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Preface

This paper is a Master‘s thesis at Norwegian University of Science and Technology (NTNU)
as part of the Engineering and ICT study program with the main profile ICT and Operation
Management, carried out in the spring of 2022. This study is based on the preliminary re-
search written during the autumn semester in 2021 for the course named Production Manage-
ment, Specialization Project -TPK4530. The supervisors work at NTNU and St. Olavs Hospital,
Trondheim University Hospital. The project was chosen due to my interest in the intersection
between medicine and technology and digital transformations.
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Sammendrag

På grunn av høy risiko for kardiovaskulære komplikasjoner under hjertekirurgi, overvåker leger
pasientens hjerte i den perioperative fasen. Ekkokardiografi er mye brukt til å vurdere hjerte-
funksjon og hemodynamikk. Overvåking av hjertefunksjon og hemodynamikk består vanligvis
av målinger av blodtrykk, hjertefrekvens og oksygenmetning. Vurdering av ultralydbildene er
en kvalitativ visuell inspeksjon utført av eksperter. Følgelig har evalueringen en tendens til å ha
inter- og intravariabilitet. I tillegg er det for tidkrevende for en kardiolog eller anestesilege å
evaluere ultralyd regelmessig. Derfor er automatiserte tiltak ønskelig. Transøsofagal ekkokar-
diografi har vist seg nyttig for hjertekirurgi, men det er mangel på programvare for automatisk
estimering av kvantitative hjertefunksjonsmål, for eksempel myokardiell strain (deformasjon
av hjerteveggen).

Denne oppgaven har som mål å spore punkter i hjertet for å automatisk estimere myokardiell
strain, som beskriver regional hjertefunksjon. En veiledet (eng: supervised) dyp læringsme-
tode, kalt TransformerTrack, ble tilpasset videosekvenser, tatt med transøsofagal ekkokardio-
grafi, for å spore punkter i hjertestrukturen. TransformerTrack er designet for å utnytte den
tidsmessige informasjonen blant videobildene for nøyaktig sporing. Metoden er enda ikke
brukt til medisinske oppgaver.

TransformerTrack produserte lovende sporingsresultater på sporing av punkter modellen ble
trent på. Modellen predikerte posisjonen til punktene i hjertet med en gjennomsnittlig avstand
på 5.565 +− 4.763 piksler mellom prediksjon- og referansepunktet, på et bilde med størrelse
på ca. 350x500 piksler. Modellen viste en dårligere evne til å spore punkter den ikke ble trent
på, og videre arbeid ble foreslått for å forbedre dette.

Arbeidet i denne oppgaven er en del av et større forskningsprosjekt som utvikler et automa-
tisert overvåkingsverktøy av hjertefunksjoner. Det ble gjennomført en As-Is-analyse av dagens
arbeidsprosesser i den perioperative fasen basert på intervjuer med leger og et litteratursøk. I
tillegg ble fordeler og ulemper ved å bruke maskinlæring til medisinske oppgaver undersøkt.
En To-Be prosesskartlegging ble utformet for å bidra til implementasjon av det automatiserte
overvåkingsverktøyet i operasjonsrommet. I tillegg bidro kartleggingen til å vurdere relevansen
av de vanlige problemene knyttet til medisinsk maskinlæring. Kartleggingene viste at et au-
tomatisert overvåkingsverktøy vil påvirke kommunikasjonen mellom leger, arbeidsflyten og
pasientsikkerheten. I utviklingen av verktøyet blir det en avveining mellom falske positive og
falske negative utfall basert på pasientsikkerhet og sykehusets ressurser.
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Abstract

Due to a high risk of cardiovascular complications for patients undergoing cardiac surgery,
the physicians monitor the heart in the perioperative phase. Echocardiography is widely used
to assess cardiac function and hemodynamics. Monitoring of cardiac function and hemody-
namics usually consists of measurements of blood pressure, heart rate, and arterial oxygen
saturation. The assessment of the ultrasound images is a qualitative visual inspection per-
formed by experts. Consequently, the evaluation tends to have inter-and intravariability. Addi-
tionally, it is too time-consuming for a cardiologist or anaesthesiologist to evaluate ultrasound
regularly. Hence, automated measures are beneficial. Transesophageal echocardiography has
proven helpful for cardiac surgery purposes, but there is a lack of software for automatic esti-
mation of quantitative cardiac function measures, such as longitudinal strain.

This paper aims to track points in the heart to contribute to automatic longitudinal strain
estimation, describing regional cardiac function. A supervised deep learning method called
TransformerTrack was adapted to transesophageal echocardiography video frames to track
points in the cardiac structure. TransformerTrack is designed to utilize the temporal informa-
tion among video frames for accurate tracking and is currently not adapted to the medical
environment.

A quantitative assessment showed that the deep learning method produced promising tracking
results with a mean distance of 5.565 +− 4.73 pixels between the predicted- and reference
landmark, on a frame of approximately 350x500 pixels. The model showed a poor ability to
generalize, and further work was suggested for mitigation.

The work in this thesis is part of a larger research project that develops an automated mon-
itoring tool for cardiac functions. An As-Is analysis of the current work processes in the pe-
rioperative phase was conducted based on interviews with doctors and a literature review.
Additionally, common advantages and disadvantages of medical machine learning were inves-
tigated. A To-Be process mapping was proposed to contribute to implementing the automated
monitoring tool in existing work processes and examining the common problems’ relevance.
The mappings revealed that the tool would affect the communication between physicians, the
workflow, and patient safety. In the development of the tool, there will be a trade-off between
false positive and false negative outputs based on patient safety and the hospital’s resources.
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Chapter 1

Introduction

1.1 Background

Cardiovascular diseases are widespread globally [1]. Between 1% and 2% of the adult pop-
ulation in the western world have heart failure, and 10% of those over 70 years are affected
by it [2]. Cardiac surgery entails a risk of complications, depending on both the nature of the
procedure and the patient’s condition before the operation [3]. Interventions such as vascu-
lar surgery, bypass surgery, and valve-related interventions often affect cardiac performance
[4]. Cardiac dysfunction such as decreased myocardial contractility, atrial fibrillation, and my-
ocardial infarction are common consequences of cardiac surgery [5]. Complications can result
in mortality, increased length of stay, and increased costs [6]. Even patients undergoing non-
cardiac surgery are prone to cardiovascular complications during the perioperative period,
and these complications account for the majority of the cause of post-operative morbidity and
mortality [7].

The patient’s cardiac function is monitored in the perioperative phase to reduce the risk of
complications [6, 8]. The patient’s vital signs are continuously monitored, including blood
pressure, heart rate, and blood oxygen saturation. Additionally, a visual inspection of ultra-
sonic imaging of the heart is completed [9]. Echocardiography is the most common imaging
modality in clinical application [10]. It is an indispensable tool for assessing cardiac function
because it allows for the visualization of the important structures of the human heart. Digi-
tal ultrasound imaging gives doctors an insight into cardiac anatomy and function [11]. The
echocardiographic assessment of cardiac function is a task reserved for specialists [12]. When
assessing the ultrasound images, the specialists inspect if the heart muscle and the valves are
working as they should [13]. Traditionally, visual estimation of myocardial morphophysiology
has been the standard of cardiac contraction evaluation [14].

Manual assessment of echocardiography is qualitative, resulting in a high tendency of inter-
and intravariability [14, 15]. Therefore, automation of perioperative echocardiographic mon-
itoring is desired [4]. There exists several quantitative indicators measuring cardiac function.
Myocardial strain is such an indicator, describing regional cardiac function. Myocardial strain
is a measure of the deformation of a segment in the cardiac wall tissue [16]. Myocardial strain
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imaging is applied in several clinical settings [16]. Imaging modalities for myocardial strain
estimation has been tested and compared, and various methods for myocardial strain analysis
have been tested [16–19].

There is lacking a standard method for assessment of strain in vivo [20]. Currently, the most
used methods for myocardial strain estimation are types of myocardial velocity imaging, for
instance tissue doppler imaging (TDI) [21–24]. TDI provide information on the myocardial
deformations by measuring the velocity of the myocardium [25]. The velocity measurement
is completed when the beam of the ultrasound probe is parallel to the tissue to be measured.
Therefore the method is limited by its angle dependency [25, 26]. Research has been con-
ducted to overcome this limitation, and speckle tracking echocardiography (STE) has proven
to be an angle independent method feasible for measuring myocardial strain in real-time [26].
STE uses the natural occurring speckles in the ultrasound images to track the motion of the car-
diac wall tissue [20]. STE is limited by poor temporal resolution [27]. The strain assessment
is semi-automated because a manual definition of cardiac anatomy is required. Myocardial
strain derived from TDI, and STE results in earlier detection of cardiac dysfunction than the
traditional methods. The fully automatic strain estimation is undergoing development [15].

Deep learning (DL) is a subfield of machine learning (ML), and is a prevailing tool in the field
of computer vision (CV). CV tasks, such as object detection and action recognition, focuses on
extracting information from digital images [28]. CV has proven to successfully automate tasks
related to image analysis in a wide range of environments, including medical image analysis
[29]. Measures of left ventricle (LV) functions, like myocardial strain, is currently done based
on digital imaging [22, 26, 30]. Therefore, CV could be feasible for the automatic strain es-
timation purpose [27]. Visual object tracking is a CV task aiming to automatically obtain the
location of an object in each frame of a video sequence. Visual object tracking is an active re-
search area with a wide range of applications, for instance, surveillance and human-computer
interactions [31–34].

With the rapid growth of ML as a technological tool, ML methods are used for clinical de-
cision support in radiology, dermatology, cardiology, and pathology [35]. For instance, Bouton
et al. [36] developed an ML system to restore the control of movement in patients with a par-
ticular form of paralysis. The rise of CV as a research field has contributed to increasing the
range of tasks ML can support due to the amount of patient information held in clinical im-
ages. Esteva et al. [37] have successfully used CV to identify skin cancer subtypes. Visual object
tracking has successfully been applied on ultrasound images. DL models have been tested on
the identification of nerves in ultrasound images for the support of clinical decision-making
[38].

Transesophageal echocardiography (TEE) is a widespread type of echocardiogram [39, 40].
TEE has proven to be useful for several cardiac surgery purposes [4]. Minimal invasive car-
diac surgeries, such as heart valve surgeries, are often performed under TEE monitoring. The
adaption of TEE monitoring purposes in the operating room (OR) is limited due to the lack of
software tools and requirements for extensive user interaction by an echocardiographer expert
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[4]. A specialist must be called pre- and post surgery to clinically assess the echocardiographies
[4, 8, 12, 41].

There is an ongoing project involving the Norwegian University of Science and Technology
and St. Olavs Hospital, Trondheim University Hospital, called "Automated machine learning
based perioperative monitoring of cardiac function (APOC)". The project creates a solution
that solves the problems related to the manual assessment of echocardiography and the lack
of software to utilize TEE images. The principal goal of the research group is to develop a
functional prototype of an automated ML based tool for cardiac function analysis based on
TEE images (further called "tool" or "automated tool"). The tool aims to solve the challenges
mentioned above by continuously measuring several heart function metrics in real-time dur-
ing the perioperative phase based on TEE images [4]. One of the cardiac measures that the
monitoring tool will base its output on is the longitudinal strain [42, 43]. The work in this
thesis on visual object tracking of TEE images is a part of the APOC project.

A well-performing clinical ML model is not necessarily adequate for the tool to be routinely
utilized and endorsed by physicians [44]. Recent studies have shown that the implementation
of ML methods in health care fails due to poor integration with the clinical workflow and the
staff [45, 46]. For successful implementation and sustainable use of new tools, both research
regarding the technical performance, potential practical challenges, and comparison of current
and future work processes is essential [47]. Developers’ knowledge of how the work processes
are today and how the tool is going to change them is crucial for better software [48].

1.2 Objectives

The main objectives of this master’s thesis are:

• Map current work processes in the OR and propose a future state mapping with the
implemented monitoring tool
• Investigate if the benefits of the mappings will contribute to the development and inte-

gration of the tool
• Investigate if the current challenges and advantages of current use of AI in health care

applies to the monitoring tool
• Adapt TransformerTrack and TEE images for visual object tracking

1.3 Research Questions

The research questions (RQs) are as follows:

• RQ1: How will the monitoring tool affect the processes in the perioperative phase?
• RQ2: How will the adapted visual tracking model, TransformerTrack, perform on TEE

images?
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1.4 Approach

Interviews with doctors at St. Olavs Hospital are carried out to map the current work processes
and propose a future state. An As-Is analysis is executed, and a To-Be process mapping is pro-
posed to define the future state of the work processes in the OR when the functional tool is
developed by the APOC project is in place. A literature review is conducted to investigate the
current benefits and difficulties regarding the implementation of ML-based methods in health
care, specifically for cardiac purposes. The questions in the interviews are based on the find-
ings in the literature review. Additionally, the usefulness of the process mappings is discussed
in chapter 5 in light of the findings of the literature review. Figure 1.1 illustrates the approach.

