NTNU

Norwegian University of Science and Technology

Faculty of Information Technology and Electrical Engineering

Master’s thesis

Department of Computer Science

Sander Bjerklund Lindberg

Exposing novice programmers to an
expert's eye-gaze

Investigating the effect of visualizing an expert
programmer's cognitive code comprehension
and debugging process through eye-tracking as a
basis for teaching novice programmers how to
comprehend and debug code

Master’s thesis in Informatics
Supervisor: Kshitij Sharma

June 2022

@ NTNU

Norwegian University of
Science and Technology

Sander Bjerklund Lindberg

Exposing novice programmers to an
expert's eye-gaze

Investigating the effect of visualizing an expert
programmer's cognitive code comprehension and
debugging process through eye-tracking as a basis
for teaching novice programmers how to
comprehend and debug code

Master’s thesis in Informatics
Supervisor: Kshitij Sharma
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Abstract

As programming, code debugging, and code comprehension are cognitive pro-
cesses, it may be difficult for an individual to discern their exact thought process
in order to teach others. Through the usage of eye-trackers, researchers have found
a way to visualize these cognitive processes. Furthermore, they have identified dif-
ferences in how experts and novices solve problems. This thesis investigates the
effect of visualizing an expert programmer’s cognitive code comprehension and
debugging process through eye-tracking as a basis for teaching novices how to
comprehend and debug code.

This has been done through the execution of a study with 32 novice programmers
currently studying computer science. At first, a system for presenting code snip-
pets and eye-gaze was created in React.js and Node.js. Then, an expert’s eye-gaze
was recorded while they completed a set of code problems. Later, the 32 novices
completed the same problems, with half of the participants able to see the expert’s
eye-gaze and code snippets side-by-side while solving the problems. In addition to
being split into a control group and a help group, participants were split into groups
of expertise and performance to investigate the effect of the expert’s eye-gaze.

The analysis results showed no significant differences between the group exposed
to the expert’s eye-gaze and the group not exposed regarding scores on the prob-
lems. Moreover, the results showed no significant difference in number of fixations
on lines with bugs, nor the fixation duration on them, among the participants. How-
ever, the results did show a significant difference between participants concerning
task time and fixation distance to meaningful areas in the code.

Sammendrag

Siden programmering, kodefeilsgking og kodeforstaelse er kognitive prosesser,
kan det vere vanskelig for en person & skjelne sin ngyaktige tankeprosess for &
lere bort hvordan de selv lgser oppgaver til andre. Gjennom bruk av eye-trackere
har forskere funnet en mate a visualisere disse kognitive prosessene. Videre har
de identifisert forskjeller i hvordan eksperter og nybegynnere Igser problemer.
Denne masteroppgaven undersgker effekten av a visualisere en ekspertprogram-
merers kognitive kodeforstaelse og feilsgkingsprosess ved bruk av gyesporing,
som grunnlag for a lzere nybegynnere hvordan de skal forsta og feilsgke kode.

Dette har blitt gjort giennom utfgrelse av en studie med 32 nybegynnere i pro-
grammering, som for tiden studerer innenfor datateknologi. Til & begynne med
ble et system for presentasjon av kodebiter og blikk laget i React.js og Node.js.
Deretter ble en eksperts blikk sporet mens de fullfgrte et sett med kodeproble-
mer. Senere fullfgrte de 32 nybegynnerene de samme kodeproblemene, hvor halv-
parten av deltakerne hadde muligheten til & se ekspertens blikk pa skjermen og
kodesnutter side ved side mens de lgste problemene. I tillegg til & bli delt inn
i en kontrollgruppe og en hjelpegruppe, ble deltakerne delt inn i ekspertise- og
prestasjonsgrupper for a utforske effekten av ekspertens blikk.

Resultatene av analysen viste ingen signifikante forskjeller mellom gruppen som
ble utsatt for ekspertens blikk og gruppen som ikke ble eksponert, med hensyn
til skér pa problemene. Dessuten viste resultatene ingen signifikant forskjell mel-
lom deltakerene, med hensyn til antall fikseringer pa linjer med feil, eller fikser-
ingsvarigheten pa dem. Resultatene viste imidlertid en signifikant forskjell mel-
lom deltakerne med hensyn til oppgavetid og fikseringsavstand til meningsfulle
omrader i koden.

Preface

Ever since primary school, I knew I wanted an education in Computer Science.
The memory of my father setting up and installing my first ever computer as I lay
in bed watching him, refusing to go to sleep, is still strong.

I’ve come a long way since then. After finishing High School, where my devious
little self had persuaded enough of my classmates to choose IT as an elective course
so that the course would have enough pupils to be lectured, it was finally time to
get my Computer Science education. The choice was easy - I had to apply to
the Norwegian University of Science and Technology, one of Norway’s largest
universities. I was accepted and finished my BSc in informatics within three years.
Still, I did not feel my education was complete and applied for a two-year MSc
program in Informatics, specializing in artificial intelligence.

Throughout my Bachelor’s and Master’s degrees, I have worked as a Teaching
Assistant in multiple courses. This has given me an insight into the difference be-
tween students and made me aware that I enjoy teaching. The original plan for my
Master’s thesis was to predict student performance using eye-tracking. However,
after reading literature, conversing with my supervisor, and my experience as a
TA, I quickly realized that I wanted to explore teaching methods.

This thesis concludes my Master of Science in Informatics at the Department of
Computer Science at the Norwegian University of Science and Technology in
Trondheim. It focuses on visualizing an expert programmer’s eye-gaze to novices
in programming to explore a new method of teaching novices code comprehension
and debugging.

The road to get here has been long. It’s been fun, frustrating, and knowledgeable.
Tiresome, motivating, and exciting. I want to express my thanks to NTNU for giv-
ing me the Computer Science education I've always dreamed of and for preparing
me for the new chapter in my life that’s now coming. I would also like to thank my
supervisor Kshitij Sharma for his knowledge, feedback, and motivation throughout
this thesis. Furthermore, I want to express my gratitude to my family and friends
for supporting me all these years, and lastly, my partner for putting up with my
constant nagging.

Sander Bjerklund Lindberg
Trondheim, June 12, 2022

Table of Contents

Abstract
Sammendrag
Preface
Table of Contents iii
List of Figures iv
List of Tables vi
1 Introduction 1
1.1 Background and motivation 1
1.2 Research questions and objectives 2
1.3 Researchmethod 3
1.4 Thesisstructure oL 3
2 Background and related work 4
2.1 Eye-tracking terminology and technology 4
2.2 Zone of Proximal Development 5
23 Relatedwork o 7
2.3.1 Eye-tracking in problem solving 7
2.3.2 Eye-tracking in programming 8
2.3.3 Determining programming expertise 9
2.3.4 Difference between novices and experts 10
2.3.5 Using other people’s eye-gaze 13

3

Methodology

3.1 Systemdesign
3.1.1 Systemmockups
3.1.2 Architecture

3.2 Researchdesign
3.2.1 Participants L o
3.2.2 Determining programming expertise
323 Studytasks
324 Executionofthestudy

33 Analysis e e e
3.33.1 Preprocessing
332 Datasets
3.3.3 Difference in study and pretest scores
3.3.4 Number of fixations and total duration of fixations
3.3.5 Distance to lines withbugs

Results

4.1 Conditions
4.1.1 PretestScores
4.1.2 Studyscores
4.1.3 Number of fixations on lines withbugs
4.1.4 Time spent on lines withbugs
4.1.5 Distance to lines withbugs
4.1.6 Timespentontasks.

4.2 EXpPertise groups o oot it e e e
42.1 Studyscores
4.2.2 Number of fixations on lines withbugs
423 Time spent on lines withbugs
424 Distance to lines withbugs
425 Timespentontasks.

4.3 Performance groups
43.1 Studyscores
4.3.2 Number of fixations on lines withbugs
4.3.3 Time spent on lines withbugs
434 Distance to lines withbugs
435 Timespentontasks.

Discussion
5.1 Results and their implications
5.2 Limitations e

15
16
16
19
23
23
25
25
25
28
28
31
32
33
34

ii

6

53 Futurework

Conclusion

Bibliography

A

B

C
D
E

ey

Diagrams
Information letter
Pretest tasks
Study tasks
Grading scripts

Result and analysis supplement

63

65

69

71

76

82

91

93

iii

List of Figures

2.1
2.2

3.1
3.2
33
34

3.5
3.6
3.7
3.8
39
3.10

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Example fixations and scanpath. 5
Vygotsky’s Zone of Proximal Development. 6
Pretestexample. 16
The two information pages in the system. 17
On-demand help task type. 17
Functions available in the help section when viewing an expert’s

S 2/ 18
Summary page of study system. 18
Process view of the study system. 19
Logical view of the study system. 20
Development view of the study system. 21
Overall flow of the study system. 22
Timelineof thestudy. 26
Boxplot of number of correct answers on the pretest for the two

conditions; control and help. 38
Average task scores for the two conditions; control and help. . . . 39

Boxplot of the study scores for the two conditions; control and help. 40
Boxplot of total number fixations on all bugs for the two condi-

tions; controland help. 41
Boxplot of total number of fixations on the second bug in task 5
for the two conditions; control and help. 42
Boxplot of total normalized fixation duration on all bugs for the
two conditions; controland help. oL 42
Number of fixations in percentile from the bugs for the two condi-
tions; controland help. 43

v

4.8 Correlation on the score of the study task as a function of the num-
ber of first fixations after looking at help that was on a line con-
tainingabug.

4.9 Average time spent in seconds on the tasks for the two conditions,
control and help, and the expert.

4.10 Average time difference, in relation to the expert, spent on the tasks
for the two conditions; control and help.

4.11 Average task scores for the two expertise groups; high and low. . .

4.12 Boxplot of the study scores for the two expertise groups; high and
low. . . o

4.13 Study scores for the two conditions, control and help, within each
EXPErtiSe SIOUP. . . « v v v v e e e e e e e e e

4.14 Boxplot of total number of fixations on all bugs for the two exper-
tise groups; highandlow.

4.15 Boxplot of total normalized fixation duration on all bugs for the
two expertise groups; highandlow.

4.16 Percent distance from the bugs for the expertise groups; high and
low. . . .

4.17 Average time spent per task in seconds for the two expertise groups,
high and low, as well as theexpert.

4.18 Study scores for the conditions, control and help, within each per-
formance group.

4.19 Boxplot of total number of fixations on all bugs for the two perfor-
mance groups; highandlow.

4.20 Boxplot of total normalized fixation duration on all bugs for the
two performance groups; highandlow..

4.21 Average time spent per task for the two performance groups, high
and low, and theexpert.

A.1 Logical view of the study system.

45
46

List of Tables

2.1

3.1
32
33
3.4
35

F1

F2

E3

F4

E5

F.6

E7

F.8

F9

Overview of different eye-trackers used by the related works’ studies. 7

Example rows for the raw pretestdata. 29
Example rows for the study tasksdata. 29
New features introduced in the processed dataset with description. 32
Example rows of eye movementdata 33
Percentage distance group constraints. 36

P-values reported from Kruskal-Wallis tests for difference in study

SCOTES. . v v v v i i et e e e e 93
P-values reported from Kruskal-Wallis tests for difference in study
scores between conditions within expertise group. 94
P-values reported from Kruskal-Wallis tests for difference in study
scores between conditions within performance group. 94
P-values reported from Kruskal-Wallis tests for difference in num-
ber of fixationsonbugs. Lo 95
P-values reported from Kruskal-Wallis tests for difference in nor-
malized fixation durationonbugs. 95
P-values reported from Kruskal-Wallis tests for difference in per-
centile distance from lines withbugs. 96

P-values and Pearson’s r reported from Person correlation tests be-
tween total study scores and percent of first fixation after consult-

ing help section that was on a line withbug. 96
P-values reported from Kruskal-Wallis tests for difference in time
spentpertask. oL o 97

Mean and standard deviation for every AOI and variable in the
study for the conditions, expertise groups and performance groups. 98

vi

Acronyms

AOI Area of interest.

CS Computer Science.

JSON JavaScript Object Notation.

SQL Structured Query Language.

TA Teaching assistant.

vii

Chapter

Introduction

1.1 Background and motivation

Since the dawn of time, the challenge of problem solving, especially the optimiza-
tion of this process, has puzzled humankind. The ancient Greeks attempted to
automate this process by creating algorithms, such as the Pythagorean theorem, to
more easily solve repetitive problems. However, since problems vary greatly, from
repetitive mathematical equations to programming fully conscious Al, there is still
a need to find more efficient ways to teach problem solving.

In Merriam-Webster, problem solving is defined as The process or act of finding
a solution to a problem” [1]. This process is highly individual and varies greatly.
Since there are often many ways to solve a given problem, conveying the different
individual processes of finding a solution can be challenging. This is especially
apparent in a teaching context, where students might have problems understanding
their teacher’s thought process when solving, for instance, mathematical equations.
Through the usage of eye-trackers, Yoon and Narayanan [2] managed to capture
this cognitive process. They captured people’s eye movements during a problem
solving session and observed different problem solving processes.

