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Abstract

Does a cylinder subjected to torsion elongate or shorten?

Models using Seth-Hill strain tensors are capable of modeling both elongation and short-
ening through the use of a single parameter (m). This master thesis has investigated
different element formulations with Seth-Hill strain tensors. Both conventional elements
and assumed natural strain elements have been created based on triangular and tetrahe-
dral element geometries.

The assumed natural strain formulations give formulations capable of modeling the whole
range of the Seth-Hill strain tensors, thus giving elongation and shortening capabilities to
the element formulations. Commercial softwares often use conventional element formu-
lations. These element formulations are practical for implementing the Green-Lagrange
strain tensor (m = 1) and were used for creating a comparative basis. Two- and three-
dimensional geometries have been collected from the Abaqus software and put into an
element solver based on previous master theses. Ultimately the element formulations
have been compared for elastic and plastic conditions with different strain tensors.
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Sammendrag

Blir en sylinder kortere eller lengre nar den vris?

Modeller som bruker Seth-Hill tgyningsuttrykk evner a modellere bade forkortning og gkn-
ing ved hjelp av en parameter (m). I denne masteroppgaven har Seth-Hill tgyningsuttrykk
blitt brukt for a lage elementformuleringer for store tgyningsuttrykk. Dette ved hjelp av
bade konvensjonelle elementformuleringer og antatt naturlig tgyningsformuleringer basert
pa trekant og tetraeder analogien.

De antatt naturlig toyningsformuleringene har egenskaper som gir fritt valg tgyningstensor
(m) slik at sylinderen kan modelleres bade kortere og lengre. Dagens kommersielle pro-
gramvarer bruker i stor grad de konvensjonelle formuleringene, og for a fa et sammenlign-
ingsgrunnlag har disse ogsa blitt programmert opp med Green-Lagrange tgyning (m = 1).
To- og tredimensjonale geometrier har blitt hentet ut fra Abaqus programvaren og satt
inn i en elementsolver basert pa tidligere masteroppgaver. Deretter har formuleringene
blitt sammenlignet for elastisitet, plastisitet og t@yningstensorer.
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Notations and acronyms

Bold straight letters showcase the matrix notation, while light skew letters showcase tensor
notation.

X, E : Matrix notation

X, E - Tensor notation

Forward subscript 0 and t is used for denoting tensors, bases and other properties seen at
different times.

oA: Property A seen at time 0

¢ A: Property A seen at time t

Abbreviations and acronyms:

ANS: assumed natural strain
Conv: conventional element formulation
CST: constant strain triangle/tetrahedron
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Chapter 1

Introduction

Small strain theory is widely agreed upon for continuum mechanics and implemented
in almost all finite element software. This approach gives a quick overview of stresses,
strains, and displacements of a construction exhibiting small strains and rotations. Unlike
the small strain tensor, there is no one and true large strain tensor.

Some of the most commonly used large strain tensors are the Green-Lagrange, Loga-
rithmic/Henchy, and Eulerian/Almansi strain tensors. The Green-Lagrange strain tensor
is practical in implementations based on the undeformed description. Negative stretch
values of the Green-Lagrange strain tensor give a non-surjective function, meaning in-
finitely large compressive strains are not possible with the Green-Lagrange strain tensor.
The same can be said for the Almansi strain tensor but based on the deformed system
and elongation. The Logarithmic/Hencky strain tensor exhibits many attractive proper-
ties but is difficult to explicitly implement in finite element formulations.

The three strain tensors mentioned above can be generalized into a set of matrix poly-
nomials, forming the Seth-Hill strain tensors. B.R. Seth proposed this idea during the
1960s [1], giving infinitely many large strain tensors. R. Hill expanded the idea further
by suggesting work conjugate stresses for each strain tensor [2].

The most common way of solving partial differential equations in solid continuum me-
chanics today is through the finite element method. The finite element method assumes
displacement field and position field inside a region, giving the weak/Galerkin formula-
tion. Using the displacement and position field of the whole element for creating strain
tensors gives the conventional approach. Another approach is the Assumed Natural Strain
(ANS), assuming strain states at specified locations inside the element/region. An idea
first introduced by K. Willam [3].

The works of M. Eia et. al [4] and A. Ostebg [5] is the predecessor of this thesis, who
based their work on the methodology of C. Felippa et al. [6]. They used conventional and
ANS element formulations for expressing constant strain triangles and tetrahedrons. In
this work, ANS linear strain triangles and tetrahedrons expanded the idea of the constant
strain ANS element formulations. Different geometries were then tested in isotropic elas-
ticity and associated plasticity and compared with the conventional element formulations.
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Chapter 2

Preliminaries

2.1 Finite strain measures

In the finite element method, it is desirable to relate forces with displacements. Equa-
tion shows the rank 1. displacement tensor as a function of the deformed (;X) and
undeformed system (;X), seen at time = t and time = 0.

The change of infinitesimal material fibers is of interest when looking at deformations of
a solid. Equation shows the Lagrangian deformation gradient described through the
chain rule of the deformed solid differentiated with respect to the undeformed solid. Here
(c) follows Einstein summation and sums up to the number of dimensions.

00X
00X

5:X 506X = oFie 80X (2.2)

The Lagrangian deformation gradient (hereby called the deformation gradient) can be in-
serted into the differentiated displacements, giving the displacement gradient in Equation
2.3l (0Gi;) denotes the displacement gradient, (oF;;) the deformation gradient, and (d;;)
the Kronecker delta. The displacement gradient also follows the pattern of Equation [2.4]

ou
—— = Gy = oFy; — 045 2.3
00X 0~ij — 0 J ( )
Ou du ou
BgX BgY 8gZ g1 g4 37

0Gij = |3:x 9.y 9,2| = |92 95 Us (2.4)
ow — Ow  Ow g3 9o 9o

0o X doY 0o Z

The deformation gradient shown in Equation [2.2 can further be used for creating different
deformation measures. Equation shows the rank 2. symmetric right Cauchy-Green
deformation tensor. Using the polar decomposition theorem for rewriting the deformation
gradient creates a stretch tensor (U) and rotation/transformation (R). Figure [2.1/shows a
principal sketch of the polar decomposition theorem. The polar decomposition of the left
stretch tensor (counter-clockwise movement in Figure rotates the rigid body firstly,
then stretches the solid. The same goes for the polar decomposition of the right stretch
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CHAPTER 2. PRELIMINARIES

tensor (clockwise movement in Figure , but with stretching of the body initially, then
rigid body rotations. From Equation [2.5] it can be seen that the right Cauchy-Green
deformation tensor is independent of the rotation/transformation (R). A more thorough
derivation can be found in F. Irgens’s book on continuum mechanics ([7], p. 124).

OFai OFaj = Ra,B OU,BZ' Ra'y OU’yj = OUai OU'yj(Sa'y = OUai OUocj (25)

K ey
—~

Deformed
Undeformed i configuration
configuration (,'\

Figure 2.1: Polar decomposition of the right and left deformation tensors. [§]

2.2 Seth-Hill strain tensors and work conjugate stresses

The small strain tensor shown in Equation [2.6is a popular choice in many solid mechanics
applications. In contrast to the right Cauchy-Green deformation tensor, the small strain
tensor does not create stretches independent of the rigid body rotations. Equation
shows the generalized form of the Seth-Hill strain tensors, an idea proposed by B.R Seth
[1]. As the strain tensor is a function of the right Cauchy-Green deformation tensor, the
stretches are independent of rotations. Here the values m = {—1,0,1} correspond with
the Almansi, Logarithmic/Hencky, and Green-Lagrange strain tensors.

1
gij = 5(Gij + Gji) (2.6)
OEij _ {21m ((0 0 ]) ]) ‘ 7& (2‘7)
) In (OFai OFaj) ifm=20

The idea of the generalized strain tensor was further expanded by R. Hill [2]. He in-
troduced the idea of each Seth-Hill strain tensor having a corresponding conjugate stress
tensor. The stress tensor had to be of such character that the work created by the Seth-Hill
strain and stress conjugate pair had to be equal to any other conjugate pairs.

30f



CHAPTER 2. PRELIMINARIES

2.3 Covariant representation of 1-dimensional rod

Stresses, strains, displacements, and forces all need to be invariant for creating a mean-
ingful representation of the physics in a solid. Strain tensors are rank 2. tensors, and
thus need to obey Equation for the 2-dimensional covariant representation. Here tilde
represents a continuously differentiable basis.

~ OX 9X 9Y Y 9X 9y

Esz X OX OXOX OX0X Exx

o _| _ |oxox oavay oaxay B

?YY “ |evey oavaoy oy oy Yy (2.8)
E)?? 0X 90X 9Y 9Y 0X Y Exy + Eyx

X Y 0X9Y OXaY

Equation shows the global cartesian coordinates differentiated in terms of the lo-
cal basis. This expression can further used for creating the composure of the covariant
transformation in Equation 2.8

X ax

6X] ox oy | |8X
— oy oy e (2-9)
[5Y ox av | |®Y

Now assuming two points can be used to describe the local orthonormal unit basis ()Af , }7),
then Equation can be rewritten into Equation Where (AX, AY') denotes the
difference between the X and Y coordinates for the two points, and L is the length
between the two points.

§Y | [AY AXsy| 5Y '

Assuming the local basis runs between positions (1 — 2) gives the basis vector (ge')
shown in Equation This single rod basis gives the covariant transformation between

the normal strain ( X) and the global Cartesian strain tensor. The relation between the
two strain tensors therefore follows Equation [2.12]

0e' = ((0X2 — 0X1)* + (oY2 — o¥1)*) 7 02— 0X1 (2.11)
0Y2 — oY1
- oExx
[OEl} = [oeXpelX gelVoel? gel¥gelY] o Eyy (2.12)
oExy +oLyx

Equation relates the local strain component oE through the global Cartesian strain
tensor, but this relation is not invertible. Hence two more directions are needed. Choos-
ing three directions (1,2,3) such that the covariant transformation of each of the three
directions is linearly independent gives Equation [2.13] This transformation assumes the
local strain components (yE, oF2, oF3) follow the normal strains of (ye!, ge?, ge®). The
same derivation is also valid for the 3-dimensional case giving Equation [2.14]

I 1X 1X v 1y 1X 1Y
L oLn 0€ o€ e e g€ o€ oFxx
_ N T 2X 2X 2y 2y 2X 2
OE =T OE = 0E2 = |0€"" o€ 0€"" o€ 0€"" o€ OEYY (213)
~ 3X 3X 3y 3y 3X _3Y
oEs 0€" " o€ 0€"" o€ 0€" " o€ 20Exy
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CHAPTER 2. PRELIMINARIES

oEr (e X e gelY el gelZpel? el oe'? pelXpel? el X e [oExx |

0 062X 0e2X 162 0e?Y 127,627 12 e 02X 1?2 0e2X0e? | | oEyy

03| |0e3X0e3X 03 e (e3Z0ed7 e 37 edX 632 43X o8V | | gEyy )14
WEul T loetoetX gt getY gelZoetZ (et elZ (eAX (2 edX el | | 2By, (2.14)
JEs 03X 08X 05 05 (e5Z0e57 e 2 1P X 057 05X oY | | 20 By

B 08X 0e8% (€Y 068 (e8Ze87 (e8Y 67 (8K (07 (1 BX o8V | |2 Eyy

2.4 Hyperelastic Hooke’s law

The stresses need to be related to the strains through a constitutive relation, for instance
through a hyperelastic material model. If there exist a strain energy per volume scalar
function v fulfilling Equation [2.15] then the material model can be seen as hyperelastic
([7], p. 249).

At = SR = % 5B (2.15)

AE AE OE

The Hookean solid fulfills this criterion, assuming a linear relationship between the stress
and strain tensor. For isotopic elasticity, the Hookean material model is described by
two variables, the young’s modulus (i); and the Poisson ratio ratio (v). This gives the
constitutive relation for the 3-dimensional case in Equation [2.16 and the plane stress case
in Equation [2.17]

[0Sx x| [1—v v v 0 0 0 1 [oESy ]

QSYY v 1—v v 0 0 0 OEig/lY

052z _ ! v v 1—-v 0 0 0 oES, (2.16)
05y 7 (1-2v)1+v) | O 0 0o = 0 0 20E%, '
09x 7 0 0 0 0 =2 0 20E%,
LoSxY | | 0 0 0 0 0 | |[2E%]

OSXX 1—v v 0 OE)egX
0S= [oSyy | =C E” = K l—v 0 0B, (2.17)

v
0Sxy (1=2)(1+v) 0 0 2| |20F%,
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CHAPTER 2. PRELIMINARIES

2.5 Plasticity formulations

Multiplicative decomposition and additive decomposition are the two most popular choices
for plasticity formulations. The multiplicative decomposition introduced by E. H. Lee et.
al [9] and E. H Lee [10], assumes the total displacements to be a sum of an elastic displace-
ment and a plastic displacement. Equation [2.1§ shows the multiplicative decomposition
of the displacement and velocity gradient. The multiplicative decomposition can also be
written in terms of the deformation gradient in Equation [2.19]
el 1 el 1

8tX o 8tX ax
a()X N 8X a()X

Fy = = FoFT, (2.19)

Changing between different strain and stress tensors creates computational inefficient
algorithms for practical purposes. An older and more efficient model is the additive
decomposition, for instance seen in the paper from A. E. Green et al. [I1]. Here the total

strain tensor is assumed to be a sum of an elastic and plastic strain tensor, thus giving
Equation [2.20]

E=E° +E (2.20)
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Chapter 3
Method

3.1 The virtual work equation

The virtual work of a single element follows Equation Here the strain tensor and
traction forces have been differentiated in terms of the nodal displacements (u) and in-
tegrated over the volume (o{2) and area (oA) of the element. Removing the incremental
nodal displacements gives the internal and external force vectors in Equation The
distributed load, strain tensor, stress tensor, and volume, are all seen at time = 0, giving
the Total Lagrangian description.

