi = µ+
nβ∑

j=1
βjxij +

nf∑
k=1

f (k)(uik) + εi.

The terms {f (k)} model specific random effects of the covariate u, and thus
takes many different forms, for example as a spatial random effect using the
SPDE method, as described in Section 3.6.

For LGMs we assume that the latent field has a Gaussian prior with mean 0
and precision matrix2 Q(θ). This, in addition to the conditional independence
of the data, gives the three-stage hierarchical model

Likelihood: y | η,θ ∼
n∏

i=1
p(yi | ηi,θ),

Latent field: η | θ ∼ Normal(0, Q(θ)−1),
Hyperparameters: θ ∼ p(θ).

(3.2)

This Gaussian assumption of the latent field only applies there, and not to the
hyperparameters, meaning that p(θ) may be any suitable prior distribution.
Using Bayes’ theorem in Equation (3.1) and all the stages in the Bayesian
three-stage hierarchical model in Equation (3.2) gives the joint distribution of
the latent field and the hyperparameters, having the form

p(η,θ | y) ∝ p(θ)p(η | θ)p(y | η,θ)

∝ p(θ)| det(Q(θ))|1/2 exp
(

−1
2η

⊤Q(θ)η +
n∑

i=1
ln(p(yi | ηi,θ))

)
.

This form follows from the known density of the Normal(0, Q(θ)−1) distribution.
2The precision matrix of a random variable is the inverse of the covariance matrix.
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3.3. Gaussian Random Fields

3.3 Gaussian Random Fields

Gaussian random fields (GRFs) is the most important class of random fields,
and our coverage is based on Blangiardo and Cameletti (2015). A GRF is a
spatial process {ξ(s) : s ∈ D ⊆ Rd} that for any n ≥ 1 and for each set of
spacial locations (s1, . . . , sn) satisfies

ξ = (ξ(s1), . . . , ξ(sn)) = (ξ1, . . . , ξn) ∼ Normal(µ,Σ).

Here µ = (µ(s1), . . . , µ(sn)) is the mean vector, while Σij = Cov(ξ(si), ξ(sj)) =
C(ξ(si), ξ(sj)) are the elements of the covariance matrix defined by some3

covarance function C. It is the covariance function that defines the structure of
the GRF.

The spatial process is said to be second-order stationary if for all i, the
mean is constant, µ(si) = µ, and Cov(ξ(si), ξ(sj)) = C(si − sj). If, instead,
Cov(ξ(si), ξ(sj)) = C(∥si − sj∥2), then the spatial process is isotropic, and
we will see that the Matérn covariance function defined in Equation (3.7) is
stationary and isotropic.

3.3.1 Gaussian Markov Random Fields

Replacing the GRF with a Gaussian Markov random field (GMRF) helps with
computational efficiency, and has a wide area of applications, including for
the SPDE approach for GRFs in Section 3.6. For an in depth introduction to
GMRFs the reader is referred to Gelfand et al. (2010); Rue and Held (2005).

The introduction of GMRFs gives great advantages in computational time.
If one were to preform the Cholesky factorization Q = LL⊤ of a precision
matrix Q ∈ Rn×n it would normally take O(n3) flops4, while for spatial GMRFs
a sparse5 Q will reduce this to O(n3/2) in two dimensions, and only O(n) in one
dimension, as is the case in this thesis (Rue, Martino and Chopin, 2009). So
the computational efficiency of GMRFs are obtained when the precision matrix
is sufficiently sparse.

3.4 The Laplace Approximation

The use of nested Laplace approximations are central in the INLA framework,
and it is here introduced following Blangiardo and Cameletti (2015). Here, we
are interested in computing an integral of the form∫

f(x) dx =
∫

exp(ln(f(x))) dx, (3.3)

where f(x) is the probability density function of a random variable. Taylor
expanding around x = x0, and approximating to the second order, gives

ln(f(x)) ≈ ln(f(x0))+ (x− x0)∂ ln(f(x))
∂x

∣∣∣∣
x=x0

+ 1
2(x− x0)2 ∂

2 ln(f(x))
∂x2

∣∣∣∣
x=x0

.

3For example, the Matérn covariance function defined in Equation (3.7).
4Floating point operations per second (flops) is a much used measure for computer

performance.
5A criterion that can be used for a matrix in Rn×n to be sparse, is that only O(n) of the

n2 entries are non-zero (Rue, Martino and Chopin, 2009).
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3.5. Integrated Nested Laplace Approximations

The mode x∗ = arg maxx{ln(f(x))} can be computed iteratively by the scoring
algorithm (Rue, Martino and Chopin, 2009), and setting x0 equal to the mode
ensures that the first derivative is zero. The integral of interest can thus be
approximated as∫

f(x) dx ≈ f(x∗)
∫

exp
(

1
2(x− x∗)2 ∂

2 ln(f(x))
∂x2

∣∣∣∣
x=x∗

)
dx.

The integrand here can then be associated with the density of a normal
distribution, and letting

(σ2)∗ := −
(
∂2 ln(f(x))

∂x2

∣∣∣∣
x=x∗

)−1

,

we can write ∫
f(x) dx ≈ f(x∗)

∫
exp

(
(x− x∗)2

2(σ2)∗

)
dx.

Thus, the integrand is the kernel of a normal distribution with mean being the
mode x∗ and variance (σ2)∗. It then follows that the integral in Equation (3.3)
evaluated in the interval [a, b] can be approximated as∫ b

a

f(x) dx ≈ f(x∗)
√

2π(σ2)∗(Φ(b) − Φ(a)),

where Φ is the cumulative density function of the Normal(x∗, (σ2)∗) distribution.

3.5 Integrated Nested Laplace Approximations

We introduce the framework of the deterministic integrated nested Laplace
approximation (INLA) approach for doing approximate Bayesian inference
for latent Gaussian models. INLA is fast for large and complex models, and
does not suffer from slow convergence or poor mixing. It then proves better
than Markov chain Monte Carlo (MCMC) methods computationally. INLA
is implemented in the R package R-INLA returning posterior marginals for all
the model parameters with summary information. This introduction to INLA
is based on Blangiardo and Cameletti (2015); Martino and Riebler (2019);
Moraga (2019); Rue, Martino and Chopin (2009); Rue, Riebler et al. (2017).

In the INLA framework, the variables µ, β and f (k) for k = 1, . . . , nf ,
introduced in Section 3.2, are assigned Gaussian priors. Then

x = {η, µ,β, f (1), f (2), . . . , f (nf )},

is a latent Gaussian field. When performing Bayesian inference with INLA
on LGMs, the interest lies in computing the posterior marginals for the
hyperparameters

p(θj | y) =
∫∫

p(x,θ | y) dx dθ−j =
∫
p(θ | y) dθ−j ,

for j = 1, . . . ,dim(θ), in addition to the posterior marginals of the latent field

p(xi | y) =
∫∫

p(x,θ | y) dx−i dθ =
∫
p(xi,θ | y)p(θ | y) dθ,
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3.6. The Stochastic Partial Differential Equation Approach to Spatial Modeling

for i = 1, . . . , n. This approach is only applicable for LGMs where dim(θ) is
small, or else the computational time gets to big. Also x | θ must be a GMRF,
and the likelihood must be conditionally independent in the sense that yi only
depends on θ and one xi. The goal is then to build the nested approximations

p̃(θj | y) =
∫
p̃(θ | y) dθ−j , (3.4)

and
p̃(xi | y) =

∫
p̃(xi,θ | y)p̃(θ | y) dθ, (3.5)

with p̃ being the approximate densities. The approach is to first construct
an approximation of the posterior marginals for the hyperparameters, and
then an approximation of the posterior marginals for the latent field. These
approximations are shown in Appendix A.

