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Abstract

Distributed optical fibre sensors (DOFSs) are becoming increasingly popular for in-situ condition monit-
oring in traditional engineering applications. DOFSs can also be deployed for new, innovative applications
such as monitoring currents in the ocean. The main advantage of using DOFSs is that they can provide
high-resolution continuous strain and temperature measurements over long distances. However, the
measurements are sensitive to ambient disturbances such as mechanical and acoustic vibrations, which
produce high levels of noise. How ambient vibrational noise affects the strain data is unclear and is
investigated in this thesis. To this end, artificial neural networks (ANNs) are employed to classify distinct
mechanical and acoustic disturbances. Gaining a better understanding of measurement noise and how
numerical tools can be used to classify it is an important step in securing the use of DOFSs for novel
applications.

This investigation involves a series of physical experiments employing bare free-hangingDOFSs and a
DOFS bonded to a beam. First, using free-hanging fibres, raw amplitude data from the DOFSs is analysed
to investigate the extent of the fibre-end reflection. It is established that approximately 150 mm of the
fibre end is affected by the end-reflection, with large variations between different physical optical fibres.
Thereafter, the bare DOFSs are subjected to a series of magnitude-controlled mechanical disturbances.
The strain pattern is visually different depending on the source and intensity of the disturbance. Two
disturbance classification algorithms are developed using long short-term memory (LSTM) ANNs and
temporal convolution networks (TCNs). The algorithms reach prediction accuracies of over 70% for
regular and ca. 90% for composite disturbance states. Parametric studies confirm that the prediction
capability is robust regarding the sensing resolution but highly dependent on the training data quantity.

In the final experiment, a DOFS is fixed to a long composite beam subjected to near-eigenfrequency
acoustic disturbances. When exposed to tones close to the first eigenfrequency of the beam, spikes
appear in the strain measurements corresponding to the location of the antinode in the expected mode
shape. To classify the frequency class, two TCNs are developed: one where each frequency is treated
as an individual class (categorical predictions) and one where the frequency is tied to a single output
neuron (continuous predictions). Both networks identify the correct frequencies to some degree, with
the categorical TCN performing better than the continuous TCN. The findings of the parametric study
concerning the training data set size agree with the previous study.

The experiments and data analyses presented in this thesis provide a better understanding of DOFS
noise effects from mechanical and acoustic disturbances. The numerical analysis demonstrates how
LSTM ANNs and TCNs can be used for the classification of DOFS data. This is an advancement in
extracting new information from noisy DOFS measurements.
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Sammendrag

Distribuerte optisk-fiber sensorer (DOFS) blir stadig oftere anvendt til kontinuerlig situasjonsovervåkning
av strukturer. Ny forskning har også undersøkt nye og innovative bruksområder til eksisterende nettverk
med DOFS, f.eks. havstrømsovervåkning med undersjøiske kabler. Hovedfordelen med DOFS sammen-
lignet med andre sensorer er at de kan måle tøyning (eller temperatur) kontinuerlig over lange distanser og
med høy oppløsning. DOFS blir lett påvirket av mekaniske og akustiske vibrasjoner fra omgivelsene som
fører til mye støy i distribuerte tøyningsmålinger. Kunstige nevrale nett (ANN) blir brukt til å klassifisere
distinkte akustiske og mekaniske forstyrrelser. En økt forståelse av støy i DOFS-målinger og hvordan
numeriske verktøy kan brukes til klassifisering er et viktig og nødvendig stegmot å sikre framtidstidsrettet
bruk av DOFS.

Arbeidet er bygd opp av flere eksperimentelle forsøk med bare, fritthengende fibre og en fiber festet
til en struktur. I det første forsøket brukes det amplitudemålinger til å etablere hvor langt enderefleksjonen
propagerer i fiberen. Det blir fastslått at ca. de siste 150 mm av fiberen blir påvirket av enderefleksjonen,
men det er store variasjoner blant fibrene som blir testet. Deretter utsettes bare, fritthengende fibre for
kontrollerte mekaniske forstyrrelser. Tøyningsmålinger blir visuelt annerledes avhengig av kilden og in-
tensiteten til forstyrrelsen. Det blir utviklet to ANN-modeller til å klassifisere forstyrrelser i målingene: et
tidskonvolusjonsnettverk (TCN) og et langtidskorttidsminnenettverk (LSTM). Begge klarer å klassifisere
seks distinkte dataklasser med over 70% presisjon og tre samensatte dataklasser med over 90% presisjon.
Etterfølgende parametriske studier viser at metoden er lite avhengig av prosesseringsparameterne, men
svært avhengig av mengden treningsdata.

I det siste forsøket blir en fiber festet til en lang komposittbjelke utsatt for akustiske forstyrrelser
i ulike frekvenser. Når den akustiske frekvensen er ca. bjelkens egenfrekvens blir det observert høye
tøyningsverdier i antinoden til den første forventede bøyningsmodusen. To TCN blir utviklet til å klas-
sifisere frekvensene: ett hvor frekvensen behandles som én kontinuerlig klasse og ett hvor hver frekvens
behandles som en egen kategorisk klasse. Begge nettverk klarer å klassifisere frekvensen til en viss grad.
Det kategoriske nettverket gir det beste resultatet. De parametriske studiene samsvarer med studiene fra
det forrige forsøket.

Forsøkene gir en bedre forståelse av støy i DOFS målinger som oppstår fra mekaniske og akustiske
forstyrrelser. De numeriske analysene viser hvordan DOFS data kan klassifiseres med LSTM og TCN.
Konseptet markerer et skritt mot å kunne ekstrahere ny informasjon fra målinger påvirket av støy.
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Автореферат

Распределённые волоконныe световодные датчики (РВСД) приобретают всё большуюпопулярность
при локальном мониторинге состояния конструкций. В новейших исследованиях рассматривается
возможность применения ранее реализованных оптических волокон в качестве РВСД в инноваци-
онных областях, например, для мониторинга океанических течений. Самое большое преимущество
РВСД состоит в том, что они позволяют осуществлять квазинепрерывные замеры растяжения и
температуры с высоком разрешением на большом протяжении по всей длине световода. Однако,
они чрезмерно чувствительны к пертурбациям окружающей среды, например к акустическим и
механическим вибрациям, приводящим к высокому уровню шума при распределённых измере-
ниях растяжения. Каким именно образом окружающий шум влияет на данные по растяжению
составляет предмет настоящего исследования. Для этого рассматривается концепция применения
искусственных нейронных сетей (ИНС) для классификации отдельных механических и акустиче-
ских помех.

Исследование основано на ряде экспериментов, в которых применяются голые свободнопод-
вешенные световоды, а также световоды, прикрепленные к жесткой конструкции. В первом экс-
перименте анализируются первичные данные по амплитуде, получаемые от РВСД при помощи
свободноподвешенных волокон. Результаты показывают, что воздействие концевого отражения
распространяется примерно до 150 мм от конца световода. Во втором эксперименте голые сво-
бодноподвешенные световоды подвергаются ряду механических воздействий c контролируемой
интенсивностью. Анализ данных показывает, что картина растяжения меняется в зависимости от
источника и интенсивности помех. Разработаны алгоритмы классификации помех на основе ИНС
с долгой краткосрочной памятью (ДКСП) и темпоральных свёрточных сетей (ТСС). Алгоритмы
обеспечивают точность прогноза свыше 70% по шести различным состояниям помех и около 90%
для состояний с составным – высоким и низким уровнем помех. Параметрические исследования
подтверждают, что точность прогноза существенно не зависит от чувствительности разрешения в
измеряемых данных, но во многом зависит от количества обучающих данных.

В третьем эксперименте один РВСД был приклеен к длинной рейке из композитного мате-
риала, на которую воздействовали периодическими акустическими пертурбациями, близкими к
частоте собственных колебаний рейки. При воздействии тоном с частотой в интервале в несколько
герц относительно собственной частоты рейки измерения показывали скачки растяжения, соответ-
ствующие локализации пучности при первом режиме изгибных колебаний. С целью классификации
частот были разработаны две ТСС: одна, где каждая частота выделена в отдельный класс (категори-
альный прогноз); другая, где частота привязана к отдельному нейрону с непрерывным прогнозом.
Обе сети способны в определенной мере правильно определять частоту, однако категориальная
ТСС показала себя лучше, чем непрерывная. Выводы параметрического исследования относитель-
но размера набора обучающих данных согласуются с данными предшествующего исследования.

Указанные эксперименты обеспечивают лучшее понимание шума со статистической точки
зрения и показывают возможность выводить новую информацию из данных по РВСД анализом на
основе ТСС и ИНС с ДКСП.
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1 INTRODUCTION

1 Introduction

Distributed optical fibre sensors (DOFSs) are advanced sensors which are increasingly used for structural
health monitoring (SHM) due to their unique sensing characteristics. DOFS can produce high-resolution
quasi-continuous strain or temperature data along the whole length of the optical fibre. However, DOFS
measurements have been observed to suffer from noise due to ambient disturbances, such as mechanical
or acoustic vibrations. The noise is often unwanted and renders a measurement invalid. Being able
to interpret the noise effectively could make the noisy measurements useful. This thesis is centred on
gaining a better understanding of the vibrational noise effects using artificial neural networks (ANNs).

1.1 Background

1.1.1 Distributed Optical Fibre Sensors

Distributed optical fibre sensors (DOFSs) are a subset of optical fibres (OFs) which are used for distributed
strain or temperature measurements. DOFS can sense changes along the whole length of the fibre. This is
analogous to placing thousands of overlapping strain gauges on a structure. Due to their non-intrusiveness
and versatility, DOFSs have a large number of applications. For structural integrity monitoring, DOFSs
are an excellent choice. Table 1.1 provides a concise overview of the useful characteristics of DOFS
and which applications draw benefit from them. These examples are taken from real-life uses found in
literature and demonstrate the large variety of suitable applications for DOFSs.

As the sensor core is made of glass, DOFSs are resilient to harsh environments. Although the glass
core of the fibre is brittle, DOFSs can be integrated to closely follow structural geometries due to the
surrounding layer of coating. The small diameter of the fibre makes it an almost non-intrusive sensing
option to be integrated into tight spaces and offers a high resolution-to-sensor-weight ratio. DOFSs serve
both as a sensor and the signal carrier which means no extra wires are necessary. Furthermore, since
the communication medium is light, the DOFSs are immune to electromagnetic interference, removing a
significant security threat which wireless sensors are often exposed to [1].
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Table 1.1: Examples of DOFS characteristics and applications

Characteristic Applications/Benefits Ref.

Resistant to electromagnetic interfer-
ence

Less vulnerable to cyber-attacks [1]

Resistant to aggressive chemicals Nuclear reactors [2]

Weather-resistant Exposed structures, geotechnical ap-
plications

[3]

Resistant to corrosion Marine environments [4]

Low weight per sensor High-performance, “smart" materials [5]

Small and non-intrusive Between material layers in additive
manufacturing, ropes, FRP laminates

[3, 4, 6]

No extra wires necessary Less intrusion when embedded in
structures

[6]

Quasi-continuous monitoring with
high precision

Long-distance monitoring and error
localisation, e.g. pipeline integrity
monitoring

[7]

A steadily growing field of DOFS applications is in fibre-reinforced plastics (FRPs) where DOFS
have several advantages over traditional metal strain gauges. The thermal expansion coefficient of OF
is closer to that of a typical FRP in comparison to traditional strain gauges [4]. Furthermore, OFs are
small in diameter, making them significantly less intrusive that strain gauges. DOFSs can be embedded
in additively manufactured structures without any external adhesives, in contrast to strain gauges. The
list of applications of DOFSs is constantly expanding as they are being applied in new and innovative
ways. For example, a recent BBC News article discussed the possibility of utilising DOFSs to detect
earthquakes and monitor ocean currents using the 1.3 million km grid of underwater internet cables [8].
Thus, being able to interpret DOFS signals affected by vibrations is a highly contemporary and relevant
research topic.

1.1.2 Artificial Neural Networks

ANNs are a versatile computational tool which can be adapted to almost any problem ranging from
image classification to prediction of sales. The availability and quality of data are central aspects of ANN
deployment. Therefore, the ability to generate large amounts of data quickly makes DOFSs a good pairing
with ANNs. In supervised learning, an ANN is trained to recognise patterns in data (by optimising the
parameters) which can match the input to the correct output of the problem. The main mechanism in
training a network is penalising for incorrect predictions by using a loss function and propagating the
error penalty through the network in order to adjust the parameters accordingly. The steps in training an
ANN have been described previously as part of the project thesis [9]. Contrary to traditional machine
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learning (ML) methods, deep ANNs do not require prior feature extraction, as the network extracts the
relevant features by adjusting the network parameters accordingly. This makes ANNs an excellent choice
for problems where the relationship between the input and output of the system/model is not immediately
apparent.

Applying machine learning on DOFSs data is an emerging topic. Li et al. [10] performed an extensive
review of pattern recognition methods used with DOFSs. The review identified ca. twenty published
examples of ML applied on DOFS data in the context of vibration sensing over long distances. The most
relevant literature examples are summarised in Table 1.2. Several studies have successfully used ANNs
to classify strain data. Only one study applied an ANN on strain data gathered using the same method
used in this thesis, but the data was not used for classification purposes. The studies also used a variety
of ANN structures, including one which used an LSTM-based structure, which suggests that the choice
of ANN structure is flexible.

Table 1.2: Applications of ML on DOFS data

Application ML Methods Used Ref.