Programming is about finding a solution to a problem, and it most certainly falls
under the definition of problem solving. When teaching programming, one seeks
to teach specific approaches to solving problems. Like the Pythagorean formula in

1

Chapter 1. Introduction

mathematics helps identify the lengths of the sides of triangles, programmers are
thought if-statements to solve logical problems. Another form of problem solving
in programming is code comprehension and debugging. As Yoon and Narayanan
[2] found, there are several different problem solving processes, which also apply
to code comprehension and debugging.

Through the usage of eye-trackers, it has been found that expert and novice pro-
grammers have different processes when it comes to code comprehension [3, 4, 5]
and debugging [6, 7]. However, as these processes are cognitive and cannot be
seen, it is hard to teach them to novice programmers, especially when they, more
often than not, have different processes of comprehension and debugging than the
expert or teacher.

This raises the question of whether one can visualize an expert’s problem solving
process through their eye-gaze to better teach novice programmers their approach.
This thesis explores previous work utilizing eye-trackers and describes the design
and execution of a study investigating what effect exposing novices to an expert’s
eye-gaze has on their code comprehension and debugging abilities.

1.2 Research questions and objectives

The main goal of this thesis is to investigate the effect of visualizing an expert
programmer’s cognitive code comprehension and debugging process through eye-
tracking as a basis for teaching novice programmers how to comprehend and debug
code. In other words, this thesis will visualize an expert programmer’s eye-gaze
from comprehension and debugging sessions to novice programmers to lay the
groundwork for further research on implementing eye-tracking and visualization
of problem solving processes in computing education.

In order to achieve this goal, the following research questions will be answered:

RQ1 How is eye-tracking used in programming?
RQ2 What are the differences between experts and novices when programming?

RQ3 What effect does exposing novice programmers to an expert programmer’s
eye-gaze have on their comprehension and debugging abilities?

1.3 Research method

RQ3.1 What is the effect of exposing novice programmers to an expert pro-
grammer’s eye-gaze during debugging and code comprehension?

RQ3.2 What are the differences between high and low expertise novice pro-
grammers when exposed to an expert programmer’s eye-gaze?

RQ3.3 What are the differences between high and low performance novice
programmers when exposed to an expert programmer’s eye-gaze?

1.3 Research method

In order to answer the research questions in section 1.2, the first step was to conduct
a literature study to get an overview of the existing literature and research in the
field of eye-tracking and programming. The literature study was conducted in the
fall of 2021 as a preparatory project for this thesis and is explained in more detail
in section 2.3.

After the literature study, it became apparent that the field lacked research regard-
ing helping novices learn programming and how one can use eye-tracking as an
aid in learning situations. In addition, the literature study showed significant dif-
ferences between novices and experts when comprehending and debugging source
code. This spawned the interest in the design and execution of a study investigat-
ing what effect exposing novice programmers to an expert’s eye-gaze has on their
code comprehension and debugging abilities, to investigate if eye-tracking could
be incorporated into university teaching situations.

1.4 Thesis structure

This thesis presents a short background information on eye-tracking terminology
in section 2.1, followed by related work in section 2.3. Chapter 3 presents the de-
sign and execution of a study investigating the effects of exposing novice program-
mers to an expert programmer’s eye-gaze, with section 3.1 presenting the design
and architecture of the system used in the study, section 3.2 describing the design
and execution of the study and section 3.3 giving a detailed presentation of the
analysis. Chapter 4 details the analysis results and is followed by a discussion and
possible aspects to investigate in future work in chapter 5. Finally, a conclusion is
drawn in chapter 6.

Chapter

Background and related work

This chapter is imported in it’s entirety from my preparatory project "How eye
tracking can be used in problem solving” [8] with modifications and additions.

2.1 Eye-tracking terminology and technology

Eye-tracking is recording and tracking a person’s eye movements as they view,
e.g. objects, lines of text, or other visual stimuli on a screen. As eye movements
carry visual attention of stimuli to parts of the brain, they are essential to cognitive
processes in human vision [9]. Eye-trackers are designed to monitor and capture
such movements so that it is possible to study how a person looks at objects on a
screen. Eye-trackers can come in many different forms. Some are screen-based
eye-trackers mounted to a computer screen. Others are glasses for mobility, an
integrated or embedded system such as VR glasses, or head stabilized eye-trackers
where the person’s head is stabilized by resting the chin and forehead in a device
so that the head will not move. Eye movement data is often studied with a focus
on Area of interest (AOI). An AOQI is often defined as a subsection of the viewed
screen. It can, for instance, be specific parts of a viewed image, specific para-
graphs of a written text, or source code elements such as method signatures or line
numbers. Not all AOIs are necessarily relevant to the task being performed. For
instance, if the task is an object-oriented debugging task, multiple classes could be

4

2.2 Zone of Proximal Development

AQISs, but only one class could be relevant as it contained the bug.

T
F%%@W
()

@
LA DAY
« @@ S
G B

Figure 2.1: Example fixations and scanpath. The green circles are fixations, and the lines
between them are saccades. The saccades and fixations make up a scanpath.

Figure 2.1 gives an example of fixations, saccades, and scanpath that will be pre-
sented in this paragraph. Eye-tracking data are divided into different types of met-
rics; fixations, saccades, scanpaths, and the aforementioned AOIs [10]. A fixation
is a period of time when the eyes are focused on the same area, from a few hun-
dred milliseconds to multiple seconds. A longer fixation may thus indicate that the
area looked at is more interesting or complex. Fixation as a metric can be used for
multiple purposes, and investigating their length or how many fixations occur on
an AOI may provide interesting insights. The next metric, saccades, are rapid eye
movements from one fixation to another. A saccade is simply rapid eye movements
where no visual information is processed. An eye-tracker that samples at SOHz or
greater are needed to detect saccades. In programming, saccades can occur when
the eyes move between connected lines. Scanpaths are a combination of fixations
and saccades, showing the entire eye-gaze path.

2.2 Zone of Proximal Development

The zone of proximal development is a concept introduced by Lev Vygotsky. In
Mind in society: Development of higher psychological processes, he defined it as:

5

Chapter 2. Background and related work

”[...] the distance between the actual developmental level as determined by in-
dependent problem solving and the level of potential development as determined
through problem solving under adult guidance or in collaboration with more ca-
pable peers.”[11, p. 86]

" What the learner

What the learner can do |
without assistance ~ cando
with assistance

| What the learner cannot do,
even with assistance

Figure 2.2: Vygotsky’s Zone of Proximal Development can be thought of as the intersec-
tion between what a learner can do by themselves and what the learner cannot do, even
with assistance. Modified from Caspersen et al. [12].

In other words, the zone of proximal development is a state children, or students,
can be in where they might not be able to solve a problem independently but will
be able to through guidance from an adult or more advanced peers. For instance,
in a computer science class, a student may have learned how to write a single for-
loop but struggle to understand nested loops. A Teaching assistant (TA) can show
an example of a nested loop and provide hints when the student gets stuck. Upon
being given some examples, the student may then be able to solve the problem.
The nested loops example above is also an example of a problem that might be in
a student’s zone of proximal development.

Through Vygotsky’s work, Doolittle [13] argued that a child develops cognitively
by first being exposed to tasks or situations in the upper end of the zone of prox-
imal development. These tasks would at first require assistance in order for the
child to be able to complete them but would eventually require less and less assis-
tance. This thesis describes the execution and findings of a study that aims to take
advantage of Vygotsky’s zone of proximal development and Doolittle [13]’s argu-
ment of exposure to tasks or situations in the upper end of the zone of proximal
development.

6

2.3 Related work

2.3 Related work

This literature study was carried out as a basis and preparatory project [8] for this
thesis in the fall of 2021. It seeks to answer the following research questions:

RQ1 How is eye-tracking used in programming?

RQ2 What are the differences between experts and novices when programming?

Even though this literature study was not a structured literature review, it fol-
lowed a similar structure as the one proposed by Kitchenham [14]. First, several
published papers were identified using search strings connected to eye-tracking,
programming, and learning. The titles of the resulting articles were then, subjec-
tively, rated relevant or irrelevant. Then, related articles were found. Next, the
abstracts of the relevant titles were read, and irrelevant pieces were discarded. Fi-
nally, the reference list of the selected papers was analyzed, and relevant articles
were extracted from them.

An overview of the eye-trackers used by the explored studies can be seen in Ta-
ble 2.1 (if applicable).

Table 2.1: Overview of different eye-trackers used by the related works’ studies.

Eye-tracker used Study
SMI Eye Link Yoon and Narayanan [2]
SMI RED-m 120 Hz Busjahn et al. [15]

Tobii TX300 Najar et al. [4]
Tobii X60 Kevic et al. [16]
Smart Eye Aurora Jessup et al. [5]
ISCAN RK-726PCI Stein and Brennan [7]
Tobii 1750 50hz van Gog et al. [17]

2.3.1 Eye-tracking in problem solving

Merriam-Webster defines problem solving as “The process or act of finding a so-
lution to a problem” [1]. This process of finding a solution to a problem varies
with different people. For example, in maths, when adding 59 + 41, one individual
might instantly think to find the answer by adding 50 to 40 and then adding nine

7

Chapter 2. Background and related work

to one. Meanwhile, another may add 59 to one and then add 40. These processes
can be hard to observe without verbal explanation, and it is individual which pro-
cess one prefers. Therefore, the process of learning and thus teaching how to solve
problems is highly subjective. Yoon and Narayanan [2] did an eye-tracking study
where they wanted to look for evidence and effect of a mental imagery problem
solving process. They describes mental imagery as ”’[...] the phenomenon in which
someone imagines an object or a visual scene in his or her "mind’s eye” in order
to retrieve information from that mental image or to transform it so as to gener-
ate needed information.” Their study contained 90 engineering students who were
given two problems to solve. The first problem contained an image and a question
related to this image. After answering the first question, the system displayed the
second problem, which was also related to the image. However, in this question,
the subjects could not see the image. The question was placed at the same place as
the first question, leaving a blank area where the image used to be.

After the experiment, the researchers found that some subjects gazed at the blank
section of the second screen where the image used to be, as though there was still
an image there. These subjects were categorized as imagery strategy behavior,
whereas the rest were classified as non-imagery. Their results show no significant
difference between the two groups regarding accuracy on the two problems. How-
ever, they did find that the imagery group had a higher mean fixation duration on
the critical component. Furthermore, when comparing the imagery subjects that
answered problem two correctly and incorrectly, they found that the subjects with
a correct answer had significantly higher coverage and more time fixating on the
critical component. These results suggest that higher accuracy can be improved by
paying attention to critical components.

Yoon and Narayanan [2] is thus an example of how we can observe different prob-
lem solving strategies by using eye-trackers. It is also an example of how attention
to critical parts of a problem can be essential to solving the given problem.

2.3.2 Eye-tracking in programming

According to Sharafi et al. [9] and their literature review on the topic, 36 rele-
vant papers on the subject of eye-tracking in software engineering was published
from 1990 to 2015, with 86.2% of these published after 2006. This suggests an
increasing interest and acceptance in using eye-trackers in programming.

Busjahn et al. [15] are some of the researchers who investigated eye-tracking and
software engineering. I their paper “Eye tracking in Computing Education,” Bus-

2.3 Related work

jahn et al. [15] introduce how eye-tracking can be used as an instrument for com-
puter science education research. They analyzed data from a study with two pro-
fessional software developers reading and understanding short Java programs. The
subjects were informed that the code did not contain any bugs and that their task
was comprehending it. Subject 1 was told they would get questions regarding the
return value of one method, whereas subject two was told to expect a multiple-
choice test about the whole algorithm. After analyzing the eye-gaze of the two
subjects, the authors identified 11 new eye-gaze patterns in source code reading
that can be used when researching software engineering in combination with eye-
tracking. In addition, they identified 14 different strategies which programmers use
when comprehending code. Their research opens up new perspectives for teach-
ing code reading and code comprehension. Eye-gaze from students can be used
to identify differences in strategies or make a novice aware of how they go about
solving a task by, for instance, having a novice record themselves when reading
code and later reviewing their eye-gaze with or without a teacher present.

2.3.3 Determining programming expertise

Code comprehension is often used as a measurement when conducting studies
containing software engineers. Since this is a cognitive process, observing it from
an outside perspective is difficult. Instead, one may have the subjects verbally
explain, observe their behavior, or answer a questionnaire afterward. In order to
do so, independent variables have to be controlled. This could, for instance, be
done by including programming experience. A more experienced programmer
will likely have a deeper understanding of the code than an inexperienced pro-
grammer. Suppose one were to conduct a programming study containing a surplus
of experienced programmers. In that case, this could lead to biased results as the
more experienced programmers have a better basis for solving programming tasks.
It is therefore important to have a way to measure programming expertise.

