
[1 x 2048]

Resnet-RS101

[3 x 3]

Fully connected
layer

[1 x 9]

101
layers

Model
input

Parametrization to
SO(3)

SVD
U

SO(3)

VT
Σ

VT
UΣ'VT

Frobenius Loss

H
enrik G

rüner

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Henrik Grüner

Rotation Representation Methods for
Pose Estimation with Deep Learning

Master’s thesis in Engineering and ICT
January 2022

M
as

te
r’s

 th
es

is

Henrik Grüner

Rotation Representation Methods for
Pose Estimation with Deep Learning

Master’s thesis in Engineering and ICT
January 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Preface

The report is a culmination of five years of studying Engineering and ICT and
is the result of my Master’s thesis in the spring of 2022. The report is written
for the Department of Mechanical and Industrial Engineering at the Norwegian
University of Science and Technology in robotics and automation.

Acknowledgements

I want to use this opportunity to thank my supervisor, Prof. Olav Egeland, for
taking the role of my supervisor. He has given me theoretical guidance while writ-
ing the thesis and the flexibility needed to finish an M.Sc. in Financial Economics.
Further, I would like to thank Ola Alstad for vital help with different software for
3D rendering and an introduction to various problems in pose estimation.

Summary

The ability to regress 3D rotation matrices is an old problem in the field of com-
puter vision. With the rise of deep learning methods, researchers have attempted
to leverage neural networks for regression on rotation matrices. The task is diffi-
cult due to topological differences between the rotations and output of the models.
Neural networks usually output data in the Euclidean space, whereas rotations in
3D are represented by the special orthogonal group SO(3), which is not topologi-
cal homeomorphic to any subset of real 4D Euclidean space. This mismatch calls
for a mapping function between the model and the estimated rotation output.

The traditional methods for representing rotations, such as Euler angles and
quaternions, have dimensions 3 and 4, respectively, and are hence discontinuous in
the real space. Other representation functions such as Gram-Schmith orthogonal-
ization and symmetric orthogonalization with singular value decomposition (SVD)
have been proposed as a solution.This thesis gives an overview of the state of ro-
tation matrix regression, the desirable properties for a mapping function from real
Euclidean space to non-Euclidean manifolds, and shows that the SVD orthogonal-
ization is the mapping with the best performance. The theoretical arguments are
strengthened by experiments using state-of-the-art deep learning methods. Both
a comparison experiment is conducted, in addition to experiments showcasing the
potential of symmetric orthogonalization in pose estimation problems.

Contents

Preface i

Summary iii

1. Introduction and Motivation 3
1.1. Related work . 3
1.2. Objectives . 4

2. Prerequisites 7
2.1. The Adjoint Operator . 7
2.2. Preimage . 7
2.3. Surjectivity . 7
2.4. Injection . 7
2.5. Bijection . 8
2.6. Homeomorphism . 8
2.7. Image Representation . 8

3. Linear Algebra 11
3.1. Definitions . 11

3.1.1. Symmetric Matrix . 11
3.1.2. Skew Symmetric Matrix . 11
3.1.3. The Hadamard Product . 12
3.1.4. The Trace of a Matrix . 12
3.1.5. Derivatives of the Trace Operator 13
3.1.6. The Frobenious Norm . 13
3.1.7. Frobenious Inner Product 13
3.1.8. Orthogonal set . 15
3.1.9. Orthogonal group . 15

3.2. Eigendecomposition . 15
3.3. Singular Value Decomposition . 16
3.4. Jacobian matrix . 18
3.5. Matrix differentials . 18

3.5.1. Differentials . 18

vi Contents

4. Artificial Neural Networks 21
4.1. The Artificial Neuron . 21
4.2. Fully Connected Feed Forward Network 23
4.3. Convolutional Neural Network . 24

4.3.1. Convolutional Operator . 25
4.3.2. The Convolutional Layer 26

4.4. Learning the Parameters - intuition 27
4.4.1. Convergence Under Empirical Risk Minimization 29

4.5. Backpropagation . 29
4.6. Matrix Backpropagation . 30

4.6.1. Partial derivatives . 30
4.7. Backpropagation for a SVD layer 31

5. Transformations and coordinate frames 35
5.1. Rotation Matrix . 35

5.1.1. Properties . 36
5.1.2. Representing an Orientation 37
5.1.3. Changing the Frame . 38

5.2. Comparing Rotation Matrices . 39
5.2.1. Angle error . 39
5.2.2. Geodesic Loss . 39

5.3. Camera Model . 39
5.3.1. The Pinhole Camera Model 39
5.3.2. Camera Rotation and Translation 41

5.4. Pose Estimation . 42

6. Mappings from Real Euclidean Space to Special Orthogonal
Group 45
6.1. Desired Properties . 45
6.2. Differentiable Mappings - Examples 47

6.2.1. Euler Angles . 47
6.3. Quaternions . 48

6.3.1. Properties . 48
6.3.2. Rotation Through Quaternions 49

6.4. Gram-Schmidt Orthogonalization 50
6.4.1. 5D and 6D representations of rotations 50

6.5. Symmetric Orthogonalization via SVD 51
6.5.1. Wahba’s Problem . 52
6.5.2. Procrustes Problem . 53
6.5.3. Properties of Symmetric Srthogonalization 55
6.5.4. Gradients . 55
6.5.5. Comparison with Gram-Schmidt 57

Contents vii

6.6. Summary . 58

7. Experiments 59
7.1. Datasets . 59

7.1.1. ModelNet . 59
7.1.2. UPNA . 61

7.2. Comparison test . 61
7.3. 3D Head Pose Estimation from 2D images of humans 63

7.3.1. Setup & Pre-Processing . 63
7.4. 3D Pose Estimation from 2D Images 64

7.4.1. Network Architecture . 64
7.5. 3D Iterative Pose alignment . 65

7.5.1. Network Architecture . 66

8. Results and discussion 69
8.1. Comparison Test for Mapping Functions 69
8.2. UPNA Head Pose . 74
8.3. 3D object pose estimation from 2D images 75

8.3.1. Symmetry in the samples 75
8.4. Iterative 3D Pose Refinement . 78

9. Conclusion 81

A. Supplementary material 89
A.1. Convolutions . 89

B. 3D Pose Estimation - Supplementary Materials 93
B.1. Distribution of Angle Error . 93

List of Figures

2.1. Gray Scale Image Representation 9
2.2. RBG-Image . 9

4.1. Artificial Neuron . 22
4.2. Rectified Linear Unit and the Logistic Sigmoid 23
4.3. Fully connected neural network . 25
4.4. Convolved 2D image . 26
4.5. Gradient descent . 28

5.1. Orientation with two Rotation matrices 37
5.2. Coordination frame rotated . 38
5.3. The Pinhole camera model . 40
5.4. Euclidean transformation . 41
5.5. Illustration of Pose Estimation Problem 43

6.1. Wahba’s Problem . 53

7.1. ModelNet10 Classes visualized . 60
7.2. Point Cloud Examples from ModelNet10 60
7.3. UPNA Head Pose Samples . 61
7.4. Rotation axes of a Human Head 61
7.5. Network Architecture: . 62
7.6. One sample from the UPNA data set cropped to 224 × 224. . . . 63
7.7. Overview of Model Architecture . 65
7.8. 3D Iterative Pose Estimation: Network Architecture 67

8.1. The mean angle error between the true rotation matrix R and the
estimated R̂ with rotations up to 45 per axis. 70

8.2. The mean angle error epoch 25-50 max 45 degrees 71
8.3. The mean angle error between the true rotation matrix R and the

estimated R̂ with rotations up to 45 per axis. 71
8.4. The mean angle error between the true rotation matrix restricted

to 0-4 degrees from epoch 25-50 with rotations up to 90 per axis. . 72

x List of Figures

8.5. The mean angle error between the true rotation matrix R and the
estimated R̂ with rotations up to 180 per axis. 72

8.6. The mean angle error between the true rotation matrix restricted
to 0-4 degrees from epoch 25-50 with rotations up to 180 per axis. 73

8.7. Training and Test angle error UPNA 74
8.8. Distribution of angle errors before and after adjusting for symmetry. 76
8.9. Results 3D pose estimation . 77
8.10. Results from the Iterative Pose Refinement 79

A.1. Convolution example . 90
A.2. Padded convolution . 91
A.3. Padded convolution with stride = 2 92

B.1. Overlay between ground truth pose and rendered image using the
estimated rotation matrix. 94

B.2. The distribution of angle error for sofa class 95
B.3. The distribution of angle error for bed class 95
B.4. The distribution of angle error for bathtub class 96
B.5. The angle errors for the table class 96
B.6. The distribution of angle errors for the toilet class 97
B.7. The distribution of angle error for desk class 97
B.8. The distribution of angle error for monitor class 98
B.9. The distribution of angle error for night stand class 98
B.10.The distribution of angle error for dresser class 99
B.11.The distribution of angle error for chair class 99

List of Tables

6.1. Table showcasing which of the desirable properties each mapping
function satisfies. 58

8.1. Mean angle errors for preliminary experiment 69
8.2. 3D pose estimation - all classes . 75
8.3. 3D pose estimation Modelnet10 results 77
8.4. Symmetry Adjusted 3D pose estimation 77
8.5. Performance of the Iterative Refinement model 78

B.1. 3D pose estimation - all classes . 93
B.2. The angle errors for the sofa class 95
B.3. The angle errors for the bed class 95
B.4. The distribution of angle errors for the bathtub class 96
B.5. The distribution of angle errors for the table class 96
B.6. The distribution of angle errors for the toilet class 97
B.7. The angle errors for the desk class 97
B.8. The angle errors for the monitor class 98
B.9. The angle errors for the night stand class 98
B.10.The angle errors for the dresser class 99
B.11.The angle errors for the chair class 99

Acronyms

O(n) Orthogonal group. 15

SO(n) Special Orthogonal group. 15

ANN Artificial Neural Network. 21

CNN Convolutional Neural Network. 24

MBP Matrix Back-propagation. 30

SVD Singular Value Decomposition. 16

Notation

Upper case bold Latin letters are used for matrices, whilst regular upper case
letters are reserved for sets. Lowercase case Latin letters are used primarily for
vectors but also for scalars. During ambiguity, the dimension will be denoted.

Chapter 1.

Introduction and Motivation

Rotations are a ubiquitous part of computer vision problems. For every rigid body
in graphics, simulations, or problems involving rigid objects such as autonomous
driving, rotations describe orientation and motion. The rotation representation
is a fundamental part of how robots can orient themselves in 3D space, both
directly and indirectly, through their cameras. The number of applications and
technology based on rotations is enormous. Hence the ability to estimate its own
and other objects poses from 2D images is an important ability for a lot of robots
and applications. 3D pose estimation ranges from autonomous orientation [34,
46] augmented and virtual reality [1, 31], and 3D reconstruction applications and
visual odometry [12, 7, 50]. The list of fields relying on rotations and pose estima-
tion is endless, but they all have one item in common: The quality and function
of the technology are heavily dependent on the performance of the underlying
orientation estimation process.

1.1. Related work
Optimization on Riemann manifolds and, more specifically, the SO(3) group is a
well-studied problem but has yet to find a general solution. The difficulty stems
from SO(3) is not topologically homeomorphic to any subset of 4D Euclidean
space. This affects all the traditional rotation representations, including Euler
angles, axis-angle, and unit quaternions. This mismatch can be circumvented by
using a differentiable function from a higher dimension, mapping the inputs onto
the SO(3) manifold.

One of the first approaches with deep learning methods was to estimate Euler
angles with a classification model rather than a direct regression problem. The
idea was to discretize the angles into bins and apply softmax on the outputs to
normalize the angles to a probability distribution [45, 47]. Discretizing the out-

4 Chapter 1. Introduction and Motivation

puts into bins increases the dimensionality and expressivity of the problem, hence
making the methods sub-optimal compared to regression methods. The classifica-
tion approach was extended to use the expectations of the discrete distributions
as a continuous angle for regression [21]. In [27] the switch is made to quaternions
rather than Euler angles. The authors note the seeming paradox of using a dis-
crete classification method on a continuous problem; nevertheless, they show that
soft-maxing discrete outputs lead to more stable training than direct regression.
To stabilize the training during unconstrained continuous regression, the authors
introduce a “spherical exponent“ mapping function to improve the stability during
the training.

[42] demonstrates that quaternions are not suitable for learning problems due to
almost equal rotations being far away from each other as quaternions. However,
no alternative representations were proposed except direct regression, which may
not produce valid rotation matrices. In [52] the authors note that there was an
abnormally high presence of errors between 90 and 180 degrees, even for non-
rotational symmetric objects. In [54], the authors argue that these errors are
caused by the discontinuity from the rotation representations of Euler angles and
quaternions. Zhou et al. proposes the Gram-Schmidt orthogonalization method
as a mapping from real Euclidean space to the special orthogonal group and shows
the continuous properties of the method. This analysis is taken one step further
in [24], which explores the viability of singular value decomposition orthogonal-
ization (also referred to as Procrustes) as a mapping to SO(3). It is proved that
the mapping is continuous, and the authors argue that the natural choice for
projecting onto SO(3) and quickly achieved state-of-the-art results for 3D pose
estimation tasks. [6] argues that the continuity criterion for a suitable mapping
is too loose of a criterion. The author highlights a set of desirable properties for
mapping onto SO(3), focusing on pre-image connectivity, and demonstrates that
SVD orthogonalization outperforms the other mapping function.

1.2. Objectives
The objective of this thesis is two-fold:

1. Discuss and research the theoretical arguments for the different mappings
from real Euclidean space Rn to SO(3)

2. Run experiments to verify the findings of the theoretical section using state-
of-the-art machine learning architecture.

The thesis aims to give a reader unacquainted with rotations and machine learning
the essential tools to understand the problem and the solutions. Hence a chapter
about linear algebra in addition to one on the foundations for rotations in robotics.

1.2. Objectives 5

Further, the results and the theoretical arguments require a high understanding
of machine learning. For this motivation, a chapter explaining the foundations of
neural networks is included. This chapter may be skipped if the reader has high
expertise in the area.

Chapter 2.

Prerequisites

2.1. The Adjoint Operator
For any linear operator A, the adjoint A∗ is defined as:

⟨v, Au⟩ = ⟨A∗v, u⟩ (2.1)

2.2. Preimage
Let f : X → Y be a function and A ∈ Y . Then the preimage of A under f is
denoted as

f−1(A) = {x ∈ X : f(x) ∈ A} (2.2)

2.3. Surjectivity
A function f : A → B is surjective on B if f(A) = B, i.e., for every element in
b ∈ B, there is an element a ∈ A such that

f(a) = b (2.3)

Surjectivity can be seen as it is possible to reach every element in B with the
function f and A.

2.4. Injection
A function f is said to be injective, or one-to-one, if it maps distinct elements
to distinct elements. Every element of the functions codomain is the image of at

8 Chapter 2. Prerequisites

most one element in the domain of the function.

2.5. Bijection
A function is a bijection if it is surjective and injective.

2.6. Homeomorphism
Homeomorphism refers to a correspondence between two geometrical objects or
surfaces. A function f : X → Y between two topological spaces are said to be a
homeomorphism if it satisfies the following properties:

1. f is a bijection

2. f is continuous

3. The inverse f−1 is continuous.

If such a function f exits, then the spaces X and Y are a homeomorphism. This
can be seen as a equivalence relation, and intuitively, the spaces can be seen as
the same.

2.7. Image Representation
Every image displayed on a computer consists of pixels which can be interpreted as
the intensity value. Consider a black and white image: The image is represented
as a matrix consisting of pixels in the interval [0, 255] representing the amount of
white in the image. Figure 2.1 illustrates how an image of a pair of pants from
the grayscale Fashion MNIST [53] data set is represented.

For images with coloring, the most popular representation is RGB. RGB-images
have three matrices representing the intensity of the colors red, green, and blue
(RGB) for every location. The mixture of these three colors yields 2563 =
16777216 different colors. Each of these matrices is referred to as a channel.
Even though RGB images are technically three-dimensional due to the color hues,
they are seen as two-dimensional.

2.7. Image Representation 9

Figure 2.1.: 1 × 28 × 28 image of a pair of pants from the Fashion MNIST data
set [53]. The value of 255 represents the colour white, whereas the number 0 is
black.

Figure 2.2.: a 3 × 3000 × 4000 RGB-image, where each channel corresponds to
the amount of red, blue and green in each pixel. Every channel has values ranging
from 0-255, depending on the intensity of the pixel. Photograph taken by me

Chapter 3.