3.6 The Stochastic Partial Differential Equation Approach
to Spatial Modeling

The stochastic partial differential equation (SPDE) approach to spatial modeling
was introduced by Lindgren, Rue and Lindström (2011) and it is used to represent
a GRF as a GMRF. The main advantage with this approach is that the properties
of the GRF is characterised by an SPDE and not a covariance function. Thus
the SPDE can be modified to obtain GRFs with other dependence structures.
Here we introduce this concept for both stationary and non-stationary SPDEs.
In addition to the original paper we also use Blangiardo and Cameletti (2015);
Ingebrigtsen, Lindgren and Steinsland (2014); Ingebrigtsen, Lindgren, Steinsland
and Martino (2015); Krainski et al. (2019) to describe both the stationary and
non-stationary case of the SPDE approach.

3.6.1 Stationarity

The linear fractional stationary stochastic partial differential equation has the
form

(κ2 − ∆)α/2(τξ(s)) = W(s), (3.6)
where s ∈ D ⊆ Rd, ∆ is the Laplacian, α controls the smoothness, κ is the
scale parameter, τ controls the variance, and W(s) is a Gaussian spatial white
noise process. The solution to this SPDE is the stationary GRF ξ(s) having
the Matérn stationary isotropic covariance function

C(ξ(si), ξ(sj)) = σ2

2ν−1Γ(ν) (κ∥si − sj∥2)νKν(κ∥si − sj∥2), (3.7)

for si, sj ∈ D, where ∥ · ∥2 denotes the Euclidean distance. Here σ2 is the
marginal variance, κ > 0 is a scaling parameter, and Kν is the modified Bessel
function of the second kind and order ν > 0.

Following Lindgren, Rue and Lindström (2011) the link between the
parameters in the SPDE in Equation (3.6) and the parameters in the Matérn
covariance function in Equation (3.7) is

ν = α− d

2 and σ2 = Γ(ν)
(4π)d/2Γ(α)κ2ντ2 .
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3.6. The Stochastic Partial Differential Equation Approach to Spatial Modeling

However, instead of using the scaling parameter κ, it is common to use the
spatial range parameter ρ, defined empirically as ρ = 2

√
2ν/κ. This range

corresponds to the distance where the spatial correlation is close to 0.13 for
ν > 1/2. We consider the case where d = 1, and α = 2 is the default value in
R-INLA, such that ν = 3/2 and

ρ = 2
√

3
κ

and σ2 = 1
4κ3τ2 . (3.8)

These are the values for d and α we consider in this thesis, and will be used
from this point.

To set priors the penalised complexity (PC) prior framework in Simpson
et al. (2017), giving informative priors, is used. This framework is extended in
Fuglstad et al. (2017) to set joint priors for the spatial range ρ and the marginal
standard deviation σ of GRFs with Matérn covariance functions.

Using the finite element method6 on a triangulation of the domain D yields
the approximation

ξ(s) =
V∑

i=1
wiφi(s), (3.9)

where V is the total number of vertices of the triangulation, {φi(s)} is the set of
basis functions, and {wi} are zero-mean Gaussian distributed weights. Lindgren,
Rue and Lindström (2011) made the choice that the weights determine the
values of the field at the vertices. That is, we let φi be piece-wise linear in each
triangle, letting it be 1 at vertex i, and 0 at all other vertices.

Define the diagonal matrix R and the sparse matrix S with elements

Rii =
∫
φi(s) ds and Sij =

∫
∇φi(s)∇φj(s) ds,

for i, j = 1, . . . , V . Using Neumann boundary conditions leads to

QS = τ2(κ4R+ 2κ2S + SR−1S), (3.10)

being the precision matrix for the weights w = (w1, . . . , wV ). Then the finite
dimensional solution to the SPDE in Equation (3.6) also has precision matrix
QS, and because of the sparsity of this we obtain a GMRF model.

3.6.2 Non-Stationarity

When modeling different natural phenomena, the stationary assumption may
not be suitable, as it may be inappropriate to assume for example the spatial
correlation to be constant. The following discussion of non-stationarity is
based on Ingebrigtsen, Lindgren and Steinsland (2014); Ingebrigtsen, Lindgren,
Steinsland and Martino (2015). Letting κ and τ in the SPDE in Equation (3.6)
vary based on the spatial location s gives the non-stationary SPDE

(κ(s)2 − ∆)α/2(τ(s)ξ(s)) = W(s), (3.11)

where the variables has the same meaning as in Equation (3.6), just that κ and τ
are dependent on s. This makes the solutions ξ(s) non-stationary GRFs because

6An introduction to the finite element method can be found in Brenner and Scott (2008).
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3.7. Model Assessment

the correlation range and variance will vary with location. The parameters κ(s)
and τ(s) can be defined log-linearly as

ln(κ(s)) = θ
(κ)
1 +

N∑
i=2

θ
(κ)
i b

(κ)
i (s) and ln(τ(s)) = θ

(τ)
1 +

N∑
i=2

θ
(τ)
i b

(τ)
i (s),

where the {θ(·)
i } are weight parameters for which priors are specified and {b(·)

i (s)}
are basis functions defined on D.

The precision matrix in Equation (3.10) is in the non-stationary case modified
to

QNS = T (K2RK2 +K2S + SK2 + SR−1S)T, (3.12)
where T and K are diagonal matrices with elements Tii = τ(si) and Kii = κ(si),
for i = 1, . . . , V . It will thus still be sparse, and the finite dimensional solution
to the SPDE in Equation (3.11) has precision matrix QNS, and we obtain a
GMRF model.

In the non-stationary case, Equation (3.8) is no longer valid. However, the
link between the SPDE and the Matérn parameters can be approximated as

ρ(s) ≈ 2
√

3
κ(s) and σ(s)2 ≈ 1

4κ(s)3τ(s)2 , (3.13)

for slowly varying κ(s) and τ(s) (Ingebrigtsen, Lindgren and Steinsland, 2014).

3.7 Model Assessment

Comparing different models to each other requires different model selection
criteria, and we introduce three of these. They are the deviance information
criteria, the Watanabe-Akaike information criterion, and lastly the marginal
log-likelihood.

The deviance information criterion (DIC) was proposed by Spiegelhalter et
al. (2002), and is a hierarchical modeling generalization of the Akaike information
criterion (Akaike, 1974). In Bayesian statistics, DIC is widely used to perform
model selection, and the value is determined both by the model fit and the
model complexity. For a model with likelihood p(y | η,θ), the deviance is
defined as

D(η,θ) = − ln(p(y | η,θ)).
The posterior expectation of the deviance is D̄ = Eη,θ|y(D(η,θ)), and using
this, the model complexity is measured as

pDIC = D̄ −D(Eη,θ|y(η,θ)).

From this the deviance information criterion is defined as

DIC = pDIC + D̄,

and models with smaller DIC should be preferred over models with larger DIC.
The Watanabe-Akaike information criterion7 (WAIC) is the generalized

version of the Akaike information criterion (AIC) (Watanabe, 2010). This is a
7The Watanabe-Akaike information criterion is also often known as the widely applicable

information criterion.
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3.7. Model Assessment

more fully Bayesian approach to estimating the expectation of the posterior log-
likelihood, and then penalising for overfitting by adding a term for the effective
number of parameters. Following Yong (2018), we define the log point-wise
predictive density as

LPPD =
n∑

i=1
ln
(∫

p(yi | θ)p(θ) dθ
)
,

where p(θ) is the whole posterior density. The penalty term modeling the
models complexity can be expressed as

pWAIC =
n∑

i=1
Var(ln(p(yi | θ))),

with the variance being the posterior variance. The WAIC is then defined as

WAIC = 2pWAIC − 2LPPD.