Figure 1.1: A simple illustration of the approach to analyze the current and future work pro-
cesses.

CV is used to contribute to the APOC project’s by developing an automated cardiac monitoring
tool. More specifically, a visual object tracking method is applied on ultrasound images with
the aim to estimate longitudinal myocardial strain (from now on called strain or longitudinal
strain). The tracking of points in the heart provides the position of the points at a given time,
which makes it possible to automatically calculate strain based on TEE images. Therefore, a DL
model is trained to track certain points in the cardiac structure and measure its performance.
Figure 1.2 illustrates the approach to the automatic strain estimation using DL.

The TransformerTrack method is used for visual tracking of TEE images to contribute to the au-
tomation of strain estimation. The technique differs from most tracking by focusing on the tem-
poral relationship among successive frames in the video sequence [49]. Rich temporal contexts
exist across successive frames of a cardiac cycle ultrasound video sequence. Additionally, Trans-
formerTrack has proven to produce consistent tracking of a specified object in video frames
containing distracting objects [49]. This model characteristic is beneficial to strain estimation
since similar areas in the heart structure can confuse a tracking model. TransformerTrack has
not yet been used for medical imaging purposes and requires development and adjustment to
fit the presented problem. By utilizing the TEE images as input to the model, there is a good
chance that the output will be reliable and reproducible [50].

The approach aims to measure the tracking performance of the model on the TEE images.
DL tracking methods are frequently used for digital imaging purposes, and there exist several
variants. Thus, it is essential for the APOC project to adapt a state-of-the-art model to the
problem and analyze the performance [51].
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Figure 1.2: A simple illustration of the approach to contribute to the automatic strain estima-
tion.

1.5 Limitations, Scope and Target Group

Since the APOC project is in a prototype phase, the final details about the implementation of
the tool are not formally decided. Further investigation is needed to gain insight into the final
goals of the monitoring tools and secure the thoroughness of the analysis.

CV in clinical care can provide multiple advantages, including increased precision and effi-
ciency in diagnostics and treatment, improved planning, enriched opportunities for research,
and enhanced sustainability of services. The use of AI creates new challenges regarding secu-
rity, privacy, regulation, accountability, ethics, and management [52]. The work process map-
ping analysis’ scope is the processes in the OR, the most relevant stakeholders in the OR, and
the time scope is the perioperative phase. The scope of visual object tracking is measuring
training and testing performance. Key focus areas are performance, safety, communication,
and process time.

The target group of the thesis is those with an Engineering and ICT master’s degree. Those
who have a specialization in AI and ML can skip the theory chapter concerning these topics
in section 2.6. A short definition of relevant AI concepts for visual object tracking of ultra-
sound images is presented in table C.1 in appendix C. Nearly the whole theory chapter 2 and
subsection 3.2.1 are from the specialization project due to their relevance.

1.6 Outline

The remaining of the report is organized as follows:

• Chapter 1. Introduction: A presentation of the motivation of using ML for automatic
monitoring of cardiac function. The current approaches to heart monitoring during car-
diac surgery is presented. Additionally, this chapter contains suggestions to solve the
current problems based on state-of-the-art ML models and previous attempts to use ul-
trasound imaging for cardiac surgery monitoring.
• Chapter 2. Theoretical Background and Review of the Literature: A presentation of

the findings of a literature review and the theoretical background required for profound
insight into the topics. These topics are ML, the human heart, ultrasound, production
management (PM), digitization, ML in health care, the effect of ML on work processes,
and value trade-offs in the health sector.
• Chapter 3. Data and Method: A presentation of the medical data used in the study,

its metadata, the data retrieval, data annotation, and preprocessing. Additionally, an
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explanation of the methods, literature review, process analysis, and the DL model.
• Chapter 4. Results: The results of the interviews, process mappings, and the visual

object tracking.
• Chapter 5. Discussion and Further Work: The findings of the study and an analysis

of the results are presented and discussed. The main focus is to answer the research
questions. Further work and limitations of the work are also presented.
• Chapter 6. Conclusion: The conclusion of the study is drawn.
• Bibliography: Overview of all the referenced papers and books.
• Appendix A. Technical Commands: The commands for running the model.
• Appendix B. Libraries and Packages: The libraries and packages used for visual object

tracking.
• Appendix C. Concepts of Artificial Intelligence: An overview of some relevant concepts

of AI related to visual object tracking of ultrasound images. Useful for readers new to AI
to look up short definitions.
• Appendix D. Interview: An overview of the questions the interviews are based on.



Chapter 2

Theoretical Background and Review of
the Literature

Firstly, the anatomy and the functions of the heart is presented with the existing ultrasound
technology. These two topics cover the essential theory, and the thesis do not contribute to
these areas. However, the heart and ultrasound background theory is necessary for under-
standing and developing the automatic monitoring tool.

The literature review focus on production management (PM) and digitization. PM has devel-
oped techniques for analyzing and understanding work processes to improve these processes,
such as As-Is and To-Be. The literature review investigate what has been done in other compa-
rable areas regarding how digitization works or its challenges. The digital tool at the “process
level” is a tool that can make the difference between life and death. Therefore, it is essential
to investigate the implementation and the effects of decision-making in health care.

The ML fundamentals is presented. The theory of ML fundamentals is presented to substanti-
ate the method behind the monitoring tool used for strain estimation. The general ML theory
is initially presented, and the state-of-the-art methods are described along with the relevant
theory. Lastly, the advantages and challenges of implementing ML in the cardiac domain are
investigated.

Figure 2.1 shows the used search engines and key search words related to each topic of the
literature review. Search words were chosen based on the research questions, theory, and fre-
quently used words in the relevant literature.

7
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Figure 2.1: Overview of the search engines and key search words used in the literature review

2.1 The Anatomy of the Human Heart

The human heart is a hollow muscular organ responsible for the bloodstream in the body [53].
It is common to distinguish the right and the left section of the heart, which each consists of
an upper chamber, the atrium, and a lower chamber, the ventricle, as illustrated in figure 2.2
[54]. The function of the ventricles is to work like pumps, and the atrium chambers receive
blood that returns to the heart. The atrium and the ventricle are separated, on both sides, by
connective tissue, annulus fibrosus. Annulus fibrosus consists of four connected rings, which
form four valves constructed for the blood to flow in one direction. The mitral valve, separates



Chapter 2: Theoretical Background and Review of the Literature 9

the left ventricle (LV) and the left atrium, the tricuspid valve separates the right ventricle (RV)
from the right atrium. The aortic valve separates the LV and the main artery, the aorta, and the
pulmonary valve separates the RV and the pulmonary artery [53].

The wall of the heart is composed of three layers named epicardium, myocardium and en-
docardium. The endocardium is a thin inner surface lining the heart’s interior, consisting of
endothelium and connective tissue. The myocardium constitutes the middle layer and most of
the heart wall and is a cardiac muscle with cells responsible for the contraction of the heart,
cardiomyocytes. The epicardium is the outer layer of the heart wall, composed of a thin serous
layer and a subserous layer. The subserous layer is embedded with coronary blood vessels for
the supply of oxygen-rich blood and nerves [54].

Figure 2.2: The heart is illustrated with names and blood flow. White arrows indicated the
direction of the blood flow. Illustration by Wikimedia user Wapcaplet1, reproduced under the
CC BY-SA 3.0 license 2

The right section of the heart pumps the blood through the pulmonary circuit, and the left
section pumps it through the systemic circuit. The right atrium receives venous blood from the
inferior and superior vena cava. The blood flows from the right atrium to the RV, which pumps
the blood through the pulmonary artery to the lungs. The deoxygenated blood is added oxy-
gen in lungs, and the carbon dioxide in the blood is released into the lungs. The blood returns
to the left atrium of the heart via pulmonary veins from the lungs. The blood streams from
the left atrium to the left ventricle. Then the blood is distributed through the aorta to all the
organs of the body [53].
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The heart contracts periodically to create pressure differences in the circulation system to
support the bloodstream. The contraction phase of the heart, the ventricular systole, and the
relaxation phase, the ventricular diastole, compose the cardiac cycle, illustrated in figure 2.3.

Figure 2.3: The cardiac cycle [55].

During invasive surgeries it is common to use a cardiopulmonary bypass (CPB) machine to
temporarily stop the cardiac contraction. The machine lets the surgeon stop the patient’s heart
while maintaining blood circulation [56]. The doctors drain venous blood from the body to a
reservoir, then it is oxygenated and pumped back into the patient’s arterial system [56].

2.2 Cardiac Function

Identification of LV dysfunction is important when assessing the cardiac function, since heart
failure often occurs as a consequence of left ventricular dysfunction [51]. Quantification of the
cardiac function is useful for physicians to identify abnormalities [17]. LV myocardial strain
quantitatively describes the function of the LV by the wall motions [16, 51]. Myocardial strain is
defined by measuring a local or global shortening, thickening, or elongation of the myocardium
in one or more dimensions as the ventricle contracts [25]. Figure 2.4 shows a graphic repre-
sentation of the principal deformations of the myocardium; longitudinal strain, radial strain,
circumferential strain [17].

Strain can be estimated based on echocardiographic images [17]. The deformation can be ex-
pressed relative to the initial length, which is called Lagrangian strain [22]. Given two points
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Figure 2.4: Illustration of the principal deformations of the myocardium. (A) Long axis view
of LV. (B) Short axis view of LV. LONG: Longitudinal strain, RAD: Radial strain, CIRCUM:
Circumferential strain. © 2012 by American Heart Association

in a specified region of the myocardium, the myocardial Lagrangian strain, ε(t), can be written
as,

ε(t) =
L(t)− L0

L0
(2.1)

where t is the time, and L(t) is the distance between the two points at a given time, il-
lustrated in 2.5. L0 is the initial distance, thus L0 = L(t0) [15]. By convention, the strain is
defined such that lengthening is represented as a positive strain value and shortening has a
negative value, as in 2.1 [22]. The quantification of myocardial strain using echochardiograpy
provides information which is useful in a variety of clinical settings [20, 57–59].
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Figure 2.5: Illustration of the distance between the points used for strain computation. The
image is a 2D TEE image. The red dots are the landmark annotations of the mitral points (the
upper points) and points at the myocardium (the lower points). The strain equation is presented
in equation 2.1.

2.3 Ultrasound

Ultrasound is a principal approach used in digital image processing and can operate on the
electromagnetic spectrum outside of the human perception. Ultrasound imaging has a varied
field of application and is best known for its use in obstetrics [60]. The technique is essential
for clinical diagnoses and patient monitoring [61]. The ultrasound technique can produce dif-
ferent kinds of images, and this paper will focus on B-mode images [60]. B-mode ultrasound
is one of the most widespread due to its low health risk, and real-time availability [62].

The ultrasound system consists of a computer, an ultrasound probe transmitting and receiving
sound waves, and a display. The ultrasound images are generated by this step-by-step approach
[60]:

1. The ultrasound transducer transmits high-frequency, 1-5 MHz, sound pulses into the
body.

2. Sound pulses travel as sound waves until it hits tissue or organ boundaries. A boundary
can, for instance, be between soft tissue and bone. When the sound waves hit a boundary,
a part of it is reflected in the transducer as an echo.

3. The transducer receives reflected sound waves, and then the sound waves are converted
to digital signals and relayed to a computer.

4. The computer uses the assumption of speed of sound, c, in area of interest, and time, t,



Chapter 2: Theoretical Background and Review of the Literature 13

to calculate the distance d from the probe to the boundaries as d = c t/2
5. The computed distances and intensities of the echoes form a two-dimensional image
[60]. The brightness of the image is related to the amplitude, the height of the ultrasound
wave, of the echo [61]. Thus, these images are named B-mode images, where B is for
brightness [60].

For one ultrasound image, millions of sound pulses are transmitted each second [60].

Echocardiography is cardiac ultrasound imaging and assists decision-making in several clini-
cal settings. Echocardiography performs well at depicting cardiac structures, and the B-mode
images resemble the anatomy of the heart [61]. The ultrasound transducer can be moved,
placed, and angled to obtain various views [60]. In transthoracic echocardiogram (TTE) the
transducer is manually moved on the exterior of the chest and abdominal wall and is an avail-
able and versatile procedure. This examination is noninvasive and accessible. However, other
organs or bones can disturb the echo and contribute to inaccuracies [63]. In TEE, the trans-
ducer is placed inside the esophagus, which is close to the heart. This method is, in contrast to
TTE, invasive, and the placement of the transducer can lead to oropharyngeal-, esophageal-
or gastric trauma [39]. TEE is in many cardiac surgical cases more practical to use than TTE
[64]. The main advantage of TEE is that once the probe is in place, it is assumed to be more or
less stable, and it does not require an echocardiographer to acquire images continuously. The
placement of the transducer during the TEE and TTE approach is illustrated in figure 2.6.

