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Sammendrag

I denne masteroppgaven vil vi foreslå multivariate romlige modeller for effektiv
prediksjon av temperatur og salinitet i havet. Vi baserer modelleringen og ana-
lysen på modelløsninger fra en numerisk havmodell, SINMOD, utviklet av SIN-
TEF siden 1987, og ekte data samlet inn i forbindelse med Maritime Autonomous
Sampling and Control (MASCOT)-prosjektet ved bruk av en undervannsrobot.

Vi foreslår en Bayesiansk tilnærming for modelleringen, og bruk av systemer
av lineære stokastiske partielle differensiallikninger (SPDE) blir brukt for bivariat
beskrivelse av romlig avhengighet. Vi vil sammenlikne en univariat modell og to
ulike bivariate modeller med utgangspunkt i å lære fra den numeriske havmodel-
len og på prediksjonsevne på ekte data.

De tre modellene presterer likt når vi sammenlikner deres evne til å lære
fra den numeriske modellen. Sammenlikningen baserer seg på resultater fra “5-
fold” kryss-validering og “hold-out region” kryss-validering, der mean square error
(MSE) og continuous ranked probability score (CRPS) blir brukt som sammen-
likningsgrunnlag. Basert på prediksjoner på data fra virkeligheten, finner vi at
univariat modell presterer best. Dette blir målt ved å sammenlikne MSE og mean
CRPS for alle tre modeller. Vi anbefaler videre arbeid med å formulere gyldige
statistiske modeller for multivariat romlig modellering ved bruk av systemer av
lineære SPDE-er.
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Abstract

This thesis suggests multivariate spatial models for effective modelling of temper-
ature and salinity in the ocean. We base our modeling and analysis on forecasts
from a numerical ocean model, SINMOD, developed at SINTEF since 1987, and
real data collected with an AUV through the Maritime Autonomous Sampling and
Control (MASCOT) project.

We suggest a Bayesian approach for the modeling, and applying systems of
linear stochastic partial differential equations (SPDEs) for the bivariate modeling
of spatial dependency. We compare one univariate and two different bivariate
models with regards to learning from the numerical ocean model and prediction
on real data.

The three models perform equally when learning from the numerical model
output when testing the models through 5-fold cross-validation and hold-out re-
gion cross-validation. The scoring rules are mean square error (MSE) and mean
continuous ranked probability score (CRPS). Based off prediction on real data, we
find that independent models perform the best when comparing MSE and mean
CRPS for all three models. Further work in developing valid statistical models for
multivariate spatial modeling using systems of linear SPDEs is encouraged.
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Chapter 1

Introduction

Spatial modeling plays an important role in various scientific fields such as geo-
logy, meteorology and oceanography (Cressie and Wikle 2011; Gelfand et al.
2010). The objective of spatial modeling is to describe the spatial dependency
within and between variables. By describing such spatial dependency, one gain
a better understanding of the variable and obtain predictions at unobserved loc-
ations. Even if there is one variable of interest, we often collect data for more
than one variable. By applying multivariate spatial modeling, we are able to use
other variables as support. With multivariate spatial models, the cross-dependency
between variables is included in addition to the dependency within each variable.

One application in multivariate spatial modeling is ocean modeling. Ocean
data collection has previously been based mainly on static buoys, floats and ship-
based methods, but in recent years autonomous underwater vehicles (AUVs) have
become more prominent (Fossum et al. 2021). Several variables are of interest in
ocean modeling, and among them are temperature and salinity. These two vari-
ables are important when creating models for how fresh water (low salinity) mixes
with sea water (high salinity). When the variables are known to be correlated,
this correlation should be included in the model to achieve a more complex un-
derstanding of the variables.

Defining models for various spatial processes have been of interest for hun-
dreds of years (Gelfand et al. 2010). Also non-statistical methods have been cent-
ral for describing processes such as waves in the ocean and weather forecast-
ing. Normally such models provide a better understanding of the underlying pro-
cess, or produce predictions with high accuracy. Building statistical models in a
Bayesian hierarchical setting is popular when we deal with noisy observations.
Describing a prior is central in Bayesian hierarchical modeling, and basing this
knowledge of established models can be appropriate.

Adaptive sampling of the ocean with AUVs require a model which can be up-
dated in real-time. The AUV will have to make decisions for the path of collecting
new data, and such decisions require some foundation. This foundation should
be as accurate as possible, and therefore be updated in real-time as new samples
are collected. One established numerical ocean model is called SINMOD (SIN-

1
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TEF 1987), and has been developed by SINTEF over several years. The numer-
ical model obtains forecasts for several components of the ocean, where some
examples are temperature, salinity and the velocity of the water. SINMOD is a
complex numerical model and obtaining forecasts is time consuming. The SIN-
MOD forecasts are also associated with some numerical error. In this thesis, we
will suggest a statistical model which can learn a prior from numerical model
output, and update the prior as observations are collected.

Gaussian Random Fields (GRFs) are often used in spatial modeling due to
their predictive power in many applications (Cressie and Wikle 2011). Matérn
cross-covariance (Gneiting, Kleiber et al. 2010) and co-regionalization (Schmidt
and Gelfand 2003) are two approaches that have been popular for multivariate
spatial modeling. Their weaknesses are parameter identifiability and specifying
valid statistical models, which are two of the main challenges when building spa-
tial statistical models.

Lindgren et al. (2011) proposed using Stochastic Partial Differential Equations
(SPDEs) to model spatial fields. This approach is attractive because it creates an
explicit link between GRFs and Gaussian Markov Random Fields (GMRFs). We can
model using GRFs, but all computations are done with GMRFs, where the latter is
associated with sparse precision matrices. This gives effective sampling and com-
putations, which we explore further in Section 3.2. Obtaining physical interpret-
ation of the model parameters include some spectral theory, which is presented
in Section 3.4. Previous work with multivariate modeling using systems of linear
SPDEs include Hu, Simpson et al. (2013) and Hu, Steinsland et al. (2013). We
will propose three different models, two multivariate models with different cross-
dependency structure and one univariate model. These models will be compared
both with regards to learning the spatial dependency from a numerical model,
and predictive ability on real data samples.

To evaluate the models, we need some quantitative measurements. We choose
Mean Square Error (MSE) and Continuous Ranked Probability Score (CRPS) to
evaluate the predictive power of the models. MSE provides a easily interpretable
measure of the squared deviance between the predicted value and the true value.
CRPS gives a measure for how well the target distribution fits the observed val-
ues. When evaluating the ability to learn the spatial dependency from numerical
forecasts, we will perform both 5-fold cross validation (CV) and hold-out region
CV. Evaluation of the predictive power on real data samples will be MSE and mean
CRPS for predictions forward in time.

Chapter 2 will go into further detail of the data available for this thesis and
describe the problem of interest. In Chapter 3 we will provide the necessary theor-
etic background to understand the application described in Chapter 4. The results
for learning a statistical model from a numerical model are presented in Chapter
5. Chapter 6 applies a statistical model on real data. Lastly in Chapter 7 we discuss
the results.



Chapter 2

Objectives and Data Sources

2.1 Application: Trondheim Plume

In Trondheimsfjorden, there is a plume where the river, Nidelven, meets the sea
water in the fjord. This border between fresh water and sea water is only visible
if weather conditions allow for it. However, it is possible to locate the plume us-
ing measurements of salinity and temperature in the water. This way of locating
the plume is illustrated in Figure 2.1b and Figure 2.1c showing forecasts of the
two fields from the complex numerical ocean model, SINMOD (SINTEF 1987).
Dependency between the two outcomes is clearly present. Empirical correlation
and cross-correlation, presented in Figure 2.2, amplify this suggestion, and we be-
lieve that multivariate spatial models are appropriate for modeling the two fields.
We can divide the modeling into to objectives: (1) learning a statistical model for
the spatial dependency from the numerical model outputs, and (2) updating the
model as observations are collected to improve the model predictions.

2.2 Objective 1: Learn a Statistical Model from Numerical
Model

The already established ocean model, SINMOD, comes from solving multiple dif-
ferential equations numerically. The model is complex, and can give forecasts for
both salinity and temperature at 25 layers and in a area of size 4736 m× 3776m
which is locally defined. The temperature unit is Kelvin, which is easily converted
to Celcius, while salinity is forecasted in parts per thousand (ppt). Realizations
are on a 149 × 119 grid which is rotated with an angle compared to the geo-
graphic coordinate system (GCS) (longitude, latitude). The time steps are of 10
minutes, giving 144 numerical model outputs each day. The computations are
time-consuming, and getting updated forecasts in real-time is not feasible.

In this thesis, we aim to use the complex numerical ocean model’s forecasts
to construct a “prior” distribution for the two fields. To fit such prior, we extract
the forecasts from 27th of May 2021 at 11 a.m., as this corresponds to the date

3
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Figure 2.1: (a) A map of Trondheimsfjorden outside of Trondheim. Map was
downloaded from https://marinegrunnkart.avinet.no. Ocean model (SIN-
MOD) forecasts for (b) temperature and (d) salinity for May 27th 2021 at 11
a.m. The x- and y-axis represents meters away in East and North direction
from a reference point. (d)-(f) Illustrations of AUV mission paths collecting data
outside of Nidelven in Trondheimsfjorden. Maps are downloaded from https:
//marinegrunnkart.avinet.no. The three missions were all performed on May
27th 2021.

and time where the AUV missions took place. Figure 2.1b and Figure 2.1c display
these forecasts on the desired domain. We also compute a time average in each
point from the time interval 9 a.m. to 1 p.m. By subtracting the time average from
the forecasts for 11 a.m., we obtain two fields with zero mean. The two fields are
used to explain the spatial variation and cross-dependency between the variables.
Chapter 5 presents the results of learning such multivariate spatial model using
systems of linear SPDEs.