Damage detection and localisation for pipeline monit-
oring

Convolutional LSTM
FCNN, 4-layer FCNN

[11, 12]

Estimating deformation from strain results calculated
using OBR technology

FCNN with 3 layers [13]

Perimeter security using amplitude data ResNet50, VGG16 [14, 15]

Dynamic strain measurements in aerospace composite
structures

Support vector ma-
chine (SVM)

[16]

Removing noise from multimode fibre temperature
measurements affected by mechanical disturbances

Deep ANN with 6 lay-
ers

[17]

1.2 Problem Description

Despite the numerous sensing possibilities with DOFSs, they have a few limitations. The high sensitivity
of DOFSs can lead to unwanted effects on the measurements. External mechanical vibrations and
acoustic disturbances often cause measurements to be noisy. The reason behind this phenomenon is
poorly understood, which limits the use of the DOFSs. Furthermore, the noisy data may hold patterns
and new information not immediately obvious to the human eye.

Developing a method which can detect and classify noisy environments can expand the possibilities
of DOFS used for monitoring. The overall aim of the thesis is to understand the relationships between
the nature of the disturbance and the noise produced in the DOFS strain measurement. Specifically, the
classification of different vibrational disturbances (both regular and chaotic) is performed. The strain
data is investigated and clarified using statistical analyses and ANNs.
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1.3 Scope

DOFSs are complex sensorswith data generation capabilities based on the specificmeasurement principle.
The experiments in this study are carried out using the optical backscatter reflectometry (OBR) equipment
based on the Rayleigh backscattering phenomenon. The data collected will be limited to quasi-continuous
arrays of strain measurements and it does not cover point-wise or temperature measurements.

For the classification tasks, two existing ANN structures (LSTM and TCN) are modified using
hyperparameters. The chosen ANN structures are commonly used for time series data. Given the
sequential nature of DOFS data, it can be treated similarly to a time series as there is no principal
difference between sequential data arrays.

1.4 Structure

A thorough analysis of noise in DOFS data is undertaken in this thesis, approaching the topic from several
perspectives. As such, the experimental work increases in complexity in three increments.

1. First, a purely statistical analysis of raw amplitude free-hanging DOFS data establishes how much
data should be discarded from the end of the DOFS measurement due to interference from the
tip-termination end-reflection. Throughout the rest of the work, the established end-reflection
length is discarded from the DOFS measurements.

2. Then, both statistical and ANN analyses are employed on free-hanging DOFS data exposed to
controlled mechanical disturbances. These analyses are used as a starting point for the disturbance
classification method due to the simplicity of the test setup. Furthermore, the effect of the external
vibrations on the DOFS data is presumed to be most prominent in bare DOFSs.

3. Finally, a DOFS is bonded to a beam structure. This experiment tests the ANN classification
method in a more realistic and practical use case. This is a more complex scenario and interference
is expected from the physical structure in the form of stabilisation and damping of the DOFS
movements.

The contents of the thesis are divided into four chapters. The introduction gives a broad overview of
the topic in the context of scientific literature and formulates the research problem. The setups of three
different experiments are jointly explained in the “Materials and Methods” chapter due to similarities
amongst them. The OBR measurement procedure is described, accompanied by examples from the
measurement software. The main data processing procedures are introduced. The steps required to build
an ANN model are described and the neural network structures such as LSTM and TCN are presented.

The results analysis and discussion for each experiment are presented separately in the “Experimental
Results” chapter. This chapter is divided into three main sections corresponding each investigation. Each
section concludes with a discussion of the results.

The final chapter provides a concise summary of the main insights from all the experimental work
and reiterates the most important takeaways from each experiment. An overall conclusion is stated for
the application of ANNs on DOFS measurements compromised by mechanical and acoustic vibrations.
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2 Materials and Methods

This chapter begins with an introduction to DOFS and the OBR measurement principle. Then, the
specifics of the OBR measurement procedure are described step-by-step. Furthermore, test setups,
procedures and relevant equations for the experimental work are introduced. The final section of the
chapter introduces machine learning algorithms, code structure, definitions and procedures for building
an ANN.

2.1 Distributed Optical Fibre Sensing

2.1.1 Optical Fibres

A single OF is made up of a glass core with a high refractive index surrounded by a different glass
cladding which has a lower refractive index. This structure causes total internal reflection to occur,
allowing light to travel along the core of the fibre. The core and the cladding are coated by a thin layer of
protective material (a polyamide coating in this case) which can be further encased in a rubber jacket to
protect the fibre. Single-mode fibres have one thin core, which carries a single wave of light. Together
with the cladding and coating, a typical single-mode OF has a total diameter of approximately 160 µm.
Fibres which are used for distributed strain or temperature measurements are referred to as distributed
optical fibre sensors (DOFSs). A single-mode polymer-coated OF (SMB-E1550H) from OFS Optics has
been used as the DOFS medium in this experimental work. The main specifications are summarised in
Table 2.1.

Table 2.1: DOFS specifications adapted from [18]

Characteristic Value

Core diameter 6.5 µm

Cladding diameter 125 ± 2 µm

Coating diameter 155 ± 15 µm

Operating wavelength 1550 nm

Attenuation ≤ 0.7 dB/km

Operating temperature -65 to 300 °C

Short-term bend radius ≥ 10 mm

Long-term bend radius ≥ 17 mm

2.1.2 Measurement Principle (Optical Backscatter Reflectometry)

The refractive index of the fibre has random fluctuations due to microscopic variations in the fibre
material. This causes some light to be naturally scattered while it is travelling through the core. This is
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referred to as Rayleigh scattering when the variations in the glass are smaller than the wavelength of light.
The procedure of interpreting the backwards scattering of the light is referred to as optical backscatter
reflectometry (OBR). More specifically, the OBR technology used in the experimental work is in the
category of optical frequency domain reflectometry (OFDR) as it is performed in the frequency domain.
When the fibre is exposed to changes in strain or temperature, the backscatter signal changes. Using OBR
to interpret the difference in backscatter before and after the external change allows for the strain and/or
temperature to be extracted. Hence two readings are needed to get a strain/temperature measurement:
one which is used as the reference (baseline), and one after the perturbation is applied.

2.1.3 Measurement Procedure

All DOFS measurements in this thesis are conducted at constant room temperature, so any temperature
effects on the measurement and corresponding signal analysis effects are hereby intentionally discarded.

The process of taking a strain measurement can be divided into two steps: the recording stage and the
post-processing stage. Luna Innovations OBR v13 software is used in the recording stage to physically
send pulses of light through the fibre and save the OBR data in a binary file which is only legible for a
machine with bespoke software. The light is sent by a tunable laser source and received back by the fibre
optic switch (FOS) to which the fibres are connected. The Luna Innovations FOS v1 programme is used
to select which channel (out of eight) to read the signal from. A measurement takes approximately 3-4 s
to perform. To take many measurements, a Python script can be used to scan and save files automatically.
Python scripts use UI-automation to move the mouse cursor to the correct positions.

Figure 2.1: Amplitude curve from the OBR measurement

Figure 2.1 shows a typical loss amplitude curve from an OBR measurement which appears in the
Luna Innovations OBR v13 programme after taking a measurement. While the light travels through the
fibre, the signal becomes weaker due to light scattering and absorption. The loss amplitude is a measure
of signal attenuation or how much weaker the signal becomes. The first 14.1113 ± 0.00911 m of the
total measurement length is made up of internal connections within the OBR device. The next section of
the curve is the first part of the measurement fibre which is encased in a rubber jacket for protection and
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connected to a ferrule connector/angle physical contact (FC/APC). Only the last labelled part of the curve
is the bare DOFS as described in Table 2.1. It can be inferred that the bare DOFS has a higher intrinsic
signal attenuation than the jacketed connector part. Sharp increases in loss amplitude can be observed
as localised peaks along the amplitude curve. This occurs every time there is a fused splice connection
between two fibres that were previously separate.

2.1.4 Post-Processing Procedure

The raw binary files have to be post-processed into text format strain data by using the Luna Innovations
OBR Desktop v3 software. The most important features of this software are highlighted in Figure 2.2.
The first step in the post-processing procedure is to determine the total length of the fibre. This can be
done by pressing the “find peak” button until the vertical cursor is positioned at the end-reflection peak
and reading off the position. The yellow portion of the graph is the sensing selected range (symmetrically
surrounding the vertical cursor), which is the segment of data to be extracted into text format.

Figure 2.2: Main features of the Luna Innovations OBR v13 desktop programme

Python scripts can also be used in the post-processing stage to automatically calculate strains in text
format by using UI-automation of the Luna Innovations OBRDesktop v3 software. The user canmanually
choose which measurements to save in a text file. This includes primary data such as signal amplitude
and other signal characteristics. With the sensing option enabled, secondary (i.e. post-processed) data
such as strain and temperature can be saved for a given set of sensing parameters. To generate text
data from primary measurements, only one OBR file is needed. Two files are needed to measure strain
or temperature: a reference file and a measurement file. The strain/temperature is calculated based on
the difference between measurement states recorded in the two files. The spatial resolution and range
of the results for strain/temperature data can be controlled by adjusting the following data processing
parameters:

• sensing range/integration width - the total DOFS length being analysed, [m];
• gauge length (GL) - the length of each virtual strain gauge, [m];
• sensor spacing (SS) - the spacing between each virtual strain gauge, [m].
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When SS = 1
2 GL, the resulting strain or temperature measurement is considered to be quasi-

continuous because the strain gauges cover the entire sensing range with no discontinuities. These
parameters also allow the user to control the number of data points generated for a given sensing range:
the number of data points (or the number of virtual strain gauges) is the sensing range divided by the
sensor spacing. An exception is when certain primary measurements are included in the text file such as
amplitude or spectral shift quality. In that case, the data processing parameters are overridden and the
text file contains the maximum number of data points, at a resolution of 26109 points/m.

2.1.5 Python UI Automation

As mentioned in the previous sections, UI automation was used to take measurements and post-process
the raw data into strain measurements. The scripts were adapted from [19] to each data collection
procedure. The overall measurement procedure consisted of the set of steps shown in Figure 2.3. The
script was calibrated by recording the location of the scan button manually. Then, measurements were
taken and saved automatically using Python 2.7 with extended functionality from the PyUserInput,

schedule, audiere and time packages.

Figure 2.3: Procedure for taking OBR measurements

2.1.6 Measurement Noise

High levels of noise can render the OBR measurements unusable, as it is no longer possible to the actual
measurement from the noise. However, even the measurements that are considered acceptable are not
completely noise-free, as even the minutest deformations (e.g. due to the movement of air around a
fibre) can be detected by the DOFS. Empirically, the threshold strain for an acceptable measurement is
approximately±5µϵ [20]. TheOBRmanual [21] lists possible causes of excessive noise inmeasurements
as follows:

• mechanical or acoustic vibrations;
• poor connections to the interrogation device (dirty, loose or broken connectors);
• excessively high curvature of the fibre;
• fibre is too long;
• interrogation device is uncalibrated;
• step size in the measurement is too small;
• large change in spectral shift within selected gauge length.
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Studies employing DOFS sometimes discuss noise in the measurements as a side-topic, however, it
is rarely the main focus. Fibres embedded in engineering structures can also suffer from microbending
which causes increased levels of noise [20]. For example, embedding DOFSs between two layers of fibres
in a composite laminate with different orientations causes bending on a very small scale. Reference [20]
also mentions that fibres exposed to high pressures also resulted in noisy measurements, presumably due
to damage in the fibre core. Unlike external mechanical vibrations, most of the other causes of noise are
easy to address by using good working procedures.

2.2 Experimental Procedures

2.2.1 Preparation of the Optical Fibres

To be able to use the DOFS for any sensing application, the fibre must be prepared. A fully prepared
optical fibre sensor is shown in Figure 2.4. Preparation of the OFs consists of splicing the OF with an
FC/APC connector used for connecting the DOFS to the interrogation device. First, the polymer coating
of the OF is removed with a butane torch, to expose the cladding. The portion of the fibre with the ferrule
connector/angle physical contact (FC/APC) has a rubber jacket, which is stripped to reveal the cladding.
The naked fibre ends must then be cleaned to avoid contamination and placed into a high-precision fibre
cleaver to get a straight, perpendicular cut on the end of the fibre. Getting a straight cut is important as it
ensures that the tip of the fibre is an optically-smooth surface [22], called a mirror zone, which minimises
the signal attenuation at the splicing location. Finally, the two mating ends are spliced in a fusion splicer
and the fused area is covered with a protective shrink tube. The attenuation at the fusion location, in the
splice joint between bare and secondary coated OF, was checked to see if it was under the acceptable
value of 0.1 dB. The average loss of the splice joints in the fibres used in the experiments was 0.05 dB.

Figure 2.4: Bare DOFS attached to an FC/APC
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2.2.2 Free-Hanging Fibres Setup

The first experimental setup was used to collect data for the tip-termination analysis and classification
of disturbances in free-hanging fibres. A diagram of the experimental setup is shown in Figure 2.5 with
approximate dimensions of individual components. The first portion of the bare DOFSs was contained
in an airtight cardboard tube fixed by polystyrene discs at both ends. The fibres were secured to the discs
with a hot-glue gun. The upper cardboard tube was used to shield the free-hanging fibres from external
disturbances such as random flows of air and ambient acoustic noise. The second portion of the fibres was
suspended freely in a steel mesh tube which only contained the excessive movements of the fibres. Two
12 V computer fans [23, 24] were placed opposite and facing each other at the same height and distance
away from the mesh tube. The computer fans were powered by a variable power supply unit (PSU)
and controlled by means of fast pulse width modulation (PWM) using an Arduino Uno microcontroller.
The fans were intended to incite large-amplitude but low-frequency mechanical disturbances. The other
disturbance source was a loud industrial vacuum cleaner, placed on the floor ca. 1 m away from the fibres
and the tube setup as shown in Figure 2.6. The vacuum produced a constant acoustic sound, which caused
low-amplitude but high-frequency movements of the fibre ends.