Models with a smaller WAIC should be preferred to models with a larger WAIC.
For an in-depth discussion of DIC and WAIC the reader is referred to Gelman,
Hwang and Vehtari (2014).

INLA computes an approximation to the marginal likelihood by marginaliz-
ing

p̃(y) =
∫

p(y,x,θ)
p̃(x | y,θ)

∣∣∣∣
x=x∗(θ)

dθ,

using the approximation in Equation (3.5). Hubin and Storvik (2016) showed
that INLA gives reliable approximations, also compared to other approaches of
approximation. The marginal log-likelihood is then found by ln(p̃(y)), and we
prefer models with larger marginal log-likelihood values to those with smaller
values.
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CHAPTER 4

Statistical Models and Methods for
Rutting

In this chapter we propose models for the rutting consisting of fixed effects
and random effects along the road. One model without spatial effects, and
two different spatial models are introduced, having either stationary or non-
stationary spatial fields. These models are fitted in a Bayesian framework using
INLA, where the likelihood family is assumed a zero-mean Gaussian. This is
done to find the different effects of the covariates on the expected rutting, and
also to check for spatial effects. The chapter starts with a presentation of the
statistical models, and how priors for these models are chosen. Some discussion
of the triangulation used for the SPDE approach is also given. The chapter is
concluded with a brief description of the software used for the inference and
prediction.

4.1 The Latent Gaussian Models for Rutting

We denote by R ⊂ R the spatial domain of the road, in which we assume the
road to be one dimensional. Thus, s ∈ R denotes a location along the road
of interest. In year t, the linear predictor ηt(si) includes both the fixed effects
and the random effects for segment si, and the spatial process {ηt(s) : s ∈ R}
describes the rutting along the road. The rutting rit for segment i = 1, . . . , n
and year t = 1, . . . , T is then given by the relation

rit = ηt(si) + εit,

where the residuals are assumed εit
i.i.d.∼ Normal(0, τ−1

ε ), where τε = σ−2
ε is the

precision parameter. The road segments i, for which the rutting is calculated
are, as discussed in Section 2.1, discretized to 20 meters of road. For simplicity’s
sake, each of these road segments are treated as points, and not lines, where si

denotes the midpoint of road segment i.
It is within the linear predictor ηt(s) where the models differ, and all fixed

effects and random effects are included here. The spatial effects are the elements
of the linear predictor which is described by a Gaussian random field, which
can be stationary or non-stationary. In the next sections, we describe a model
without spatial effects, a model with stationary spatial effects, and a model
with non-stationary spatial effects.
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4.2. The Model Without Spatial Effects

4.2 The Model Without Spatial Effects

The model without spatial effects has the linear predictor

ηt(s) = βAbxAb + βAgbxAgb + βSkaxSka + βwxw + γt,

where the covariates x· = x·(s), but the dependence on the location s is
suppressed to increase readability. The covariate xAb is the value of the AADT
if the road cover is asphalt concrete, and zero otherwise. Similarly for xAgb and
xSka, with the respective road cover types asphalt gravel concrete and stone
mastic asphalt. We include this as a covariate as there is reason to believe that
different road cover types gives different properties to the road. This could
then lead to different amounts of rutting for different road cover types. The
covariate xw is the width of the road interacting with the AADT, and is a
continuous covariate. As discussed earlier it is reasonable to think that the
road width affects the rutting. This is because if the road is narrower the
vehicles have less possibility to move within its lane, and the wheels would
be more concentrated at the same location in the lane, leading to more stress
on the pavement here. We assume the random yearly effects are distributed
as γ = (γ1, . . . , γT ) ∼ Normal(0T , τ

−1
γ IT ), where IT ∈ RT ×T is the identity

matrix, and 0T ∈ RT is the zero-vector. The hyperparameter is assigned the
prior τγ ∼ Gamma(0, 5 · 10−5), and is assigned as such as we have no prior
knowledge about this parameter. The plot of the annual empirical rutting in
Figure 2.3 shows a difference in the rutting for each year, justifying this as an
effect. The yearly effect is included as a random effect because this allows for
easier prediction.

The fixed effects are assigned vague Gaussian priors, where β =
(βAb, βAgb, βSka, βw) i.i.d.∼ Normal(0, 1000). The hyperparameter for the re-
siduals is assigned the prior τε ∼ Gamma(0, 5 · 10−5), where, as for the prior
for the hyperparameter for the random yearly effect, this prior is is assigned as
such because we have no prior knowledge about this parameter.

4.3 Spatial Stationary Model for Rutting

For the spatial stationary model the linear predictor takes the form

ηt,S(s) = βAbxAb + βAgbxAgb + βSkaxSka + βwxw + γt + ωS(s) + ξt,S(s),

where the subscript S symbolises the stationarity of the linear predictor and
the GRFs. The fixed effects has the same interpretation as for the model with
no spatial effects. The spatial field ωS(s) is a common field constant in time,
while ξt,S(s) for t = 1, . . . , T is an annually varying spatial field which may be
effected by for example weather conditions. Thus, ξt,S(s) describes the annual
spatial deviation from the spatial field ωS(s) in accordance with Ingebrigtsen,
Lindgren, Steinsland and Martino (2015). The reason for including spatial fields
follows from the semivariogram in Figure 2.13, which indicates spatial effects.
It is also expected that different parts of the road experiences different amounts
of rutting based on possible spatial patterns in weather or heavy traffic.

The spatial dependencies ωS(s) and ξt,S(s) for t = 1, . . . , T are modeled as
GRFs with Matérn covariance functions, and thus the SPDE approach from
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4.3. Spatial Stationary Model for Rutting

Section 3.6 can be applied. This requires a triangulation of the domain R,
where the basis functions of the GRF is defined. As the spatial domain is
one-dimensional, the triangulation has a vertex every 20th meter. This means
that each triangle covers one road segment, and due to R being one-dimensional,
this does not effect the computational efficiency greatly. The boundary is also
extended 3000 meters at each end of the road to diminish the boundary effects.

The triangulation for the GRFs then become

ωS(s) =
V∑

j=1
δj,Sφj(s) and ξt,S(s) =

V∑
j=1

ψj,t,Sφj(s), (4.1)

following Equation (3.9), where δj,S and ψj,t,S are the weights. The triangulation
is the same for the GRFs, and thus the basis functions {φ1(s), . . . , φV (s)} are
equal for the GRFs. However, the weights for the different basis functions
are different. One can then define a projector matrix, called the A-matrix, as
A ∈ Rn×V with elements

A =

φ1(s1) · · · φV (s1)
...

. . .
...

φ1(sn) · · · φV (sn)

 .
The linear predictor can then be expressed as

ηt,S(s) = βAbxAb + βAgbxAgb + βSkaxSka + βwxw + γt +Ai(δS +ψt,S), (4.2)

where Ai is row i of A, and δS = (δ1,S, . . . , δV,S) ∼ Normal(0, QS) and
ψt,S = (ψ1,t,S, . . . , ψV,t,S) ∼ Normal(0, QS) are column vectors, where QS
is as given in Equation (3.10).