Based of the SINMOD forecasts, we explore the correlation between temperat-
ure and salinity through an empirical cross-correlogram, presented in Figure 2.2.
We observe how the fields are highly correlated for short distances and with range
300m. Together with the cross-correlogram, empirical correlograms for each of
the measurements is included. We observe that the spatial dependency for the two
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Figure 2.2: Estimated correlograms and cross-correlogram for temperature and
salinity on 27th of May 2021 at 11 a.m. The data comes from forecasts by SINMOD
for the given time, as visualized in Figure 2.1b and Figure 2.1c, where a time
average in each grid point is subtracted.

fields are indistinguishable, where the individual ranges for both fields are both
300 m. We will suggest three different prior models, one with univariate fields and
two prior models with cross-dependency between the two fields. This is primary
objective 1 of the thesis.

2.3 Objective 2: Apply the Model on AUV Data

The real data used for this thesis was collected for the MASCOT-project, a collab-
oration project with NTNU and SINTEF (Eidsvik 2020). The AUV data samples is
collected in three separate missions, all from May 27th, 2021. The first two mis-
sions are transect lines starting in fresh water moving into to sea water consisting
of 7,461 and 10, 491 measurements. The paths are illustrated in Figure 2.1d and
Figure 2.1e. The third mission consists of 39, 052 observations originally, but we
filter out every 5th measurement such that we obtain 7, 811 observations from this
path. An illustration of this mission path is in Figure 2.1f. The AUV collects data
and estimates its position based on a reference point defined before the mission
starts. The estimated position is given in meters north and east relative to this
reference point. The reference point is given in the GCS, more precisely WGS-84.
By converting this reference point to the universal transverse mercator (UTM) co-
ordinate system we get a neutral coordinate system for both data sources. The
UTM-zone for the area of interest is 32V, and we determine the coordinates for
each measurement from the AUV. The temperature is measured in degrees Celcius,
and the salinity measurements are in practical salinity unit (psu). In practice, ppt
and psu are used interchangeably.

When the prior from SINMOD data is established, we can start collecting
samples from the ocean and update our prior knowledge. This gives us predictions
for the current state of the ocean based on samples from the AUV and SINMOD
data. The results from the adaptive sampling is found in Chapter 6, and concludes
Objective 2 of the thesis.





Chapter 3

Background

3.1 Gaussian Random Fields

We will use GRFs to model temperature and salinity in the ocean. What follows is
a short introduction to GRFs. We follow Rue and Held (2005), and define GRFs.

Definition 1 - GRF.

{u(s) : s ∈ Rd} is called a GRF if for all finite sets {s1, s2, ..., sn} ⊂ Rd , for any
n ∈ N, the n-dimensional vector [u(s1), u(s2), ..., u(sn)]T follows a multivariate
normal distribution.

GRFs’ popularity comes from its compact description. A GRF can be described
through its mean functionµ(s) = E[u(s)], s ∈ Rd and covariance function C(s, t) =
Cov[u(s), u(t)], s, t ∈ Rd , where C(s, t) is a symmetric, positive semi-definite func-
tion. One example of such valid covariance function is the Matérn covariance
function,

ρ(d;ν,ρ) =
σ2

2ν−1Γ (ν)

�p
8ν

d
ρ

�ν
Kν

�p
8ν

d
ρ

�
, d ≥ 0 (3.1)

where d = ∥s− t∥ for two spatial locations s, t ∈ Rd , ∥·∥ refers to the Euclidean
distance, ν is a smoothness parameter and ρ is the range parameter defined such
that the correlation is approximately 0.1 at distance ρ for all values of ν. Kν(·) is
the modified Bessel function (Gneiting, Kleiber et al. 2010).

The likelihood for a n-variate normal random vector x with mean vector µ and
covariance matrix Σ is given by

L(x;µ,Σ) = (2π)−n/2 det(Σ)−1/2 exp
§
−1

2
(x−µ)TΣ−1(x−µ)

ª
.

The covariance matrix entries satisfy Σi j = Cov[x i , x j] for entries x i and x j in
x. The covariance matrix is often a dense matrix, and the computations of Σ−1

are costly when n is large. In some applications it is more useful to refer to the

7
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precision matrix which is the inverse covariance matrix, Q = Σ−1. One of these
useful applications are GMRFs, which we come back to in Section 3.2.

Often we have more than one variable of interest, and to construct models
with cross-dependency, we use multivariate models. Including cross-dependency
in the model can improve predictive power, due to the ability to borrow strength
from the other fields. In the case of p variables of interest, we extend the definition
from before for p-variate GRFs.

Definition 2 - Multivariate GRF.

Let {u1(s) : s ∈ Rd}, ..., {up(s) : s ∈ Rd} be p GRFs. If for any p finite sets of

spatial locations {s(1)1 , ..., s(1)n1
}, ..., {s(p)1 , ..., s(p)np

} ⊂ Rd ,

[u1(s
(1)
1 ), ..., u1(s

(1)
n1
), u2(s

(2)
1 ), u2(s

(2)
n2
), ...,up(s

(p)
1 ), up(s

(p)
np
)]T

follows a multivariate normal distribution, then {u(s) = [u1(s), ..., up(s)]T : s ∈
Rd} is a p-variate GRF.

3.2 Gaussian Markov Random Fields

One approach to avoid working with large dense covariance matrices is GMRF.
By relating a GRF to a connected graph, G, we can describe a spatial connection
between locations. The graph consists of two sets, the set of edges, E and the set
of vertices, V. Figure 3.1 provides a simple example of such simple graph. The

Figure 3.1: Illustration of a simple graph with six nodes and seven edges con-
necting the nodes. The nodes are categorized into three groups: black, gray and
white. The three black nodes are connected such that the middle has two edges
to each of the two blacks. The left and right black are directly connected to the
middle black node. Gray nodes are directly connected to each other and to the
white node. The white node is not directly connected to any black nodes, i.e.
there is no single edge connecting the white node to any black node.
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definition of a GMRF is as follows (Rue and Held 2005).

Definition 3 - GMRF.

A random vector u= [u1, u2, ...,un]T ∈ Rn with mean µ and precision matrix Q is
called a GMRF with respect to a graph G = {E ,V} iff its density is a multivariate
normal distribution and the elements of the precision matrix satisfy

Q i j ̸= 0 ⇐⇒ (i, j) ∈ E , (3.2)

where Q i j is the element of Q in row i and column j, and i, j denote indices for
vertices in V.

GMRFs are characterized by their sparse precision matrices, which are con-
venient both related to memory and computations. The computational benefits
related to sparse precision matrices are easily available Cholesky factorization
and likelihood computations.

(a) Non-permuted (b) Permuted

Figure 3.2: Non-zero elements of the precision matrices are represented by black
squares, while white areas represent zero elements in the matrix. (a) is not per-
muted, while (b) is permuted.

The first advantage of working with sparse matrices is the easily obtained
Cholesky decomposition. For dense matrices, this decomposition is of computa-
tional cost O(n3) for a n× n matrix. For symmetric sparse precision matrices on
two dimensional space this cost is reduced to O(n3/2) (Rue and Held 2005). When
the matrix in addition is diagonally dominated, the complexity is further reduced
to n(p2+3p), where p refers to the bandwidth of the diagonally dominated matrix
(Rue and Held 2005, Section 2.4.1).

The precision matrix for a GMRF is sparse, but not generally diagonally domin-
ated. With permutations of the matrix, we can obtain such diagonally dominated
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sparse matrix. Then the Cholesky decomposition of a permuted Q becomes as
follows,

PQPT = LLT,

where P is referred to as a permutation matrix, which satisfies PPT = I, and L
is the resulting lower triangular matrix from the Cholesky factorization. The per-
muted matrix, PQPT, is constructed such that the bandwidth is optimally reduced.
Figure 3.2a illustrates how such permutation changes the order of the elements
in the precision matrix. The Cholesky decomposition is provided by the function
Cholesky() from the Matrix-library (Bates et al. 2022).

In maximal likelihood computations, we often use the log-likelihood as an
objective function. That is, for a Gaussian random vector x with mean vector µ
and precision matrix Q, we maximize

l(x ; µ,Q) = −n
2

log(2π) + log(|Q|1/2)− 1
2
(x−µ)T Q(x−µ), x ∈ Rn

instead. When the precision matrix is sparse, we can simplify the log-likelihood
expression by using the Cholesky decomposition of Q. That is,

l(x ; µ,Q) = −n
2

log(2π) +
n∑

i=1

log(Lii)−
1
2
(x−µ)TQ(x−µ)

where Lii refers to diagonal elements of the lower triangular matrix L such that
Q= LLT.

To apply GMRFs for multivariate spatial modeling we need some way of de-
scribing these graphs and precision matrices. One such method is systems of linear
SPDEs.

3.3 Systems of Linear SPDEs

The spatial dependency between temperature and salinity is modelled using sys-
tems of linear SPDEs. A system of linear SPDEs in two spatial dimensions will in
general have the form



L11 L12 ... L1p
L21 L22 ... L2p

...
. . .

...
Lp1 ... Lpp







u1(s)
u2(s)

...
up(s)


=




ω1(s)
ω2(s)

...
ωp(s)


 , s ∈ R2, (3.3)

where ωi(s), i = 1, ..., p are independent Gaussian white noise processes, Li j =
τi j(κ2

i j −∆)αi j/2, i, j = 1, ..., p is the operator working on u j and ∆ refers to the

Laplacian
∑d

i=1
∂ 2

∂ x2
i

(Hu and Steinsland 2016; Lindgren et al. 2011). We require

τii ,κi j > 0, i, j = 1, ..., p.
In this thesis, we will refer to the system of linear SPDEs as the bivariate case,

p = 2, and we fix αi j = 2, ∀ i, j = 1, 2. This simplification will have an effect
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Figure 3.3: Visualization of a triangulation on a [0,40] × [0, 40] domain. Here
with 132 nodes.

on the smoothness of the fields. More specifically, the stationary solution to the
p = 1 linear SPDE is a zero mean Matérn GRF when α > d/2 (Whittle 1954;
Whittle 1963). The smoothness parameter ν in Equation (3.1) is determined from
ν = α− d/2, and with d = 2 and α = 2 the spatial correlation will be restricted
to smoothness ν= 1 for the first field.

