
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Kristoffer Lehre Fagerheim

Educational Analysis-Program for
Stirling Engines

TMM4935

Master’s thesis in Engineering and ICT
Supervisor: Bjørn Haugen
June 2022M

as
te

r’s
 th

es
is

Kristoffer Lehre Fagerheim

Educational Analysis-Program for
Stirling Engines

TMM4935

Master’s thesis in Engineering and ICT
Supervisor: Bjørn Haugen
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

This project was completed in the course ”TMM4935 - Industrial ICT, Master’s Thesis” at NTNU
- Norwegian University of Science and Technology for the Department of Mechanical and In-
dustrial Engineering.

I would like to thank my supervisor Bjørn Haugen for providing assistance with the project throughout
the course, as well as answering questions regarding the project.

1

Abstract

The goal of this project was to create a modifiable and expandable analysis program for Stirling
engines that could be used for educational purposes. To achieve this, the program lets the user
enter the input-data used for Schmidt analysis and adiabatic analysis. The results are then visu-
alized through plots with markers that are synchronized with an animation of the Stirling cycle.
Lastly, the results and plots are stored as CSV- and PDF-files, respectively.

The report begins with an introduction, followed by establishing the theoretical background used
during the development of the program. This includes information regarding Stirling engines,
such as components, configurations, and benefits and limitations, as well as Schmidt analysis and
adiabatic analysis.

Then, there is a thorough explanation of the program and its functionality. This is followed by
an explanation of the development approach that includes a description of which measures were
taken to achieve the project’s goals.

The structure of the main component of the program is then explained with a modified class dia-
gram before describing each window in the program’s GUI and its functionality. Next, a numerical
example is then used to show the results of the analysis methods and the corresponding plots.

The next section describes the technological-, theoretical-, and design decisions which were made
during the development of the program, and the outcome of each decision is evaluated in relation
to the goals of the project. Additionally, possible expansions to be added to the program in future
are also discussed.

Finally, the main points of the report are summarized and it is established whether the program
achieved the goals set in this project.

2

Contents

List of Figures 4

List of Tables 4

Nomenclature 5

Glossary 6

Acronyms 6

1 Introduction 7

2 Theory 8
2.1 Stirling engines . 8

2.1.1 Components . 8
2.1.2 Configurations . 9
2.1.3 Benefits and limitations . 9

2.2 Schmidt-analysis . 10
2.2.1 Assumptions . 10
2.2.2 Calculation . 11

2.3 Adiabatic analysis . 13
2.3.1 Assumptions . 13
2.3.2 Calculation . 14

3 Method 15
3.1 Program . 15
3.2 Development approach . 15

4 Results 16
4.1 Windows in GUI . 17

4.1.1 Intro . 17
4.1.2 Manual input . 18
4.1.3 Visualization . 19
4.1.4 Results . 20

4.2 Numerical example . 21
4.2.1 Volume variation . 22
4.2.2 Pressure variation . 22
4.2.3 Mechanical work variation . 23
4.2.4 Force variation . 23

5 Discussion 24
5.1 Technological decisions . 24
5.2 Theoretical decisions . 25
5.3 Design decisions . 26
5.4 Future implementations and expansions . 27

6 Conclusion 29

7 References 30

3

List of Figures

1 Pressure-volume diagram of a Stirling cycle [12] . 8
2 Alpha-configuration of a Stirling engine [27] . 8
3 Idealized animation created with VTK . 9
4 Simplified illustration of Stirling cycle using Schmidt analysis [28] 10
5 Simplified illustration of Stirling cycle using adiabatic analysis [29] 13
6 Modified class diagram for ’main.py ’ . 16
7 ’Intro’-window . 17
8 ’Manual input’-window . 18
9 ’State visualization’-window . 19
10 ’Results’-window . 20
11 Volume variation . 22
12 Pressure variation . 22
13 Mechanical work variation . 23
14 Force variation . 23

List of Tables

1 Values required for performing a Schmidt analysis. 11
2 Values required for performing an adiabatic analysis. 14
3 Example data used for numerical example [2] . 21

4

Nomenclature

Subscript

Avg Average

Com Compression

Cyl Cylinder

Exp Expansion

i For each component

O Over

Reg Regenerator

Rod Piston rod

R Difference

U Under

C Celsius

Deg Degree

K Kelvin

Rad Radian

Values

β Phase-angle rad

A Area mm2

m Mass kg

P Pressure Nmm−2

R Gas constant J kg−1 K−1

T Temperature K

V Volume mm3

W Mechanical work J

5

Glossary

CamelCase Naming convention where each word is delimited using capital letters [3].

data point Discrete piece of data / information often used for analysis or graphs [5].

framework Set of tools and functions used to build software and systems [21].

object-oriented programming Programming language that divides the code into modules, which
may share properties or behaviours [14].

overhead Excess or indirect computation time or resource usage required to attain a specific goal
[15].

procedural programming Programming language that follows a set of commands in order [16].

program difficulty The difficulty to use a program and its functionality [25].

progressbar Widget that shows progress as a bar [17].

slider Widget to alter a value by dragging a marker [19].

spinbox Textbox that displays an integer with an up/down-button to increment or decrement the
integer-value [18].

widget Addition to a program or application that provides additional functionality [30].

Acronyms

CSV Comma-Separated Values.

GUI Graphical User Interface.

ICE Internal Combustion Engine.

JSON JavaScript Object Notation.

PDF Portable Document Format.

VTK The Visualization Toolkit.

6

1 Introduction

This thesis is a continuation of the project assignment named ”Developing an educational analysis
program for Stirling engines” which had a goal of creating an educational analysis program for Stirling
engines [7]. During the development of the program the focus was to create a modifiable program
that could be used for educational purposes and have the option to be expanded through future im-
plementations. To achieve this goal, the program seeks to provide a good user-experience for both
experienced and inexperienced users, as well as future developers.

The program analyzes a Stirling engine by utilizing Schmidt analysis and adiabatic analysis, and then
provides visualization of the results. Due to the focus on creating an educational analysis program,
visualization of data and the option to view specific steps of the Stirling cycle in relation to the ani-
mation are the most integral parts of the program. The engine used for calculation in the program is
a 4-cylinder alpha-configured Stirling engine.

This report describes the development of the analysis program and the resulting end product. Its
focus is to evaluate the technological, theoretical, and design decisions which were made during the
program’s development, as well as presenting the background for each decision and how it has affected
the final program. Therefore, this report can serve as a foundation for future development.