Linear Algebra

3.1. Definitions

3.1.1. Symmetric Matrix

A matrix A is said to be symmetric[2] if and only if

A = AT (3.1)

A symmetric matrix is necessarily square, and it is only symmetric if and only if

aij = aji, ∀i, j (3.2)

The definition yields that:
A − AT = 0 (3.3)

3.1.2. Skew Symmetric Matrix

A matrix A is said to be skew symmetric [2] (also known as anti-symmetric) if
and only if:

A = −AT (3.4)

A skew symmetric matrix is necessarily square, and it is only symmetric if and
only if

aij = −aji, ∀i, j (3.5)

All of the main diagonal entries must be zero of a skew-symmetric matric, as

aii = −aii ⇐⇒ aii = 0 (3.6)

12 Chapter 3. Linear Algebra

By following the definition, the neat property follows:

A + AT = 0 (3.7)

3.1.3. The Hadamard Product

The Hadamard product (also known as element-wise multiplication) is the product
of corresponding entries in two matrices [35]. For two matrices A and B of the
dimensions m×n, the Hadamard product A◦B is a matrix of the same dimensions
as the operands with elements given by:

(A ◦ B)ij = AijBij (3.8)

An example where A, B with dimensions 2 × 2:

[
a11 a12
a21 a22

]
◦
[
b11 b12
b21 b22

]
=
[
a11 b11 a12 b12
a21 b21 a22 b22

]
(3.9)

Note that the Hadamard product requires the matrices to be of same size.

3.1.4. The Trace of a Matrix

The trace of a matrix A is denoted tr(A) and is equal to the sum of the elements
on the diagonal:

tr(A) =
n∑

i=1
aii = a11 + a22 + · · · ann (3.10)

Some of the the properties of the trace operator is:

tr(A + B) = tr(A) + tr(B) (3.11)

tr(cA) = c tr(A) (3.12)

tr(A) = tr(AT) (3.13)

tr(AB) = tr(BA) (3.14)

tr(XT Y) = tr(XY T) = tr(Y XT) = tr(Y T X) (3.15)

For all square matrices A and B, and all scalars c.

Further, let A ∈ R1×k and B ∈ Rk×1, then the following is true:

AB = tr(AB) = tr(BA) (3.16)

3.1. Definitions 13

The trace of a scalar is equal to the scalar (think of the scalar as a 1 × 1 matrix
with one unique diagonal element.

3.1.5. Derivatives of the Trace Operator

Let X and A be two square matrices. Then let:

f(X) = tr(XA) (3.17)

Which can be written as

f(X) = tr

 n∑
m=1

xkmaml

 =
n∑

k=1

n∑
m=1

xkmamk (3.18)

The equation w.r.t X:

df(X)
dX

=
{

df(X)
dxij

}
=
{

d
∑n

k=1
∑n

m=1 xkmamk

dxij

}
=
{
aji
}

(3.19)

Hence:
d tr(XA)

dX
= AT (3.20)

Further details on the trace operator and it’s properties and derivatives can be
found in [39].

3.1.6. The Frobenious Norm

Let A be a square matrix. Then the Frobenius [48] matrix norm is

∥A∥F =

√√√√ m∑
i=1

n∑
i=1

∣∣∣a2
ij

∣∣∣ =
√

tr(AAH) (3.21)

where AH is the conjugate transpose. The derivative of the Frobenius norm is

∂f

∂X∥X∥2
F = ∂ tr(XXH)

∂X = 2X (3.22)

3.1.7. Frobenious Inner Product

The Frobenius inner product is an operation which takes two matrices and outputs
a scalar. It is often denoted as ⟨A, B⟩F . The matrices A and B must have the

14 Chapter 3. Linear Algebra

same dimensions, but they are not restricted to square. Let A ∈ Rn×m and
B ∈ Rn×m. Then the Frobenius Inner product is:

⟨A, B⟩F =
∑
i,j

ai,jai,j (3.23)

Where the bar denotes the complex conjugate. Explicitly the sum is:

⟨A, B⟩F = a11b11 + a12b12 + · · · + a1mb1m

+ a21b21 + a22b22 + · · · + a2mb2m

...
+ an1bn1 + an2bn2 + · · · + anmbnm

(3.24)

The Frobenius inner product can also be seen as the product of the two matrices
vectorised, denoted as vec(A)

vec(A) =

a11
a12
...

a21
a22
...

anm

, vec(B) =

b11
b12
...

B21
B22

...
bnm

(3.25)

vec(A)T vec(B) =
(
a11 a12 · · · a21 a22 · · · anm

)

b11
b12
...

b21
b22
...

bnm

(3.26)

Then, it is clear that
⟨A, B⟩ = vec(A)T vec(B) (3.27)

Another neat property of the Frobenius inner product is that it is equal to the

3.2. Eigendecomposition 15

trace of the matrix product:

⟨A, B⟩F =
∑
i,j

Ai,jBi,j = tr(AT B) (3.28)

3.1.8. Orthogonal set

Let V be a vector space with a defined inner product. A orthogonal set is denoted
as non zero vectors v1, v2, . . . , vk ∈ V orthogonal to each other, i.e., ⟨vi, vj⟩ = 0
for i ̸= j.

If all the vectors are of unit norm, ∥vi∥ = 1 ∀vi ∈ V , then v1, v2, . . . , vk form an
orthonormal group.

3.1.9. Orthogonal group

Let A ∈ Rn×n be a square matrix. If

AT A = AAT = I (3.29)

then the matrix A is said to be orthogonal. The set of n × n orthogonal matrices
form the Orthogonal group (O(n)). An orthogonal matrix A has its inverse equal
to its transpose.

AT = A−1 (3.30)

Further, it can be shown that any orthogonal square matrix has a determinant of
either +1 or -1:

1 = det I = det AT A = det A det AT = (det A)2 =⇒ det(A) = ±1 (3.31)

If the determinant is equal to +1, the matrix is in the Special Orthogonal group
(SO(n)).

3.2. Eigendecomposition
Let A ∈ Rn×n be a square matrix. Any number λ is denoted an eigenvalue of A
if there exist a non-zero vector u⃗ such that

Au⃗ = λu⃗ (3.32)

The vector u⃗ associated with the eigenvalue is referred to as an eigenvector. The
set of all the eigenvectors associated with λ is referred to as the eigenspace. Ge-

16 Chapter 3. Linear Algebra

ometrically, Eq. 3.32 says that under the transformation of A, the eigenvectors
only change magnitude or sign, but does not change direction. The orientation of
Au⃗ is the same as u⃗. Thus the eigenvalue λ can be viewd as how much the vector
is scaled.

To find the eigenvalues, start with Eq. and insert the identity matrix In. 3.32:

Au⃗ − λInu⃗ = 0 (3.33)

Rearrange
u⃗(A − λIn) = 0 (3.34)

Hence the equation to be solved is

A − Inλ = 0 (3.35)

This is a linear system which is singular if and only if the determinant is zero.
det(A−Iλ) is a polynomial of degree n, in which the roots is the The Fundamental
Theorem of Algebra [9] implies that there are exactly n roots, including complex
roots and repetition.

Let the matrix U consist of the eigenvectors of A joined together in a matrix,
where each column of U is an eigenvector of A. Combine the eigenvalues in a
diagonal matrix denotes as Λ. Then Eq. 3.32 can be written as

AU = UΛ (3.36)

or equivalently as
A = UΛU−1 (3.37)

Eq. 3.37 is referred to as the eigendecomposition of A.

There are several limitations, as only diagonalizable matrices can be factorized in
this way. In addition, the process only works for square matrices.

3.3. Singular Value Decomposition
The Singular Value Decomposition (SVD) is a matrix factorization into three
matrices. Let A ∈ Rm×n, either complex or real. Then the full SVD of A is:

A︸︷︷︸
m×n

= U︸︷︷︸
m×m

× Σ︸︷︷︸
m×n

× V *︸︷︷︸
n×n

(3.38)

3.3. Singular Value Decomposition 17

Where U ∈ Rm×n is a complex unitary matrix, Σ ∈ Rn×n is a rectangular diagonal
matrix with non-negative real numbers on the diagonal, and V ∈ Rn×n is a
complex unitary matrix. If A is Real, then U and V is guaranteed to be real
orthogonal matrices [48], and SVD is denoted as UΣV ∗.

The matrix Σ is a diatonal matrix with entries σi = Σii and is uniquely de-
termined by A, and is referred to as the singular values of A. The number of
non-zero singular values is equal to the rank(A). The Columns of U and A is
referred to as the left- and right-singular of A respectively. The matrices form
two orthonormal bases [u1, . . . , um] and [v1, . . . , vn] and can also be expressed as:

A =
r∑

i=1
σiuiv

∗
i , where r = min{m, n} = Rank(A) (3.39)

σ is magnitude of the vector, u is the direction. For the rest of the thesis, the
superscript ∗ will be swapped out with the T for ease of reading.

The procedure to find U and V is done through eigen-decomposition of ATA
and AAT:

AT A = (UΣV T)T (UΣV T) (3.40)

= V ΣUT UΣV T (3.41)

U is orthogonal:
= V ΣΣV T (3.42)

= V Σ2V T (3.43)

V is given by the eigen-decomposition of AT A. V is an orthogonal matrix,
because AT A is symmetric. To find U:

AAT = (UΣV T)T (UΣV T) (3.44)

= UΣV T V ΣUT (3.45)

V is orthogonal:
= UΣΣUT (3.46)

= UΣ2UT (3.47)

The same logic applies here, AAT is symmetric, hence the eigendecomposition
of AAT yields an orthogonal matrix of U. To find Σ, the square root of the
eigenvalues of either AT A or AAT can be used.

18 Chapter 3. Linear Algebra

For a matrix R without full rank, the remaining columns or rows of vectors are
set to zero, and denoted as the null space:

A = UΣV T

=

[
u1 u2 . . . ur︸ ︷︷ ︸ ur+1 . . . um

]
︸ ︷︷ ︸

Col A Nul AT

σ1 0 . . . 0 0 . . . 0
0 σ2 . . . 0 0 . . . 0

. . .
0 0 . . . σr 0 . . . 0
0 0 . . . 0 0 . . . 0

. . .
0 0 . . . 0 0 . . . 0

vT
1

vT
2

. . .
vT

r

vT
r+1
. . .
vT

n

Row A

Nul A

(3.48)

3.4. Jacobian matrix
Consider a functions f : Rn → Rm Then the Jacobian is defined as the all the par-
tial derivatives for each function w.r.t each input. The Jacobian J is of dimensions
m × n and is defined as

J =
(

∂f

∂x1
· · · ∂f

∂xn

)
=

∇Tf1

...
∇Tfm

 =

∂f1
∂x1

· · · ∂f1
∂xn...

∂fm

∂x1
· · · ∂fm

∂xn

 (3.49)

The Jacobian is often referred to as the gradient of f , or simply ∇f .

3.5. Matrix differentials

3.5.1. Differentials

Before going in to matrix calculus; a notion of the differential is needed. The dif-
ferential allows one to calculate gradients Consider a differentiable vector function
f(x) and the first order Taylor expansion:

f(x + dx) = f(x) + f ′(x)dx + O(∥x∥2) (3.50)

3.5. Matrix differentials 19

Where df(x; dx) = f ′(x)u is denoted as the differential of f at x with pertuba-
tion of dx. Another way of represetning the differential would be with partial
derivatives:

df(x; dx) = (Df(x))u (3.51)

where Djfi(x) is the partial derivatives of fi w.r.t., the j’th coordinate at x and
it’s transpose is the gradient of f at x:

∇f(x) = (Df(x))T (3.52)

For a nested function, the chain rule can be utilized to find the differential: Let
dx = g ◦ f , then the differential of dx at x is:

dh(x; dx) = (Dh(x))dx

= (Dg(f(x)))(Df(x))dx

= (Dg(f(x)))df(x; dx)
= dg(f(x); df(x; dx))

(3.53)

Extending the results for a matrix function: Let F : R(m×p) → R(n×q):

vecF (X + dX) = vecF (X) + F ′(X)vec(dX) + O(∥dX∥2) (3.54)

where the differential of F at dX is denoted as:

vecdF (X : dX) = F ′(C)vec(dX) (3.55)

Note that even though the differential and the partial derivates are related, they
are different objects. Let dg = dg(X; dX) be the differential of g. Then dg is
always defined if g is defined. The differential can take matrix inputs and map to
a space of matrices. On the other hand, the partial derivative is only defined if g
has a scalar co-domain [19, 30]. The differential is only used as a step to calculate
the derivatives and does not require implementation. The main purpose is to find
the expression for the partial derivatives.

Chapter 4.

Artificial Neural Networks

The first sections of this chapter are to a large extent based on the theoretical
sections of the preliminary studies[14].

Within the field of deep learning, Artificial Neural Network (ANN) is in the center.
ANN is a collection of algorithms that is loosely inspired by the neurological cells
in the human brain. There are uncountable variants of ANNs, and multiple ways
to train them. The following sections give an overview of the foundations of ANNs
and the architecture of a standard ANN.

4.1. The Artificial Neuron
The human brain consists of more than 86 billion neurons that are interconnected
as a massive network. [18]. Each of these biological neurons has the ability to
propagate an electrical signal to a connection point, which is referred to as a
synapse. The electrical signal is further propagated if and only if it is above a
certain threshold in strength. This way, information is transferred in the brain,
through a massive network of neurons. This neuroscientific model is the inspi-
ration for ANNs. The Idea was incepted by McCulloch and Pitts in 1943 [33],
and the first artificial neuron is referred to as the McCulloch-Pitts neuron. The
modern artificial neuron has been further developed, and will be presented in the
following section.

An artificial neuron is a simple mathematical function that acts as the fundamen-
tal building block of each neural network. Each neuron takes input x ∈ Rn and
outputs a scalar y ∈ R. Each element [x1, x2 . . . , xn] in x is multiplied with an
associated weight [w1, w2, . . . , wn] from w ∈ Rn. The values in the weight vec-
tor indicate the importance of the different elements in x. The weighted data is

22 Chapter 4. Artificial Neural Networks

summed up, and a bias is added.

z =
n∑

i=1
xiwi + b (4.1)

This linear combination is thereafter non-linear transformed with an activation
function. The result is an output for each neuron, which is often referred to as
the activation of the neuron.

ŷ = f(z) (4.2)

w1

w2

w3

wn

Input

x1

x2

x3

xn

Σ

Bias

f(•)xiwi+b
i=1

n

b

y

Activation Output

Figure 4.1.: Illustration of an artificial neuron. The input is a vector of length n,
which is element-wise multiplied with the associated weights w, and summed with
a bias. An activation function f is applied, which produces a scalar activation y.

The activation function can be seen as analogous to the threshold level in the
biological neuron. The signal is only transmitted if it is above a given value. The
original McCulloch-Pitts neuron used the step function in Eq.4.3.

f(x) =

1 if x > θ

0 if x ≤ θ
(4.3)

More modern architectures usually apply gradually changing types of activation
functions. Usual characteristics are monotonically increasing, continuous, and
differentiable with a sigmoid shape. For a long time, the most common activation
function was the logistic sigmoid function which squashes the input to the interval
of (0, 1). The function is illustrated in Figure4.2.

4.2. Fully Connected Feed Forward Network 23

σ(x) = 1
1 + e−x

, σ′(x) = σ(x)(1 − σ(x)) (4.4)

−6 −4 −2 0 2 4 6

1

2

3

4

5

max(x, 0)

Rectified Linear Unit

−6 −4 −2 0 2 4 6

0.5

1

σ(x)
σ′(x)

Logistic Sigmoid Function

Figure 4.2.: Rectified Linear Unit and the Logistic Sigmoid

The most common activation function in modern neural networks is the rectified
linear unit (ReLU) and its variants. ReLU is far more efficient than sigmoid [40].
ReLU is simply a linear function for values above zero, otherwise the value is set
to zero, as shown in Eq. 4.5. For an introduction and comparison of different
activation functions, the interested reader is guided to [40].

ReLU(x) =

x if x > 0
0 if x ≤ 0

dReLU(x)
dx

=

1 if x > 0
0 if x ≤ 0

(4.5)

The artificial neuron is a linear function which is transformed non-linearly with
an activation function. Multiple neurons can be combined in a layer, which is
connected. Each layer takes the previous layers activations as their input, and
passes their activations on to the next. This is the basis of the artificial neural
network, and if every neuron is connected layer wise, it is a fully connected feed
forward network.

4.2. Fully Connected Feed Forward Network
A feed-forward network is the foundation for the various techniques in deep learn-
ing. The network f tries to estimate a true function f∗. Due to the non-linearity
induced by the activation function, theoretically, a sufficiently large enough net-
work can represent any function f∗ [13, p. 192]. The network f is denoted as

24 Chapter 4. Artificial Neural Networks

f(x, θ), where θ is the parameters of the network, i.e., the weights and biases and
x is the input data.