We simplify Equation (3.3) to a lower triangular operator matrix, as suggested
by Hu and Steinsland (2016), and we get the system
�
τ11(κ2

11 −∆) 0
τ21(κ2

21 −∆) τ22(κ2
22 −∆)
��

u1(s)
u2(s)

�
=

�
ω1(s)
ω2(s)

�
, s ∈ R2, (3.4)

such that u1(s), s ∈ R2 is determined from τ11(κ2
11∆)u1(s) = ω1(s), s ∈ R2. The

first field is a zero mean Matérn GRF. The system in (3.4) can be represented in a
compact manner,

Lu(s) =ω(s), s ∈ R2,

where L is the operator matrix, ω contains the Gaussian noise processes and u is
the solution to the system of linear SPDEs. Next we provide a short description of
the finite element method (FEM) to solve the system of SPDEs. A more thorough
introduction is provided by Lilleborge (2021).

To solve the system of linear SPDEs we use FEM, which gives us the weak
solution. First, we limit the solution to be on a closed domain, Ω ⊂ R2. Simul-
taneously, we assume the domain to be homogeneous, which includes that the
boundary conditions are homogeneous Neumann. We make a discretization of
the domain Ω, called a triangulation, T with m vertices. An example of such tri-
angulation is shown in Figure 3.3. Every triangle represents an element, and we
look for a solution u of the form

u(s) =
2m∑
i=1

wiφ i(s) (3.5)

for weights wi and some set of linear basis functions
��
φ1(s)

0

�
,

�
φ2(s)

0

�
, ...,

�
φm(s)

0

�
,

�
0
φ1(s)

�
,

�
0
φ2(s)

�
, ...,

�
0

φm(s)

�
,

�
.
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We require

φk(s j) =

¨
0, j ̸= k

1, j = k
, k = 1, ..., m, (3.6)

for vertex locations s j , j = 1, 2..., m in T . This approximation of u gives us Gaus-
sian distributed weights, w= [w1, ..., w2m]T with precision matrix given by

Q= KTC̃−1K, (3.7)

where K and C̃ are sparse block matrices,

K=

�
K11 0
K21 K22

�
C̃=

�
C̃11 0
0 C̃22

�
.

The block elements Ki j = τi j(κi jC + G), and C, C̃ii = C∗ and G are the element
matrices given by

Ci j = 〈φi ,φ j〉 C∗ii = 〈φi , 1〉 Gi j = 〈∇φi ,∇φ j〉

where 〈·, ·〉 refers to the inner product given by

〈 f , g〉=
∫

Ω

f (s)g(s) dS.

A thorough computation of the element contributions to the element matrices
is provided by Lilleborge (2021), inspired by the work presented by Lindgren et al.
(2011) and Hu, Simpson et al. (2013). We denote an element of the triangulation,
T , by Ti jk. This element consists of three vertices, and three edges connecting the
vertices. We denote the vertices by vi , v j and vk, and the edges ei , e j and ek
such that ei is the edge connecting v j and vk. This is visualized in Figure 3.4. The

Figure 3.4: Illustration of a triangular element, Ti jk in the triangulation T . The
triangle consists of vertices vi , v j and vk with edges ei , e j and ek connecting the
vertices.

element contributions from a triangle Ti jk to the element matrices, C, C∗ and G
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become

{Cαβ}α,β=i, j,k =
1

12
|Ti jk|



2 1 1
1 2 1
1 1 2




{C∗αα}α=i, j,k =
1
3
|Ti jk|I3

{Gαβ}α,β=i, j,k =
1

4|Ti jk|
(ei e j ek)

T(ei e j ek)

where |Ti jk| denotes the area of the triangle element Ti jk.
Due to the construction of the triangulation, T , and the choice of linear basis

functions, the precision matrix Q will be sparse. For a fixed i ∈ {1, ..., m}, the
only non-zero elements of K are for j, k ∈ {1, ..., m} such that (i, j, k) makes a
triangle Ti jk in T . C̃ is a diagonal matrix, and so is C̃−1. Then the construction of

Q= KTC̃−1K will result in a sparse precision matrix.

3.4 Stationary Stochastic Processes

The SPDE parameters in (3.4) can not be interpreted physically, such as range and
marginal variance. We would like to gain some understanding of these paramet-
ers, and before we can get there, we need some basic understanding of stationary
stochastic processes. The processes of interest are real processes, but working with
complex processes will simplify the computations of interest. We start by introdu-
cing a stationary stochastic process, which can be represented in the following
form

u(t) = x(t) + iy(t),

where {x(t) : t ∈ Rd} and {y(t) : t ∈ Rd} are two real, stationary stochastic
processes and i=

p−1 is the imaginary unit. Then

E[u(t)] = E[x(t)] + i E[y(t)] = m t ∈ Rd

and
Cov[u1, u2] = E[(u1 −m1)(u2 −m2)] = E[u1u2 −m1m2],

for two stationary stochastic processes, u1 and u2, with expectations m1 and m2,
respectively. We define stationarity similarly to Lindgren (2013, see Definition
4.1).

Definition 4 - Stationarity.

Strictly stationary: For the stochastic process {u(t) : t ∈ Rd}, where u(t) =
x(t) + iy(t) for x(t), y(t) to be two real-valued processes. If all 2n-dimensional
distributions of x(t1 + τ), y(t1 + τ), x(t2 + τ), y(t2 + τ), ..., x(tn + τ), y(tn + τ)
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are independent of τ ∈ Rd , we say that the process {x(t) : t ∈ Rd} is strictly
stationary.

Second order stationary: For some arbitrary process {u(t) : t ∈ R}, where
E[u(t)] = m and E[u(s)u(t)] = C(u(s), u(t))+ |m|2 depends only on the difference
s− t.

For a single process, we define the covariance function as follows (Lindgren
2013).

Definition 5 - Covariance function.

The covariance function r(τ), t ∈ Rd for a stationary stochastic process x with
expectation m is given by

r(τ) = E[(x(s+τ)−m)(x(s)−m)], τ ∈ Rd ,

for some location s ∈ Rd . r(τ) is Hermitian. That is, r(τ) = r(τ).

The bivariate process of interest, u in Equation (3.4), is described through a
system of linear SPDEs. To obtain a further understanding of this equation, we
need to apply the spectral theorem. Provided is the theorem for a continuous
stationary process defined on a one-dimensional domain (Lindgren 2013).

Theorem 1 - The spectral theorem.

If {x(t), t ∈ R} is a zero mean, continuous stationary process with spectral distri-
bution F(ω), there exists a complex-valued spectral process {Z(ω),ω ∈ R}, with
orthogonal increments, such that

E[|Z(ω2)− Z(ω1)|2] = F(ω2)− F(ω1)

for all ω1 <ω2 and

x(t) =

∫ ∞

−∞
eiωt dZ(ω).

The spectral theorem naturally expands to d dimensional processes, where
the integral is over all of Rd . We provide an example of the use of the spectral
theorem in R2. We define the univariate SPDE,

τ(κ2 −∆)u(s) =ω(s), s ∈ R2

where parameters τ > 0 and κ > 0,ω(s) is Gaussian white noise process and u(s)
is the process of interest. By inspection of the Fourier transform of the SPDE, we
obtain

τ(κ2 + |w|2)û(w) = ω̂(w), w ∈ R2,
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where û and ω̂ are the Fourier transformed processes of u and ω. We are able to
explicitly state the spectral process û by

û(w) =
1

τ(κ2 + |w|2)ω̂(w), w ∈ R2.

We are interested in the covariance function, r(h) where h = s− t between two
locations s, t ∈ R2, which can be found from

r(h) =

∫∫

R2

exp{i(h ·w} f (w)dw (3.8)

where · refers to the inner product, f (w) is the spectral density function´(Lindgren
2013, see p. 16-17). The spectral density function can be found from evaluating
E[ûû], where a is the conjugate of a complex number a ∈ C. We find

E[ûû] =
1

τ2(κ2 + |w|2)2 E[ω̂ω̂]

where E[ω̂ω̂] = 1/(2π)2 since the process ω̂ is the Fourier transform of a Gaus-
sian white noise process, ω(s), defined for s ∈ R2. The covariance function is
determined by

r(h) =
1
τ2

1
(2π)2

∫∫

R2

exp{i(h ·w)} 1

(κ2
22 + |w|2)2

dw

which Whittle (1963, see Eq. (3.15)) evaluated to be

r(h) =
1
τ2

|h|
4πκ

K1(κ|h|)

where K1(·) refers to the modified Bessel function. Since |h| is the only appearance
of h, we can write d = |h|,

r(d) =
d

4πτ2κ
K1(κd)

where we recognize the Matérn covariance function in Equation (3.1) with smooth-
ness parameter, range and marginal variance given by

ν= 1, ρ =
p

8/κ, σ2 = 1/(4πτ2κ2),

respectively.

3.5 Scoring Rules

To evaluate different models, we have to apply some kind of scoring rules. Here
we will use mean square error (MSE) and continuous ranked probability score
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(CRPS). MSE is commonly used and gives an interpretable measurement for the
difference in the prediction and truth. The CRPS measures the prediction fit to
the target distribution. The combination of these two measures gives a good un-
derstanding of the model’s predictive power.

For a set of predictions ŷ= [ ŷ1, ŷ2, ..., ŷn]T with true values y= [y1, y2, ..., yn]T,
the MSE is found from

MSE=
n∑

i=1

(yi − ŷi)
2.

When comparing different models and their MSE values, we prefer the model with
the lowest MSE score.

The CRPS is a measure of how well the observations yi fits the target/predict-
ive distribution, F . The general formula for the CRPS is

CRPS(Fi , yi) =

∫ ∞

−∞
[F(x)− I(x − y)]2d x ,

where I(x) is the Heaviside step function, which is 1 for x ≥ 0 and 0 otherwise.
We can compute the CRPS for an observation yi when the target distribution is a
multivariate normal distribution by the following formula,

CRPS(Fi = Φ, yi) = σ
§

yi −µ
σ

�
2Φ
�

yi −µ
σ

�
− 1
�
+ 2ϕ
�

yi −µ
σ

�
− 1p
π

ª
,

where Φ and φ refers to the cumulative density function (CDF) and probability
density function (PDF) of a standard normal distribution (Gneiting and Raftery
2007). The observation is denoted by yi , µ is the mean value of the predictive
distribution and σ is the standard deviation. For several predictions, we are inter-
ested in the mean CRPS, which is found from

CRPS=
1
n

n∑
i=1

CRPS(Fi , yi).