The transducer can be positioned in different ways, resulting in different images. The most
common is the four-chamber view, and the structures visible in this view are the right ventri-
cle (RV), left ventricle (LV), right atrium (RA), and left atrium (LA). The two-chamber view
images show the left ventricle (LV) and the left atrium (LA). The displays of the four-chamber
view and two-chamber view is illustrated in figure 2.7 [65].

Figure 2.6: The left figure illustrates the transducer placement for TTE; on the outside of the
chest or abdominal wall. The right figure illustrates the transducer inside the esophagus for
TEE [66].
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Figure 2.7: Four-chamber view and two-chamber view, respectively. Right ventricle (RV), left
ventricle (LV), right atrium (RA) and left atrium (LA), tricuspid valve (TV), mitral valve (MV),
pulmonary veins (Pulvns) [67].

2.4 Production Management and Digitalization

PM focuses on how organizations manage to deliver to their customers at the right time, cost,
and quality [47]. Process productivity results from the interaction between people, technology,
and processes. Some elements from PM are central when planning and conducting surgeries.
The goal of PM is to manage the business processes that transform input into output, in the
form of products and services [47]. The critical input factors regarding PM in the OR consist
of health professionals, technology, machinery, patients, and equipment. The customers, in a
medical PM aspect, are the patients. The management of the processes during a surgery aims
to optimize the safety of the patients, and the efficiency regarding the use of time, equipment,
and physicians. Management models, such as As-Is and To-Be models, are an abstraction of the
value chain that shows how production and logistics are organized and managed [68, 69]. It is
an advantage to use these models when planning the work in the OR, since strategic planning
might lead to improved time use, fewer resources, and improved safety. The processes, mate-
rial flow, information flow, and decision management should then be mapped and analyzed
[70].

Digitization is the process of changing something from analog to digital. Digitalization is the
use of digital technologies and digitized data to improve processes, functions, and activities,
and the aim is to benefit from the change of the processes [71]. With the growth of digitaliza-
tion, the need for analysis tools to optimize the implementation of digital tools has increased.
The PM tools As-Is and To-Be process mappings are helpful tools for the implementation of the
digital tools [68].

In PM, there are several techniques available to analyze work processes, and they are often
used related to digitization processes. The techniques are applied to pursue the goal of under-
standing digitization performance. Value stream mapping (VSM) is one technique to map the
process’s current status, mainly used to map the flow of one product through a manufacturing
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system [72]. VSM is applied to health care and other sectors to introduce the management
philosophy of lean manufacturing to facilitate continuous improvements [73]. An aim with
VSM in health care is to improve key performance operational indicators such as cost, clinical
quality, patient safety, and process time. There are several factors affecting the performance of
digitization, and therefore the radar chart is commonly used to visualize and evaluate oper-
ations [74]. The radar chart provides a simplified representation of the main KPIs measures,
however, the timely aspect is not included in the chart [75]. The As-Is and To-Be process map-
pings can be in flow-chart format, where key participants and phases in the processes are
included [69]. In many cases, As-Is and To-Be flow-chart mappings are beneficial to use due
to the visual and informative comparison between the current and future state.

In the recent decade, there has been a growing interest in utilizing new digital technologies,
such as ML, in several sectors. The implementation often requires transformations in the work
processes [76]. Digital transformations can be defined as the way digitalization changes the
work processes. Digital transformations can affect the following levels [77]:

• Process level
• Organization level
• Business domain level
• Society level

This thesis will focus on the effects of digital transformation on the process level. Digitization
is proven, in the literature, to affect several aspects of work processes, for instance planning,
control, workers, flexibility, productivity, and quality [78–81].

In supply chain management (SCM), new technologies has given the improved potential to the
decision-making support, changing the process by reducing the manual steps. In supply chain
(SC) risk management predicting disruptions is of importance, and the technology can both
help with predicting disruptions and support decision-making when it occurs. These decision-
support models heavily rely on the completeness, fullness, validity, consistency, and timely
availability of the data used. The integrated digital systems affect the ways of working by dig-
italizing the decision-making process [82].

There are several findings in the literature where digitization has been studied from a PM
perspective. With the fourth industrial revolution, there have been changes in several sec-
tors, including the manufacturing industry, food sector, agriculture sector, and energy sector
[83–87]. Digitization in manufacturing has led to better asset efficiency, decreased waste of
raw material, improved operational performance, and better logistics routing [80, 88]. In the
construction sector, digitization can improve productivity and facilitate sustainable and safer
construction [83]. In agriculture, new technologies can add value to the production by in-
creasing the efficiency, and quality [85]. Digitization in the food sector has improved safety,
reduced costs, increased quality, decreased process time, and assured quick response-time of
the systems. Experiences of digitization in the food sector are relevant to look at when assess-
ing digitization in the OR due to the similarities in the key performance indicators (KPIs).
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New technologies have recently been successfully implemented in the food sector and led
to changes in the manufacturing processes [84]. For instance, CV is used to automate and
improve the analytical monitoring of the food by automatically detecting shape and color in
real-time. This ensures that the food safety requirements are fulfilled and allow earlier detec-
tion of defects than the manual process, resulting in reduced food waste and recalls. The use
of this technology solves the problem of human imprecision and variation in human judgment
and contributes to cost reduction, customer satisfaction, increased efficiency, and improved
food safety [84].

The effects of digital transformation seen in the food sector can be transferred to other do-
mains, and one can expect similar outcomes. For instance, the success of the use of CV in the
food sector can be transferable to the health sector. The transferability of the technology comes
from the fact that large parts of ML-based methods are domain-independent [89]. However,
there are uncertainties around success, such as data quality and integration with current work
processes.

2.5 Preferences and Value Trade-Offs in the Health Sector

Medical errors are a matter of medical ethics, but the economic utility ethics also matters.
Figure 2.8 shows a chart of the annual number of open and closed heart surgeries reported
from the cardiac units in Norway from the year 1995 to 2020 [90]. For each year from 1995,
there have been over three thousand cardiac surgeries, making up a significant expense for
the hospitals in Norway. In an economic sense, it is incorrect to allocate resources to treatment
without considering what benefits the resources could provide in alternative applications. In
the last 25 years, the number of published empirical analyzes on how society should allocate re-
sources optimally to evaluate the economy of the health measures has increased exponentially
[91]. Kristiansen et al. [92] stated a goal for diagnosis and treatments to maximize patients’
expected welfare and the society’s life expectancy. This goal has some constraints concerning
budgets and equality ideals since prioritization is made based on age, family situation, and
type of disease [93]. It is relevant to assess the consequences of suboptimal diagnostics or
treatment, both financially and in health. A calculation is done in Norway of expected health
loss for common diseases [94, 95]. The health loss is lost years with good health quality.
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Figure 2.8: Annual number of open and closed heart surgeries reported from the cardiac units
in Norway 1995-2020 [90]. Transcatheter aortic valve implantation procedures are reported
and included until 2017. Intra-Aortic Balloon Pump Therapy treatments, implantation of pace-
makers, and automatic implantable cardioverter-defibrillator are not included.

2.6 Machine Learning Fundamentals

ML is a subfield of artificial intellegence (AI). This research field studies computer-based algo-
rithms that can complete tasks without being explicitly programmed. ML models have proven
great performance when solving tasks related to predictions, classifications, or regressions due
to the models’ ability to improve performance through experience [96, 97]. ML models are
applicable in a wide variety of domains, for instance, weather prediction, personalized adver-
tisement, and risk management. The models are based on results and concepts from different
disciplines of science, such as optimization theory, information theory, statistics, cognitive sci-
ence, and control theory [98]. To design an ML approach, one has to choose the training
experience type, a target function to be learned along with a representation of this function,
and an algorithm that can use the training examples to learn the target function [97].

2.6.1 Artificial Neural Networks

Artificial neural networks (ANNs) define a group of learning systems inspired by the way the
human biological brain behaves when solving problems; hence the name [99]. The physical
neural network is composed of massively connected nerve cells, neurons, that process infor-
mation. The information transmitted through the biological neural network is broken down,
captured, and distributed in parallel in the interconnected neurons, so the information passed
through each neuron is small [100]. The input to the ANNs are the initial data. The input data
can for instance be images of animals that is to be classified as "dog" or "not dog". The output
of the ANNs are the produced results of the given input.

The ANNs are composed of nodes with resemblance to the biological neurons, called artifi-
cial neurons [100]. The network is built up by nodes arranged in layers, and each node fires
when a linear combination of the inputs exceeds some threshold [101]. Figure 2.9 shows a
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simple mathematical model of an artificial neuron [100]. These artificial neurons, or nodes,
are connected with edges, interconnecting node i with the successive node j. The strength
of the connection is determined by each edge´s associated numeric weight, wi, j . Each edge
also propagates the output from node i to node j, corresponding to the activation ai . After a
node receives the activations ai from predecessor nodes, a weighted sum of all the inputs is
computed [101]:

in j = (
n
∑

i=0

wi, jai) (2.2)

Then, an activation function g is applied to the sum in j:

a j = g(in j) = g(
n
∑

i=0

wi, jai) (2.3)

The activation function g is a nonlinear function and is typically a logistic- or threshold func-
tion. This function makes the network able to represent nonlinear functions. [101]

Figure 2.9: A simple mathematical model of a neuron [101].

ANNs consists of several connected nodes and can compute one or more outputs. The prop-
erty of the nodes determine the performance of the computation and the network topology
[101]. ANNs are composed of artificial neurons as nodes and weighted edges interconnecting
the nodes. If the network architecture is a directed acyclic graph it is called a feed-forward
network. Feed-foreward ANNs do not have an internal state except the numeric value of the
weights.

2.6.2 Deep Learning

DL is a subfield of ML which represents complex models as a nested hierarchy of simpler
non-linear estimators [102]. The DL model’s architecture is an ANN with at least three layers,
illustrated in figure 2.10. Each node in figure 2.10 is an artificial neuron as shown in figure
2.9. The DL models differ from most learning techniques by having a deep architecture, where
the term deep represents the number of layers of estimators in the hierarchy [103]. Each layer
in the hierarchy breaks the desired complicated task into simpler tasks. The input to the model
is called the visible layer due to observable variables in the input data. The next layers have
non-observable values; they are not given from the input data and are called the hidden layers.
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The hidden layers extract increasingly abstract features, from the visible layer, to solve the task
and return the output.

Figure 2.10: A simple deep neural network with an input layer, three hidden layers and an
output layer. Each node in the network is an artificial neuron. The edges are interconnecting
the nodes, and each edge has a weight associated with it [104].

2.6.3 CNNs

The idea of using ANNs for processing visual information resulted in the architecture named
convolutional neural network (CNN) [105]. During the last ten years, CNN has given promis-
ing results in problem-solving related to pattern recognition, e.g., image classification, CV, and
natural language processing [106]. The input to CNN models can be an image or a video. The
structure of a CNN consists of convolutional layers, pooling layers, activation functions, and
fully connected layers [107].

Convolutional layers

The convolutional layers aim to extract high-level features from the input image, by detecting
patterns in neighboring pixels [108]. Each layer consists of a set of learnable filters, called ker-
nels, which activates when detecting certain features in the input, for instance, edge detection
[109]. A kernel is a set of weights in the shape of the receptive field, a spatially local section
of pixels in the image to be convolved. The kernel has the same depth as the input image and
is smaller in size [108]. A convolved image produce a feature map that indicates the probable
locations of a detected feature in an input.

The kernel moves across every spatial location in the input until it parses the entire width
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and height of the input, repeating the convolution process and creating the output feature
map. The spatial increment of the kernel is called the stride. Increasing the stride can reduce
computed data, and the models’ sensitivity to spatial translation [108].

The convolution computes a sum of products between pixel values within the receptive field
and the kernel weights. An image can be defined as the function f (x , y), where x and y are
spatial coordinates. The amplitude of f at any coordinate is called the gray scale of the image
in that point [60]. The convolution (w ∗ f )(x , y) of an image f (x , y) is shown in 2.4. w is the
kernel of size m x n, where m and n are assumed to be odd integers. Here, a = (m−1)/2 and
b = (n− 1)/2.