Firstly, this report provides a description of the theory used in the creation of this program. This con-
sists of first providing a general overview of Stirling engines and relevant key concepts used throughout
the report before continuing with describing the theory used for the analysis methods. The report then
provides a detailed explanation of the program’s functionality and usage before describing the develop-
mental approach to creating the program. Then a class-diagram and a detailed description are shown
to explain the structure of the program. The report then presents each window of the program’s GUI
with a description of its usage and functionality and reviews a use-case using example-data. A dis-
cussion and evaluation of the technological, theoretical, and design decisions are then presented in the
next chapter. Finally, the conclusion summarizes the main points raised in this report before reviewing
whether the project achieved its set goal.

The code to the program is included with this report as a compressed file. This includes the program
and its GUI in ’main.py’, in addition to the other files which contain additional functionality. Data
required for the analyses are stored in the ’assets’-folder, while the results and corresponding plots are
stored in the ’results’-folder. An executable of the program is located in the ’output’-folder.

7

2 Theory

2.1 Stirling engines

Figure 1: Pressure-volume diagram
of a Stirling cycle [12]

Stirling engines are based upon using temperature differ-
ences to generate a difference in pressure which moves the
piston to one end of the cylinder. The crankshaft then
moves the piston back to its original position. It is clas-
sified as an external combustion engine, which means it
relies on an external power source to provide the tem-
perature difference [13]. Therefore, it can run on any
power-source capable to provide the required heat differ-
ence.

The movement of the piston is cyclical and it generates mechan-
ical work by transforming the piston-movement to rotational
movement through a crankshaft. Figure 1 depicts a pressure-
volume curve for the Stirling cycle which consists of expanding
the volume (1), decreasing the pressure (2), decreasing the vol-
ume (3), and increasing the pressure (4). The pressure changes
depending on the temperature, while a displacer is used to move the transfer medium which increases
or decreases the volume. A flywheel is often added to keep the crankshaft’s movement continuous.

2.1.1 Components

Figure 2: Alpha-configuration of a Stirling engine [27]

A Stirling engine consists of cylinders, pistons, displacers, and a crankshaft. In addition, heat ex-
changers are used to increase the speed of the heat transfer. A heat exchanger consists of several metal
rods enveloped in a transfer medium. When heat is transferred either to or from the heat exchanger,
the relatively large surface area of the metal rods increases their ability to transfer heat between the
transfer medium [31]. A Stirling engine utilizes two heat exchangers; one which transfers heat from the
expansion chamber to the transfer medium, and one which transfers heat from the transfer medium
to a heat sink [2]. The price of heat exchangers may increase in price when increasing in size, due to
the inherent complexity during assembly.

Another integral part of a Stirling engine is the regenerator, which holds the heat received from heat
exchangers until the transfer medium is returned to the hot side of the cylinder [26]. It is situated
between the heat exchangers and holds heat which would otherwise be lost as spill heat. While the
heat exchangers transfer heat rapidly by using metal rods parallel to the flow of the transfer medium,
the regenerator transfers heat slowly by arranging the metal rods perpendicular to the flow instead
[2]. This is also illustrated in Figure 2.

8

2.1.2 Configurations

Figure 3: Idealized animation
created with VTK

Stirling engines are generally classified into three main cate-
gories according to their configuration; alpha (α), beta (β),
and gamma (γ) [6]. Each configuration is defined by their
structure, which results in different benefits and limitations.
For this program, an adaptation of the alpha-configuration
was chosen. Stirling engines using the alpha-configuration
have two cylinders coupled in series with a regenerator, and
two heat exchangers (heater and cooler) [27], as is illus-
trated in Figure 2. This is often referred to as the 5-
volume approach [24]. It was mainly chosen due to its
simple structure which simplifies the visualization and calcula-
tions.

Figure 3 shows the program’s implementation of an alpha-configured
Stirling engine. By comparing Figure 2 and Figure 3, some differ-
ences can be observed. While both figures use the 5-volume ap-
proach for calculations, the VTK-animation uses an idealized ver-
sion of the principle where the volume of both the heater and cooler
is set to 0 [4]. This can be seen in Figure 3 due to the anima-
tion only consisting of a regenerator and two cylinders. The ideal-
ization was used to simplify both the calculations and the anima-
tion.

2.1.3 Benefits and limitations

While Stirling engines share several similarities with Internal Combustion Engine (ICE), there are
differences that yield different benefits and limitations.

Firstly, Stirling engines are comparatively more efficient when comparing thermal efficiency. Otto-
and diesel engines have thermal efficiencies of 25% and 35%, respectively, while Stirling engines reach
an efficiency of 40% [1]. This provides a substantial benefit for Stirling engines in relation to resource
utilization and optimization of larger systems.

Stirling engines are also able to work in reverse. Normally a temperature difference is added to the
Stirling engine which results in mechanical work. Instead, a Stirling engine can receive mechanical
work and yield a temperature difference, which enables it to be used as a heat pump or cryocooler
[31]. Stirling engines are therefore well-suited for industrial usage where constant temperatures are
necessary due to their efficiency. Additionally, Stirling engines can also reverse the direction of the
rotation in the crankshaft by changing which side of the cylinder has the highest temperature.

Another benefit with Stirling engines is their ability to run on any fuel that can provide the necessary
temperature difference. This makes them highly suitable for applications like utilizing spill-heat or
running on fuel sources with variable output, such as solar energy.

Stirling engines are also considered to be relatively quiet, because they require either a temperature
difference or mechanical work as input to run. The main source of sound is therefore the movement of
the pistons.

It is also a relatively simple construction, due to its few components and working principles. In ad-
dition, it also has few movable parts. This results in several benefits, such as improved reliability,
prolonged component lifetime, and easier maintenance. Few movable parts also results in less vibra-
tions in the engine.

9

Due to its working principles, Stirling engines are not able to rapidly change their output, which make
them inapplicable for several usages. Inversely, they are well-suited for applications where constant
output is desired [1]. Due to its inability to rapidly change its output, it also needs to ”warm up”
when first starting the engine.

2.2 Schmidt-analysis

Figure 4: Simplified illustration of Stirling cycle using Schmidt analysis [28]

Schmidt analysis is a method for estimating the output of an idealized Stirling engine by examining
the Stirling cycle [28]. While the method only analyzes the thermodynamic process itself and not the
rest of the engine, it provides relevant output-values, such as mechanical work, pressure, and piston
forces. These calculations can then be visualized and used for further analysis.

There were several reasons why Schmidt analysis was implemented as opposed to other analysis meth-
ods. It provided relevant output-values, was relatively simple to implement, and much documentation
was available online. The main reason however was that it serves as an initial step for further analysis
methods, such as adiabatic analysis and simple analysis [24]. While Schmidt analysis itself does not
take several relevant factors into consideration through idealization, these factors are considered in the
subsequent analysis methods. Because the goal of this project was to create a modifiable and expand-
able analysis program, Schmidt analysis provided a solid foundation for expanding the program with
additional analysis methods.