Similarly as for MSE, we will prefer the lowest CRPS value when comparing mod-
els.



Chapter 4

Bayesian Hierarchical Model

This chapter provides a further introduction to how we build the hierarchical
model for real-time predictions during AUV missions. Though the application is
for bivariate spatial modeling of temperature and salinity in the ocean, we will in
this chapter describe a general Bayesian hierarchical model for p = 2 variables.

4.1 Structure

Hierarchical modeling is a popular approach to modeling when you are working
with noisy observations of one or several processes. Normally, we collect all ob-
servations in a single 2n×1 vector, where 2 refers to the number of variables and
n to the number of observations from each variable. A hierarchical model with a
Gaussian latent process will typically have the form

y | η,θ ∼ π(y | η,θ )

η | θ ∼ N(η | θ )
θ ∼ π(θ )

where y are referred to as the observations, η is a vector containing the two Gaus-
sian latent processes and θ contains the model parameters.

The hierarchical structure allows for different conditional distribution com-
putations, such as integrated likelihood, θ | y and posterior distribution η | y,θ .
These conditional distributions can be used for maximum likelihood and pre-
dictions. Bayes’ rule becomes central in these computations, and we remind the
reader

P(A | B) = P(B | A)P(A)P(B) (4.1)

for events A and B.
The highest level includes the observations, conditioned on knowing the latent

processes and the model parameters. This layer will explain how the observations
are related to the latent processes. A common assumption is that the observations

17



18 Lilleborge: Multivariate spatial modeling using SPDEs on ocean sampling

are conditionally independent, that is we have the following relation

π(y | η,θ ) =
n∏

i=1

π(y(1)i | η,θ )
n∏

i=1

π(y(2)i | η,θ )

where y( j)i refers to each observation of variable j = 1, 2 and n is the number of
observation locations.

The observational model will be of the form

y( j)i = η
( j)(si) + ϵ

( j)
i , i = 1, ..., n, j = 1,2

where ϵ(1)1 , ...,ϵ(1)n
iid∼ N(0,σ2

1) and ϵ(2)1 , ...,ϵ(2)n
iid∼ N(0,σ2

2) are noise related to the
measurement, and η( j)(s) is the latent process for variable j evaluated at obser-
vation location si . That is, if the latent process is known, we have y( j)i | η( j)(si)∼
N(η( j)(si),σ j

2).
The middle layer in the hierarchical model is called the latent process. This

process is not observed directly, but is the source for the observations. An example
for such middle layer is the true distribution of salinity in the ocean.

The latent process for variable j is of the form

η( j)(s) = X( j)(s)β ( j) + u( j)(s), j = 1, 2, s ∈ D

where X( j)(s) is a design matrix of spatial covariates, β ( j) = [β ( j)0 ,β ( j)1 ]
T contains

model parameters and u( j)(s) is a centered GRF.
The lowest level of the hierarchical model is θ . This is often referred to as the

prior. The distribution will reflect the existing knowledge about the parameters
included in the model. Often this includes some variance related to the observa-
tion error, θ = [σ1,σ2]T. The underlying GRF included in the latent processes
will be modelled through a system of linear SPDEs. That is, the model parameters
will additionally include the parameters from Equation (3.4).

4.2 Implementing Systems of Linear SPDEs

We assume that the true spatial fields of temperature and salinity in the ocean
can be described through GRFs. The zero-mean GRFs, u( j)(s) for j = 1, 2, can be
modelled through the system of linear SPDEs. In this thesis, we will refer to three
different ways to model the two GRFs: independent model (IM), simple model
(SM) and complex model (CM). A model summary is presented in Table 4.1. The
models are nested, such that

IM ⊆ SM ⊆ CM,

which means that independency can be recognized for all three models, while IM
and SM are not able to describe as complex dependency as CM allow for. The
models are defined such that different model complexities can be assessed.
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Table 4.1: The three model types together with the parameter limitations related
to the system of linear SPDEs in Equation (3.4).

Model name Description Restrictions
IM Independent GRFs τ21 = 0
SM Simple cross dependence κ21 = κ11
CM Complex cross dependence -

We remind the reader of the system of SPDEs, represented by

Lu(s) =ω(s), s ∈ R2,

where L is the operator matrix, u(s) contains the two fields and the two independ-
ent Gaussian white noise processes, ω(s) = [ω1(s),ω2(s)]T. We make further
investigation of the SPDE parameter interpretation.

The Fourier transformation of the system of SPDEs is on the form

Hû(w) = ω̂(w), w ∈ R2 (4.2)

where the elements of Hi j = τi j(κ2
i j + |w|2), and û(w) and ω̂ are the Four-

ier transforms of u and ω, respectively. The spectral process is then found from
û(w) = H−1ω̂(w). We are interested in the power spectrum, Su(w) = E[ûûH],
that is,

Su =H−1

�
1/(2π)2 0

0 1/(2π)2

�
H−H

where A−H refers to the inverse Hermitian transpose. Since H is a real matrix, it
is equivalent to the inverse of the transpose, H−H = H−T. The Gaussian white
noise processes are independent and E[ω̂(w)ω̂(w)H] = σ2

ω/(2π)
2 for the Fourier

transformation of some Gaussian white noise, ω(s). Since τi j is directly scaling
σ2
ω, we choose σ2

ω = 1. The resulting power spectrum becomes

Su =
1

(2π)2




1
τ2

11(κ
2
11+|w|2)2

−τ21(κ2
21+|w|2)

τ2
11(κ

2
11+|w|2)2τ22(κ2

22+|w|2)−τ21(κ2
21+|w|2)2

τ2
11(κ

2
11+|w|2)2τ22(κ2

22+|w|2)
1

τ2
22(κ

2
22+|w|2)2
�

1+
τ2

21(κ
2
21+|w|2)2

τ2
11(κ

2
11+|w|2)2
�

 , (4.3)

and we can use these spectral density functions to find expressions for the mar-
ginal variances. These can be found from r(h= 0) from Equation (3.8), that is,

σ2
i =

∫∫

R2

(Su)ii(w)dw

where (Su)ii is the ith element of the diagonal of Su. This results in marginal
variances

σ2
1 =

1

4πτ2
11κ

2
11

(4.4)
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for the first field and

σ2
2 =

1
4π

§
1

τ2
22κ

2
22

+
τ2

21

τ2
11τ

2
22

�
2
(κ2

22 − κ2
21)(κ

2
21 − κ2

11)

(κ2
11 −κ2

22)3
(logκ2

11 − logκ2
22)

+
(κ2

21 − κ2
22)

2

κ2
22(κ

2
11 − κ2

22)2
+
(κ2

21 − κ2
11)

2

κ2
11(κ

2
11 − κ2

22)2

�ª
, κ11 ̸= κ22

(4.5)

for the second field.
We observe that if we assume κ11 = κ21 (SM) the expression for the second

field simplifies to

σ2
2 =

1

4πτ2
22κ

2
22

�
1+
�
τ21

τ11

�2�

Similarly, we can find an expression for the cross-covariance from

σ12 =

∫∫
(Su)12(w)dw,

where (Su)12 refers to the off-diagonal element of Su. An evaluation of the integral
gives us the following expression

σ12 = −
1

4π
τ21

τ2
11τ22

�
κ2

22 − κ2
21

(κ2
22 − κ2

11)2
(logκ2

22 − logκ2
11) +

κ2
21 −κ2

11

κ2
11(κ

2
22 −κ2

11)

�
(4.6)

for the cross-covariance. In Appendix A there is included a more thorough com-
putation scheme for the evaluation of the integrals. In addition, the resulting ex-
pressions for marginal variance and cross-covariance if κ11 = κ22.

4.3 Computational Model

In practice, we observe at n different locations, {s1, s2, ..., sn} ⊂ R2, and we have
observations of the two fields, y(1) = [y(1)1 , ..., y(1)n ]

T and y(2) = [y(2)1 , ..., y(2)n ]
T,

in all of the locations. For the case of missing data for one of the fields, one will
simply have two sets of observation locations of different sizes. Without loss of
generality, we will assume that we always observe both fields for all n spatial
locations. The conditional model takes the form

y( j) |w( j),β ( j) ∼ N(A( j)w( j) +X( j)β ( j),σ2
j I) j = 1, 2 (4.7)

where A( j) is an n × m matrix mapping between the triangulation, T , and the
observation locations, w( j) are the weights for field j, X( j) is the design matrix,
β ( j) is the parameter vector, β ( j) = [β ( j)0 ,β ( j)1 ]

T and I is the n× n identity matrix.
The weights and the model parameters for the two fields are assumed to be

independent, and we can write z = [wT,βT]T, where w = [w(1)T,w(2)T]T and
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β = [β (1)
T

,β (2)
T
]T. Then z | θ ∼ N(µz|θ ,Qz|θ ) where

Qz|θ =
�
Qw 0
0 Qβ

�

is a (2m+ 4)× (2m+ 4) matrix.

By collecting all observations y = [y(1)
T

,y(2)
T
]T, we can construct the hier-

archical model as follows

y | z,θ ∼ N(Sz,Q−1
y )

z | θ ∼ N(µz|θ ,Q−1
z )

where S = [A X] where A is the block diagonal matrix of A(1), and A(2) and
similarly for X with X(1) and X(2). The precision matrix for y | z,θ is written as
Qy and is a diagonal matrix where the first n entries are 1/σ2

1 and the last n are
equal to 1/σ2

2. We can determine the distribution for z | y,θ from Bayes’ rule,

π(z | y,θ ) =
π(y | z,θ )π(z | θ )

π(y | θ )
∝ π(y | z,θ )π(z | θ )
∝ exp
§
−1

2
zT(Qz|θ + STQyS)z+ zT(STQyy+Qz|θµz|θ )

ª

and we find that z | y,θ is also Gaussian distributed with mean vector and preci-
sion matrix given by

µz|y,θ = Q−1
z|y,θ (S

TQyy+Qz|θµz|θ )

Qz|y,θ = Qz|θ + STQyS
(4.8)

where Q−1
z|y,θ is a dense matrix. This distribution is central for making predictions.