(w ∗ f )(x , y) =
a
∑

s=−a

b
∑

t=−b

w(s, t) f (x − s, y − t) (2.4)

Pooling layers

A pooling layer is a downsampling process. The downsampling is done to look at the large
features in the input. A pooling layer is commonly placed between the convolutional layers to
achieve spatial invariance [109, 110]. Each feature map in the convolutional layer corresponds
to a pooled feature map in the successive pooling layer. The pooling layers divide the input
feature map into pooling windows of arbitrary sizes and compute one value from each window.
This operation results in a pooled feature map with lower resolution. The most efficient method
is max-pooling, which calculates the maximum value in the pooling window, as shown in 2.11
[110].

Figure 2.11: Illustration of max pooling with a kernel of size 2x2 and a stride of 2. [111]

Activation functions

The activation function affects the training dynamics and task performance. The function de-
fines the output of the node given the weighted sum of the inputs. The most popular and
successful activation function is the Rectified Linear Unit, defined as f (x) = max(x , 0) [112].
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Fully connected layers

The fully connected layers form the last layers in the CNN. It is a feed-forward neural network
where every node is interconnected. The fully connected layers aim to learn a function from
the feature space provided by the convolutional layers [113].

2.6.4 Visual Tracking

CV is a field that aims to extract information from images to solve tasks like object detection,
segmentation, video classification, and object tracking [114, 115]. Most CV applications, such
as cancer detection, face recognition, and automated driving, uses DL for efficiency [29, 116].

Visual tracking is a CV task, and the aim is to localize a given target in subsequent frames
[49]. Due to its interdisciplinary application for real-world problems, visual object tracking
is a growing research field which already is essential for medical image analysis [117, 118].
It can be challenging to track a real object from a video due to illumination changes, abrupt
movements, or occlusion. Therefore an efficient and accurate tracking model is desired [119].
Siamese network [120] and discriminative correlation filter (DCF) [121] are popular tracking
methods.

2.6.5 Transformer

The Transformer is a model architecture capturing global dependencies between input and
output by utilizing self-attention mechanisms. The Transformer sat a new paradigm in ma-
chine translation, partly due to its short training time and its ability to parallelize tasks. It has
an encoder-decoder structure. The encoder receives an input sequence of symbol representa-
tions and maps them to a sequence of continuous representation. The decoder takes previous
output as the input and generates an output sequence of symbols. The encoder and the de-
coder are built up by a stack of N identical layers, and both contain at least one sub-layer with
an attention mechanism [122].
The attention mechanism allows models to train faster and often increase the testing perfor-
mance. The input to the attention layers is sequential data consisting of vectors of numbers.
The attention mechanism aims to compute a linearly weighted sum of the vectors and train the
model to learn the optimal weights (α1, ...,αn). The attention function f computes the weights
with a given query q and keys (k1, ..., kn), as presented in equation 2.5.

αi = f(q, ki). (2.5)

The Transformer is famous for solving natural language processing (NLP) tasks, and has re-
cently been applied to vision tasks like image generation and object detection [49].

2.6.6 TransformerTrack

The TransformerTrack architecture, as shown in figure 2.12, is a transformer-assisted tracking
method. It is built up as a Siamise-like pipeline, with a CNN backbone for feature extraction,
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the Transformer for exploiting temporal context, and a tracking model [29, 49]. The goal
with TransformerTrack is to track an object in individual video frames [49]. The response is a
tracking response map, with confidences of where the tracked object is.

Backbone -TransformerTrack

The proposed model, TransformerTrack, uses a ResNet-50 model backbone for feature extrac-
tion [123]. An additional convolutional layer is added between the backbone and the Trans-
former, to reduce the number of channels for visual tracking [49].

Transformer -TransformerTrack

Wang et al. [49] applied the Transformer [122] in visual tracking. Essentially, there is less need
for vision-specific inductive bias in transformer-based models, which makes it advantageous
to apply to CV tasks [124]. Temporal information among successive frames is merely used in
basic tracking methods. Wang et al. [49] introduced the Transformer to the tracking architec-
ture in TransformerTrack to increase the tracking performance by looking at the frame-wise
relationship in the input-frames. The transformation characteristics in a modified Transformer
architecture are well suited for propagating context in a temporal domain.
The Transformer is composed of an encoder and a decoder. The parts are separated into two
parallel branches in a Siamese-like tracking pipeline. The encoder in the top branch receives
template patches, the pictures showing what the model should track, and make compact target
representations to generate high-quality encoded features. The transformer decoder is in the
bottom branch and receives the search patch and the previous template contents from the top
branch. The transformer decoder facilitates the object search by various target representations
and spacial indicators and generates a high-quality search feature [49].
In TransformerTrack the Transformer improves the performance of the tracking by suppressing
the confidence of the distracting objects [49]. The model architecture of TransformerTrack is
illustrated in figure 2.13.

Figure 2.12: Model architecture of TransformerTrack [49].

Trackers -TransformerTrack

The TransformerTrack method connect a modified Transformer architecture with two different
popular tracking baselines; the Siamese tracker [125] and DCF [126]. Both trackers, named
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TrSiam and TrDiMP respectively, show improved performance and set state-of-the-art records
on commonly used tracking datasets [49].

Figure 2.13: The first column shows the search region, with annotated targets, the second
column shows the tracking response map of the DiMP baseline, and the third column shows
the tracking response map of the TrDiMP [49]. The brighter the color, the higher the confidence.

2.6.7 Training ML models

The ML models need to be trained to solve different tasks. Most ML models, like Transformer-
Track, apply to a wide variety of domains. When using the methods in a new environment, it
must be tuned and tweaked to perform well. For example, the optimal parameters in Trans-
formerTrack when tracking a car on the road are not the same as those for cardiac tracking
purposes. There are no correct answers for tweaking the models.
Data preprocessing is necessarily to achieve optimal model performance. ML and CV are data-
driven methods, and accuracy and performance largely depend on the quality of the input data.
In addition to striving for the perfect combination of hyperparameters, a developer wants to
present the relevant data in the best possible way. There are many processing techniques, and
their success depends on the data, the model, and problem. If there is a lack of data, data aug-
mentation is a technique to increase the amount. Data augmentation is also a way to increase
the ability to generalize by introducing more diversified data. Examples of data augmentation
techniques are rotation and flipping of the images.

The input data to the ML models are initially split into three different datasets. The model
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train on the sample of the data called the training dataset. The validation dataset is used dur-
ing training to provide an unbiased evaluation of the performance of the model during training.
The validation data is previously unseen data. Lastly, the test data is the data used for testing
purposes to evaluate how well the trained model performs on unseen data [127]. There are
several split ratios, and the optimal split is dependent on the model and the data.

A ML model must be trained on data to perform tasks such as tracking and classification.
There are three different learning paradigms in ML; supervised learning, unsupervised learn-
ing, and reinforcement learning, illustrated in 2.14. Before a supervised ML model can train
on data, it has to be annotated [128]. Image annotation is the action of labeling images for ML
model training purposes. The goal of the annotation is to ensure that the ML model learns the
correct information [129]. For instance, the labels for tracking purposes specifies the tracking
target, and the label is called the ground truth [130]. Bounding box annotation is illustrated to
the left in figure 2.13, the ground truth is illustrated with a red bounding box [130]. The an-
notation can be done manually or automatically, depending on the problem complexity [130].
Human-annotated data often has a higher degree of accuracy [131]. In unsupervised learning,
the main goal is to discover underlying patterns in the input measures, and the input data
is not labeled. In reinforcement learning, there is no dataset to learn from and the model is
learning based on experience and feedback on the model’s behaviour [129, 132].

Figure 2.14: An overview of three machine learning paradigms with their main properties

Transfer learning is a method used to improve the supervised learning of ML models. Essen-
tially, the knowledge from a source domain is leveraged for the target domain learning [133,
134]. The domains do not need to correlate, but the ML tasks must match. Figure 2.15 shows
a simple architecture example of how the transfer learning method technically works. As illus-
trated in the figure, a part of a pre-trained method can be incorporated in the architecture of
the target domain method. Transfer learning is often used in cases where the source domain
has a vast amount of labeled training data and the target domain has a lot of unlabeled train-
ing data [133].

The network of a ML model is trained by minimizing the difference between the predictive out-
put of the model and the ground truth. In the TransformerTrack the ground truth is a bounding
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Figure 2.15: A simple architecture example of the transfer learning method [135].

box covering the object to be tracked, and the predictive output is the models tracking predic-
tion of the bounding box. The difference between the ground truth and the predictive output
is measured by a function computing the predictive error, called the loss function [136]. The
loss function is used for quantitative evaluation of model performance. There exists several
different kinds of loss functions, suited for different kinds of problems. TransformerTrack uses
the Kullback–Leibler (KL) divergence loss function [137]. The KL loss function is applied in
many aspects where it is desirable to quantify the difference between probability distributions,
and is often used in speech recognition tasks [138]. For TransformerTrack it is feasible to use
the KL loss function due to the response map, illustrated in figure 2.12.

Training loss is the loss computed on the training dataset, and validation loss is computed
on the validation dataset. The training loss indicates how well the model performs on the data
it is trained on, and validation loss indicates how well the model performs on new data [139]
[140]. If the validation loss is high, the model performs poorly on new data, meaning it is not
good at generalizing. If the training loss is high, the model performs poorly on the training
data. Figure 2.16 illustrates the relation of the training and validation loss. Good performance
on training data and poor generalization means that the model is underfitting, and poor per-
formance of the training data and poor generalization implies that the model is overfitting.
It is optimal to reach a balance between overfitting and underfitting to optimize the model
[141]. The number of epochs decides how many times the network weights will be updated,
and the number of epochs is a hyperparameter. An epoch means training the neural network
with all the training data for one cycle, and the network weights are updated each epoch. The
learning rate is another hyperparameter, and it determines to what extent the weights should
be modified based on the calculated loss.
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Figure 2.16: Overfitting and underfitting. The x-axis values are the epochs, and the complexity
of the model. The value of the y-axis is the loss, the predictive error. The model is overfitting
when the validation loss and training loss is low. The model is underfitting when the validation
and training losses are high. The ideal range for model complexity is between the underfitting
and overfitting area [136].

2.7 Digital Transformation with the Use of Machine Learning for
the Cardiac Domain

Intelligent methods play an increasingly important role in the medical environment, and the
systems are usually utilized for decision support [142]. Consequently, the nature of health care
work is currently changing [143]. A CNN has outperformed or given as least as accurate find-
ings as radiologists when detecting abnormalities on radiographs [144]. Some studies suggests
that automated solutions with AI could help to detect heart failure [51]. Diagnostic imaging,
especially ultrasound, is an essential asset in medical care [145]. Several measurements of car-
diac function are based on anatomical information provided by the ultrasound images; thus,
ultrasound data is used in various clinical applications [145]. In the last decade, DL has been
applied to various medical ultrasound analysis tasks including cardiac-related tasks [10, 51,
146–148].

In section 1.1 the gaps in the current echocardiographic monitoring of the cardiac function
were presented. The APOC-project is developing an ML-based tool to solve current prob-
lems with today’s automatic monitoring methods. An automated cardiac monitoring system
should be easy to use for physicians, provide measurements of relevant variables, be operator-
independent, have a rapid response time, cause no harm to the patient, and be cost-effective
[12]. ML has properties that can make it possible to develop a solution that meets all these
requirements. Previous efforts to incorporate decision support models for clinicians has shown
trouble with poor user interface, and the users struggle with a lack of time to use it [149, 150].
However, several surveys have concluded that the use of ML for decision support systems can
be more helpful [151, 152].
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Patient data acquisition is required to use ML models in the cardiac domain. DL models utilize
vast amounts of data for training, often causing the data retrieval in a health care setting to
be problematic [153]. The data retrieval in the medical domain requires approval from the
patients and an ethics committee, which may be time-consuming. A skewed distribution of
health conditions in the population of patients in the training dataset can introduce biases
into the model [153].

It is advantageous that CV using DL can use ultrasound images obtained by traditional echocar-
diography [10]. The requirement for quality input data affects some doctors’ monitoring choices.
Several researchers performing myocardial strain measuring methods choose to estimate the
global longitudinal strain due to the superior image resolution in the axial plane [20].

The echocardiographer can tune parameters in the ultrasound machine [154]. The quality
and frame rate of ultrasound images affect the performance of tracking and strain assessment
to a large extent [20, 155, 156]. A high frame rate results in a high temporal resolution; this
means that the ultrasound system has an excellent ability to distinguish between instances
in rapidly moving structures. The spatial resolution determines the quality of the ultrasound
frames. There is a trade-off between frame-rate and spatial resolution in tracking performance
because an increased frame rate will decrease the spatial resolution.