In the spatial stationary case, the hyperparameters controlling the depend-
ence structure of the GRFs are determined by setting priors on the range ρ
and standard deviation σ, as specified in Equation (3.8). This allows for easier
interpretation of the priors, compared to setting priors on κ and τ in the SPDE
in Equation (3.6).

4.3.1 Choosing Priors

The latent Gaussian field can be denoted by xS = (β,γ, δS,ψS), as the elements
are assigned Gaussian priors. The priors for β, γ, τγ and τε are as in Section 4.2.
The difference lies in the priors for the spatial range ρ and the marginal standard
deviation σ for the GRFs.

The priors for the GRFs ωS(s) and ξt,S(s) are set through the spatial range
and marginal standard deviation from Equation (3.8) following the penalised
complexity (PC) prior framework. The prior for the range is set through the
probability Pr(ρ < 100) = 0.1, that is, there is a 10 percent probability that
the spatial range is less than 100 meters. Similarly, the prior for the marginal
standard deviation is set through the probability Pr(σ > 2.5) = 0.1, that is,
there is a 10 percent probability that the marginal standard deviation for the
rutting is over 2.5 millimeters. These priors are the same for all the spatial fields,
and are set through considering the data, especially the rutting in Figure 2.3
and the semivariogram in Figure 2.13.
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4.4 Spatial Non-Stationary Model for Rutting

For the spatial non-stationary model the linear predictor takes the form

ηt,NS(s) = βAbxAb + βAgbxAgb + βSkaxSka + βwxw + γt + ωNS(s) + ξt,NS(s),

where the subscript NS symbolises the non-stationarity of the linear predictor
and the GRFs. Other than this, there is no difference in the linear predictor,
contra the spatial stationary case. The AADT is introduced in the dependence
structure for the non-stationary fields ωNS(s) and ξt,NS(s) for t = 1, . . . , T ,
dependent on the location s. This inclusion of the AADT is consistent with the
fixed effects being scaled by the AADT. This non-stationarity is also included
in the model, as it would be expected that the marginal standard deviation of
the GRFs would change based on the AADT.

The triangulation for the non-stationary GRFs becomes

ωNS(s) =
V∑

j=1
δj,NSφj(s) and ξt,NS(s) =

V∑
j=1

ψj,t,NSφj(s),

where the basis functions are the same as in Equation (4.1), but the weights
are different. Now, the linear predictor can be expressed as

ηt,NS(s) = βAbxAb + βAgbxAgb + βSkaxSka + βwxw + γt +Ai(δNS +ψt,NS),

where Ai is as in Equation (4.2), and δNS = (δ1,NS, . . . , δV,NS) ∼ Normal(0, QNS)
and ψt,NS = (ψ1,t,NS, . . . , ψV,t,NS) ∼ Normal(0, QNS) are column vectors, where
QNS is as given in Equation (3.12).

The relation to the SPDE parameters in Equation (3.11) is log-linear to the
hyperparameters (θ1, θ2, θ3, θ4) given by

ln(τ(s)) = θ1 + θ2AADT(s) and ln(κ(s)) = θ3 + θ4AADT(s). (4.3)

If θ2 = θ4 = 0 we observe that this is equivalent to the stationary case, with a
different parameterization than discussed in Section 4.3.

4.4.1 Choosing Priors

The latent Gaussian field is xNS = (β,γ, δNS,ψNS), and the priors for β, γ, τγ

and τε are as in Section 4.2. The difference lies in the choice for priors for the
hyperparameters (θ1, θ2, θ3, θ4).

The hyperparameters θ2 and θ4 are given Normal(0, 1) priors, as the prior
assumption is that the spatial range and marginal standard deviation has no
effect of varying AADT. Further more, the prior for θ1 and θ3 are chosen based
on the results from the stationary model. Assuming no effect of varying AADT,
ln(τ(s)) = θ1 and ln(κ(s)) = θ3, such that, using Equation (3.8),

θ1 ≈ − ln(2) − ln(σ) − 3
2θ3 and θ3 ≈ ln(2

√
3) − ln(ρ).

Using the mean of the range and the mean of the marginal standard deviations for
the spatial fields obtained for the stationary model we set the mean of the priors
for θ1 and θ3. The precision for the priors are set to one, to allow flexibility in the
model. Thus, the priors are θ1 ∼ Normal(7.805, 1) and θ3 ∼ Normal(−5.665, 1).

27



4.5. Inference, Prediction, and the Software

4.5 Inference, Prediction, and the Software

The non-spatial model is fitted using a Bayesian linear regression over the
covariates. The spatial models for the rutting fit into the latent Gaussian model
framework, as the elements of xS and xNS are assumed to have Gaussian priors.
The spatial effects ωS(s), ξt,S(s), ωNS(s), and ξt,NS(s) are modeled as Gaussian
random fields, and together with the stochastic partial differential equation
approach to spatial modeling, a Gaussian Markov random field representation
is obtained. This makes integrated nested Laplace approximations applicable
for fast approximate Bayesian inference. The data analysis is performed in R (R
Core Team, 2020), whilst the INLA framework implemented in R-INLA (Rue,
Martino and Chopin, 2009) is used for fast inference and prediction.

Most plotting is done using ggplot2 (Wickham, 2016), however the different
map plots are generated through mapview (Appelhans et al., 2022). In addition
to this, gstat (Gräler, Pebesma and Heuvelink, 2016; Pebesma, 2004) is used
for the different variogram plots. The package sf (Pebesma, 2018) is used for
handling the spatial properties of the data.

The R code and publicly available data from this thesis can be
found on GitHub https://github.com/wsolsen/TMA4900-MasterThesis-
SMARTerMaintenance.
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CHAPTER 5

Results for the Rutting

In this chapter the results for the non-spatial, the spatial stationary, and
the spatial non-stationary models for the rutting described in Chapter 4 are
presented. Results for the fixed effects, random yearly effect, and residuals are
first presented for the spatial non-stationary model, and then the estimates for
these variables are compared between the three models. Then the spatial effects
are presented for the spatial non-stationary model. This is then compared to
the results from the spatial stationary model based on how well they fit the
data, and also a comparison of the stationary and non-stationary assumptions.
This chapter concludes with a practical application of the inferred results for
predicting the rutting along a stretch of European route E16 between Bergen
and Voss forward in time.

5.1 Fixed Effects, Random Yearly Effect, and Residuals

This section starts with a presentation of the estimated parameters of the fixed
effects, the random yearly effect, and the residuals for the spatial non-stationary
model for the rutting. Then a comparison of these estimated parameters are
done with those estimated from the spatial stationary model, and the non-spatial
model for the rutting.

5.1.1 Spatial Non-Stationary Model for Rutting

The estimates for the parameters of the fixed effects from the spatial non-
stationary model for the rutting is shown in Figure 5.1 as a function of the
AADT. These results show that the use of road cover type asphalt gravel
concrete leads to the most expected rutting, while asphalt concrete gives the
least expected rutting, closely followed by stone mastic asphalt. These are the
expected results following the NPRA. A selection of road widths are plotted
between 3.5 meters and 6.5 meters. Then it is clear that for an increase in the
road width, the expected rutting decreases, also to be expected from earlier
discussions. Assuming a road width of five meters, the total expected rutting
from the fixed effect for each road cover type is plotted in Figure 5.2. This
shows that even though the expected rutting was negative in Figure 5.1b, the
total effect of the fixed effects will always be positive. Also the expected rutting
will always increase with an increase in the AADT.
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Figure 5.1: The fixed effect of the road cover type and the road width for the
spatial non-stationary model for the rutting as a function of the AADT.
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Figure 5.2: The total expected rutting from the fixed effects for each road cover
type as a function of the AADT, assuming a road width of 5 meters, for the
spatial non-stationary model for the rutting.
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Parameter Mean/Median 95% credible interval
βAb 1.454 [1.343, 1.565]
βAgb 1.670 [1.481, 1.859]
βSka 1.326 [1.081, 1.571]
βw −0.049 [−0.078,−0.020]
σγ 0.297 [0.206, 0.460]
σε 0.887 [0.877, 0.894]

Table 5.1: The parameter estimates for the spatial non-stationary model for
the rutting with a 95% credible interval. The median is reported for σγ and σε,
and the mean for the rest of the parameters.
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Figure 5.3: The posterior marginal distribution for the standard deviation of
the random yearly effect and the residuals for the spatial non-stationary model
for the rutting.