We predict the two fields for a set of n∗ new locations, {s∗1, ..., s∗n∗}, using the
density for z | y,θ . That is, we define some Sp = [Ap Xp], where Ap is a block
weight matrix mapping between triangulation and prediction locations, and Xp
is a block design matrix for prediction locations. Then the prediction density for
some set of prediction locations becomes

Spz | y,θ ∼ N(Spµz|y,θ , (SpQz|y,θST
p )
−1), (4.9)

where new predictions, ŷ= [ ŷ(1)1 , ..., ŷ(1)ñ , ŷ(2)1 , ..., ŷ(2)ñ ]
T, are given by Spµz|t,θ and

the variance related to each prediction is found by the diagonal of (SpQz|y,θST
p )
−1,

which is a dense matrix. We will avoid computing the inverse precision matrix in
full, as we are only interested in the diagonal elements. We denote such diag-
onal element by, σ2

ŷ ,k for k = 1, ..., 2ñ. These diagonal elements can be obtained
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without computing the inverse of the precision matrix, as described by Gelfand
et al. (2010). The diagonal elements are computed as follows,

σ2
ŷ ,k =
∑

i

Spi

∑
j

(Qz|y,θ )
−1
i j Sp j , k = 1, ..., 2ñ.

Due to the sparseness of Sp, we only need the elements of Q−1
z|y,θ where the pre-

cision matrix elements are non-zero. Such partial-inverse matrix can be obtained
from the R-INLA-library (Rue, Martino et al. 2009) (www.r-inla.org), using the
inla.qinv() function.

Hierarchical models are also useful when we want to fit a model to observa-
tions through parameter estimation. We can express the integrated likelihood as
follows,

π(y | θ ) = π(y,η | θ )
π(η | y,θ )

=
π(y | η,θ )π(η | θ )
π(η | y,θ )

,

which is independent of η. This likelihood can be used to determine a set of para-
meters that satisfy

θ̂ = argmax
θ

π(y | θ ),

where y are the observations. This approach to parameter estimation is called
maximum likelihood, and will be applied in Chapter 5 where the goal is to learn
the spatial dependency of temperature and salinity through forecasts from the
numerical ocean model, SINMOD.



Chapter 5

Learning a Statistical Model from
Numerical Model

5.1 Goal

In this chapter, we aim to learn a statistical model from the numerical ocean
model, SINMOD, using systems of SPDEs. That is, we use the forecasts from SIN-
MOD which were presented in Figure 2.1b and Figure 2.1c for May 27th 2021 at
11 a.m., and we subtract the time average computed from the same day from 9
a.m and 1 p.m. We then obtain two fields with zero means. They consist of 3798
spatial data points. These two anomalies are used as observations, y, when we
estimate the parameters from MLE using y | θ from Section 4.3. Before we can
start the optimization, we have to determine the triangularization T . The mesh is
created with R-INLA (Rue, Martino et al. 2009), inla.mesh.2d(). Specifying the
border offset will have an effect on the parameter estimation, and this effect is
investigated further in the following section.

5.2 Model Resolution

We want to determine the offset value that gives the more reliant parameter es-
timation. The larger boundary, the less boundary effects on the domain we are
interested in (Lindgren et al. 2011). With a larger domain the computation time
will increase. By repeated parameter estimation for different offset values, we find
that a 6.25% boundary is too small, as the range estimates with resulting paramet-
ers are too large. For boundary offsets equal to 12.5% and 25% the parameters
give better estimates for range. We decide to use boundary offset equal to 12.5%
for our parameter estimates. The number of vertices, m, is chosen to be 7500.
The inla.mesh.2d() function also requires a specification of the maximal edge
length for the triangles, which is chosen to be 1.8% of the width of the area of
interest. The mesh is created before making any observations, and can then be
used even when more observations are added. This saves computations, as the

23
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element matrices for building Q from Equation (3.7) only needs to be computed
once.
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Figure 5.1: Triangulations with 500 vertices with different border sizes. Left (a),
middle (b) and right (c) has offset borders to be 6.25%, 12.5% and 25% of the
diameter of the domain. Red box illustrates the area where observations are col-
lected from. The x-axis is parallel with Easting and the y-axis is parallel with
Northing in the UTM 32V zone. The reference point (0,0) is chosen such that all
coordinates inside the read box have positive x and y values.

5.3 Parameter Estimation and Interpretation

The model presented in (4.7) takes the form

y( j)i |w( j),θ = A( j)i w( j) + ϵ( j)i j = 1, 2, i = 1, ..., n (5.1)

for the zero-mean SINMOD anomalies, for a location si . That is, the design matrix
becomes X( j)i = [0 0]T, for j = 1, 2, and i = 1, ..., n. The observation errors are

Gaussian distributed, ϵ( j)i
iid∼ N(0,σ( j)

2
). A description of the SINMOD forecasts

can be found in Section 2. The parameters for the model becomes

θ = [κ11,κ21,κ22,τ11,τ21,τ22,σ(1),σ(2)]T,

which are estimated from optimization using the log-likelihood as explained in
Section 4.3.

We add noise to the SINMOD anomalies to smooth out the spatial field. Without
this added noise, the optimization is not able to recognize the SPDE parameters
accurately. The noise is Gaussian with standard deviation σ( j), ϵ( j)i ∼ N(0,σ( j)

2
),

where the variance is chosen to be 4% of the empirical marginal variance in the
SINMOD data. From Figure 5.2a and Figure 5.2b we estimate this marginal vari-
ance to be 0.007 and 0.5 for temperature and salinity, respectively. The choice of
4% of the empirical marginal standard deviation in the data is from experiment-
ing with different values. For lower values, for instance 1%, we found that the
optimization had trouble identifying the observation variance correctly.
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Figure 5.2: Empirical variograms based on the SINMOD anomalies for temper-
ature and salinity.

The initial parameter values are chosen such that field ranges and marginal
variances are close to the estimated values. We use the relations described in Sec-
tion 4.2. The initial parameter values are presented in Table 5.1. In addition we
pass the true values for σ( j), j = 1, 2, that were added manually. The estimates

Table 5.1: Initial SPDE parameters passed to the optimization algorithm.

κ11 κ21 κ22 τ11 τ21 τ22

0.00943 0.00943 0.00943 358 -0.0001 42.3

for all six model parameters can be found in Table 5.2.
The estimated SPDE parameters can provide estimates for the marginal vari-

ance and range for the two GRFs, and the cross-covariance between them. For the
first field, the marginal variance and range is simply estimated from the formula
presented in Equation (4.4) and the empirical relation ρ =

p
8/κ (Lindgren et

al. 2011). For IM we can use these two formulas for both fields. For the coupled
fields, we have more complex formulas for the marginal variance, as presented in
Section 4.2. Next we present the estimated for all three models.

With IM we estimate the marginal variances to be 0.0137 for temperature and
1.01 for salinity. The estimated range for temperature is 580 m and for salinity it
is 557 m. The estimated marginal variances and ranges through SPDE parameters
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Table 5.2: Estimates for the SPDE parameters based on SINMOD anomalies at
time of interest.

θ̂

Model
IM SM CM

κ11 (10−3) 4.88 0.689 4.73
κ21 (10−1) 0 0.00689 2.71
κ22 (10−2) 0.508 0.468 4.57
τ11 494 491 471
τ21 0 -39.1 -11.1
τ22 55.2 55.1 41.7

are higher than the estimated empirical variograms, which were 0.007 (marginal
variance, temperature), 0.5 (marginal variance, salinity) and 300 m (range, tem-
perature and salinity).

The SPDE parameters estimated with SM result in marginal variances equal to
0.696 and 1.20 for temperature and salinity, respectively. The cross-covariance is
estimated to be 0.0182. This suggests that SM estimates two independent fields.
The ranges are estimated to be 4100 m for first field, temperature. For salinity
the estimated range is more complex to quantify exactly, but ranges from the
dependency, κ21 is estimated to be 4100 m as well, while for κ22 we get 604 m.
The first field is estimated to have a larger marginal variance and a much larger
range than the ones obtained from empirical variograms. The second field is also
estimated with a larger marginal variance than the empirical variogram suggests.

The marginal variances with CM are estimated to be 0.0161 and 1.25 for tem-
perature and salinity, respectively, when using the formulas in Equation (4.4) and
Equation (4.5). The range for temperature with CM is estimated to be 598 m. From
the dependency term, the empirical range is 10.4 m, and from the second field we
get 61.9 m. The actual ranges for each field is not known. The marginal variances
are 0.0161 for temperature, 1.25 for salinity and 0.149 for the cross-covariance.
That is, CM suggest correlation close to 1, and the fields are strongly dependent
in the same location.

In total, all three models suggest a larger range than the empirical estimates
of 300 m for temperature and salinity. The marginal variances are also estimated
with SPDE parameters to be at least two times larger than the values from the em-
pirical variograms. We note how SM is suggesting almost no dependency between
the fields, and that the estimated marginal variance for temperature is close to 100
times larger than the empirical variogram suggests.