One of the most significant complications with implementing ML models into new disciplines
is the fact that ML is non-explainable [157]. ML models receive input data with ground truths,
then the model bases the output on relationships between input and ground truth that it
has constructed on its own. Therefore, it is problematic for humans to comprehend how the
model makes decisions. When applying ML models in a domain with small safety margins, like
medicine, the difficulty with non-explainability might increase. Tonekaboni et. al [44] states
that incorporating ML-based models effectively to clinical workflow requires establishing clin-
icians’ trust. The need for understanding ML model behavior has led to the research on ML
algorithms with increased explainability [158].

Another challenge with ML that is general for its application is that the methods are data-
driven, which means that the models learn solely based on data [159]. It requires vast amounts
of data for complex models to perform well. Unclean and noisy data result in poor model per-
formance, and the ultrasound data has a tendency to be obscured [160]. The development
of ML-based tools may be delayed due to awaiting patient approval and external ethics and
privacy committees. To continuously improve CV models after it is deployed in production,
it is usual with continuous data acquisition for further learning [161]. For example, the ML
algorithms behind self-driving cars train on new images of the road while in use to continue to
improve it [162]. If this technique is applied to a cardiac surgery setting, getting the approval
of each patient undergoing surgery will be comprehensive.

Although the use of ML-based tools has proven to improve the performance of medical diag-
nosis, the tools can also decrease the accuracy of the doctors [163, 164]. When the technology



28 Wøien V.: Machine Learning for Cardiac Monitoring

is implemented in a clinical workflow, the doctors are prone to over-reliance on the support,
which might lead to decreased performance of the clinicians if the model performs poorly and
make incorrect decisions [163, 165]. Grote et al. [163] suggest that the clinicians and the ML
models must collaborate on decision-making to avoid this problem.

There are several advantages to using ML over hardware-based medical devices in the OR
[166]. It enables faster and more iterative design and development. Additionally, addressing
malfunctions and improving performance based on user feedback is more efficient with soft-
ware products.



Chapter 3

Data and Method

Chapter three presents the data used for visual object tracking and the applied methods.
Data retrieval, data preprocessing, and visual object tracking was primarily implemented with
Python. Figure 3.1 illustrates an overview of the main Python pipeline of the project.

3.1 Data

The performance of ML models is largely affected by the representation, and the amount of
input data [102]. This section describes data acquisition, metadata, and preprocessing. Read
more about the packages, interfaces, and libraries used to preprocess the data in appendix B.

3.1.1 Data Retrieval

St. Olavs Hospital provides the data. The data available in this study are 2D TEE 2-channel
and 4-channel B-mode images. Additionally, 3D TEE B-mode images were utilized to increase
the training dataset size. The medical images are video frames of the cardiac cycle in different
patients, and the number of cardiac cycles in each video sequence varies. A cardiologist with
expertise in echocardiography acquired the images during TEE examinations of patients with
an existing cardiac problem. The approval from the ethics committee to use the images for
research purposes was in place before the beginning of the study, and patient consent was
obtained individually. All images were anonymized.

The available data consists of a set of annotated 2D images (referred to as dataset 1), a set
of 2D images without annotation (referred to as dataset 3) and a set of 3D data (referred to
as dataset 2). The 3D ultrasound recordings were converted to 2D images to suit the specific
tracking task by extracting images rotated about the depth axis. The datasets with the TEE
images and annotation are presented in table 3.1.

29
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Figure 3.1: Main Python pipeline. The blue sections represent the steps of the data retrieval
and preprocessing, and the grey section represents the key processes in the analysis.
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Name Original
dimension

Annotation
type

Annotated
objects

Dataset 1 2D Manual
landmark

annotation

Mitral points
and myocardial

points
Dataset 2 3D Manual

landmark
annotation

Mitral points

Dataset 3 2D Automatic
landmark

annotation

Mitral points

All data 2D and 3D Manual and
automatic

Mitral points

Table 3.1: Overview of the datasets containing the TEE images and annotation, provided by
St. Olavs Hospital

3.1.2 Data Annotation

Landmark annotation is used. Figure 3.2 is an example of landmark annotation on a 2D TEE
image. Each frame in the medical dataset has two landmarks on each side of the LV. In order
to perform noise predictions, frames with poor visualization of the myocardium segment is
annotated as noise, as shown in figure 3.3.

Figure 3.2: An example of data annotation on a 2D TEE image. The landmarks were placed on
the mitral points.

The ground truth of each frame in the training and validation data corresponds to bound-



32 Wøien V.: Machine Learning for Cardiac Monitoring

Figure 3.3: An example of manual landmark annotation on a 2D TEE image where one point
is not found, and therefore marked as noise by placing the annotation in the upper left corner.
The other landmark is placed on the left mitral point.

ing boxes. Since the medical datasets were annotated with landmarks, the bounding boxes
are generated as illustrated in fig 3.4. The left landmark was placed in the upper right corner
of the corresponding rectangular bounding box, while the right landmark was placed in the
upper left corner. This placement is beneficial to the model’s learning performance because
the landmarks are placed on the edge of the myocardium, and then the bounding boxes will
cover the most contrast around the landmark as possible. The goal of the TransformerTrack
model is to predict the position of the bounding boxes in each frame.

Dataset 1 and 2 were manually annotated, and dataset three was automatically automated.
The latter annotation is a semi-supervised approach used to reduce the time used for annota-
tion. An automatic annotation may be less accurate than the manual; therefore, the author of
this thesis manually verified the annotations of the dataset. The manual annotation of the mi-
tral points in dataset 1 was performed by a previous master’s student working with the APOC
project. Additionally, dataset 1 was manually annotated by the author of this thesis for test-
ing purposes, and the landmarks were placed on the myocardium along the LV on both sides.
Anders Austlid Taskén did the manual annotation of dataset 2. The automatic annotation was
done by a program that the APOC project group has developed.

3.1.3 Data Preprocessing

A data preprocessing pipeline was applied to the medical images. The medical data is required
to be in an accepted format to be used for training of TransformerTrack, so the h5 files were
converted to a format suitable for the method. Each h5 file contains multidimensional arrays
representing the medical images and the locations of the annotations.
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Figure 3.4: Illustration of the bounding box (width (W) and height (H)) in relation to the
landmark (marked as a red dot).

The frames were first converted from h5 files to jpg files. The data were structured with a folder
for each sequence, containing the frames, files containing the annotations and one metafile:

• Sequence folder

◦ N images frames in jpg format
◦ absence.label Nx1 array, shows binary whether an object is in each frame or not
◦ cover.label Nx1 array, represents object visible ratios, ranging on a scale from 0 to

8
◦ cut_by_image.label Nx1 array, indicates whether an object is cut by image in each

frame
◦ groundtruth.txt Nx4 matrix showing the bounding box: [xmin, ymin, width, height]
◦ meta_info.ini shows meta information about the sequence (e.g. object class and

movement class)

The medical data was split so that 80% of the dataset was used for training, 10% for validation,
and 10% was used for testing. Figure 3.5 illustrates the required data preprocessing pipeline
for the ultrasound data to be suitable for the TransformerTrack model.
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Receive datasets from St. Olavs Hostpital

Data type processing

Is the data 3D? Yes
Transform the data 

to 2D

No

Is it h5 files?
Yes

Convert the h5 files 
to jpg

No

Retrieve the split 
ratio

Data splitting

Split the datasets in 
train, test and 

validation

Generate meta data 
files each sequence, 
and a file with a list 
of all sequences in 

each subset 

Enough frames in each sequence for 
training purposes?

No

Skip the sequence 
for training

Yes
Suitible sequence 

for training

Retrieve the dataset 
to train the model 

on

Is the dataset the 
correct format?

No
Error, fix the 

dataset

Data validation for training purposes

Train on the 
suitible 

sequences

Green= 
manual 
action

Blue= 
technical 

action

Figure 3.5: Overview of the required data preprocessing
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3.2 Method

The method is composed of two parts; process analysis and landmark tracking using supervised
DL. The literature review covers both parts.

3.2.1 Literature Review

A non-exhaustive systematic literature review was conducted, and the findings of the study
are presented in chapter 2. The aim of the literature review is to gain an understanding of the
theory of the research questions, as well as gain insight into digitization and PM, the state-of-
the-art ML models, their area of application, and the implementation effect.

The literature search consisted of zooming steps due to the comprehensive scope of the re-
sulting articles and books. The initial filtration was based on the title’s relevance, the number
of citations, and the year of publication. The year of publication was especially relevant to
filtering articles on technologies since the aim was to research state-of-the-art methods. Fig-
ure 3.6 and figure 3.7 show that the number of hits on the query "machine learning health" has
had a relatively rapid growth since the year 2000 compared to the search "cardiac anatomy",
serving as an indicator of the popularity of that area of research. After narrowing the resulting
hits down to about five articles per search and engine, the abstract was read. If the paper ap-
peared relevant, it was skimmed and potentially read thoroughly. If an article or a book was
highly relevant and of high quality regarding citation, spelling, appearance, and structure, the
citation list was used to find other relevant articles. These zooming steps resulted in the papers
or books in the bibliography list.

Figure 3.6: Statistics on the hits of the
search query "Cardiac anatomy" in PubMed

Figure 3.7: Statistics on the hits of the
search query "Machine learning health" in
PubMed

3.2.2 Process Analysis

Interviews were conducted with the primary goal of understanding today’s work processes.
The interviewees were doctors at St. Olavs Hospital. The questions were formulated to map
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the nature of the different phases, the physicians’ tasks during a surgery, tools in use, time use,
decisions, and communication. These focus areas were based on the production management
aspect in the OR, described in section 2.4. Another objective of the interviews was to confirm
or disprove findings in the specialization project. Such clarification is significant for the correct
analysis of the processes. Additionally, some questions were formulated based on the findings
in the literature review presented in section 2.7. These questions were asked to investigate
whether current problems or benefits of the use of ML in a health care setting apply to the
monitoring tool.

The questions that the interviews were based on are presented in appendix D. The interview
was not structural but rather a conversation. Follow-up questions were asked.

As-Is process analysis and To-Be analysis were conducted to evaluate the OR processes. The
process mappings were based on the interviews.

3.2.3 Deep Learning

To automate the estimation of longitudinal strain with a DL based model on the TEE data,
two points on the myocardium was located in each video frame of the cardiac cycle sequence.
TransformerTrack was used for visual tracking of points in the heart, and the TrDiMP architec-
ture was chosen. The tracking architecture is based on the work done by Wang et al. [49], and
their transformer assisted tracking algorithm. The DL model was chosen since it has shown
great performance on similar tracking tasks, and it has not yet been used in the medical do-
main. The specialization project preliminary study concluded that TransformerTrack might be
feasible to use for tracking of TEE images. TransformerTrack sets several new state-of-the-art
records and has given excellent results on the prevalent tracking benchmarks LaSOT [167],
TrackingNet [168], GOT-10k [169], UAV123 [170], NfS [171], OTB-2015 [172], and VOT2018
[173] [49]. These state-of-the-art records show that the method has a good ability to track a
wide variety of images.

Several experiments were performed to test the DL model. The model is designed to pre-
dict bounding boxes in each frame. The experiments tested the qualitative and quantitative
performance on:

• Training of networks on all the datasets
• Tracking of mitral points
• Tracking of mitral points with different sizes of the bounding boxes
• Tracking of unseen points on the myocardium

To measure the performance of the predictions, the ratio between the estimated bounding box
position and the ground truth bounding box was calculated, referred to as the mean intersec-
tion over union (IoU). The mean distance between the estimated cardiac point and the ground
truth is another performance measure applied in this study. The equations for these measures
are shown in figure 3.1. Additionally, the percentage of points marked as noise is measured
to evaluate noise prediction performance. An image with visualization of the bounding box
prediction and reference is generated from each frame, and a video is generated based on the
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frames for easier manual assessment.

The networks were trained on data with mitral points annotation, because the annotation
already existed on the given datasets. Additionally, the mitral points were more straightfor-
ward to annotate and track due to the contrasts of the mitral valve in the ultrasound images.

The model was trained on all of the datasets illustrated in table 3.1. After the training, a visu-
alization of the training-and validation loss was generated, as shown in figure 3.1. A manual
assessment of the loss plot was performed. The network weights at the epoch with the lowest
validation loss were saved and used for tracking. The epoch with the lowest training loss was
chosen if the validation loss was relatively constant.

For testing, the performance was measured qualitatively and quantitatively, as illustrated in
figure 3.1. The tracking of the mitral points and tracking of unseen points on the myocardium
were performed. The test set of Dataset 1 was used for measuring the performance.

The technical commands for training and testing are described in Appendix A.
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Chapter 4

Results

This chapter presents the results from the interview, the As-Is and To-Be analysis, and the visual
object tracking.