Figure 2.5: Experimental setup with free-hanging optical fibres (schematic)
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Figure 2.6: Placement of loud industrial
vacuum cleaner

Figure 2.7: Examining the beha-
viour of the fibre ends

Two additional sources of data were a microphone (44 kHz sampling frequency) and a camera. The
microphone was placed next to the steel mesh at the same height as the air fans to record the acoustic
effect from the activated disturbances. The movement of the fibre ends was also recorded with a camera
at the lower opening of the steel mesh as shown in Figure 2.7.

(a) Side-view (b) Front-view

Figure 2.8: Experimental setup with free-hanging optical fibres (photos).
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Figure 2.8 shows the whole physical test setup including the DOFS measurement system. The sensor
fibres were connected to the fibre optic switch (FOS) which had eight channels, meaning eight fibres could
be interrogated at any one time. The FOS was in turn connected to the OBR 4600 interrogation device
which sent the light pulse and measured the backscattered signal from the OFs. A PC was connected to
the FOS to gather the data using the OBR software.

OFs are very sensitive to certain environmental factors such as temperature, strain and mechanical
vibrations. A thermometer placed at the site of the experiment showed that the temperature in the lab
changed by ca. ±2 °C throughout the day. A temperature change of ±1 °C produces strains of approx.
±10 µϵ [25], which would be interpreted as a baseline drift in the result. Hence, measurements for a
given optical fibre were taken immediately after the reference measurement. The fibres were not detached
from the FOS for the whole duration of the experiment.

2.2.2.1 Tip-Termination Experiments

As shown in Figure 2.2, there is a sharp increase in the optical signal attenuation at the end of the fibre
due to the end-reflection. In the OBR 4600manual, it is noted that the end-reflection peak can sometimes
make it difficult to take measurements near the end of the fibre [21, p. 184]. The first experiment aimed
to determine the physical length of the fibre end that is affected by the the end-reflection. The experiment
involved the following procedure, identical for six fibres (F1-F6): twenty measurements were taken
using a Python script while the fibres were hanging freely as shown in Figure 2.5 with no deliberate
disturbances. The raw amplitude curves were then analysed.
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2.2.2.2 Disturbance States for Free-Hanging Fibres

In addition to the tip-termination analysis, a second set of experiments was carried out by using exactly
the same experimental setup as described in previous sections (six free-hanging DOFSs suspended
through two cylinders). This second experiment was designed for classification purposes, to use ML for
identification of vibrational perturbations of very diverse origins. The sources of vibrations are hereby
called measurement states or disturbance states.

Twenty measurements were taken for each of the disturbance states in the order listed in Table 2.2. In
addition to this, twenty seconds of audio were recorded for each measurement state with the microphone
placed between the fan and the mesh tube, as well as a ten-second video clip. In addition to the pure
states Norm, Vac and Fan1-4, the measurement states were also assembled into a Low and a High group
of composite states. The utility of Low and High composite states is explained in a later section.

Table 2.2: Descriptions of disturbance states

Measurement State Description

Norm Quiet room with minimal airflow. No deliberate1 disturbances ac-
tivated.

Vac Loud industrial vacuum cleaner placed 1 m away from optical fibres
and turned on. Pure acoustic effect, no movement of air observed
around the fibres.

Fan1 Two opposite-facing air fans turned on at 1/4maximum speed. Little
visible movement in fibre ends.

Fan2 Two opposite-facing air fans turned on at 1/2maximum speed. Mod-
erate visible movement in fibre ends.

Fan3 Two opposite-facing air fans turned on at 3/4maximum speed. Mod-
erate visible movement in fibre ends.

Fan4 Twoopposite-facing air fans turned on atmaximum speed. Vigorous
visible movement in fibre ends.

Low A composite state consisting of {Vac, Fan1}.

High A composite state consisting of {Fan2, Fan3, Fan4}.

1Some acoustic signals were present such as from air-conditioning fans and from cooling fans inside computers.
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2.2.3 Bonded DOFS Setup

In the next set of experiments, data was gathered using DOFSs fixed to a long composite beam exposed
to constant acoustic tones in the vicinity of its lowest eigenfrequency. This experiment investigated the
response of the DOFS measurement to a controlled set of vibrations. The acoustic excitation frequencies
were chosen close to the fundamental eigenfrequency of the beam. This way most of the acoustic energy
is expected to convert to the mechanical energy of the beam which hosts the DOFS.

The physical setup for collecting OBR data consisted of a beam suspended by thin sewing thread over
a speaker at 0.1L from the ends as illustrated in Figure 2.9. A DOFS was glued to the top of the beam
in the centre with ethyl 2-cyanoacrylate glue, leaving approx. 300 mm of free fibre to account for the
tip-termination noise from the fibre end. The other end was connected to the OBR interrogation device.

Figure 2.9: Experimental setup for DOFS attached to a long beam

The testing principle required the fundamental eigenfrequency of the beam. A three-point bending
test was performed on the beam specimen to calculate the flexural Young’s modulus using Equation 1.
The slope, dF

dw , was estimated by linear regression on the elastic part of the load-displacement curve
obtained from the bending test. The equation parameters are explained in Table 2.3.

E =
dF
dw

L3
s

4bt3 (1)

The fundamental eigenfrequency was calculated from Equation 2 from the ASTM E1875 stand-
ard [26], which is suitable for long beams with free-free boundary conditions.

f 2
1 =

Ebt3

0.9465T1mL3 where T1 = 1.000+6.585
( t

L

)2
(2)
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Table 2.3: Properties of the composite beam

Symbol Parameter Value

b Width of beam 19.8 mm
dF
dw Load/displacement gradient 1.8 N/mm

E Young’s modulus 14.6 GPa

f1 Fundamental eigenfrequency 48.0 Hz

L Length of beam 250.0 mm

Ls Span in test three-point bending test machine 100.0 mm

m Mass of beam 8.7 g

t Thickness of beam 1.15 mm

The geometries of the first three bending modes are illustrated in Figure 2.10, where the distance
from the end to each node is marked.

Figure 2.10: First bending modes of a free-free beam (adapted from [26]).

To gather data, the speaker was programmed to play a constant frequency and volume tone (of a
sinusoidal waveform) continuously while measurements were taken using the OBR 4600 interrogation
device. Measurements were taken at twenty-one discrete frequencies in the range [ f1 −10, f1 +10] Hz,
where f1 is the fundamental flexural frequency of the long beam. Fifty strain measurements were taken
for each discrete frequency at three different speaker volume levels. A microphone was positioned over
the speaker and the beam to record the tone played by the speaker. Due to the large quantity of data
collected, which took several hours per amplitude level, new reference measurements were taken on each
day the measurement script was set to run.
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2.3 Numerical Methods

Machine learning procedures encompass many numerical tools and data processing methods. The main
steps in building a machine learning model are presented here along with the specific tools used in the
development, followed by explanations and motivations behind the chosen model structures.

2.3.1 Code Structure

The most important libraries and their use in the project are described in Table 2.4. The libraries were
used with Python 3.9 for ANN development and data visualisation.

Table 2.4: Python libraries and their uses

Library Uses

keras Provides high-level abstraction of ML and ANN models making it pos-
sible to build bespoke models with concise code.

keras-tcn [27] Implementation of TCN.

matplotlib Plotting tool.

numpy Offers a wide range of mathematical operations for preprocessing data.

pandas Allows for data from text files to be stored in DataFrame objects for ana-
lysis and processing. DataFrame objects are analogous to spreadsheets,
which have basic mathematical functionalities.

pyts [28] Helper functions for time series classification tasks.

seaborn Tool to customise plots made using matplotlib and make statistical
plots from pandas DataFrames.

scipy Provides useful data pre-processing functions as well as functions for
evaluating results.

tensorflow The back-end mechanism for keras, making it possible to tailor models
with low-level programming.

tsaug [29] Time series augmentation functions.

Figure 2.11 shows how an object-oriented approach was employed to create the ANNmodel and data
class. A data class makes it intuitive and easy to keep an overview of the pre-processing steps and the
Keras interface makes it possible to customise models with extra functions and bespoke structures as
well as reuse code between models. A BaseANN class was created using inheritance to use built-in model
functions such as train() and predict() and for creating specialised supporting functions. The model
structures were defined in separate TCN/LSTM classes, which inherited from the BaseANN.
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Figure 2.11: Diagram of the data class and BaseANN contents

2.3.2 Preparing Data for the Model

The strain data, which comes in a structured text file after OBR post-processing, must be extracted and
prepared in such a way that makes it possible to feed it into the numerical model. Figure 2.12 shows how
the complete DataFrame is divided into features and labels and training, validation, and test data. When
the data is read in from the text file, each file is assigned a unique time series ID. The state, reference
number, measurement number and fibre number are extracted by parsing the name of the file, which
follows a predetermined naming convention. These values are stored in their respective columns in the
DataFrame to be able to filter data quickly. The input must be compatible with the ANN, which means
that the DataFrame must be rearranged into tensors containing training, validation and test data. Data
exploration, scaling and augmentation are described in more detail in the following sections.
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Figure 2.12: Overview of data the pipeline

2.3.3 Data Exploration

To get acquainted with the data on a statistical level and to be able to choose and preprocess features
in a logical way it is important to understand any underlying trends in the data. At this stage, it can be
helpful to plot the data, calculate statistics and see if there are any obvious differences between the classes
which the model can exploit when making predictions. This process also reveals statistical differences in
the data which can make it easier to interpret the performance of the model. In addition to well-known
statistical concepts, a Gramian angular field (GAF) was employed for statistical visualisation of time
series data. This concept is fairly new and is introduced in detail in Section 2.3.14. Furthermore, a quick
introduction to fast Fourier Transform (FFT) is given in Section 2.3.15.

2.3.4 Data Augmentation

As a general rule, in machine learning, the more training examples that are fed into the model, the better
the model performance. However, it is often not feasible or possible to gather very large amounts of data
to due resource and time constraints. A powerful tool to address the lack of data is data augmentation,
which is the process of injecting additional, modified records into the data set so that the model is exposed
to a more comprehensive selection of examples. Data augmentation for sequential data is fairly new, so
the quantitative effects are not fully known. However, some useful time series augmentation methods
for classification problems have been highlighted in a recent publication [30]. Furthermore, the study
concluded that combining several augmentation methods often gave better results than using just one.
Some of the most useful data augmentation methods for time series classification problems are listed
below.

• Flipping - multiplying the time series by -1.
• Cropping - extracting parts of the whole time series.
• Scaling - multiplying the whole or parts of the time series by a factor.
• Window warping - downsampling then upsampling again.
• Random time warping - expanding and contracting random parts of the series.
• Injecting outliers such as steps, slopes or spikes.
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Before deciding on which augmentation methods to use or how to combine them with others, it is
important to verify that the augmented data supports the distinctive characteristics in the raw data and
will not confuse the model. One way to do this is to visualise the augmented data. For example, from
Figure 2.13 it can be deduced that convolution is not a suitable augmentation method because it makes the
curve look abnormal. The same can be said about time warping. Another verification method is training
the network with the addition of augmented data and observing the effect on the final performance. Data
augmentation can only be performed on the training data set.

Figure 2.13: Augmentation of a series of strain values

2.3.5 Scaling

A basic feature engineering process is scaling the features to fit a specific range. This is especially
important for ANNs because it reduces the risk of gradients exploding due to very high values. The
scaling algorithm must be chosen appropriately for the data set. For a data set with many outliers, the
recommended scaler is RobustScaler [31] as it scales values based on the interquartile range, rather than
the minimum and maximum values of the feature. To prevent data leakage, a scaler is fit only on the
training set and the same scaler is used to transform the validation and test sets. In this context, data
leakage is when information from the test and/or validation set is included in the training set when the
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model is created. Fitting a scaler on the whole data set would mean that information about values from the
validation/test data sets would have “leaked” into the training set. Only fitting the scaler on the training
ensures that the validation and test sets are truly unseen.

2.3.6 Labels

The labels also have to be preprocessed appropriately. For networks that make categorical predictions
(e.g. classification tasks), the number of output neurons is equal to the number of categories or classes.
Labels are encoded into vectors using one-hot encoding as described in [9]. For continuous predictions,
where there is only one output neuron per feature, the labels are simply normalised (scaled between
[0, 1]).

2.3.7 Training

Training the network essentially consists of feeding data into the network, allowing the network to
make a prediction, checking the prediction against the true label and adjusting the network parameters
accordingly. The aim of training is to minimise the loss function, which is a function used to express the
penalty between the model prediction and the label.

One of the most important parameters in training is the learning rate, which defines the constant with
which the gradient adjustment is multiplied before it is added to the network parameters. A high learning
rate allows for larger updates but can cause the loss to overshoot the minimum. With a low learning rate,
the parameters are updated in smaller increments, but this can cause training to be unnecessarily slow.
A common approach is to have a high learning rate at the beginning of training to make big gradient
adjustments followed by a gradually decaying learning rate to make smaller adjustments and locate the
loss minimum more accurately.

Another important aspect is the number of training epochs. An epoch is completed when the network
has processed all the training data to perform adjustments to all of the weights. An epoch can take
several seconds to several minutes to complete, therefore it is important to continuously save the network
parameters during training to save future computation time. The training time must be balanced: too
few epochs can give a sub-par performance, whilst training the network for too long can cause the
network to overfit. A common sign of overfitting is that the validation loss starts to increase, whilst the
training loss continues to decrease because the network starts to memorise the specific training data rather
than generalising. Similarly, a comparison between training, validation and test accuracy also gives an
indication of how well the network has generalised. Callback functions used during training, some of
which help to mitigate the issue of over-fitting, are listed in Table 2.5.
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Table 2.5: Callback functions used during training

Function Use

CSVLogger Saves the training and validation loss to be able to plot them
later.