The parameter estimates for the fixed effects and the standard deviation for
the yearly random effect and the residuals for the spatial non-stationary model
for the rutting is shown in Table 5.1 with a 95% credible interval. At this level,
none of the 95% credible intervals contains zero. The estimated median of the
standard deviation of the yearly effect is 0.297 millimeter, and the posterior
marginal distribution of this is shown in Figure 5.3a. This shows evidence
of being some difference in the rutting between the years. However, the 95%
credible interval is quite wide, meaning that there is considerable uncertainty in
the standard deviation coming from the yearly effect. The estimated median of
the standard deviation of the residuals are 0.887 millimeter, and the posterior
marginal distribution of this is shown in Figure 5.3b. This is the standard
deviation in the model not explained by other factors, and the 95% credible
interval is quite narrow, making this estimate less uncertain. Thus, there is
quite a lot of unexplained variance in the residuals.
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Figure 5.4: The fixed effect of the road cover type and the road width for the
spatial non-stationary model in drawn lines, for the spatial stationary model in
dashed lines, and for the non-spatial model in dotted lines, all as a function of
the AADT.

5.1.2 Comparing With Non-Spatial and Spatial Stationary Model
for Rutting

Figure 5.4 shows the estimates for the parameters of the fixed effects for the
three proposed models as a function of the AADT. The estimates for the spatial
non-stationary model are shown as drawn lines, the estimates for the spatial
stationary model are shown as dashed lines, and the estimates for the non-spatial
model are shown as dotted lines. The results for road cover type stone mastic
asphalt is not included for the non-spatial model, and a discussion of this is
given later in this section.

From Figure 5.4a there are large similarities between the spatial stationary
and non-stationary models, compared to the non-spatial model. However, the
trend seems to be similar, for which road cover type asphalt gravel concrete
gives a higher expected rutting. For the spatial stationary model, the expected
rutting for the road cover types asphalt concrete and stone mastic asphalt are
quite similar, which is different from the spatial non-stationary model.

Figure 5.4b shows the expected rutting based on different road widths, here
4 meters and 6 meters. For all three models the results are that the expected
rutting decreases with an increase in road width. The difference between
the expected rutting for each road width also increases with the AADT. The
expected rutting is much smaller for the non-spatial model compared to the two
spatial models, this indicates that the effect of wider roads is greater for the
non-spatial model compared to the two spatial models. A possible explanation
for this is that this effect gets incorporated in the spatial properties of the road
for the spatial models.

Assuming a road width of five meters, the total expected rutting from the
fixed effects for each road cover type is shown in Figure 5.5, where the line
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Figure 5.5: The total expected rutting from the fixed effects for each road cover
type as a function of the AADT, assuming a road width of 5 meters for the
spatial non-stationary model in drawn lines, the spatial stationary model in
dashed lines, and the non-spatial model in dotted lines.

types describe the same model as in Figure 5.4. For the non-spatial model the
effects on the rutting is negligible for road cover type asphalt concrete, and
there is only a small increase for road cover asphalt gravel concrete based on
the AADT. For the two spatial models, the trend is similar, with an increase in
the expected rutting when the AADT increases. The expected rutting is also
always positive for these two models, despite the negative expected rutting in
Figure 5.4b.

The parameter estimates for the fixed effects, and the standard deviation for
the yearly random effect and the residuals for the non-spatial model is shown in
Table 5.2. None of the 95% credible intervals contains zero. Comparing to the
parameter estimates for the spatial non-stationary model in Table 5.1 confirms
what Figure 5.4 shows. Looking at the estimate of βSka shows that the reason it
is not included in Figure 5.4 and Figure 5.5 is because it is negative, and would
impact the scaling on the axis making comparison of the other models more
difficult. For road cover type stone mastic asphalt the expected rutting is then
decreasing for increasing values of the AADT. This may follow from the fact
that there is little variability of AADT values for this road cover type, as seen in
Figure 2.12. In fact, most part of the road stretch having road cover type stone
mastic asphalt has an AADT of 4500, while some small parts have an AADT
of 4649 or 4892. This means that the interaction effect xSka is mainly just an
effect of the road cover type, and not the interaction. This then indicates that
using road cover type stone mastic asphalt leads to lower rutting than using
the other two road cover types.

Similarly, the parameter estimates for the fixed effects, and the standard
deviation for the yearly random effect and the residuals for the spatial stationary

33
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Parameter Mean/Median 95% credible interval
βAb 0.580 [0.533, 0.627]
βAgb 0.744 [0.657, 0.831]
βSka −0.202 [−0.338,−0.065]
βw −0.113 [−0.125,−0.102]
σγ 0.971 [0.584, 1.835]
σε 0.985 [0.971, 0.996]

Table 5.2: The posterior parameter estimates for the non-spatial model for the
rutting with a 95% credible interval. The median is reported for σγ and σε,
and the mean for the rest of the parameters.

Parameter Mean/Median 95% credible interval
βAb 1.231 [1.115, 1.347]
βAgb 1.542 [1.321, 1.763]
βSka 1.260 [0.918, 1.602]
βw −0.045 [−0.077,−0.014]
σγ 0.455 [0.251, 0.861]
σε 0.886 [0.878, 0.894]

Table 5.3: The posterior parameter estimates for the spatial stationary model
for the rutting with a 95% credible interval. The median is reported for σγ and
σε, and the mean for the rest of the parameters.

model is shown in Table 5.2. None of the 95% credible intervals contains zero.
This table, compared to that of the spatial non-stationary model in Table 5.1
shows quite similar results.

The posterior marginal distribution for the standard deviation of the random
yearly effect and the residuals for the non-spatial model, the spatial stationary
model, and the spatial non-stationary model for the rutting is shown in
Figure 5.6. The posterior marginal distribution for the standard deviation
of the random yearly effect for each of the models have a quite different form,
as shown in Figure 5.6a. The yearly effect is greatest for the non-spatial model,
and it also has the widest 95% credible interval, as confirmed by Table 5.2.
This means that there is greatest difference in the expected rutting between
the years for this model. Some of the yearly effect can be incorporated in the
spatial effect instead, resulting in a lower yearly effect for the spatial stationary
effect. The 95% credible interval, as shown in Table 5.3 is still quite wide, giving
some uncertainty of the yearly effect. The random yearly effect for the spatial
non-stationary effect is the smallest, and least uncertain. A reason for this may
be that this effect is better captured in the non-stationary spatial fields.

The posterior marginal distribution for the standard deviation of the residuals
is shown in Figure 5.6b. This is the distribution of the standard deviation in
the models not explained by other factors. It is then clear that both the spatial
stationary and non-stationary models have approximately the same amount
of unexplained standard deviation. The unexplained standard deviation for
the non-spatial model is much larger than for the other two models. This is
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Figure 5.6: The posterior marginal distribution for the standard deviation of
the random yearly effect and the residuals for the non-spatial model, the spatial
stationary model, and the spatial non-stationary model for the rutting.

an indication that the spatial properties included in the spatial stationary and
non-stationary models explain more of the otherwise unexplained variance.