4.1 Process analysis

One aspect of the process analysis is to understand the work processes and how CV can help
the medical team during cardiac surgery. The analysis can indicate improvements and oppor-
tunities with this tool, which is helpful for maximum utilization of the tool. The other aspect
of the analysis is identifying substantial and specific changes in decision-making during the
perioperative phase. It is essential to understand what will change with the automated tool to
identify risks and make demands on the development of the tool.

An understanding of the current state is required to analyze the effect of the adoption of digital
technologies [77].This section will present the current state and propose a future state based
on the findings from the interviews. Therefore, the information is based on the work processes
at St. Olavs Hospital. The As-Is process mapping is illustrated in figure 4.1, the To-Be process
mapping is shown in figure 4.2, and processes after the prototype phase of the tool are illus-
trated in figure 4.3. The future To-Be process map displays how the APOC project imagines
the tool to function after the prototype is working without problems. Further on in the thesis,
"To-Be mapping" refers to the To-Be mapping of the prototype, in figure 4.2.

Overview of the Tool

The tool will acquire TEE images with the ultrasound probe that is already in the patient’s
esophagus pre-surgery. Once the ultrasound probe is in place, it does not require an expert
echocardiographer to obtain images. TEE images will be taken automatically and automati-
cally passed into the trained ML networks of the tool. The ML tool then estimates the quan-
titative measures of cardiac function continuously in real-time. The model’s output will be a
continuous curve integrating global and local heart functions. The doctors decide on a thresh-
old, and the tool raises an alarm if the output exceeds the threshold. If the output exceeds the
threshold, the heart function deviates considerably from the standard that a specialist should
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Figure 4.1: As-Is process map
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Figure 4.2: To-Be process map
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Figure 4.3: To-Be process map, in the future
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be notified. This automatic monitoring process will be used during the perioperative phase of a
cardiac surgery [4]. The tool will provide earlier detection of anomalies and facilitate preven-
tative work in the OR. The goal is that the tool will complement the existing monitoring, thus
increasing patient safety, decreasing time, and utilizing the information in the TEE images.

Main Stakeholders

The automatic monitoring tool will mainly affect three types of physicians: cardiac surgeons,
thoracic anesthesiologists, and expert echocardiographers. The expert echocardiographer is
either an anesthesiologist or a cardiologist, and in Trondheim, it is, in most cases, an anesthe-
siologist. Mainly, the expert echocardiographer will directly interact with the tool.
In a technical sense, the physicians do not find it challenging nor new to use ML in the
OR, based on the testing of the prototype. The doctors do not differentiate between an old-
fashioned automatic tool and an ML-based tool.

Processes in the Perioperative Phase

There are several stages of the perioperative phase of cardiac surgery. The As-Is process map-
ping illustrates the stages and the processes associated with the main stakeholders in figure
4.1. The flowchart is based on how the doctors perform surgery in Trondheim. There are often
two cardiac surgeons, and their role together is represented in one swimlane in the mappings.
The surgeon’s task is to operate on the heart to fix the dysfunction. Doctors perform compre-
hensive examinations of the patient’s cardiac condition before cardiac surgery. Therefore, the
surgeon knows what the specific technical tasks are. The thoracic anesthesiologist is responsi-
ble for the patient’s care, including giving anesthesia, adjusting medications, and controlling
the CPB machine. The expert echocardiographer manages the ultrasound machine, acquires
images, and assesses them. The anesthesiologist is the one who acts based on the findings the
expert echocardiographer makes. Results from the visual assessment of TEE images rarely lead
to an extensive change in the surgeon’s procedure.

The echocardiographer acquires TEE images of the patient right before the surgeons initi-
ate their procedure. These ultrasound images are used as a reference to see if the surgery
affects cardiac function. While the surgeon operates, stopping the heart with a CPB machine
is necessary. The automatic tool will not be used when the heart is not beating, nor will any
traditional clinical variables. However, in the transitional phase between the machine and the
natural heartbeat, the tool will actively provide an output on cardiac function. This is a critical
phase of the surgery, with a high risk of complications. The transition is not abrupt since the
blood is gradually sent back into the heart. Therefore, there is a need for all doctors present
until the heart successfully starts beating on its own. Because of the nature of the procedure
and the need for teamwork with all clinicians, the automated tool will not be remarkably ben-
eficial in that phase.

The patient is sent to the intensive care unit in the post-operative phase when the surgeon has
completed the surgery, where standard monitoring tools further monitor the patient’s heart.
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There are nurses present, but the doctors are not necessarily needed at this stage. The auto-
mated tool will, at that stage, serve an essential role. The tool raises the alarm if its output
exceeds a given threshold, and the nurse calls the anesthesiologist. As the interviewed doctors
stated, the tool will result in continuous monitoring rather than a discrete assessment.

Condition of the Hearts in the Dataset

Since the data is retrieved from patients undergoing TEE related to an investigation of an
existing disease, there are most likely no completely healthy hearts. A model trained on a
dataset solely consisting of patients with one type of cardiac function may have a poor ability
to generalize. It is difficult for a developer with limited knowledge of cardiac anatomy to
consider whether the dataset consists only of hearts with one type of disease. Therefore, the
physicians were asked if it could be problematic for a model to be trained on this dataset and
not on healthy hearts. The physicians agreed that none of the images in the dataset likely show
healthy hearts. However, the ultrasound images in the datasets represent a vast panorama of
conditions in the heart. Some have arrhythmias in the heart, and others have valve disease.
Some have poor pumping function, while others have a heart that pumps more blood and
contracts more strongly than a healthy person. The combination of conditions in the heart
results in a dataset with all degrees of heart function. Since the goal of the model is to output
a value on heart function, the physicians stated that the lack of a healthy population in the
datasets would not affect the model’s performance poorly.

Deciding the Threshold

The tool’s output curve is a composition of the value of several cardiac functions, including the
strain value. Some post-processing must be done based on the cardiac functions to generate
the global value. As stated earlier, the clinical monitoring tool will function so that its output
is a curve, and if the curve exceeds a threshold, an alarm is raised. If the continuous output
curve of the tool exceeds the threshold and raises the alarm in the correct case, this is called
true positive (TP). However, if the alarm is wrongly raised, this is false positive (FP). In the
same manner, if the curve does not raise the alarm in the correct case, it is called true negative
(TN), and if an alarm should have been raised, it is as false negative (FN) output. The possible
outcomes of the monitoring tool is illustrated in 4.4
The process analysis in the specialization project stated that the model’s threshold was pre-
determined and fixed for all patients. A fixed threshold value potentially leads to inaccuracy
and an increased number of FP and FN. Additionally, it was stated that the developers imple-
mented the threshold, and therefore extra direct communication was needed between doctors
and technicians. However, this is not right, and in the interviews, the clinicians cleared up
the misconception. The threshold is different for each patient and decided by the doctors.
The value is adjusted during the pre-and post-operative phase if the patient’s heart function
changes.

If the threshold value is too low, the tool will erroneously raise the alarm more frequently,
and an expert echocardiographer must needlessly show up. If the threshold is too high, more
false negatives will jeopardize the patient’s health.
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Figure 4.4: Illustration of the possible output outcomes of the monitoring tool.

As illustrated in the To-Be mapping, in figure 4.2, if the prototype tool raises the alarm, a
clinician needs to check if it is correct. The doctors stated in the interview that they want to
reduce the FP alarms to prevent them from checking unneeded. On the contrary, they said that
the physicians must carefully decide the threshold for patient safety.

Communication

As illustrated in the As-Is and the To-Be process mappings, the tool’s implementation will affect
the communication between the staff. In the pre-and post-operative phase, the echocardiogra-
pher expert assesses the TEE images and shares the findings with the anesthesiologist and the
surgeon. Since the echocardiographer expert validates the output of the tool during the test-
ing of the prototype, the communication in the pre-and post-operative phase will not change.
However, the future To-Be map shows that the monitoring tool will digitalize this communica-
tion. The tool will notify the physicians if it estimates cardiac dysfunction by raising the alarm.
Because the monitoring tool is not in use in the intra-operative phase, the communication will
there remain unchanged.

Workflow

The monitoring tool will affect the workflow in the pre-and post-operative phases. Today, the
echocardiographer expert enters the OR before and after the surgeon’s procedure to manually
assess TEE images. Additionally, the nurse may summon the echocardiographer expert to the
intensive care unit to assess the TEE images. The monitoring tool transforms the assessment of
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the TEE images from discrete to continuous, thus changing the workflow. As illustrated in the
To-Be map, the echocardiographer expert is called into the OR in the pre-operative phase or
into the intensive care unit in the post-operative phase if the monitoring tool raises the alarm.
A high FP ratio will result in unnecessarily high demand for the expertise of these specialists,
which may result in higher costs and increased operational time. Therefore, there is a goal to
remove the manual validation of the tool’s output after a while. If the manual verification is
removed too soon to reduce extra costs and time, it may affect patient safety.

The Benefits of Mapping Work Processes

A stakeholder performing an isolated code evaluation may not fully understand the tool’s
safety, potential risks, and effectiveness. The mapping of the tool’s role in the OR may fa-
cilitate the evaluation of the tool for stakeholders. Additionally, it might prompt developers
and users to equally understand the expected operational conditions. A better understanding
of the tool’s role in the perioperative phase can make it easier to make demands on ML de-
velopment. The visualization of today’s processes clarifies which personnel will use the tool,
which may help the developers ensure that the tool’s output is suited for the competence of
all users.

The process mappings give the developers a clear insight into the various clinical work pro-
cedures. Since software as a medical device enables frequent and iterative maintenance and
repair based on user feedback, it may be beneficial for developers to understand the physi-
cians’ tasks when improving the tool based on their feedback. The To-Be mapping can also be
helpful when understanding and identifying potential risks.

Visualization of expected future processes can contribute to the transparency of the tool’s
objectives by making them easy to comprehend with merely a few glances. For example, it
becomes clear for the nurse and the developer that the tool raises the alarm if the output
curve exceeds the threshold and not the nurse. The As-Is and To-Be process mappings can also
help communicate the benefit of the tool to third parties. Lastly, the mappings may remind
the developers to integrate the user experience aspect in the development, thus giving extra
thought to the nature of the tool’s future environment.

4.2 Tracking Results

In this section, the results of the visual object tracking is presented in the form of experiments.
The experiments provides the performance of training and testing on different datasets and
with different parameters.

4.2.1 Experiment 1: Training Performance

The network was trained four times, once on each dataset. The name of the trained networks
are corresponding with the name of the training dataset, shown in 3.1. All datasets were split
with the same ratio, and all parameters were the same. All the networks were trained with 50
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epochs. To read more about the datasets, see section 3.1.

Figure 4.5: Training (orange) and validation (blue) loss of Network 1. The x-axis represents
the epochs, and the y-axis represents the loss values.

Figure 4.6: Training (orange) and validation (blue) loss of Network 2. The x-axis represents
the epochs, and the y-axis represents the loss values.

Figure 4.7: Training (orange) and validation (blue) loss of Network 3. The x-axis represents
the epochs, and the y-axis represents the loss values.

The settings on the training performance plot were initially so that the validation loss was
calculated from epoch 5. However, it was interesting to investigate if there existed any change
in the validation loss before epoch 5. The result of a network trained on dataset 3 with five
epochs is presented in 4.9.
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Figure 4.8: Training (orange) and validation (blue) loss of Network 4. The x-axis represents
the epochs, and the y-axis represents the loss values.

Figure 4.9: Training (orange) and validation (blue) loss of a network trained on dataset 3 with
5 epochs. The x-axis represents the epochs, and the y-axis represents the loss values.

4.2.2 Experiment 2: Tracking Performance

The first tracking experiment was to test each network, presented in the previous section, on
the test set from Dataset 1. Network 5 is the network trained solely on the GOT-10k dataset
with high-diversity videos of animals moving in the wild [169]. The models were tested on the
same test set to have the same prerequisites for the performance measurements.
Table 4.1 presents the results of the quantitative performance measures. It is valuable to ex-
plore which dataset used for training provides the best-performing network. The best-performing
networks have the highest mean intersection over union and lowest mean distance. The land-
marks marked as noise do not say anything explicit about performance since it can be positive
that the model does not track the landmarks in a blurry image, and it can be negative if the
image quality is fine. If the percentage of noise is relatively high, the other measures are com-
puted based on fewer data. Therefore, it is essential to consider the ratio of landmarks marked
as noise when evaluating the other measures.

The qualitative image result of one frame from the tracking of the points at the mitral points
landmarks at the myocardium is illustrated in 4.10.