A fully connected network consists of three parts: The input layer, the hidden
layers, and the output layer. The general architecture is illustrated in Figure 4.3.

The input layer is a vector of size n, and there are two hidden layers. The output
layer is also a vector of size k. Each layer is a stack of neurons. Each neuron has
n weights w and a bias b. The neurons in the first layer f (1) are connected to
the neurons in the second layer f (2). Each connection between the neurons from
the layer f (l−1) to f (l) represents the weights multiplied with the activations from
layer l − 1 with calculates the input to the l. The ultimate layer constructs a
vector y of size k, such that dim y = dim f∗.

Each layer in the network processes a vector x = [x1, x2, . . . xn]T , and performs
the operation described in detail in subsection 4.1 with the weights w and biases
b in each neuron. These are the trainable parameters of the network, denoted
θ(l) = {W (l), b(l)}. Each layer can thus be represented as a function:

f (l)(x(l−1); θ(l)) = g(l)(W (l)x(l−1) + b(l)), l = 1, 2, . . . , L, (4.6)

Where W (l) ∈ Rnl−1×nl , bl ∈ Rnl , nl refers to the number of neurons in layer l,
g(·) is the activation function used in the neuron, and L is the number of layers
in total, referred to the depth of the network.

As each network is a function that propagates its output to the following layer,
the network can be written as nested functions:

f(x, θ) = f (L) ◦ f (L−1) ◦ f (L−2) ◦ ... ◦ f (2) ◦ f (1)(x) (4.7)

4.3. Convolutional Neural Network
A feed forward networks performance is limited when working with higher-dimensional
data exceeding one dimension. Consider an 2D image being the input of a feed
forward network. Then the input will be flattened into a one dimensional vector
where each pixel is an entry of the given vector. This causes the spatial infor-
mation of the image to be lost. The Convolutional Neural Network (CNN) [23]
alleviates this problem by maintaining the spatial information between the pixels
with the use of the convolutional operator.

4.3. Convolutional Neural Network 25

Input

x1

x2

xn

Hidden layer 1 Hidden layer 2

y1

yk

Output

f (1) f (2) f (3)

Figure 4.3.: Illustration of a fully connected neural network with two hidden
layers. The network has an input vector of x = [x1, x2, . . . , xn]T , which propagates
through the layers and produces the output vector ŷ = [y1, y2, . . . , yk]T

4.3.1. Convolutional Operator

The convolutional operator can be seen as passing a filter over an image, producing
an output. The filter is referred to as the kernel, and the output is often referred
to as a feature map. Let I(i, j) be an image, and K(i, j) be the kernel. Then the
discrete convolution over the image is denoted as:

S(i, j) = I(i, j) ∗ K(i, j) =
∑
m

∑
n

I(i − m, j − n)K(m, n) (4.8)

where ∗ denotes the convolutional operator.

A more intuitive explanation is that for each pixel in the input image I, the border-
pixels are element-wise multiplied to the kernel. Visually, this can be imagined
as the kernel hovers over the pixel in focus, and the elements that match up is
multiplied and summed up, resulting in the output pixel.

The convolutional operator can be altered by applying padding or stride. Padding
refers to artificial bordering around an image, whilst stride is how many pixels that
are hovered over. For an more in-depth explanation of the convolutional operator
and the different parameters, the interested reader is guided to the supplementary
material A.1.

26 Chapter 4. Artificial Neural Networks

Figure 4.4.: An image convolved with the three kernels displayed in Eq. 4.10.
The last is the Laplacian kernel which is frequently used for edge detection.

4.3.2. The Convolutional Layer

Usually, the input of the convolutional layer is 2D, and the operation can be
denoted as:

f (l)(x(l−1); θ(l)) = g(l)(K(l) ∗ X(l−1) + b(l)) (4.9)

where θ(l) = {K(l), b(l)}. Let X be a 2D image, with height and width denoted
as h × w, then X(0) ∈ Rh×w and the kernel has dimensions of K ∈ R(hl×wl).
However, there are variations of the exact implementations due to e.g., RGA
images or parallelization of the batches (See [13, p. 347-358] for details).

To show the potency of the convolutional operator, consider the kernels:

KH =

−1 −2 −1
0 0 0
1 2 1

, KV =

−1 0 1
−2 0 2
−1 0 1

, KO =

−1 −1 −1
−1 8 −1
−1 −1 −1

 (4.10)

Figure 4.4 shows the effect of the kernels convolved over an image of the city center
in Lisbon. The kernels displayed are the horizontal, vertical, and the outline
kernel, respectively. KH and KV extract the horizontal and vertical edges of the
photo, whilst the outline extracts the edges. The collection of the resulting images
can be seen as a feature map, where the characteristics associated with edges are
emphasized.

The convolutional layer consists of l kernels of dimension k × k. Let the input
be an image with c channels, i.e., of dimension c × m × m. Each kernel is then

4.4. Learning the Parameters - intuition 27

convoluted over the c matrices of dimension m × m and summed up, resulting in
l outputs with the dimensions n × n, where n can be calculated from Eq. 4.11

n =
[

m − k + 2P

S

]
+ 1 (4.11)

A CNN typically consists of several convolutional layers before the penultimate
layer being a fully connected linear layer. Note that the elements in the kernels
are the parameters of any convolutional layer. The last layer of a CNN is typically
a fully connected layer, outputting a vector of size Rd.

In addition to the ability to retain the relationship between the image pixels,
CNN has other beneficial properties for image processing. Consider the RGB
image used in 4.4, which is of size 3 × 3000 × 4000. A feed-forward layer with one
weight per pixel would require 3.6∗107 million parameters, whilst a convolutional
layer with a filter size of 3 × 3 requires 9 per kernel. In addition, the number
of floating operations in the feed-forward layer is dramatically reduced using a
convolutional layer.

4.4. Learning the Parameters - intuition
The learning of the parameters happens during a process which is referred to as
the training of the network. During supervised training, each datavector will have
an associated label. The data set is hence of the form: X = {xi, yi}N

i=1, where
xi is a vector with the property yi = f∗(xi), i.e., the goal of the network output.
The dataset is usually divided into a training set and test set, which is 80% and
20% of the data respectively. The training set is used to learn the parameters,
and the test set is used to evaluate the performance of the finished trained model.

The idea behind the training procedure is to compare f(xi; θ) = ŷ with the asso-
ciated label to xi, i.e., yi. The difference is then utilized to tune the weights to
improve the estimate. The procedure is done by the use of a loss function which
quantifies the difference between the estimate and the label. The algorithm for
the weight-tuning is often a gradient based optimization algorithm. A commonly
used loss function is the mean squared error:

L(ŷi, yi) = 1
n

n∑
i=1

(ŷi − yi)2 (4.12)

28 Chapter 4. Artificial Neural Networks

Inserting the network f(x; θ)

L(ŷi, yi) = 1
n

n∑
i=1

(f(x; θ) − yi)2 (4.13)

The only adjustable parameters are θ. Hence, the goal is to find the set of param-
eters θ which minimizes the loss. This is an unconstrained convex optimization
problem, and is solved by applying a optimization method.

L(ŷi, yi) = 1
n

n∑
i=1

(f(x; θ) − yi)2 (4.14)

after applying and optimization routine, e.g., gradient descent, the parameter
update rule becomes that of Eq. 4.15.

θ = θ − µ∇θL, (4.15)

µ is the learning rate (step rate). Figure 4.5 illustrates how one iteratively through
small steps can reach the minimum point by calculating the gradient and hence
direction towards the minimum point. in practice however, the loss function is
multidimensional with numerous global minima, making the training procedure
substantially more difficult than illustrated in Figure 4.5.

L(θ)

Loss

θ

Starting loss

θ1 L1

θ1

L1

Figure 4.5.: Through tuning of the parameters with the Equation 4.15, the loss
will iteratively reach the minimum point

4.5. Backpropagation 29

4.4.1. Convergence Under Empirical Risk Minimization

Consider the network f(x; θ) to be able to give useful results, the set of parameters
needs to be tuned such that f(x; θ) ≈ f∗. That is, the goal is for the model to
perform well on unseen data, i.e., the ability to generalize. This can be guaranteed
given that the principle of risk minimization is true:

arg min
θ

1
N

N∑
i=1

L(f(x(i), θ), y(i)) (4.16)

As long as L and f are continuous, the gradients (or subgradients) can be used
to learn the parameters. The general procedure is to use the backpropagation
algorithm.

4.5. Backpropagation
The following sections are derived from [10, 24]. The ability to learn the models
is based upon the gradients of the loss function. Recall that the network with
depth k can be represented as

f = f (k) ◦ f (k−1) ◦ f (k−2) ◦ ... ◦ f (2) ◦ f (1) (4.17)

With the parameters given layer-wise as θ = (θ(k), θ(k−1) . . . , , θ1) and f (i) denotes
the layer i. Each layer’s output is the next layers input, i.e.;

xi = f (i)(xi−1), i = 1, 2, . . . , K (4.18)

xi−1 is the input of the layer f i, which produces the output xi. x0 is the input
data for the first layer.

Borrowing notation from [19]: L(i) = L ◦ f (k) ◦ · · · ◦ f (i) denotes the loss of the
as a function of the layer xl−1. Ay the use of the chain rule, backpropagation
calculates the derivaties of the loss function w.r.t all of the parameters. This
requires the calculation of the gradients with respect of the inputs as well. To
find the gradients of L at layer l:

∂L(l)(xl−1, y)
∂wl

= ∂L(l+1)(xl, y)
∂xl

∂f (l)(xl−1, y)
∂wl

(4.19)

∂L(l)(xl−1, y)
∂xl−1

= ∂L(l+1)(xl, y)
∂xl

∂f (l)(xl−1)
∂xl−1

(4.20)

30 Chapter 4. Artificial Neural Networks

where f includes the activation functions as well. The end goal is to calculate the
expression for the gradient in Eq. 4.19 and update the weights.

4.6. Matrix Backpropagation
Matrix Back-propagation (MBP) [19] is the use of matrix calculus[39] to map
between the partial derivaties ∂L(l+1)

∂xl
and ∂L(l)

∂x(l)
at two consecutive layers. Let f

be a network of depth K, with the layer f (K) be expressed in term of matrices,
i.e., Xk = f (K)(XK−1), where XK−1 and XK are matrices. Let Y = XK ,
X = XK−1 and f = f (k):

Let f be a network of depth K, with the layer f (K) be expressed in term of
matrices, i.e., Xk = f (K)(XK−1), where XK−1 and XK are matrices. Let Y =
XK , X = XK−1 and f = f (k):

Y = f(X) (4.21)

4.6.1. Partial derivatives

Let f be a network of depth K, with the layer f (K) be expressed in term of
matrices, i.e., Xk = f (K)(XK−1), where XK−1 and XK are matrices. Let Y =
XK , X = XK−1 and f = f (k):

Y = f(X) (4.22)

The objective is to calculate
∂L ◦ f

∂X
(4.23)

The strategy is to take the Taylor expansion of the matrix functions L ◦ f(X)
around dX and of L(Y)

L ◦ f(X + dX) − L ◦ f(X) = ∂L ◦ f

∂X
: dX + O(∥dX∥2) (4.24)

L(Y + dY) − L(Y) = ∂L

∂Y
: dY + O(∥dY ∥2) (4.25)

where A:B is the Frobenius inner product: A:B = ⟨A, B⟩F = vec(A)T vec(B).

As Y = f(X), the differential of Y is:

dY = df(X; dX) (4.26)

4.7. Backpropagation for a SVD layer 31

and if the relation holds, then the first order Taylor expansions in Eq. 4.24 and
Eq. 4.25 are equal, and hence

∂L

∂Y
: dY = ∂L ◦ f

∂X
: dX (4.27)

The last relation is used to map the partial deriative on the l.h.s to the partial
derivatives on the r.h.s. The procedure is as follows: Define a functional L:

dY = L(dX) ∆= df(X; dX) (4.28)

Given the expression for dY , the relation in Eq. 4.27 holds, and the properties
of the Frobenius inner product A : B = Tr(AT B) is used to obtain the partial
derivatives. Let L∗ be a non-linear adjoint operation, which has the property
a : (L)(b) = L∗(a) : b. Then

∂L

∂Y
: dY = ∂L

∂Y
: L (dX) ∆= L∗

(
∂L

∂Y

)
: dX ⇒ L∗

(
∂L

∂Y

)
= ∂L ◦ f

∂X
(4.29)

Yielding the result of the partial derivative. (if this is unclear, study Eq. 4.27
and note that if ∂L

∂Y
: dY = ∂L◦f

∂X
: dX = L∗

(
∂L
∂Y

)
: dX.

4.7. Backpropagation for a SVD layer
Consider a network with a layer Y = f(X), where f(X) is the singular value
decomposition:

f(X) = UΣV T (4.30)

where Y = f(X) ∈ R(m,n) and m ≥ n, and U and V are orthogonal matrices.
The following section will show how the partial derivatives ∂L◦f

dX can be expressed
in terms of ∂L

∂U , ∂L
∂Σ , and ∂L

∂V . The strategy to find the partial derivatives is through
the differentials dU , dΣ, dV Recall that for SVD, the matrix Σ is diagonal, hence
the differential dΣ is diagonal.

The differential of Y is:

dY = dUΣV T + UdΣV T + UΣdV T (4.31)

Divide by V T and by U :

UT dXV = UT dUΣ + dΣ + ΣdV T V (4.32)

32 Chapter 4. Artificial Neural Networks

and for simplicity, define:

Q = UT dXV A = UT dU , B = V T dV (4.33)

where A and B are skew-symmetric matrices. Further

Q = AΣ + dΣ + ΣBT (4.34)

Due to the diagonal nature of dΣ and the skew-symmetry of A and B, the matrices
AΣ and BΣ:

dΣ = Ik ◦ Q (4.35)

where Ik is the identity matrix of dimension k, and ◦ is the Hadamard product.
Now to find the differentials dU , dV , Due to orthogonality in U and V , the terms
A = UT dU and B = V T dV are skew symmetric, such that the off diagonal part
satisfies:

ĪkQ = AΣ + ΣBT (4.36)

Where Îk is a zero-diagonal matrix with ones everywhere else. Rearranging Eq.
4.36 such that

A = ĪQΣ−1 + ΣBT Σ−1 (4.37)

Taking the transpose of A:

AT = Σ−1(ĪQ)T − Σ−1BΣ (4.38)

By using the identity of A + AT = 0, and rearrange:

Σ−1BΣ − ΣBT Σ−1 = (ĪQ)Σ−1 + Σ−1(ĪQ)T (4.39)

Use the fact that BT = −B and pre and post multiply with Σ:

BΣ2 − Σ2B = Σ(ĪQ) + (¯IQ)T Σ (4.40)

Which is the same as:

F ◦ B = Σ(ĪkQ) + (ĪkQ)T Σ (4.41)

Where F ij = σ2
j − σ2

i and ◦ is the Hadamard product. F has a zero diagonal,
hence the term Ī actually redundant, but it is kept there for clarity. The same
procedure can be repeated for B, yielding:

F ◦ A = (QĪk)Σ + Σ(ĪkQ)T (4.42)

4.7. Backpropagation for a SVD layer 33

The last two expressions in addition to dΣ = Ik ◦ Q is then used to solve for
dU , dV , and dΣ:

dΣ = Ik ◦ Q = Ik ◦ UT dXV (4.43)

F ◦ A = F ◦ (UT dU) = (ĪQ)Σ + Σ(ĪQ)T ⇒

dU = U

(
F −1

(
(ĪkQ)Σ + Σ(ĪkQ)T

))
dU = U

(
F −1 ◦

(
(ĪkUT dXV)Σ + Σ(ĪkUT dXV)T

))
(4.44)

F ◦ B = F ◦ (V T dV) = Σ(ĪQ) + (ĪQ)T Σ ⇒

dV = V

(
F −1 ◦

(
Σ(ĪQ) + (ĪQ)T Σ

))
dV = V

(
F −1 ◦

(
Σ(ĪUT dXV) + (ĪUT dXV)T Σ

))
(4.45)

With the differentials for U , V , Σ, it is now possible to find the expression for the
∂f
∂X , which is the main goal:

First
∂f

∂X
: dX = ∂f

∂U
: dU + ∂f

∂Σ
: dΣ + ∂f

∂V
: dV (4.46)

df
dX = U

F −1 ◦
[
UT ∂f

∂U
− ∂f

∂U

T
]

Σ

V T

+ U

(
Ik ◦ ∂f

∂Σ

)
V T

+ U

ΣF −1 ◦
[
V T ∂f

∂V
− ∂f

∂V

T

U

]V T

(4.47)

This result will be used for the later chapters.

Chapter 5.