5.2 Spatial Effects

This section first introduces the results for the spatial fields for the spatial
non-stationary model. Then a comparison of these results are done with those
of the spatial stationary model. A discussion of using sum-to-zero constraints
on the spatial fields is given in Appendix C, and this is not done for the spatial
fields presented here.

5.2.1 Spatial Non-Stationary Model for Rutting

The posterior mean of the rutting from the common spatial field ωNS(s) for
the spatial non-stationary model with a 95% credible interval and on the map
between Bergen and Voss is shown in Figure 5.7. The interpretation of this is
that it is the difference from the expected rutting from each road segment if
there were no spatial effect. It is then clear that close to Bergen the rutting is
lower than expected, but it increases towards Voss, and near Voss the rutting is
progressively worse than expected. There are also some spikes in both positive
and negative directions for some road segments, but the trend is that the rutting
gets progressively worse than expected from Bergen moving towards Voss.

The posterior mean of the rutting from the annually varying spatial field
ξt,NS(s) for the years 2017 to 2020 is shown in Figure 5.8. This describes the
annual spatial deviation from the spatial field ωNS(s) for each of the years from
2017 to 2020. From the figures it is clear that there is a great difference between
the different years. For the year 2017 it seams that there was less expected
rutting close to Bergen, and increasing towards Voss. This also holds for the
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Figure 5.7: The rutting inferred from the common spatial field ωNS(s) for the
non-stationary model with a 95% credible interval and on the map between
Bergen and Voss.

year 2018, and for both these years, the results fluctuates between positive and
negative values for the rutting. For the year 2019 there was more than the
expected rutting for almost all of the road, that is, the results were positive.
This can be explained by there being higher rutting in the year 2019 compared
to the other ones, as seen in Figure 2.3. The year 2020 is more similar again to
the years 2017 and 2018, with more fluctuation between positive and negative
values.

The estimates for the parameters (θ1, θ2, θ3, θ4) governing the spatial fields
are given in Table B.2 in Appendix B with 95% credible intervals. From this set
of parameters the spatial range and marginal standard deviation for the spatial
fields can be computed as a function of the AADT using Equation (4.3) and
Equation (3.13). This gives the result in Figure 5.9, where the spatial range
and marginal standard deviation are plotted as a function of the AADT for the
different spatial fields. From this there is evidence of non-stationarity for all the
spatial fields, with some being more prominent than others. For the years 2017,
2018 and 2020 we see that the spatial range increases as the AADT increases,
while for the time constant common field and for year 2019 we see a decrease of
the spatial range. Similarly for the years 2018 and 2020, in addition to for the
time constant common field, the marginal standard deviation increases with
the AADT, while for the years 2017 and 2019 we see a decrease in the marginal
standard deviation.

5.2.2 Comparing With Spatial Stationary Model for Rutting

In this section the spatial effects for the spatial non-stationary model is compared
to those for the spatial stationary model. The posterior mean of the rutting from
the common spatial field ωS(s) for the stationary model with a 95% credible
interval and on the map between Bergen and Voss is shown in Figure 5.10.
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(d) For the year 2020.

Figure 5.8: The annual spatial deviation from the spatial field ωNS(s) for each
of the years from 2017 to 2020.
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(b) The marginal standard deviation.

Figure 5.9: The spatial range and marginal standard deviation for the spatial
fields from the spatial non-stationary model as a function of the AADT.
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(a) With a 95% credible interval. (b) On the map.

Figure 5.10: The posterior mean of the rutting from the common spatial field
ωS(s) for the spatial stationary model with a 95% credible interval and on the
map between Bergen and Voss.

Again, the rutting closer to Bergen is lower than expected, but increases towards
Voss. Figure 5.11 shows the posterior mean of the rutting from the common
spatial field ωNS(s) for the spatial non-stationary model in drawn red, and from
the common spatial field ωS(s) for the spatial stationary model in dashed blue.
The posterior means for the two models are quite similar, and shows the same
trends for both the spatial non-stationary model and the spatial stationary
model.

Similarly, Figure 5.12 shows the annual spatial deviation from the spatial
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Figure 5.11: The posterior mean of the rutting from the common spatial field
ωNS(s) for the spatial non-stationary model in drawn red, and from the common
spatial field ωS(s) for the spatial stationary model in dashed blue.

field ωNS(s) for each of the years from 2017 to 2020 in drawn red, and from
ωS(s) for each of the years from 2017 to 2020 in dashed blue. Here as well
the results are quite similar, especially in the trends that were discussed in
Section 5.2.1.

The estimates of the spatial range parameters and marginal standard
deviation parameters governing the spatial fields for the spatial stationary
model are given in Table B.1 in Appendix B with a 95% credible interval.
Figure 5.13 shows the spatial range and marginal standard deviation for the
spatial fields from the spatial non-stationary model as drawn lines, and from
the spatial stationary model as dashed lines, as a function of the AADT. This
shows that the values of the spatial range and marginal standard deviation
for the spatial non-stationary model are different from those for the spatial
stationary model. There is also a clear evidence of spatial non-stationarity, as
discussed in Section 5.2.1.

5.3 Comparison of the Models

Different values for model selection criteria for the non-spatial model, the
spatial stationary model, and the spatial non-stationary model is presented in
Table 5.4. As discussed in Section 3.7, smaller DIC and WAIC are preferred,
while a larger marginal log-likelihood is preferred. From this table alone, the
non-spatial model is preferred. However, from our previous discussions it seems
that it is reasonable to include spatial fields, as they seem to explain more
of the otherwise unexplained variance. Including spatial fields also give more
interpretative results regarding the expected rutting based on the road cover
types. The discussion around Figure 5.9 points to there being a non-stationary
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(b) For the year 2018.
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(c) For the year 2019.
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Figure 5.12: The annual spatial deviation from the spatial field ωNS(s) for each
of the years from 2017 to 2020 in drawn red, and from ωS(s) for each of the
years from 2017 to 2020 in dashed blue.
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Figure 5.13: The spatial range and marginal standard deviation for the spatial
fields from the spatial non-stationary model as drawn lines, and from the spatial
stationary model as dashed lines, as a function of the AADT.

Non-spatial Stationary Non-stationary
DIC 38737.37 66951.93 66451.67

WAIC 37000.46 104288.39 144519.11
Marginal log-likelihood −19430.25 −37250.85 −37196.46

Table 5.4: Model assessment criteria for the model with no spatial effects, the
spatial stationary model, and the spatial non-stationary model.

effect of the AADT for the spatial fields. For this reason, the non-stationary
model is the prefered model, and we will create predictions using this model in
the next section.

5.4 Prediction With Uncertainty

When doing prediction through R-INLA, it is the posterior distribution of ηNS
that is predicted. This has the same expected value as the rutting, and we
therefore use the term predicted rutting. The predicted1 rutting for year 2021
for the European route E16 between Bergen and Voss is shown in Figure 5.14
with a 95% credible interval, and on the map between Bergen and Voss. The
predicted 95% credible interval is the credible interval for ηNS, and if the
predictions were to be compared to the data for 2021, the uncertainty in the
residuals would also need to be included. The prediction is done using the
spatial non-stationary model for rutting. From this the predicted rutting is
largest close to Bergen, where the AADT is the highest. Here the rutting lies
around 2 millimeters, which in only 10 years would give a rut depth of about 20

1Even though this thesis is published in the year 2022, the data for the rut depth in year
2021 was not available at the time of writing.
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Figure 5.14: The predicted rutting for year 2021 with a 95% credible interval,
and on the map between Bergen and Voss.
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Figure 5.15: The predicted standard deviation of the rutting for year 2021 for
each road segment, and on the map between Bergen and Voss.

millimeters, prompting a repaving. We can also see that the predicted rutting
decreases towards Voss, which is to be expected as the AADT decreases in this
direction.