The video result of tracking mitral points with Network 3 on a video sequence of one pa-
tient is shown in this link:
Press here to view the video results of tracking of mitral points

https://drive.google.com/file/d/1moe5-B5p0x8NqBAGvsckDxSYAQzth0vz/view?usp=sharing
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Network Mean in-
tersection
over union

Mean
distance in
pixels

Standard
deviation

Noise

Network 1 0.414 6.105 5.190 14.744%
Network 2 0.340 7.112 5.439 14.744%
Network 3 0.432 5.565 4.763 14.744%
Network 4 0.429 5.919 5.378 14.744%
Network 5 0.349 13.521 22.289 14.744%

Table 4.1: Quantitative measures of tracking performance. The networks are trained on dif-
ferent datasets, corresponding with the name of the datasets. Network 5 is the pre-trained
network. All networks are trained with 50 epochs. All networks are tested on the same test
dataset.

Figure 4.10: Qualitative output of one frame of the mitral points tracking. The red bounding
box is the model prediction, and the white is the ground truth. The x-axis and y-axis values are
pixels.

The red bounding box is the model prediction and the white is the ground truth.

4.2.3 Experiment 3: Bounding Boxes

Experiment three tests the training and tracking performance with varying sizes of bounding
boxes. The bounding box size of the other experiments were 15 pixels. Dataset 3, that resulted
in the best performing network in Experiment 2 based on the measures in table 4.1, were used
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for training in this experiment.

Figure 4.11: Training (orange) and validation (blue) loss of a network trained on Dataset 3
with a bounding box size 5. The x-axis represents the epochs, and the y-axis represents the loss
values.

Figure 4.12: Training (orange) and validation (blue) loss of a network trained on Dataset 3
with a bounding box size 25. The x-axis represents the epochs, and the y-axis represents the
loss values.

The loss plot in 4.12 shows that the training loss converge to -5.8 and the validation loss
converge to -2.6. The loss plot in 4.11 shows that the training loss converge to -4 and the
validation loss converge to -1.5. The loss plot in 4.7 shows that the training loss converge to
-5.5 and the validation loss converge to -2.5.

The three networks trained on Dataset 3 with bounding box sizes of 5, 15, and 25 pixels
were used to track the mitral points. The performance measures of the tracking are presented
in table 4.2.

Bounding
box size in
pixels

Mean in-
tersection
over union

Mean
distance in
pixels

Standard
deviation

Noise

5 0.297 8.903 5.840 39.940%
15 0.432 5.565 4.763 14.744%
25 0.355 9.446 17.675 39.940%

Table 4.2: Quantitative measures of tracking performance with different bounding box sizes.
The networks are trained on Dataset 3 with 50 epochs. The mitral points are tracked.
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4.2.4 Experiment 4: Track Unseen Points

For strain estimation, points on the myocardium were tracked with the networks trained on
the mitral points. Figure 4.13 shows one frame with the ground truth bounding box on the
myocardial points. The performance measures are presented in table 4.3.

Network Mean in-
tersection
over union

Mean
distance in
pixels

Standard
deviation

Noise

Network 3 0.234 11.692 10.172 39.940%

Table 4.3: Quantitative measures of tracking performance of unseen points. The "lower" my-
ocardial points is tracked. Bounding box size is 15 pixels.

An example of the qualitative output of the tracking of the landmarks at the myocardium
is illustrated in 4.13.

Figure 4.13: Qualitative output of one frame of the myocardium points tracking. The red
bounding box is the model prediction and the white is the ground truth. The x-axis and y-
axis values are pixels.

The video result of tracking myocardial points with Network 3 on a video sequence of one
patient is shown here:
Press here to view the video results of tracking of myocardial points
The red bounding box is the model prediction and the white is the ground truth.

https://drive.google.com/file/d/1zfIO88dIbZ241Q2vZGR_R7HMcPGbpI1c/view?usp=sharing
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Chapter 5

Discussion and Further Work

This chapter will discuss the results presented in the previous chapter, provide a brief analysis
of the results, present the limitations, and suggest further work.

5.1 Discussion

The discussion is divided into three parts. The two first sections belong to each research ques-
tion. The last section provides an analysis of the work in this thesis.

5.1.1 RQ1: How will the monitoring tool affect the processes in the periopera-
tive phase?

There are both advantages and disadvantages to integrating ML-based software in a clinical
setting. From the process mappings, it appears that the monitoring tool will contribute to less
inter-and intravariability in clinical decision-making by digitalizing the manual assessment of
the TEE images. Additionally, an advantage of automated perioperative measures is reduced
workload for cardiologists or anesthesiologists. However, a downside with the monitoring be-
ing automated is the possibility of physicians’ over-reliance on the tool.

The tool will facilitate preventative work in the OR and improve the accuracy of the oper-
ational surgery and reduce the operating time. However, the safety can decrease due to a high
FN rate and physicians’ over-reliance on the tool. Operating time will increase if the output is
FP and the tool wrongly raises the alarm. During the prototype phase of the tool, the expert
echocardiographer manually automates the tool’s output to identify FP outcomes. The manual
double-check ensures that the anesthesiologist does not act based on wrongful information
from the tool and contributes to maintaining patient safety. Patient safety might increase be-
cause the tool transforms the TEE-based monitoring from intermittent to continuous. Caridiac
dysfunction can be detected earlier by constant monitoring, thus increasing patient safety and
increasing the operational time.

ML technology seems suitable to assist with medical decision-making. Previous decision-support
methods have suffered from poor user interface and physicians’ need for extra time to use them.

53
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The interviews showed that the physicians found the monitoring tools’ incorporation into the
OR satisfactory. The tool does not require much user interaction, and physicians are not re-
quired to acquire new technical knowledge. However, the echocardiographer expert needs to
tune the parameters of the ultrasound machine, for example, the frame rate, to obtain images
that provide the ML tool with optimal input data. The angle of the ultrasound probe should
also be adjusted so that the entire LV is visible and the image angle remains stable throughout
the perioperative phase. The TEE approach is more advantageous than TTE in maintaining a
steady angle. The setup time of the tool is short because it utilizes the imaging modalities that
are already in use during current cardiac surgery procedures. An automated cardiac monitor-
ing system should not cause harm to the patient, and the tool’s use of hardware already used
during surgery does not harm the patient. Another requirement for such a system that the tool
fulfills is a rapid response time.

It is a common problem in clinical ML that the dataset can have a skewed distribution of
health conditions, thus introducing biases to the model. The interviews revealed that this is
not an issue with the medical dataset provided by St. Olavs Hospital due to the wide variety
of heart conditions in the patient population of the data. Another common issue concerning
the data is noise, which can reduce the accuracy of a ML model if the training data is noisy.
However, if the TEE video frames are obscured, the tracking target is not annotated, and the
model is not trained on that specific frame. Additionally, TransformerTrack reduces the risk of
tracking the wrong points in a frame by paying attention to the temporal information among
successive frames. By exploiting the temporal information, the frames are mutually reinforced.

The correctness of the tool’s output depends both on the ML ’s accuracy of the cardiac function
estimates and the value of the threshold. In the event of a FP outcome an echocardiographer
expert must unnecessarily be called. Consequently, additional time is spent per surgery, which
affects the number of patients the hospital can treat each day. In an economic sense, it is
expensive for the hospital to demand an unnecessary workforce and increase the daily num-
ber of patients undergoing surgery. On the other hand, a high FN ratio may lead to mortality
in the worst case, which will be highly costly for the hospital. If several patients lose years
of assumed good health to morbidity or mortality, emphasizing FP outcomes might be more
financially wise. The FP or FN ratio must be based on how the hospital has allocated its re-
sources and the patient safety. There must be a balance in the outputs concerning the patient’s
potential health loss and the expenses of false alarms with unnecessary delays.

5.1.2 RQ2: How will the adapted visual tracking model, TransformerTrack, per-
form on TEE images?

The network with the best value of the mean intersection over union is Network 3. Network 3
also performed best on the mean distance measure. Network 5 showed relatively poor perfor-
mance, especially on the mean distance measure. When interpreting the measures of Network
5 together, it appears like it rarely manages to track well, but it sometimes hits with high
overlap. The performance of Network 5 seems random, in comparison to the other networks.
This shows that the TransformerTrack model learns from the ultrasound images in the training
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datasets provided by St. Olavs Hospital.

The TransformerTrack shows promising results in the tracking of medical ultrasound images.
The best performing model was trained on a combination of manually-and automatically an-
notated data, with 2D TEE video frames transformed from 3D video frames, with a bounding
box size of 15 pixels, and tracked the mitral points. The network produced tracking with a
mean distance between the predicted point and the reference points of 5.565 +− 4.763 pix-
els. Although the tracking performance measures seem promising, the measures alone do not
say anything for sure. The measures should be seen relative to other methods’ results or the
physicians‘ manual performance. The tracking performance of previously unseen points was
poorer than the tracking performance of the same points as in the training data, based on both
the qualitative and quantitative performance measures. The lower performance on tracking
myocardial segments is as expected, since the model is not trained on such cases.

The training performance with the large bounding box of 25 pixels proved better than the
bounding box of 5 and 15 pixels, and the small bounding box performed the poorest. How-
ever, the validation loss does decrease with a bounding box of size 5. The table 4.2 shows that
the network with the bounding box size of 15 pixels produces better tracking results than with
5 or 25 pixels.

The validation loss did not show any significant changes in the first epochs. The validation
loss is high and relatively constant in figure 4.5, 4.6, 4.7, and 4.8. The high validation loss
indicates that the models perform poorly on previously unseen data, meaning that the Trans-
formerTrack model is overfitting. From the manual assessment of the loss plots, the model
appear to overfit to the same extent regardless of the training dataset.

For each training epoch, one can save a version of the model with corresponding weights.
Figure 2.1 shows that the ideal range of model complexity can range over several epochs,
making it counterintuitive to choose the optimal model regarding overfitting and underfitting.
The best model is most likely inside that interval; however, it varies for each training problem,
and there is no correct answer. The plot in the figure 2.16 shows that the first epoch of the
ideal range starts where the validation loss is at its lowest, which can be easy to find. However,
the model has seen more training data in the descendant epochs, and the training loss will be
reduced. There will then be a trade-off between how much lower the training loss is versus
how much the validation loss has increased since its minimum. All the validation plots in the
experiments were high and relatively constant, thus making it hard to find the minimum of
the loss and the best network weights. Therefore, it could be wise to test the tracking with the
network on several epochs, for instance, epochs 5, 25, and 50.

5.1.3 Analysis of the Work

The tracking results seem correct and reproducible, based on the fact that the performance
measures on the different networks do not differ from one another to a large extent. The au-
tomatic annotation is manually corrected by the author. However, the author does not have
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profound knowledge of cardiac anatomy. The annotation of the myocardial points done by the
author might be inaccurate due to the lack of domain knowledge.

The interviews provided adequate information about the perioperative phase of cardiac surgery
in Trondheim regarding work processes, time use, severity, and potential risk.

The findings were not in conflict with anything found in the literature. Commonly, complex
models can overfit when trained on relatively small datasets.

The objectives presented in section 1.2 are broken down to more nuanced sub-objectives, and
the implementation is commented on:

• Investigate which physicians the ML-based tool will affect the most:
this was successfully identified during the interviews
• Get an overview of the processes in the OR during the perioperative phase:

this was successfully identified during the interviews
• Identify which phases of the surgery are most critical for the patient:

this was successfully identified during the interviews
• Identify which operation phases where the tool can provide the most benefit:

this was successfully identified during the interviews
• Analyse how the tool will affect these phases of the surgery:

this was done in the creation of the To-Be process mapping
• Develop an As-Is and To-Be process map:

this was done based on the interviews
• Identify the advantages and challenges of using ML in a cardiac clinical domain, and if

the deployment of the tool will face the challenges:
this was done based on the literature review and the interviews
• Map the possible outcomes of the model:

this was done based on the literature review and the interviews and presented in
subsection 4.1
• Manually validate the annotation:

successfully done
• Get an overview of relevant servers and libraries:

successfully done, the findings are to be found in the appendix B and appendix A
• Calculate the performance of the training of the TransformerTrack model on the medical

datasets:
successfully done, and presented in section 4
• Create a program to represent the tracking performance quantitatively:

successfully done, the results are presented in section 4

◦ Measure the mean distance from the reference landmarks with the models’ land-
mark prediction
◦ Compute the standard deviation of the distance
◦ Measure the mean intersection over union
◦ Measure the percentage of landmarks that are not tracked
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• Create a program to represent the tracking performance with images and video:
successfully done
• Create a data loading program so that the medical data transforms into the right format:

successfully done
• Explore preprocessing needed for the medical data to improve the model’s performance:

the exploration is done based on the relevant literature, but the implementation
and testing are not yet carried out. Section 5.2 will present the findings.
• Create a landmark annotation program for the raw ultrasound data

successfully done and tested

5.2 Limitations and Further Work

Due to time limitations, not all parameter tuning was tested during training for Transformer-
Track. Additionally, the strain value based on the tracked points was not computed. Further
work should be done on measuring the longitudinal strain value, based on the tracking re-
sults. For the computation of strain, with equation 2.1, the predicted landmarks will be used.
The predicted location of the landmarks must be extracted from the predicted bounding box
position, as illustrated in figure 3.4. Based on relevant literature on similar tracking problems,
some actions and hyperparameter tuning are suggested to improve the model and mitigate
overfitting:

• Change the optimizer
• Test networks on several epochs
• Use data augmentation techniques for more diversified data
• Increase the number of epochs, as long as the loss keeps decreasing
• Change the learning rate
• Suppress noise (filter the frame by, for instance, a 7x7 median filter)
• Highlight edges
• Change pixel brightness
• Enhance contrasts
• Emphasize bright neighborhoods

The selection of interviewees is a limitation of this work. Doctors from other workplaces may
experience an OR that is organized differently. Including doctors from other hospitals as inter-
viewees may contribute to more general and thorough analysis. If the research is continued,
doctors from other hospitals should be included in the interviews.