Transformations and
coordinate frames

A rigid-body object’s pose in 3D has 6 degrees of freedom (DOFs). Each object
has a position that can be represented by its x, y, and z coordination in space,
and each object can be rotated around the same axes, hence 6 DOFs. The most
common representations of rotations are the Euler-angles, rotation matrices, and
quaternions.

5.1. Rotation Matrix
Each rotation of a 3D object can be uniquely described by a rotation matrix. Let
R be a special orthogonal (SO(3)) matrix with determinant equal to 1.

R =

r11 r22 r33
r21 r22 r23
r31 r32 r33

 (5.1)

Even if there are nine entries, because a rigid body 3D object only has three DOFs,
only three of the entries can be chosen independently. As a result, each rotation
matrix has six constraints. The following conditions must be satisfied for a 3D
rotation matrix:

1. The unit norm condition:

r2
11 + r2

21 + r2
31 = 1

r2
12 + r2

22 + r2
32 = 1

r2
13 + r2

23 + r2
33 = 1

36 Chapter 5. Transformations and coordinate frames

2. The orthogonality condition

r11r12 + r21r22 + r31r32 = 0
r12r13 + r22r23 + r32r33 = 0
r11r13 + r21r23 + r31r33 = 0

The set of constraints can be summed up more compact as RT R = RRT = I,
where I is the identity matrix. Furthermore, limiting the coordinate frames to
be only right-handed frames, the constraint det(R) = 1 is imposed. From this
follows the fact that R−1 = RT

The set of all 3 × 3 rotation matrices forms the special orthogonal group SO(3).
For rotations in 2D, i.e., the rotation matrices form SO(2), which a subgroup of
SO(3). It can be shown that every R ∈ SO(2) can be represented on the form [3]:

R =
(

r11 r22
r21 r22

)
=
(

cos(θ) −sin(θ)
sin(θ) cos(θ)

)
(5.2)

where θ = [0, 2π]. The rotation matrices in SO(2) represent planar orientations,
whilst the 3D rotation matrices in SO(3) represent spatial orientations. Note the
discontinuity between when going from the directional limit from both sides, i.e.,
from 0 and 2π, which represents the same orientation in the limit.

5.1.1. Properties

The inverse of a rotation matrix is a rotation matrix

Let R ∈ SO(3) be a rotation matrix. Then the inverse R−1 is a rotation ma-
trix equal to the transpose of R. The proof is also straightforward. From the
orthogonality constraint:

RT R = I =⇒ R−1 = RT =⇒ RRT = I (5.3)

R−1 is orthogonal. Further, to ensure special orthogonality:

det(R)T = det(R) = 1 (5.4)

Hence R−1 = RT is also a rotation matrix in SO(3)

The product of two rotation matrices is a rotation matrix

Let R1, R2 ∈ SO(3), then the product R1R2 is also a rotation matrix. The proof

5.1. Rotation Matrix 37

is straight forward: The orthogonality constraint:

(R1R2)T (R1R2) = R2RT
1 R1R2

= RT
2 R2I

= I

(5.5)

The special orthogonality constraint:

det(R1R2) = det(R1)det(R2) = 1 (5.6)

Hence R1R2 ∈ SO(3) and is a rotation matrix.

5.1.2. Representing an Orientation

{1} {2}

Figure 5.1.: Same space with two different orientations.

Assume that in Figure 5.1, there is a fixed space frame s aligned with 1. The
orientations of the two frames 1 and 2 relative to s can be represented with the
orientation matrices:

R1 =

1 0 0
0 1 0
0 0 1

 , R2 =

0 −1 0
1 0 0
0 0 1

 (5.7)

2 is obtained by rotating 1 by 90◦.

38 Chapter 5. Transformations and coordinate frames

5.1.3. Changing the Frame

A rotation matrix can be used to represent an orientation or to rotate a vector
or a frame. Figure 5.2illustrates how a frame 1 is rotated by an angle θ around a
unit vector w, changing the frame to 2.

w

{2}

{1}

Figure 5.2.: A coordination frame with axes [x1, y1, z1] is rotated by θ about a
unit axis w, aliged by −y1. The orientation of the frame after the rotation is
[x2, y2, z2] marked in blue. Figure adopted from [29]

The rotation matrix R can be written as a rotation operator, R = Rot(w, θ).
Using Rodrigues formula [41] 1:

R1,2 = Rot(w, θ) = I + sinθ[w] + (1 − cosθ)[w]2 (5.8)

where w is the skew-symmetric representation of a vector:

[w] =

 0 −w3 w2
w3 0 −w1

−w2 w1 0

 (5.9)

1Although it was first discovered by Leonhard Euler in 1770 [11], it was rediscovered inde-
pendently by Olinde Rodrigues in 1840 [41]. Cheng and Gupta proposed in 1989 the name
“Euler’s finite rotation formula“[8].

5.2. Comparing Rotation Matrices 39

5.2. Comparing Rotation Matrices

5.2.1. Angle error

The most common metric for comparing rotation matrices is the angle error. Let
R1 and R2 denote two rotation matrices, and RT

2 be the transpose. Then the
difference rotation is denoted as:

Rd = R1RT
2 (5.10)

To calculate the distance between the rotations represented by R1 and 2 the angle
of the difference rotation Rd is used. This can be retrieved by

tr Rd = 1 + 2 cos θ (5.11)

. and then using solving for θ:

θ = arccos
(

tr R − 1
2

)
(5.12)

5.2.2. Geodesic Loss

Consider a sphere with a point on the top and bottom. The shortest absolute
path would be right through the sphere, whereas the geodesic distance would be
along the curvature. The geodesic loss is typically referred to as the shortest path
between two points on a surface.

The geodesic distance between two groups in SO(3) is denoted as:

dg(R1, R2) = 1√
2

∥∥∥log (R−1
1 R2)

∥∥∥
F

(5.13)

5.3. Camera Model

5.3.1. The Pinhole Camera Model

A camera is mathematically a projection of 3D points on a 2D image plane. To
show this, consider a Euclidean coordinate system, and let the center of projection
be the origin of the given system. Denote the axis Z = f as the focal plane. The
pinhole model then maps a point from the 3D world space (X, Y, Z)T to the 2D
image coordinates

(
fX
Z , fY

Z

)T
as illustrated in Figure 5.3 The projection center

40 Chapter 5. Transformations and coordinate frames

is referred to as the principal axis (or camera center), whereas the intersection
between the principal axis and image plane is the principle point.

Camera

 centre

image plane

Principal axisp p

Figure 5.3.: The pinhole camera model: The left figure how a point X is mapped
to the image plane on point x. The right figure shows how the height of the
mapping is calculated through the triangle model, with the mapping of y = f Y

Z .
Figure adapted from [16]

Assuming homogenous coordinates in the representation of both world and image
points, the central projection can be expressed as a linear mapping:

fX
fY
Z

 =

fx 0 0 0
0 fy 0 0
0 0 1 0

X
Y
Z
1

 (5.14)

If there is an offset between the origin of coordinates in the image plane and
camera center, then this needs to be accounted for:

fX + Zpx

fY + Zpy

Z

 =

fx 0 px 0
0 fy py 0
0 0 1 0

X
Y
Z
1

 (5.15)

Where px, py is the principle point offset. The matrix on the right-hand side of
Eq. 5.15 is the calibration matrix, usually denoted by K.

5.3. Camera Model 41

5.3.2. Camera Rotation and Translation

Up until now the coordinates X, Y, Z have been represented as camera coordinate,
with the axes of the camera and world object coinciding. This is usually not the
case, as objects in the world usually have their own axes. Denote the camera
coordinate frame as Xcam = (Xcam, Ycam, Ycam, 1)T and the world coordinate
frame as X, Y, Z. As illustrated in Figure5.4,

Figure 5.4.: An Euclidean transformation between the world and camera coor-
dination frame. Figure adapted from [16]

Xcam = [R t]X (5.16)

where R ∈ SO(3) is a rotation matrix, whereas t ∈ R3×1 translation matrix. This
leads to the general pinhole camera model:

xc = K[R t]Xw (5.17)

The matrix K is often referred to the intrinsic matrix, due to the fact that the
entries hold parameters related to the camera. The external parameters is often

42 Chapter 5. Transformations and coordinate frames

combined into a transformation matrix T :

T =
(

R3×3 t3×1
01×3 1

)
(5.18)

The model can then be written as

x =

fx 0 x0
0 fy y0
0 0 1

1 0 0 0

0 1 0 0
0 0 1 0

(R3×3 t3×1
t1×3 1

)
X (5.19)

Where P = K[R t] is often referred to as the camera matrix. The pose of the
camera relative to the world frame can be represented by the transformation. A
valid transformation matrix is said to be in the special Euclidean group SE(3).

For more details on the pinhole model, the reader is guided to [16].

5.4. Pose Estimation
The notion of pose estimation refers to estimating the relative pose between the
object and a camera. Consider a scene with an object captured by a camera.
Then the object will have its own coordination system, the camera will have its
own, both separate from the world coordination system. Figure 5.5 illustrates
the problem in the 3D space. Tij between frame i, j denotes the transformation
matrices between the objects. 3D pose estimation refers to the regression of
the rotation of the object, whereas 6D pose estimation includes the translation as
well. 6D pose estimation increases the complexeity of the problem, the translation
output requires other parametrization methods, which is out of scope for this
thesis.

5.4. Pose Estimation 43

World
 frame

Object frame

Camera
 frame

Figure 5.5.: The pose estimation problem: The matrix of interest is the transfor-
mation matrix TCO between the camera and the object. The world coordination
system is irrelevant to the task.

Chapter 6.

Mappings from Real Euclidean
Space to Special Orthogonal
Group

Consider a neural network with an output of x ∈ Rn. The target is on a non-
Euclidean space SO(3) and hence the outputs needs to be transformed to SO(3)
to ensure a proper rotation matrix. The transformation is done with a mapping
function: Define a differentiable function f such that f : x ∈ Rn → f(x) ∈ Y , i.e.,
a mapping from the output to the desired target. The network can then be trained
with an arbitrary loss function and optimizer with back-propagation. The choice
of such a mapping is a non-trivial task and has a significant effect on the model’s
performance. A thorough and satisfactory explanation of which properties make
a good mapping is still lacking, but Brégier attempts to summarize the research
on the area in [6].

6.1. Desired Properties
The desired properties for a differentiable mapping from Rn → SO(3) is an active
area of research. Zhou et al. argues that a good mapping should be surjective
and be continuous, meaning that the right inverse g : Y → X should exists.
Zhou et al. further demonstrates that for rotation matrices, all representations are
discontinuis in the Euclidean space with four or fewer dimensions [54]. Brégier
argues that this property is desirable, but nevertheless a a loose criterion. Brégier
argues that the following function will satisfy the criterion:

R ∈ M∋,∋R → [M if M ∈ SO(3), I else] (6.1)

46Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

Such a mapping is likely to output the identity matrix often causing the gradients
to be zero. For this reason, Brégier argues that stricter and a more in-depth
analysis is needed. Hence Brégier establishes the desirable properties of a mapping
[6] as follows:

f should be surjective, i.e., f(X) = Y . This is a necessary constraint to be
able to estimate any arbitrary output y ∈ Y .

The function f needs to be differentiable The mapping f needs to be differ-
entiable to be able to use back-propagation to learn the parameters of the network.
Differentiability also implies that f should be continuous.

The manifold Y should be a connected smooth differentiable manifold.
The ability to learn any arbitrary target y ∈ Y necessitate the ability to differen-
tiate f on every point in Y .

The remaining two properties are not strictly required, but will help with training
and generalization [6]:

Full rank Jacobian: The Jacobian of f , i.e., J = ∇xf should have rank equal
to the dimensonality of Y . This property again related to the back-propagation
process of the training procedure. If the property is satisfied, it is always possible
to find an infinitesimal displacement to apply to x such that output f(x) is closer
to the target y ∈ Y . Further, it guarantees convergence of gradient descent to a
global minimum of x → L(f(x)) where L is a convex loss function admitting a
lower bound [6].

Pre-images connectivity/convexitivy. The pre-image f−1(y) of any element
y ∈ Y should be connected, or better yet, convex. Brégier shows an example
with a a continuous network h : a ∈ A → x ∈ X producing an intermediate
representation x from the input a. The machine learning task is to regress such
that y = f(h(a)) ∈ Y on the target manifold close to the target y∗ ∈ Y . In a toy
example, Brégier demonstrates that different outputs a0, a1 correspond roughly to
the same target output y∗, whereas the intermediate represenations x0, x1 might
be distant from each other. The claim is that generalization requires the model
to properly interpolate between training samples, which is impossible if x0, x1 is
in the disconnected regions of f−1(y∗). The consequence is that some of the test
representations interpolated by the network wil not be mapped correctly to y∗.

The result is that a mapping satisfying the pre-image connectivity constraint
prevents such a situation, effectively guaranteeing the existence of a network able
to properly interpolate between training representations. It is however noted that
this is hard to do in practice as training such a network is difficult [6].

6.2. Differentiable Mappings - Examples 47

6.2. Differentiable Mappings - Examples

6.2.1. Euler Angles

The Euler Angles are another way of representing rotations from SO(3) by three
successive rotations, each around a different axis. This leads to the Euler Theorem:
“Any arbitrary rotation may be described by only three parameters“. These three
parameters are the angles around the distinct axes. Each angle around the distinct
axes has a different name and is represented by a distinct function. The convention
is as follows:

1. A yaw is a counterwise rotation of α around the z-axis. The rotation matrix
is given by:

Rz(α) =

cos α − sin α 0
sin α cos α 0

0 0 1

 (6.2)

2. A pitch is a counter-clockwise rotation of γ around the x axis. The rotation
matrix is given by:

Ry(β) =

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 (6.3)

3. A roll is a counter-clockwise rotation of β around the y-axis. The rotation
matrix is given by:

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 (6.4)

These three combined can result in any rotation in 3D. My composing the three
rotations one rotation matrix can be obtained:

R = RzRyRx

=

cos α cos β cos α cos β cos γ − cos γ cos α cos α cos γ + cos α cos γ cos β
cos β cos α cos α cos γ + cos α cos β cos γ cos γ cos α cos β − cos α cos γ

− cos β cos β cos γ cos β cos γ

(6.5)

As matrix multiplication, as well as rotations, are not commutative, the order

48Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

matters. There are six possible orderings, which would all yield different results.

The most dominant drawback of Euler angles is the phenomenon referred to as
the gimbal lock. As Euler angles is a function that maps input R3 → SO(3), the
derivative of this function is not guaranteed to have rank 3, and hence there are
degenerate submanifolds where the function is many-to-one. This case is referred
to as a gimbal lock, which causes the loss of one degree of freedom. The gimbal
lock phenomenon causes Jacobian rank deficiency when it occurs. Furthermore,
Euler angles does not satisfy the pre-images connectivity. There can exist multiple
discrete pre-images for a given rotation, making the generalization hard.

Further, Euler angles are also discontinous according to the definition of Zhou
et al. [54]. This can be seen by the fact that rotations around one axis is equal
for 0 and 2π. Hence Euler angles are unfit for regression of rotation matrices.

6.3. Quaternions
Quaternions are another way of representing rotations in 3D, which consists of 4
parameters. A quaternion is a hypercomplex number that alleviates the gimbal
lock problem that the Eulers angles suffer from. Let q be quaternion representa-
tion:

q =

q1
q2
q3
q4

 = q1i + q2j + q3k + q4 (6.6)

where qi∈1,2,3,4 are real numbers, whereas i, j and k are imaginary units satisfying
the following identity

i2 = j2 = k2 = −1 (6.7)

A quaternion can be seen as a scalar part s = q4 ∈ R and a vector part v =
[q1, q2, q3] ∈ R3. Other notations of quaternions are:

q = [s, v]
q = [s, (q1, q2, q3)]

(6.8)

6.3.1. Properties

let q and q′ be two quaternions. Then

q + q′ = [s + s′, v + v′] = (q1 + q′
1)i + (q2 + q′

2)j + (q3 + q′
3)k (6.9)

6.3. Quaternions 49

Which is associative and commutative.