2.2.1 Assumptions

Despite yielding relevant output-values, the Schmidt analysis makes several assumptions and does not
take multiple factors into consideration. Firstly, the calculations assume that both the heat exchang-
ers and regenerator are idealized and therefore lose no heat during operation. This substantiates the
alternative name of the Schmidt analysis, which is ”isothermal analysis”, and is illustrated in Figure
4. In addition, neither fluid friction nor pumping losses are taken into consideration during calculation
[24].

10

While these assumptions result in less realistic output-values, they are necessary for performing the
calculations because they simplify the analysis, and provides a more concise software implementation
[9]. The assumptions which were made during implementation are described below.

1. No heat is lost from the system and the process is isothermal.

2. Both the heat exchangers and the regenerator are idealized and do not lose heat.

3. There are no internal differences in pressure.

4. The expansion dead space maintains the temperature of the expansion gas, while the compression
dead space maintains the temperature of the compression gas during the thermodynamic cycle.

5. The piston movement is harmonic and follows a sine curve.

2.2.2 Calculation

The implementation of the Schmidt-analysis in the analysis program was inspired by an existing im-
plementation [2]. The values required to perform the analysis are described in Table 1, and in the list
of nomenclature.

Symbol Description
R Gas constant
m Mass
θ Number of degrees in radians
TExp, TCom, TReg Temperatures in kelvin
VCom, VExp, VReg Volume of the components
VCyl Swept volume of the cylinder
VAvg Average volume of the cylinder
ARod Area of the piston rod
ACyl Area of the cylinder
β Phase-angle of pistons

Table 1: Values required for performing a Schmidt analysis.

In the program one Stirling cycle is analyzed, which is the movement of the piston from 0◦ to 360◦

assuming the piston’s movement follows a sine curve. Calculations are performed for every tenth degree.

This program’s implementation uses a 4-cylinder Stirling engine. Therefore, the engine has a total of
four alpha-configured cylinders working in pair, where each circuit pair is 180◦ offset from each other,
and the pair themselves are 90◦ offset. This manifests in the plots displayed in Section 4.2.

Before performing the analysis, each data point in the Stirling cycle must be converted from degrees
to radians. This is done by using Equation 1.

θRad = θDeg ·
2π

360
(1)

Additionally, the temperatures were converted from celsius to kelvin using:

TK = TC + 273.15◦ (2)

11

The first step of the analysis is to calculate the compressed and expanded cylinder volume as a function
of the piston’s movement. Equation 3 calculates the compression volume, while the phase-angle β is
added to Equation 4 to calculate the expansion volume.

VCom,i = VAvg + sin θ · VCyl

2
(3)

VExp,i = VAvg + sin(θ + β) · VCyl

2
(4)

The ideal gas law is then used to calculate the pressure at each step. Equation 5 is the ideal gas law,
and it is rearranged to calculate the pressure in Equation 6.

PV = mRT (5)

P = mR ·
∑
i

Ti

Vi
(6)

Next, the sum of the components’ temperatures divided by their corresponding volume was calculated
using Equation 7. ∑

i

Ti

Vi
=

VCom

TCom
+

VExp

TExp
+

VReg

TReg
(7)

After having calculated the resulting pressure, the total mechanical work was then calculated by using
Equation 8. The mechanical work for each step was calculated by using Equation 9.

W =

∫
P∆V (8)

∆W = P ·∆V (9)

The piston forces were then calculated by using Equation 10.

P =
F

A
⇐⇒ F = P ·A (10)

12

2.3 Adiabatic analysis

Figure 5: Simplified illustration of Stirling cycle using adiabatic analysis [29]

Adiabatic analysis is a direct continuation of the Schmidt analysis which assumes the Stirling cycle
to be adiabatic rather than isothermal [24]. This means that the net heat transfer during a Stirling
cycle is provided by the heat exchangers, as opposed to the compression- and expansion cylinders [29].
The difference between the Stirling cycle in Schmidt- and adiabatic analysis can be seen by comparing
Figure 4 and Figure 5.

Adiabatic analysis was implemented because it is a continuation of the Schmidt analysis which yields
more realistic results. This results in the analysis program becoming better suited for more thorough
analysis, which may increase its usability for experienced users and for professional usage. It can also
be further expanded through the simple analysis which takes several new factors into consideration,
such as pumping losses and fluid friction by subtracting them from the results of the adiabatic analysis
[24].

2.3.1 Assumptions

While adiabatic analysis account for more factors than the Schmidt analysis, it still relies on some
assumptions.

Firstly, it is assumed that the volume of both heat exchangers is 0 following the 5-volume approach.
This is an idealization made to estimate an optimal configuration and to simplify the implementation
of the analysis method [4]. It also reduces the number of required input-values which improves the
usability for inexperienced users.

Additionally, the mean effective temperature in the regenerator (TR) is set to be log mean temperature
difference, as shown in Equation 11.

13

2.3.2 Calculation

The implementation of the adiabatic analysis follows an existing set of equations which utilizes the
volume variation used in the Schmidt analysis, but recalculates other values, such as pressure [29].
Table 2 shows the values required to perform an adiabatic analysis in addition to the volumes from
the Schmidt analysis.

Symbol Description
R Gas constant
m Mass
θ Number of degrees in radians
TExp, TCom, TReg Temperatures in kelvin
VCom, VExp, VReg Volume of the components
VCyl Swept volume of the cylinder
VAvg Average volume of the cylinder

Table 2: Values required for performing an adiabatic analysis.

First, the mean effective temperature in the regenerator is calculated using Equation 11.

TReg =
TExp − TCom

ln (TExp − TCom)
(11)

By using a reformulated version of the ideal gas law seen in Equation 5, the pressure was calculated
using Equation 12.

Because the volume of each heat exchanger is 0, as stated in Section 2.3.1, the volumes of the
compression- and expansion cylinder are used instead.

P =
mR

VCom

TCom
+

VReg

TReg
+

VExp

TExp

(12)

Then, the pressure for each step is calculated by using Equation 13.

∆P = P ·
∆VCom

TCom
+

∆VExp

TExp

VCom

TCom
+

VReg

TReg
+

VExp

TExp

(13)

The mass for each component is then calculated by using Equation 14, which is a variation of the ideal
gas law.

mi =
P · Vi

R · Ti
(14)

Next, each of the components’ mass for each step is calculated using equation 15.

∆mi =
P∆Vi + Vi∆P

R · Ti
(15)

The change in temperature for each step is calculated by using Equation 16.

∆Ti = Ti ·
(
∆P

P
+

∆Vi

Vi
− ∆mi

mi

)
(16)

The change in temperature can then be added to the respective temperature, as seen in Equation 17.