Siegmund et al. [18] states that there is no agreed way to measure programming
expertise and that a common understanding of programming expertise can increase
the validity of experiments. Therefore, to get an overview of how researchers mea-
sure programming experience, they conducted a literature review of highly ranked
conference - and journal papers between 2001 and 2010. In addition, they con-
ducted an experiment in which subjects solved programming tasks and completed
a questionnaire with questions found in literature related to programming experi-
ence. As a result, they were left with a questionnaire that contained questions that
should be able to measure programming experience and a reusable experimental
design to evaluate the questionnaire.

Chapter 2. Background and related work

2.3.4 Difference between novices and experts

Crosby and Stelovsky [3] were pioneers in using eye-trackers in programming
research [15]. In 1990, they wanted to research how programmers read algorithms.
This was done by conducting a study with students of different expertise from
a computer science program at the University of Hawaii. Each participant was
given a textual slide of pascal code and was told to read and understand the code.
After indicating they were done reading, the participants were asked to correct
the code if necessary. Their results show that low experience programmers tend
to spend significantly more time reading comments and comparisons than highly
experienced programmers. In contrast, the high experience programmers tend to
spend significantly more time reading complex statements. In addition, they found
that the highly experienced subject recognized and spent more time concentrating
on meaningful areas of the code.

As demonstrated by Crosby and Stelovsky [3], eye-trackers can provide an insight
into the difference between novices and experts. Another example is given by
Najar et al. [4], who utilized eye-tracking to improve learning by examples. They
conducted a study on 42 students currently studying Structured Query Language
(SQL). The students were presented with a worked example in the context of SQL-
tutor, a system used for learning and teaching SQL. The software window was
divided into four sections; an example SQL code, an explanation of the code, the
database schema, and a multiple-choice questionnaire to the example. For each
example, the students were presented with the same window layout. After each
multiple-choice submission, the system presented the correct answer.

By using previous test scores, Najar et al. [4] could divide the students into groups
of novices and advanced students. To see how the students studied the examples,
AOIs were defined for the systems interface, namely the four sections of the soft-
ware mentioned above. Through the students’ eye movements, the researchers
found several different transition patterns between the four AOIs. What is interest-
ing is the difference in these patterns between the novices and advanced students.
The most interesting finding was that the advanced students looked significantly
more at the database schema than the novices (90% against only 25%). Further-
more, the novices did not use the pattern Najar et al. [4] called ED, which was a
gaze from the example to the database schema.

Sharma et al. [19] did a study on high performance and low performance learners.
They were specifically interested in how facial expressions could explain learning
performance in different learning situations, such as collaborative programming.

10

2.3 Related work

This was accomplished by extracting emotions such as boredom, delight, frustra-
tion, and confusion from 13-16-year-old children’s facial expressions during col-
laborative game creation with Scratch. The study was placed at NTNU’s premises
in Trondheim, in an informal environment. The main goal was to introduce com-
puter science and programming to school children who previously had no coding
experience. They measured both emotions and the transition between emotions,
for example, the transition from frustration to delight. Every 45 minutes, they col-
lected four game versions from each team. This laid the basis for their separation
into low and high performing teams. If a team had higher than the median points
(analyzed by DrScratch!) in two of the four phases, they were labeled as a high
performing team and low performing if not.

Their findings show a difference in emotions between the high and low perform-
ing teams. The high performance teams displayed a significantly higher amount
of confusion and frustration than the low performance teams, and the low perfor-
mance more often displayed signs of boredom than the high performance. Both
teams showed an equal amount of delight and neutral. The teams did also show
a difference in transitioning between emotions. High performance teams had a
much higher probability of transitioning from boredom to neutral than low perfor-
mance teams, which had a higher probability of transitioning to frustration. The
low performance teams also showed a much higher probability of transitioning
from confusion to boredom than the high performance teams, with probabilities
of ca 0.5 — 0.6 and ca 0.1 — 0.15, respectively. Most interesting is that for all
emotions, the low performing teams had the highest probability of transitioning
to boredom, whereas the high performance teams had a mix between neutral and
frustration.

Aljehane et al. [6] studied the difference in source code reading behaviors between
experts and novices in Java by investigating eye movements. They analyzed a
dataset already collected by Kevic et al. [16] in 2015 through the Eclipse plugin
iTrace [20]. The subjects in the study were 12 industry-working programmers,
the experts, and ten Computer Science (CS) students, the novices. They were
given three different debugging tasks with varying difficulty ranging from missing
commas and multiple classes to fixing a failure to launch the Acrobat on Win98.
The eye-tracker used can be seen in table 2.1. Aljehane et al. [6] used the data
related to a task that only required the participants to read one class. In addition,
they only used the eye-tracking data from eighteen of the twenty-two participants,
as four of them did not look at the class where the bug was found. Their results
showed that novices read more source code elements than experts overall.

"http://www.drscratch.org/

11

http://www.drscratch.org/

Chapter 2. Background and related work

Jessup et al. [5] also studied the difference between novices and experts during pro-
gramming. Rather than looking at reading behaviors and debugging, as Aljehane
et al. [6] did, they focused on code comprehension and the difference in fixation
counts between experts and novices. They hypothesized that experts would have a
lower fixation count than the novices and more frequently describe code functions.
A total of 36 participants, 22 novices and 14 experts, were included in the study.
The participants were given two tasks of code comprehension in a within-subjects
manner. Even though they hypothesized that experts would have a lower fixation
count than the novices, their findings showed this was not the case. They found
significant differences between the experts and novices considering fixation count.
However, contrary to their hypothesis, experts had the highest fixation count. Fur-
thermore, their second hypothesis that the experts accurately describe code more
frequently did not hold. The results showed no significant difference between the
two groups.

Turner et al. [21] had another approach to investigate the difference between exper-
tise groups. They wanted to examine the differences in reading behaviours across
programming languages, specifically Python and C++. Their study consisted of 38
participants, both novices and experts. The participants were split into two groups.
One group read Python code, and the other read C++ code. Once divided, they
were told to comprehend code snippets and verbally explain what the code did.
In addition, they were told to detect bugs and present how they would fix them.
Their findings show that, within the Python group, the experts spent significantly
more time than the novices. In contrast, the opposite was true for the C++ group.
Furthermore, they found that within the Python group, the novices had a lower
fixation rate on lines with bugs than the experts and that the fixation duration on
the lines with bugs was, for the most part, the same for the two expertise groups.

All papers have found interesting differences between low and high performance
students and expert’s and novices. Najar et al. [4] found that low performance
students did not use the database schema at all, and Sharma et al. [19] found that
low performance students experienced much more boredom than high performance
students. It may be possible that the low performance students in Najar et al. [4]
experienced boredom and therefore chose not to look at the database schema to
get through the questions more rapidly. Questions can be raised as to why low
performance students experience more boredom. Is it because they do not possess
the necessary basic knowledge surrounding the subject, or are they not interested
in it? This can lead to interesting research on how teachers can use eye-tracking
and facial expressions to facilitate their teaching better or set up software layouts.
High performance students may then play a role in where to place certain items

12

2.3 Related work

on a screen, l.e., the database schema, so that it is more visible and students are
forced to read it. Aljehane et al. [6] showed that expert programmers look less
at source code elements than novices. Based on what expert programmers are
looking at, one could teach novice programmers which aspects or code snippets
to spend more time on. In combination with this, Jessup et al. [5] showed that
experts have higher fixation counts than novices. This again leads to interesting
questions such as whether experts are better at singling out relevant code snippets
and fixating on these and if this can help novices become better programmers.

2.3.5 Using other people’s eye-gaze

As explained in the previous subsections, eye-trackers can provide different in-
sights in, e.g., how novices differ from experts or as an instrument for computer
science education research. However, Stein and Brennan [7] takes the eye-trackers
one step further and exposes “regular people” and not only researchers to the
eye-tracking data. They conducted a study consisting of two phases. The study
had ten participants who were all recent computer science graduates (within one
year) from different schools, working professionally as software engineers. In the
study’s first phase, the participants wore head-mounted eye-trackers, which tracked
their eye-gaze while debugging and comprehending three different Java programs.
In phase two, six other participants were told that they would be watching videos
of other programmers finding some (but not all) the bugs themselves would have
to discover. The participants in phase two were randomly assigned to one of three
eye-gaze recordings, which were viewed before they started identifying the bugs.
The participants in phase two were also split into two groups. One group watched
the eye-gaze video assigned to them before the first four bugs, and the second
group before the last four bugs.

The main goal of Stein and Brennan’s study was to test whether seeing another
person’s eye-gaze while debugging can be helpful to another person doing the
same task. Their results show that the participants in phase two who saw the eye-
gaze did, in fact, find bugs faster than the ones who did not. Furthermore, the
eye-gaze did provide an average advantage of 62 seconds for finding bugs. There
were, however, some varying results. For example, one participant spent more
time finding one of the bugs after seeing the eye-gaze. He explained that he had
trouble remembering where the eye-gaze ended.

van Gog et al. [17] also exposed people to another person’s eye-gaze. They dif-
fer from Stein and Brennan [7] in that the task was not a programming task but
a problem-solving task. They wanted to answer whether attention guidance by

13

Chapter 2. Background and related work

showing students a model’s eye movements can enhance their learning. The study
contained 77 participants from the University of Tiibingen that had no prior knowl-
edge of the task. They did a 2x2 factorial design, with the example type (product-
oriented (no verbal help from the model) vs. process-oriented (verbal help from
the model)) and attention guidance (yes vs. no) as factors. The model in this
study was an expert in performing the task. The problem to be solved is known
as Frog Leap?, where the main goal is to switch the frogs’ sides. The problem
has only one solution, which can be applied by starting at either frog-side. This is
what the participants did. First, they underwent a learning phase, where they stud-
ied their respective examples with or without attention guidance. Afterward, they
tried to solve the problem themselves two times. One group attempted to solve
the problem starting from the left and another from the right, as in the examples.
Even though the authors hypothesized that attention guidance would be helpful for
learning, they found that showing the model’s eye movement hampered learning.
They also found that relatively more students with product-oriented examples and
attention guidance solved the second problem, in contrast to the first. They argue
that, even though this finding should be interpreted carefully, this might suggest
that the effect of attention guidance only becomes apparent on transfer tasks.

ttp://www.jwstelly.org/LeapFrog.html

14

http://www.jwstelly.org/LeapFrog.html

Chapter

Methodology

As explained in subsection 2.3.5 above, presenting people with another person’s
eye-gaze can improve performance and debugging time. Stein and Brennan [7]
however, found that the advantage of seeing an eye-gaze before doing a task is
limited to remembering the eye-gaze. Furthermore, van Gog et al. [17] argued that
the effect of attention guidance might only be apparent on transfer tasks. In addi-
tion, Najar et al. [4] and Jessup et al. [5] both found differences between experts
and novices when debugging and comprehending code.

This section contains the design and execution of a study that overcomes the lim-
itation of remembering the eye-gaze by presenting it and the task side-by-side.
Furthermore, the study utilizes Stein and Brennan [7] future works section to see
whether viewing an expert’s eye-gaze can provide interpretable cues to novices.
Moreover, it investigates if this can decrease the difference in transition patterns
found between experts and novices by Najar et al. [4]. The study also examines
whether or not exposing a novice to an expert’s eye-gaze can help the novice iden-
tify bugs with reduced time spent reading source code elements compared to the
controls, seeing as Jessup et al. [5] found that novices spent more time looking at
source code compared to experts.

This chapter presents the architecture and design of a system created to present
tasks and visualize an expert’s eye-gaze in section 3.1. Section 3.2 describes the
study’s planning, design, and execution, and section 3.3 presents detailed methods
of analysis conducted on the collected data.

15

Chapter 3. Methodology

3.1 System design

To conduct the study described in section 3.2, a system was made to execute the
pretest and tasks and visualize the expert’s eye-gaze.

The system was a self-developed React! application [22], with a Node? server [23]
running backend. The application was running at localhost during the study, and
participants’ answers and events were logged and stored locally on a pc at NTNU
premises. This subsection contains a description of the system used in the study,
including mockups and the system’s flow.

3.1.1 System mockups

As the study included both experts and novices, two versions of the system were
made. One version had a pretest with ten questions and code snippets and one
without. In addition, both versions incorporated six larger code snippets with as-
sociated debugging and comprehension questions.

Which of the following would the Java coding snippet return as its output?

App(index) { 1
index = index;

Compile time error

main(String args(]) {
pp = App(10);
out.printin(myApp. index);

Submit and next

Figure 3.1: Pretest example. The screen is divided in two, with the code snippet on the left
and a multiple choice question to the code on the right. The image is cropped vertically.

As mentioned, the participants answered a pretest that maps their debugging and
comprehension knowledge to determine further if they were a novice or not. The
pretest had the same layout as the actual tasks so that the participants would get
familiar with the look and feel of the system. See Figure 3.1 for an example of a
pretest task-page.