The product of two quaternions q and q′ is given by:

qq′ = [ss′ − vv′, v × v′ + sv′ + s′v] (6.10)

The norm of a quaternion q is given as

∥q∥ =
√

q2
1 + q2

2 + q2
3 + q2

4 (6.11)

The conjugate q∗ of a quaternion is given as

q∗ = −q1i − q2j − q3k + q4 (6.12)

Then the following relations holds true:

qq∗ =∥q∥2 (6.13)

And the inverse of a quaternion can be found by rearranging:

q−1 = q∗

∥q∥2 (6.14)

Hence, if a quaternion is a unit quaternion, then

q−1 = q∗ (6.15)

6.3.2. Rotation Through Quaternions

let w be a unit vector describing the axis of rotation, and θ the angle of rotation.
The unit quaternion describing the rotation is then represented by

q = iw1 sin θ

2 + jw2 sin θ

2 + kw3 sin θ

2 + cos θ

2 (6.16)

A rotation of a vector x about the angle and rotation vector can then be written
as

y = qxq−1 (6.17)

As the rotation can always be represented by a rotation matrix, let y = Rx, which
yields the following relation:

Rx = qxq−1 (6.18)

50Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

We can then find the rotation matrix represented with quaternions. Solving for
R to find the rotation matrix described by the elements of q yields [20]:

R =

1 − 2(q2
2 + q2

3) 2(q1q2 − q3q4) 2(q1q3 + q2q4)
2(q1q2 + q3q4) 1 − 2(q2

1 + q2
3) 2(q2q3 − q1q4)

2(q1q3 − q2q4) 2(q2q3 + q1q4) 1 − 2(q2
1 + q2

2)

 (6.19)

Quaternion for rotations is preferred over Euler Angles due to easier computations
and the alleviation of the gimbal lock problems. However, quaternions still suffer
from other sources of trouble. Quaternions suffer from ambiguity caused by their
anti podal symmetry: q and -q correspond to the same rotation, hence quaternions
double cover the SO(3) group. Nevertheless, this can be solved by restricting the
scalar part to be positive.

The mapping in Eq. 6.19 is shown to satisfy all the desirable constraints but pre-
images connectivity and the notion of continuity [54, 6]. The pre-image of any
rotation matrix represented by a non-zero quaternion q consists in {αq|α ∈ R∗},
which is not connected [6].

6.4. Gram-Schmidt Orthogonalization

6.4.1. 5D and 6D representations of rotations

Another mapping suggested in [54] is the Gram-Schmidt orthogonalization pro-
cedure. The Gram-Schmidt procedure is as follows:

Let V be a inner product space, and x, v ∈ V, v ̸= 0. The orthogonal projection
of the vector x onto the vector v is:

p = ⟨x, v⟩
⟨v, v⟩

v (6.20)

The remainder o = x − p is orthogonal to v. This process can be extended to
arbitrarly number of vectors: if v1, v2, . . . , vn is an orthogonal set of vectors

p = ⟨x, v1⟩
⟨v1, v1⟩

v1 + ⟨x, v2⟩
⟨v2, v2⟩

v2 + · · · + ⟨x, vN ⟩
⟨vn, vn⟩

vn (6.21)

In which p is the orthogonal projection of the vector x onto the subspace spanned
by v1, . . . , vn, i.e., the remainder o = x − p is orthogonal to v1, . . . , vn.

This serves as the basis for the Gram Schmidt orthogonalization process. Let V
be a vector space with an inner product. Suppose x1, x2, . . . , xn is a basis for V .
Then the Gram Schmidt orthogonalization process is as follows:

6.5. Symmetric Orthogonalization via SVD 51

v1 = x1, e1 = v1
∥v1∥

v2 = x2 − ⟨x2, v1⟩
⟨v1, v1⟩

v1, e2 = v2
∥v2∥

v3 = x3 − ⟨x3, v1⟩
⟨v1, v1⟩

v1 − ⟨x3, v2⟩
⟨v2, v2⟩

v2, e3 = v3
∥v3∥

...
...

vn = xn −
n−1∑
i=1

⟨xn, vi⟩
⟨vi, vi⟩

vi, en = vn

∥vn∥

where v1, v2, . . . , vk is an orthogonal basis for V , whilst e1, . . . , en is an orthonor-
mal. Zhou et al. proposes to use the Gram Schmidth procedure for a 3 × 2 matrix
(6D) as a mapping function. Zhou et al. further shows that the dimensionality
can be reduced to 5D with a stereo-graphic projection, quoting worse perfomance
than 6D, but better than the traditional methods. The mapping does however
satisfy the desirable properties set forth in [6]

6.5. Symmetric Orthogonalization via SVD
Consider a rotation matrix R ∈ SO(3) with a singular value decomposition as
R = UΣV T . Then the symmetric orthogonalization with SVD is:

SV DO(M) = UV T (6.22)

whereas the special orthogonalization:

SV DO+(M) = UΣ′
V T (6.23)

where Σ′ = diag(1, . . . , 1, det(UV T)) maps to SO(3).

Orthogonalization via SVD consistently outperform the other mapping functions
in [6, 24] and satisfies all the desirable properties in [6]. The mapping was proposed
by [24], with an extensive analysis over its properties. This section will go through
the origin of the mapping and properties in a greater detail than the previous
mappings, as this is the current state-of-the-art method.

The reasoning for using the singular value decomposition comes fromt the Pro-
crustes problem which is a sub-problem of Wahba’s problem. The goal was to
estimate the position of a space craft based on the observations of the position of

52Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

the stars relative to the space craft.

6.5.1. Wahba’s Problem

Wahba’s problem was originally posed by Grace Wahba in 1965 [49] and typically
involves finding an optimal rotation to fit a series of vector measurements. The
origin of the problem stems from attitude estimation in the aerospace field. How
can the orientation of a space-craft be determined by making remote observations
of celestial bodies of reference points? Given two sets of m n-dimensional points
{v1, v2, . . . , vm} and {v∗

1, v∗
2, . . . , v∗

m}, find a rotation matrix R ∈ SO(3) such that
the loss function L is minimized.

L(R) = 1
2

n∑
i=1

ai

∥∥vi − Rv∗
i

∥∥2 (6.24)

Figure 6.1 illustrates the problem with m = 4, n = 3 where vi are representa-
tions of the four observed objects from the representation frames, whereas v∗

i are
observed from the space body. ai are weights associated with every observation.
One of the proposed solutions was derived by [32], which includes the usage of
singular value decomposition.

Assume that the weights are normalized, i.e.,
∑n

i=1 ai = 1, then:

L(R) = 1 −
n∑

i=1
aiv

T
i Rv∗

i = 1 − tr(RA) (6.25)

where:
A =

n∑
i=1

vi(v∗
i)T (6.26)

Find the singular value decomposition of the matrix A:

A = UΣAT (6.27)

The rotation matrix can then be found by:

R = AΣ′AT (6.28)

where Σ′ = diag([1, 1, det(A), det(A)])

6.5. Symmetric Orthogonalization via SVD 53

Figure 6.1.: The known reference frame is on the left and space craft’s reference
frame is on the right. Wahba’s problem is to find a rotation matrix such that the
orientation of the space craft can be known. Figure adopted from [28]

6.5.2. Procrustes Problem

A special case of Wahba’s problem is the orthogonal Procrustes problem. Consider
two matrices A and A, then the problem is to find an orthogonal matrix Ω which
closely maps A to A:

R = arg min
Ω∈O(3)

∥ΩA − A∥F (6.29)

Where ∥·∥F denotes the Frobenius norm. The solution was first solved by Peter
Schonemann [43]. The problem is equivalent to

min
R∈O(3)

∥R − M∥F (6.30)

where M = AAT . Then to find the matrix R, the singular value decomposition
is taken of M:

M = AΣAT (6.31)

and then
R = AAT (6.32)

54Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

The proof is as follows:

R = arg min
Ω∈O(3)

∥ΩA − B∥2
F

= arg min
Ω∈O(3)

⟨ΩA − B, ΩA − B⟩F

= arg min
Ω∈O(3)

∥ΩA∥2
F +∥B∥2

F − 2⟨ΩA, B⟩F

= arg min
Ω∈O(3)

∥A∥2
F +∥B∥2

F − 2⟨ΩA, B⟩F

= arg max
Ω∈O(3)

⟨Ω, BAT ⟩F

= arg max
Ω∈O(3)

⟨Ω, UΣV T ⟩F

= arg max
Ω∈O(3)

⟨UT ΩV, Σ⟩F

= arg max
Ω∈O(3)

⟨S, Σ⟩F

(6.33)

As S is an product of orthogonal matrices, S is also orthogonal, and hence the
expression is maximized when S equal the identity matrix I1, thus:

I = UT RV (6.34)

and hence
R = UVT (6.35)

Note that in Eq. 6.33, to go from step 3 to 3, the property of orthogonality was
used for Ω:

∥ΩA∥2
F = tr((ΩA)T (ΩA)) = tr(AT ΩT ΩA) = tr(AT A) =∥A∥2

F (6.36)

In order to ensure special orthogonality, the problem can be solver with

R = UΣ′VT (6.37)

Where Σ′ is diag([1, 1, det(UVT)]) which is equal to SV DO+, as in section 6.5.
For this reason, symmetric orthogonalization via SVD is sometimes referred to as
a Procrustes mapping. The solution proves that symmetric orthogonalization is
optimal in the least-square sense.

1Note that for orthogonal matrices, individual entries cannot have a larger absolute value than
1.

6.5. Symmetric Orthogonalization via SVD 55

6.5.3. Properties of Symmetric Srthogonalization

Special orthogonalization via SVD can be shown to be a maximum likelihood
estimate which minimizes the expected error in the presence of Gaussian Noise
[24]. Let M = Rµ +ΣN, M ∈ Rn×n be an observation of Rµ ∈ SO(n), corrupted
by noise N with entries nij ∼ N (0, 1). The probability density function of the
matrix normal distribution of the likelihood function is [15]:

L(Rµ; M , Σ) =
(

(2π)
n2
2 Σn2

)−1
exp

(
− 1

2Σ2

((
M − Rµ

)T (
M − Rµ

)))
(6.38)

The likelihood L(Rµ; M , Σ) where Rµ ∈ SO(n) is maximized when the term((
M − Rµ

)T (
M − Rµ

))
is minimized:

arg max
Rµ∈SO(n)

L(Rµ; M ; Σ) = arg min
Rµ∈SO(n)

(
M − Rµ

)T (
M − Rµ

)
= arg min

Rµ∈SO(n)

∥∥M − Rµ

∥∥2
F

(6.39)

As shown in 6.5.2, the solution is given by SV DO+(M), due to the fact that
it is optimal in the least-squares sense. Hence the SV DO+(M) is a maximum
likelihood estimate.

6.5.4. Gradients

This section is based on the findings of [24, 10].

The stability and continuity of the gradients is an important factor for stability
during training of an network. Recall the backpropagation calculation for an SVD
layer in 4.

Let P denote a singular value decomposition:

M = UΣV T (6.40)

Consider the closest orthogonal matrix:

R = UV T (6.41)

Set the loss function L as the Frobenius norm squared:

L =
∥∥∥UV T − P

∥∥∥2

F
(6.42)

56Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

This can be rewritten as(see 3.1.7):

L = tr
((

UV T − P
) (

UV T − P
))

= tr(I + PP T − 2UV T P T) (6.43)

And

tr(2UV T P T) = tr(U(P V)T) = tr(UT (P V) = tr(V UT P) (6.44)

such that:
∂L

∂U
= −2∂ tr(UV T P T)

∂U
= −2PV (6.45)

∂L

∂U
= −2∂ tr(UV T P T)

∂U
= −2P T U (6.46)

To find the gradients, recall Eq.4.47. The expressions above are the partial gra-
dients, and we can begin to insert into the expression in Eq. 4.47. Denote the
terms within the square brackets for U and V as:

C = UT ∂f

∂U
− ∂f

∂U

T

= −2(UT P T V − vT PU) (6.47)

and
D = V T ∂f

∂V
− ∂f

∂V

T

= −2(V T P T U − UT PV) (6.48)

Notice that C = −D, and insert into Eq. 4.47:

dL = U
(
F −1 ◦ CΣ

)
V T + U(Ik

∂L

∂Σ)V T + U(ΣF −1 ◦ −C)V T (6.49)

Simplifying (∂L
∂Σ = 0):

dL = U(F −1 ◦ CΣ − ΣF −1◦)V T (6.50)

By inspecting the terms F −1 ◦ CΣ and Σ(F −1 ◦ C){
F −1 ◦ CΣ

}
ij

= Cijσj

σ2
i − σ2

j

,
{

Σ(F −1 ◦ C)
}

ij
= Cijσi

σ2
i − σ2

j

(6.51)

6.5. Symmetric Orthogonalization via SVD 57

Define Z = (F ◦ C)Σ − Σ(F ◦ C) and

∂L

∂M = UZV T (6.52)

where

Zij =

−Cij

σi+σj
, if i ̸= j

0, if i = j
(6.53)

From Eq. 6.53 it is clear that the gradient for SV DO(M) is undefined it two
singular values are zero, or very large when a sum of two singular values is near
zero. Extending the analysis to SV DO+ is the same if det (M) > 0. For the other
case of det M < 0 there is an extra factor of D = diag(1, 1, . . . , −1), which changes
the last singular values sign. The denominator in Eq. 6.53 is either σi − σn or
σn − σj if either of i or j is equal to n. This causes the gradient to be undefined
if the samllest singular value is equal to another singular value. The gradient is
also large if another singular value is near the smallest.

The calculations above shows that both SV DO and SV DO+ are continuous and
differentiable, except for the discontinuity if the determinant det(M) < 0 and the
smallest singular value has a multiplicity of maximum 1. These conditons are rare
for small matrices such as a 3 × 3 rotation matrix.

6.5.5. Comparison with Gram-Schmidt

The Gram-Schmidt orthogonalization in 6D can be seen as a degenerate case of
SV DO+, expressed as the limit:

GS6D(M) = lim
a→0+

arg min
R∈SO(3)

∥∥∥∥∥∥∥R
1 0

0 α
0 0

− M

∥∥∥∥∥∥∥
2

F

(6.54)

The proof is illustrated in [6]. Solving this optimization problem for a given α is

equivalent to solving the Procrustes problem, considering M
(

1 0 0
0 α 0

)
∈ R3×3

as the input. This shows that both mappings share some properties, except that
the 6D Gram-Schmidt mapping almost exclusively gives importance to the first
column of M, and is only well defined when its rank is 2. For further details about
the connection, see [6].

58Chapter 6. Mappings from Real Euclidean Space to Special Orthogonal Group

6.6. Summary
Table 6.1 summarizes the different mapping functions discussed and how they
relate to the desirable properties set forth by Brégier [6], which recommends
SV DO+ as the mapping function.

Domain Surjective & differntiable Full rank Jacobian Connected/convex pre-images
Euler Angles R3 ✓ × ×
Quaternion R3 ✓ ✓ ×

GS-6D R3×2 ✓ ✓ ✓
SV DO+ R3×3 ✓ ✓ ✓

Table 6.1.: Table showcasing which of the desirable properties each mapping
function satisfies. Adopted from [6]

Chapter 7.

Experiments

The following chapter includes a showcase and explanation of the data sets and
pre-processing, before explaining the experiments. Four experiments were con-
ducted, each related to rotations pose estimation in 3D, in addition to an extra
pose refinement test. The goal of the experiments is to find out the potential of
special orthogonalization with SVD as a rotation representation in deep learning.

All the models were written in PyTorch [38], which includes an off-the-shelf solver
for singular value decomposition. PyTorch also has the feature of “AutoGrad“
which automatically calculates the gradients in the backward pass for any op-
eration induces in the forward pass. This eases the troubles of comparing the
rotation representations, as the back-propagation is not required to implement
manually. All the models were trained on NTNUs high performance cluster [44],
which allowed for multi-GPU training. The training procedure is time-consuming
and hence only the first experiment includes all the rotation representations. Af-
ter, the main focus is on the perfomance of symmetric orthogonalization SV DO+.
The code can be viewed on github.

7.1. Datasets

7.1.1. ModelNet

ModelNet10 [51] is a data set containing 4899 instances of 3D CAD models from
10 different categories. The different models are seperated into a train set 80% and
a test set 20%. As the samples come in CAD models, they need to be rendered.
The usual goal of the data set is to for classification, but in this case it is used for
pose estimation regression w.r.t the reference point (i.e., camera). The 3D CAD
objects be turned into point clouds, or rendered into 2D images.

The classes for ModelNet10 are everyday household items such as a toilet, sofa,

https://github.com/henrikgruner/PoseEstimation

60 Chapter 7. Experiments

desk, bed et cetera. One object from each category is shown in Figure 7.1 with a
rotation matrix:

R =

 0.5 0
√

3
2

0 1 0
−

√
3

2 0 0.5

 (7.1)

The 3D CAD objects can also be use for creating point clouds. A point cloud is
a collection of nodes samples from the models. Each point cloud is on the form
RN×3 where N is the number of nodes, and 3 is from each nodes position x, y, z.
Four samples of point clouds are illustrated in Figure 7.2.

Dresser
Bathtub

Desk
Table

Toilet
Sofa Night stand Monitor

Bed

Chair

Figure 7.1.: All ten classes from ModelNet10 [51], rendered by me.

Figure 7.2.: Example of point clouds from ModelNet10 with 2500 sampled
nodes.