Ti = Ti +∆Ti (17)

Finally, the mechanical work for each step is calculated by using Equation 9.

14

3 Method

3.1 Program

The program first presents the user with an introduction-window that lets the user select what values
to use during the analysis and visualization. Three options are available to the user; default values,
using a custom JSON-file, and entering the input values manually. These values are then used to
perform a Schmidt analysis and an adiabatic analysis, where the results are visualized as graphs along
with an animation. The results and plots are then saved as CSV- and PDF-files, respectively, to enable
the user to review them without starting the program.

While reviewing the results of the analyses, the user can also see an animation displaying an idealized
alpha-configured Stirling engine. This animation is synchronized with markers in each graph, that
shows the output of the engine for each step of the Stirling cycle. The user can change the speed of
the animation, move step-by-step, and set the desired number of degrees manually. Due to simplicity,
only graphs from the Schmidt analysis is shown within the program.

After the user has reviewed the results generated by the analysis methods, the results are saved in
CSV-files. They are divided by their respective analysis method, and can be used for further analysis,
to review the results, or to generate custom visualizations. The plots from the Schmidt- and adiabatic
analysis are saved as PDF-files so the user can view them without restarting the program. The user
can view the plots for each analysis method individually or view the combined plots for both analysis
methods.

3.2 Development approach

The main focus during the development of the program was to make it modifiable, expandable, and
provide a good user-experience for both experienced and inexperienced users.

To make the program modifiable and expandable through future implementations, several program-
ming principles were utilized. Firstly, the code is well-documented by having each method contain
several explanatory comments regarding its purpose, input-values, and output-values. Therefore, it
becomes simpler for a developer unfamiliar with the code to gain a good understanding of it. The code
also strives to have high cohesion and low coupling. Cohesion is the degree of focus in a class’s func-
tionality, while coupling is the degree of which classes rely on each other [10]. Additionally, the code
aims to avoid hard-coded variables, and employing explanatory variable names using the CamelCase
naming convention.

The program also aimed to provide a good user-experience for both experienced and inexperienced
users, and therefore has several relevant features. This applies to end-users, as well as the program’s
developers. Firstly, the Stirling cycle is visualized by a VTK-animation that is synchronized with
markers in plots showing the results of the Schmidt analysis. The user can then see the output-values
generated by the engine for each degree of the Stirling cycle. While this feature is useful for experi-
enced users as well, they will also benefit from being able to view the results and corresponding plots
in separate files after running the program. This is also useful for further analysis or validating the
accuracy of the results.

Because the program is used for educational purposes it is currently primarily aimed towards inexperi-
enced users, but the program’s modifiability and expandability allows more functionality to be added.
This could include features that cater more to experienced users or professional usage.

15

4 Results

Figure 6: Modified class diagram for ’main.py ’

Figure 6 depicts a modified class diagram for the main component of the program found in the file
’main.py ’. The functions in the diagram are color-coded to specify their usage.

The main component is responsible for creating the program itself, as well as its GUI. Functionality
such as file management, animation, and analysis is located in external Python-files to increase the
code’s cohesion and reduce coupling [10]. Additionally, the program also has separate folders for the
assets, which include JSON-files for specifying the input-data, and results, where the results of the
analyses are stored as CSV-files and the corresponding plots are stored as PDF-files.

The resulting program is an educational analysis program for Stirling engines, that uses a 4-cylinder
alpha-configured engine for analysis and visualization. Input-data from the user is analyzed using
Schmidt analysis and adiabatic analysis, and the results are presented as plots with markers that are
synchronized with a VTK-animation. The results and plots are also stored as CSV- and PDF-files,
respectively.

16

4.1 Windows in GUI

The program’s GUI consists of a total of four separate windows. Each window provides different
functionality, such as manual input of data, or visualization of results. This subsection gives a thorough
description of each window and their functionality.

4.1.1 Intro

Figure 7: ’Intro’-window

When starting the program, the user is first presented with an introductory window, as seen in Figure
7. Here, the user can select between three options for providing the input-data required to perform the
analyses. The options are; using default-values, using a customized JSON-file, or entering the values
manually. By pressing an option, the user is navigated to the next window.

17

4.1.2 Manual input

Figure 8: ’Manual input’-window

Next, the user is prompted to enter the values required to perform the analyses. Each value must be
a float and more than 0, which is a limitation that is further explained in Section 5. When the user
has entered the values, they can press the ’Continue’-button to commence the analyses. If the entered
values are deemed invalid, the user is navigated to an empty ’Manual Input’-window, which can be
seen in Figure 8. The user can also return to the previous window by pressing the ’Return’-button.

18

4.1.3 Visualization

Figure 9: ’State visualization’-window

In this window, the user is presented with the results of the analyses. The results are displayed as
plots showing the volume variation, circuit pressure, mechanical work, and piston force. This can be
seen in Figure 9. There is also a VTK-animation that illustrates the Stirling cycle. The animation is
synchronized with markers in each plot that shows the results for each data point. Several features
are added to improve the navigation between the number of degrees. The user can use the spinbox
to specify the number of degrees, the slider to alter the animation’s speed, and the progressbar to
see the progress of the animation. The ’Return’- and ’Continue’-button are used to navigate to other
windows.

19

4.1.4 Results

Figure 10: ’Results’-window

The final window signalizes to the user that the analyses have been completed, and that the results
and corresponding plots are saved locally. Results are saved as CSV-files, while the plots are saved as
PDF-files, and their storage destinations are shown in this window. This is shown in Figure 10. The
user can navigate to the previous window or exit the application by using the navigation buttons.

20

4.2 Numerical example

To display the plots generated from the results of the analyses, a numerical example using values
from a report written by Rikard Åsheim [2] is utilized. This is because they share similarities in their
implementation due to this program’s implementation being inspired of that in the report, as stated
in Section 2.2.2. Additionally, these values also coincide with the default-values in the program. The
values are listed in Table 3. By using the same values for the analyses, the generated plots become
comparable to the plots in the report, and it therefore becomes easier to assess the validity of the
results.

Symbol Value

R [J
kg ·K] 2077

m [kg] 0.502

TExp [C] 100

TReg [C] 50

TCom [C] 0

VCyl[mm3] 10600000

VReg[mm3] 3619115

VCyl,avg[mm3] 9500000

ARod[mm2] 1256.637

ACyl[mm2] 70685.83

β[◦] 150

Table 3: Example data used for numerical example [2]

These values are entered into the program using the default-option, and are then used in a Schmidt
analysis and an adiabatic analysis. The results of the analyses are then used to generate the plots
shown in the following subsections.