In addition to analytical computations using the SPDE parameters directly,
we construct empirical correlograms and cross-correlograms for all three model
types. These provide estimates for ranges and cross-ranges, as we are not able
to directly estimate them from model parameters. Figure 5.3 display estimated
correlograms for spatial fields of temperature and salinity and cross-correlogram
between the two fields. These are obtained by repeatedly sampling from the Gaus-
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sian distribution with precision matrix Q with the parameters estimated for each
model. As expected, we observe that the cross-correlogram for both IM and SM
are close to zero for all distances, suggesting completely independent fields. The
range estimates for IM, in Figure 5.3a, suggests the range to be around 600 m for
both fields. This corresponds well with the estimates using the empirical relationp

8ν/κ. Figure 5.3b we note that the range for salinity is shorter than the range
for temperature. For CM, Figure 5.3c, we note that all empirical correlograms are
indistinguishable, similar to the result for the SINMOD anomalies in Figure 2.2.
The ranges are all estimated to be around 500 m, which is close to the empirical
estimate for temperature when using SPDE parameters for CM.
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Figure 5.3: Estimated correlograms and cross-correlogram for temperature and
salinity. The distance is in meters [m]. We sample with precision matrix as de-
scribed in Equation (3.7), with the set of SPDE parameters in Table 5.2 and ob-
tain 15 realizations, which are used to compute 15 correlograms for each field and
cross-correlograms. The means of the 15 correlograms and cross-correlograms are
presented.

We also validate with empirical variograms that the marginal variances in
Equation (4.4) and Equation (4.5) provide accurate estimates. The result is visu-
alized in Figure 5.4. For all models we find that the formulas provide accurate
values, where the only exception is with SM for temperature. The estimated vari-
ogram is only for distances up to 1000 m, while the estimated range is 4100 m.
The estimated marginal variance for temperature with SM will therefore not be
reached within the first 1000 m of the variogram. Extending the variogram for
distances over 1000 m will result in strange-looking variograms due to few data
points to compute the empirical variogram with.

5.4 Evaluating Model Fit

Evaluating the model fit can be done in various ways. We will do two different
approaches, k-fold cross-validation (CV) and hold-out regions CV. All evaluations
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Figure 5.4: Empirical variograms (red, dotted line) for temperature and salinity
and all three models. The black dotted line illustrates the estimated marginal
variances computed using SPDE parameter estimates in Table 5.2 and formulas in
Equation (4.4) and Equation (4.5). We sample with precision matrix as described
in Equation (3.7), with the set of SPDE parameters in Table 5.2 and obtain 15
realizations, which are used to compute 15 empirical variograms for each field.
The means of the 15 variograms are presented.

are performed with the same forecasts from SINMOD for 11 a.m. with the time
average from 9 a.m. to 1 p.m. in each spatial location subtracted.

A regular approach for model evaluation is k-fold CV, which includes randomly
dividing the data set into a train and test sets. The training set is used for fitting
the model, and the test set is used to evaluate the model fit. A regular approach
is to do 5-fold CV. The procedure is as follows: we randomly divide the data into
five folds, and sequentially leave out one fold as the test set, and the rest is used
as the training set.

We repeat the 5-fold CV five times, giving us in total 25 parameter estimates,
MSE scores and mean CRPS for each of the three model types, IM, SM and CM.
The mean values for MSE and mean CRPS are presented in Table 5.3. We find that
the models perform equally well, but SM is the model with the lowest mean MSE
and CRPS. To make sure the models have the same foundation to perform well,
we repeat the five sets of folds for all models.

A second approach to model evaluation is hold-out region CV. First, we de-
termine the area where the plume is the most prominent. We divide this section
into sixteen distinct areas, as shown in Figure 5.5. The data points from outside
of the selected area are included in all parameter estimations. These forecasts are
close to zero, as this area is mostly pure sea water and pure fresh water. For each
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Table 5.3: Mean MSE and CRPS scores for first (temperature) and second (salin-
ity) field from the repeated 5-fold CV evaluations on the SINMOD data.

MSE (10−2) CRPS (10−2)
1st Field 2nd Field 1st Field 2nd Field

IM 0.0468 3.21 1.18 9.75
SM 0.0450 3.09 1.16 9.56
CM 0.0456 3.13 1.17 9.61

of the 16 regions, we leave one of them out as a test set. The training set is the
remaining 15 regions and the data from outside of the plume area. The training
set is used to estimate SPDE parameters and based on these parameters we make
predictions for the anomalies on the test set locations. The predictions are com-
pared to the test set values, and MSE and mean CRPS are computed. The regions
are the same for all models. Hold-out region CV will, in contrast to regular k-fold
CV, give a better understanding of the predictive ability in regions where there are
no observations. This is useful in our desired application, where the collection of
data is limited to the path of the AUV.
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Figure 5.5: Illustrating the sixteen regions used for hold-out validation for both
(a) temperature and (b) salinity. The data points are spatial forecasts from SIN-
MOD where the time averages are subtracted for temperature and salinity.

The MSE and mean CRPS values for the hold-out CV are presented in Table
5.4. We observe that the MSE values decrease for the second field when making
the model more complex, but the first field has the lowest MSE score for SM. For
the average CRPS’ we also see that SM is the model with the lowest score. This
suggests that SM is the best at catching the trends in the SINMOD data, though
the results are quite similar for all three models.

We observe that the optimization is numerically unstable, and the nloptr gives
a status “Generic failure code” for some of the optimizations. This could be caused
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Table 5.4: Mean MSE and CRPS scores for the first (temperature) and second
(salinity) field from hold-out CV evaluations on the SINMOD data.

MSE (10−1) CRPS (10−1)
1st Field 2nd Field 1st Field 2nd Field

IM 0.0253 2.07 0.0220 2.00
SM 0.0245 2.05 0.0217 1.99
CM 0.0253 2.03 0.0219 2.00

by a flat likelihood, which results in a small gradient, making the optimization give
up. One possible solution to this issue is to compute an analytic gradient for the
objective function.

It seems from multiple parameter estimations that the κs are the most difficult
parameters to estimate when we have dependent fields. The estimates for κ11, κ21
and κ22 are varying in scale from 10−7 to 10−3. The estimates for the τs are more
consistent, where τii , i = 1, 2 are all on the same scale, while τ21 is mostly scaled
with 102, but in some cases 101 and 103.



Chapter 6

Applying Statistical Model on
AUV Data

6.1 Goal

Now that the prior for the two fields utilizing the SINMOD forecasts is established,
we want to make predictions on real measurements from the area of interest. That
is, we will use data collected with an AUV in the ocean outside of Trondheim on
May 27th 2021. By extracting observations for only parts of the missions, we ob-
serve how the statistical models learn from the collected data. We will provide a
more precise description of the model for prediction of AUV data. We explore how
well the model learns the fields when combining the prior established from SIN-
MOD data and observations. The predictions are compared with the observations
collected for the rest of the mission. This is done for all three missions presented
in Chapter 2. Lastly, we also visually evaluate predictions on the area of interest.
The true field values are not known for the whole area.

6.2 Prediction Model

We would now like to determine the model for the AUV collecting data sequen-
tially. That is, we use the SINMOD model as a prior, and combine this with the ob-
servations in real-time. The model will be as described in Section 4.3. The design
matrix from Equation (4.7) takes the form

X( j) =




1 Z
( j)
1

...
...

1 Z
( j)
n


 , j = 1, 2,

where Z
( j)
i , i = 1, ..., n are the time average values for location si for field j com-

puted from the SINMOD forecasts from 9 a.m. to 1 p.m. To get these time averages,

31
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Z
( j)
i for all observation locations, si , i = 1,2, ..., n and both fields, j = 1, 2 we apply

linear interpolation of the SINMOD forecasts onto the observation locations.

The observation variances, σ2
1 and σ2

2, are estimated from the collected data.
The procedure is as follows: we divide the observations into bins of a certain
length, and compute the standard deviation of each bin. The average standard
deviation across all bins is used as an estimate for the observation standard de-
viation. For this data set we find the observation variances to be σ2

1 = 0.052 and
σ2

2 = 0.152 for temperature and salinity, respectively.

We make predictions, ŷ, as described in Section 4.3. Computations of the dens-
ity for Spz | y,θ using Equation (4.9) gives us both predictions and the associated
uncertainty for each spatial prediction.

6.3 Prediction on Transect Line Missions

We want to investigate how well the model predicts the temperature and salin-
ity for future locations, {s1, ..., sn}, when the observations are from a different
area, {s∗1, ..., s∗n∗}. That is, the observations are all collected along a single line,
and we want to predict the measurements along a continuation of that same line.
To evaluate the model prediction, we compare the prediction interval to the actual
measurements collected by the AUV. This is visualized in Figure 6.1 for temperat-
ure and salinity, where 40% of the observations are used to learn the model. For
the first mission, we note that the prior knowledge (red line) about the field is not
very accurate for the level we actually observe. The location of the plume (quick
shift in salinity and temperature) is not in the prior knowledge, and all three mod-
els use a scaled prior for predictions on unobserved locations. The prediction back
in time suggest to follow the observations closely. The model recognizes that the
prior does not fit the observations well, and will trust the observations more than
the prior when updating the prior as new observations are sampled.

We note that SM gives a much wider prediction interval for temperature than
the two other models. This is most likely caused by the estimated marginal vari-
ance for temperature, which is 0.696 from the estimated SPDE parameters with
SM, compared to 0.0137 and 0.0161 for IM and CM respectively. SM will be more
uncertain about future observations, as the GRF for temperature has a larger mar-
ginal variance than the two other models.

We check if the predictions improve with more observation time. We increase
the observation time to 80% of the total number of observations, and the result is
visualized in Figure 6.2 for temperature and salinity. As seen before the predictions
back in time closely follow the observed values, while predictions forward in time
are mainly based on the prior distribution.
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Figure 6.1: Predictions of (a)-(f) temperature and (g)-(l) salinity for the first and
second mission. The observation time varies for each mission, and is determined
such that the AUV has collected data from 40% of the total mission. The dashed
line marks where the observed time stops. The prior (red line) represents the
knowledge about the field before the mission started. The true value (blue line)
shows the AUV measurements from the whole mission. The prediction (black
line) is what the model predicts after observing the initial measurements. The
gray area suggests the uncertainty associated with the prediction.
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Figure 6.2: Predictions of (a)-(f) temperature and (g)-(l) salinity for the first and
second mission. The observation time varies for each mission, and is determined
such that the model learns from 80% of the total mission. The dashed line marks
where the observed time stops. The prior (red line) represents the knowledge
about the field before the mission started. The true values (blue line) shows the
AUV measurements from the whole mission. The prediction (black line) is what
the model predicts after observing the initial measurements. The gray area sug-
gests the uncertainty associated with the prediction.