The system included two information pages. One for the pretest and one for the
study. The information given can be seen in Figure 3.2 below.

'nttps://reactjs.com. Version 17.0.2 was used in building the system in this thesis.
2https ://nodejs.org/en/. Version 16.9.1 was used in building the system in this thesis.

16

https://reactjs.com
https://nodejs.org/en/

3.1 System design

(@ (b)

Information Info about the tasks

You will now be faced with 6 Java code snippets.

Your task is to either debug roblems will be labeled

whethe

ylibraries are already imported.

Start pretest Assume all necessary

‘There are no time limit. Answer each question the best you can.

“There will be no possibility to compile the code.

Help during the tasks

During the tasks, you will
gaze. The help can

Start study

Figure 3.2: The two information pages in the system. a) is the information given before
starting the pretest and b) is the information given before starting the study.

The study tasks’ design was similar to the pretest but divided into three sections
instead of two. Figure 3.3 shows the design of the “on-demand”-help type. The
third section contained the type of task (debug or comprehension), the question,
and a text box where participants could input their answers or thoughts.

(a)

Figure 3.3: On-demand help task type. a) shows the layout when the participant has not
requested help and b) shows the layout when the participant has pressed the button for
help.

Figure 3.3a shows the screen when the participant has not pressed the button for
showing the expert’s eye-gaze, and Figure 3.3b shows the screen when the par-
ticipant has pressed the button. By using a similar design as the pretest, the par-
ticipants could get familiar with the system and would not have to struggle with
unfamiliarity in the actual study. The design of the study tasks was almost identical
for the different help types, with the most notable difference being the opportunity
to turn the help section on and off in the on-demand”-help type.

17

Chapter 3. Methodology

Figure 3.4 portrays the help section that was displayed to the participants. The
participants had the ability to fast-forward in the eye-gaze, pause and play and
set the disappearance rate of the eye-gaze. The figure is the right hand side of
Figure 3.3b. The controls shown in the figure would appear when a participant
moved the pointer into the help section.

Figure 3.4: Functions available in the help section when viewing an expert’s eye-gaze.
The image is cropped vertically.

The system also had a summary page for the participants to review their answers
before ending the study. A mockup of the summary page can be seen in Figure 3.5.
Summary

Task 1 (Debug) Go back to task

Do we get the expected output when running this code? If not - what is the problem and what line(s)

contribute(s) to the problem?

No, we do not get the expected output. Line 6 should be arr{i] = arr(j]

Task 2 (Comprehension)
‘What is the output of this code?

0000111223
Task 3 (Debug)

Which line(s) contains bugs, and what are the bug(s)?

Line 10 contains a bug. We forget to add one to count. Also, line 72 contains a bug, where hasltem returns false if store has item

and true if not.

Task 4 (Comprehension) Go back to task

‘What is the output of this code?

30\n20

Figure 3.5: Summary page where the participants could review and update their answers.

18

3.1 System design

3.1.2 Architecture

This subsection will describe the study system using a version of the 4+1 model
view architecture [24].

Process view

Figure 3.6 represents the study system’s run time and the components relative to
its performance. It was divided into three sections; the frontend, backend, and
Tobii Pro Lab software. The frontend was built using the React.js library. React
is responsible for rendering the system and accepting input, validating the input,
storing data, and syncing with the backend. All data input to the system was
stored in the browser’s session storage not to be lost by an unexpected browser
refresh and to ensure the deletion of answers between participants. In addition,
all user interactions were logged, such as changing tasks or playing and pausing
the help video and stored in the session storage. Once a participant finished the
pretest or study tasks, this data was collected from the session storage and sent
to the backend for processing and storing. The backend was built using Node.js,
which main focus was endpoint validation, responses, and file management. The
backend checks whether the user is authenticated, sends necessary eye-gaze data
to the frontend, and stores data such as logs and answers from the frontend in csvs.

Even though the Tobii Pro Lab software [25] has no interaction with the backend,
it is a process that has contributed to the functionality of the study system. For
example, the expert’s eye-gaze data was recorded and exported through the Tobii
Pro Lab software and placed in the system’s backend.

{Backend i [Tobii pro lab

| (NodeJs) software
i Endpoint validation, response and file Eye-tracking data and
management metrics

+ Frontend

:(React.s)

H Local area network
: connection H
H) Data Storing and .
: / Rendering /—/ Syncing /—/ Validation / H

Figure 3.6: Process view of the study system. Divided into backend, frontend and Tobii
pro lab software.

19

Chapter 3. Methodology

Logical view

The app consisted of several components connected in a hierarchical order. A
diagram of the app’s components can be seen in Figure 3.7. A more extensive
diagram version can be found in appendix A.1 in Appendix A.

App is the main component of the system. Every other component is being ren-
dered inside it. In addition to being responsible for rendering the correct compo-
nent based on which URL is visited, Cust omRouter makes sure the user is redi-
rected to the login page and that Login is being rendered if the user is unauthen-
ticated. Every component rendered inside PrivateRoute requires the user to
be authenticated. Even though it could look like it from Figure 3.7, parent compo-
nents do not always contain their children. For instance, PretestQuestions
is only rendered inside Ma in while the user is visiting the /pretest/:id end-
point. The green arrows in the figure indicate a relationship that always exists.

CustomRouter‘ |Login|
[| [|
[]

Y

PrivateRoute

‘InfurmationPage Summary‘

™~

~_
Pretestouesticns| |HeIpV\deo| |StudyQuest\on| Code|
[| [| [| [|

[) [J

v ¥

‘Question ‘Plotting

Figure 3.7: Logical view of the study system. Components are connected in a hierarchical
order. Green arrows represents relationships that are always present.

20

3.1 System design

Development view

This section will explain the development environment and how it is layered. As
previously mentioned, the system was built using React.js frontend and Node.js
backend. In addition, several libraries and frameworks were used. The main li-
braries used for the frontend, aside from React.js, were prism.js for code highlight-
ing and plotly.js for plotting the expert’s eye-gaze. The backend used csv-writer
and csv-parser for reading and writing to csvs and the Express framework for the
API. GitHub was used for code storing, and Visual Studio Code with Prettier code
formatter was used as the primary IDE.

Frontend Backend

" Reactjs, axios, | i

) | reactstrap, plotly]s, o y ,

Services and libraries | o oot renderer, |CSV-WTter, CsV parseri

High level prism.js i
environment '
'

Frameworks Express i

'

]

1

i

1

Code management GitHub, Visual Studio Code, Prettier i

]

Low level :
environment :
Runtime |

envirenments NodeJS ;

]

1

Figure 3.8: Development view of the study system. Broken down into high and low level
environment.

Physical view

The system’s physical components were the PC running the Tobii Pro Lab software
and the eye-tracker. Since the system was running at localhost and all data stored
on the local computer, no other physical components were present.

Scenarios

Figure 3.9 shows a typical system scenario. At first, a participant opens the sys-
tem and is greeted with a login page if they are not previously logged in. After
login, the information page in Figure 3.2a is displayed, and they have the option to
start the pretest. After pressing the “start pretest” button in Figure 3.2a, the pretest

21

Chapter 3. Methodology

starts, and they are given a series of pretest questions such as the one portrayed in
Figure 3.1. Once they have completed all pretest questions, the study information
page in Figure 3.2b is presented to them, giving them information about the ques-
tions ahead and what type of help they will get. After starting the study, they will
complete three debugging and three code comprehension tasks similar to that of
Figure 3.3b. Once finished with the tasks, they will enter the summary page seen
in Figure 3.5 and have the option to change their answers and return to the task.
After delivering their answers, a “thanks for participating”-page is shown.

Is shown information

Participant opens
system

Finishes siudy)
Enters summary Study finished Is shown pretest
F <}
question

Answers pretest question

¥
ast pretest
question?

Figure 3.9: Overall flow of the study system. A participant logs in to the system and
is greeted with a login page if they are not already logged in. They are then greeted
with an information page informing them of the pretest. Later, they cycle through all ten
pretest questions and are greeted with information about the actual study questions. Then,
they start the study and cycle through six debugging and comprehension tasks. Finally, a
summary page and thank you page is shown.

Ne

Is shown study Starls study Is shown study
question information page

T

System testing

Before recruiting participants, the system was manually tested by the developer
himself by pretending to be a participant using the system. He answered the pretest
and intentionally tried to break the system by selecting multiple answers, leaving
answers open, and answering incorrect and correct questions. When testing the
study part of the system, which had textual answers, the developer again tried
to break the system by answering every set of characters, line breaks, tabulators,
and symbols. The page was refreshed multiple times to see that the answers did
not disappear and disappeared after the tab was closed. The expert’s eye-gaze
visualization was thoroughly tested by rapidly fast-forwarding the video, intense
clicking on the pause/play button, and fierce dragging the disappearance rate slider.

22

3.2 Research design

Finally, the summary page was tested by changing the answers and seeing that the
new answer was stored once the answers were submitted.

In addition to the developer’s manual testing, two peers who had not participated
in the development of the system were asked to be mock participants. They came
to the lab and pretended to be a participant by following the scenario shown in
Figure 3.9 while using the eye-tracker. They were told to enter random characters
and symbols as answers and try to use the system unexpectedly. One peer did this
as a control group participant, and the other as a help group participant.

Once testing was complete and the system was proven to work as expected, the
recruiting of participants began.

3.2 Research design

The study was divided into two phases, much like Stein and Brennan [7]. One
expert programmer was invited to the lab in the first phase. They completed a
series of Java debugging and code comprehension tasks while having their eye-
gaze tracked using a Tobii Pro X3-120 eye-tracker. Their eye-gaze was recorded
while doing the tasks, and their answers to the tasks were explained verbally and
transcribed. Once finished, their eye-gaze data was extracted and incorporated into
the system for the second phase.

Later, in phase two, novice participants were invited to the lab. The original plan
was for the participants to be randomly divided into four groups to study the ex-
pert’s eye-gaze exposure in a between-subject manner. However, they ended up
only being divided into two groups because of difficulties recruiting participants.
All participants did a pretest to test their level of programming expertise before
completing the same six debug and comprehension tasks as the expert while get-
ting the appropriate type of eye-gaze help and having their eye movements tracked
with the same eye-tracker as the expert. Finally, the collected data was analyzed.

3.2.1 Participants

The expert was a TA in an introductory course to Java programming. They had
both previously and alongside their studies worked professionally with Java.

23

Chapter 3. Methodology

All participants in the study were university students either currently attending an
introductory course to object-oriented programming in Java or had attended the
course less than a year ago. In addition, they had previously taken an introductory
course to procedural programming in Python. For the remainder of this text, par-
ticipants and novices will be interchangeably used when referring to this group.
It was important to have participants who could, to some extent, understand the
code snippets in the tasks so that it was possible for them to reason their way to
the answer based on the help they would get. That is to say, they should prefer-
ably be in the zone of proximal development (see section 2.2). To further map the
participant’s level of expertise, every participant completed a pretest.

The original plan was to divide the participants into four groups, so it would be
possible to study the effect of the expert’s eye-gaze in a between-subject manner.
The first group was planned to be a control group with no help on the tasks to study
the independent variable’s effect. The second group would have the expert’s eye-
gaze on at all times, with the ability to pause, play, move forward and backward,
and set the disappearance rate of the eye-gaze. The third group were planned to
have an “on-demand”-type of help, where they had the option to turn the expert’s
eye-gaze on and off. Finally, the last group would have the eye-gaze visible on
a particular task, based on the expert’s input on which tasks they thought would
benefit the participants most. For this, a total of 64 participants was needed. Dur-
ing the participant recruiting phase, however, it became apparent that recruiting 64
participants was not plausible due to the time restrictions of this thesis and low re-
sponse from potential participants. Therefore, only 32 participants were recruited
and divided into two groups; control and “on-demand” help. The participant re-
cruiting process is further explained in subsection 3.2.4 below.

Each participant was instructed to read through and sign an information letter and
consent form before starting the study, consenting to the collection and analysis of
their data. The information letter and consent form can be seen in Appendix B.

Both groups of participants did the same tasks as the expert did, with the appropri-
ate eye-gaze visualization available, while having complete control over the eye-
gaze regarding playing and pausing it, fast-forwarding, rewinding, and controlling
the eye-gaze disappearance rate. The answers and eye-gaze of the participants
were stored locally on the computer.

After all participants had completed the study, their eye-tracking data, provided by
the Tobii Pro Lab software Tobii Pro AB [25], and answers to the tasks were ana-
lyzed to determine whether exposure to an expert’s eye-gaze could help improve a

24

3.2 Research design

novice’s problem solving time and accuracy.

3.2.2 Determining programming expertise

As explained in subsection 2.3.3, it is important to have a way to measure program-
ming experience. Even though the study performed in this thesis targeted univer-
sity students that had taken an introductory programming course, it is not given
that all of them were novices in Java and object-oriented programming. Therefore,
a code-pretest, was used to measure their programming experience. An example
pretest code and question can be seen in Figure 3.1. The pretest was inspired by
tasks appearing after searching “’Java interview questions.” All pretest code snip-
pets can be found in Appendix C.