EarlyStopping Stops training when validation loss ceases to decrease to re-
duce overtraining.

LearningRateScheduler Reduces the learning rate value after a certain number of
epochs to make large updates to the weights at the start of
training and finer updates later on.

ModelCheckpoint Saves model weights after every epoch.

2.3.8 Regularisation

Regularisation can be used to improve the generalisation of the model. Whilst all ML models seek to
minimise the loss function, adding regularisation also seeks to minimise the complexity of the model in
addition to the loss. Minimising the complexity in a balanced way makes the network more generalised,
which means it can recognise complex patterns more reliably in data that it has not seen before. Some
regularisation techniques are dropout, normalisation and L1/L2 regularisation.

Dropout removes a set fraction of connections between neurons in the ANN. This leads to fewer
connections between neurons and thereby a less complex model.

Normalisation during training such as batch or layer normalisation makes the weights more stable
because the spread of weight values is restored between each layer. Preserving the distribution of values
makes it possible to train the network for longer as it reduces the effect of covariant shift [32], where
networks become very good at classifying from inputs which share the same mean and variance but
struggle to generalise to inputs not sharing the same characteristics.

L1 and L2 regularisation, also known as Lasso and Ridge regression help with generalisation as
well. Both methods work by adding the sum of the weights multiplied by a small coefficient to the loss
function, making a small adjustment to the weight. Less important weights are gradually reduced to zero
or near zero, making the network more sparse.

2.3.9 Evaluation

Discrete categorical predictions, where the prediction classes are treated individually, can be visualised in
a confusion matrix. An arbitrary confusion matrix is shown in Figure 2.14. The confusion matrix makes
it possible to visually analyse ANN predictions. For example, it makes it possible to see which classes of
data the model often confuses. The average accuracy can be computed to quantify the performance of a
model, as demonstrated in Equation 3, where M is the confusion matrix and n is the number of classes.
One important assumption for this metric to be valid is that the classes in the data set are balanced, that is
to say, each class has more or less the same number of true labels. For imbalanced data sets, the weighted
average would be more appropriate, as it would take into account over- and under-represented classes. In
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this study, the classes are represented fairly evenly, so the average accuracy from Equation 3 is used as
the main metric.

Figure 2.14: Confusion matrix for a set
of arbitrary predictions (classes a, b, c, d,
e, f)

Accuracy =
tr(M)

n

=
4.15

6
= 69%

(3)
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In cases where the class values are related and belong on a continuous scale, a different loss function
and evaluation method can be more informative, namely mean absolute error (MAE). Figure 2.15 shows
two extreme examples of arbitrary predictions. The diameter of the circle corresponds to the number
of predictions for a specific class; the larger the marker, the more points there are at the same location.
Consequently, the more accurate the predictions, the larger the circles on the diagonal line. The colour
corresponds to the MAE, for which an empirical cumulative distribution function (ECDF) plot is shown
to the right of the prediction grid. When predictions are more accurate, the ECDF increases more slowly.

(a) Correct predictions (b) Random predictions

Figure 2.15: Visual evaluation methods for predictions of continuous classes 1-8

2.3.10 Long Short-Term Memory

Recurrent neural networks (RNNs) are a type of ANN which are typically used for sequential data, such
as time series data because outputs from previous inputs are used as inputs for proceeding layers. RNNs
process data in sequences to preserve the time order. An LSTM is a special type of RNN network which
addresses a major limitation of regular RNNs - the vanishing/exploding gradients problem. An LSTM
block is illustrated in Figure 2.16. By combining weighted outputs from the preceding cell h(t-1) as well
as outputs from several time steps back in time C(t-1) with inputs from the current time step x(t), an
LSTM network can remember longer sequences than a conventional RNN, which only combines h (t-1)
and x(t) [9]. LSTM ANNs were discussed in more detail in the preceding Project thesis [9].

Figure 2.16: Diagram of an LSTM (from [9].)
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2.3.11 Temporal Convolutional Networks

Temporal convolutional networks (TCNs) are a new type of network structure, which first emerged in
2017 [33]. TCNs can be used to model sequential data while exploiting the parallel processing capability
that convolutional networks provide [34]. The main advantages of TCNs are that they can train several
times faster than RNNs and model long sequential patterns [33]. Contrary to LSTM networks, TCNs can
take in inputs of different lengths, which potentially makes them a more versatile network structure.

A convolutional neural network (CNN) is a neural network which includes convolutional layers. In a
1-D convolutional layer, a kernel or filter is passed across the time series. The result is the dot product
of a section of the data series and the filter as illustrated in Figure 2.17. Convolutional layers are used
to detect features in data. TCNs use dilated casual convolution. They are “casual” because they only
use data points from the past and “dilated” because a certain number of data points are skipped, making
it possible to extract features from longer sequences more efficiently than LSTM networks [35]. The
hierarchical structure depicted in Figure 2.18 with exponentially increasing dilation factors allows the
TCN network to capture features of different lengths.

Figure 2.17: 1-D
convolution

Figure 2.18: Structure of TCN layer with dilated convolution
(from [35])

The number of steps the network observes in the past is called the receptive field, R. Equation 4
describes how the size of the kernel, K, the number of layers, L, and the dilation factors, d can be used
to calculate R [27]. The receptive field should be adjusted appropriately for the sequence length. If it is
not possible to choose parameters such that the receptive field length matches the sequence length, the
receptive field will be padded with zeros. Some of the hyperparameters that can be used to build and
tune the TCN network are given in Table 2.6.

R = 1+2L(K −1) ·
n

∑
i

di (4)
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Table 2.6: A description of selected TCN hyperparameters

Hyperparameter Description

dilations Dilated convolution spacing for each layer.

dropout rate Fraction of connections that are zeroed out to make the network
simpler and more generalised.

kernel initializer Initialises the weights based on a chosen distribution.

kernel size Size of kernel used in convolutional layers. A smaller kernel size
means that the output will depend more on the most recent time
steps.

nb filters Number of filters in convolutional layer.

2.3.12 ANN Development Process

The development process employed to decide the final ANN model structure and parameters is shown
in Figure 2.19. Parameters were tested by training the network and by observing the loss curves during
training and evaluating the performance accuracy Equation 3. Visualising and evaluating the predictions
made on training, validation and test sets are useful tools in deciding which parameters to adjust next. If
predictions are poor for all data sets, it may mean that the network does not have enough neurons to model
the data [36]. Alternatively, it could mean that there is no correlation between the input data and the
labels. The solution may be to increase the network complexity by increasing the number of neurons in
a layer or the number of layers in the network. Another possibility is that the training set predictions are
very high, but the validation and test set performances are poor. This would suggest that the network is
overfitting. Hence, it could be beneficial to increase regularisation rates, employ normalisation methods
or add a dropout layer.

Figure 2.19: ANN development process
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2.3.13 Final ANN Structures

For the first classification task, employing the free-hanging DOFS data, two LSTM ANNs and two TCNs
were used. All of the categorical models used the categorical cross-entropy loss function. Time series
lengths of 150 data points were generated from the original DataFrame, giving a total of 4795 time series.
The training, validation and test split was 60%, 20% and 20% respectively for all models. Trial and error
revealed that the most effective data augmentation method was flipping the time series vertically (i.e.
multiplying by -1), whereas other methods caused a decrease in performance. Hence, only time series
augmented by flipping were added to the training data. The network layer parameters for the LSTM
ANNs are presented in Table 2.7. The LSTM networks were trained with a learning rate of 0.0001 and a
batch size of 16.

Table 2.7: Two LSTM model structures for free-fibre disturbance classification

Layer Layer Type Number of Units Layer Parameters

1 LSTM 32 -

2 LSTM 16 L2-regularisation of 0.01 for ker-
nel, recurrent and bias weights

3 Dropout 16 Rate: 0.2

4 Fully Connected 6 (3)* Softmax activation

*Two networks were developed. The only difference was 6 or 3 output classes.

The TCN structures are shown in Table 2.8. The TCN networks were trained with a batch size of 8 and
a learning rate of 5e-5 to 8e-5 for ten epochs and exponentially decaying learning rate above ten epochs.
The receptive field size for this network was 187. Similar to the LSTM models, the only difference in the
models is the number of output classes (6 or 3).

Table 2.8: Two TCN model structures for free-fibre disturbance classification

Layer Layer Type Number of Units Layer Parameters

1 TCN 64 kernel size: 4
kernel initialiser: Glorot uniform
dropout rate: 0.10
dilations: [1, 2, 4, 8, 16]
use_layer_norm : True/False

2 Fully Connected 6 (3) Softmax activation

The second prediction task was to classify the frequency of acoustic vibrations for DOFS bonded to
a vibrating beam structure. Two different TCN structures with one TCN block were used in different
ways. The layer parameters for both TCNs are shown in Table 2.9. The first TCN was trained to predict
frequencies categorically, using one-hot-encoded labels, similar to the preceding task. The second TCN
had only one output neuron, which predicted a value between 0 and 1, representing a prediction in the
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normalised continuous frequency range. This network did not require an output activation function and
used mean squared error as the loss function. The receptive field for these networks was 311.

Table 2.9: TCN model structures for frequency predictions with a DOFS bonded to a vibrating beam.

Parameter Categorical TCN Continuous TCN

nb_filters 64 32

kernel_size 6 6

kernel_initializer Glorot uniform He normal

dropout_rate 0.30 0.20

dilations [1, 2, 4, 8, 16] [1, 2, 4, 8, 16]

use_layer_norm True True

use_skip_connections True False

Number of outputs 21 1

Output activation Softmax -

2.3.14 Gramian Angular Field

Originally proposed as an encoding method for processing time series with CNN models, Gramian
angular fields (GAFs) are an intuitive way to visualise time series [37]. Therefore, GAFs can be useful
in the data exploration stage in order to visualise time series classes. GAFs are a modified version of
the Gram matrix or metric, G, where each element is the inner product of two vectors. To calculate the
GAFs for a vector X containing a time series with n data points, the procedure is as follows: The vector
elements are scaled down to a range of [-1, 1] and each point is encoded as a polar coordinate by taking
the arccos of each value as shown in Equation 5.

φi = arccosxi

ri =
ti
N

(5)

Then, the Gramian matrix is computed by Equation 6 where k is the temporal difference between two
points in the time series. As a result, the diagonal, where k = 0 represents the original time series, and
the matrix is always symmetrical.

Gi, j | i− j=k =< xi,x j >= cosφi, j

= cos(φi +φ j)

= cos(arccosxi + arccosx j)

= cos(arccosxi cosarccosx j)− sin(arccosxi · sinarccosx j)

= xi · x j −
√

1− x2
i

√
1− x2

j

(6)
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In matrix form, this allows for the Gramian angular summation field (GASF) and Gramian angular
difference field (GADF) to be calculated as represented by Equation 7 and Equation 8 where X is the
transformed time series and I is a unit row vector.

GASF = cos(φi +φ j) = X ′X −
√

I −X ′2
√

I −X2 (7)

GADF = sin(φi −φ j) =
√

I −X ′2X −X ′
√

I −X2 (8)

Some basic example plots of GADFs are shown in Figure 2.20. Noisy signals produce a chequered
pattern, whilst noiseless and more regular signals have distinct areas or stripes of solid colour. An
image size of 24 × 24 has been chosen for the GADF matrices for simplicity, meaning that the signal
differences are discretised into 576 individual matrix cells. For data sequences with more than 24 points,
the dimension is reduced to fit the image size using piecewise aggregate approximation (taking the mean
of adjacent points) [28].

(a) Gaussian noise (b) A square signal

Figure 2.20: GADF plots for two artificial strain measurements
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2.3.15 Fast Fourier Transform

Frequency analyses can be used in several stages of the data analysis: investigating the output of the
disturbances in Table 2.2, finding the eigenfrequency of a vibrating structure and verifying the speaker
output in the acoustic disturbance setup (Figure 2.9). A simple way to accomplish a frequency analysis
of a time series signal is by using a fast Fourier transform (FFT). The scipy package in Python provides
functions to perform an FFT on a sound file in .wav-format. Figure 2.21 shows examples of FFTs of three
artificially-generated noise signals.

(a) Original signals (b) Transformed signals

Figure 2.21: Fast Fourier transforms of artificial signals
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3 Experimental Results

The data analysis procedures and the main experimental outcomes are presented in this section, starting
with free-hanging DOFS experiments. The free-hanging experimental setup was used to investigate
two problems: determining the tip-termination end reflection length for DOFSs and classifying the
disturbance states on free DOFSs by using different ANN approaches. Following that, the results from a
DOFS bonded to a composite beam structure are presented. The results of each experiment are discussed
separately.

3.1 Tip-Termination Analysis

The aim of the tip-termination experiments was to determine how far back the end-reflection extends
along the fibre. End-reflection is viewed as a light signal overload that can potentially corrupt the DOFS
measurement, and should therefore be excluded from experimental data. This task was accomplished by
analysing raw amplitude curves of free-hanging OFs.

3.1.1 Data Analysis

The amplitude curves for any kind of DOFS measurement fluctuate around a steady amplitude level.
To smoothen the curve, a moving average (MA) was calculated for the raw amplitude data as shown
in Figure 3.1a. The section between Q1-Q3, where Q1 and Q3 are one quarter and three-quarters of
the total ca. 1 m sensing range respectively, was considered to be the baseline signal, unaffected by the
end-reflection. The mean (µ) and standard deviation (σ ) of the baseline MA curves were calculated for
the section bound by Q1 and Q3. Since loss amplitude is the primary OBR data (see Section 2.1.4) the
spatial resolution of data points is 26109 per 1 meter of DOFS length.