ET
6uT/ 0q doA = 6uT/ 880— 0S doQ2 = 6uT/ B”S do (3.1)
OA OQ u oQ
fext _ gint — doA— | BT.SdyQ =0 3.2
= 0q Qo 0 0L = ( . )
0A o2

3.2 Solution methods

Newtons-Raphson methods are commonly used for solving systems of non-linear equa-
tions. The solution methods give fast and quadratic convergence close to the solution.
Two sub choices of the Newtons-Raphson are the displacement and load control solvers.
The displacement and load control solvers are two sides of the same coin and can be
implemented into the same algorithm. Setting the load (of) as a constant through the
iterative solving procedure gives the load control solver. The same goes for the displace-
ments control, but with constant displacements for selected nodes.

Obtaining a residual (r) equal to zero as in Equation is the objective of the solu-
tion process. Equation shows the Taylor expansion of the internal and external force
vector. Using the procedure in Table and solving this system over and over creates
convergence.

r=f>— / B 4S dy2 =0 (3.3)
00
or
r(u+ou,\) = r(u,\) + 8—5u =r(u,\)+Kdéu=0 (3.4)
u
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CHAPTER 3. METHOD

Table 3.1: Load and displacement control procedure.

Initialize u and f:
[terations until r’r or [r7du| < tol:
Solve for du:
r(u) =-K(u) du
Set:
u=u+ du

3.3 Conventional element formulations

Element formulations discretize the solid into points/nodes and create elements based on
these points, while the shape functions assume a solution inside the element. Equation
shows the assumed solution for the three displacement components (u, v, w), with
the nodal displacements (uq, va, ws) and the corresponding shape functions (N,). The
sub-indices follow dummy indices in Einstein’s summation convention and sum up to
the number of nodes in the element (n). An input position (X, Y') is inserted into a
shape function. The output magnitude (N,) then describes the influence of the nodal
displacement components (u,, Ve, W,) at that position. Differentiating the assumed
solution creates the displacement gradient components shown in Equation [3.6]

u = Ny,
v = Nyvg a=(1, ...,n) (3.5)
w = Nyw,
ou ON, ou 0N, ou 0N,
DX~ 9X' 9Y Y %Z 0Z "
ov ON, ov 0N, ov ON,
DX 0oX' T 9Y 0¥ 00Z  0Z'® (3.6)
ow ON, ow ON, ow  ON,

90X 0eX T DY 0y Y Bz Bz

Shape functions for triangular and tetrahedron elements are best obtained through area
and volume coordinates. Figure [3.1] shows the three areas defining the area coordinates
for triangular elements. In this figure, node 1 relates to the area (A;), node 2 to the area
(As), and node 3 to the area (A;). The area coordinate ({;) can now be defined as the
area (gA;) divided by the total area, following Equation When inserting the nodal
position of node 1 into the shape functions, area (yA;) is equal to the total area, while
areas (pAz) and (pAs) are equal to zero. Meaning the nodal displacements correspond
with the assumed solution. The tetrahedron volume coordinates follow the same logic
but have four tetrahedral volumes instead.
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CHAPTER 3. METHOD

Node 3
Node 6 Node 5
A,
@
Node 1 Node 4 Node 2

Figure 3.1: Node numbering and area coordinates for the 6-node triangle.

OAi

="

(3.7)

Isoparametric element formulations use the same shape functions for positions as for the
displacements, the positions can therefore be written as in Equation [3.8]

OX = Na OXa
UY = Na OYa a = (1, ,n) (38)
OZ = Na OZa

Setting the (m = 1) for the Seth-Hill strain tensor gives the Green-Lagrange strain tensor
shown in Equation Rewriting the deformation gradient in terms of the displacement
gradient and adding the two shear strain components creates the strain tensor in Equation

B.10

1 1
obij = §(Oﬂa 0Foj — 0i) = B (0Gij + 0Gji +0Gai 0Gaj) » a=(1,2,3) (3.9)
[ oExx | [ ai+5(9+95+93)
oEyy g5 + % (gg + 9% + gg)
E 99+ 3 (97 + 95 + 95)
Em=1)= 7" | = STl s I 3.10
oE( ) 20byz 5(g6 + 9s + 9497 + 95958 + 969o) (3-10)
2 0Ex g3 + 97 + G197 + 9205 + 9399)
20Exy| | 2(924 g4+ 9194 + 9295 + 9396)

The internal force of the element can now be rewritten in terms of the chain rule, giving
Equation [3.11}

. g OET
it — / BT o= [ £ S sa0 (3.11)
OQ 0Q

90f




CHAPTER 3. METHOD

3.3.1 Conventional constant strain triangle

The Cartesian coordinates and area coordinates are related through the Jacobi matrix in
Equation [3.12] It is only necessary to use the (¢; and ¢;) coordinates as the ((3) area
coordinate can be seen as linearly dependent. The shape functions differentiated with
respect to the global Cartesian coordinates are now given through the area coordinates
and nodal positions in Equation [3.13]

oN 90X oY [N ON
H[ 5%] [%olzf]::r— B12)
% 9 06| Loy 90X
ON ON
—— =J 1= 3.13
90X ac (3.13)

Figure 3.1 shows the node configuration of the 6-node triangle, but removing the mid-side
nodes (4, 5, 6) gives the configuration of the 3-node constant strain triangle. The 3-
node constant strain triangle assumes linear displacements with shape functions following

Equation [3.14]

Ny G G
No| = |G| = G2 (3.14)
N3 (3 1-G—G

The shape functions can be differentiated in the area coordinates, giving the constant ma-
trix in Equation [3.15] Using the constant matrix found in Equation [3.15]in collaboration
with the nodal undeformed position gives the Jacobi matrix in Equation [3.16

ON1 0Nz  ONg
a_N: oG 090G 0G| — 10 -1 (3 15)
¢ ON1 0Nz  ONg 01 —1 .
0 0¢  0¢
WX &Y AN; N2 9Nz [0X1 oYh
a1 o oG 0 O¢
J [M M] [w o, m] 0X2 oYz (3.16)
¢ 0G2 0¢2a  8C  OC2 0X3 0Y3

Representing the displacement gradient increment (velocity gradient) through the element
formulation gives Equation |3.17. The terms of the velocity gradient can be collected
and rewritten into a matrix expression such that the shape function partials and the
incremental displacements follow Equation|3.18| This gives the change of the displacement
gradient in terms of the nodal displacements in the virtual work expression.

ON,, ON,
d0g1 = 5 0Uq, 094 = dug
%X oY a=(1,2,3) (3.17)
aNaé 5 8Na6 T '
d — 57 v Y%, = 3+, 9%
g2 90X v gs EN% v
S
N R
og 0 Mg g | g,
—611 = D5u = ON. 9o X AN 9o X AN 90X (318)
ou <L 0 =2 0 £2 0 vy
8(6Y oNy 8?)Y oNy aBY oy 6u3
oY oY 0oY
_61]3_
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Differentiation of the Green-Lagrange strain tensor in terms of the displacement gradient
is needed for the virtual work. Using the interpolation/shape functions for expressing the
displacement gradient gives Equation [3.19, with the dummy indices summing from 1 to
3. Equation [3.20| now shows the differentiated Green-Lagrange strain tensor with respect
to displacement gradient.

ON, ON,
g1 = < Ua g4 = 7 Ua
0o X Y .
ON., ON. a=(1,2,3) (3.19)
= 7 Va; = 77 Va
g2 90X gs EN%
dag
1 + %1 gs 0 0
9E 092
— g = 0 0 1+ 3.20
0g OB g 9| |sg, (3.20)

915  1+4+g5s 14+g1 g0 50

Due to the constant integrand, the internal force vector in Equation is found by

multiplying with the volume (p2). The same goes for the incremental internal force
vector found in Equation [3.22]

" = BTS o = BY(S g A7 (3.21)
5™ = 8B” (S g Ao + BT80S gAo? = (K, + K,,,)0u (3.22)

Differentiation of the stresses in the incremental internal force vector gives the material
stiffness. In plasticity, the stress increment can follow two approaches; the hyperelastic
Hooke’s law from Equation [2.16] or the tangent moduli shown in Equation [3.23] During
the solution process, the stress increment switches between the tangent moduli and the
hyperelastic model. An integration point or element subjected to yielding uses the tan-
gent moduli, and the contrary uses the hyperelastic Hooke’s law. It should be pointed
out that the incremental form only appears in the material stiffness matrix. The residual
in Equation [3.3| should only use the constitutive relations in elastic conditions to obtain
stress work conjugates. In practice this means the constitutive relation related to plas-
tic flow works purely as an assist for faster convergence. Inserting the tangent moduli
obtained in Equation [3.23| into the stress increment, gives the material stiffness matrix

shown in Equation [3.24]

608 - Cep 60E (323)

K,,0u = B'C*B”6u (Ao (3.24)
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The incremental differentiated strain tensor creates the geometric stiffness matrix for the
conventional element formulation. Equation [3.25|is obtained by collecting and rewriting
the stress tensor and the incremental differentiated strain tensor. Inserting Equation [3.25]
into the incremental internal force vector gives the geometric stiffness matrix in Equation
2. 20

8g1 0 8g4 0Sxx 0 oSxy 0 591

Sxx
aOE a 592 0 695 0 0 OSXX O osxy 6g2
O —— ) oS =Sog = S = 3.25
< Jg ) 8 0 894001 (?Sf(?/ 0Sxy 0 oSyy O dg4 ( )
0 895092 0 oSxy 0 oSyy dgs
K, 5u = 6B7,S (Q = DT S Déu oAy 3.26
g

3.3.2 Conventional linear strain triangle

Assuming quadratic displacements inside the element gives the 6-node triangular element
formulation, previously shown in Figure|3.1} This element is defined through the six shape
functions in Equation [3.27]

Ny GG -1 | (26 —1)

Ny C2(2¢2 — 1) C2(2¢2 — 1)

Ny 4¢1 G 41 G2 '
N5 4(aCs 4G(1— G — &)

| N6 | | 466G i 41G(1 -G — &)

The differentiation of the six shape functions in area coordinates gives Equation [3.28],
which can be used with the nodal undeformed positions to create the Jacobi matrix in

Equation [3.29]

ON {(4{1 —1D 0 (GG =-3) (4G)  (AG)  (4-8G —4G)] g o

o 0 (4 —1) (4G +4G —3) (4¢) (4—4G —8G)  (—4G)
DX doY oy ang] [0X1 Vi
01 oC1 ¢t T oG . .
J= [(M %_Y] — [% %] : : (3.29)
0¢2 0C2 ¢ T 9 oXe oYs

The differentiated displacement gradient in global Cartesian coordinates gets a similar
expression as the constant strain triangle. Using the six shape functions and the twelve
nodal displacements gives Equation for the incremental displacement gradient.

oy g o gq |2
og 0 Ty oM du1
a—5u = D6u = 9N, 8(6X 9Ng 8(6X (330)
u Y Tt By 5
0 &M .. 0 SNe| 0%
oY oY 6/06
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Equation [3.31] shows the assumed solution for the displacement gradient. The differenti-
ated strain tensor does not change when increasing the order of the shape functions and
therefore follows Equation [3.32]

ON, ON,
91 = 7 Ua, g4 = 77 Ua
Do X oY
63\7 a?v a=(1,..,6) (3.31)
g2 = aO—XUa, g5 = aO—YUa
dg1
14+ g1 g2 0 0
doE &
ao—gég —| o 0 g 14gs ng (3.32)

90 149 1+g g 59
The integrand of the linear strain triangle varies across the element, thus creating a more
comprehensive integration procedure than for the constant strain triangle. Numerical
integration in area coordinates is beneficial when dealing with the internal force vector
and the stiffness matrix, and changing the differential of the variable to area coordinates
gives Equation [3.33] As the virtual work now is represented in the area coordinates, it can
easily be numerically integrated through the Gauss point integration scheme presented in

Equation [3.34]

. 7 o
pint _ / B” (S dpf = %~ / / B” S Det(J)d¢1dCs (3.33)
02 2 Jo Jo
. 7 —
£~ 0? Z W (a;)B(a;)"0S(a;) Det(J(a;)) (3.34)
i=1

Table[3.2shows a possible three-point Gauss scheme for area coordinates. Here (a;) defines
the three area coordinates ({1, (s, (3). Each point also needs a corresponding weight, as
seen in the right column in Table

Table 3.2: Three-point Gauss integration for area coordinates.

n=3 G (o (3 Weight (W)
@ 1/2 1/2 0 1/3
a 1/2 0 1/2 1/3
as 0 1/2 1/2 1/3

The undeformed volume (of2) does not change with nodal displacements, making the
sequence of the derivative and integral irrelevant. Equation now gives the internal
force vector increment.