While the plots in Åsheim’s report only contain the results of the Schmidt analysis [2], the plots show-
ing the combined results of both analysis methods are displayed in this report. Each plot uses the
number of degrees in the stirling cycle, 0◦ to 360◦, as their x-axis.

By comparison to the plots given in Åsheim’s report [2], the plots generated by this program produced
similar results. This substantiates the notion that the implemented analysis methods yield accurate
results.

21

4.2.1 Volume variation

Figure 11: Volume variation

The first plot shows the volume variation in the expansion- and compression-cylinder during the Stirling
cycle, where the volume is shown along the y-axis. As seen in the legend in Figure 11, the blue color
represents the compression volume, while the red color represents the expansion volume. The total
volume seen as the area covered by both volumes can be calculated by adding VExp and VCom. This
data is especially relevant when determining the optimal phase-angle β, because of the importance of
the ratio between the expansion-volume and the total volume [2].

4.2.2 Pressure variation

Figure 12: Pressure variation

As stated in Section 3, this implementation of the Stirling engine has four circuits, which results in the
pressure for each circuit being calculated using Schmidt analysis. This can be seen in Figure 12. The
pressure is only calculated for one circuit in the adiabatic analysis, which is due to its implementation
[29].

22

4.2.3 Mechanical work variation

Figure 13: Mechanical work variation

Figure 13 shows the variation of mechanical work generated in each volume. The mechanical work in
the regenerator VReg is defined as the sum of VCom and VExp.

4.2.4 Force variation

Figure 14: Force variation

The last plot shows the variation of the piston force for each step in the Stirling cycle. Notation from
Åsheim’s report was used here, and FO is the force over the piston, FU is the force under the piston,
and FR is the difference between FO and FU [2]

23

5 Discussion

This chapter provides the explanation and background for each technological, theoretical, and design
decision which were made during the development of the program, in addition to describing what
challenges were encountered and how they were resolved.

5.1 Technological decisions

The first decision was to decide which programming language should be used. Several different pro-
gramming languages could have been used to create this program, but the final choice fell upon
Python. Firstly, it was chosen due to previous experience with the programming language as well
as a number of relevant libraries. Python also has a wide selection of useful libraries which proved
vital during development, such as Numpy, PyQt, and Matplotlib. It is also widely used and therefore
it is easier to troubleshoot occurring issues and fix them. In addition, Python is an object-oriented
programming which implements several aspects of procedural programming which is well-suited for
implementing algorithms, formulas, and equations [11].

Then it was necessary to choose which framework to be used to create the program’s Graphical User
Interface (GUI). The three main candidates were PySide, PyQT, and tkinter due to their popularity
and therefore support and examples on the internet. Firstly, tkinter provided several benefits, such
as already being integrated in Python which would have resulted in the program requiring fewer
dependencies, being available on several platforms, and having little overhead which is beneficial for
performance [22]. Due to already being integrated in Python it is also simple to implement. PySide
and PyQT on the other side are external frameworks with a larger overhead which are more difficult
to implement than tkinter. While there are some drawbacks, they are also more flexible in terms
of appearance and functionality, in addition to having more support for being used in conjunction
with other external libraries, such as Matplotlib PyQtGraph, and VTK. This is the reason why tkinter
was then removed from consideration, despite providing several benefits. There are many similarities
between PyQt and PySide due to sharing the same foundation, but there are some differences [8].
Between the two, PyQt was chosen.

As stated in Chapter 1, this project is a continuation of a project assignment. There PySide6 was used
because it was the newest, but during development of the program several challenges were encountered
due to the choice of framework. Firstly, the program used video-animation for providing an animation
of the Stirling cycle. This caused an issue when using PySide6 because it did not have the option to
loop the video, but this was resolved when a new version of PySide6 released during the program’s
development [20]. Another challenge which was encountered when using PySide6, was that it lacked
support for plots made using Matplotlib. The program could therefore not display these plots, so they
were instead stored in a PDF-file which could be accessed when the program was not running.

When starting the continuation of the project, one of the first changes made were to change from
PySide6 to PySide2. This was mainly due to the lack of support for Matplotlib in the GUI. Later, the
GUI-framework was changed from PySide2 to PyQt5, due to changes in the animation and the plots.

While the previous implementation of the program utilized video-animation to display the Stirling
cycle, this project’s implementation displays the Stirling cycle by using VTK-animation instead. The
animation was created using VTK, which is a visualization-toolkit similar to e.g., OpenGL [23]. Here,
the position of each vertex in the rendering is specified directly, which means that an animation can
be created by manipulating the position of each vertex. VTK also specifies what vertices each engine
part consists of, as well as its color. This method of implementing an animation has the benefit of
being easy to manipulate precisely and create complex movements and structures. Additionally, the
position of each point and the color of each vertex can be interpolated to create smoother animations
and transitions. However, because each vertex needs to be specified directly it becomes difficult and
time-consuming to create complex renderings or alter an existing rendering. Because the rendering
can be animated by updating the position of a vertex using a single variable, it is also simple to
integrate the animation with other types of widgets, such as progressbars or a slider to adjust the

24

animation-speed. PyQt was more suited for including VTK-animations than PySide due to having
more functionality when interacting with VTK.

As mentioned previously, the GUI-framework was altered from PySide6 to PySide2 to be able to im-
plement plots made using Matplotlib. Because the goal of this program is to be used for educational
purposes, the plots were included in the program with a marker synchronized with the VTK-animation
to show what the resulting data is for each step of the Stirling cycle. When the plots were included and
markers synchronized with the VTK-animation were added, the program experienced a major drop
in performance which was noticeable through sudden freezes in the program. The reason behind this
significant performance-loss, was that Matplotlib was not optimized for full animations when being
implemented in a program. To resolve this issue, Matplotlib was replaced with PyQtGraph.

While this project achieved its goal of changing from a premade video-animation to a modifiable VTK-
animation, there were also some additional goals regarding animation which unfortunately were not
implemented. For instance, it was also intended that the dimensions of the VTK-animation were de-
pending on the input-variables. This was not implemented because the program would become more
difficult to use for inexperienced users due to the number of required input-variables. Additionally,
there were other features for enhancing user-experience which were not added. Firstly, the user should
be able to select a custom JSON-file with input-variables using a file-explorer. There should also be a
ReadMe-file or user-manual accessible in the program by using e.g. a button. Lastly, the user should
be able to set the step size in number of degrees when calculating results from the analyses. These
features were not added due to time-constraints during development.

In addition to the libraries included in Python; Numpy, PyQt5, VTK, Matplotlib, and PyQtGraph
were used in the final program.