As rendering is a task with a lot of different parameters (such as the position-
ing, intensity, and cone shape of lighting, the size of the objects et cetera), Liao,
Gavves, and Snoek created ModelNet10-SO(3)[27], for an ease of comparison be-
tween different models. This was used for 3D pose estimation regression to ensure
a fair comparison. The pre-rendered data set includes the class label and annota-

7.2. Comparison test 61

tions for the rotation matrix. The data set was created by rendering 100 images
from every object per class in the train set, and 4 from the test set.

7.1.2. UPNA

The UPNA head pose data set [4] is a data set for head tracking and position
estimation. The data set consist of 120 videos of 10 subjects (6 men and 4 females),
with synchronized labels for key points, rotations, and translations. Figure 7.3
shows four samples from the data set:

Figure 7.3.: Four samples from the UPNA
head pose data set [4]

Figure 7.4.: The rotation
axes for a human head. Fig-
ure taken from [4]

7.2. Comparison test
A comparison between the mappings was conducted by generating random rota-
tion matrices and transforming a coordinate system. The transformed system was
used as input, and the goal was to regress the rotation matrix. This can be viewed
as an auto-encoder, as the initial coordination system is the identity matrix. This
means that the transformed coordinates is the same as the rotation matrix.

Three variants of the experiment was conducted, where the difference was the
maximum allowed rotation around each axis. The limit was 45, 90 and 180 degrees.
For each experiment 30 000 random rotations were generated and a batch size of
64 was used. The models were trained until the learning stagnated for all networks
in case some of the representations took longer to learn. The learning rate was
initially set to 0.01, but was halved for every tenth epoch beginning starting from
epoch 20.

The neural network used for this task was a simple feed forward network with two

62 Chapter 7. Experiments

hidden layers. The input is a coordination system in 3D, i.e., a 3×3 matrix, which
is flattened into 1 × 9. The first hidden layer has a size of 128 neurons, whereas
the second has only 64. The output layer dimension varies according to the given
rotation representation. The output is then parameterized to SO(3) before the
loss function is applied for back-propagation. The Frobenius norm was used for
all models as the loss function. The network architecture is illustrated in Figure
7.5.

Input
Size 64

Output

Size 128

Parametrization

Flatten

Size 9

3x3

Figure 7.5.: The network architecture for the preliminary experiment. Notice
how the output layer varies in dimensions due to the different parametrization
methods.

The following rotation representations with the network output f dimension are
as follows:

1. Euler angles: f ∈ R3

2. Quaternions: f ∈ R4

3. Gram Schmidt orthogonalizaion in 5D: f ∈ R5

4. Gram Schmidt orthogonalization in 6D: f ∈ R6

5. Symmetric orthogonalization via SVD: f ∈ R9

6. Direct regression without orthogonalization: f ∈ R9. This is a true rota-
tion representation, as there is no guarantee it will be orthogonal. It is
included nonetheless to see how well the network is able to perform without
a parametrization function. The output is simply reshaped into 3 × 3.

All the models use stochastic gradient descent with an initial learning rate of
0.01, which is halved every tenth epoch beginning from the 20th. The evaluation
metric used is the mean angle error between the output rotation matrix and the

7.3. 3D Head Pose Estimation from 2D images of humans 63

target. Note that for the direct regression, there are errors. Recall the angle error
formula:

θ = arccos tr R − 1
2 (7.2)

As the trace of R is not guaranteed to be smaller than 2 due to the orthogonality
constraint breached. For this reason, the value inside the arccos was clamped
to [−1, 1] for the direct regression, which is not a correct procedure. As will be
shown, this has no true effect on the outcome.

7.3. 3D Head Pose Estimation from 2D images of
humans

7.3.1. Setup & Pre-Processing

The pre-processing procedure is the same as in [36]. From the key point labels,
a bounding box for the face is created for each image, effectvely capturing just
the face. Afterwards, a small random perturbation of the given bounding box is
performed. This allows one to augment the data set, as the original data set is
quite limited. Figure 7.6 shows one sample from the data set cropped to the size
224 × 224 with the rotation matrix:

Figure 7.6.: One sample from the UPNA
data set cropped to 224 × 224.

R =

0.9346 0.3536 0.0378
0.3449 −0.9272 0.1459
0.0866 −0.1233 −0.9886

64 Chapter 7. Experiments

7.4. 3D Pose Estimation from 2D Images
The 3D pose estimation task is to predict the pose of an object compared to a
standard reference pose from a single 2D image. Depending on the max allowed
rotation, this is seen as a difficult problem. The data set used is the ModelNet10-
SO(3) [27], which allows all rotations in R ∈ SO(3). Earlier attempts to solve
this task on the ModelNet10-SO(3) data set has been made by [27, 36, 24]. [27]
uses quaternions as the rotation representation and discretizeses the angle error
output into bins rather than directly regressing. These bins are normalized and
used as a probability distribution. Mohlin, Bianchi, and Sullivan attempts to
overcome this issue by using a neural network to output the parameters for a
matrix Fisher distribution. Levinson et al. trains a standard ResNet-50 [17] for
the same rotation representations presented in this paper, but omits the classes
exhibiting rotational symmetry, whilst these are included for this experiment.

As the ResNet-RS has significant improvements over the out-dated ResNet, the
experiment is redone in this paper. A ResNet-RS101 is employed for the task and
both symmetric orthogonalization via SVD and Gram Schmidt 6D are tested as a
rotation representation. The network is trained on all ten classes, and tested per
class afterwards for the median and the mean. In addition the accuracy of the
mean angle error beneath three thresholds of 30, 15, and 7.5 degrees is quoted.

7.4.1. Network Architecture

The network architecture used for the 3D regression task was ResNet-RS101 [5].
The network achieved a top-1 accuracy of 84 % on ImageNet, making it state
of the art in image recognition. Even though this experiment is to regress for
rotation matrices, and not for classification purposed, pretrained weights were
used. This is to utilize the potential of transfer learning, as the already trained
ResNet-RS already has managed to learn and extract a variety of filter maps. The
pre-trained weights works as a boot-strap for the training process and significantly
decreases the training time. The last layer of the network is modified into a feed
forward network with the size of 2048 and outputs the dimension suitable for the
rotation representation.

The general architecture with symmetric orthogonalization as mapping is shown
in Figure 7.7. A rotated object is rendered and used as an image which is fed
through the 101 layers of ResNet-RS. The output is flattened and used as input to
a feed forward network which reduces the dimensionality suitable for the rotation
representation. Then the orthogonalization process takes place, until the loss is
finally calculated with the Frobenius norm.

7.5. 3D Iterative Pose alignment 65

[1 x 2048]

Resnet-RS101

[3 x 3]

Fully connected
layer

[1 x 9]

101
layers

Model
input

Parametrization to
SO(3)

SVD
U

SO(3)

VT
Σ

VT
UΣ'VT

Frobenius Loss

Figure 7.7.: A general overview of a typical network architecture with orthogo-
nalization step. This figure shows symmetric orthogonalization via SVD.

7.5. 3D Iterative Pose alignment
The last and final experiment is an extra to test whether the symmetrical orthog-
onalization with SVD has the ability to reduce the estimated errors even further.

Whereas the 3D object pose estimation is an harder problem, the 3D iterative
pose aligment problem is able to improve the initial guesses made by the other
network.

The process can be viewed as an refinement process for a pose estimation process.
Consider two images: the ground truth pose Igt and an initial guess Ii. The goal
is to find the transformation matrix R that maps the object to the camera by
estimating the relative rotation and translation between the initial guess and the
ground truth.

The network architecture is inspired by DeepIM [25] and the CosyPose Model
[22]. There are differences however. Both DeepIM and CosyPose are models for
pose estimation in 6D, i.e., both rotations and translations. Further, DeepIM
uses quaternions as the rotation parametrization and CosyPose utilizes the 6D
Gram-Schmidth orthogonalization.

This experiment is a simple to showcase the potency of the model architectures. A
neural network takes both the ground truth and the initial guess input, including
a depth map for the ground truth. A depth map is simply an image with higher
intensity the closer the object is. The input is sent through the network with
and outputs a vector of size R9. These are then parametrizes to SO(3). The new
rotation matrix estimate is RinitRi. The rotation matrix is combined with a fixed

66 Chapter 7. Experiments

translation vector, and used to create the transformation matrix. This is then
used in turn to render a new image of the object, and the procedure is repeated.
This is done k times, or until a certain threshold is reached.

The Frobenius loss was replaced with the loss function ADDL1-loss. The reason
is that ADDL1-loss uses the randomly sampled nodes from the 3D CAD object.
These nodes are then transformed them with the initial guess and the ground
truth, and the distance between each node is calculated and averaged as loss.

ADD − 1 = 1
Hl

∑
h

∥∥∥TXh
l − T̂Xh

l

∥∥∥
2

(7.3)

T̂ is the estimated transformation matrix, and T is the ground truth. Hl is the
number of sampled nodes for object l, which was set to 750 for every object in
this experiment.

As rendering is a time-consuming and CPU-heavy process, only a maximum of
two iterations per epoch was used. The model was only trained on the chair
class for the ModelNet10 data set. The model was first trained on on the initial
guesses for 100 epochs, then another the number of iterations were turned up to
2 for another 100 epochs.

7.5.1. Network Architecture

The network architecture is the same as for 3D pose estimation with a few mod-
ifications. Instead of using the ResNet-RS101, the original ResNet101 was used
instead. The reason is that the input consists of seven channels, making it hard
to utilize the pretrained weights of ResNet-RS. There was however a modification
implemented in PyTorch making it possible to adapt the original ResNet101 with
pretrained weights for a chosen number of channels[37].

7.5. 3D Iterative Pose alignment 67

Current
guess

Ground
truth

[1 x 2048]

Resnet-RS101

[3 x 3]

Fully connected
layer

[1 x 9]

101
layers

Model
input

Parametrization to
SO(3)

SVD
U

SO(3)

VT
Σ

VT
UΣ'VT

Frobenius Loss

TCO

TGT

L
t

10

t
0
R

1

R

Render per iteration

Figure 7.8.: The network architecture for the last experiment. The initial guess
is used to render an 2D image, which is combined with the ground truth image.
The combination, as well as a depth map, is used as input for the neural network.
Parametrization with SVD is used to map to SO(3). The rotation matrix is com-
bined with a fixed translation, and another image is rendered and the procedure
begins from start, with the rendered image as initial guess.

Chapter 8.

Results and discussion

The following chapter showcases the results for all the experiments. Each experi-
ment is shown in a separate section, with the following discussion.

8.1. Comparison Test for Mapping Functions
The comparison test gave insights into how the different rotation representation
mappings perform. Table 8.1 shows the mean angle error for every rotation rep-
resentation after 50 epochs for a maximum rotation of 45, 90, and 180 degrees for
the test set. There are significant differences in training loss and the outcome of
the test set; both are showcased.

Max Rot 45 90 180
Direct >100 >100 >100
Euler 0.67 3.3 23.33

Quaternion 0.39 0.62 2.42
GS-5D 0.59 0.85 1.11
GS-6D 0.43 0.63 0.91
SVD 0.38 0.53 0.72

Table 8.1.: Mean angle errors for the preliminary experiment for every rotation
representation for max rotations of 45, 90 and 180 degrees. Symmetric orthogo-
naliaztion via SVD consistently outperforms for any maximum rotation. Further,
notice that the perfomance of quaternions is second best for maximum rotation as
45 and 90 degrees, and the true potency of Gram-Schmidt is not exhibited before
the rotations are a maximum of 180 degrees.

Figures 8.1, 8.3, 8.5 shows the mean angle error in degrees for all epochs during
the training. To differentiate between the models at the end of the training, the
Figures 8.2, 8.4 and 8.6 shows the last 25 epochs with a maximum angle error of

70 Chapter 8. Results and discussion

0.8 degrees. Direct regression has an extremely poor perfomance, which makes
the need for a rotation representation evident.

Further it is clear that the Euler angles are consistently out-performed, especially
for rotations above 45 degrees. What is surprising is that the quaternions ac-
tually outperforms the 5D Gram-Schmidt orthogonalization representations for
every rotation during the training. However, the results for the test set in Table
8.1, it is the opposite. This might indicate some over-fitting for the quaternions.
For the test set, the trend is as expected. Euler performs the worst, quaternions
second, then the Gram-Schmidt orthogonaliation in 5D and 6D respectively, and
finally symmetric orthogonalization consistently outperforms all the other repre-
sentations.

Figure 8.1.: The mean angle error between the true rotation matrix R and the
estimated R̂ with rotations up to 45 per axis. Notice how direct regression is
extremely poor, hence yielding solid evidence for the need of a rotation represen-
tation layer.

8.1. Comparison Test for Mapping Functions 71

Figure 8.2.: The mean angle error between the true rotation matrix restricted
to 0-4 degrees from epoch 25-50 with rotations up to 45 per axis. It is clear that
the SVD has the best performance, and Euler angles the worst.

Figure 8.3.: The mean angle error between the true rotation matrix R and the
estimated R̂ with rotations up to 45 per axis. The trend of superiority of SVD
continues, whereas Euler angles still has the worst performance.

72 Chapter 8. Results and discussion

Figure 8.4.: The mean angle error between the true rotation matrix restricted
to 0-4 degrees from epoch 25-50 with rotations up to 90 per axis.

Figure 8.5.: The mean angle error between the true rotation matrix R and the
estimated R̂ with rotations up to 180 per axis. SVD still has the best perfor-
mance, whilst Euler angles stagnates with a mean angle error of 40 degrees. This
hightlights how bad the Euler angles are as a representation for rotations, as it
cannot even learn to map the income to itself.

8.1. Comparison Test for Mapping Functions 73

Figure 8.6.: The mean angle error between the true rotation matrix restricted to
0-4 degrees from epoch 25-50 with rotations up to 180 per axis. Only the SVD and
GS-6D models was able to yield mean angle errors below 5 degrees for rotations
up to 180 degrees. This showcases that regressing for full rotations around every
axis is a difficult problem.

74 Chapter 8. Results and discussion

8.2. UPNA Head Pose
For the UPNA head pose estimation, the best obtained mean angle error was 7.49
degrees. The authors of the data set was only able to obtain an mean angle error
of 8.3, with a different test set. This test set included subjects used both in the
training and test set, meaning that the the test set employed in this experiment
is harder. Nevertheless, [36] is able to obtain a performance of 4.3 degrees, by
regressing to a Fisher matrix distribution.

The reason for the poor perfomance is likely due to the extreme learning abilities
for ResNet-RS101. The test angle was reduced to below 3 degrees within 5 epochs.
Due to the small amount of data, the model overfit. To alleviete this problem,
weigth decay was added in addition to a drop-out rate of 0.5. The Result was
an improvement to an angle error of 5.7, still lower than for [36]. It is likely that
with more optimization and hyper-parameter adjustments, the perfomance would
have improved more. Figure 8.7 shows the train and test loss for the two main
runs with SV DO+.

Figure 8.7.: The results from two of the runs on the UPNA data set. The red
line is the model without any penalization for overfitting, whereas the blue line
is the model with weight decay and drop-out rate of 0.5. Nevertheless, the angle
error never fell below 5.7 degrees.

8.3. 3D object pose estimation from 2D images 75

8.3. 3D object pose estimation from 2D images
The results from the 3D pose estimation experiments is highlighted in Table 8.3.
Comparisons are made against [36] and [27]1. The metrics used are mean and
median angle error as well as accuracy within a certain threshold. Only the main
findings are showcased in this section, with a more detailed showcase in Appendix
B.

Mean Error Median Error Accπ
6 Acc π

12 Acc π
24

VGG16+S3
exp [27] - 20.3 70.9 58.9 38.4

VGG16+S3
exp revised - 28.7 65.8 49.6 35.2

Fisher [36] - 17.1 75.7 69.3 55.2
GS-6D Adjusted 19.93 8.61 84.14 71.7 42.6
SV DO+Adjusted 18.47 7.53 85.2 73.9 49.8

Table 8.2.: Results for all ten classes in ModelNet10-SO(3). Adjusted refers to
symmetry adjustment.

8.3.1. Symmetry in the samples

Some of the classes has objects which have rotational symmetry, such as the table
class. If a table is rotated 180 degrees around, it is exactly the same. This is a
problem in 3D pose estimation, as the rotation matrices does have the same values,
except some of the signs in the rotation matrix are opposites. Hence if this is not
adjusted for, the metrics for evaluating performance will highly biased. Figure
8.8 shows the distribution of the angle errors before adjusting for the rotational
symmetry for the table class. This was adjusted for by selecting the angles above
150 degrees, then comparing the mean angle error if the objects was rotated 180
degrees around one of the axis. The reasoning is that if the objects are identical
with a 180 degree rotation it is irrelevant whether or the item is rotated around
the symmetrical axis in the real world. However, the rotation matrix will have
opposite signs in some of the entries, causing the model to be penalized due a
high loss value, when in fact, the estimation was correct.