. 'Z 1 1 0
sfint — 02 / / § (BT(S ) Det(J)d¢,d¢, + BToS 56677 (3.35)
0 0

2
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The linear strain triangle follows the structure of the constant strain triangle material and
geometric stiffness matrices. Using this structure with a three-point Gauss integration
scheme generates Equations [3.36] and [3.37]

K,, = % Z W (a;)B(a;)" C(a;)®B(a;) (3.36)
K, = % Z W (a;)D(a;)" S(a;)D(a;) (3.37)

3.3.3 Conventional constant strain tetrahedron

Four volumes ({1, (a, (3, (4) define the volume coordinates for a tetrahedron, where
((4) can be seen as linearly dependent. Here a single-volume coordinate ((;) follows the
form shown in Equation , where (€2) denotes the volume. Equation m shows the 3-
dimensional Jacobi matrix for the volume coordinates ({1, (2, (3), and inverting the Jacobi
matrix gives the shape functions differentiated in global Cartesian coordinates shown in

Equation [3.40]

Q.
0% &4
i = 3.38
G="5 (3.8)
ON 90X  O0Y  OoZ ON
91 0¢1 01 9C1 00X aN
ON | = | &X QY Z ON [ =J—— (3.39)
dCa 2 0 B¢ Y 0o X
ON X  OY  OoZ ON
9Cs 9¢s 0z OC3 0072
ON ON
g t= 3.40
0o X o¢ ( )

The shape function for a constant strain tetrahedron follows Equation [3.41} giving linear
displacements and positions across the element.

-Nl- -Cl- | 1 ]

Ny _ G2 _ G2 (3.41)
N3 (3 G

| Na| _C4_ 1 -G~ G — 53_

Differentiation of the shape functions in the volume coordinates now gives Equation [3.42]
This gives a constant matrix and a constant virtual work integrand. Using Equation |3.42
in collaboration with the undeformed nodal positions creates the Jacobi matrix shown in

Equation [3.43]

ON1 ONo ON3 ONy

N R 1 0 0 —1

— = oM 9Ny 9Nz ONy| = — 42

o¢ oG 06 oG 06 010~ (3.42)
ON; 9Ny ONs  ONy 00 1 —1

R N )
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ON1 9Nz ON3 ON4
0 0G99 X1 oY1 o1

J=|0NM ON» ON3 09N (3.43)
02 02 0C  0C

ON1 9N N3 ON.
T; Tj T; T; 0X4 0Y4 0Z4

Using the inverse Jacobi relation creates the differentiated shape functions in Cartesian
coordinates. Now the 3-dimensional differentiated displacement gradient is described
through the incremental nodal displacements and differentiated shape functions shown in

Equation [3.44]

200 20 0 b

0 2% 0 ... 0 Z% 0 vy

” 0 0 o0 0 o 51.1;1
%6u:D5u: : : : (3.44)

a0 0 %% 0 0 |du

0 2% 0 ... 0 %2 0 Suy

00 g% ... 0 0 §%| [duw

The displacement gradient components are also defined through the shape functions, thus
following Equation Expressing the differentiated Green-Lagrange strain tensor in

terms of the displacement gradient components gives the matrix expression shown in
Equation [3.46]

0N, ~ ON, _ 0N,
g1 = aoXucw g4 = aoyvaa gr = aOZua
ON, ON, ON,
=« =2 =2 =(1,..,4 3.45
g2 80Xvom gs aoyvon gs aOZUa a ( ) ) ) ( )
ON, ON, ON,

aO—X’wm ge = ao—ywa, g9 = aO—Zwa

14+g1 g9 g3 0 0 0 0 0 0
0 0 0 g 1495 gs 0 0 0

O E o 0o 0 0 0 0 1+ o
80—5g _ g7 gs 99 : (3.46)
g 0 0 0 g7 g8 l+g0 91 1+95 9s
gr g 1+g9 O 0 0 1+g9g1 o 93

91+ 1+9g5 g6 1+g1 g0 g3 0 0 0

The constant integrand of the virtual work creates a simple integration procedure with
a multiplication of the undeformed element volume, giving the internal force vector in

Equation [3.47] Also, the incremental internal force vector in Equation follows the
same integration procedure.
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Fint — / BT,S dyQ = BY,S Q2
o2

5f = §BTS Q2 + BT5,S (2

(3.47)

(3.48)

The differentiated stress tensor follows a similar form as the 2-dimensional elements. Using
the tangent moduli and the differentiated Green-Lagrange strain tensor gives the material
stiffness matrix shown in Equation [3.49

K,, = B'C®B ,Q

(3.49)

Also, the geometric stiffness gives a similar expression as the constant strain triangle. The
main difference is the expanded (S) matrix shown in Equation . Inserting this matrix
into the incremental differentiated strain tensor gives the geometric stiffness matrix shown

in Equation [3.51]

w)

oSxx 0 0 oSxy O 0 oSxz O 0
0 oS%x O 0 oSxy O 0 oSxz O

0 0 o9%x O 0 oSxy O 0  0Sxz
0Sxy 0 0 oSyy 0 0 oSvz O 0

0 oSxy O 0 oSyy O 0 oSz O

0 0 oSxyv O 0 oSyvy O 0 oSvz
0Sxz 0 0 oSvz O 0 05zz O 0

0 oSxz O 0 oSyz O 0 oSzz O

0 0 oSxz O 0 oSyz O 0 05zz]

K, = D”SD (0

(3.50)

(3.51)
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3.3.4 Conventional linear strain tetrahedron

Figure [3.2] shows the 10-linear strain tetrahedron element. This node configuration fol-
lows the Abaqus softwares (C3D10) element definition and gives the shape functions in
Equation [3.52] [12].

Ny
Nio

4C1¢2
4¢2(3
4G1G3
4¢1Cs
4¢2Cs
4¢3C4

Node 9

1
Node 7 ,——“\
=~ "Node 3 AN

G(2G1—1)
(2(2¢2—1)

G326 — 1)
1-G-¢-6)2A-a-¢-3G)—1)
4¢1¢2
4(2C3
4G1G3

4G(1 -G — G — ()
4G(1 = ¢ — G2 — ¢3)
4G(1—-G — G — ()

(3.52)

Differentiating the shape functions in volume coordinates provides Equation [3.53] These
differentiated shape functions are further used with the undeformed nodal position to
create the Jacobi matrix shown in Equation [3.54]
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(4G — 1) 0 0
0 (4¢2 — 1) 0
0 0 (4¢3 — 1)
(=3 +4C1 + 4G +4C3) (=344 +4C +4¢3) (=3 +4¢ +4¢ +4¢)
ONT 4G 4G 0
£ 0 4G iG
4(3 0 4¢;
(4 —8C1 —4¢ — 4¢3) —4G —4G
—4G (4 — 4G — 8¢ —4¢3) —4¢
] 4 —4¢s (4 — 4¢, — 4Gy — 8C3)
%_]g aaLéO oX1 oY1 o4
J= | 9N1g
0¢2 ¢z
%—]g; % 0X10 0Y10 0210

(3.53)

(3.54)

The differentiated shape function found from the Jacobi matrix can be put into the
differentiated displacement gradient, thus giving Equation [3.55

ON-
ox 0
AN,
00X
0
)
98 5u = Dou —
ou
ON-
5z U
oN,
00Z
0

0 ON19
00X
0 0
ON1
00X
ON1g
0 00Z
0 0
ON1
002 0

00X

0

IN1o
00Z

0

0 duq

0 duy

% 611)1

duq

0 duyg
%]:120 | [dwio]

(3.55)

Similar expressions of the partial derivatives of the strain tensor are obtained for the con-
stant and linear strain tetrahedron. Equation [3.56| shows the chain differentiated Green-
Lagrange strain tensor with respect to the displacement gradient. In this expression, the
displacement gradient follows the components shown in Equation [3.57]
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1+g1 9 g3 0 0 0 0 0 0
0 0 0 g 1+g5 g6 0 0 0
OE 0 0 0 0 0 0 1+ o0
80—5g _ g7 98 99 : (3.56)
g 0 0 0 gr 98 l+go g1 1495 g6 5
99
g7 g 1+gy O 0 0 1+g1 g2 g3
9 149 g6 14+a 92 g3 0 0 0]
0N, 0N, 0N,
= U, = Vas =5, Ua
(51 90X 94 EN% gr 07
ON, ON, ON,
—= _Cl{ o —= _CK s = —a o = 1’..., 10 357
g2 aOXU ) Js EN% v gs N v « ( ) ( )
ON, ON, ON,

g3 = &)_Xwo” g6 = &)_Ywa’ g9 = aO—Zwa

Collecting Equations and gives the differentiated strain tensor with respect to
nodal displacements. The internal force vector is now given through Equation where
the integral is represented in both global Cartesian coordinates and volume coordinates.
Volume coordinates are practical for numerical integration schemes, and using a Gauss
point integration scheme gives the numerically integrated internal force vector in Equation
3.50]

) 1 1 1 1
int T _ T
pint _ /OQB oS dof) = - /0 /0 /0 BT,S Det(J)d(1dCdCs (3.58)
Fint % S W(a)B(a:)"sS(a;) Det(I(a;)) (3.59)
=1

Table shows a four-point integration scheme calculated by FEBio [13]. The right
column shows the weights of the numerical integration, while the four center columns
show the volume coordinates.

Table 3.3: Four-point Gauss integration of volume coordinates.

n=4 G Co (3 @ Weight (W)
a1 0.58540 0.13820 0.13820 0.13820 0.25
as 0.13820 0.58540 0.13820 0.13820 0.25
as 0.13820 0.13820 0.58540 0.13820 0.25
y 0.13820 0.13820 0.13820 0.58540 0.25
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Numerical integration of the two stiffness matrices with the Gauss point integration
scheme from Table yields Equations and [3.61l With the geometric stiffness
matrix written in terms of the (S) matrix previously obtained in Equation .

@IH

Z B(a;)"C(a;)*B(a;) (3.60)

Z (a;)D(a;)" S(a;)D(a;) (3.61)

CDI»—t

3.4 Assumed natural strain element formulations

3.4.1 Seth-Hill strain tensors for 1-dimensional rod

Assumed natural strain formulations predict strains or displacement gradients at speci-
fied locations in the element. One way of doing this is through 1-dimensional rods inside
the element subjected to tensile or compression. Transforming between global Cartesian
coordinates and the single local rod gives the transformation obtained in Equation [2.12]
Assuming strains in three/six rods inside the element gives the invertible relations shown

in Equations [2.13] and [2.14]

Figure shows two nodes describing the linear displacements running from (—L1/2,
L/2) in the rod. Describing these linear displacements through deformed lengths gives
Equation While Equation describes the undeformed positions using the unde-
formed rod lengths

-
-~
N
[
~
N

Figure 3.3: Assumed displacements for a single rod in local coordinates

~ _tL/2 _OL 2

i=5 -1 €+ il sz (362)
~ 1 _OL/2
K =gl ] |0 (363)
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The local displacement gradient for a rod is obtained through the chain differentiating
in Equation [3.64. This local displacement gradient can further be put into the Seth-Hill
strain tensor previously shown in Equation 2.7] thus giving Equation [3.65]

du d¢ oL ~ ~

a1 _F_1-G 3.64
dgdoX OL ( )

oEgg = % ((;—i)m - 1) (3.65)

A once and twice differentiating of the local Seth-Hill strain tensor gives Equations
and B.671

aOE)Z')Z' — ((tL)zm_l> (366)

atL (OL)Qm
0 Exx _ (L)

3.4.2 Assumed natural constant strain triangle

The 2-dimensional formulations use triangle configurations for creating the Seth-Hill strain
tensors. Drawing a line/rod between the three nodes gives a set of undeformed and
deformed lengths. Inserting the rod lengths into Equation [3.65] gives Seth-Hill strain
tensors for each rod. The covariant transformation in Equation [2.13|is now applicable
for relating the covariant basis and the global Cartesian strain tensor. Figure shows
the relation between the local rod basis displacement components and the nodes of the
constant strain triangle. Rod 1 runs from node 1 to 2, with a basis following (e'); rod 2
runs from node 2 to 3, with a basis following (e?); and rod 3 runs from node 3 to 1, with a
basis following (e?®). Using this methodology gives the assumed natural strain formulation
proposed by C. Felippa et al.[6] and unfolded by Eia et al. [4] and Ostebg [5].

&%, 50, ol, 5,

N\

Figure 3.4: Local displacements components for the 2-dimensional assumed natural
strain triangle configuration.
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The local covariant CST strain tensor follows the form shown in Equation[3.68 This strain
tensor can further be rewritten into global Cartesian strain tensors through the covariant
transformation. Equation [3.68 also gives a similar expression for the differentiated strain
tensors. Here the covariant strain tensor is defined by three rod lengths and can be chain
differentiated through the three deformed rods/lengths.

o ! I
(@)2’"_1 , %)f:g‘zf%f:ﬁs (3.68)

Nodal displacements can be represented either in the global Cartesian coordinates or in
a local rod coordinate system, where the transformation follow Equation Here (e)
is defined by the vector running in between two points, and (n) is defined perpendicular
to (e). For instance, Equations [3.70] and shows the local orthonormal rod coordinate
system running in between nodes 1 to 2.