We find that the model will not necessarily learn from the observations, if only
either sea water or fresh water is observed. One solution is to collect data from
both levels before-hand, such that the model learns both levels, and can use the
prior less when SINMOD is not providing an accurate forecasts. We test this using
the third mission with a lawn mower path.
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6.4 Prediction on Lawn Mower Mission

The data from the third mission is collected in a typical lawn mower pattern. This
results in an early visitation of both sea water and fresh water from the river, such
that the models are able to learn both levels in a shorter time. A visualization
of how the three models perform with varying observation time is illustrated in
Figure 6.3 and Figure 6.4 for temperature and salinity, respectively.

We compare the models’ ability to make accurate predictions for temperature
in three different scenarios. First, as seen before, SM has a wider prediction in-
terval for temperature than the two other models. Figure 6.3b, Figure 6.3e and
Figure 6.3h illustrate this. The prior knowledge is accurately locating the rapid
change in temperature, though the levels are inaccurate. All models will quickly
learn this level change, and give quite similar predictions for the future measure-
ments. When comparing Figure 6.3a, Figure 6.3b and Figure 6.3c we see that IM
is predicting the shifts in temperature the most accurately, while SM is predicting
a more extreme increase in temperature than the true field.

When we increase the observation time, we note that all models are closely
following the observed levels for previously visited locations. We note that the
prediction means in Figure 6.3d and Figure 6.3e are very similar, while CM in
Figure 6.3f is making predictions based off the prior knowledge. This could be
caused by CM being a more complex model, which might need more observations
to learn the field accurately. In Figure 6.3g-6.3i we find that IM and SM make
similar predictions, while CM predicts that the temperature will not increase for
the next future locations.

The first thing to note in Figure 6.4 is that the prior is predicting the distribu-
tion and levels of salinity very accurately for this mission. The predictions for a
short observation time is mainly based on the prior, which means that the three
models make quite similar predictions, as seen in Figure 6.4a, Figure 6.4b and
Figure 6.4c. Figure 6.4d and 6.4e shows that the predictions from IM and SM on
salinity are similar also for longer observation times. This is also the case in Figure
6.4g and Figure 6.4h. On the contrary, we see that CM predicts something closer
to the prior when observing 60% of the mission data, as can be seen in Figure 6.4i.
This could, as mentioned before, suggest that CM needs a longer observation time
before learning the field.
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Figure 6.3: Predictions for temperature for the third mission. Each row corres-
ponds to observing 30%, 60% and 90% of the mission before making predictions.
Dashed vertical line marks where the observation time stops and predictions for
unseen locations start. The columns represents the three models. Red line shows
the prior knowledge, blue line is the true values measured with the AUV and
black line is the model prediction. Gray area suggests the uncertainty related to
the prediction, which is ±1s.d.

The associated MSE and CRPS scores for the predictions are presented in Table
6.1, Table 6.2 and Table 6.3. As we have seen in Figure 6.3b, Figure 6.3e and
Figure 6.3h, the prediction interval with SM is much wider than the other model
types. This will give a higher mean CRPS score, as this “safety” of a wide prediction
interval is punished with a higher score. The CRPS scores for the first field is
therefore higher for SM than the two other models in all three tables. The MSE
scores for the first field with SM is lower in Table 6.2 and Table 6.3, which suggests
that SM gives a more accurate prediction, though the model is more uncertain
about the prediction.

For the second field, we find that the mean CRPS scores in all three tables,
Table 6.1, Table 6.2 and Table 6.3, that IM is the preferred model, with SM in a
close second. The least preferable model is CM based on this measure. Similarly
the MSE scores for the second field suggest that CM is the model performing the
worst on this data. IM is the model with the lowest MSE for the second field in
all three observation situations, but SM is a close second. In total, we find that
with this data there is not enough evidence that multivariate models improve the
predictive ability.
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Figure 6.4: Predictions for salinity on the third mission. Each row corresponds to
observing 30%, 60% and 90% of the mission before making predictions. Dashed
vertical line marks where the observation time stops and predictions for unseen
locations start. The columns represents the three models. Red line shows the prior
knowledge, blue line is the true values measured with the AUV and black line is
the model prediction. Gray area suggests the uncertainty related to the prediction,
which is ±1s.d.

Table 6.1: Mean MSE and CRPS for predictions of the third mission, when ob-
serving 30% of the data with three different model types and for temperature(1st
field) and salinity(2nd field).

MSE CRPS
1st field 2nd field 1st field 2nd field

IM 0.121 1.940 0.220 0.781
SM 0.744 2.46 0.639 0.887
CM 0.0863 3.55 0.165 1.03
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Table 6.2: Mean MSE and CRPS for predictions of the third mission, when ob-
serving 60% of the data with three different model types and for temperature(1st
field) and salinity(2nd field).

MSE CRPS
1st field 2nd field 1st field 2nd field

IM 0.0656 0.492 0.147 0.392
SM 0.00539 0.497 0.502 0.406
CM 0.214 4.09 0.312 1.23

Table 6.3: Mean MSE and CRPS for predictions of the third mission, when ob-
serving 90% of the data with three different model types and for temperature(1st
field) and salinity(2nd field).

MSE CRPS
1st field 2nd field 1st field 2nd field

IM 0.108 0.190 0.228 0.294
SM 0.0618 0.203 0.501 0.315
CM 0.160 0.824 0.238 0.524

We would like to see how well the models predict on the whole spatial domain,
and the results for IM is presented in the following section.

6.5 Spatial Prediction

Before making any observations, the predictions rely fully on the prior knowledge
from the SINMOD predictions. These are visualized in Figure 6.5a and Figure 6.5b
for temperature and salinity respectively. The uncertainty related to this prediction
is mainly decided by the prior distribution of β (1) and β (2), which are assigned to
be

β ( j) ∼ N

��
0
1

�
,

�
104 0
0 1

��
, j = 1,2

which is extremely large due to the lack of restriction on β ( j)0 , j = 1, 2. A plot
of this uncertainty is for that reason not included. We present spatial predictions
when we have observed 30% (short) and 90% (long) of the total mission with IM.



Chapter 6: Applying Statistical Model on AUV Data 39

0

500

1000

1500

2000

0 500 1000 1500 2000
Easting [m]

N
or

th
in

g 
[m

]

4

6

8

10

12

Celcius

(a) Temperature

0

500

1000

1500

2000

0 500 1000 1500 2000
Easting [m]

N
or

th
in

g 
[m

]

4

10

16

22

29

psu

(b) Salinity

Figure 6.5: Prediction for (a) temperature and (b) salinity before any observa-
tions are made. Dashed line visualizes the planned path of the mission.

Spatial predictions with IM are presented in Figure 6.6 and Figure 6.7 for
temperature and salinity. In addition to predictions, the uncertainty related to each
spatial prediction is included. As we saw in previous visualizations, the priors are
not accurately predicting the temperature levels, but the locations of the plume is
accurate for the mission of interest. We note that the uncertainty for each spatial
prediction is tightly related to whether the AUV has visited this location already
or not. The spatial uncertainty quickly increases when the distance to the visited
locations increases.

Results for spatial predictions with SM and CM can be found in Appendix B.
As expected, the predicted fields of temperature and salinity from SM are look-
ing less dependent than the predictions with CM. We observe that SM has larger
uncertainty related to all its spatial predictions of temperature further from the
observation path. This increase in uncertainty is most likely caused by the mar-
ginal variance of the GRF for temperature with SM, which is greater than for IM
and CM. This increase in marginal variance also result in more varied predictions,
as can be seen for SMs predictions of temperature on the area of of interest. In
general, we find that the spatial predictions of temperature with IM and CM are
similar, and that SM is unlike the two others. For salinity all three models are
making similar spatial predictions and with similar uncertainties related to each
prediction.
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Figure 6.6: Spatial predictions with IM of temperature when observing (a) 30%
and (c) 90% of the total mission data. The associated uncertainty for each pre-
diction is visualized for (b) 30% and (d) 90% and is presented on log-scale. Solid
line visualize where observations are made and dashed line is the planned path
for the remaining of the mission.
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Figure 6.7: Spatial predictions with IM of salinity when observing (a) 30% and
(c) 90% of the total mission data. The associated uncertainty for each prediction
is visualized for (b) 30% and (d) 90% and is presented on log-scale. Solid line
visualize where observations are made and dashed line is the planned path for the
remaining of the mission. The vertical path to the left in the figures (where the
uncertainty is greater) is not associated with observations, as this was collected
from a different depth.





Chapter 7

Discussion

We obtain a physical interpretation of the parameters related to the SPDE ap-
proach to bivariate spatial modeling. More precisely, we found expressions for
how the SPDE parameters contribute to the marginal variances of the two fields,
and to the marginal cross-covariance. These estimates are accurate, but the para-
meter estimation is found to be unstable. Three models with different complexity
were considered, one univariate and two bivariate models with simple and com-
plex cross-dependency. The models were compared with regards to learning from
a numerical model and for how well it performed on real data samples. The nu-
merical model in question is SINMOD, and the data samples are ocean samples of
temperature and salinity collected with an AUV.

Learning the spatial dependency for the two fields from the complex numerical
model is based on maximum likelihood. The optimization is unstable, which could
be caused by a flat objective function. A proposed solution is to implement analytic
gradient computations, as the current approach utilize a numerical gradient. For
future implementations, we recommend looking into methods for stabilizing the
optimization of the likelihood. The simple bivariate model was marginally better,
by comparison of MSE and mean CRPS measurements, than the univariate and
complex bivariate model, with regards to learning from the numerical model.