3.2.3 Study tasks

The task types, debugging and comprehension, were planned to be studied within-
subject. By doing the task type as a within-subject, we reduce errors associated
with individual differences. E.g., one individual is likely to be at the same level in
both debugging and comprehension. Therefore, it was planned that the different
groups would have different ordering of the tasks, where two of the groups would
start with a debugging task and then alternate between debug and comprehension.
In contrast, the other two groups would start with comprehension and then alter-
nate. However, since the decision to have only two groups arose during the second
group’s data collection, the tasks started with debugging tasks and alternated be-
tween debugging and comprehension.

All code comprehension snippets shown to the participants and experts were anon-
ymized, meaning one could not derive the function of the code by simply reading
the method names, class names, or comments. In addition, since all code were
Java code snippets, questions and code included object states and their change.
The inclusion of object states and their changes was done since object-oriented
programming was presumed relatively new to the novices. All tasks can be seen
in Appendix D. The tasks were inspired by previous exam questions and topics
lectured in the object-oriented course.

3.2.4 Execution of the study

The study was held in two iterations over seven weeks at NTNU’s premises. Fig-
ure 3.10 shows a timeline of the study. Participants were recruited in two iterations

25

Chapter 3. Methodology

through an invite published on the TDT4100° course’s Blackboard page®, recruit-
ing in a lecture break and by emailing all students currently taking, or had previ-
ously taken the course with an invite. In addition, a reminder email was sent to all
students after one month of sending the first. In the invite, the students were given
a brief description of the project and an attached information letter with more in-
depth details and how their data would be treated. The information letter can be
seen in Appendix B. In addition, they were given a Doodle link where they could
appoint themselves to a time slot to join the study. They registered themselves with
their names and email address so that specific information could be sent to each
individually. Furthermore, students were visited at their designated reading areas
to promote the study and by leaving QR codes to scan for more information.

Once registered for a time slot, an email containing more information about the
pretest and study, what they needed to bring, and where and when they should meet
was sent. A reminder email was sent one day before a participant’s chosen time slot
in case they forgot they had volunteered to participate. In some cases, rescheduling
was needed, either later that same day or another day. As mentioned, this recruiting
process happened in two distinct intervals. Figure 3.10 gives a visual guide to
better understanding the study’s timeline. At first, students currently taking the
introductory course to object-oriented programming were invited. In the second
interval, students that had taken the course less than a year ago were invited. This
was done because of problems with recruiting students currently taking the course.

Week 1 Week 2 Week 3

Participants answers
invitation. Participants
meets for their time
slot

Invitations sent Participants answers
invitation

Week 5 Week 6 Week 7

Invitations sent Participants answers Participants answers
Participants answers invitation and meets invitation and meets
invitation and meets for their time slots for their time slots

for their time slots

Figure 3.10: Timeline of the study. The study span over seven weeks, and participants
were recruited in two intervals.

When the participants met for their assigned time slot, they were instructed to read
through a physical copy of the information letter sent by email and sign the consent
form. Then, information about how the session would go and the pretest and tasks

Shttps://www.ntnu.edu/studies/courses/TDT4100

“Blackboard (https://www.blackboard. com)is NTNU’s answer to Canvas, or It’s learn-
ing

Shttps://doodle.com/en/. A tool for scheduling meetings

26

https://www.ntnu.edu/studies/courses/TDT4100
https://www.blackboard.com
https://doodle.com/en/

3.2 Research design

were given verbally. In addition, all information that can be seen in Figure 3.2 was
given verbally. Furthermore, the participants were told that the observer would be
sitting beside them in complete silence during the whole session, working on their
own tasks and that the observer would not pay any attention to what answers the
participants gave to the tasks; they would only keep an eye on the time and how far
along with the tasks the participant had gotten. They were informed that they had
one hour and 15 minutes to complete both the pretest and study tasks, but should
try to not spend more than 15 minutes on the pretest. They were also informed that
they were allowed to ask the observer questions but that the observer might not be
able to answer. E.g., questions regarding the system could be answered, but not
questions directed to the code. Following this, the study formally started with a
calibration of the eye-tracker. From this point on, the study followed the scenario
given in subsection 3.1.2, with the pretest followed by the study tasks.

Once the help group started the first study task, the observer asked them to open
the help section so that they could explain how it worked. The observer showed the
participants the fast-forwarding, pause and play, and the disappearance rate option.
They also explained that the larger the circles were, the more time the expert had
spent looking in that area. All answers the participants gave to the pretest and
study tasks were stored in the browser’s session storage for easy access to the data
and to ensure the data would not be lost at an unexpected browser refresh. During
the entire study, all user interactions, such as changing tasks, playing, or pausing
the help video, were logged and stored in the browser’s session storage.

All participants were given a notebook to note their thoughts and keep track of the
code during the problem solving. This notebook was not used or even looked at
by the observer, and every participant’s page was discarded between participants.
Not all participants used this notebook.

During the study, the observer sat in silence beside the participants. Occasionally,
the participants had some questions regarding the tasks, which were answered and
clarified. It should be noted that this does not mean the observer gave any hints or
help directly linked to the tasks, but clarification about the questions in the tasks
and how the study system worked. Before the participants began the study tasks,
they were greeted with the information in Figure 3.2b. Once again, this informa-
tion was given verbally when the participants got to this screen. In addition, all
participants were informed that they could assume the comprehension tasks were
bug-free. Therefore, the code would compile and give the desired output if one
tried to compile it.

27

Chapter 3. Methodology

Once finished, the participants were given a 200NOK® "Midtbyen” gift card’. All
participants also entered a lucky draw for a 500NOK gift card that was drawn after
the study ended. They were then asked about the tasks - what did they think about
them? Some participants also wanted a brief review of some of the tasks and asked
the observer to explain some concepts such as Java streams® and ternary operators.
Some participants spent the whole hour and fifteen minutes, while others finished
within forty minutes.

After all participants had completed the study, their answers and eye-tracking data
were analyzed.

3.3 Analysis

This section presents the analysis of the data collected in the study described above.
It starts with preprocessing of the raw data in subsection 3.3.1 and a description of
the final datasets in subsection 3.3.2. Section 3.3.3, subsection 3.3.4 and subsec-
tion 3.3.5 describes the analysis done on the processed data.

All preprocessing of the data was done in Python, and the analysis was conducted
in RStudio version 2021.09.0 Build 351 for Windows 11.

3.3.1 Preprocessing

As mentioned in subsection 3.1.2, all participant answers and logs were stored
locally on the computer. Before analyzing the collected data, it had to be pro-
cessed. The pretest and study data had to be graded, and the eye-gaze data had to
be ordered better than the raw collected data.

Pretest

As described in subsection 3.2.2, every participant did a pretest to test their level
of expertise. The raw pretest data contained the fields subjectId, username,

SRoughly $23 at time of writing (2022-03-22)

"https://midtbyen.no/midtbykortet-gavekort-for-trondheim-sentrum.
A gift card that can be used in 250 stores and cafes in Trondheim centrum

$https://docs.oracle.com/javase/8/docs/api/java/util/stream/
Stream.html. As the study progressed, more Java concepts were lectured. As a result, some
participants had more knowledge of streams than others

28

https://midtbyen.no/midtbykortet-gavekort-for-trondheim-sentrum
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

3.3 Analysis

pretest.N-1and pretest.N-1_correct for1 < N < 10. Some exam-
ple rows can be seen in Table 3.1.

Table 3.1: Example rows for the raw pretest data. The answers are not associated with the
username.

subjectld username pretest.1-1 ... pretest.10-1_correct
43 cleararagog 2 0
45 bossyhogwarts 3 0

Since the pretest was a multiple choice quiz and each question had only one correct
answer, the grading process for it was automated by the Python script found in
section E.1, in Appendix E.

Each participant’s answers were iterated and checked with the correct answer for
the respective task. A cumulative sum was created for each participant and added
into a new field no_correct. In addition, the fields pretest . N-1_partic—
ipant_correct, one if the participant had anwered the question correct and
zero if not, and helpType were created. The final dataset contained these fields,
in addition to the ones in Table 3.1.

Study

In addition to processing the pretest data, the study tasks data had to be prepro-
cessed as well. The raw study tasks data had the fields subjectId, username
and studyTask/N, where 0 < N < 6. Example rows for the study tasks data
can be seen in Table 3.2.

Table 3.2: Example rows for the study tasks data. Answers are not associated with the
username.

subjectld username studyTask1 ... studyTaské
43 cleararagog ~ ”No, line 6 should ... 770”
be arr[i] = arr[j]”
45 bossyhogwarts “lines 6 and 7 should ... A integer of value I
add to the array temp cannot find”
not equal”

As the study tasks had written answers, they had to be graded manually. The an-
swers were anonymized to prevent grading bias. This means the grader did not
know for which participant they were grading. Only which task and the answer

29

Chapter 3. Methodology

that was given. This was done through the script found in section E.2, in Ap-
pendix E. Each answer was given a grade based on its correctness. For the debug-
ging tasks, this meant one point per bug identified and boolean correct or wrong
for the comprehension tasks, for a total of 8 points. The resulting dataset for the
study contained the fields studyTaskN_points,forl < N <6, subjectId,
username, helpType and no_points.

Eye-gaze

The processing of the eye-gaze dataset was more extensive than the pretest and
study data. At first, five large AOIs were created for each of the six study tasks;
TaskX.Code, TaskX.TaskType, TaskX.Question, TaskX.Help and
TaskX.HelpButton. Later, AOIs for each code line within each of the six
tasks were also created. The Tobii pro lab software [25] offers many metrics to
be extracted alongside each AOI, such as fixations and saccades (see section 2.1),
key presses and mouse clicks, and more. For each AOI, the software calculates
the total number of fixations and saccades that happened inside the given AOI and
the total duration of fixations and saccades in each of the AOIs. For a more ex-
tensive list of metrics the software calculates, see Tobii Pro AB [26]. A total of
two datasets were extracted from the Tobii pro lab software. One contained the
metrics found in Tobii Pro AB [26, sec. 10.5.4], and one contained raw eye-gaze
data alongside metadata and AOI hits. All features in the data dataset can be found
in Tobii Pro AB [26, sec. 11.3].

Unfortunately, the Tobii software had trouble automatically detecting which eye-
tracking data belonged to which task and AOI, which caused the exported data
to be incorrect. This meant that the data had to be manually adjusted. Luckily
there was an option within the software to manually set the start and end time of
the AOIs. This was done for every task for each participant by analyzing their
recordings and manually identifying the exact start and end frame of the tasks and
AOIs. The exported data then correctly represented the metrics, e.g., the number
of fixations in Taskl.Code.

When the AOIs for the code lines were constructed, they were manually created
for one participant by selecting and annotating each code line in the recording. All
AOIs were then exported separately for each participant, formatted as JavaScript
Object Notation (JSON) [27]. Note that, at this point, only one of the exported
files contained the AOIs for the code lines. The file with the code line AOIs was
then used to extract the coordinates of the code line AOIs, which was the same for
all participants. Each extracted participant’s AOI file was then modified to include

30

3.3 Analysis

the AOIs for the lines by using the respective participant’s TaskX.Code AOI as
a reference for the start and end frame for each new AOI. The code written for this
can be seen in Lindberg [28]. Once this was done for all participants with no regis-
tered AOIs for the code lines, the files were uploaded to their respective recordings
in the Tobii software, and the metrics and raw eye-gaze data were extracted.

The extracted datasets were further processed by renaming each of the AOI colum-
ns to more friendly names than what Tobii automatically generates for them. In ad-
dition, a new column Task was added to the data dataset, by utilizing the start
of interval, duration of interval and TOI columns in the metrics
dataset. Again, refer to Tobii Pro AB [26, sec. 10.5.4] for an explanation of the
different features. Both the code for renaming the AOIs and the addition of the
new column can be seen in Lindberg [28].

3.3.2 Datasets

Due to the large amount of data and limited computing power, the exported datasets
from the Tobii software were split into 2 x 32 separate files. One metric file for
each participant and one data file for each participant. For the remainder of this
thesis, the 32 separate metric files will be referred to as one dataset named the
metric dataset and the 32 separate data files as the data dataset. When conducting
the analysis, the metrics and data datasets were the main data sources. However,
one more dataset was created. This last dataset contained 32 participants (ten
females) and was created by merging the preprocessed pretest and study datasets
and the eye-gaze dataset described in subsection 3.3.1 above. In addition, multiple
new features were included in the final dataset. These new features can be seen in
Table 3.3 below.