1The original paper had an error in the calculation for the angle error. This is the adjusted
and true result of [27]. See [26] for further information.

76 Chapter 8. Results and discussion

t

x
y

z

Figure 8.8.: Distribution of angle errors before and after adjusting for symmetry.
Notice that in a) there are two modes, in each corner of the histogram. The mean is
93.33 degrees, furthering the belief that the model cannot distinguish between 180
degrees or 0 degrees, as expected. To account for this, the rotations were rotated
by 180 for the symmetrical axes when calculating the mean error. The resulting
distribution is shown in b). Figure c) shows how a table has rotational symmetry
when rotated around the z axis 180 degrees. This procedure significantly lowered
the mean angle error, as the new mean in b) is 19.83.

Figure 8.9 shows some of the estimated poses in comparison to the true pose.
For the majority of the batches, the results are very good. However, there are
still some results that are way off. Appendix B includes 100 overlays from the
predicted pose and the ground truth pose from samples in the test set. Some
outliers has an error of up to 96 degrees, which makes it difficult to use in an
industrial settings. However, as will be shown in the next sections, a refinement
process may be applied to alleviate this problem.

8.3. 3D object pose estimation from 2D images 77

5.46.77.2 1.52.04 0.6

Truth

SVD

Overlay

11.3

Figure 8.9.: The upper row shows some of the rotations in the test set of
ModelNet10-S0(3). The lower row shows the estimated rotations with the use
of symmetric orthogonalization via SVD.

Sofa Chair Toilet bed
Mn ↓ Md↓ σ ↓ Mn↓ Md↓ σ ↓ Mn↓ Md↓ σ ↓ Mn ↓ Md↓ σ ↓

[24] 18.01 7.31 33.96 21.25 11.14 30.28 - - - - -
Adjusted GS-6D 10.57 5.88 17.01 14. 8.18 20.26 9.51 6.64 12.69 11.86 6.7 18.78

Adjusted SV DO+ 15.3 5.13 35.47 15.26 6.75 28.73 9.39 5.08 21.18 23.28 5.41 48.88

Table 8.3.: Selected classes from Modelnet10 3D pose estimation results in com-
parison with [24], who only report results for the Sofa and Chair class. Mn, Md,
and σ are abbreviations for mean, median, and standard deviation.

Table Bathtub
Mn ↓ Md↓ σ ↓ Mn↓ Md↓ σ ↓

Original 93.33 97.22 73.85 79.9 34.23 75.95
Adjusted GS-6D 18.75 8.7 28.18 28.43 15.156 35.49

Adjusted SV DO+ 19.83 10.35 26.65 28.29 14.4 32.52

Table 8.4.: Example of classes with a high presence of symmetrical objects
around one or more axes. Notice how the mean of the error angle of table class
(every table in the data set is symmetrical around the y-axis.) is 90 degrees. The
error reduces to only 19.83 when this symmetry is accounted for.

78 Chapter 8. Results and discussion

8.4. Iterative 3D Pose Refinement
Figure 8.10 shows the results on some of the models from the test set. Column one
shows the ground truth, whereas column two shows the model input (the images
overlay, but the depth map is removed for visibility). The last two columns are
the first and second model guess respectively. The annotations above each overlay
shows the angle error between the poses.

The Table 8.5 shows the mean and median for the initial rotation, and the first
and second model pose estimate for the test set. The mean for the initial guess
is 15, which is not surprising as the rotations were uniformly samples with a max
degree of 30. Further, it is clear that the first guess of the model is not able to
improve the estimate. However, the second guess is able to improve the estimate
by 33% for the mean angle error, and 50% for the median.

Initial guess First model guess Second model guess
Mean Angle Error 15.05 15.07 10.09

Median Angle Error 16.99 17.04 7.94

Table 8.5.: The mean angle error for the model. The initial guess is around 15
degrees as expected, as the rotations varied random uniformly for a maximum
rotation of 30 degrees.

The model was only tested on a limited training set; hence it is very likely that
the model’s performance may be improved by more optimization. For the epochs
north of 50, the training loss quickly approached zero. The poor generalization
ability is likely due to overfitting the data. Augmenting the data set and adding
more samples will likely impact the mean error loss significantly. Further, in-
creasing the number of iterations per epoch and utilizing the refinement process
is probable to improve the models.

8.4. Iterative 3D Pose Refinement 79

GT Initial
input

First
guess

Second
Guess

27.5 27.4 7.7

25 24.4 17.3

16.8 16.9 4.23

24.8 24.9 9.15

5.5 5.7 1.83

Figure 8.10.: The refinement process for randomly selected models from the
test set. The numbers represent the angle error between the rotations. The initial
guess in column three is more often equal to the initial guess, even slightly worse.
However, there is a significant decrease in the error from columns three to four,
indicating that the refinement process is working.

Chapter 9.

Conclusion

The experiments strengthened the theoretical findings regarding the different ro-
tation representations and the potency of using singular value decomposition as
a mapping between the Euclidean space and the rotation space. The comparison
test confirmed that direct regression for rotation regression is not an option. It
further confirmed the assumption made in 6 that the Euler angles are unfit for
rotation representations due to the discontinuities and Jacobian rank deficit due
to Gimbal lock. Lastly, it showcases the superiority of the higher dimensional
methods such as Gram Schmidt 6D and the SVD orthogonalization as a mapping
function.

Moreover, a performance surpassing the comparative works was reached by utiliz-
ing SV DO+ with state-of-the-art CNN architecture such as ResNet-RS101. We
see that the SVD orthogonalization as a mapping function yields significant im-
provements over the traditional 3D image pose estimation with traditional map-
ping in [36, 27]. However, none of [36, 27, 54, 24] discusses how to deal with
rotational symmetry; instead, the works ignore the classes exhibiting it. For
classes with symmetry, this was adjusted by rotating the ground truth by 180
degrees for objects with rotational symmetry, such as the table class. The lack
of symmetry adjustment will lead to significant upwards bias in the estimation
mean and median angle error. For further work, the adjustment procedure should
be included during the training, removing the penalty for correct rotations in the
real world but incorrect rotation matrices. Taking this into account during the
training might increase the performance further.

Further, the last experiment illuminates the possibility of training an iterative
network to increase the estimate with a few iterations for a small error in an
initial guess. A natural step for further work would be to connect the two trained
networks for end-to-end pose estimation from a single 2D image and its 3D CAD
model.

82 Chapter 9. Conclusion

As always with machine learning, the results are susceptible to hyper-parameters.
Testing other optimization algorithms (e.g., Adam, RMSprop, et cetera), batch
sizes, or learning rates will likely enhance the results further. Higher resolution
images, or other network architectures can be deployed or train for more epochs
with increased data.

References

[1] Arthur Alaniz and Christina Marianne G. Mantaring. “Real-Time Camera
Pose Estimation for Virtual Reality Navigation”. In: 2010.

[2] Stephen Andrilli and David Hecker. “Chapter 1 - Vectors and Matrices”.
In: Elementary Linear Algebra (Fifth Edition). Ed. by Stephen Andrilli and
David Hecker. Fifth Edition. Boston: Academic Press, 2016, pp. 1–83. isbn:
978-0-12-800853-9. doi: https://doi.org/10.1016/B978-0-12-800853-
9.00001-3. url: https://www.sciencedirect.com/science/article/
pii/B9780128008539000013.

[3] G.B. Arfken and H.J. Weber. Mathematical Methods For Physicists Inter-
national Student Edition. Elsevier Science, 2005. isbn: 9780080470696. url:
https://books.google.no/books?id=tNtijk2iBSMC.

[4] Mikel Ariz, José J. Bengoechea, Arantxa Villanueva, and Rafael Cabeza.
“A novel 2D/3D database with automatic face annotation for head tracking
and pose estimation”. In: Computer Vision and Image Understanding 148
(2016). Special issue on Assistive Computer Vision and Robotics - "Assistive
Solutions for Mobility, Communication and HMI", pp. 201–210. issn: 1077-
3142. doi: https://doi.org/10.1016/j.cviu.2015.04.009. url: https:
//www.sciencedirect.com/science/article/pii/S1077314215000934.

[5] Irwan Bello, William Fedus, Xianzhi Du, Ekin D. Cubuk, Aravind Srinivas,
Tsung-Yi Lin, Jonathon Shlens, and Barret Zoph. Revisiting ResNets: Im-
proved Training and Scaling Strategies. 2021. doi: 10.48550/ARXIV.2103.
07579. url: https://arxiv.org/abs/2103.07579.

[6] Romain Brégier. Deep Regression on Manifolds: A 3D Rotation Case Study.
2021. doi: 10.48550/ARXIV.2103.16317. url: https://arxiv.org/abs/
2103.16317.

[7] Mai Bui, Tolga Birdal, Haowen Deng, Shadi Albarqouni, Leonidas Guibas,
Slobodan Ilic, and Nassir Navab. 6D Camera Relocalization in Ambiguous
Scenes via Continuous Multimodal Inference. 2020. doi: 10.48550/ARXIV.
2004.04807. url: https://arxiv.org/abs/2004.04807.

https://doi.org/https://doi.org/10.1016/B978-0-12-800853-9.00001-3
https://doi.org/https://doi.org/10.1016/B978-0-12-800853-9.00001-3
https://www.sciencedirect.com/science/article/pii/B9780128008539000013
https://www.sciencedirect.com/science/article/pii/B9780128008539000013
https://books.google.no/books?id=tNtijk2iBSMC
https://doi.org/https://doi.org/10.1016/j.cviu.2015.04.009
https://www.sciencedirect.com/science/article/pii/S1077314215000934
https://www.sciencedirect.com/science/article/pii/S1077314215000934
https://doi.org/10.48550/ARXIV.2103.07579
https://doi.org/10.48550/ARXIV.2103.07579
https://arxiv.org/abs/2103.07579
https://doi.org/10.48550/ARXIV.2103.16317
https://arxiv.org/abs/2103.16317
https://arxiv.org/abs/2103.16317
https://doi.org/10.48550/ARXIV.2004.04807
https://doi.org/10.48550/ARXIV.2004.04807
https://arxiv.org/abs/2004.04807

84 References

[8] Hui Cheng and K. C. Gupta. “An Historical Note on Finite Rotations”.
In: Journal of Applied Mechanics 56.1 (Mar. 1989), pp. 139–145. issn: 0021-
8936. doi: 10.1115/1.3176034. eprint: https://asmedigitalcollection.
asme.org/appliedmechanics/article-pdf/56/1/139/5460585/139_1.
pdf. url: https://doi.org/10.1115/1.3176034.

[9] Christopher Clapham and James Nicholson. Fundamental Theorem of Al-
gebra. 2009. doi: 10.1093/acref/9780199235940.013.1201. url: https:
//www.oxfordreference.com/view/10.1093/acref/9780199235940.
001.0001/acref-9780199235940-e-1201.

[10] Olav Egeland. “Optimization”. unpublished. 2022.
[11] L. Euler. “Problema algebraicum ob affectiones prorsus singulares memora-

bile. Commentatio 407 indicis Enestrœmiani, Novi commentarii academiæ-
scientiarum Petropolitanæ”. it. In: L.Euleri Opera Omnia, 1st series, Vol.
6 (1770), pp. 287–315.

[12] Zan Gojcic, Caifa Zhou, Jan D. Wegner, Leonidas J. Guibas, and Tolga
Birdal. Learning multiview 3D point cloud registration. 2020. doi: 10.48550/
ARXIV.2001.05119. url: https://arxiv.org/abs/2001.05119.

[13] Ian J. Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. Cambridge, MA, USA: MIT Press,
2016.

[14] Henrik Grüner. “Regularization in machine learning based on mirror de-
scent”. unpublished. 2021.

[15] Arjun Kumar Gupta and D. K Nagar. Matrix variate distributions. Chap-
man & Hall/CRC, 2000.

[16] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. 2nd ed. New York, NY, USA: Cambridge University Press,
2003. isbn: 0521540518.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2015. doi: 10.48550/ARXIV.1512.03385.
url: https://arxiv.org/abs/1512.03385.

[18] Suzana Herculano-Houzel. “The human brain in numbers: a linearly scaled-
up primate brain”. In: Frontiers in human neuroscience 3 (2009), p. 31.

[19] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu. “Training deep
networks with structured layers by matrix backpropagation”. In: arXiv preprint
arXiv:1509.07838 (2015).

[20] Mehdi Jafari and Yusuf Yayli. “Generalized quaternions and rotation in
3-space 3”. In: space 4 (2012), p. 2.

https://doi.org/10.1115/1.3176034
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/56/1/139/5460585/139_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/56/1/139/5460585/139_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/56/1/139/5460585/139_1.pdf
https://doi.org/10.1115/1.3176034
https://doi.org/10.1093/acref/9780199235940.013.1201
https://www.oxfordreference.com/view/10.1093/acref/9780199235940.001.0001/acref-9780199235940-e-1201
https://www.oxfordreference.com/view/10.1093/acref/9780199235940.001.0001/acref-9780199235940-e-1201
https://www.oxfordreference.com/view/10.1093/acref/9780199235940.001.0001/acref-9780199235940-e-1201
https://doi.org/10.48550/ARXIV.2001.05119
https://doi.org/10.48550/ARXIV.2001.05119
https://arxiv.org/abs/2001.05119
http://www.deeplearningbook.org
https://doi.org/10.48550/ARXIV.1512.03385
https://arxiv.org/abs/1512.03385

References 85

[21] Abhijit Kundu, Yin Li, and James M. Rehg. “3D-RCNN: Instance-Level
3D Object Reconstruction via Render-and-Compare”. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (2018), pp. 3559–
3568.

[22] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef Sivic. Cosy-
Pose: Consistent multi-view multi-object 6D pose estimation. 2020. doi: 10.
48550/ARXIV.2008.08465. url: https://arxiv.org/abs/2008.08465.

[23] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit
database”. In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist
2 (2010).

[24] Jake Levinson, Carlos Esteves, Kefan Chen, Noah Snavely, Angjoo Kanazawa,
Afshin Rostamizadeh, and Ameesh Makadia. An Analysis of SVD for Deep
Rotation Estimation. 2020. doi: 10.48550/ARXIV.2006.14616. url: https:
//arxiv.org/abs/2006.14616.

[25] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox. “DeepIM: Deep
Iterative Matching for 6D Pose Estimation”. In: International Journal of
Computer Vision 128.3 (Nov. 2019), pp. 657–678. doi: 10.1007/s11263-
019-01250-9. url: https://doi.org/10.1007%2Fs11263-019-01250-9.

[26] Shuai Liao, Efstratios Gavves, and Cees G. M. Snoek. Correction for the
Mean Angle Error calculation. 2022. url: https://github.com/leoshine/
Spherical_%20Regression..

[27] Shuai Liao, Efstratios Gavves, and Cees G. M. Snoek. Spherical Regres-
sion: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres.
2019. doi: 10.48550/ARXIV.1904.05404. url: https://arxiv.org/abs/
1904.05404.

[28] Bisharah Libbus, Gordon Simons, and Yi-Ching Yao. “Rotating Multiple
Sets of Labeled Points to Bring Them Into Close Coincidence: A General-
ized Wahba Problem”. In: The American Mathematical Monthly 124 (2017),
pp. 149–160.

[29] Kevin M. Lynch and Frank C. Park. Modern Robotics: Mechanics, Planning,
and Control. 1st. USA: Cambridge University Press, 2017. isbn: 1107156300.

[30] Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Ap-
plications in Statistics and Econometrics. Second. John Wiley, 1999. isbn:
0471986321 9780471986324 047198633X 9780471986331.

[31] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. “Pose Estimation
for Augmented Reality: A Hands-On Survey”. In: IEEE Transactions on
Visualization and Computer Graphics 22.12 (2016), pp. 2633–2651. doi:
10.1109/TVCG.2015.2513408.

https://doi.org/10.48550/ARXIV.2008.08465
https://doi.org/10.48550/ARXIV.2008.08465
https://arxiv.org/abs/2008.08465
https://doi.org/10.48550/ARXIV.2006.14616
https://arxiv.org/abs/2006.14616
https://arxiv.org/abs/2006.14616
https://doi.org/10.1007/s11263-019-01250-9
https://doi.org/10.1007/s11263-019-01250-9
https://doi.org/10.1007%2Fs11263-019-01250-9
https://github.com/leoshine/Spherical_%20Regression.
https://github.com/leoshine/Spherical_%20Regression.
https://doi.org/10.48550/ARXIV.1904.05404
https://arxiv.org/abs/1904.05404
https://arxiv.org/abs/1904.05404
https://doi.org/10.1109/TVCG.2015.2513408

86 References

[32] F. Landis Markley. “Attitude determination using vector observations and
the singular value decomposition”. In: Journal of The Astronautical Sciences
36 (1988), pp. 245–258.