The predicted standard deviation of the rutting for the European route E16
between Bergen and Voss is shown in Figure 5.15, which we see lies beneath 0.1
millimeter for the whole road stretch. A 95% credible interval for the predicted
rutting is also shown in Figure 5.14a, which also confirms that the prediction is
quite certain. The predicted standard deviation fluctuates, but in general it is
larger where AADT is higher.
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Figure 5.16: The predicted rut depth for year 2021 for each road segment, and
on the map between Bergen and Voss. The road colored red on the right hand
side is that which has an AADT of less than 5000, while the road colored black
has an AADT of higher than 5000. A dotted red line is drawn at 25 millimeters
of predicted rutting, while a dashed black line is drawn at 20 millimeters of
predicted rutting.

Figure 5.16 shows the predicted rut depth for the European route E16
between Bergen and Voss for the year 2021, which is found by adding the
predicted rutting for 2021 to the rut depth from year 2020. In Figure 5.16a
the road stretch coloured in black has an AADT of more than 5000, while the
road stretch coloured in red has an AADT of less than 5000. The maximum
allowed rut depth for roads with an AADT of above 5000 is 20 millimeters,
while it is 25 millimeters for roads with an AADT of less than 5000 (Norwegian
Public Roads Administration, 2014). The part of the road colored red has to
stay below the upper dotted red line, which we see that it indeed does. Some
of the road segments, however, starts to reach a rut depth in which repaving
is needed. For the rest of the road, it is the lower dashed black line which is
the threshold for the rut depth. We then see that there are some single spikes
above the threshold, however, many of these are only small stretches of road.
There is also a larger and wider spike, upwards of a rut depth of 40 millimeters.
This is well over the allowed rut depth, and has to be repaved.

A prediction of the rut depth for the 200 first road segments from Bergen
approaching Voss is shown with a 95% credible interval in Figure 5.17. This
constitutes 4 kilometers of road, and we see that the credible interval lies close
to the predicted mean.
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Figure 5.17: The predicted rut depth with a 95% credible interval for the 200
first road segments from Bergen approaching Voss.
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CHAPTER 6

Discussion, Final Remarks, and
Further Work

In this thesis we investigated the rutting along the European route E16 between
Bergen and Voss with an aim to identify factors responsible for increased rutting,
and to investigate whether spatial dependencies between road segments impacts
the rutting. In this chapter the main results are summarised before some
suggestions for further work is presented.

The proposed spatial non-stationary model is the preferred model based
on our analysis. We found that spatial effects improved the interpretability
of the model, and because of the way a road is constructed, spatial effects
are to be expected. Results also showed that including the AADT in the
dependence structure of the spatial fields seemed to improve the model. The
spatial non-stationary model was therefore chosen for inference and prediction.
The Gaussian random fields modeling the spatial effects are very prior sensitive,
so a more thorough analysis of how to choose the priors should be conducted, and
this is a weak point of choosing one of the spatial models. The proposed spatial
models should be tested more by the Norwegian Public Roads Administration
before they are put to use.

The results for the spatial non-stationary model was that none of the 95%
credible intervals for the fixed effects contained zero. The expected rutting was
highest for road cover type asphalt gravel concrete, as expected, and road cover
type stone mastic asphalt gave the lowest expected rutting. Also according to
expectation, the expected rutting decreases with an increase in road width, and
the expected rutting increases with an increase in the AADT.

This is also the model in which the random yearly effect explains the least
amount of variance, as the spatial non-stationary fields are able to capture
this. This also holds for the residual standard deviation, which is lowest for
the spatial non-stationary model. This means that the spatial non-stationary
model has less unexplained variance than the other two models.

The time constant common spatial field for the non-stationary model shows
the difference from the annual expected rutting from each road segment if there
were no spatial effect. Close to Bergen this effect is negative, so the expectation
is less rutting here, while it increases to positive values close to Voss, where a
higher rutting is expected.

A prediction is done for the rutting for year 2021, for which rutting data
is not available to us, for the European route E16 between Bergen and Voss
with uncertainty. This predicts highest rutting close to Bergen, of about 2
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millimeters, and a decrease towards Voss of between 0.5 and 1 millimeter. Using
this together with the rut dept data from 2020, the expected rut depth in 2021
can be predicted. This prediction allows us to locate areas in need of repaving,
and one such road stretch close to Bergen is found with a rut depth of up to 40
millimeters.

For a more precise prediction, where more of the unexplained variance can
be explained, other covariates should also be included in the models. These
include for example the pavement age, the proportion of heavy vehicles, the use
of studded tires, and climate effects. The spatial non-stationary model requires
four hyperparameters per spatial field, so including more year specific spatial
fields here would increase the computation time drastically, where the amount
of hyperparameters already is large.
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APPENDIX A

Approximation of the Posterior
Marginals in INLA

In this appendix the approximation of the posterior marginals for the
hyperparameters and the latent field in INLA is presented, building on the theory
presented in Section 3.5. The Gaussian approximation of the full conditional of
x | y,θ and x−i | xi,θ,y are included for the sake of completeness, and need
not be approximated in this theses as the full conditionals already are Gaussian.
This is based on the preliminary work by Olsen (2021), and also Martino and
Riebler (2019); Rue, Martino and Chopin (2009).

A.1 Approximation of the Posterior Marginals for the
Hyperparameters

Approximating the posterior marginals for the hyperparameters is based on the
approximation

p(θ | y) ∝∼
p(y | x,θ)p(x | θ)p(θ)

p̃G(x | y,θ)

∣∣∣∣
x=x∗(θ)

. (A.1)

Here we denote by p̃G(x | y,θ), the Gaussian approximation of the full
conditional of x | y,θ constructed using the Laplace approximation in
Section 3.4. If the full conditional of x | y,θ already is Gaussian, the Gaussian
approximation need not be done, which is the case in this thesis. The mode is
denoted x∗(θ) denotes the mode, and the approximation in Equation (A.1) is
denoted by p̃(θ | y).

As it is computationally costly to evaluate p̃(θ | y) for a large number
of configurations, the integral in Equation (3.4) is computed using suitable
integration points {θ(k)}. These integration points are found using the following
method:

1. Use a quasi-Newton method to optmimize ln(p̃(θ | y)) giving θ∗ as the
mode of p̃(θ | y).

2. Compute the negative Hessian1 H at the modal configuration.
1The Hessian matrix of a function f : Rn → R is defined as having entries ∂2f/∂xi∂xj

for i, j = 1, . . . , n. The negative Hessian is also often called the observed Fisher information.
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3. Compute the eigen-decomposition Σ = H−1 = V ΛV ⊤, where Σ is the
covariance matrix of θ if it was Gaussian.

4. Define the standardized variable z by θ(z) = θ∗ + V Λ1/2z.

5. Find the bulk of the probability mass of ln(p̃(θ | y)) using the z-
parameterization giving the integration points {θ(k)}.