The first three features in Table 3.3 are groups the participants were placed in based
on their scores and help type. The decision to split the participants into groups of
novice and expert expertise was inspired by Najar et al. [4] that found a significant
difference in reading behaviors for the two groups. Furthermore, by studying their
facial expressions, Sharma et al. [19] found differences in high and low performers.
Therefore, it was decided to split the participants in this study into high and low
performers, to investigate the difference in their reading behaviors. The splits for
the first two features in Table 3.3 were done on the median of the respective scores.
The dataset was left with 16 high and 16 low expertise participants and 17 and 15
high and low performers, respectively. The split for the help group was merely
a change in the already present helpType feature from integer to strings. The
rest of the features in Table 3.3 were created by summing over each participant’s

31

Chapter 3. Methodology

respective metrics for all study tasks.

Table 3.3: New features introduced in the processed dataset with description.

Feature

Description

Expertise.Group

Performance.Group

Help.Group

Total_number_of_code_fixations

Total_duration_of_code_fixations

Total_number_of_help_fixations

Total_duration_of_help_fixations

One of “High” and "Low”. High if partic-
ipant scored higher than the median pretest
score on their pretest

One of “High” and "Low.” It was high if
participants scored higher than the median
study tasks score in their study tasks.

One of "help” and “ctrl,” based on their help
type.

Row sum of the already present features
Number_of_fixations.TaskN.Code, for 1 <
N <6

Row sum of the already present features
Total_duration_of_fixations.TaskN.Code, for
1<NZL6

Row sum of the already present features
Number _of fixations.TaskN.Help, for 1 <
N <6

Row sum of the already present features
Total_duration_of_fixations.TaskN.Help, for
1<NLG6

3.3.3 Difference in study and pretest scores

Since this thesis investigates what effect exposing novice programmers to an ex-
pert’s eye-gaze have on their comprehension and debugging abilities, it is essential
to make sure the participants actually were novices and that they all were on the
same level of expertise. This is important so that the study results do not become
biased. E.g., if all participants that got to see the expert programmer’s eye-gaze
were all experts, they would more likely be able to answer the tasks correctly than
the less able participants. Therefore, the pretest scores were analyzed using a two-
sample independent Student’s t-test to check for expertise level differences.

Furthermore, the most apparent analysis would be to investigate differences in
study scores between the control and help groups. Therefore, a two-sample inde-
pendent Student’s t-test was performed on the study scores.

32

3.3 Analysis

Another way to reach the goal of this thesis was to answer the question, "What
are the differences between high and low expertise novice programmers when ex-
posed to an expert programmer’s eye-gaze?”. As explained in subsection 3.3.2, the
participants were split in to high and low expertise based on their pretest scores.
Following this split, a difference in their study scores was investigated with a two-
sample independent Student’s t-test. The same was done to investigate RQ3.3
regarding high and low performers.

3.3.4 Number of fixations and total duration of fixations

As Crosby and Stelovsky [3] found that highly experienced subjects recognized
and spent more time concentrating on meaningful areas, the difference between the
participants with regards to identifying meaningful areas after being presented with
the expert’s eye-gaze was analyzed. Moreover, Najar et al. [4] found a significant
difference in high and low expertise participants with regards to using the help
presented. Therefore, the total number of fixations on each of the most meaningful
areas and their duration were analyzed.

Table 3.4: Example rows of eye movement types from the data dataset with their respec-
tive X and Y coordinates and recording timestamps. Colored in order to show that the
fixation eye movement type was kept while saccades were discarded.

X

Recording timestamp Eye movement type Y

At first, the duration for each fixation in the data dataset was calculated. Table 3.4
shows an example of rows from the dataset. Consecutive rows with Eye move-—
ment type fixation and identical X and Y values (displayed as green rows) are
events from the same fixation. For the most part, such consecutive rows are sepa-
rated by Eye movement type saccade rows (displayed as gray rows) and are
considered different fixations. In the table, there are two fixations, one fixation
on the point (346, 525) on the screen and one on the point (569, 458). The two
fixations are separated by one saccade. The Recording timestamp column

33

Chapter 3. Methodology

is simply microseconds since the recording started. The difference in Record-
ing timestamp values between the first and last occurring rows in such a con-
secutive series was calculated to find the duration of a fixation. In Table 3.4
that would be 100011634 — 100000000 = 11634us for the first fixation and
100025697 — 100017000 = 86974 s for the second fixation. The code for calcu-
lating fixation duration can be seen in Lindberg [28].

To better compare participants’ fixation duration, the duration were normalized.
This was done by dividing each duration by the duration of the task the fixation
occurred. The task start was subtracted from the task end to find the task duration
for the control group. This was done for the help group as well. However, the
task duration would then include the time spent looking at the help, which would
incorrectly represent the help group’s task duration. Therefore, to get the correct
task duration for the help group, every fixation duration on the help section was
subtracted from the total task duration. E.g., if a participant’s total task duration
was 100 seconds, and the participant had consulted the help section for 10 seconds,
the new task duration would be 90 seconds. This new task duration was used to
normalize the fixation duration for the help group. The fixation duration on each
AOI was then summed together to get the total duration for each of the AOIs.

Finally, two new dataframes were created. One contained the total fixation du-
ration on each AOI, alongside which AOI was fixated. The second contained in-
dividual fixations, their duration, and which AOI was fixated. The difference in
fixation duration on the lines with bugs between groups was tested with Student’s
t-tests and Kruskal-Wallis rank sum tests. Furthermore, the number of fixations on
a specific AOI could be calculated by counting occurrences of the given AOI in
the second new dataframe. A difference in the number of fixations on a given AOI
was then tested with Student’s t-tests and Kruskal-Wallis rank sum tests.

3.3.5 Distance to lines with bugs

To further investigate an expert’s eye-gaze effect on novice programmers, distances
of the first fixation after a participant consulted the help section was analyzed.

At first, series of fixations such as the ones shown in Table 3.4 with the fixation
being in one of the help sections was identified. Then, the first subsequent fixa-
tion, which was not located in the help section, was identified. Following this, the
distance d from the subsequent fixation to the bugs in the respective task was calcu-
lated using the formula in Equation 3.1 below. In the formula, min,, max,, min,
and mazx, refer to the maximum and minimum X and Y pixel coordinates of the

34

3.3 Analysis

bug AOl-rectangle, and F’, and F is the coordinates for the subsequent fixation.
The distance was measured in pixels.

d= \/max(minz — F;,0, F, — max;)? + max(miny, — Fy, 0, F, — max,)?

(3.1)

The distances to each bug on the respective task and the AOI that was first hit
after consulting the help section were added to a new dataframe. If both the code
section and a line AOI were hit, the line AOI was added. The percentage of all
first fixations after consulting the help section that was on a line with bug was
then calculated by dividing the number of first fixations on lines with bugs by the
total number of first fixations after consulting the help. This was done both for
individual tasks and total for all tasks. The correlation between these percentages
and study scores for the help group was then analyzed with a Pearson correlation.

Another dataset was created regarding the distance to lines containing bugs. This
time, the distances were grouped as percentiles from the bug. The line furthest
away from the bug was labeled 100% distance from the bug, and the line with the
bug was labeled 0% away. Every other line was either 25%, 50% or 75% distance
from the bug. The already created distance-dataframe described in subsection 3.3.4
was used to generate this new dataset. By using the coordinates of the AOI that
was fixated, the distance d to the bug was found by using Equation 3.2 below,
where ming,, miny,, max, and max,, is the minimum and maximum x and y
values of the bug AOI and the line AOI. The values d,, and d,,, are measures of
the shortest distance between the two AOIs on the = and y-axis, respectively, and
makes sure the distance is O if the AOIs overlap either horizontally or vertically.
Finally, d is the distance between the two AOIs. The formula is inspired by the
Euclidean distance between two points in space.

dy1 = max(ming — mings, 0, mings — max,)
dgo = X(mznﬂ — mingy, 0, ming — maxys)
dy1 = max(miny — minyg, 0, ming — maxy) (3.2)
dyo = max(mings — minyi, 0, ming — mazys)

d= \/min(dxl, dy2)? + min(dy1, dy2)?

Once the distance was found, it was divided by the distance of the line furthest

35

Chapter 3. Methodology

away from the bug to obtain the percentage distance from the bug. Then, the
fixation was grouped as either 0%, 25%, 50%, 75% or 100% distance based on the
constraints shown in Table 3.5.

Table 3.5: Percentage distance group constraints.

Group Constraint

0% [0, 0]
25% (0, 25]
50% (25,50]
75% (50,75

100% (75,100]

After each fixation had been grouped, the difference between conditions, exper-
tise groups, and performance groups was investigated using Student’s t-tests and
Kruskal-Wallis rank sum tests.

36

Chapter

Results

This chapter contains the results of the analysis described in section 3.3. It is
divided into three subsections; one for the conditions, section 4.1, one for the
expertise groups, section 4.2 and one for the performance groups, section 4.3. Each
section is further divided into the same subsections which presents the same result
for each of the three groups. For instance, subsection 4.1.3 presents results from
the number of fixations analysis explained in subsection 3.3.4 for the conditions,
subsection 4.2.2 for the expertise groups and subsection 4.3.2 for the performance
groups.

As mentioned in section 3.2, this study used the Tobii Pro X3-120 eye-tracker. A
mean percentage of 68.34% gaze samples was recorded across participants. Ac-
cording to [29], the Tobii Pro X3-120 eye-tracker is not 100% accurate. In this
study, the mean accuracy across all participants was 53 pixels. The mean and
standard deviation for pretest and study scores for individual tasks and the num-
ber of fixations and duration in individual AOIs can be found in section F.2 in
Appendix F. All results are produced by analyzing the collected data in RStudio
version 2021.09.0 Build 351 for Windows 11.

37

Chapter 4. Results

4.1 Conditions

This section will present analysis results for the two conditions, control and help.

4.1.1 Pretest scores

As explained in subsection 3.3.3, it was essential that all participants were on the
same expertise level to reduce bias in the results of the study. Figure 4.1 visualizes
the pretest scores of the control and the help group.

8
°
06 ¢
(@] oy
b o0 Condition
*gaj ® Control
& 4 b M Help
o
2 Io
o
Control Help

Figure 4.1: Boxplot of number of correct answers on the pretest for the two conditions;
control and help.

A Shapiro-Wilk normality test was performed on the total number of correct an-
swers on the pretest for each participant, which did not present evidence of non-
normality for the control group (W = 0.90619, p = .101), nor for the help group
(W = 0.9134, p = .132). Furthermore, a Breusch-Pagan Test was performed to
check for heteroscedasticity. The test presented a result of non-heteroscedasticity
(BP(1) = 0.34154, p = .5589), meaning one can assume equal variances in the
two conditions. Finally, as the data contained two independent groups and showed
signs of normality and non-heteroscedasticity, a two-sample independent Student’s
t-test with significant level « = .05 was performed, which showed no signifi-
cant difference in number of correct pretest answers between the control group
(M = 3.6875, SD = 1.662077) and the help group (M = 4.5, SD = 1.861899)

38

4.1 Conditions

conditions; (¢(30) = —1.3022, p = .2028).

4.1.2 Study scores

With no significant difference in the number of correct pretest answers, one could
assume that all participants were at the same expertise level and that the rest of the
results are not biased towards expertise. Since one of the main goals of this thesis
was to investigate what kind of effect exposing novice programmers to an expert
programmer’s eye-gaze has on their comprehension and debugging abilities, one
should investigate the difference in the conditions’ scores on the study tasks.

Figure 4.2 shows the average of the conditions’ scores for each of the tasks and
Figure 4.3 displays a boxplot of the total study scores for the two conditions.

Condition

B control
Help

Task score

Task

Figure 4.2: Average task scores for the two conditions; control and help. Error bars
represent the standard deviation for each task and group.

A Shapiro-Wilk normality test was performed on the study scores for each partici-
pant, which did not present evidence of non-normality for the control group (W =
0.92604, p = .2109), nor for the help group (W = 0.92599, p = .2105). There-
fore, a Breusch-Pagan Test was once again performed, to test for heteroscedas-
ticity. The test yielded a result of non-heteroscedasticity (BP(1) = 0.44862,
p = .503), meaning one could assume equal variances for the two conditions. Fi-
nally, a two-sample independent Student’s t-test with significance level o = .05
was performed, which showed no significant difference in study scores between the

39

Chapter 4. Results

5 :L.

4
o
§ 3 see Condition
> M Control
5 2 Help
175}

1

0 .

Control Help

Figure 4.3: Boxplot of the study scores for the two conditions; control and help.

control group (M = 2.3750, SD = 1.454877) and the help group (M = 2.8125,
SD = 1.641899) conditions; (£(30) = —0.79772, p = .4313). More extensive
testing was performed as well, see subsection F.1.1 in Appendix F.

4.1.3 Number of fixations on lines with bugs

As demonstrated by Crosby and Stelovsky [3], highly experienced subjects are
more likely to recognize and spend more time concentrating on meaningful areas
in code. Therefore, this section will present results concerning time spent and
fixations on lines containing bugs in the code, categorized as meaningful areas, as
it might indicate a difference in expertise between the two conditions.