[33] Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas im-
manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4
(1943), pp. 115–133.

[34] Xiaoli Meng, Heng Wang, and Bingbing Liu. “A Robust Vehicle Localiza-
tion Approach Based on GNSS/IMU/DMI/LiDAR Sensor Fusion for Au-
tonomous Vehicles”. In: Sensors 17.9 (2017). issn: 1424-8220. doi: 10.3390/
s17092140. url: https://www.mdpi.com/1424-8220/17/9/2140.

[35] Thomas P. Minka. Old and New Matrix Algebra Useful for Statistics. Tech.
rep. 2001.

[36] D. Mohlin, G. Bianchi, and J. Sullivan. Probabilistic orientation estimation
with matrix Fisher distributions. 2020. doi: 10.48550/ARXIV.2006.09740.
url: https://arxiv.org/abs/2006.09740.

[37] Akash Palrecha. MultiChannel ResNet implementation for PyTorch. 2022.
url: https://github.com/akashpalrecha/Resnet-multichannel.

[38] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Advances in Neural Informa-
tion Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc.,
2019, pp. 8024–8035. url: http://papers.neurips.cc/paper/9015-
pytorch- an- imperative- style- high- performance- deep- learning-
library.pdf.

[39] Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cook-
book. Version 20121115. Nov. 2012. url: http://www2.imm.dtu.dk/pubdb/
p.php?3274.

[40] Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activa-
tion Functions. 2017. arXiv: 1710.05941 [cs.NE].

[41] O. Rodrigues. “Des lois géométriques qui régissent les déplacements d’un
système solide dans l’espace, et de la variation des coordonnées provenant
de ces déplacements considérés indépendamment des causes qui peuvent les
produire.” fre. In: Journal de Mathématiques Pures et Appliquées (1840),
pp. 380–440. url: http://eudml.org/doc/234443.

https://doi.org/10.3390/s17092140
https://doi.org/10.3390/s17092140
https://www.mdpi.com/1424-8220/17/9/2140
https://doi.org/10.48550/ARXIV.2006.09740
https://arxiv.org/abs/2006.09740
https://github.com/akashpalrecha/Resnet-multichannel
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www2.imm.dtu.dk/pubdb/p.php?3274
http://www2.imm.dtu.dk/pubdb/p.php?3274
https://arxiv.org/abs/1710.05941
http://eudml.org/doc/234443

References 87

[42] Ashutosh Saxena, Justin Driemeyer, and A. Ng. “Learning 3-D object ori-
entation from images”. In: 2009 IEEE International Conference on Robotics
and Automation (2009), pp. 794–800.

[43] Peter Schönemann. “A generalized solution of the orthogonal procrustes
problem”. In: Psychometrika 31.1 (1966), pp. 1–10. url: https://EconPapers.
repec.org/RePEc:spr:psycho:v:31:y:1966:i:1:p:1-10.

[44] Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. EPIC:
An Energy-Efficient, High-Performance GPGPU Computing Research In-
frastructure. 2019. arXiv: 1912.05848 [cs.DC].

[45] Hao Su, Charles R. Qi, Yangyan Li, and Leonidas J. Guibas. “Render for
CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered
3D Model Views”. In: 2015 IEEE International Conference on Computer
Vision (ICCV). 2015, pp. 2686–2694. doi: 10.1109/ICCV.2015.308.

[46] Jonathan Tremblay, Thang To, Balakumar Sundaralingam, Yu Xiang, Di-
eter Fox, and Stan Birchfield. Deep Object Pose Estimation for Semantic
Robotic Grasping of Household Objects. 2018. doi: 10.48550/ARXIV.1809.
10790. url: https://arxiv.org/abs/1809.10790.

[47] Shubham Tulsiani and Jitendra Malik. Viewpoints and Keypoints. 2014. doi:
10.48550/ARXIV.1411.6067. url: https://arxiv.org/abs/1411.6067.

[48] Charles F Van Loan and G Golub. “Matrix computations (Johns Hopkins
studies in mathematical sciences)”. In: Matrix Computations (1996).

[49] Grace Wahba. “A Least Squares Estimate of Satellite Attitude”. In: SIAM
Review 7.3 (1965), pp. 409–409. doi: 10.1137/1007077. eprint: https:
//doi.org/10.1137/1007077. url: https://doi.org/10.1137/1007077.

[50] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martín-Martín, Cewu Lu, Li
Fei-Fei, and Silvio Savarese. DenseFusion: 6D Object Pose Estimation by
Iterative Dense Fusion. 2019. doi: 10.48550/ARXIV.1901.04780. url:
https://arxiv.org/abs/1901.04780.

[51] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xi-
aoou Tang, and Jianxiong Xiao. “3D ShapeNets: A deep representation for
volumetric shapes”. In: 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015, pp. 1912–1920. doi: 10.1109/CVPR.
2015.7298801.

[52] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and Dieter Fox. “PoseCNN:
A Convolutional Neural Network for 6D Object Pose Estimation in Clut-
tered Scenes”. In: 2018.

[53] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. Aug. 28,
2017. arXiv: cs.LG/1708.07747 [cs.LG].

https://EconPapers.repec.org/RePEc:spr:psycho:v:31:y:1966:i:1:p:1-10
https://EconPapers.repec.org/RePEc:spr:psycho:v:31:y:1966:i:1:p:1-10
https://arxiv.org/abs/1912.05848
https://doi.org/10.1109/ICCV.2015.308
https://doi.org/10.48550/ARXIV.1809.10790
https://doi.org/10.48550/ARXIV.1809.10790
https://arxiv.org/abs/1809.10790
https://doi.org/10.48550/ARXIV.1411.6067
https://arxiv.org/abs/1411.6067
https://doi.org/10.1137/1007077
https://doi.org/10.1137/1007077
https://doi.org/10.1137/1007077
https://doi.org/10.1137/1007077
https://doi.org/10.48550/ARXIV.1901.04780
https://arxiv.org/abs/1901.04780
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2015.7298801
https://arxiv.org/abs/cs.LG/1708.07747

88 References

[54] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao Li. On the
Continuity of Rotation Representations in Neural Networks. 2018. doi: 10.
48550/ARXIV.1812.07035. url: https://arxiv.org/abs/1812.07035.

https://doi.org/10.48550/ARXIV.1812.07035
https://doi.org/10.48550/ARXIV.1812.07035
https://arxiv.org/abs/1812.07035

Appendix A.

Supplementary material

A.1. Convolutions
This section comes from the theoretical sections of the preliminary studies [14].

Let I(i,j) be an image, and K(i,j) be the kernel. Then the discrete convolution
over the image is denoted as:

I(i, j) ∗ K(i, j) =
∑
m

∑
n

I(i − m, j − n)K(m, n) (A.1)

where ∗ denotes the convolutional operator. A more intuitive explanation is that
for each pixel in the input image I, the border-pixels are element-wise multiplied
to the kernel. Visually, this can be imagined as the kernel hovers over the pixel in
focus, and the elements that match up is multiplied and summed up, resulting in
the output pixel. The process for a 5x5 image with 3x3 kernel is shown in Figure
A.1.

90 Appendix A. Supplementary material

Figure A.1.: Convolution on 5x5 image, with 3x3 kernel size: Upper right is
the first convolution. As can be seen, the elements adjacent to the main value is
element-wise multiplied with the kernel. The kernel is the Laplacian kernel, which
is frequently used for edge detection

Padding

Note that the standard convolution process does not apply the kernel to the
borders. To adjust for this, padding is often used. This means that artificial cells
filled with zeros are put around the border of the image. Figure A.2 shows how
the same 3x3 kernel is applied to the 5x5 matrix with padding:

A.1. Convolutions 91

Figure A.2.: First step of a convolution on 5x5 matrix with a 3x3 Laplacian
kernel with padding = 1.

Stride

Stride is how far the filter moves then computing the next pixel. In A.1, the stride
is 1, because the filter moves to every pixel in the input image. If the stride is set
to e.g. 2, the filter will only go to every other pixel. As a consequence, stride > 1
outputs a smaller resolution image than the input.

92 Appendix A. Supplementary material

Figure A.3.: Convolution on 5x5 image with 3x3 Laplacian kernel, zero padding
and stride = 2

Appendix B.

3D Pose Estimation -
Supplementary Materials

B.1. Distribution of Angle Error
The following figures are the distribution of the angle errors between the true
rotation matrix and the estimated, adjusted for errors induced by symmetrical
properties of some of the classes. Both the rendered poses and the distributions
in the figures shown stems from the SV DO+ model.

Mean Error Median Error Accπ
6 Acc π

12 Acc π
24

Adjusted GS-6D 19.93 8.61 84.14 71.7 42.6
Adjusted SV DO+ 18.47 7.53 85.2 73.9 49.8

Table B.1.: Results for 3D pose estimation for all ten classes in ModelNet10-
SO(3) adjusted for symmetry

94 Appendix B. 3D Pose Estimation - Supplementary Materials

Figure B.1.: Overlay between ground truth pose and a rendered image using the
estimated pose from the regression. 100 random samples were taken from the test
set with all classes included. The pink is the rendered image, whereas the light
blue is the ground truth. If the figure is completely blue, the mean angle error is
around 1 degree or less. It is clear that some of the samples drastically increases
the mean. The highest angle error for the given test set was 96 degrees, and the
lowest were 0.5 degrees.

B.1. Distribution of Angle Error 95

Figure B.2.: The distribution of angle error for sofa
class

Sofa SV DO+ GS-6D
Mean ↓ 10.12 10.58
Median 5.21 5.88
Std 18.27 17.02
Acc π

6 ↑ 94.4% 93.95 %
Acc π

12 88.99% 88.59 %
Acc π

24 71.14% 63.95 %

Table B.2.: The angle er-
rors for the sofa class

Figure B.3.: The distribution of angle error for bed
class

Bed SV DO+ GS-6D
Mean ↓ 10.79 11.86
Median 5.6 6.69
Std 19.19 18.78
Acc π

6 ↑ 93.75% 93.95 %
Acc π

12 87.89% 85.59 %
Acc π

24 67.68% 57.03%

Table B.3.: The angle er-
rors for the bed class

96 Appendix B. 3D Pose Estimation - Supplementary Materials

Figure B.4.: The distribution of angle error for bathtub
class. Even adjusted for symmetry, the bathtub class was
the hardest for the model.

Bathtub SV DO+ GS
Mn ↓ 30.45 28.43
Md 14.44 13.15
Std 36.78 35.49
Acc π

6 ↑ 74% 76.5%
Acc π

12 52 % 55.6%
Acc π

24 23.3 % 24.4%

Table B.4.: The distribu-
tion of angle errors for the
bathtub class

Figure B.5.: The angle errors for the table class

Table SV DO+ GS-6D
Mean ↓ 21.32 18.75
Median 10.36 8.71
Std 30.28 28.19
Acc π

6 ↑ 84.% 86.74 %
Acc π

12 67.88% 73.94 %
Acc π

24 33.72% 41.14 %

Table B.5.: The distribu-
tion of angle errors for the
table class

B.1. Distribution of Angle Error 97

Figure B.6.: The distribution of angle errors for the toi-
let class

Toilet SV DO+ GS-6D
Mean ↓ 8.11 9.51
Median 5.35 6.64
Std 13.42 12.69
Acc π

6 ↑ 97.3 % 96.8 %
Acc π

12 93.1 % 89.19 %
Acc π

24 71.54 % 57.28% %

Table B.6.: The distribu-
tion of angle errors for the
toilet class

Figure B.7.: The distribution of angle error for desk
class

Desk SV DO+ GS-6D
Mean ↓ 27.78 30.28
Median 14.2 14.8
Std 31.71 33.7
Acc π

6 ↑ 72.48 % 70.27 %
Acc π

12 52.07 % 50.61 %
Acc π

24 23.33 % 22.28 %

Table B.7.: The angle er-
rors for the desk class

98 Appendix B. 3D Pose Estimation - Supplementary Materials

Figure B.8.: The distribution of angle error for monitor
class

Monitor SV DO+ GS-6D
Mean ↓ 14.67 21.9
Median 6.97 10.46
Std 23.5 30.25
Acc π

6 ↑ 90.15 % 82.94 %
Acc π

12 79.99 % 65.83 %
Acc π

24 54.53 % 34.22 %

Table B.8.: The angle er-
rors for the monitor class

Figure B.9.: The distribution of angle error for night
stand class

Night Stand SV DO+ GS-6D
Mean ↓ 33.57 34.2
Median 14.2 13.84
Std 38.5 38.32
Acc π

6 ↑ 67.31 % 66.67 %
Acc π

12 51.54 % 52.12 %
Acc π

24 31.18% 29.55 %

Table B.9.: The angle er-
rors for the night stand class

B.1. Distribution of Angle Error 99

Figure B.10.: The distribution of angle error for dresser
class

Dresser SV DO+ GS-6D
Mean ↓ 25.38 28.
Median 8.44 9.92
Std 35.16 36.7
Acc π

6 ↑ 76.61 % 74.52 %
Acc π

12 66.14 % 62.71 %
Acc π

24 45.26 % 37.70 %

Table B.10.: The angle er-
rors for the dresser class

Figure B.11.: The distribution of angle error for chair
class

Chair SV DO+ GS-6D
Mean ↓ 13.22 14.63
Median 6.68 8.19
Std 20.87 20.27
Acc π

6 ↑ 90.85 % 89.79%
Acc π

12 81.49 % 78.29 %
Acc π

24 56.28 % 44.12 %

Table B.11.: The angle er-
rors for the chair class

[1 x 2048]

Resnet-RS101

[3 x 3]

Fully connected
layer

[1 x 9]

101
layers

Model
input

Parametrization to
SO(3)

SVD
U

SO(3)

VT
Σ

VT
UΣ'VT

Frobenius Loss

H
enrik G

rüner

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ec
ha

ni
ca

l a
nd

 In
du

st
ria

l E
ng

in
ee

rin
g

Henrik Grüner

Rotation Representation Methods for
Pose Estimation with Deep Learning

Master’s thesis in Engineering and ICT
January 2022

M
as

te
r’s

 th
es

is

	Preface
	Summary
	Introduction and Motivation
	Related work
	Objectives

	Prerequisites
	The Adjoint Operator
	Preimage
	Surjectivity
	Injection
	Bijection
	Homeomorphism
	Image Representation

	Linear Algebra
	Definitions
	Symmetric Matrix
	Skew Symmetric Matrix
	The Hadamard Product
	The Trace of a Matrix
	Derivatives of the Trace Operator
	The Frobenious Norm
	Frobenious Inner Product
	Orthogonal set
	Orthogonal group

	Eigendecomposition
	Singular Value Decomposition
	Jacobian matrix
	Matrix differentials
	Differentials

	Artificial Neural Networks
	The Artificial Neuron
	Fully Connected Feed Forward Network
	Convolutional Neural Network
	Convolutional Operator
	The Convolutional Layer

	Learning the Parameters - intuition
	Convergence Under Empirical Risk Minimization

	Backpropagation
	Matrix Backpropagation
	Partial derivatives

	Backpropagation for a SVD layer

	Transformations and coordinate frames
	Rotation Matrix
	Properties
	Representing an Orientation
	Changing the Frame

	Comparing Rotation Matrices
	Angle error
	Geodesic Loss

	Camera Model
	The Pinhole Camera Model
	Camera Rotation and Translation

	Pose Estimation

	Mappings from Real Euclidean Space to Special Orthogonal Group
	Desired Properties
	Differentiable Mappings - Examples
	Euler Angles

	Quaternions
	Properties
	Rotation Through Quaternions

	Gram-Schmidt Orthogonalization
	5D and 6D representations of rotations

	Symmetric Orthogonalization via SVD
	Wahba's Problem
	Procrustes Problem
	Properties of Symmetric Srthogonalization
	Gradients
	Comparison with Gram-Schmidt

	Summary

	Experiments
	Datasets
	ModelNet
	UPNA

	Comparison test
	3D Head Pose Estimation from 2D images of humans
	Setup & Pre-Processing

	3D Pose Estimation from 2D Images
	Network Architecture

	3D Iterative Pose alignment
	Network Architecture

	Results and discussion
	Comparison Test for Mapping Functions
	UPNA Head Pose
	3D object pose estimation from 2D images
	Symmetry in the samples

	Iterative 3D Pose Refinement

	Conclusion
	Supplementary material
	Convolutions

	3D Pose Estimation - Supplementary Materials
	Distribution of Angle Error