The cut-off length, i.e. the length of the DOFS affected by tip-termination is illustrated in Figure 3.1b.
Equation 9 defines the cut-off criterion used where MA100 denotes a moving average with a window of
100 data points and MA100·10 is the same moving average once more averaged over 10 points so that the
cut-off line would not become located at a place where the amplitude happens to deviate from the MA by
a large amount due to a random fluctuation. The robustness of the numerical procedure for cut-off length
measurements was verified visually over many plots analogous to Figure 3.1b.

MA100·10 > µMA100 +3σMA100 (9)

3.1.2 Results of Analysis

After analysing the amplitudes from all six fibres, the end-reflection length results were assembled in
Table 3.1. The data from fibre F4 gave a negative length value and was considered to be anomalous.
This result was labelled as an outlier in Table 3.1. The abnormal value may be because fibre F4 had a
weak end-reflection peak (as shown in Figure 3.3) due to poor tip-termination quality. The overall mean
and standard deviation end-reflection length calculated in Table 3.1 is therefore based on five OFs, where
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(a) Labelled graph sections used for calculations (b) End-reflection cut-off length based on the 3σ criterion

Figure 3.1: Example plot of amplitude (fibre F1, measurement 1) using a window size of 100 data points

µlength is the mean end-reflection length for each OF. The coefficient of variation (CV) is calculated
from CV = σ

µ
. In trial calculations, the MA curves were generated with window lengths of 100-1200

data points. Shorter window lengths reflected local changes better, whilst longer window lengths gave
smoother MA curves but lagged visibly behind the raw amplitude curve. However, due to the high data
point density (26109 points/m), the final result was approximately the same with all moving average
windows, ranging from 121 mm to 161 mm. As a trade-off between capturing the local variations in
data and having a sufficiently smooth curve, the window length used to calculate the final results was
set to 100 data points. Limits using 2, 3 and 4 standard deviations for the criterion in Equation 9 were
also tested. The number of acceptable standard deviations was eventually set to 3 because using fewer
standard deviations as the limit often resulted in the cut-off point being visibly placed too far towards the
baseline region of the OF.

Table 3.1: Results for each DOFS with the MA window length of 100 (statistics over 20 repeated
measurements per fibre).

Fibre
No.

µlength
[mm]

σlength
[mm]

CV
[-]

Max. amplitude
[dB]

1 221 19.2 0.087 −41.1
2 200 3.00 0.150 −37.7
3 109 3.11 0.287 −49.0
4 −0.397 1.68 −4.23 −69.7
5 63.2 16.4 0.259 −56.6
6 114 25.0 0.173 −47.1

All* 147 64.7 0.439 −46.3

*Excluding F4

Figure 3.2 shows a positive correlation between the mean end-reflection length for a given fibre
(µlength) and the maximum amplitude for the end-reflection signal attenuation: the higher the end-
reflection amplitude, the longer the mean end-reflection length.

Example plots of individual cut-off lengths from two different DOFSs are presented in Figure 3.4.
Signals from fibres F1 and F5 have been specifically selected to illustrate the differences in the end-
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reflection peak shapes and cut-off lengths. The transition between the flat baseline part of the MA curve
to the end-reflection peak is sharper in Figure 3.4b than in Figure 3.4a, which gives a shorter cut-off
length on average.

Figure 3.2: Positive correlation between
µlength and the maximum end-reflection amp-
litude

Figure 3.3: Amplitude curve from fibre F4

(a) Fibre F1, measurement 3 (b) Fibre F5, measurement 7

Figure 3.4: Results from two DOFSs with different end-reflection peaks

3.1.3 Discussion

The amplitude curves of individual DOFSs are unique, depending on how the actual fibre has been cut.
In particular, the end-reflection peaks exhibit different shapes, where some have a sharper transition from
the flat baseline to the peak than others. This is likely due to the shape of the fibre end. A straight
perpendicular cut would presumably cause more light to be reflected back into the fibre core and lead to a
lower end-reflection attenuation peak. Another source reports that strong reflectance peaks (particularly
those >-45 dB) tend to have broader bases [21, p. 164]. The positive correlation observed in Figure 3.2
is in line with this observation. Furthermore, there is a large difference between the data points below
and above -45 dB. The same trends can also be observed in both graphs in Figure 3.4.

The variations in different amplitude curves make it challenging to judge exactly where the end-
reflection effect ends. In some fibres, such as fibre F1 in Figure 3.4a, it is difficult to tell where the
MA amplitude starts to increase because the transition is gradual. Judging by eye, the cut-off length
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could be placed anywhere between 15.6 m to 15.7 m (250 mm to 150 mm from the end). However, the
µ + 3σ threshold is crossed first at 223 mm from the end. At the same time, a sharp increase in the
MA amplitude occurs only after 15.8 m ( during the last ≈ 20 mm). This raises the question: does the
end-reflection effect begin where there is a sharp increase in amplitude or when there is already a slight
increase in amplitude? In curves with sharper transitions, such as in Figure 3.4b, it is easier to see the
start of the end-reflection. This observation is also in accordance with the CV differences in the overall
result in Table 3.1. The coefficient of variation (CV) between µlength values for different physical OFs is
significantly higher than differences in repeat measurements for each individual fibre, suggesting that is
difficult to establish an accurate universal cut-off length for all OFs.

The data fromfibre F4was considered to be anomalous because the peak amplitudewas approximately
20 dB lower than for the rest of the fibres, which resulted in a less-pronouncedMA amplitude (Figure 3.3)
and subsequently, negative cut-off lengths. Again, the poor end-reflection peak quality can be attributed
to irregularities in the fibre end.

The overall mean cut-off length was 147 mm with a standard deviation of 64.7 mm. However, due to
curves with very gradual transitions towards the end-reflection peak, this result is likely an overestimation.
With variations in the fibre-end cut quality to be expected, the cut-off point for future experiments should
be chosen conservatively. Therefore, in the following experiments, the data from at least the last 150 mm
from the DOFS end should not be used in the post-processing stage.
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3.2 Classification of Vibrational Disturbances Using Free-Hanging DOFS Data

In this investigation, experimental strain data from the OFs is analysed using LSTM and TCN structures.
This section builds directly on the work presented in [38], only adding the TCN architecture consideration
which has not been tested on DOFS data before. The aim was to establish whether ANN models could
classify the source of different vibrational disturbances on free-hanging DOFSs (presumably the simplest
test case).

3.2.1 Data Processing

The test setup for this experiment has been introduced previously, in Section 2.2.2. The same six parallel
optical fibres (F1-F6) were used in this series of experiments with an average fusion splice to end length
of 954 ± 9 mm. The end of fibre F4, which was identified as anomalous in Section 3.1.2, was re-cut so
that the amplitude curve was acceptable. Three reference measurements were taken for each fibre. The
temperature in the lab during reference measurements was 22.4 °C. The temperature increased during
the data collection process to a final temperature of 23.4 °C.

Figure 3.5: Analysis of strain results for fibre F6 in the normal state

Out of three recorded references, the best reference was chosen for each OF. A measurement with
a high and sharp end-reflection peak, combined with low levels of noise in the strain measurement
was considered to be a good measurement. To analyse the noise level for the Norm state (defined in
Table 2.2), a text file containing strain data was calculated for each reference dataset. Then, the files
were processed to generate statistics such as root mean squared error (RMSE) for the strain values and
the percentage of data points > 5 µϵ, which empirically is considered an acceptable level of noise in
the strain measurement [20]. Figure 3.5 shows the results for fibre F6, where reference 2 was deemed to
perform the best.
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Using the least noisy reference for each fibre, a Python script was used to automatically calculate the
distributed strain values with the following parameters (defined in Section 2.1.4), giving a total of 159
data points for the selected post-processing parameters:

• sensing range: 800 mm from the splice, excluding the bottom 200 mm in the mesh tube;
• GL: 10 mm;
• SS: 5 mm.

3.2.2 Data Exploration

An example selection of strain curves for fibre F3 is shown in Figure 3.6. The approximate physical
location of the transition of the optical fibre from the enclosed tube into the mesh tube is denoted by
dashed vertical lines. The general trend is that the strain curves become increasingly noisier (especially
with Fan1-4) and that the noise propagates from the free fibre end closer to the splice, and even across
to the enclosed tube. The plots also show that there are similarities between the disturbed states, for
example between Fan3 and Fan4. More examples of strain curves for different levels of disturbances for
a similar experiment can be found in [9].

Figure 3.6: Examples of strain curves for fibre F3 during each of the disturbed states (Table 2.2).

A statistical analysis of the strain data revealed some important differences between the measurement
states i.e. classes of data. For example, Figure 3.7 shows that the distributions of the strain values along the
sensing length can be grouped into three categories according to the probability density function (PDF):
the Norm state, where most of the strain values are very close to zero, a low-level mechanical disturbance
state (Fan1 or Vac) and a high-level mechanical disturbance state (Fan2-Fan4). This distinction can also
be observed in Figure 3.8, which shows the GADF visualisation for one measurement from each state
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for each OF. The Norm state has a distinct GADF for all fibres except fibre F5 and the measurements
get progressively noisier with increased air fan speed. Additionally, there is some overlap between the
states, which can cause confusion for the ANNmodels. For example, Fan2-Fan4 are completely different
for fibres F1 and F3. Finally, Figure 3.8 also shows that all of the fibre F5 measurements are noisy.
Therefore, all the strain data from F5 has been excluded from the training data set of the neural network.

(a)Wide range of strains (b) Narrow range of strains

Figure 3.7: Distributions of strain values over twenty repeatedDOFSmeasurements (all fibres in different
disturbance states).

Figure 3.8: GADF visualisations of all fibres
(F1-F6) for measurement number 9

Figure 3.9: Example strain curve and the cor-
responding GADF for Norm state

The transition from the enclosed tube to the steel mesh occurs at approximately 0.26 m from the
fusion splice location, as indicated in Figure 2.5 and marked in Figure 3.6. This transition is most
prominent in the GADF matrices for the Norm state in Figure 3.8 where an abrupt change of colour
occurs approximately at the location of the transition. The corresponding strain curve from the Norm
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state in Figure 3.9 shows that, surprisingly, the part of the OF enclosed in the cardboard tube exhibited
higher values of strain than the part in the steel mesh tube.

Figure 3.10 shows FFTs of the audio recordings taken during the disturbance activation on a linear
and a logarithmic scale. The trends in the frequency analyses provide more insight into the strain results
observed in Figure 3.7. Starting with the Norm state, the FFT in Figure 3.10b shows very low levels
of background noise. Moving on, the two Low group states (Vac, Fan1) show slightly higher noise
intensities, with Fan1 having lower intensities than Vac across the whole spectrum. It is important to note
that Vac was perceived to be much louder than any of the Fan states, but the microphone picked up the
acoustic signal directly from the turbulent air. Ascending up the graph, the audio analysis from Fan3 and
Fan4 revealed intensities several multitudes higher than the rest of the states. The trends in Figure 3.7
and Figure 3.10 are mostly in accordance with each other: the states with higher and sharper PDF curves
had low acoustic intensities across all frequencies, whilst the states with shallow PDF curves (belonging
to the High group) had high FFT intensities (except for Fan2).

(a) Linear intensity (b) Log intensity

Figure 3.10: FFT of audio recorded during disturbance activation.

3.2.3 LSTM Predictions

Two LSTMANNswere developed to classify different vibrational disturbance states that had been applied
on the free-hanging optical fibres. The ANNmodels were developed based on sequential strain data such
as shown in Figure 3.6. The training and validation losses for the six-state LSTM ANN are shown
in Figure 3.11a, with a minimum training loss of just below 1. Early stopping was invoked at epoch
18 due to the validation loss beginning to increase. The confusion matrix for the first LSTM model
(Model LSTM-6), developed by using six pure disturbance classes is shown in Figure 3.11b, where the
predictions were made on unseen test data. The labels are organised in ascending acoustic intensity as
identified in Figure 3.10b. The fractions of the predictions belonging to each class of data are displayed
in the confusion matrix cells.
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(a) Training and validation loss. (b)Confusionmatrix with an average test prediction
accuracy of 70%.

Figure 3.11: Model LSTM-6

Figure 3.12b shows the predictions made by using the second LSTM model (Model LSTM-3) on
unseen test data. The disturbance states were grouped into larger classes in accordance with the strain
distribution plots in Figure 3.7, also described in Table 2.2. This resulted in a significant increase in the
prediction accuracy. Although the loss decrease was less stable during training, a lower minimum loss of
approximately 0.38 was achieved, as shown in Figure 3.12a. The training time per epoch with 720 steps
was 143 seconds.

(a) Training and validation loss (b)Confusionmatrix with an average test prediction
accuracy of 89%

Figure 3.12: Model LSTM-3 trained on three grouped states

3.2.4 TCN Predictions

As an alternative to the LSTM ANN, a TCN model can be employed for essentially the same numerical
task. The results of the predictions made by the TCN network trained on all states (Model TCN-6) are
shown in Figure 3.13. The network was trained for 8 epochs before early stopping was activated.
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(a) Training set (82%)

(b) Validation set (74%)

(c) Test set (76%)

Figure 3.13: Predictions made by Model TCN-6 with average prediction accuracy for each data set.

The disturbance states used in Model TCN-3 were grouped into three larger composite classes in
the same way as for Model LSTM-3 previously. Similar to the LSTM networks, the TCN performed
much better with fewer classes of data. The training time per epoch with 720 steps was however, only 29
seconds.