Su e)l'| |du
_ | (3.69)
8v (sm)T| [dv
_ Xo — Xy
e = ((Xo = X1)2 4 (Yo — oY) 2|0 (3.70)
Ry
_ Y1 — Y2
m' = ((1:Xo — tX1)2 + (1Yo — tY1)2) vz |t ' (3.71)
1 X2 — X

Table shows the system defining the ANS constant strain triangle. The rod number-
ing in the first column, the local orthonormal coordinate systems in the second and third
columns, the node succession in the fourth column, the global Cartesian displacement
components in the fifth column, and the local displacement components in the sixth col-
umn.

Table 3.4: Relation between rods, node succession, and displacement components for
the ANS constant strain triangle.

Rod Rod Rod Nodes Displacements

length basis 1 basis 2

L, e! n' 1 —2 duy, dvy, dug, dvy | Sy, V1, Uiy, SV,
L, e’ n’ 2 —3 Sy, dva, Sug, Sus | s, 8Ts, Sy, Sy
Ls e’ n’ 31 dusg, dus, duy, dvy | dus, s, duig, Svg

29 of



CHAPTER 3. METHOD

The change of deformed lengths shown in Equation [3.72| gives a simple expression in
the local coordinates. As seen in Table |3.4] rod 1 correlates with the local displacement
components (du; and dusy); rod 2 correlates with the local displacement components (83
and duy); rod 3 correlates with the local displacement components (dus and dug). A
principal sketch of the local displacement components was previously shown in Figure

B4

I duy — duy
6tL = 5tL2 = 6174 — 5&3 (372)
O¢Ls dug — dus

The virtual work differentiated the strain tensor in terms of nodal displacements in
Cartesian coordinates, a transformation between local and global coordinates is there-
fore needed. The local displacement components du; and dus follow rod 1, duz and duy
follow rod 2, and dus and g follow rod 3, thus giving the transformations (e', e, e®)
for the six local displacement components. Also, the local displacement components (8t

and dug) follow node 1, (duy and dug) follow node 2, and (duy and dus) follow node 3.
This system creates the pattern of the transformation shown in Equation [3.73]

5ty 0 0 Suy
51y 0 (e 0 Svy
S| | 0 )" 0 Suy (373
Sty 0 0 (teQ)T Sy
55 0 0 ()" |dus
a _(te3)T 0 0 | |8vs]

Collecting Equations and gives the differentiated rod lengths shown in Equation
[3.74] The first column relates the displacements of nodes 1 and 2 to the change in length
of rod 1, the second column relates the displacements of nodes 2 and 3 to the change in
length of rod 2, and the third column relates the displacements of node 3 and 1 to the
change in length of rod 3.

aLT —tel 0 te?’
L (374
0 t82 —te?’

Equation shows the differentiated covariant strain tensor. The (o)) component
with respect to (¢L1), (oF2) component with respect to (;Ls), and (qE3) component with
respect to (yLs3).
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(tL )Zm—l
R ’
0= (L2)*" !
Lo 0 e o (3.75)
O 0 (tLB)Z'mfl
(OLB)Qm

The 3-node ANS element gives a constant strain integrand for the virtual work. Us-
ing Equations |3.74] and and with the covariant transformation gives the internal
force vector shown in Equation [3.76]

LT OB ~

£ = BTyS 0= 5 S T S o Aot (3.76)

The integrand of the incremental internal force vector is also constant. Now differentiating
in terms of the nodal displacements gives the three stiffness matrices shown in Equation
[3.77 where each of the three stiffness matrices follows the increments from Equation [3.78]

S = (K; + Ky + K3)du (3.77)
Kidu =5 (at—LT) @T’TOS o Aot
ou oL
Kodu — %—fTa (gz—f) T oS o Aot (3.78)
Kou = %—ET%:—ET‘% (6S) oAo?

K, stiffness matrix, constant strain triangle

The (K;) stiffness matrix originates from the increment of the differentiated rod lengths.
Taking the variation of the unit rod basis component (ye) with respect to angular change
gives the unit vector component (;n) shown in Equation m Inserting this equation into
the increment of the differentiated rod lengths now gives Equation [3.80

%59 — n 80 (3.79)
T —6tel 0 51;63 —tnl 0 tn3 601 0 0
oy L
d (at_u) = PTM = 6tel —6te2 0 = tnl —tn2 0 0 6&2 0 (380)
0 &% =6 0 n?—n° 0 0 66
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It is desired to get the incremental nodal displacements on the right-hand side, but some
rewriting is needed for that to happen. Equation [3.81] shows a diagonalized matrix. Here
the change of the strain tensor, the covariant transformation, and the stress tensor have
been collected and inserted into the main diagonal. Swapping positions of the incremental
angles (00) and the collected term (Q) gives Equation where the increment of the
angles (860) now is on the right-hand side.

=~-T
Q= [gg—fT OSJ (3.81)
K,6u=P7Q 50 Az (3.82)

A principal sketch of a rod subjected to angular change is illustrated in Figure [3.5] In-
creasing the (8v;) displacement component turns the rod clockwise while increasing the
(8vy) displacement component does the opposite. Now expressing the three incremental
angles in terms of the local displacement components (8v) gives Equation m

(3.83)

Equation established a transformation between the local orthonormal rod basis and
the global Cartesian basis for the (du) components. The same pattern is also applicable
for the local displacement components (50) but with rod basis 2 from Table 3.4, Using
the rod basis 2 (4n) in the transformation gives Equation [3.84]

59, ()" 0 0 Suy

505 0 (tnl)T 0 duy

5| _ | 0 (2" 0 Sy (354
o 0 0 (27| |,

505 0 0 (tng)T dus
_656_ _(tng)T 0 | [vs]
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Combing Equations [3.83] and gives the rewritten version of the incremental angular
change shown in Equation [3.85. Here the deformed lengths have been extracted into a
separate diagonal matrix (A).

tLl 0 0 —(tnl)T (tl'll T 0
O=AP=|0 L, 0 0 —(n»)T (0?7 (3.85)
0 0 L3 (tn3)T 0 _(tns)T

The matrices (Q and A) are now collected into a single term (H) following Equation [3.86]
Assembling Equations |3.82] and now gives the (Kj) stiffness matrix shown in

Equation [3.87]
H=QA=ATQ" (3.86)

K, = PTHP Az (3.87)

K, stiffness matrix, constant strain triangle

Double differentiating the covariant strain tensor derives the (K) stiffness matrix, where
the double derivative follows Equation [3.88, The twice differentiated strain tensor, co-
variant transformation, and stress tensor are now collected into the main diagonal of
Equation [3.89] This form of rewriting creates length changes on the right-hand side of
the expression.

(tLl)Qm_2
8(2) E (oL1)*™ 02 ) 0 O L
0 5)2m—
t 2m—2
0 0 % &¢Ls
= ~_T
5L = [a;i?g) T oSJ 5:L (3.89)

The length changes in Equation [3.89| are now rewritten in terms of the previously estab-
lished relation in Equation [3.74] This rewriting gives the (K») stiffness matrix shown in

Equations and [3.91]

Kydu = TTW6,L g Agz = TTUTdu gAz (3.90)

K2 - FT\IIF QA()Z‘ (391)

K; stiffness matrix, constant strain triangle

The material matrix (K3) does not differ far from the one shown for the conventional
shape functions. Rewriting the incremental stresses in terms of Hooke’s law/tangent
moduli gives the (Kj3) stiffness matrix in Equation [3.92]

K; = B80S (2 = BTC® B Az (3.92)
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3.4.3 Assumed natural linear interpolated strain triangle

K. Y. Sze. et al. have previously used covariant small membrane strains for expressing
the global Cartesian membrane strains at different sampling points [14]. The small strain
tensor gave a practical explicit expression along the boundary for the six-node triangular
element and could be implemented straight into the shape functions. The assumed natu-
ral interpolated strain 6-triangle derived below will follow a slightly different approach as
the large strain tensor is not as easily derivable.

Figure [3.6] shows a principal sketch of the 6-node triangular ANS element. Dividing
the element into four sub-elements gives one center triangle and three satellite triangles.
Each satellite triangle can be used for creating covariant strain tensors. Interpolating the
satellite triangles with their covariant transformations gives the global Cartesian strain
tensor in Equation [3.93] and applying the Seth-Hill strain analogy of the constant strain
triangle provides the three satellite strain tensors in Equation [3.94]

Figure 3.6: Principal sketch of the 6-node ANS triangle.

E— N, ({T}l)_l (B + N, ({T}?)_l (oE}s + N, ({T}?’)_l OB} (3.93)

0E1 ] (;%)Zm —1 0E7 ) (;LT;)Qm —1
{oE} = |oFy| = o (;LTE)Q”L — 1| .. {0E}3=|oEs| = I (:JLTZ)M —1] (3.99)
0Fs (;L_i)m -1 0Ey (;L—Z)Qm -1

Table in Appendix [A] and Figure [3.6] shows the relation between the rods, local dis-
placement components, and global displacement components. Rod 1 is defined to run
between nodes 1 and 4, rod 2 between nodes 4 and 6, rod 3 between nodes 6 and 1, rod
4 between nodes 4 and 2, and so forth.
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Using the local displacements in Table for rewriting the increment of the rod lengths
gives Equation [3.95] The change in length of the nine rods can now be written in terms of
the global Cartesian displacements. Equation [3.96| shows the transformation between the
local displacement and the global Cartesian displacements. This transformation follows
the previously established Equation m The basis component (;e!) is placed in the first
and fourth columns as it corresponds with the first and fourth nodes.

Sty — 81y
étL =
dyg — Ouyy
5ty e 0 0 0
Sl 0 0 ()"
6&17 0 (teg)T 0
Siys 0 0 0

0 0
0 0
0 0
0 (:e”)"

(3.95)

(3.96)

Combining Equations [3.95| and gives the differentiation of the nine rod lengths with
respect to the global Cartesian nodal displacement, this is shown in Equation [3.97]

oL”
ou

"=

—e! 0
0 0
0 0
el —e
0 0
0 e’

o o o o

0 0
et —.ed
0 0
—.et 0
0 e’
0 0

0 0
0 0
0 0
b 0
—eb e’
0 —ef

(3.97)

The virtual work also needs the differentiated global Cartesian strain tensor in Equation
3.98] with each satellite strain tensor following the differentiation in Equation[3.99] Satel-
lite 1 with respect to rods 1 to 3, satellite 2 with respect to rods 4 to 6, and satellite 3
with respect to rods 7 to 9.

00E

—étL —

O:LL

()

—1 ~
0{oEh
Ot

N, ({T}?)la{gt—ﬁ}? N ({T}?’)l OBl 5,1, (3.98)
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tLl 2m—1 =
) (<0L)1)2m 0 0
a{OE}l _ 0 (tL2)2m71 O
oL (oL2)™™
0 0 (tL3)2m71
. - (3.99)
(tL.?)Qm—l ] °
B LT 0 0
{oE}s _ N )
8tL (OLS)Qm 5 1
L (0L%)*™ |

Different configurations of shape functions are possible for the assumed natural inter-
polated strain elements, with area coordinates being practical for numerical integration.
Setting the interpolation functions to give unit values in the center of the three satellite
triangles gives Equation thus corresponding with the three points (2/3,1/6,1/6),
(1/6,2/3,1/6) and (1/6,1/6,2/3)

Ny 20— 56— 3G
No| = [3¢-Lia-1G (3.100)
N3 20— 301 — 3G

Equation shows the internal force vector as a function of the global Cartesian coordi-
nates and the area coordinates. The (Det(J)) term can be set to follow the shape functions
of the conventional constant strain triangle or the linear strain triangle. Quadratic shape
functions mimics the behavior of the conventional linear strain triangle, and now using
the three-point Gauss integration scheme with quadratic shape functions gives Equation

0. 102

1 1
= [ Blsan = [ [ BS D) (3.101)
092 o Jo
. <
£ O? Z W (a;)B(a;)T0S(a;) Det(I(a;)) (3.102)
i=1

K, stiffness matrix, linear strain triangle

The (K;) stiffness for the 6-node ANS element follows a similar approach as the 3-node
ANS element. Equation shows the increment of the differentiated rod lengths split
into two parts; a matrix (M) expressing the angular changes and a matrix (P) expressing
(ve) differentiated with respect to angular changes. The matrix (P) is also shown in

Equations |3.104}
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—n! 0 «n> 0 0 0
0 0 0 0 0 0 56
a,L . 0 0 0 0w —x| | "
8 () =P'M = (3.103)
ou ' —n2 0 0 0 0
0 ... 686
0 0 0 (n’ —n® 0
L 0 tn2 —tn3 e —tn7 0 tng_
—n! 0 m® 0 0 0 0 0 0]
0 0 0 n? —in® 0 0 0 0
0 0 0 0 0 0 0 n® —n’
P’ = ' ’ (3.104)
(nt  —n2 0 —n* 0 (nb 0 0 0
0 0 0 0 1;1'15 —tn6 tn7 —tnS 0
0 n? —mn® 0 0 0 —m” 0 0]

Collecting the differentiated strain tensor, the shape functions, the covariant transforma-
tions, and the stress tensor into the main diagonal gives Equation [3.105] Equations|3.103]
13.104] and [3.105| are now used for rewriting the integrand of the (K;) stiffness matrix in

Equation [3.106]

= T ~ -T
N AT ({TH) 8
=y T ~ =T
Q= | N, 2B ({T}?) oS (3.105)
=, T ~ =T
NGBl ([T)) o8
KL\ OE
5 <% )&_LOS_P Q 56 (3.106)

Equation gives the angular change as a function of the local displacement compo-
nents (6v). Relating the local displacement components and the global Cartesian dis-
placement components through (P) gives Equation [3.108] Here (yn) follows the same

pattern as in Equation [3.96]

591 S'ﬂi Zfﬁl
0=|:|= : (3.107)
6‘99 651?25517
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(5o | [ 0 o 0 0 o0 |[sw]
50, o 0 0 (m) 0o o0 Su;
D = : : : (3.108)
5017 0 0 (" 0 0 0 Sug
50| | 0 0 0 0 0 (m)"| |8vs]

The deformed lengths from Equation [3.107] can be extracted into the main diagonal ma-
trix (A) in Equation [3.109] The (A) matrix and the collect term (Q) are further collected
into the matrix (H) seen in Equation [3.110]

Ly 0
A=|: - (3.109)
0 oLy
H=AQ=Q"A" (3.110)

Equations|3.103|and [3.110| are now used to form the integrand of the (Kj) stiffness matrix
in Equation |3.111], and applying a three-point Gauss integration scheme to the integral
gives the (K;) stiffness matrix in Equation [3.112]

K, = %/1 /1 PT"HPDet(J)d¢d¢s (3.111)
Ki= 3 W (@) P (a0 () Pl Det (3 () (3.112)

K, stiffness matrix, linear strain triangle

The two times differentiation of the satellite strain tensors in Equation develops the
(K5) stiffness matrix. Combing the shape functions, double differentiated satellite strain
tensors, covariant transformations, and the stress tensor create the diagonalized matrix
in Equation [3.114] This diagonalization arranges for writing the length changes on the
right-hand side of the expression.