Each posterior marginal p̃(θj | y) in Equation (3.4) can then be found using
interpolation on p̃(θ | y) using the integration points {θ(k)}.

A.2 Approximation of the Posterior Marginals for the Latent
Field

The approach for finding an approximation of the posterior marginals for the
latent field is similar to the method in Appendix A.1. Letting x = (xi,x−i),
the approximation we denote by p̃(xi,θ | y) is found by

p(xi | θ,y) ∝ p((xi,x−i) | θ,y)
p(x−i | xi,θ,y) ≈ p(y | x,θ)p(x | θ)p(θ)

p̃G(x−i | xi,θ,y)

∣∣∣∣
x−i=x∗

−i
(xi,θ)

.

The Gaussian approximation to the full conditional of x−i | xi,θ,y is
p̃G(x−i | xi,θ,y), and x∗

−i(xi,θ) is the mode. When the full conditional
of x−i | xi,θ,y is Gaussian, the approximation need not be done, which is the
case in this thesis. This method requires n factorizations of the full precision
matrix because p̃G(x−i | xi,θ,y) needs to be recomputed for each value of xi

and θ. The method is therefore very computationally expensive.
A more computationally efficient method is called the simplified Laplace

approximation, which is the default choice in R-INLA. This method corrects
the Gaussian approximation p̃G(x−i | xi,θ,y) for skewness and location, and is
described more in Rue, Martino and Chopin (2009).

When the approximation p̃(xi,θ | y) is found, either by the Laplace or
the simplified Laplace approximation, then Equation (3.5) can be integrated
numerically with respect to θ using the sum

p̃(xi | y) =
∑

k

p̃(xi,θ
(k) | y)p̃(θ(k) | y)∆k.

Here {θ(k)} is the set of integration points, which are often in practise the same
integration points found in Appendix A.1. The set of weights corresponding to
these points is {∆k}.
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APPENDIX B

Estimates of the Parameters for the
Spatial Effects

The estimates of the spatial range parameters and marginal standard deviation
parameters governing the spatial fields for the two spatial models are shown
here with a 95% credible interval. These are the estimates giving the results for
the spatial effects shown in Chapter 5.

Estimates of the parameters with a 95% credible interval for the spatial
effects for the spatial stationary model is shown in Table B.1. These are the
same estimates as shown in Figure 5.9. None of the 95% credible intervals
contains zero.

The estimates with a 95% credible interval for the spatial non-stationary
model is shown in Table B.2, and also in Figure 5.9. This shows that the 95%
credible interval for θ4,common, θ2,2018, θ4,2018, θ2,2019, and θ4,2020 contains zero.
There is thus not evidence that τ(s) depends on the AADT for the years 2018
and 2019, while there is not evidence that κ(s) depends on the AADT for
the time constant common field, or the years 2018 and 2020, following from
Equation (4.3). For the other parameter estimates the credible interval lays
generally far away from zero, indicating that a non-stationarity controlled by
the AADT may be reasonable.

Parameter Mean 95% credible interval
ρcommon 731.640 [572.083, 903.826]
σcommon 0.447 [0.395, 0.502]
ρ2017 344.797 [264.722, 450.819]
σ2017 0.880 [0.784, 0.990]
ρ2018 1377.554 [952.892, 2084.923]
σ2018 0.425 [0.357, 0.493]
ρ2019 835.061 [648.379, 1058.180]
σ2019 1.182 [1.032, 1.338]
ρ2020 1574.599 [1031.969, 2181.938]
σ2020 0.392 [0.326, 0.478]

Table B.1: The posterior parameter estimates for the spatial parameters for
the spatial stationary model with a 95% credible interval.
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Parameter Mean 95% credible interval
θ1,common 9.458 [8.855, 9.912]
θ2,common −1.304 [−1.686,−0.805]
θ3,common −5.684 [−6.012,−5.252]
θ4,common 0.252 [−0.121, 0.543]
θ1,2017 6.204 [5.566, 6.731]
θ2,2017 0.806 [0.269, 1.430]
θ3,2017 −4.608 [−5.003,−4.147]
θ4,2017 −0.448 [−0.900,−0.045]
θ1,2018 9.612 [8.906, 10.371]
θ2,2018 −0.554 [−1.364, 0.158]
θ3,2018 −5.620 [−6.155,−5.153]
θ4,2018 −0.337 [−0.857, 0.278]
θ1,2019 7.235 [6.722, 7.843]
θ2,2019 −0.279 [−1.283, 0.555]
θ3,2019 −5.738 [−6.205,−5.349]
θ4,2019 0.800 [0.214, 1.515]
θ1,2020 10.136 [9.473, 10.889]
θ2,2020 −1.246 [−2.084,−0.582]
θ3,2020 −5.542 [−6.199,−5.025]
θ4,2020 −0.475 [−1.091, 0.320]

Table B.2: The parameter estimates for the spatial parameters for the spatial
non-stationary model with a 95% credible interval.
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APPENDIX C

Sum-to-Zero Constraints on the
Spatial Fields

To ensure that spatial fields does not capture general trends, and from an
identifiability viewpoint, sum-to-zero constraints can be used. This was
attempted on the spatial fields for the spatial stationary and non-stationary
models, as the results in Chapter 5 gave some inconsistent results, especially
for the yearly spatial effect for 2019 shown in Figure 5.12c. For this year, the
expected rutting is positive for almost all of the road, and the value of the
rutting is generally high.

A sum-to-zero constraint was then set on all the spatial fields for the two
spatial models. The results for the time constant common field for the spatial
stationary model is shown in Figure C.1, while the results for the spatial non-
stationary model is shown in Figure C.2. These results are shown with a 95%
credible interval, as well as on the map between Bergen and Voss. There are no
great discrepancy between these results and those we see in Figure 5.11.
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(a) With a 95% credible interval. (b) On the map.

Figure C.1: The rutting inferred from the common spatial field ωS(s) for the
stationary model with a 95% credible interval and on the map between Bergen
and Voss using sum-to-zero constraints.
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(a) With a 95% credible interval. (b) On the map.

Figure C.2: The rutting inferred from the common spatial field ωNS(s) for the
non-stationary model with a 95% credible interval and on the map between
Bergen and Voss using sum-to-zero constraints.

The discrepancy of results starts when we look at the results for the yearly
varying spatial fields for the spatial stationary model in Figure C.3, and for the
spatial non-stationary model in Figure C.4. The results using a sum-to-zero
constraint are consistent with the results in Figure 5.12 for the years 2017 and
2018.

The results when using sum-to-zero constraints for the years 2019 and 2020
shows great discrepancies however for both the spatial models. For the year
2019 there is a great spike reaching down to a rutting of about −70 millimeters.
In the real data these locations correspond to missing values, so this allows
the algorithm to be more liberal in the value it sets after running with the
sum-to-zero constraint. This is probably done to compensate for the rest of the
rutting being positive, still giving a sum of zero. Similarly, to compensate, the
result for the year 2020 has a large positive spike, reaching 10 millimeters of
rutting. Because of these discrepancies the sum-to-zero constraint was chosen
to not be used.
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(a) For the year 2017.
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(b) For the year 2018.
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(c) For the year 2019.
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(d) For the year 2020.

Figure C.3: The annual spatial deviation from the spatial field ωS(s) for each
of the years from 2017 to 2020 using sum-to-zero constraints.
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(a) For the year 2017.
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(b) For the year 2018.
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(c) For the year 2019.
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(d) For the year 2020.

Figure C.4: The annual spatial deviation from the spatial field ωNS(s) for each
of the years from 2017 to 2020 using sum-to-zero constraints.
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