(a) Training and validation loss (b) Confusion matrix showing an average pre-
diction accuracy of 84%

Figure 3.14: Model TCN-3 performance (grouped states)
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The performances of all four developed ANN models are summarised in Table 3.2.

Table 3.2: Summary of ANN model prediction accuracy

Data set
Model Training Validation Test
LSTM-6 76% 70% 70%
TCN-6 82% 74% 76%
LSTM-3 90% 88% 89%
TCN-3 95% 92% 91%

3.2.5 Visual Findings

Some of the video findings from the free-fibre experiments are shown in Figure 3.15, where composite
images were generated by stacking up all of the frames in each video and taking the average of these
frames. Solid blue lines indicate that the fibres were almost still, such as in the Norm state, whilst blurry
lines indicate that the fibres moved a lot during the video recording process. As expected, the fibres
moved intensely with increasing fan speeds. There were also small movements present during the Norm
state.

Figure 3.15: Visual motion of fibres in different disturbance states

3.2.6 Discussion

The statistical analysis confirmed that strain curves becomeprogressively noisierwith increased intensities
of ambient vibrational disturbances. It also showed that some disturbance states, although from very
different sources (Vac, Fan1), cause a similar response in the strain curves. Plotting theGADFmatrices for
the measurements was also a useful tool to visualise time-series data and quickly identify the anomalous
fibre F5.

The transition between the enclosed cardboard tube and the open steel mesh was easiest to identify
in the GADF matrices for the Norm state, appearing as two areas of constant colour in the first column
of Figure 3.8. It was surprising that strain values were higher for the OF part enclosed in the tube
(Figure 3.9). The difference of ca. 10 µϵ between the enclosed cardboard tube strains and the open steel
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mesh tube strains can be caused by a temperature gradient. That is, when room temperature shifts by ca.
1 °C from the baseline, artificial strains of ca. 10 µϵ are created in the measurement (due to refractive
index change in glass) [25]. The DOFSs inside the enclosed tube always follow the small localised
changes in room temperature with a delay.

One parameter which gave a significant performance increase for all ANN models was dropout.
Without dropout, the networks would become severely overfitted with an extremely low training loss and
a high and unstable validation loss. This was confirmed in numerical trials. Adding dropout increased
the training loss, however, it also led to a significant decrease in validation loss and an increase in the test
accuracy, meaning the network became more generalised. Other regularisation techniques such as L1-
and L2- regularisation for the LSTM networks also helped to generalise the models. For the TCNs, layer
normalisation gave an accuracy increase of approximately 5-10% for Model TCN-6 but had a negative
effect on Model TCN-3.

Both LSTM models were able to classify disturbance states to some degree. The training, validation
and test accuracies in Table 3.2 for the LSTM models were within a range of 6%, suggesting that the
model generalised fairly well but may still be slightly overfit. The states in the 6×6 confusion matrices
are ordered in increasing degrees of disturbance according to the FFT analysis in Figure 3.10. Although
the six-state LSTM-6 model predicted the correct class only 70% of the time, the diagonal trend in
Figure 3.11b shows that the model often incorrectly predicted one of the adjacent states. Accounting for
this, 94% of the model’s predictions were correct within the neighbourhood of one state. The clusters of
confusion in the confusion matrix show that the model had trouble differentiating the Fan2-Fan4 states.
Considering the similarities in the GADFmatrix textures in Figure 3.8 and also in the video recordings, it
is understandable that the model struggled to classify these states correctly. Nevertheless, this numerical
analysis shows that the ANN is capable of identifying high and low disturbance states.

It follows that the model with composite states (Model LSTM-3) had a significantly higher overall
prediction accuracy than Model LSTM-6. Both models had the same structure but Model LSTM-3 was
trained on a dataset consisting of grouped states. Figure 3.12b shows that the grouped model struggled
the most with the Low disturbance state. This can be attributed to large variations in the Low class states
with some strain series exhibiting strains similar to the normal threshold and some sharing similarities
with Fan2, for example.

TheTCNmodelsmade predictionswith a similar test accuracy as their LSTMequivalents. Model TCN-
6 nearly always predicted the adjacent state when predicting the incorrect class. In this case, 91% of the
predictions in Figure 3.13c would be accurate, with the most problematic state being Fan3. The predic-
tions made by Model TCN-3 were similar to that of Model LSTM-3. However, the biggest difference is
the training time per epoch: the TCN was five times quicker to train.

The visual findings confirmed that fibres moved more vigorously with increasing the fan speed and
that it was difficult to separate states based purely on visual data.

3.2.7 Effect of Virtual Gauge Length Size

After the physical experiment, a numerical parametric study was conducted with six different virtual
gauge lengths from 5 mm to 50 mm, constrained to SS = 1

2GL. Strain curves were generated from the
same reference and measurement OBR files but with different post-processing parameters as exemplified
in Figure 3.16. The general trend is that strain curves are noisier for smaller gauge lengths. This is
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expected because the strain values are averaged over smaller spatial increments, so the noise manifests
itself on a smaller scale.

(a) Small virtual gauges (b) Large virtual gauges

Figure 3.16: Comparison of the same strain measurement re-calculated with various post-processing
parameters, GL and SS, using an example curve from the Fan4 state.

The models were retrained using strain data files generated with new GL and SS parameters. Having
changed the post-processing parameters, the data files were of different lengths varying from 31 data
points for the largest GL to 325 data files for the smallest GL value. Figure 3.17 shows that the predictive
capabilities of both LSTM models remain relatively stable for GL > 10 mm. However, on the whole,
the prediction accuracy becomes significantly worse for the smallest gauge length of 5 mm. This is
presumably because the curves become excessively noisy for the smallest gauge length as shown in
Figure 3.16a. The TCN models reacted differently. Model TCN-6 remained relatively stable, whilst
Model TCN-3 showed severe performance degradation for some gauge lengths.

Figure 3.17: The effect of gauge length on
prediction accuracy of each ANN model.

Figure 3.18: The effect of training data quant-
ity on prediction accuracy.

It is worth noting that none of the models were optimised for the new sequence length inputs, which
means that performance could be further improved with proper tuning of hyperparameters and a more
appropriate network structure. For example, the TCN receptive field size was always 187. This would
cause the model to ignore parts of a data series longer than this size. For sequences shorter than this, the
sequence would be padded with zeros whilst the information at the end of the sequence, containing the
actual strain data, would be diluted due to convolutions.
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3.2.8 Effect of Data Set Size

Another numerical study was conducted by training the networks with the original sensing parameters
however, with different quantities of training data. The total number of files used for training was 360:
60% of 20 strain files × 6 states × 5 fibres. A pseudorandom sub-selection of files was chosen, ensuring
that each disturbance class was represented evenly. As expected, Figure 3.18 shows a positive correlation
between the number of strain data files used for training and the average test accuracy. It is important
to note that the curves in Figure 3.18 have not started to plateau, which suggests that more data files
(beyond the current 20 repeated measurements) could further improve the network performance. The use
of random number generators introduces stochastic variation to the result. For smaller data batches, the
results are more uncertain because the specific selection of randomly-selected files would have a greater
effect on the result. The same random seed was used throughout the experimental work, however, using
a different random seed could give different results.

3.2.9 Main Takeaways

Both LSTM and TCN structures are capable of differentiating between different modes of vibrational
disturbances. Both models’ predictions were accurate 70% and 76% of the time, however, they predicted
the outcome within one adjacent state neighbourhood over 90% of the time. Although the LSTM and
TCNmodels showed a similar prediction calibre, the TCN was significantly quicker to train which makes
it a better choice from a scalability perspective. The numerical parametric study concerning the gauge
length revealed that the LSTM networks were largely insensitive to changes in the gauge length above a
threshold of 10 mm. Another significant advantage of the TCN structure is that it can process sequences
of different lengths, whilst the LSTM input sequence lengths are set based on the sequence lengths of the
training series. Therefore the TCN offers more parametric flexibility.
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3.3 Classification of Acoustic Vibrations for DOFS Bonded to a Structure

Thus far, free-hanging optical fibres have been considered for vibration classification purposes. However,
in most real-life situations optical fibres are attached to a host structure. Therefore, an experiment was
conducted to evaluate how acoustic vibration classification is affected when the first eigenfrequency of
a structure is activated. External periodic excitation tends to guide a large part of its driving energy
towards the lowest vibration mode of the structure. When excited near the fundamental eigenfrequency,
a large part of external energy is therefore converted to the mechanical vibrations of the beam. First, the
flexural eigenfrequency of the host beam was calculated to establish the target acoustic vibration range.
Then, data was collected from a DOFS bonded to a long composite beam and was analysed by two TCN
models. The test setup for the bonded DOFS experiment has been described earlier in Section 2.2.2.

3.3.1 Eigenfrequency Calculations

A three-point bending test was first performed to establish the Young’s modulus for the long composite
beam. The beam was made of ±45° glass fibre fabric in an epoxy matrix with an approximate fibre
volume fraction of 0.31. The results of the bending test are plotted with a fitted line in Figure 3.19. The
Young’s modulus was calculated to be 14.6 GPa using Equation 1 with the beam parameters in Table 2.3.
The first flexural eigenfrequency for the long beam was calculated to be 58 Hz using Equation 2. To study
near-resonance DOFS performance, the acoustic experiments were performed over a frequency range of
[48, 68] Hz in increments of 1 Hz. This was done for three volume levels on the PC: 25%, 50% and 75%
of the maximum speaker volume.

Figure 3.19: Load-deflection curve from a three-point bending test.

3.3.2 Data Exploration

To get an overview of experimentally measured strains, strain curves were visualised for all frequencies
and volumes and can be viewed in Appendix A. The DOFS strain measurements were observed to
exhibit three different trends: low to moderate levels of noisy strains for frequencies in the range [48,
56] Hz, discrete strain spikes at ca. 0.55 m for frequencies in the range [57, 62] Hz and high noise levels
for the range [63, 67] Hz. These trends were most prominent at the intermediate speaker volume of
50% maximum. To exemplify the three main strain patterns, selected strain curves for three different
frequencies are shown in Figure 3.20. The dashed vertical lines denote the range of positions where the
OF is fixed to the specimen.
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Figure 3.20: Five arbitrarily chosenmeasurements at three selected frequencies excited at 50%maximum
volume.

Figure 3.21 shows the PDF for the spectrum of tones played by the speaker for the 75% volume
level. The tones presumably closest to the eigenfrequency of the composite beam are in the middle of
the spectrum. At first glance, it appears that tones on the lower end of the activated frequency spectrum
cause lower strain values than tones on the higher end, due to their high PDF peaks. However, the FFT of
the speaker output in Figure 3.22 reveals that the speaker output did not have a constant amplitude across
the whole frequency spectrum, despite volume dials being kept constant. This could be the reason behind
the trend in the PDF plot - the strain data is noisier (i.e. has more variation) for higher frequencies due
to the higher excitation amplitude for those frequencies.

Figure 3.21: Distribution of strain values for each acoustic tone for 75% volume level.

Figure 3.22 also shows that the tones from the speaker are not pure, but rather accompanied by
harmonics, characterised by the repeating peak groups in the plot to the left. Zooming in on the
fundamental frequency range in the FFT plot (figure on the right) confirms that the most prominent tones
played by the speaker were in fact the programmed tones.

45



3 EXPERIMENTAL RESULTS

Figure 3.22: Fourier transforms of 21 discrete tones played by the speaker and recorded by the mic,
plotted on the same axes for comparison.

To establish an overview of possible systematic variations inDOFS strains, GADFmatrices for the first
ten strain measurements for each frequency played at a volume level of 50% are displayed in Figure 3.23.
It is very difficult to see any clear correlation between the frequency and the GADF matrix texture. For
each considered frequency, and across ten repeated experiments, there are some measurements with a
few spikes of strain, which produce GADF matrices with constant colour. At the same time, there are
some noisy measurements which produce chequered patterns. There is a high variation in response to
what should be identical repeated experiments. Across the frequencies, the higher end of the spectrum
(>62Hz) tends to have a higher number of noisy strainmeasurements. This can be explained by variations
in excitation amplitudes, as discussed with Figure 3.21 and Figure 3.22 previously.
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Figure 3.23: GADF matrix textures for the first ten strain measurements (vertical direction) taken for
the same volume level (50%) for each discrete frequency.

3.3.3 Categorical TCN Predictions

For bonded DOFS experiments, only the better-performing TCN models were constructed (as defined in
Table 2.9). Trained TCN classification models were created for each individual data set corresponding
to a specific volume level and a mixture of these data sets. The first network was trained to predict at
the same 1 Hz frequency resolution as the data set. The confusion matrix for a TCN model trained on
50% volume level is shown in Figure 3.24. The expected natural frequency of 58 Hz does not appear
distinct from other frequencies of the data set. Clusters of confusion appeared amongst neighbouring
frequencies, therefore, TCN networks were also trained with grouped states. A confusion matrix from
one of the grouped states with a prediction resolution of 4-5 Hz is shown in Figure 3.25. The test accuracy
improved from 55% to 84%. Similar to experiments with free-hanging optical fibres, grouped states will
naturally diminish in data resolution, whilst gaining significantly in the prediction accuracy.
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Figure 3.24: Confusion matrix for frequency classification task. Data is gathered at 50% maximum
speaker volume, for discrete frequency increments of 1 Hz. Average test accuracy: 55%.
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Figure 3.25: Confusion matrix for grouped frequency range classification. Data is gathered at 50%
maximum speaker volume, for frequency intervals over 4-5 Hz of discrete values. Average test accuracy:
85%.