-(tL1)2m72 O O
9O LB}, 02" -
BN 1) | 0w
atL(z) (0L2)
(tLB)Qm—Q
B 0 0 (oL3)*™
(Lt . . _ (3.113)
0 {,E} oLr)™" -
B e £ S (2m — 1) 0 (els) ™ 0
0, L® (o0Ls)? -
(tL9) m
L 0 0 (0Lo)*™
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@LEL )T () L
N, (8&3(]23)}1) <{T}1> S

= T ~ =T
5L = Nz(a(;{Lo(g}z) <{T}2> S| &L (3.114)

@B\ () L
Ny (88t£0<]2*3')}3> ({T}3> S

Equation [3.115 now shows the integrand of the (Kj) stiffness matrix assembled by Equa-
tions [3.95], [3.97] and [3.114]

OLT_ (OET - -
Gl Y i = 76, L = TTUIs 11
ou (&L oS ‘ " (3.115)

Inserting the integrand from Equation [3.115]into the virtual work integral gives the (Kj)
stiffness matrix in Equation [3.116] with the stiffness matrix integrated with three Gauss

points in Equation [3.117]

K, = % / 1 / 1I‘T\III‘Det(J)dC1dC2 (3.116)
K, = % Z W (a;)T" (a;)¥(a;)T (a;)Det(I(ay)) (3.117)

Kj; stiffness matrix, linear strain triangle

The material stiffness (K3) matrix follows a similar form as the 3-node ANS element, with
the main difference being a non-constant integrand. Equation [3.118| gives the material
stiffness matrix (K3) in global Cartesian coordinates and area coordinates, which is further
rewritten with Gauss point integration in Equation [3.119]

- O{ 1 1 - B 0{ 1 1 T vep
K, = 7/0 /0 B75SdC,dCs = ?/0 /0 BT C*®Bd(,dC, (3.118)
3
K, ~ % 3" W(a:)B(a:)"Cla;)*B(a;) Det(J(a;) (3.119)

i=1

3.4.4 Assumed natural constant strain tetrahedron

Figure 3.7 shows a principal sketch of the 4-node ANS element. Drawing a line between
the four nodes creates six rods. The six rods create six Seth-Hill strain tensors following
Equation [3.120L The global Cartesian strain tensor is now related to the covariant strain
tensor through the covariant transformation in Equation [2.14]
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Figure 3.7: Node configuration and rod definitions of the 4-node constant strain

tetrahedron.
I 2m
t41
) () -1
T,E=FE=—— : 3.120
BB | (3120)

()"

oLs

A deformed orthonormal unit basis is practical when working with deformed rod lengths.
Equation shows the transformation between the local coordinate system for a single
rod and the global Cartesian coordinate system. Here the (ye) basis vector follows the rod
direction, while (;n and m) create the two other basis vectors for the unit orthonormal
local coordinate system. A single rod denoted 1 running from node 1 to 2 then gives the

transformation shown in Equation [3.122] Setting (1n) to follow Equation [3.123| and (im)
to follow Equation [3.124| now creates a local orthonormal unit basis.

du (te)T du
v | = [(m)T| |bv (3.121)
dw (tn)T dw
1X2 — X1
el = (((Xo — e X1)2 + (Yo — V)2 + (122 — 202V | Yo — 3 (3.122)
122 — 20
Y1 — Y5
' = (X2 — ¢ X1) + (1Yo — tY1)2)71/2 Xo — X (3.123)
0
m' =e' xn' (3.124)
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Figure |3.7] and Table in Appendix [A] shows the definition of rod bases. Rod 1 runs
from nodes 1 to 2, rod 2 from nodes 2 to 3, rod 3 from nodes 3 to 1, rod 4 runs from nodes
1 to 4, and so forth. While the right column in Table shows the local displacement
components, and the second to the right column shows the global Cartesian displacement
components.

The incremental rod lengths shown in Equation [3.125| can now be represented through
the local displacement components (du), following the system presented in Appendix

and Table [A2]

s.L] | s, — 5w
5.Ls 5y — 5y
sL=| : | = 5 (3.125)
5.Ls| | i — St
5.Lg| | Siiny — S

The virtual work uses global Cartesian nodal displacements for expressing the internal
force vector. A transformation of the local nodal displacements is therefore needed. Equa-
tion expresses the local (8u) displacement components through the global Cartesian
displacements. Rod 1 runs between nodes 1 and 2, and rod 2 runs between nodes 2 and
3, consequently placing (;e!) in the first and second column and (y€?) in the second and
third column.

5y e)" 0 0 0 duy
8y 0 ()" o 0 duy
53 0 ()" o 0 | |sw
5y 0 0 ()" o Suy
85 0 0 ()" o duy
8 | () R 0 0 | [5ws (5.126)
5l e)" 0 0 0 du
Siig 0 0 0 (e |53
Sl 0 ()" o 0 Sws
5irg 0 0 0 (€% |buy
diin 0 0 (" 0 dv4
S| | 0 0 0 ()] [swa

Gathering Equations [3.125 and [3.126| creates the differentiated rod lengths with respect
to Cartesian nodal displacement in Equation [3.127, which further can be inserted into the
virtual work expression.
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—el 0 e’ —et 0 0

O.LT el —.e? 0 0 — 0
at_u 7= " .. ' (3.127)

0 t€ —t€ 0 0 —t66

0 0 0 et e e

The internal force vector also needs the covariant strain tensor differentiated through rod
lengths, and this is given by Equation |3.128

(tLl)Qm_l 0
gE |
(,;S—L = : (3.128)
0 (tLG)Zm—l
o (oLs)™™

Inserting Equations [3.127] and [3.128]into the virtual work creates the internal force vector
shown in Equation [3.129] The constant strain tensor gives a constant integrand and a
simple integration procedure.

LT OF ~-

int _ /Q B8 do2 = BTS2 = 50 o T ! 18002 (3.129)
0

K, stiffness matrix, constant strain tetrahedron

The increment of the differentiated rod lengths from Equation changes with two an-
gular changes, unlike the 2-dimensional formulation changing through one angular change.
Equation shows a single basis (ye) chain differentiated through two angular changes,
a change in the (yn) direction and a change in the () direction. The obtained result
from Equation is now inserted into the increment of the differentiated rod lengths,
thus giving Equation [3.131] Here Equation follows a similar pattern to Equation
B.I127

Spe = %59 n %w — 060+ m 8V (3.130)
(086, + n'50;) 0 - 0 ]

. (@_ﬂ) | (s + m'50h) (080, + m350a) .. 0 55
du 0 (:n2805 + M2895) ... —(;n%605 + M°695)
_ 0 0 Lo (0086 + m°50s) |

Rewriting the increment of the differentiated rod lengths gives Equation [3.132] This
gives a matrix (M) containing the angular changes and a matrix (P) containing (ie)
differentiated with respect to angular changes. The matrix (M) in Equation has
six columns, one per rod. Each rod also has two angular changes, creating 12 rows.
For instance, the first column shows the angular changes of rod 1. The angles (6; and
v1) change rod 1, thus giving the position in column 1 and rows 1 and 2. This pattern
continues downwards, with (A and 1J3) in the second column and the third and fourth
rOW.
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oLT T
522 ) =P™™ 3.132
(5 ) (3.132)
(50, 0 0]
59, 0O 0
0 80, 0
M=|0 &) 0 (3.133)
0 0 ... 50
0 0 ... &

The matrix (P) in Equation is an expanded version of the differentiated lengths
and has 12 rows (4 nodes x 3 degrees of freedom) and 12 columns (12 angular changes).
Each of the twelve columns relates to the twelve angular changes, while each row relates
to the four nodal displacements. For instance, rod 1 gets angular changes with (6, ¥;)
and runs between nodes 1 to 2.

- (tnl) - (tﬂl) 0 0 0 0
pT_ (") (m') —(n?) —(m?) 0 0 (3.134)
0 0 (¢n?) (m?) —(m°®) —(m°)
0 0 0 () (m°)

Equation shows a collected vector of the differentiated strain tensor, the stress
tensor, and the covariant transformation. This way of rewriting allows for writing the
angular changes on the right-hand side of the (K;) stiffness matrix integrand. Equation
is now provided by swapping the collected term in Equation and the angular
changes. Here the diagonalized matrix in Equation follows the pattern, (J; in the
first row and column; ()7 in the second row and column; (), in the third row and column;
(22 in the fourth row and column; and so on.

Q= gi’—ET_TOS (3.135)

86, 0 0 ] i S

59, 0 0 Q. 0 ... 0 0] o6

0 86, 0| | 0 @ 0 0] |&
MQ=10 &0, 0 =0 s : (3.136)

S Qs 0 0 ... Qs 0] |56

50 0 0 ... 0 Qs |60
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Now writing the angular change as a function of the local displacement components (6v
and dw) gives Equation [3.137, These local displacements can further be transformed into
global Cartesian coordinates.

0= |= : (3.137)
RO e

Equation shows the transformation between the local displacements (6v and dw)
and the global displacements (du), following a similar arrangement as Equation .
(6v; and dwy) related to the first node (column 1) and the first rod (superindex 1), (82
and dwy) related to the second node and the first rod, (85 and dws) related to the second
node and the second rod (superindex 2), (6v4 and dw,) related to the third node and the
second rod.

571 ()" 0o 0o o0
5 @) 0 0 o | |su]
572 0 ()" 0 0 S
5 o (@) 0 0 | |sw
o5 =] 0 (m»)" 0 o0 (3.138)
S o (@) o0 0 Suy
: Svy
8712 0 0 0 (%" |suwy
sin| | 0 0 0 (m%)" -

The lengths from the angular changes are further extracted and combined with the diag-
onalized matrix (Q) to form the (H) matrix in Equation (3.139]

@ 0 ... 0 0|z 0 ... 0 0
0 @ ... 0 0 0 4 ... 0 0
H=|: o : : R : (3.139)
0 0 ... Qs O 0o 0 ... ﬁ 0
(00 ... 0 Q] |0 0 ... 0 o

Now combining Equations |3.134] 3.137] [3.139] and [3.138] gives the (K;) stiffness matrix
for the constant strain 4-node tetrahedron in Equation [3.140]

K, = PTHPQ (3.140)
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K, stiffness matrix, constant strain tetrahedron

The (K») stiffness matrix follows the double differentiated strain tensor shown in Equation

B.141]

. -
K,du = %—f; 5 (?i—i) T 1Sof (3.141)
The double differentiated strain tensor, the covariant strain tensor and the stress tensor
can be collected and inserted into the main diagonal following Equation [3.142] giving
length changes on the right-hand side of the expression. Bringing together Equations|3.141
and gives the integrand of the (Kj) stiffness matrix in Equation differentiated
with respect to length changes of the rods.

= ~_T
WL = [22B T 8| 8L, (3.142)
OLTs (BN 57 o prgs (3.143)
ou oL 0= ¢ '

Inserting Equation [3.127| into the incremental rod lengths fully defines the (Ks) stiffness
matrix’s integrand, and thus gives the (Kj) stiffness matrix in Equation [3.144]

K, =TT (Q (3.144)

K3 stiffness matrix, constant strain tetrahedron

The constant integrand also gives a simple expression for the (K3) material stiffness ma-
trix. Inserting Hooke’s law or the elastic-plastic tangent moduli now defines the stiffness

matrix in Equation [3.145]

Ks = B75,S (2 = B'C*® B (2 (3.145)

3.4.5 Assumed natural linear interpolated strain tetrahedron

Splitting the 10-node tetrahedron into four satellite tetrahedrons gives the ANS interpo-
lated strain tetrahedron. Figure|3.8 shows a principal sketch of the node configuration and
rod definitions of satellite number 4. A single satellite tetrahedron consists of 6 line seg-
ments, giving (4x6=24) independent rods. Assuming each rod follows the 1-dimensional
Seth-Hill strain tensor gives the four satellite covariant strain tensors in Equation [3.146]
Interpolating and transforming the four covariant satellite strain tensors now gives the
global Cartesian strain tensor in Equation [3.147]
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Node 8

Node 9

Node 2

Figure 3.8: Node configuration of the ANS 10-node linear strain tetrahedron.

of X ()P =1 oFng X ()™ —1
{oE}1 = =95 {oE}4 = : =5 (3.146)
oEs (;LT?S)M —1 0Ens (gﬁzi)m —1
N1 -l
.E = N, ({T}1> OEL+ . N ({T}4) (LE, (3.147)

The system relating the rods, the local and global displacement components are shown in
Appendix [A] table to[A.6] The four satellites are also visible in Figure [3.8 Satellite
1 defined by nodes (1, 5, 7, 8), Satellite 2 defined by nodes (2, 5, 6, 9), Satellite 3 defined
by nodes (3, 6, 7, 10), and Satellite 4 defined by nodes (4, 8, 9, 10).