It can be challenging for outsiders of the APOC project to gain insight into the software supply
chain since the software is built on components from different libraries and packages. Conse-
quently, it is hard to get an overview of the potential risks or software license compliance. A
software bill of materials (SBOM) can be made to provide visibility to these areas.

When developing a decision-support tool with a loss function, one could consider the FP and
FN ratio when calibrating the loss function. However, this was not relevant for the technical
work in this project. In the future, the research group of APOC can consider whether the devel-
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opers should tune the algorithm to reduce the FP rate or the FN rate. In the assessment, they
should take several aspects into account, including the economy of the workforce, the cost
of patient mortality, and the potential patient risks. Additionally, the variability of the cardiac
function to be estimated should be considered. The displacement of the mitral valvular plane
is quite general, but the longitudinal strain is a patient-dependent value. When assessing these
factors, the understanding of the tool’s role in the OR is crucial.

The developers can make an upper and lower boundary for the threshold value to reduce
the chances for human errors when setting the threshold for the tool. Domain experts should,
in that case, determine the boundaries of the threshold value.

After the automated tool is developed and ready to use in the OR, the parameters on the
ultrasound machine must be tested to find the settings that provide maximum performance.
Moreover, the echocardiographer experts must work accordingly with the monitoring tool in
use during future surgeries.

The technology can be designed to reduce the over-reliance on the tool. The tool’s output
will be independent of the threshold, and in the future, the output curve may also include the
confidence of the measures. Then the doctors can take the confidence into account when the
alarm is raised and possibly reduce the FP ratio. Additionally, it may reduce the FN ratio if the
physicians actively assess the tool’s output curve.

Further work on tracking ultrasound data with TransformerTrack can include validating the
performance based on comparison with other models. Then, different methods should track
points in the same test set, and the performance measures in section 4.2.4 should be calcu-
lated. Another way to put the tracking results in context is to get doctors to place a bounding
box on the same images and compare the performance.

The developers can implement functionality that facilitates continuous learning to improve
the model as it functions. Then the doctors need to validate if the model performs correctly,
and the technicians must train the model on the new data.

It will be wise to meassure TP, TN, FP and FN of noise predictions, and use it for accuracy-
and precision measures.
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Conclusion

To conclude, this project contributed to the ML-based automation of perioperative monitoring
of the cardiac function, both at the technical level and the process level. Both RQ1 and RQ2
were answered in section 5, and all the objectives were met. Limitations of the work and sug-
gestions to further work were presented in section 5.2.

A supervised DL model was used for visual object tracking of TEE images. The network ar-
chitecture named TransformerTrack was used to utilize the temporal information among the
frames in the ultrasound video sequences for tracking. The model was trained on 2D TEE
video sequence frames from patients at St. Olavs Hospital with landmark annotation of the
mitral points. TransformerTrack showed promising results on previously seen data. However,
the model is poor at generalizing. The model trained on the auto-annotated dataset, Dataset
3, with 50 epochs and a bounding box of 15 pixels performed best on the tracking of previ-
ously seen mitral points. The mean intersection over union was 0.432, and the mean distance
between the models prediction and the ground truth was 5.565 +− 4.763 pixels. Although
these results seem promising, the tracking results should, in further work, be compared to
other methods.

The As-Is and To-Be process mappings, presented in section 4.1, were based on interviews
with doctors and a literature review. The mappings illustrate how the monitoring tool will
affect the work processes in the OR. The tool will affect the time spent, the communication,
patient safety, and the workflow in the pre-and post-operative phase. The changes in safety
and surgery time depend on the FP and FN ratio. The model’s accuracy, the threshold value,
and the hospital’s allocation of resources will affect the ratio.

The tool allows for utilization of TEE images for monitoring purposes and automatic estima-
tion of quantitative cardiac function measures. Consequently, the monitoring tool will reduce
intra- and intervariability. Additionally, the workload for the physicians will decrease, giving
time for other tasks. The physician’s performance may be reduced if they heavily rely on the
tool and the output is FP or FN. Suggestions were made to implement changes in the tool’s
functionality to decrease the risks of over-reliance. Furthermore, suggestions were made to
ensure an acceptable FP or FN ratio.
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Appendix A

Technical Commands

Use an X Window System. XQuartz is suitible for Mac OS. The commands are the ones used in
this thesis. For further use some modifications to the directories and usernames must be done.

A.1 Training

First, log in to the server with the given username and type the correct password.

$ ssh -lvwoien -Y idi.bohaga.com

To edit the code in PyCharm, open the editor with:

$ pycharm-community

Before training, activate the conda environment previusly generated. Here, the environment
is called pytracking.

$ conda activate pytracking

To train on the server:

$ nohup python run_training.py dimp transformer_dimp > nuhup.out &

The output of the training will appear in the nohup.out file, which can be named whatever.

The network checkpoints is saved:
”/home/vwoien/Trans f ormerTrack/l t r/network_checkpoints”
This path can be changed in ltr/admin/local.py.

In order to see what is running on the server:

$ nvidia-smi

To show all the GPU activity:

$ ps -aux
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To end the training, before it terminates. Type in the correct process id instead of "pid".

$ kill "pid"

A.2 Vizualising the Results from Training

A.2.1 Visalize with TensorBoard

In order to plot the results locally on a personal computer, copy the results to e.g.. the desktop:

$ scp -r vwoien@idi.bohaga.com:path_of_files_to_copy path_of_new_local_location

scp = secure copy, -r = recursive

In order to vizualize the results with TensorBoard:

$ pip install tensorboard

Then:

$ tensorboard --logdir Desktop/transformer_dimp (PATH)

Serving TensorBoard on localhost: http://localhost:6006/.

A.3 Tracking

The local paths for dataset and network used for tracking is set in:
/home/vwoien/Trans f ormerTrack/p y t racking/evaluation/local.p y

The pre-trained network is saved in:
/home/vwoien/Trans f ormerTrack/p y t racking/networks/t rdimp_net.pth.tar

All networks are saved in:
/home/vwoien/Trans f ormerTrack/p y t racking/networks/
Run the trdimp tracker:

$ python run_tracker.py trdimp trdimp --dataset_name ultrasound_test

Track using nohup:

$ nohup python run_tracker.py trdimp trdimp --dataset_name ultrasound_test > nuhup.out &

The tracking results is saved in:
/home/vwoien/Trans f ormerTrack/p y t racking/t racking_resul ts
This path can be changed in /home/vwoien/Trans f ormerTrack/p y t racking/evaluation/local.p y
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A.4 Vizualising the Results from Testing

Vizualize the tracking results and calculate the qualitative tracking performance by running:
/home/vwoien/Trans f ormerTrack/p y t racking/resul ts_imgs/plot_resul ts_imgs.p y

The images are saved in a folder with the respective dataset name, and the qualitative tracking
performance measure is saved in a txt file inside the corresponding folder here:
/home/vwoien/Trans f ormerTrack/p y t racking/resul ts_imgs/

To generate and save a video of all the frames with the visualization of the tracking perfor-
mance, run this file:
/home/vwoien/Trans f ormerTrack/p y t racking/resul ts_vids/generate_video_ f rom_imgs.p y

The videos are saved in a folder with the respective dataset name in:
/home/vwoien/Trans f ormerTrack/p y t racking/resul ts_vids/

A.5 Programs for Data Reprocessing

To annotate data: /home/vwoien/Trans f ormerTrack/l t r/data/annotate.p y
To transform the data in the correct format: /home/vwoien/Trans f ormerTrack/l t r/data/data_loader.p y
To split the data in train, test, and validation set:
/home/vwoien/Trans f ormerTrack/l t r/data/t rain_test_val_spl i t.p y

A.6 Other Terminal Commands

Here is an overview of other terminal commands that may be useful when training and testing
via the server.

Show text files in the terminal (change text.txt):

$ cat text.txt

Make a directory:

$ mkdir name_of_dir

Print the working directory:

$ pwd

Prints out files and directories that are existing in the current directory (or write another
directory after ls):

$ ls

Change directory (directory is e.g. home/desktop/data):

$ cd directory
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Appendix B

Libraries and Packages

The TransformerTrack method developed by Wang et al. [49] is open-source [174]. The repos-
itory, submodules and dependencies can be cloned from GitHub [175]. The requirements for
the repository are Conda, an open-source package- and environment management system, in-
stallation with Python 3.7 and Nvidia graphics processing unit (GPU) [49, 176].

TransformerTrack is coded in Python. PyCharm was used in this paper, a popular integrated
development environment for Python development [177]. TransformerTrack is based on Py-
Tracking, a general Python framework for visual object tracking and video object segmentation
[178]. The framework is favorited by 2000 users at GitHub, indicating that developers like the
framework. The framework include an official implementation of the DiMP tracker, which is
the tracker used in this paper. PyTracking is based on PyTorch, an open source machine learn-
ing framework [179]. PyTorch is widely used, and 54200 GitHub users have favorited the code
at GitHub.

HDFView was used to view the h5 files. A Python interface was used to open and read the
h5 files in Python, called the h5py package [180]. The Python Imaging Library (PIL) was used
for image processing operations, such as reading and saving images.

Tensorflow was used to generate the loss plot for evaluating the training performance.

The flowcharts were made using the online diagram softwares Lucidchart and draw.io.
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Appendix C

Concepts of Artificial Intelligence
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Concept Definition
Artificial intelligence A non-human programme or model that can solve

sophisticated tasks
Machine learning A subset of artificial intelligence, characterised by

improvements in performance through iterative
tuning of weights or coefficients within
mathematical models.

Deep learning A multi-layered, non-linear extension of machine
learning inspired by neural networks in the brain.

Bounding box In an image, the (x, y) co-ordinates of a rectangle
around an area of interest.

Convolutional network A neural network typically consisting of
convolutional, pooling and dense (fully
connected) layers.

Intersection over union Measures the accuracy of the model’s predicted
bounding box with respect to the ground-truth
bounding box. It is the ratio between the
overlapping area and the total area.

Overfitting A model that matches the training data so closely
that the model fails to make correct predictions on
new data.

Underfitting A model with poor predictive ability that has failed
to capture the complexity of the training data.

Pooling Reducing a matrix created by an earlier
convolutional layer to a smaller matrix by taking
the maximum or average value.

Reinforcement learning A family of algorithms that maximise return.
Supervised learning Training a model from input data and their

corresponding labels.
Test set The subset of the dataset used to test the model

after validation.
Training set The subset of the dataset used to train a model.
Validation set A subset of the dataset, disjoint from the training

set, used in validation.

Table C.1: Some concepts of AI that is relevant for ultrasound object tracking. The definitions
are directly from McKendrick et. al [181].



Appendix D

Interview

Overview of the questions the interviews were based on:

1. This autumn, I mapped how the processes in an operating room take place and how they
will be after implementing the digital monitoring tool. I would like us to look at those
flow charts together. Can you please provide corrections or questions to the mappings?
(Show the As-Is and To-Be process mappings for the Specialization Project thesis)

2. How and when is the threshold value sat?
3. Is the threshold value different for each patient?
4. What must a doctor think about when deciding the threshold value?
5. When deciding the threshold value, do doctors think about any problems with false

positive and false negative outputs?
6. When using the new tool, is there anything the ultrasound images can inform the doctors

about to make the operation take longer or require more resources?
7. Are there any concerns about a machine learning model being trained only on ill hearts?
8. How are you experiencing using the new tool?
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