3.3.4 Prediction Accuracy and Frequency Resolution

The choice of presenting the confusion matrix only for the 4-5 Hz group (Figure 3.25) is arbitrary. A
parametric study was conducted to compare the TCN prediction accuracy for five different frequency
resolutions. Figure 3.26 shows a comparison of different grouped data sets for eachmodel. The prediction
resolution is defined as the group size for each prediction class and ranged from 1 Hz (21 individual
frequencies) to 10 Hz (two frequency groups of 48-58 Hz and 59-68 Hz). From Figure 3.26, it appears
that the prediction accuracies of all data sets converge when the prediction resolution is larger. This
is expected because the prediction accuracy for only one class would always be 100%. The training
accuracy remains fairly stable and high across the prediction resolution range, however, the validation
and test accuracy increase significantly as the resolution group increases. A high discrepancy between
training and validation/test accuracies is generally a sign of overfitting. To mitigate overfitting, a high
dropout rate of 0.3 was used, as well as early stopping.

Figure 3.26: Comparison of prediction capabil-
ities for different grouped resolutions.

Figure 3.27: The effect of training data quantity
on prediction accuracy.
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3.3.5 Prediction Accuracy and Training Data Set Size

A convergence study was conducted to investigate whether enough data files were gathered for training
and testing the ANNs. The maximum number of files used for training was 630: 60% of 50 repeated
measurements/frequency × 21 frequencies. Figure 3.27 shows that TCN prediction accuracy for all data
sets had not converged even with a 630 file data set, and may continue to increase with more files. It also
revealed that the difference between the training and validation/test accuracies remained fairly constant.

3.3.6 Continuous TCN Predictions

A different classification philosophy was also considered. A TCN model with only one output neuron,
as defined in Table 2.9, was trained to predict a continuous value between the scaled input frequencies.
This makes it possible to predict frequencies on a continuous scale rather than over discrete frequencies
as considered thus far. Figure 3.28 shows the frequency predictions of the network predictions after
upscaling and rounding them to the nearest integer. The size of the markers corresponds to how many
data points share the same x- and y-values and the green markers show what the graph would look like if
the predictions were identical to the labels. The training, validation and test mean absolute error (MAE)
were 1.58 Hz, 2.15 Hz and 2.27 Hz respectively, that is to say, on average, predictions made on unseen
data were correct within 2.27 Hz. The corresponding cumulative distribution plot of the absolute error
(AE) shows that ca. 20% of the predictions were of the correct class and ca. 95% were correct within
5 Hz.

Figure 3.28: Scatter plot of frequency predictions with corresponding cumulative distribution plot
displaying an MAE of 2.27 Hz.

Figure 3.29 provides a deeper look into the model predictions for each true frequency. The colour of
the box corresponds to the MAE of the predictions for that class. It appears that the model struggled the
most with predicting 51 Hz class. However, it predicted 58 Hz, the presumed eigenfrequency class, with
the lowest error rate.
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Figure 3.29: Box and whisker plots showing the distribution of the predictions for each 1 Hz frequency.

3.3.7 Discussion

The strain analysis of the acoustically excited free-free beam, with a bonded DOFS, produced very
interesting insights. Visualisations of strain measurements revealed that excitation frequencies close to
the first flexural eigenfrequency of the beam exhibit strain spikes in the part of the OF that is positioned
in the middle of the beam (Figure 3.20). The spikes observed in the strain measurement in the middle of
the beam can be interpreted as the manifestation of the antinode in the first flexural mode. Apart from the
spike, the strain values for these frequencies were ca. zero. For frequencies outside of this range, the strain
curves were noisy, with spikes along the whole length of the embedded fibre. A possible explanation
for this could be that when the beam is vibrating off-frequency, the vibrations are more random and
uncontrolled, whilst on-frequency, the anti-nodes serve as points of high strain along the fibre.

Similar trends were observed in the data gathered for the other two speaker volumes, but not as clearly
as for the intermediate volume (see Appendix A). This could be because the lowest volume was not
powerful enough to excite the beam, whilst the highest volume was too powerful and caused excessive
movement and noise. Indeed, training the networks on data sets with mixed volume levels gave much
worse prediction accuracies and these results were hereby not reported. Although the volume of the
speaker was unaltered using the speaker dials, the FFT revealed that the output of the speaker had varying
amplitudes for different frequencies. This is presumably because the speaker frequency range is 20 Hz -
200 Hz (only the subwoofer was used), making it more optimised to play frequencies closer to the middle
of the range. Similarly, the recorded amplitude difference could be partly attributed to the sensitivity
range of the recording device, which is limited to 20 Hz - 20 kHz. To stringently test the effect of sound
frequency on strain data from DOFS in structures, the amplitude would have to be kept constant.

Another factor which may have affected the quality of the data is the order in which the OBR scans
were performed. The script was programmed to take fifty repeated measurements for a constant tone
before advancing to the next frequency, with 48 Hz being the first frequency and 68 Hz being the last.
In total, it took approximately 7-8 hours to perform the scans for the whole range of frequencies for
one amplitude level. This means that OBR scans taken towards the end of the data collection process
could have deviated from the reference files more than the preceding measurements due to temperature
changes in the lab, inciting artificially higher strains in the measurement. As mentioned previously, the
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temperature can vary by ca. 1-2 °C in the lab throughout the day. A randomised implementation, where
the script iterates through the frequency spectrum for a given number of measurements, could be a better
solution so that the measurements affected by a temperature difference are represented in each frequency
class.

It was possible to train TCNs to predict the frequency of the acoustic disturbance to some degree.
Although the parametric study revealed that the models with small prediction ranges had relatively low
test accuracies, it is possible to achieve test accuracies of over 80% for prediction ranges larger than 5 Hz.
Some inherent prediction error should be expected when the frequency groups are created in such a way.
This is because the frequencies that are on the edge of their respective group range may be more similar
to a neighbouring frequency belonging to a different group, rather than those in its assigned group. For
example, with reference to Figure 3.25, 57 Hz, which is placed in the 53-57 Hz group is likely to be similar
to 58 Hz, which belongs to the adjacent group. For this inherent drawback of discrete classification, a
TCN making one continuous prediction was also trialled, where the evaluation metric was mean absolute
error (MAE). Using this network structure, approximately 40% of predictions were correct within a 1 Hz
range, which is 15% lower than from the categorical TCN for the same resolution. For a resolution range
of 5 Hz, 95% were correct using the continuous TCN. Comparable results can be seen for the categorical
TCN from the clusters of confusion in the 21×21 confusion matrix in Figure 3.24 and the 4×4 confusion
matrix in Figure 3.25.

When using the categorical TCN, the frequency labels are treated as individual and unrelated cat-
egories. When using the continuous TCN, the frequency categories are treated as though they are related,
which is the physical reality. It is difficult to establish whether the frequency should have been treated as
a categorical or a continuous variable in this case because both approaches performed well.
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4 CONCLUSIONS

4 Conclusions

A series of experiments were conducted to investigate the effects of vibrational disturbances on DOFS
strain data measurements. Starting with the tip-termination analysis, an end-reflection length was
established based on a statistical analysis of raw amplitude data. The analysis revealed that data from the
last 150 mm of the DOFS end contains a strong reflection effect and should be disregarded. However,
there is a large variation between different physical OFs depending on how the fibre is actually cut.

Using the free-hanging fibres as the experimental set-up, it was shown that vibrational noise manifests
itself in the form of abnormally high strain values in DOFS measurements, even in the absence of exerted
mechanical strain. Higher noise intensities cause a larger proportion of the strain measurement values to
take on abnormally large values. For classification of noise, an LSTM model and a TCN were trained on
strain data gathered from disturbed free-hanging DOFS. It was possible to differentiate between six states
of perturbations with an accuracy of over 70%. Moreover, the models successfully managed to separate
states from two very different sources, but with approximately the same intensity, namely theFan1 andVac
states. Grouping the disturbance states into compound groups further improved the prediction accuracies
of both models. Although both the LSTM ANN and TCN exhibited similar prediction accuracies, the
TCN was five times quicker to train and can process different sequence lengths with the same model.

The final experiment involved exciting a DOFS bonded to a long composite beam to classify acoustic
disturbances in a vibrational range surrounding its first fundamental frequency. No clear correlation could
be observed between the frequency and the strain measurement output and it was not possible to isolate
the eigenfrequency using a resolution of 1 Hz. Only TCN structures were employed for classification
predictions in this task. The networks were trained to predict the frequency of the acoustic disturbance and
tested on grouped composite states spanning across several resolutions. A categorical and a continuous
TCN structure were trialled for the prediction task, with the categorical network performing better. The
highest prediction accuracy for a resolution of 1 Hz was achieved using the categorical network, which
was 55%.

To summarise, the analyses hereby presented indicate that ANNmodels are capable of distinguishing
between classes of mechanical and acoustic disturbances separated by both intensity and source. This
investigation serves as a proof-of-concept for the use of DOFS for vibration sensing in combination
with appropriate numerical tools. This approach shows very good potential for extracting new useful
information from vibrational disturbances on DOFSs strains, whose effect has thus far been considered
only as noise.
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A STRAIN MEASUREMENTS FROM DOFS BONDED TO A COMPOSITE BEAM

Appendices
Appendix A Strain Measurements from DOFS Bonded to a Composite

Beam

Figure A.1: Strain measurements gathered at 25%maximum volume. The vertical lines mark the section
of the DOFS bonded to the composite beam.
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A STRAIN MEASUREMENTS FROM DOFS BONDED TO A COMPOSITE BEAM

Figure A.2: Strain measurements gathered at 50%maximum volume. The vertical lines mark the section
of the DOFS bonded to the composite beam.
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A STRAIN MEASUREMENTS FROM DOFS BONDED TO A COMPOSITE BEAM

Figure A.3: Strain measurements gathered at 75%maximum volume. The vertical lines mark the section
of the DOFS bonded to the composite beam.
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B RISK ASSESSMENT

Appendix B Risk Assessment
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Sikkerhets- og kvalitetsgjennomgang av 
laboratorietester og verkstedsarbeid 

Risk Assessment of Activities in the Laboratory and Workshop 

 
Rev. 10, 2020-Sep 

ONLY VALID FOR DETAILED ACTIVITIES LISTED IN SECTION 5 
1 Identifikasjon - Identification                                           Dokumentnr. – Document no.: 

Kundenavn – N/A 
             

Prosjektnavn – Project name  
Automatic detection of compromised 
sensors and data 

Projektnr. – Project no. 
         70443320 

Beskrivelse av arbeid – Description of job 
Generating data from optical fiber sensors embedded in 
laminates 

Dato (fra -til) – Date (from – to) 
06/09/2021-15/06/2022 
Updated 10/03/2022 

2 Projekt – Team                                                                                                 put in NR if not relevant 
Prosjektleder og organisasjon – Project 
manager and organisation (Student) 

Valeria Usenco Ansvarlig for instrumentering – 
Responsible for instrumentation. 

Valeria Usenco 

Leiestedsansvarlig – 
Laboratory responsible 

Ying Qian 
Operatør – Operator 

Valeria Usenco 

Auditør for sikkerhets og 
kvalitetsgjennomgang – Auditer for 
safety check 

Kaspar Lasn 
Ying Qian 

Ansvarlig for styring av forsøk 
– Responsible for running the 
experiment. 

Kaspar Lasn 
Valeria Usenco 

Ansvarlig for eksperimentelt faglig 
innhold – Responsible for experimental 
and scientific content(Veileder/Advisor) 

Kaspar Lasn Ansvarlig for logging av 
forsøksdata – 
Responsible for logging and 
storing experimental data 

Valeria Usenco 

Ansvarlig for dimensjonering av last og 
trykkpåkjente komponenter – 
Reponsible for dimensioning load 
bearing and pressurized components 

Valeria Usenco 
Ansvarlig for montering av testrigg 
– Responsible for building the rig 

Valeria Usenco 

3 Viktig!! – Important!! J: Ja – Yes / N: Nei - No 
Er arbeidsordren signert? – Is the work order signed?      (only for external work) N/A 

Har operatøren nødvendig kurs/trening i bruk av utstyret? - Has the operator the required courses/training on the equipment? Yes 

Har operatøren sikkerhetskurs? (påbudt) – Has the operator followed the safety courses? (mandatory) Yes 

Kan jobben gjøres alene? - Can the work be done alone? Yes 

- Dersom ja, er det med visse forbehold (for eksempel, må bruke alarm, ha avtale med noen som kommer innom med jevne 
mellomrom eller lignende). Dette må vurderes i Seksjon 5. If yes, the work may have to be done under special conditions (e. 
g. must use the alarm, have agreement with somebody coming back periodically or similar).  

 
 

Må en ekspert se på oppstart av eksperimentet? Does an expert have to check the start of the experiment? Yes 

- Dersom ja, hvem? If yes, who? Kaspar Lasn / Shaoquan Wang  

4.1 Sikkerhet – Safety (Testen medfører – The test contains) J: Ja – Yes / N: Nei - No 
Stor last – Big loads No Brannfare – Danger of fire Yes 

Tunge løft – Heavy lifting No Arbeid i høyden – Working at heights No 

Hengende last – Hanging load No Hydraulisk trykk – Hydraulic pressure No 

Gasstrykk – Gas pressure No Vanntrykk – Water pressure No 

Høy temperatur – High temperature Yes Lav Temperature – Low temperature Yes 

Deler i høy hastighet – Parts at high velocity No Farlige kjemikalier – Dangerous chemicals Yes 

Sprutakselerasjon ved brudd 
– Sudden acceleration at fracture/failure 

No Forspente komponenter 
– Pre-tensioned components 

No 

Farlig støv – Dangerous dust No Kraftig støy – Severe noise No 

Klemfare – Danger of pinching Yes Roterende deler – Rotating parts No 

4.2 Påkrevet verneustyr – Required safety equipment J: Ja – Yes / N: Nei - No 
Briller (påbudt) – Glasses (mandatory) Yes Vernesko – Safety shoes Yes 
Hjelm – Helmet No Hansker – Gloves Yes 
Skjerm – Screen No Visir – Visir No 
Hørselsvern – Ear protection Yes Løfteredskap – Lifting equipment No 
Yrkessele, fallsele, etc. – Harness ropes, other 
measures to prevent falling down. 