The virtual work is defined through chain differentiation of the strain tensor in terms
of rod lengths, and differentiation of the global Cartesian strain tensor with respect to
the 24 rods gives Equation[3.148] With each of the differentiated sub/satellite tetrahedron
following Equation [3.149

oE
oL

sL =[N, ({Tp)‘l GoBL -, ({T}4>‘1 2Bh | 5,1 (3.148)
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_(tLl)zm_l 0
~ Ll 2m
8{0E}1 _ (0 )
oL
0 (tL6)2m_1
- (ko)™ 3.149
-(tL19)2m_1 ( : )
=~ (0L19)°™ 0
OfEN | "
oL
(tL24)2m_1
B 0 (0L24)*™

The differentiated lengths in Equation [3.150] are now represented through the 48 local
displacement components (du). Transforming the components of the local displacement
into the global Cartesian displacements gives Equation [3.151] (8u;) is the transformed
global Cartesian displacements of node 5 in the direction of rod 1, thus setting (ye') into
the fifth column. (8uy) relates to rod 1 and node 7 setting (;e') in column 7. The pattern

continues through the 24 rods with the system from Table to[A.6]

duy
duia
dus

dtiy

duas
dliyg

duar

duag

o o o O
o o o O
o o o o

0
0
0
0

o o o O
o o o o

6tL -

(ve

()"

o o o O

d¢v Ly dty — duy
6‘c-[/24 6:L\ZZJLB - 6ﬂ47

0 0 0 0

0 ()" o 0

0 ()" 0 0

0 0 ()" 0

0 0 0 ()"

0 0 0 0

0 0 0 0

0 0 0 0

o o o O

duq
51)1

67.U1

6U10

6’010

dwig

(3.150)

(3.151)

Collecting Equations [3.150] and [3.151] gives the change in rod lengths in terms of nodal
displacements. This is shown in Equation [3.152| with rod 1 running from node 5 (row 5)
towards node 7 (row 7) and rod 24 running from node 10 (row 10) towards node 4 (row

1),
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0 0 0 0
0 0 0 0
0 0 0 0
0 0 te23 te24
o.LT —el 0 0 0
5—11 —T7T = to . . . (3.152)
tel —te2 0 0
0 ce2 0 0
0 0 —e2 0
0 0 0 —e*

The center of mass of a tetrahedron follows (1/4) of the height. Each satellite tetrahedron
then has a center of mass at (5/8) of the volume coordinate, shown in Equation [3.153]
Equation [3.154] now gives interpolation functions with unit value in the center of each
satellite.

1 11 )
t f = - - — i = =Gz 1
Center of mass (2 +3 4>C 8C (3.153)
Ny G — 16— 16— 1
Na| TG — 3G — 10— 3G (3.154)
Ny 16— 36— 3G — 56
| Na| _71@1 — 3G — 3G - iC:a_

The shape functions, differentiated rod lengths, and the global Cartesian strain tensor can
be collected to form the internal force vector shown in Equation[3.155] The expression can
also be numerically integrated, thus following Equation Different options relating
the volume coordinates of the shape functions and positions of the elements are possible.
Now choosing the conventional 10-node tetrahedron’s Jacobi matrix preserves the internal
force vector during constant strains.

int _ T _1/1/1/1&_LT30ET
f = /OQB OS doQ = 6 ; . ; au atL US Det(J)dengCg, (3155)
int 1 . T
£ & =) W (a)B(a:) oS (a;) Det(I(a:)) (3.156)
=1
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K, stiffness matrix, linear strain tetrahedron

The (K;) stiffness matrix integrand is assembled from the increment of Equation [3.152]
and rewriting the increment in terms of angular changes gives Equation |3.157

{

o.L”
ou

):

o o O

0
—(:n'86; + M'80;)
0
(tn'80; + m'801) —
0
0
0

o o o o o

0

(tl’l2502 + tT]25192) ce
(tn2602 + tT]25192) .

0
0

0
0
0
(10?8624 + M?*5024)
0
0
0
0
0
. —(n?**8024 + M**8024)

(3.157)

Separating the angular changes and the rod bases (yn and m) gives the two matrices (M)
and (P) in Equation [3.158] where (P) and (M) follow Equations [3.159 and [3.160] The
(M) matrix now has 24 columns and 48 rows. Column 1 relates the angular changes to
rod 1, column 2 relates the angular changes to rod 2, and so forth. Equation shows
the (P) matrix relating nodal displacements and angular changes. Row 5 and columns
1 and 2 relates the nodal displacements of node 5 to the angular changes of rod 1. This
system continues through the 24 rods.

oLT -

s (2 ) = pT™™m 1
( — ) (3.158)
(50, 0 0 |
59, 0 0

0 56, 0

0 59, 0 (3.159)
0 0 505,

0 0 §0s1
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0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 t1.123 tn23 t1124 tT]24

—m! —m! 0 0 0 0 0 0

- t0 t?) 0 0 0 0 0 0 (3:160)

¢n! ml —¢n? _mz 0 0 0 0
0 0 n®> m? 0 0 0 0
0 0 0 0 —n? —n%* 0 0
0 0 0 0 ... 0 0 —n2* —n*

The shape functions, differentiated strain tensor, and stress tensor are now collected into
the vector in Equation |3.161} This way of arranging the (Q) vector allows the incremental
angles to be written on the right-hand side in Equation [3.162|

T ~ T 7]
N1a{§:i}l <{T}l) 0S
=y T ~ =T
N2 ([T)2) o8
Q=| " 8 (3.161)
N2l (D)) o8
= T ~ =T
N, 8{603}4 ({T}4) OS_
50, O 0
o 0 0 @1 0 0 56,
0 662 0 Ql O Q1 0 6791
MQ=1|0 & 0 =i (3.162)
Q24 0 0 Q24 0 6(924
0 0 0024 0 0 Q24| |06V
0 0 0oy

Rewriting the angular changes as a function of the local displacement (dv, dw) gives

Equation (3.163

Rod 1 in rows 1 and 2; rod 2 in rows 3 and 4; and so on. The local

displacements can be further expressed as the global Cartesian displacements through
the transformation shown in Equation [3.164] Here (8v1, dw,) correlates with the fifth
node and rod 1 and is consequently put in the fifth column, with basis vectors following

superindex 1
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0= : | = : (3.163)
CARE=S
(5] [ooo0 o (@) 0 o o0 o |[|éuw]
5 o000 o (@) 0o 0o 00 0 Svy
579 000 0 0 0 ()" 00 0 S
S@s | =10 0 0 0 0 0 (m)" 00 o0 (3.164)
: duio
STag 000 0 0 0 0 00 ()| |svg
Sus| (000 (@ 0o 0 0 00 0 S

Now combining the lengths with the diagonalized matrix from Equation [3.162] gives the
(H) matrix in Equation [3.165] Here (Q; and L) is found in the first column and row,
and the second column and row; (@) and L) found in the third column and row, and the
fourth column and row; and so on.

Q0 .. 0 of[L o ... 0 o]
0 @ ... 0 0 0 4= ... 0 0
H=|: = "~ = Door : (3.165)
0 0 ... Qu O 0 0 ... & 0
(0 0 ... 0 Qu |0 0 ... 0 =

Collecting Equations|3.160} [3.163] [3.165{and [3.164] gives the integrand of the (K;) stiffness
matrix in Equation [3.166], which can be numerically integrated following Equation [3.167]

.
Ki = /0 /0 /0 PTHPDet (J)dCdCodCs (3.166)
K, = éZW(ai)PT(ai)H(ai)P(ai)Det(J(ai)) (3.167)

K, stiffness matrix, linear strain tetrahedron

The integrand of the (Kj) stiffness matrix is derived from the double differentiated strain
tensor in Equation [3.168] Equation [3.169| shows a matrix where the twice differenti-
ated strain tensor, stress tensor, shape functions, and covariant transformation have been
collected into the main diagonal. This form of rewriting gives length changes on the
right-hand side of the expression.
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—(tL1)2m_2 0
~ 2m
91 E (0L1)
M — <2m _ 1)
(9tL(2)
0 (tLG)Qm—2
- (o)™ 3.168
-(tL19)2m_2 0 ( ' )
6(2){0E}4 (oLl?)Qm
1@ = (2m — 1) :
0 (tL24)2m_2
L (0L24)*™
i @BL . () L
() ((T1) o
@ {oE}, Tl 7T
N2 (8 {0(2) ) <{T}> OS
U5, L = ag;{LOE}S Ty AT 5. L (3.169)
N3< 9. L ) <{T}> OS

@B\ () L
N, (8;£0(1;4)}4> <{T}4> OS_

The length changes are now rewritten in terms of the previously established Equation
3.152l This gives the (Kj) stiffness matrix integrand in Equation |3.170} which is used for
creating the (Ky) stiffness matrix in Equations [3.171|and [3.172]

HL"_(OE"\ o o7
1 1 1 1
0 0 0
1 4
Ky~ o > W(ai)T" (a;)¥(a;)T(a;)Det(I(a;)) (3.172)

=1

K stiffness matrix, linear strain tetrahedron

Writing the incremental stresses in terms of the tangent moduli or Hooke’s law creates the
(K3) stiffness matrix shown in Equation [3.173] which further can be integrated through
the four-point Gauss integration in Equation [3.174]

1 1 1 1 1 1 1 1
Ky = © / / / BT§SdC1dCadCs — — / / / BTCPBdGdGdG;  (3.173)
6.Jo Jo Jo 6.Jo Jo Jo

K, ~ % >~ W(a:)B(a,)C(a;)"B(a;) Det(J(as) (3.174)
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3.5 Plasticity formulation

3.5.1 The yield function

The von Mises yield Criteria is one of the most commonly used yield criteria for metals,
with the theory basing itself upon the second invariant of the deviatoric stress tensor.
Plane stress conditions assume neglectable out-of-plane stress components, giving the
von Mises yield criteria in the first row in Table The second row in Table [3.5| shows
the generalized version for the 3-dimensional stress state.

Table 3.5: The Von-Mises yield criterion for different 2- and 3-dimensional cases.

Plane stress | - = V/S%x + S&y — SxxSyy + 35%y

Generalized | & = \/%((SXX—SYY)2+(SYY—SZZ)2+(Szz—SXX)2+6(S§z+5§<z+S§(y))

An elastic-plastic material model needs three ingredients, a yield criteria, an hardening
law, and elastic constants. The hardening law and elastic constants describe the stress-
strain curve, while the yield criteria connect multiaxial stress states to the stress-strain
curve. A commonly used assumption is the isotropic hardening, giving a uniform expan-
sion of the yield surface during plastic flow. The uniform expansion of the yield surface is
described with a single parameter, the equivalent plastic strain. The second row in Table
shows two commonly used hardening models, the perfect elastic-plastic and Johnson-
Cook material models. The perfect-elastic-plastic material model assumes a constant
equivalent yield stress, while the Johnson-Cook model expands after the relation in the

right column in Table [3.6]

Table 3.6: Isotropic hardening models used for the yield function.

Perfect-Plastic Johnson-Cook
<%<p) Sys bl + b2pb3
h(p) 0 b3byp~!

Subtracting the isotropic hardening model from the yield criteria gives the yield surface
shown in Equation [3.175] This function explains whether or not a material behaves
plastically. Either the material experiences plastic flow at the yield surface or elastic
deformations inside the yield surface, while stress-states outside the yield surface are
inadmissible for static conditions.

¢ =F(S)— R(p) <0 (3.175)
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Equation shows the plastic flow rule for associated plasticity. The associated plastic
flow assumes plastic flow in the direction of the gradient of the yield surface. Here the Seth-
Hill work conjugate stress tensor has been inserted into the yield criteria. Differentiation
of the von Mises yield criterion now gives Equation for the generalized 3-dimensional
case and plane stress conditions.

9¢

SoEP = ——
0 oS

5p (3.176)

209xx —0Svy —0S5zz
20Svy — 0Sxx — 0522

O 1 |2052z —0Sxx — oSyy op 1

209xx — 0Svy

Y _ = ___ _ 3.177
S 27 6,5y 8 a7 |28y oSk (BIT0)
60Sxy
605xz
60Sxy

3.5.2 The return mapping algorithm

The Kuhn-Tucker conditions in Equation explain the plastic behavior of a material.
A stress state is either found inside or at the yield surface. If the stress state is inside
the yield surface no plastic flow occurs. If the material is at the yield surface, the yield
function is by definition set to zero.