We compare the models’ ability to learn from observations and make predic-
tions for unobserved locations. We quickly discovered in Chapter 6 that the model
has to learn from measurements made both of fresh water and salt water to make
good predictions. By only observing one of the levels, we find that the model
would have to strictly trust the prior for future observations. The necessity of a
good prior becomes critical for accurate predictions, which is not always the case,
as seen in the first two missions. When the prior is accurately predicting the loc-
ation of the plume, we obtain accurate predictions even when observations are
few and of only one of the levels. This suggest that the model is too dependent
on a prior, which is not always providing a good representation. Then, the learn-
ing process becomes more important, and observing both levels of temperature
and salinity from fresh water and sea water becomes crucial to obtain accurate
predictions.
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We did not find evidence for preferring multivariate models for temperature
and salinity over univariate models. That is, modeling temperature and salinity
separately gives better results with regards to predictions. Due to the increase
in model complexity and computation time, and lack of better predictive power,
we cannot argue that bivariate models are preferred in our application. Other
studies, like Hu, Steinsland et al. (2013) and Hu and Steinsland (2016) found
that multivariate models did better than univariate models when the variables
of interest are known to be dependent. In the case of missing data from one of
the fields, or if one is interested in the joint probability distribution, multivariate
models would be favorable.

Simulation from the conditional distribution, z | (y, )θ , gives unrealistic res-
ults with the independent model. From a physical point of view, we know that sea
water and fresh water will have different temperature and different levels of salin-
ity, and simulating these independently can produce unrealistic fields. In the case
of predicting the relation between the two, for example y(2)i /y(1)i , i = 1, ..., n∗,
using an independent model could be a bad idea. In the application on the AUV
some decision rule for the path could be based on both fields, and a joint distri-
bution would be useful. Currently, there is not such implementation on the AUV,
but works in this area opens up new possibilities in the future for potential better
solutions.

By increasing the model complexity, an increase in computation time natur-
ally follows. Lilleborge (2021) reported run-times for parameter estimation for
the three models in a simulation study. The computation time was more than
doubled when expanding from univariate to bivariate models on observations
that are known to be correlated. That is, we do suffer a great increase in com-
putation time when the cross-dependency is estimated as well. The bottle neck
for the described model is the first objective, where the model must learn the spa-
tial dependency of the fields. With our approach, this can be done before collecting
any data, and is only necessary to be executed once. When the SPDE parameters
are established, we can update our prior knowledge as observations are collected.
This update process is not of great computational cost, and can be done within
few minutes on simple laptop.

When evaluating the models’ ability to learn the numerical field, we chose two
approaches: 5-fold CV and hold-out region CV. The scoring rules were MSE and
mean CRPS. 5-fold CV gives us an indication of how the estimation will handle
missing data at random. This is not a realistic scenario when working with de-
terministic predictions from numerical solutions to differential equations. In the
desired application of adaptive sampling, hold-out region CV is a more interest-
ing approach as this provides us with information of how sensitive the learning
is to the choice of area. In our case, we found that the parameter estimates were
highly influenced by the choice of area. Carefully choosing the area of interest
when learning the fields become of great importance to obtain reliable parameter
estimates. To evaluate predictions for real data, we compared MSE and mean
CRPS for predictions forward in time. By choosing time points during the three
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missions, we divided the data such that observations from before the chosen time
points are used to update the prior, while all observations after the given time
point are used as test data. Depending on the application of the model, different
approached may be more suitable. If the model only needs accurate predictions
for a restricted area surrounding the current position, we will not care as much
for the accuracy further from the current area of observations.

To avoid being too dependent on the priors accuracy, we suggest that some
measurements from both levels is collected before starting the mission. This will
give the model information of the levels and how well the prior represents the
truth, and improve predictions when the AUV is collecting data and maneuvering
autonomously.

The model currently assumes stationary fields, which includes constant mar-
ginal variance. From the prior knowledge and awareness of where the fresh wa-
ter comes from, we expect less variation in temperature and salinity further away
from the plume. Near the plume we expect quick changes in temperature and sa-
linity, and a spatially dependent marginal variance could be included in the model
by letting the parameters be spatially dependent. Such extension to the model will
acquire some careful consideration of the configuration, to ensure non-negative
definite covariance functions, and is not covered in this thesis.

Secondly, the model could be expanded to R3, where multiple layers in the
SINMOD data is considered. The spatial dependency is present between different
depths as well, and it might improve the predictive power, at the cost of com-
putational complexity. Also it seems that the fields are varying with time quite
drastically. That is, the location of the plume is changing with time, and SINMOD
cannot always give an accurate prediction of the plume. It would also be interest-
ing to learn from multiple SINMOD predictions around the time of interest, and
possibly locate the plume more accurately.

Lastly, we found that the range parameters are the least identifiable. The es-
timates for the range parameters are varying the most. This was also discussed
by Lilleborge (2021), who found that parameters in the second equation in the
system presented in Equation (3.4) are more difficult to identify. For the simple
bivariate model we obtained parameter estimates suggesting a range ten times
longer than prior knowledge suggested for temperature. In addition the marginal
variance estimate for temperature with this model was much larger than anticip-
ated from the SINMOD predictions.
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Appendix A

Physical Interpretation of SPDE
Parameters

Every continuous covariance function can be represented through a Fourier integ-
ral (Lindgren 2013),

r(h) =

∫∫

R2

exp{i(h ·w)} f (w)dw

for a continuous spectral distribution function F(w), and f (w) is the spectral dens-
ity function or the power spectrum, and · refers to the inner product between two
vectors in R2.

We would like to find expressions for the marginal variances for the fields
generated from the SPDE approach, using the SPDE parameters. To do so, we
look at the Fourier transform of the linear set of equations presented in (3.4), and
compute the power spectrum (procedure in Section 4.2). The power spectrum
takes the form
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and we can use these expressions to find expressions for the marginal variances,
that is r(0). To get such expressions, we have to compute integrals for the follow-
ing form,

σ2
i =

∫∫
(Su)ii(w)dw

where (Su)ii is the ith element of the diagonal of Su. The integrals simplifies to
fractions with polynomials of order two where only the length of w appears. By
changing to polar coordinates, the azimuth contribution to the integral is simply a
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factor of 2π. The marginal variances are found from computation of the integrals
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where the first integral is simply calculated by substituting u = κ2
11 + r2, and we

find
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The second integral is calculated by finding the partial fractions for the second
term. That is, we use the substitution u = r2, and then determine constants A, B,
C and D such that
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After some calculus we arrive at
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C = −A,

D =
(κ2
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11)

2

(κ2
11 −κ2

22)2
,

where we assume κ11 ̸= κ22. The marginal variance for the second field becomes

σ2
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1
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§
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�ª
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(A.5)
We note that for κ21 = κ11 (simple model), we get A = C = D = 0 and B = 1,
which gives us the expected marginal variance,

σ2
2 =

1

4πτ2
22κ

2
22

�
1+
τ2

21

τ2
11

�
.

If the two fields have the same scale parameter, κ11 = κ22, we find

(κ2
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(κ2
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=
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+
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+
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+
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, (A.6)
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which results in the following constants

A′ = 0

B′ = 1

C ′ = −2(κ2
11 −κ2

21)

D′ = (κ2
11 − κ2

21)
2

and the marginal variance expressed through the SPDE parameters becomes
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The cross-covariance can be found by computing the same kind of integral for
the off-diagonal entry of the power spectrum matrix. That is,

σ12 =

∫ ∞

0

1
2π
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τ2
11τ22
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21 + r2

(κ2
11 + r2)2(κ2

22 + r2)
rdr,

and by following the same procedure as for the second field marginal variance,
we find the partial fractions,
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,

where the substitution u = r2 is performed. The computed integral then gives us
the cross-covariance in the same spatial location to be

σ12 =
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4πτ2
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.





Appendix B

Spatial Predictions with Bivariate
Models

The appendix provides additional spatial predictions with bivariate models, SM
and CM. Figure B.1 and B.2 are spatial predictions for temperature and salinity
with SM respectively. The predictions are the two fields to the left, and the uncer-
tainty related to each prediction is displayed to the right.

Spatial predictions and uncertainty for CM is presented in Figure B.3 and Fig-
ure B.4 for temperature and salinity, respectively. We note that the scale for the
uncertainties are different for the models, where Figure B.1b and Figure B.1d are
on a larger scale than the uncertainties in Figure B.3b and Figure B.3d.

53



54 Lilleborge: Multivariate spatial modeling using SPDEs on ocean sampling

0

500

1000

1500

2000

0 500 1000 1500 2000
Easting [m]

N
or

th
in

g 
[m

]

4

6

8

10

12

Celcius

(a) Mean, short

0

500

1000

1500

2000

0 500 1000 1500 2000
Easting [m]

N
or

th
in

g 
[m

]
0.01

0.15

2.30
log(s.d.)

(b) SD, short

0

500

1000

1500

2000

0 500 1000 1500 2000
Easting [m]

N
or

th
in

g 
[m

]

4

6

8

10

12

Celcius

(c) Mean, long

0

500

1000

1500

2000

0 500 1000 1500 2000
Easting [m]

N
or

th
in

g 
[m

]

0.01

0.15

2.30
log(s.d.)

(d) SD, long

Figure B.1: Spatial prediction of temperature when observing (a) 30% and (c)
90% of the total mission data with SM. The associated uncertainty for each pre-
diction is visualized for (b) 30% and (d) 90% and is presented on log-scale. Solid
line visualize where observations are made and dashed line is the planned path
for the remaining of the mission.
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Figure B.2: Spatial prediction of salinity when observing (a) 30% and (c) 90%
of the total mission data with SM. The associated uncertainty for each prediction
is visualized for (b) 30% and (d) 90% and is presented on log-scale. Solid line
visualize where observations are made and dashed line is the planned path for
the remaining of the mission.
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Figure B.3: Spatial prediction of temperature when observing (a) 30% and (c)
90% of the total mission data with CM. The associated uncertainty for each pre-
diction is visualized for (b) 30% and (d) 90% and is presented on log-scale. Solid
line visualize where observations are made and dashed line is the planned path
for the remaining of the mission.
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Figure B.4: Spatial prediction of salinity when observing (a) 30% and (c) 90%
of the total mission data with CM. The associated uncertainty for each prediction
is visualized for (b) 30% and (d) 90% and is presented on log-scale. Solid line
visualize where observations are made and dashed line is the planned path for
the remaining of the mission.
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