5.2 Theoretical decisions

To produce the results required for visualization, both Schmidt- and adiabatic analysis were utilized.
Schmidt analysis was mainly chosen because it serves as a foundation for other analysis methods, such
as adiabatic analysis [24]. It is also simple and the equations are suitable for programming. While it
only analyzes the thermodynamic process, it yields relevant information regarding pressure, mechan-
ical work, and piston forces, as stated in 2.2. This can be seen in plots generated in the numerical
example in Section 4.2. However, it is idealized and therefore does not consider fluid friction or pump-
ing losses [24]. In addition, the Schmidt analysis also assumes that neither the heat exchangers nor
the regenerator lose any heat.

Adiabatic analysis is an expansion on the Schmidt analysis which assumes the Stirling cycle is adia-
batic rather than isothermal [24]. This means that Schmidt analysis assumes that the temperatures
are constant in the heater and cooler, which would result in no net heat transfer making them redun-
dant. The adiabatic analysis on the other hand assumes that any net heat transfer is due to the heat
exchangers [29]. Therefore is the adiabatic analysis considered a more realistic analysis method than
Schmidt analysis, although the Schmidt analysis provides several relevant results.

Schmidt- and adiabatic analysis were implemented because they both yield relevant results and are
relatively simple to implement. They also serve as a foundation for additional analysis methods, such
as simple analysis [24]. Simple analysis, for instance, was not implemented due to the increasing num-
ber of input-variables which would make the program more complicated to use. In addition, there
were time-constraints regarding implementation of other analysis methods.

During the development some assumptions were made when implementing the analysis methods.
Firstly, the calculations were made using a 4-cylinder alpha-configured Stirling engine. Four cylin-
ders were used due to the simplicity in calculations and the possibility to expand to a higher number
of cylinders in the future. Of the four circuits used in calculations and seen in the plots in Section
4.2 two pairs are located on each side of the engine, and each pair is offset by 90 degrees. The alpha-
configuration was chosen because it is a simple configuration often used for teaching, and it matches

25

the VTK-animation.

As stated in Section 2, the calculations are based on the 5-volume approach which consists of the
expansion-, compression-, heater-, cooler-, and regenerator volume. To simplify the calculations and
user-experience, an idealized version of the approach was used where the volume of the heater and
cooler is set to 0, which is also reflected in the VTK-animation.

5.3 Design decisions

Several design decisions were made to achieve the goals set for this project.

Firstly, the user has different options regarding how to enter the input-variables. The user can select
default-values which includes the same values used in Section 4.2, and therefore generates the same
plots. This is to provide the user with a simple way of viewing the Stirling cycle with corresponding
plots. There is also an option for the user to enter the values manually in the program or edit a
custom JSON-file. To further the educational aspect of the program, the more advanced options such
as heat capacity at constant pressure and volume are only editable when using the custom JSON-file.
This is because experienced users are most likely to use the custom JSON-file rather than manually
enter values, which makes the program easier to use for a first-time user. The entered input-values are
stored in a separate JSON-file which is relevant when reviewing results or creating a custom JSON-file.

The results of the analyses are also extracted to corresponding CSV-files which can be used for further
analysis outside the program or with different analysis methods in future expansions. This also makes
it easier to review the values after calculations and compare them if necessary.

As stated in Section 5.1, both Matplotlib and PyQtGraph are used in the program to generate plots
due to performance issues. Previously, the plots were only saved in a PDF-file, but now the plots are
also included internally in the program. This was due to missing functionality in PySide6 which later
was changed to PyQt5. The feature of saving the plots as a PDF-file was kept because it may be
desired by users, and it then becomes possible to review the results and corresponding plots without
starting the program.

The internal plots only show the results of the Schmidt analysis. This is because they provide a concise
visualization of the results, and the plots were deemed to be to crowded when utilizing combined plots
from both analysis methods.

Because PyQtGraph is inherently more lightweight than Matplotlib and therefore contains less format-
ting and features, there is a difference between the plots in the PDF-file and the plots in the program.
The plots created using Matplotlib are more detailed and better formatted, while the internal plots
created in PyQtGraph are less refined. This is acceptable because the internal plots mostly serve as a
visualization for different values in each step of the Stirling cycle.

While the plots in the program could be modified to include whichever plots are desired, they currently
show the results from the Schmidt analysis. These plots are the same as shown in Section 4.2. They
were chosen because they provide good visual representation of relevant values, and are therefore useful
for educational purposes.

The main goal of this project was to create an educational program which could inter alia provide
inexperienced users with insight of the Stirling cycle. Several steps were taken to achieve this, such as
having a VTK-animation which is synchronized with markers for each plot. As a consequence of the
animation’s implementation it becomes simple to add additional features. In addition to the animation,
both a progressbar and a slider for animation speed were added. It is also possible to specify the number
of degrees directly and press a button to navigate one degree at a time. All these features results in the
animation showing the correct frame and the markers in the plots showing the same number of degrees.

26

This program’s GUI use the standard appearance of PyQt5 with few alterations, which proved to be
an adequate solution. The standard appearance is quite simplistic and professional, which is suitable
for this program. Due to PyQt5 ’s style-sheet it is possible to simply alter the GUI’s appearance.

5.4 Future implementations and expansions

Modifiability and expandability were in focus throughout the development of this program, and there
are therefore several ways to expand it in the future.

Firstly, the program could be expanded by implementing simple analysis. Simple analysis is a natural
continuation of adiabatic analysis by subtracting the effects of pumping losses and friction from the
results of the analysis [24]. It was not implemented in this program due to the focus on educational us-
ability and simple analysis would increase the number of input values, which would make the program
become more difficult to use for inexperienced users. However, this could be desired if the program
changes focus to a more professional usage. While simple analysis would be a suitable continuation,
several other analysis methods could also be suitable. Due to the focus on modifiability during the
development of the program, as described in Section 3.2, it should be relatively simple to implement
additional analysis methods.

The Stirling engine used for calculations in the program currently has four cylinders and an alpha-
configuration. While this yields relevant results and provide a good overview of the Stirling cycle, it
could be beneficial to expand the number of options. E.g., the number of cylinders and a selection of
other configurations, such as beta- and gamma-configuration. The user would then also have to specify
which circuits were used in calculations. While these options would be useful, they would also increase
the program difficulty significantly, which would contribute to the exclusion of inexperienced users.
However, this could be more relevant if the usage of the program changed. This would be especially
relevant if the program was modified to be used commercially or for the development of a new Stirling
engine.

If the focus of the program changes from educational to professional usage, it would also be advan-
tageous to modify the plots. This includes both the internal plots and the plots saved in a PDF-file.
For instance, more details could be added, more plots of the results could be created, and the plots
could include comparable values from each analysis method. Another option could be to make the
formatting of the CSV-results containing the results modifiable, which would improve usability for
analysis outside the program. These are suggestions for possible features which could be added, but
other features could prove more ideal depending on the program’s focus.