F<0,8p>0, Fop=0 (3.178)

No changes in the yield function occur during plastic flow. This can be explained through
the consistency conditions in Equation [3.179| stating the increment of the yield criteria
must be equal to the increment of the plastic flow.

9¢

=4S

§6S — hép = 0 (3.179)

The transition between the elastic behavior and plastic flow can be difficult to model for
multidimensional geometries. Instead of always fulfilling the Kuhn-Tucker and consis-
tency conditions, trial stresses corrected by mapping algorithms are practical for element
formulations. Return mapping algorithms follow this logic, and the full Newton backward
Euler return mapping algorithm presented here will follow the work of K. Krabbenhoft
[15].

The first step of the return mapping algorithm is finding elastic trial stresses through
Hooke’s law presented in Equations [2.16| and [2.17] The stress state is accepted if the
trial stress state gives a value inside the yield surface. Contrary, a corrector algorithm is
applied if the trial stress is outside the yield surface. The corrector algorithm must finish
with a stress state at the yield surface, and thus follow Equation

¢(0S,p) =0 (3.180)
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Hooke’s law in Equations [2.16] and [2.17] follows the elastic parts of the strain tensor. The
same relation is also valid for incremental stresses and strains. Assuming small finite
stresses and strains gives Equation through the additive decomposition plasticity
presented in Equation [2.20

AgS = CAGE® = C (AE — AGEP) (3.181)

Equation [3.182| shows a rewritten version of the incremental Hooke’s law. Here the plastic
flow rule in Equation is used for replacing the incremental plastic strain tensor. The
total incremental strains and the incremental stresses can be collected and rewritten in
terms of trial stresses and stresses at the yield surface. Figure shows a trial stress
state outside the yield surface (non-dotted quarter ellipse). Since the trial stresses give
yielding, the trial stress tensor is mapped back to the yield surface. During the mapping,
the yield surface gets an expansion (dotted quarter ellipse), and the yield surface gives a
value of zero at the stress state (oS).

— AoS + CAGE — CAGEP = (S — (8" 1 C aa ¢SA ~0 (3.182)
0

Figure 3.9: Principal sketch of the return mapping algorithm.

Equations [3.180] and [3.182] are now collected and inserted into the residual expression in
Equation [3.183 This procedure gives the robust backward Euler return mapping scheme.
Newton-Raphson methods are now applied to the system of non-linear equations, giving
the derivative in Equation and solving procedure in Table |3.7]

S Strlal + C Ap

r= =0 (3.183)
¢(Os7p)
I+ C2o2Ap C2%| 5,8
KOT = 6TS‘2) L I R (3.184)
s e
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Table 3.7: Procedure for the backward Euler return mapping algorithm.

Input: OSmal, P

IF (oS, p) < 0

accept trial stresses and set:

OS — OStrial
Or iterations until r’r < tol :
Solve:
r = —KOr:
Set:
os - OS + 608
Ap = Ap—+ dp
p=p+0op

Add plastic flow to plastic strains:

3.5.3 Elastic-plastic tangent moduli

The stress increment in the material stiffness matrix can follow two approaches. Either
the material is in elastic conditions and follows Hooke’s law, or plastic flow occurs and the
material follows the elastic-plastic tangent moduli, an idea first addressed by J. Nagtegaal
[16] and further expanded by J. Simo et al. [I7]. Rewriting the consistency conditions
in Equation in terms of incremental stresses, strains, and the plastic flow rule gives
Equation[3.185 Now solving this equation in terms of the plastic multiplier gives Equation
[3.186l

2 9¢
- C(8E—- ==8p) —hdp=0 3.185
s (3B - gor) — o (3,185
9. C 5yE
bp =25 —— (3.186)
h+ 55Cos

Equation [3.187 shows the constitutive relation/incremental Hooke’s law written in terms
of the plastic flow rule, and inserting the plastic multiplier from Equation [3.186] into the
constitutive relation gives the elastic-plastic tangent moduli in Equation [3.188]

80S = C (§E — 5 E”) = C (50E — ;%5}9) (3.187)
0
C 98 26T
50S = C §E = <c - %) 5E (3.188)
h+ 355Ch%
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Chapter 4

Results and Discussion

4.1 Eigenvalues of triangular element

The element stiffness matrix needs to be able to preserve properties regarding rigid body
motions. A way of checking this is through the eigenvalues of the stiffness matrix. The
eigenvalue formulation of the stiffness matrix follows the form in Equation [4.1] Non-zero
rigid body motion produces zero changes in the internal energy of the element and has
a corresponding eigenvalue equal to zero. A 2-dimensional geometry needs to be able to
preserve two translational degrees of freedom. For small strain assumptions, a rotational
non-zero rigid body motion shall also be apparent in the stiffness matrix.

Kdou = wdu (4.1)

Table represents the geometry for the 3-node and 6-node triangular elements used for
investigating the stiffness matrix, while Figure [4.1] shows the step-by-step process. The
step-by-step process started with a stretch into a constant strain state, with the next and
last step sending the geometry into a rigid body rotation of 45 degrees. Material constants
(= 210-10%, v = 0.3) were applied to the four formulations, 3-node conventional; 6-node
conventional; 3-node ANS; 6-node ANS, all with the Green-Lagrange strain tensor.

Table 4.1: Coordinates for the triangular elements.

Node number: 1 2 3 4 5) 6

3-node triangular element (,X, oY) | (0,0) | (1,0) | (0,1)

6-node triangular element (oX, oY) | (0,0) | (1,0) | (0,1)

—~
N[
o
~—
—
N =
N |+
~—
~—~
jan)
N =
N—
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pr
W

Figure 4.1: Mesh and geometry for a single element subjected to stretches and rigid
body rotations.

Figure[4.2] [4.3] [£.4] and [£.5]shows the eigenvalues plotted against time for the four different
formulations. The 3-node element formulations in Figures and shows the same
eigenvalues. Having six nodal degrees of freedom, the 3-node element formulations create
six eigenvalues. Counting downwards, four lines increases through the process while two
stay constant at a value of zero. Midway through, the elements are sent into a rigid
body rotation, giving constant eigenvalues for the rest of the simulations. Figures 4.4
and show similar patterns, but with twelve degrees of freedom. The eigenvalues are
continuously differentiable and two zero eigenvalues are always existing. The ratio of the
largest to lowest non-zero eigenvalue in Figures [4.3] [£.4] and [4.5] give values of around
10 and 20. Indicating well-conditioned stiffness matrices of the four element formulations.
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Figure 4.2: Eigenvalues plotted
against time for the 2-dimensional
3-node conventional formulation.
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Figure 4.4: Eigenvalues plotted
against time for the 2-dimensional
6-node conventional formulation.
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Figure 4.3: Eigenvalues plotted
against time for the 2-dimensional
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Figure 4.5: Eigenvalues plotted
against time for the 2-dimensional

ANS 6-node triangle.
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4.2 Rod in 1-dimensional stress state

A simple way of testing the plasticity model in the element formulation is by making
a tensile specimen in a uniaxial constant stress state. Pulling the tensile specimen in
the elastic regime should give an effective Poisson ratio (vxz = —Exx/Ezz) equal to
the inserted value in the hyperelastic Hooke’s law. Increasing plastic deformation makes
the effective Poisson ratio deviate from the value inserted into the hyperelastic Hooke’s
law. The von Mises yield criterion with associated plastic flow assumes a constant sum of
plastic normal strains and therefore should give an effective Poisson ratio of 0.5 for large
plastic strains.

Figure [4.6| shows the rod geometry and mesh used for investigating the plasticity model.
Conventional 4-node elements with a mesh size of ~7mm were assigned to the rod with
a length of 100 mm and a radius of 10 mm. The top surface applied with a displacement
of 15 mm and two additional point constraints for avoiding rigid body motions. The red
arrow at the bottom points toward the bottom surface of the rod, fixing the z-direction
on this surface. Elastic material constant of (1 = 210 - 103[MPa}, v = 0.3) were provided
to the model with von Mises yield criteria and the perfect elastic-plastic hardening model
(0Sys = 700[MPa).

V=[]

Height =100

ZE;'

w=[0]

OD=20

Figure 4.6: Mesh and geometry of tensile specimen in uniaxial stress state.

Figures [4.7] and show the effective Poisson ratio and the stress-strain curve. The
effective Poisson ratio starts at 0.3, and with a ramping plastic strain, the effective Poisson
ratio goes towards a value of 0.5, thus following the desired behavior.
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Equivalent plastic strain (p) Ezz
Figure 4.7: Effective Poisson ratio  Figure 4.8: Stress strain curve for
plotted against the equivalent the rod subjected to uniaxial
plastic strain. loading.
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4.3 Beam subjected to plastic strains

A beam subjected to bending stresses gives tensile stresses on one side of the cross-section
and compressive stresses on the other, while the relationship in between behaves close to
linearly for the elastic regime. The equivalent stresses are at their largest at the top and
bottom of the beam, creating two starting points for the plastic flow. With increasing
load, the plastic flow increases in the two starting points and moves progressively towards
the center cross-section. Unloading the beam creates a spring-back behavior. The stresses
close to the top and bottom reduce in magnitude and changes sign. Closer to the center,
the stresses reduce in magnitude. This gives a stress state going from tensile to compres-
sion to tensile to compression.

Figure shows a beam with dimensions 1000 mm x 100 mm x 10 mm tested in
plane stress conditions. The red arrow in Figure indicates a load of -19 kN ramp-
ing linearly through 40 steps. A fully constrained fixture to the left of the beam is
also visible in this figure. The 3-node ANS formulation, 6-node ANS formulation, 3-
node conventional formulation, and 6-node conventional formulation were tested with
the Green-Lagrange strain tensor. All with the Johnson-Cook model with constants
(by = 700[MPal,by = 300[MPa],bs = 0.6) provided to the material, while the elastic
parameters were set to follow (u = 210 - 10°[MPa], v = 0.3).
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Figure 4.9: Geometry and mesh investigated of the beam subjected to plastic strains.

The applied force plotted against the right-hand side displacements (v) is visible in Figure
[4.10] This figure shows the stiff nature of the 3-node constant strain elements, while the
6-node element formulations gave significantly larger displacements and strains. The 6-
node ANS element gave a somewhat more stiff element formulation than the conventional
formulation, but the two force-displacement curves follow each other closely throughout
most of the simulation.
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Figure 4.10: Applied force plotted against the v-displacement component of the bottom
node on the right side in Figure
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Figures and [£.12]show the stress state at the left-hand side of the beam at -19 kN load
and after the unloading process. Here the stresses have been linearly extrapolated from
the three Gauss-points. Again the stiff nature of the constant strain elements is shown.
At -19 kN load, the Stress-position curves can be divided into two parts; a linearly elastic
part, where no plastic flow has occurred (center); and two parts influenced by the plastic
flow (non-linear regime to the left and right of the center). This is best visible on the
curve of the 6-node ANS formulation. The non-linear regime of the 6-node elements
is much greater than for the 3-node element formulations, thus creating larger residual
stresses in Figure This figure follows the desired tensile to compression to tensile to
compression stress behavior. Figure shows the conventional 6-node element’s normal
stresses plotted at different load steps. Normal stresses (0Sxx) around 700 [MPa] move
toward the center of the beam. After the unloading, residual stresses occur in the tensile,
compression, tensile, compression pattern.
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1 — — CONV 6-node triangle
------- ANS 3-node triangle
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Figure 4.11: Normal stresses at a
global load of 19.0 kN.
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Figure 4.12: Normal stresses after the
unloading process.
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Figure 4.13: Normal stresses ¢Sy viewed at different load steps for the 6-node
conventional element formulation.
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4.4 Incompressible cube

The constant strain triangles and tetrahedrons are known for their poor convergence rate
and stiff behavior. One way of measuring the performance of an element is through the
incompressible cube. J. Schroder et al. [18] have previously discussed the incompressible
cube, and a similar approach will be used here.

The cube investigated was set to follow the same geometry as J. Schroder et al. [18],
giving a cube with 100 mm width, 100 mm length and 50 mm height. The geometry is
also viewed in Figure Since the cube contains two symmetry planes, the geometry
could be split up into 1/4 of the actual geometry, giving dimensions of 50 mm length,
50 mm width, and 50 mm height. The smallest quadrilateral on the top surface was
applied with a load of - 50 kN. The grey area in Figure |4.14] symbolizes a "floor” fixing
the bottom surface in the y-direction. Along the yellow line in Figure [4.14] a shear stress
singularity is occurring as a consequence of the applied loads and boundary conditions.
Faster converging elements approach the displacement values faster, while the shear stress
singularity diverge faster.

0
£ =[50 kN
0

[w]=[0]

[u]=[0]

M:m\

Figure 4.14: Geometry used for investigating the incompressible cube.

Figure m shows the maximum (v) displacement on the top surfaces plotted against
degrees of freedom of the reduced model. The two 10-node tetrahedron formulations are
superior in convergence pace for a smaller number of nodes, while the 4-node elements
seems to lock for coarse mesh sizes. At around 7000 degrees of freedom, the differences
in displacements can be seen as neglectable. In the general, the assumed natural inter-
polated strain formulation seems a bit stiffer than the higher-order conventional element
formulation.