Figure 4.4 shows a boxplot of aggregated fixations on all bugs for the two condi-
tions.

A Shapiro-Wilk test was performed on the total number of fixations on all bugs for
each of the conditions. The test showed no sign of non-normality for the control
group (W = 0.95609, p = .5918) or the help group (W = 0.93356, p = .2774).
Furthermore, a Breusch-Pagan test did not show evidence of heteroscedasticity
between the two groups (BP(1) = 0.77078, p = .38). Therefore, a Student’s t-test
with significance level a = .05 was performed to test for difference in total number
of fixations on all bugs. The test showed no significant difference between the
control group (M = 202.75, SD = 128.2152) and the help group (M = 230.25,

40

4.1 Conditions

600
w
j=)]
=
-
©
400
o Condition
15 ® Control
© W Help
& 200 *
% o0
: ?
=
ose
0
Control Help

Figure 4.4: Boxplot of total number fixations on all bugs for the two conditions; control
and help.

SD = 157.1312) conditions; (£(30) = —0.5424, p = .5916).

Even though there was no difference in number of fixations overall on all lines
with bugs between the conditions, there could still be a difference in the number
of fixations on individual lines with bugs. Figure 4.5 shows a boxplot of the total
number of fixations on the second bug in task 5.

A Kruskal-Wallis rank sum test was performed to test for difference in total num-
ber of fixations on the second bug of task 5. The test showed a significant differ-
ence between the control group (M = 25.8125, SD = 28.72216) and the help
group (M = 44.46667, SD = 24.75557) conditions; (X2 = 4.9059, df = 1,
P = .02676), meaning the help group had a significantly higher total number of
fixations on the second bug of task 5 than the control group. Tests and results for
the other bugs can be seen in subsection F.1.2 in Appendix F.

4.1.4 Time spent on lines with bugs

Figure 4.6 shows a boxplot of total normalized fixation duration on all bugs for the
two conditions.

A Shapiro-Wilk test was performed to test for normality in total fixation duration
on all bugs for the two conditions. The test showed no signs of non-normality

41

Chapter 4. Results

30

25 L

Control Help

1]

i

w

S

% 90

(@]

3

Q ':o -,
E 60 ° Condition
c %0 ® Control
G W Help
2 ®

Q b

®

x

=

H*

IS

=]

—

Figure 4.5: Boxplot of total number of fixations on the second bug in task 5 for the two
conditions; control and help.

) .
3
-
=02
5
= Condition
'*% ; Control
= Help
=01
= L
2 ®
[y]
.5 ?
L

0.0

Control Help

Figure 4.6: Boxplot of total normalized fixation duration on all bugs for the two condi-
tions; control and help.

in total duration for the control group (W = 0.95598, p = .5898), nor the help
group (W = 0.8967, p = .07117). Since a Breusch-Pagan test showed no signs
of heteroscedacity between the two groups (BP(1) = 0.019879, p = .8879),
a two-sample independent Student’s t-test with significance level a = .05 was

42

4.1 Conditions

performed to test for difference in total fixation duration between the control group
(M =0.1121, SD = 0.07596) and the help group (M = 0.0877, SD = 0.0737).
The test showed no significant difference in total normalized fixation duration on
the bugs, conditions; (¢(30) = 0.92417, p = .3628)

4.1.5 Distance to lines with bugs

Figure 4.7 shows two diagrams representing number of fixations in different per-
centages away from the bugs on the tasks. Figure 4.7 shows the average number
of fixations in the different percentages across all tasks and bugs, and Figure 4.7b
shows a boxplot of total number of fixations in the 100 percentile on task one for
the two conditions.

o o
Percent away from bug Control Help

(a) (b)
2 K}
8 =
+= 400 $30
2 - <4
s Condition g N
g 200 H Control £20 Condition
E +IL /] W Help 3 ® Control
5 0 i ® Help
o £10
(0]
5 °© 9 v v - 2
g N o N S 0
< g
&
H*

Figure 4.7: Number of fixations in percentile from the bugs for the two conditions; control
and help. a) shows a histogram of mean and standard deviation for average number of
fixations in the different percentiles from the bug. b) shows a boxplot of the number of
fixations in the 100 percentile on task one for the two conditions.

Tests and results for all percentiles and all tasks can be seen in subsection F.1.4 in
Appendix F. A Kruskal-Wallis rank sum test was performed to test for difference
in number of fixations in the 100 percentile on task one between the control and
help group. The test showed a significant difference between the control group
(M = 11.8125, SD = 9.779) and the help group (M = 5.4375, SD = 4.618),
conditions; (X2 = 4.4322, df = 1, P = 0.03527), meaning the control group
looked more on the lines furthest from the bugs on task one than the help group.

Figure 4.8 shows a correlation plot between the percentage of first fixations after
looking at the help section that was on a line with a bug and the study scores for
the help group.

43

Chapter 4. Results

(] EN

Percent of first fixation on lines with bugs after looking at help
[=}
-
-

0 1 2 3 4 5
Score on the study tasks

Figure 4.8: Correlation on the score of the study task as a function of the number of first
fixations after looking at help that was on a line containing a bug.

From the plot in Figure 4.8, one can see a negative relationship between the two
variables. A Pearson correlation was calculated which showed no significant cor-
relation between percentage of first fixation after looking at the help section that
was on a line containing bug and the study scores (r(13) = —0.41460, p = .1244).

4.1.6 Time spent on tasks

Figure 4.9 shows the average time in seconds the control and help group and the
expert spent on each of the tasks.

A Kruskal-Wallis rank sum test was performed to test for difference in average
time spent per task between the control group and help group. The test showed a
significant difference between the control group (M = 365.0905, SD = 235.1134)
and the help group (M = 428.3222, SD = 248.5606) conditions; (x? = 3.9688,
df =1, P = .04635), meaning the help group spent significantly more time per
task than the control group.

Figure 4.10 shows the average difference in task durations between the conditions
and the expert.

A Kruskal-Wallis rank sum test was performed to test for a difference in the time
difference between the expert and the two conditions; control and help. The test

44

4.1 Conditions

900
4
@
= Condition
o
+= 600 B control
:% . Expert
E II Help
=
300 i
0
— ™ (2] = [Ty} w
S o o v S o
w w w w w w
[u [u] [u] (] [u [u]
= [— — = [
Task

Figure 4.9: Average time spent per task in seconds for the two conditions, control and
help, and the expert. Error bars represent the standard deviation for each task and condi-

tion.
Condition
. Control
‘i III Help

Task

800

Seconds longer than expert
o+ n
(=) (==
(=] (=]

%)
(=]
o

(=]

Task1
Task2
Task3
Task4
Tasks
Taské

Figure 4.10: Average time difference, in relation to the expert, spent on the tasks for the
two conditions; control and help. Error bars represent the standard deviation.

showed a significant difference between the control group (M = 206.4441, SD =
195.3654) and the help group (M = 269.1244, SD = 204.1006) conditions;
(x% = 5.5633, df = 1, P = .01834), meaning the help group on average spent

45

Chapter 4. Results

significantly more time per task than the expert compared to the control group.

4.2 Expertise groups

This section will present analysis results for the expertise groups.

4.2.1 Study scores

Having established no significant difference in study scores between the condi-
tions, further analysis was done by splitting the participants into different expertise
groups to investigate if the expert’s eye-gaze had any effect between the different
levels of expertise. The participants were, as described in subsection 3.3.2, labeled
as either ’high” or ”low” expertise based on their score on the pretest. The split
resulted in 16 high expertise participants and 16 low expertise.

1.0
ExpertiseGroup
B High

0.5 B Low

0.0 I

Task

Task score

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Figure 4.11: Average task scores for the two expertise groups; high and low. Error bars
represent the standard deviation for each task and group.

Figure 4.11 shows the average scores of each expertise group for the study tasks.
Once again, a Shapiro-Wilk test was performed to test for normality in the data.

The test did not present evidence of non-normality for the low expertise group
(W = 0.90298, p = .08972), nor for the high group (W = 0.91156, p = .1233).

46

4.2 Expertise groups

4
g
§ 3 et ExpertiseGroup
> ® High
E 2 o ® Low
n

| .I

0

High Low

Figure 4.12: Boxplot of the study scores for the two expertise groups; high and low.

A Breusch-Pagan test showed signs of heteroscedasticity (BP(1) = 4.0055, P =
.04535). Therefore, a two-sample independent Student’s t-test, which assumes
equal variances, could not be performed. Instead, a two-sample independent Welch’s
t-test with significance level & = .05 was performed. The test showed no signif-
icant difference in study scores between the low expertise group (M = 2.7500,
SD = 1.807392) and the high expertise group (M = 2.4375, SD = 1.263263)
conditions; (#(26.832) = —0.56687, p = .5755). Further tests and results can be
seen in subsection F.1.1 in Appendix F.

Conditions within expertise groups

The study scores between the conditions within the expertise groups were also
analyzed.

Figure 4.13 shows boxplots for the study scores for each of the conditions within
each expertise group. Figure 4.13a show the study scores for the low group and
Figure 4.13b shows the scores for the high group. Please note that the sample
size of the divided expertise groups is small, and the results presented here should
therefore be taken with a grain of salt.

A Shapiro-Wilk normality test did not show signs of non-normality in study scores
for the control group within the low expertise group (W = 0.8965, p = .2324),
nor for the help group (W = 0.82779, p = .07624). Furthermore, there was

47

Chapter 4. Results

(a) (b)

5 v 4 v
o4 03
§ 3 Condition § Condition
z ® Control >2 e ® Control
ER i ® Help 3 l ® Help
7] &1

1 L

0 0

Control Help Control Help

Figure 4.13: Study scores for the two conditions, control and help, within each expertise
group. a) shows study scores for the low expertise group. b) shows study scores for the
high expertise group

no sign of non-normality for the control group within the high expertise group
(W = 0.95244, p = .7518), nor the help group (W = 0.88376, p = .1719).
The Breusch-Pagan tests showed signs of non-heteroscedasticity both for the low
expertise group (BP(1) = 3.4076, p = .0649) and the high group (BP(1) =
1.0841, p = .2978). Furthermore, a two-sample independent Student’s t-tests with
significance level o = .05 did not show any significant difference in study scores
between the low expertise control group (M = 2.667, SD = 1.5) and the low
expertise help group (M = 2.857, SD = 2.268) conditions; (t(14) = —0.20233,
p = 0.8426), nor between the high expertise control group (M = 2, SD = 1.414)
and high expertise help group (M = 2.778, SD = 1.093) conditions; (¢(14) =
—1.2438, p = 0.234). Further tests and results can be seen in subsection F.1.1 in
Appendix F.

4.2.2 Number of fixations on lines with bugs

Figure 4.14 shows a boxplot of total number of fixations on all bugs for the two
expertise groups.

A Shapiro-Wilk test was run to test for normality in total number of fixations on
all bugs for the expertise groups. The test show no sign of non-normality for the
low expertise group (W = 0.97832, p = .9488), nor for the high expertise group
(W = 0.9003, p = .08128). Furthermore, a Breusch-Pagan test yielded a result
of non-heteroscedacity (BP(1) = 1.0426, p = .3072). Therefore, a two-sample
independent Student’s t-test with significance level o = .05 was performed, which
showed no significant difference in total number of fixations between the low ex-
pertise group (M = 226.0625, SD = 124.6507), and the high expertise group

48

4.2 Expertise groups

600
w
j=)]
=3
-
© 400
o ExpertiseGroup
15 ; High
© Low
= g
;; 200 pod
E ?
°
=

0

High Low

Figure 4.14: Boxplot of total number of fixations on all bugs for the two expertise groups;
high and low.

(M = 206.9375, SD = 160.6231), conditions; (t(30) = —0.37626, p = .7094).
Tests and results for all tasks can be seen in subsection F.1.2 in Appendix F.

4.2.3 Time spent on lines with bugs

Figure 4.15 shows a boxplot of total normalized fixation duration on all bugs for
the two expertise groups.

A Kruskal-Wallis rank sum test was performed to test for difference in total nor-
malized fixation duration on bugs for the two expertise groups. The test showed
no significant difference between the low expertise group (M = 0.0992, SD =
0.0840) and the high expertise group (M = 0.1006, SD = 0.0667), conditions;
(x? = 0.035511, df = 1, p = .8505)

4.2.4 Distance to lines with bugs

Figure 4.16 shows two diagrams representing number of fixations in different per-
centiles away from the bugs on the tasks. Figure 4.16a shows the total number
of the different percentiles across all tasks and bugs, and Figure 4.16b shows a
boxplot for the 75 percentile on task five for the two expertise groups.

Tests and results for all percentiles and all tasks can be seen in subsection F.1.4

49

Chapter 4. Results

®

[7}]
[@)]
3
0
=02
&
c ; ExpertiseGroup
= ® High
S e ® Low
30.1 S
c []
9
: I
X
L

0.0

High Low

Figure 4.15: Boxplot of total normalized fixation duration on all bugs for the two expertise
groups; high and low.