Another feature which was discussed, but not implemented, was having a dynamic VTK-animation
based on the input-values. The dimensions and appearance of the VTK-animation would then rely
on the given input-variables, rather than remain constant regardless of its input. This was not imple-
mented because the user would then have to enter even more input-variables and the implementation
would be time-consuming. It is also possible to reflect other input-variables in the animation, such as
number of cylinders, configurations, geometries, and which circuits are used. This is currently not rel-
evant as there is no variation in either of these values, but it could become desired in future expansions.

In addition, the user receives minimal feedback regarding the validity of the results. If an input-value
is considered invalid, the user is presented with an empty ’Manual input’-window. This could be
improved by giving the user detailed feedback regarding which value was invalid. To implement this,
the checks of the input-data must also be extended to provide additional information about its validity.

Another beneficial addition would be to add a pressure-volume curve to the ”State”-window, as seen
in Figure 1. This curve provides insight into the Stirling-cycle and is therefore especially relevant when
used for educational purposes. A marker synchronized with the VTK-animation could also be added
to increase the learning outcome. The pressure-volume curve was not added to the program due to
time-constraints.

27

Lastly, the appearance of the program’s GUI could be improved. As stated previously, the GUI is
currently using PyQt5 ’s standard appearance because it was deemed simple, but professional. While
the appearance is currently adequate, this could change in the future. Especially if the usage of the
program changes. This also includes changing the general layout of the program which has room for
improvement. In particular the ”State”-window does currently not support additional plots. This
could be a requirement if more plots were added to the program or plots from other analysis methods
were included.

28

6 Conclusion

The goal of this project was to create a modifiable and expandable analysis program for Stirling engines
that could be used for educational purposes. It should also provide a good user experience for both
experienced and inexperienced users. The final program is an analysis program for Stirling engines
that lets the user enter input-data that is then used to perform several analyses. The results of the
analyses are then presented as plots along with a VTK-animation to visualize the output. Finally, the
results and the corresponding plots are stored locally in CSV- and PDF-files, respectively.

To ensure that the program was modifiable and expandable, multiple software principles were followed
during the development of the program, such as high cohesion and low coupling, explanatory variable
names, few hard-coded variables, and thorough documentation. The goals also influenced the outcome
of the technical decisions that were encountered during the development.

Throughout the development, a goal was to create an analysis program that could be used for edu-
cational purposes. To achieve this, the final program has several features aimed towards users with
a different amount of experience. Firstly, there are three options for entering the input-data. The
results of the analyses are visualized using plots and each contain a marker synchronized with a VTK-
animation, which lets the user see the engine’s output for each step of the Stirling cycle. This is
especially useful for users unfamiliar with the Stirling cycle. In addition, the number of interactions
required by the user to perform the analyses is minimal. Finally, both the results and plots are stored
locally. This makes them available for further analysis or review to confirm the results’ validity.

After discussing the outcomes of the decisions made during the development of the program, it can be
concluded that the final program achieved its goal. This goal was to create a modifiable, expandable,
and educational analysis program for Stirling engines. Several measures were taken to ensure that
the program achieved its goal, and the final program is modifiable and expandable through future
implementations. It can also be used for educational purposes due to its visualization of the results
of the analysis methods and low complexity which lets users navigate the program with ease. While
additional functionality can be added in future expansions, the current program provides sufficient
functionality to serve as a full and independent analysis program. In conclusion, the program achieved
the goals set in this project.

29

7 References

[1] Mohammad Hossein Ahmadi, Mohammad Ali Ahmadi, and Mehdi Mehrpooya. “Investigation
of the effect of design parameters on power output and thermal efficiency of a Stirling engine
by thermodynamic analysis”. In: International Journal of Low-Carbon Technologies 11.2 (May
2016), pp. 141–156. issn: 17481325. doi: 10.1093/ijlct/ctu030.

[2] Rikard Åsheim. “Analysis and Dimensioning of a Stirling Engine”. In: June (2011).

[3] CamelCase. 2020. url: https://www.computerhope.com/jargon/c/camelcase.htm (visited
on 06/09/2022).

[4] M Cavazzuti and G S Barozzi. “Stirling engine optimization based on Schmidt and adiabatic
analyses”. In: (), pp. 1–56. url: https://www.esteco.com/cmis/browser?id=workspace:
//SpacesStore/f5c0f9f7-99e2-4c62-913f-86d797d87546.

[5] Data point. 2017. url: https://www.computerhope.com/jargon/d/data-point.htm (visited
on 06/08/2022).

[6] Jose Egas and Don M. Clucas. “Stirling engine configuration selection”. In: Energies 11.3 (Feb.
2018). issn: 19961073. doi: 10.3390/en11030584.

[7] Kristoffer Lehre Fagerheim. Developing an educational analysis-program for Stirling engines.
Tech. rep. 2021, pp. 1–21.

[8] Martin Fitzpatrick. PyQt6 vs PySide6. Mar. 2021. url: https://www.pythonguis.com/faq/
pyqt6-vs-pyside6/ (visited on 12/19/2021).

[9] Koichi Hirata. SCHMIDT THEORY FOR STIRLING ENGINES. Tech. rep. National Maritime
Research Institute. url: http://www.nmri.go.jp/env/khirata/.

[10] JavaTpoint. Coupling and Cohesion. 2021. url: https://www.javatpoint.com/software-
engineering-coupling-and-cohesion (visited on 12/19/2021).

[11] Wie Kiang H. Python: Procedural or Object-Oriented Programming? 2020. url: https : / /

towardsdatascience.com/python-procedural-or-object-oriented-programming-42c66a008676

(visited on 06/08/2022).

[12] C C Kwasi-Effah, A I Obanor, and F A Aisien. “Stirling Engine Technology : A Technical
Approach to Balance the Use of Renewable and Non-Renewable Energy Sources”. In: American
Journal of Renewable and Sustainable Energy 1.3 (2015), pp. 156–165. url: http : / / www .
aiscience.org/journal/ajrse.

[13] Rachid Maamri et al. “Development of External Combustion Engine”. In: American Journal of
Vehicle Design 1.2 (2013), pp. 25–29. doi: 10.12691/ajvd-1-2-2.

[14] OOP. 2019. url: https://www.computerhope.com/jargon/o/oop.htm (visited on 06/08/2022).

[15] Overhead (computing). 2022. url: https://en-academic.com/dic.nsf/enwiki/11569862
(visited on 06/08/2022).

[16] Procedural language. 2019. url: https://www.computerhope.com/jargon/p/proclang.htm
(visited on 06/08/2022).

[17] Progressbar. 2021. url: https://pythonbasics.org/progressbar/ (visited on 06/08/2022).