On the top surface, a shear stress singularity is occurring. Figure [4.16|shows the displace-
ments plotted against the o X-position along the yellow line at 34359 degrees of freedom.
Both 10-node tetrahedral formulations follow each other closely, but some small discrep-
ancies appear for stresses in Figure 4.17, where the conventional element formulations
reduce the stresses quicker than the ANS formulations.
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Figure 4.15: Displacements plotted against degrees of freedom for the incompressible
cube.
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Figure 4.16: Displacements plotted  Figure 4.17: Shear stresses plotted
against positions along the yellow against positions along the yellow
line. line.

4.5 The Poynting effect of a cylinder subjected to
torsion

John Henry Poynting investigated thin steel wires subjected to torsion [19]. His experi-
ment gave elongation of the wires with an increasing twist. The Seth-Hill strain tensors
are known for their shear-strain behavior, and choosing low values of (m) gives elongating
behavior in combination with shear strains.

For investigating the Poynting effect and Seth-Hill strain tensors, a cylinder with a length
of 100 mm and a diameter of 40 mm was subjected to torsion. Figure [4.18|illustrates the
mesh and geometry of the cylinder. This model was applied with ANS 4-node and 10-
node tetrahedral element geometries with a mesh size of ~8mm. A twist of (0.5 radians)
was subjected to the close side while being fixed in the radial direction. On the far side,
all degrees of freedom was set to zero. Each element was further assigned with elastic
material constants (p = 210 - 10%, v = 0.3).
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Figure 4.18: Mesh and geometry used for investigating the shortening/lengthening
behaviour of a cylinder in torsion.

Figure 4.18 and 4.19 shows the average change of length with increasing twist of the
cylinder. Figure 4.18 for the 4-node ANS tetrahedron and Figure 4.19 for the 10-node
ANS tetrahedron. Both graphs explain a similar behavior: lower values of m give the
lengthening behavior of rods/cylinders in elastic conditions, and visa versa. Both the 4-
node and 10-node tetrahedron element formulation predicts similar elongation behaviors,
but the 10-node tetrahedron elements seem more conservative with the length change.
This is especially apparent in regimes with low m-values.

03 4-node tetrahedron 03 10-node tetrahedron

0.2 0.2

0.14 0.11

0.0 0.0

Length change [mm]
Length change [mm)]

-0.14 -0.14

-0.2 T T T T T T -0.2 T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Twist [radians] Twist [radians]

Figure 4.19: Change in length plotted Figure 4.20: Change in length plotted
against twist for a cylinder in elastic against twist for a cylinder in elastic
conditions with 4-node ANS conditions with 10-node ANS
elements. elements.

Figure [4.21] shows how the twist affects the Almansi and Green-Lagrange strain tensors.
In this figure, the displacements along the (w)-direction are scaled 50 times. At the outer
rim, the elongation is at its largest. Moving towards the center of the rod reduces the
magnitude of the elongation. A rod subjected to twist gives close to linearly shear strain
in the radial directions, thus giving a bulge for the Green-Lagrange strain tensor and a
crater for the Almansi strain tensor.
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Figure 4.21: Length change rod subjected to twist with the 4-node tetrahedron
formulation. Almansi strain to the left, Green-Lagrange strain to the right.

4.6 Considerations on shape functions and meshing

The results presented with the linear strain ANS triangle and tetrahedron used shape
functions for relating three/four satellite covariant strain tensors, both formulations with
shape functions having unit values in the center of the satellite strain tensors. This
assumption is not derived from any mathematical standpoint and different unit value
configurations would probably affect the results for simulations with large Taylor poly-
nomial solutions. By changing the positions of the unit values, the element can probably
be simulated as both softer and stiffer, depending on whether the unit values are placed
closer or further away from the center.

An undesired effect of the ANS elements is a somewhat strange shear strain behavior.
The mesh and applied boundary conditions of the ” The Poynting effect of a cylinder sub-
jected to torsion” is a great example of this behavior. This type of mesh in combination
with boundary conditions does not necessarily give a symmetrical behavior with different
signs of the twist, thus creating a somewhat strange unsymmetrical behavior for some
mesh geometries. Care therefore needs to be taken into consideration when applying
meshes with shear strains.
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Chapter 5

Conclusion

The main objective of this thesis was to investigate higher-order ANS finite element formu-
lations with Seth-Hill strain tensor properties. Elements interpolating covariant satellite
Seth-Hill strain tensors were successfully derived and implemented into a Python FEA
solver. The higher-order ANS elements were further compared with the lower-order ANS
elements previously established by C. Felippa et al. [6], M. Eia et al. [4] and A. Ostebg
[5], and the conventional triangle and tetrahedral formulations.

A beam subjected to loading in the plastic regime was investigated for comparing dif-
ferent 2-dimensional element formulations. The 3-node conventional and ANS constant
strain triangles showed a significantly stiffer behavior than the 6-node conventional and
ANS linear strain triangles, both in the elastic and plastic regimes. The four tetrahedral
elements were compared through the incompressible cube. Here the 10-node conventional
element formulation overshoot the displacements for small mesh sizes, while the 4-node
conventional, 4-node ANS and 10-node ANS underestimated the vertical displacements
for small mesh sizes. The 4-node elements with more locking than the promising results
of the 10-node ANS formulation.

At last, the Seth-Hill strain tenors were tested in elastic shear conditions and were found
to give the desired properties such that the shortening in the Poynting effect could be
simulated through the ANS formulations.

5.1 Further work

The dense nature of the tetrahedral elements creates large numbers of degrees of freedom
packed in small regions. The ANS methodology is not bound to any particular element
shapes, and an 8-node brick element could create better geometric arrangements. A 4-
node quadrilateral element should also be of interest when expanding the element library
of the ANS methodology.

The higher-order ANS elements created in this thesis interpolated the covariant strain
tensor of three/four satellite strain tensors. Another approach is through interpolation of
three/four satellite deformation gradients. Future studies should compare ANS interpo-
lated deformation gradient elements with ANS interpolated strain element formulations,
both for the element geometries represented in this thesis and the futuristic 4-node quadri-
lateral and 8-node brick elements.
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Appendix A

Tables

Table A.1: Relation between basis vectors and nodal displacement components for the

6-node ANS triangle.

Rod Rod Rod Nodes Displacements

length basis 1 | basis 2

Ly el n! 1—14 duy, duy, duy, duy duy, 6v7, duig, OV,

Lo e’ n? 4 —6 duy, Oy, dug, dvg dug, dus, duiy, Sy

Ls el n? 6 —1 dug, dvg, duq, Oy dus, Ovs, dug, OVg
Ly et n* 4 — 2 Sy, dvy, duio, S dur, dvy, dug, dvg

Ly e’ n’° 2—>5 dus, dvg, dus, Ovs dug, Oy, dui1g, OV
Ly e n® 5—4 dus, dus, Sy, Sy dt11, 8011, SlUta, OV19
L e’ n’ 6 —5 Sug, dvg, dus, dus dlys, OV13, dlia, V14
Ly et n® 5—3 Sus, dus, dug, dvsg dUys, OV15, dlig, V16
Ly e’ n’ 3 =6 Sug, dus, dug, dvg dty7, 8017, dlig, SUg
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Table A.2: Relation between basis vectors and nodal displacement components for the

4-node ANS tetrahedron.

TABLES

Rod Rod Rod Rod Nodes | Displacements

length | basis 1 | basis 2 | basis 3

Ly el n! ‘I"]1 1—2 6U1, 51)1, 511}1 6&1, 551, 5@1
6U2, 51)2, 5’LU2 6&2, 5’172, 5’&52

L2 e’ n? 1’]2 2—=3 6U2, 61}2, 5’LU2 663, 5’173, 5’&?3
6163, 6’03, 5’LU3 664, 6’?)/4, 5’&74

L3 e’ n’ 1‘]3 3—1 6U3, 5’03, 5’LU3 6&5, 5,1\)/5, 5’@5
611,1, 61)1, 511)1 6&6, 6567 612)/6

L4 e’ n* T]4 1—14 6161, 61}1, 611)1 6&7, 6?}/7, 6@7
671,4, 51)4, 511)4 6&8, 5@/87 6@8

L5 ed n’° 1']5 24 611,2, 61)2, dws 669, 6@/9, 6@9
Oy, dvg, dwy dtu1g, 810, S0

L6 el n’ T]6 3— 4 6U3, 57)3, 511)3 66117 6@/11, 6’[1\)/11
dtug, dvyg, dwy dt1a, dV12, d1W12

Table A.3: Relation between basis vectors and nodal displacement components for the

10-node ANS tetrahedron satellite tetrahedron number 1.

Rod Basis 1 | Basis 2 | Basis 3 | Nodes | Displacements

length

Ll el n' ‘l']1 5—>7 6%5, 61)5, 611)5 6&1, 6@/1, 6{171
671,7, 51)7, 511)7 6&2, 5@/2, 6@2

Lo e’ n’ 1']2 7— 8 611,7, 61)7, 511)7 663, 6@/3, 6@3
6U3, 51)8, 511}8 664, 554, 51254

L3 el n?3 1']3 8 —5 6U8, 57)8, 511)8 665, 555, 5@5
6U5, 51)5, 611}5 666, 556, 5&}6

Ly et n* 1']4 5—1 6U5, 51)5, 6105 6&7, 557, 5@7
6U1, 51)1, 511}1 6&8, 6’1787 6{58

Ly e’ n’° T]5 7T—1 6U7, 51)7, 511)7 6&9, 559, 61759
duy, dvy, dwy dt1g, 819, S0

L6 el n’ 1']6 8 =1 6U8, 51)8, 5’[1}8 6&11, 6’1711, 6”[1711
duy, duy, dwy dt12, dV12, d1W12
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Table A.4: Relation between basis vectors and nodal displacement components for the
10-node ANS tetrahedron satellite tetrahedron number 2.

Rod Basis 1 | Basis 2 | Basis 3 | Nodes | Displacements

length

Lo e’ n’ T]7 5—06 6U5, 51)5, 511}5 6&13, 671713, 6’&713
dug, dvg, dwe dU4, OV14, dW14

Lg e’ n® 1’]8 6 —9 6U6, 61)6, 5’LU6 6615, 61715, 621715
dug, dug, dwy 6516, 65167 dwi6

Lg e’ n’ ‘l']9 9—>5 6U9, 5’09, 5’LU9 6&17, 6/?717, 6@17
dus, dvus, dws dlyg, dvrg, dwig

LlO elo nlo T]lo 5 —=2 6%5, 61)5, 611)5 6&19, 6519, 6{1719
dug, dva, dw dlag, SV, dWag

L11 ell DH ‘l']11 6 — 2 611,6, 61)6, 511)6 6621, 6@/21, 6’&721
dug, dvg, dwy 5622; 55227 dtWas

L12 612 n12 1']12 9 — 2 6U9, 57)9, 511)9 66237 6@/23, 6’&723
dug, dvg, dwy 6624; 55247 dway

Table A.5: Relation between basis vectors and nodal displacement components for the

10-node ANS tetrahedron satellite tetrahedron number 3.

Rod Basis 1 | Basis 2 | Basis 3 | Nodes | Displacements

length

L13 e'3 n'3 1']13 6 —7 6%6, 61)6, 611)6 6&25, 6525, 6{625
duz, dvr, dwy dlag, dVag, dWag

L14 614 n14 1']14 7 — 10 611,7, 61)7, 511)7 6627, 6@/27, 6’{1727
duig, dv1g, dwig 66287 &7287 dwag

Lis e'? n'’ 1115 10 = 6 | duyg, dvig, dwip Sy, Va9, Sy
dug, dvg, dwe 25530, 6’7730, dws

L16 616 Il16 1']16 6 — 3 6u6, 51)6, 6106 6&31, 65317 6’&731
dug, dvs, dws dszg, dV32, OWsy

L17 617 Il17 ‘I"]l7 7T— 3 6U7, 51)7, 511)3 6&33, 6:1733, 6’&)/33
dug, dvs, dws dUsza, OV34, dWs34

Lig e's n's n' 10 = 3 | duig, dvig, dwig | duss, dUss, dwss
dusg, dus, dws duz6, OU36, dtsg
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Table A.6: Relation between basis vectors and nodal displacement components for the
10-node ANS tetrahedron satellite tetrahedron number 4.

Rod Basis 1 | Basis 2 | Basis 3 | Nodes | Displacements

length

L19 el? n'? 1']19 8 —=9 6U8, 57)8, 511)8 6637, 6?]/37, 6’&737
dug, dvg, dwy 5ﬂ38, 5538, dwsg

Log e? n?’ T]QO 9 — 10 6’LL9, 51)9, 6109 6639, 6’17397 6’[1739
duig, dv1, dwig 6@10, 6’1740, duwag

Lgl 621 Il21 T]21 10 — 8 6U10, 6’010, 621)10 6&41, 6:1741, 6’[1741
dug, dvg, dwy dyz, dV42, OWao

L22 e?? n?? 1']22 8 =14 6U8, 61}8, 5’[1]8 6&43, 61743, 6’[1743
duy, duy, dwy Oy, OV4s, OWyy

L23 e n?3 1’]23 94 6U9, 5’09, 5’LU9 5&45, 6545, 6?1745
duy, duy, dwy dlyg, dVag, Wy

L24 624 Il24 1']24 10 = 4 6u10, 61}10, 6@[)10 6647, 6647, 6{[747
duy, duy, dwy dlyg, dVyg, dlyg
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