No Full vernedress – Hazard suit    No 
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5.1 Beskrivelse av aktivitet – Description of the activity (see Appendix) 

Vurdering skal være basert på en skriftlig prosedyre for bruk av 
maskinen. I enkelte tilfeller kan prosedyre bli beskrevet direkte i tabellen 
nedenfor. 

The evaluation shall be based on a written operating procedure for the machine. 
For simple cases the procedure can be directly described in the tables below. 

Nr. 
Beskrivelse av aktivitet 
– Description of activity Fare – Danger 

Lov, forskrift 
o.l. 

– Legal 
requirements 

Prosedyre nr. 
– Procedure no. 

Sannsynlighet 
– Probability 

Konsekvens 
–Consequence 

Risiko 
– Risk 

        

1 Use of laser Damage to eye   2 B B2 

2 Burning off fiber coating Fire / burn injury   1 C C1 

3 Cutting optical fiber Cutting injury   2 A A2 

4 Sharing lab with others Covid-19   3 C C3 

5 Using wire stripper Pinching   2 A A2 

6 Using OBR machine Breaking it   1 D D1 

7 Using simple sensor system Electricity issues   1 B B1 

8 Handling epoxy and hardener Inhaling fumes or eye/skin irritation from 
exposure 

  2 D D2 

9 Handling epoxy and hardener Spillage   4 B B4 

10 Using acetone for cleaning Inhaling/eye irritation   2 C C2 

11 Acoustic testing Excessive noise   2 C C2 

        

5.2 Korrigerende Tiltak – Corrective Actions 

Nr. Korrigerende tiltak – Corrective action 
Sannsynlighet 
– Probability 

Konsekvens 
– Consequence 

Risiko 
– Risk 

Utført dato 
– Date of action 

      

2 Clear away flammable materials when using butane torch, do not touch hot parts 1 B B1  

4 Social distancing and use of medical mask 1 C C1  

6 Use clean hands and equipment, fence in equipment, use proper procedures as demoed 1 B B1  

8 Ensure there is good ventilation, use gloves and do not touch eyes 2 B B2  

9 Walk carefully when carrying epoxy mix, clean up spillage as soon as possible 2 A A2  

10 Ensure there is good ventilation, use gloves and do not touch eyes 1 A A1  

11 Use ear protection, perform experiment away from others 2 A A2  
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5.3 Feilkilder – Reasons for mistakes/errors 
Er følgende feilkilder vurdert? –Is the following considered?                           J: Ja – Yes / N: Nei – No / NR: not relevant 
Tap av strøm – Loss of electricity Yes Overspenning – Voltage surge NR 

Elektromagnetisk støy or Jordfeil 
– Electromagnetic noise – Electrical earth failure 

NR Manglende aggregatkapasitet av hydraulikk 
– Insufficient power of the machine 

NR 

Klimakontroll i rom 
– Climate control in the room  (temp, humidity, etc.) 

Yes Vannsprut – Water jet NR 

Ustabilt trykk av hydraulikk/kraft 
– Unstable pressure or hydraulic force 

NR Tilfeldig avbrudd av hydraulikk/kraft 
– Unintended interruption of power supply 

NR 

Last-/ forskyvnings grenser etablert ? 
– Are load and displacement limits established? 

NR Lekkasjer (slanger/koblinger, etc.) 
– Leakage of pipes, hoses, joints, etc. 

Yes 

Mulige påvirkninger fra andre aktiviteter 
– Possible interference from other activities 

Yes Mulige påvirkninger på andre aktiviteter 
– Possible interference towards other activities 

Yes 

Problemer med datalogging og lagring 
– Troubles in acquisition and storage 

Yes Brann i laboratoriet 
– Fire in the laboratory 

Yes 

6 Kalibreringsstatus for utstyr – Calibration of equipment 
(ex: load cell, extensometer, pressure transducer, etc) 

I.D. Utstyr – Equipment 
Gyldig til (dato) 

– Valid until (date) 
1 Calibration according of equipment according to MTP lab 15/06/2022 

   

   

   

   

   

   

7 Sporbarhet – Tracebility 
Eksisterer – Is there                                                                                                   J: Ja – Yes / N: Nei – No / NR: not relevant 

Er alle prøvematerialene kjente og identifiserbare? – Are all experimental materials known and traceable? Yes 

Eksisterer det en plan for markering av alle prøvene? – Is there a plan for marking all specimens? Yes 

Er dataloggingsutstyret identifisert? – Is the data acquisition equipment identified? Yes 

Er originaldata lagret uten modifikasjon? – Are the original data stored safely without modification? Yes 

Eksisterer det en backup-prosedyre? – Is there a back-up procedure for the data (hard disk crash)? Yes 

Eksisterer det en plan for lagring av prøvestykker etter testing? 
– Is there a plan for storing samples after testing? 

Yes 

Eksisterer en plan for avhending av gamle prøvestykker? – Is there a plan for disposing of old samples? Yes 

8 Kommentarer – Comments 
 

9 Signaturer – Signatures )       a pdf copy of the signed document shall be sent to Andreas.Echtermeyer@ntnu.no 
Godkjent (dato/sign) – Approved (date/signature          a paper copy shall be available in the composite lab 

Prosjektleder – Project leader 

(Student) 
Valeria Usenco 

Verifikatør – Verifier 

(Veileder - Advisor) 

Kaspar Lasn 

Godkjent – Approved by 

(Romansvarlig - Room 

responsible ) 

Andreas Echtemeyer 

Godkjent – Approved by 

(Labor sjef - Laboratory Leader) 

Ying Qian 
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APPENDIX Bakgrunn - Background 

 
 
 
 

Sannsynlighet vurderes etter følgende kriterier: 
Probability shall be evaluated using the following criteria: 
Svært liten 

Very unlikely 
1 

Liten 

Unlikely 
2 

Middels 

Probable 
3 

Stor 

Very Probable 
4 

Svært stor 

Nearly certain 
5 

1 gang/50 år eller sjeldnere 
– Once per 50 years or less 

1 gang/10 år eller sjeldnere 
– Once per 10 years or less 

1 gang/år eller sjeldnere 
– Once a year or less 

1 gang/måned eller sjeldnere 
– Once a month or less 

Skjer ukentlig 
– Once a week 

 

Konsekvens vurderes etter følgende kriterier: 
Consequence shall be evaluated using the following criteria: 

Gradering 
– Grading 

Menneske 
– Human 

Ytre miljø, Vann, jord og luft 
– Environment 

Øk/materiell 
– Financial/Material 

Omdømme 
– Reputation 

 
E 

Svært Alvorlig 
– Very critical 

 

 
Død – Death 

 
Svært langvarig og ikke reversibel 

skade 
– Very prolonged, non-reversible 

damage 

 
Drifts- eller aktivitetsstans >1 

år. 
– Shutdown of work >1 year. 

Troverdighet og respekt 
betydelig og varig 

svekket 
– Trustworthiness and 
respect are severely 

reduced for a long time. 

 
D 

Alvorlig 
– Critical 

 
Alvorlig personskade. 

Mulig uførhet. 
– May produce fatality/ies 

Langvarig skade. Lang 
restitusjonstid 

– Prolonged damage. Long 
recovery time. 

Driftsstans > ½ år 
Aktivitetsstans i opp til 1 år 
– Shutdown of work 0,5-1 

year. 

Troverdighet og respekt 
betydelig svekket 

– Trustworthiness and 
respect are severely 

reduced. 

C 
Moderat 

– Dangerous 

Alvorlig personskade. 
– Permanent injury, may 
produce serious health 

damage/sickness 

Mindre skade og lang 
restitusjonstid 

– Minor damage. Long recovery 
time 

Drifts- eller aktivitetsstans < 1 
mnd 

– Shutdown of work < 1 
month. 

Troverdighet og respekt 
svekket 

– Troverdighet og 
respekt svekket. 

B 
Liten 

– Relatively 
safe 

Skade som krever 
medisinsk behandling 
– Injury that requires 

medical treatment 

Mindre skade og kort 
restitusjonstid 

– Minor damage. Short recovery 
time 

 
Drifts- eller aktivitetsstans < 

1uke 
– Shutdown of work < 1 week. 

Negativ påvirkning på 
troverdighet og respekt 
– Negative influence on 

trustworthiness and 
respect. 

A 
Siker 
- Safe 

 
 

Injury that requires first 
aid 

 
 

Insignificant damage. Short 
recovery time 

 
 

Shutdown of work < 1day 

 

     

Risikoverdi = Sannsynlighet X Konsekvenser 
Beregn risikoverdi for menneske. IPM vurderer selv om de i tillegg beregner risikoverdi for ytre miljø, 
økonomie/ material og omdømme. I så fall beregnes disse hver for seg. 

 

Risk = Probability X Consequence 
Calculate risk level for humans. IPM shall evaluate itself if it shall calculate in addition risk for the 
environment, economic/material and reputation. If so, the risks shall be calculated separately. 
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Risikomatrisen 

Risk Matrix 
 

I risikomatrisen er ulike grader av risiko merket med rød, gul eller grønn: 

 
Rød: Uakseptabel risiko. Tiltak skal gjennomføres for å redusere riskoen. 

Gul: Vurderingsområde. Tiltak skal vurderes. 

Grønn: Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn. 

Når risikoverdien havner på rødt felt, skal altså enheten gjennomføre tiltak for å redusere risikoen. Etter at tiltak 
er iverksatt, skal dere foreta ny risikovurdering for å se om risikoen har sunket til akseptabelt nivå. 

 
For å få oversikt over samlet risiko: Skriv risikoverdi og aktivitetens IDnr. i risikomatrise (docx) / risikomatrise 
(odt). Eksempel: Aktivitet med IDnr. 1 har fått risikoverdi 3D. I felt 3D i risikomatrisen skriver du IDnr. 1. Gjør 
likedan for alle aktiviteter som har fått en risikoverdi. En annen måte å skaffe oversikt på, er å fargelegge feltet 
med risikoverdien i skjemaet for risikovurdering. Dette tydeliggjør og gir samlet oversikt over riskoforholdene. 
Ledelse og brukere får slik et godt bilde av risikoforhold og hva som må prioriteres. 

In the risk matrix different degrees of risk are marked with red, yellow or green; 

Red: Unacceptable risk. Measures shall be taken to reduce the risk. 

Yellow: Assessment Area . Measures to be considered. 

Green: Acceptable risk. Measures can be evaluated based on other considerations. 

When a risk value is red, the unit shall implement measures to reduce risk. After the action is taken, you will 
make a new risk assessment to see if the risk has decreased to acceptable levels. 

 
To get an overview of the overall risk: Write the risk value and the task ID no . the risk matrix ( docx ) / risk 
matrix ( odt ) . Example : Activity with ID no . 1 has been risk value 3D. In the field of 3D risk matrix type ID 
no . 1 Do the same for all activities that have been a risk . Another way to get an overview is to color the field of 
risk value in the form of risk assessment . This clarifies and gives overview of the risk factors . Management 
and users get such a good picture of the risks and what needs to be prioritized. 
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_______________________________________________________________ 
 

Til Kolonnen ”Korrigerende Tiltak”: 

Tiltak kan påvirke både sannsynlighet og konsekvens. Prioriter tiltak som kan forhindre at hendelsen inntreffer, 
dvs sannsynlighetsreduserende tiltak foran skjerpende beredskap, dvs konsekvensreduserende tiltak. 

 
For Column “Corrective Actions” 
Corrections can influence both probability and consequence. Prioritize actions that can prevent an event from 
happening. 

_______________________________________________________________ 

 
Oppfølging: 

Tiltak fra risikovurderingen skal følges opp gjennom en handlingsplan med ansvarlige personer og tidsfrister. 

 
Follow Up 
Actions from the risk evaluation shall be followed through by an action plan with responsible persons and time 
limits. 

 
Etterarbeid # 
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 Gå gjennom aktiviteten/prosessen på nytt. 

 Foreta eventuell ny befaring av aktiviteten/prosessen for enten a) å få bekreftet at risikoverdiene er 
akseptable eller b) for å justere risikoverdiene. 

 Gå gjennom, vurder og prioriter tiltak for å forebygge uønskede hendelser. Først skal dere prioritere tiltak 
som reduserer sannsynlighet for risiko. Dernest skal dere ta for dere tiltak som reduserer risiko for 
konsekvenser. 

 Tiltakene skal føres inn i handlingsplanen. Skriv fristen for å gjennomføre tiltaket (dato, ikke tidsrom) og 
navn på den / de som har ansvar for tiltakene. 

 Foreta helhetsvurdering for å avgjøre om det nå er akseptabel risiko. 

 Ferdig risikovurdering danner grunnlag for å utarbeide lokale retningslinjer og HMS-dokumenter, 
opplæring og valg av sikkerhetsutstyr. 

 Ferdig risikovurdering og eventuelle nye retningslinjer gjøres kjent/tilgjengelig for alle involverte. 

 Sett eventuelt opp kostnadsoverslag over planlagte tiltak. 
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