[18] PyQt - QSpinBox Widget. 2022. url: https : / / www . tutorialspoint . com / pyqt / pyqt _

qspinbox_widget.htm (visited on 06/08/2022).

[19] QSlider. 2021. url: https://pythonbasics.org/qslider/ (visited on 06/08/2022).

[20] Qt. Qt for Python Development Notes. Dec. 2021. url: https://wiki.qt.io/Qt_for_Python_
Development_Notes (visited on 12/19/2021).

[21] Ritesh Ranjan. What is a Framework in Programming & Why You Should Use One. 2021. url:
https://www.netsolutions.com/insights/what- is- a- framework- in- programming/

(visited on 06/08/2022).

[22] Real Python. Python GUI Programming With Tkinter. 2021. url: https://realpython.com/
python-gui-tkinter/ (visited on 12/19/2021).

30

https://doi.org/10.1093/ijlct/ctu030
https://www.computerhope.com/jargon/c/camelcase.htm
https://www.esteco.com/cmis/browser?id=workspace://SpacesStore/f5c0f9f7-99e2-4c62-913f-86d797d87546
https://www.esteco.com/cmis/browser?id=workspace://SpacesStore/f5c0f9f7-99e2-4c62-913f-86d797d87546
https://www.computerhope.com/jargon/d/data-point.htm
https://doi.org/10.3390/en11030584
https://www.pythonguis.com/faq/pyqt6-vs-pyside6/
https://www.pythonguis.com/faq/pyqt6-vs-pyside6/
http://www.nmri.go.jp/env/khirata/
https://www.javatpoint.com/software-engineering-coupling-and-cohesion
https://www.javatpoint.com/software-engineering-coupling-and-cohesion
https://towardsdatascience.com/python-procedural-or-object-oriented-programming-42c66a008676
https://towardsdatascience.com/python-procedural-or-object-oriented-programming-42c66a008676
http://www.aiscience.org/journal/ajrse
http://www.aiscience.org/journal/ajrse
https://doi.org/10.12691/ajvd-1-2-2
https://www.computerhope.com/jargon/o/oop.htm
https://en-academic.com/dic.nsf/enwiki/11569862
https://www.computerhope.com/jargon/p/proclang.htm
https://pythonbasics.org/progressbar/
https://www.tutorialspoint.com/pyqt/pyqt_qspinbox_widget.htm
https://www.tutorialspoint.com/pyqt/pyqt_qspinbox_widget.htm
https://pythonbasics.org/qslider/
https://wiki.qt.io/Qt_for_Python_Development_Notes
https://wiki.qt.io/Qt_for_Python_Development_Notes
https://www.netsolutions.com/insights/what-is-a-framework-in-programming/
https://realpython.com/python-gui-tkinter/
https://realpython.com/python-gui-tkinter/

[23] William J. Schroeder and Kenneth M. Martin. “The visualization toolkit”. In: Visualization
Handbook July (2005), pp. 593–614. doi: 10.1016/B978-012387582-2/50032-0. url: https:
//gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf.

[24] H. Snyman, T.M. Harms, and J.M. Strauss. “Design analysis methods for Stirling engines”. In:
Journal of Energy in Southern Africa 19.3 (2008), pp. 4–19. issn: 1021-447X. doi: 10.17159/
2413-3051/2008/v19i3a3329.

[25] Software Engineering — Halstead’s Software Metrics. 2020. url: https://www.geeksforgeeks.
org/software-engineering-halsteads-software-metrics/ (visited on 06/08/2022).

[26] Israel Urieli. Chapter 1 – Background and Introduction. 2020. url: https://www.ohio.edu/
mechanical/stirling/intro.html (visited on 05/26/2022).

[27] Israel Urieli. Chapter 2a – Alpha Stirling Engines. 2020. url: https : / / www . ohio . edu /

mechanical/stirling/engines/engines.html (visited on 05/26/2022).

[28] Israel Urieli. Chapter 3a - Ideal Isothermal Analysis. 2020. url: https://www.ohio.edu/
mechanical/stirling/isothermal/isothermal.html (visited on 05/30/2022).

[29] Israel Urieli. Chapter 4a - Ideal Adiabatic Analysis. 2020. url: https : / / www . ohio . edu /
mechanical/stirling/adiabatic/adiabatic.html (visited on 05/17/2022).

[30] Widget. 2021. url: https://www.computerhope.com/jargon/w/widget.htm (visited on
06/08/2022).

[31] Ron Zevenhoven et al. “Performance improvement of an industrial Stirling engine heat pump”. In:
ECOS 2020 - Proceedings of the 33rd International Conference on Efficiency, Cost, Optimization,
Simulation and Environmental Impact of Energy Systems (2020), pp. 1042–1053.

31

https://doi.org/10.1016/B978-012387582-2/50032-0
https://gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf
https://gitlab.kitware.com/vtk/textbook/raw/master/VTKBook/VTKTextBook.pdf
https://doi.org/10.17159/2413-3051/2008/v19i3a3329
https://doi.org/10.17159/2413-3051/2008/v19i3a3329
https://www.geeksforgeeks.org/software-engineering-halsteads-software-metrics/
https://www.geeksforgeeks.org/software-engineering-halsteads-software-metrics/
https://www.ohio.edu/mechanical/stirling/intro.html
https://www.ohio.edu/mechanical/stirling/intro.html
https://www.ohio.edu/mechanical/stirling/engines/engines.html
https://www.ohio.edu/mechanical/stirling/engines/engines.html
https://www.ohio.edu/mechanical/stirling/isothermal/isothermal.html
https://www.ohio.edu/mechanical/stirling/isothermal/isothermal.html
https://www.ohio.edu/mechanical/stirling/adiabatic/adiabatic.html
https://www.ohio.edu/mechanical/stirling/adiabatic/adiabatic.html
https://www.computerhope.com/jargon/w/widget.htm

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Kristoffer Lehre Fagerheim

Educational Analysis-Program for
Stirling Engines

TMM4935

Master’s thesis in Engineering and ICT
Supervisor: Bjørn Haugen
June 2022M

as
te

r’s
 th

es
is

	List of Figures
	List of Tables
	Nomenclature
	Glossary
	Acronyms
	Introduction
	Theory
	Stirling engines
	Components
	Configurations
	Benefits and limitations

	Schmidt-analysis
	Assumptions
	Calculation

	Adiabatic analysis
	Assumptions
	Calculation

	Method
	Program
	Development approach

	Results
	Windows in GUI
	Intro
	Manual input
	Visualization
	Results

	Numerical example
	Volume variation
	Pressure variation
	Mechanical work variation
	Force variation

	Discussion
	Technological decisions
	Theoretical decisions
	Design decisions
	Future implementations and expansions

	Conclusion
	References