-
o
o

L]

o

—

ExpertiseGroup
B High
H B Low
0
0
o

-

0.25
0.75

(a) (b)
2
2 400 400
2
S 200 300 ExpertiseGroup
3 ? ® High
5 b ® Low
c
(0]
5
2
<

Percent away from bug High Low

fixations in 100th percentile
N
o
o

Figure 4.16: Percent distance from the bugs for the expertise groups; high and low. a)
shows a histogram of mean and standard deviation for number of fixations in the different
percentiles from the bug. b) shows a boxplot of number of fixations in the 75 percentile
on task five for the two expertise groups.

in Appendix F. A Shapiro-Wilk test was performed to test for normality in to-
tal number of fixations in the 75 percentile away from the bug on task five for
the two expertise groups. The test did not show signs of non-normality for the
low expertise group (W = 0.89339, p = 0.06304), nor for the high expertise
group (W = 0.93208, p = 0.2629). A Breusch-Pagan test of heteroscedacity be-
tween the two groups yielded a result of non-heteroscedacity (BP(1) = 1.3428,
p = 0.2465). Finally, a two-sample independent Student’s t-test with signifi-

50

4.2 Expertise groups

cance level @ = .05 showed a significant difference in total number of fixations
in the 75 percentile away from the bug on task five for the low expertise group
(M = 122.1875, SD = 110.0007) and the high expertise group (M = 227.0625,
SD = 134.0176), conditions; (£(30) = 2.4195, P = 0.02181), meaning the high

expertise group looked more on the lines 75 percent from the bugs on task five than
the low expertise group.

4.2.5 Time spent on tasks

Figure 4.17 shows the average time in seconds the high and low expertise groups
and the expert spent per task.

1200
'
8 800 i
*é ExpertiseGroup
= . Expert
g B High
E . Low
= 400
0 L

* < 2 I L <

w w w w w w

(0] (v (1] [© [u]

= = = = = —

Task

Figure 4.17: Average time spent per task in seconds for the two expertise groups, high

and low, as well as the expert. Error bars represent the standard deviation for each task
and group.

A Kruskal-Wallis rank sum test was performed to test for difference in average
time spent per task between the high and low expertise groups. The test did not
show a significant difference between the low expertise group (M = 396.8658,
SD = 252.0357) and the high expertise group (M = 396.2192, SD = 235.7252)
conditions; (x? = 0.0046327, df = 1, p = .9457). Further tests and results for
individual tasks can be seen in subsection F.1.3 in Appendix F.

51

Chapter 4. Results

4.3 Performance groups

This section will present analysis results for the performance groups.

4.3.1 Study scores
Help groups within performance groups

In addition to being split into expertise groups, all participants were split into high
and low performance groups based on their scores on the study tasks. The differ-
ence in study scores between the two groups is not that interesting, seeing as the
participants were split based on the scores. Therefore, there is a difference in study
scores between the two groups. Instead, this section will focus on the difference
in study scores between conditions within each of the performance groups. Again,
when splitting the two performance groups further into conditions, the sample sizes
are small, and the results should be taken carefully.

Figure 4.18 displays the study scores of each condition within each performance
group as boxplots. Figure 4.18a shows the study scores for the two conditions
within the low performance group, and Figure 4.18b for the high performing group.

(a) (b)

2.0 L 5.0 oo
g 1.5 g 45
o — Condition o Condition
w w
%»1 0 T ® Control %4 0 ® Control
= ® Help = ® Help
®no.5 } n35

0.0 4 Lad 3.0 haad

Control Help Control Help

Figure 4.18: Study scores for the conditions, control and help, within each performance
group. a) shows study scores for the low performance group. b) shows study scores for
the high performance group

To test for significant difference within the two groups, Kruskal-Wallis rank sum
tests were performed. The tests showed no significant difference between the low
performing control group (M = 1.125, SD = (0.641) and the low performing help
group (M = 1.286, SD = 0.951) conditions; (x> = 0.3125, df = 1, p = .5762),

52

4.3 Performance groups

nor between the high performing control group (M = 3.625, SD = 0.744) and the
high performing help group (M = 4, SD = 0.866) conditions; (x?> = 0.85594,
df = 1, p = .3549). Further tests and results can be seen in subsection F.1.1 in
Appendix F.

4.3.2 Number of fixations on lines with bugs

Figure 4.19 shows a boxplot of total number of fixations on all bugs for the two
performance groups.

600 .
[72)
[=)]
=3
=
¥ 400
o PerformanceGroup
S ® High
© ¢ ® Low
& 200 ¢
® H
8
© L
=
0 ry

High Low

Figure 4.19: Boxplot of total number of fixations on all bugs for the two performance
groups; high and low.

A Shapiro-Wilk normality test was performed to test for normality in total number
of fixations on all bugs for the low and high performance groups. The test showed
no sign of non-normality between the low performance group (W = 0.94134,
p = .3995), nor the high performance group (W = 0.91904, p = .1422). Fur-
thermore, a Breusch-Pagan test yielded a result of non-heteroscedacity (BP(1) =
0.0036977, p = .9515). Therefore, a two-sample independent Student’s t-test with
significance level o = .05 was performed, which showed no significant difference
in total number of fixations on the bugs between the low performance group (M =
226.0625, SD = 124.6507) and the high performance group (M = 206.9375,
SD = 160.6231), conditions; (¢(30) = 0.66488, p = .5112). Tests and results for
all tasks can be seen in subsection F.1.2 in Appendix F.

53

Chapter 4. Results

4.3.3 Time spent on lines with bugs

Figure 4.20 shows a boxplot of total normalized fixation duration on all bugs for
the two performance groups.

w
{@)]
=3
-
=502
S
put PerformanceGroup
2 ? ; High
= Low
=01
° '
0
g
;
0.0

High Low

Figure 4.20: Boxplot of total normalized fixation duration on all bugs for the two perfor-
mance groups; high and low.

A Shapiro-Wilk test of normality was performed to test for normality in total nor-
malized fixation duration on the bugs. The test showed no sign of non-normality
for the low performing group (W = 0.9199, p = .192), nor for the high perform-
ing group (W = 0.92955, p = .2139). A Breusch-Pagan test yielded a result of
non-heteroscedacity between the two groups (BP(1) = 0.20296, p = .6523).
Furthermore, a two-sample independent Student’s t-test with significance level
a = .05 showed no significant difference between the low performing group
(M = 0.0987, SD = 0.0798) and the high performing group (M = 0.1009,
SD = 0.0722) with regards to total normalized fixation duration on the bugs, con-
ditions; (¢(30) = 0.080217, p = .9366). Tests and results for individual tasks can
be seen in subsection F.1.3 in Appendix F.

4.3.4 Distance to lines with bugs

No significant difference was found regarding distance to lines with bugs for the
two performance groups. Tests and results can be seen in subsection F.1.4 in Ap-
pendix F.

54

4.3 Performance groups

4.3.5 Time spent on tasks

Figure 4.21 shows the average time in seconds the high and low performance
groups and the expert spent per task.

PerformanceGroup
. Expert

B High

II Low

Task

900

Time spent on task
n
(==
(=]

30

(=]

o

Task1
Task2
Task3
Task4
Tasks
Tasks

Figure 4.21: Average time spent per task for the two performance groups, high and low,
and the expert. Error bars represent the standard deviation for each task and group.

A Kruskal-Wallis rank sum test was performed to test for a difference in average
time spent per task between the high and low performance groups. The test showed
a significant difference between the low performance group (M = 363.511, SD =
238.2681) and the high performance group (M = 425.361, SD = 245.1947)
conditions; (y? = 4.5843, df = 1, P = .03227), meaning the high performance
group spent, on average, more time per task than the low performing group.

55

Chapter

Discussion

This thesis aimed to investigate the effect of visualizing an expert programmer’s
cognitive code comprehension and debugging process through eye-tracking as a
basis for teaching novice programmers how to comprehend and debug code. A
study exposing novice programmers to an expert’s eye-gaze during debugging and
code comprehension sessions has been conducted to achieve this goal.

The results show no significant difference in study scores between the two condi-
tions or between the expertise groups. Furthermore, it shows no significant differ-
ence in number of fixations or fixation duration on lines containing bugs between
the conditions, expertise groups, or performance groups. However, the results
show a significant difference in fixation distance to bugs between the conditions
on task one and between the expertise groups on task five. In addition, a slight
statistically insignificant negative correlation between study score and percent of
fixations that was on a line with a bug after consulting the help section has been
shown. Moreover, the help group spent significantly more time per task than the
control group and that the high performance group spent more time per task than
the low performance group.

56

5.1 Results and their implications

5.1 Results and their implications

Before starting the study, each participant was tasked with a pretest in order to
investigate and confirm that they were novices and of the same level of expertise.
The analysis of the pretest scores showed no significant difference in the number of
correct scores between the conditions. This means that, even though some partici-
pants did get a relatively high pretest score of 8 out of 10, the study had a surplus
of novices. This is important as it reduces the bias of the result towards expertise
and because the goal of this thesis was concentrated around novice programmers.

Secondly, the study scores of the participants were analyzed. Before the anal-
ysis, each participant’s answers to the tasks were manually graded as they pro-
vided textual answers. As previously mentioned, this grading was done anony-
mously, meaning the grader did not know if the participant was in the control or
help group. The analysis of the study scores showed no significant difference be-
tween the help group and the control group, indicating that exposure to the expert’s
eye-gaze might not impact novices’ debugging and comprehension abilities. The
answers were graded strictly binary; each answer was either correct or incorrect.
When grading, however, the grader observed many answers that were close to
correct, especially on tasks two and six. Many of the participants had correctly
identified the values being printed in task two but had the wrong output format.
E.g., line breaks where no line break should be present or missing a period. In
addition, some participants provided the answer 35.5 to task six, when the correct
answer was supposed to be 35.0. The removal of the decimal .5 was done in one
out of seven methods in the task code that contributed to the final output, meaning
some participants did understand what a majority of the code did. The outcome
of the analysis of the study scores might have been different if a more relaxed
grading had been adopted by, for instance, giving partial points to partially correct
answers. Including partially correct answers could help indicate guidance toward
the correct answer by the expert’s eye-gaze.

Crosby and Stelovsky [3] found that highly experienced programmers tend to
spend more time concentrating on meaningful areas in the code than the low ex-
perienced programmers, which is inconsistent with the findings in this thesis. The
analysis of the number of fixations on meaningful areas showed no significant dif-
ference between the high and low expertise participants. What is important to note,
however, is that the highly experienced participants in Crosby and Stelovsky [3]’s
study were college graduates and Ph.D. faculty members, and the low experienced
participants were 2" semester students. In contrast, all the participants in this the-

57

Chapter 5. Discussion

sis’ study were undergraduate students divided into expertise groups based on their
pretest scores. Therefore, this thesis’ finding of no significant difference in number
of fixations on meaningful areas between the expertise groups is not unexpected
when compared to the expertise split conducted by Crosby and Stelovsky [3].

The analysis conducted in this thesis did not show a significant difference in num-
ber of fixations on meaningful areas between the help and control groups, nor
between the high and low performance groups. However, Crosby and Stelovsky
[3] found that highly experience programmers spent more time concentrating on
meaningful areas. This could further infer that time spent on meaningful areas
could indicate a participant’s expertise. Furthermore, assuming that programmers
with a higher experience overall have higher performance, there should be a con-
nection between the number of meaningful fixations and performance. Since the
study conducted for this thesis did not find a significant difference in the number of
fixations on meaningful areas between the expertise groups, this indicates that the
exposure of novices to an expert’s eye-gaze does not provide higher performance.

However, the analysis showed more fixations on the second bug in the fifth task
for the help group compared to the control group. As this bug was extremely
subtle, even the expert had some trouble identifying it and had to be guided towards
identification; one could argue that the help section might have provided the help
group with higher performance than the control group. This is further supported
by the findings of Jessup et al. [S] that experts have a higher fixation count than
novices and Turner et al. [21] that experts have a higher fixation rate than novices
on lines containing bugs. Moreover, it is supported by Yoon and Narayanan [2]
that found that higher accuracy in a problem can be achieved by paying attention
to critical components.

This thesis’s analysis of fixation duration on lines containing bugs showed no sig-
nificant difference between the two conditions, expertise groups or performance
groups. This is expected as no difference in the number of fixations on lines con-
taining bugs was shown. Interestingly, though, is the result of no significant differ-
ence in fixation duration on the second bug of task five for the conditions, as there
was a significant difference in the number of fixations on this specific bug. One
would expect the total fixation duration to be higher as the total number of fixations
was higher. Assuming the help section did provide an expertise advantage to the
help group, this finding is supported by Turner et al. [21] that found no difference
in fixation duration on lines containing bugs between experts and novices and does
not necessarily mean that the expert’s eye-gaze did not provide help in identifying
bugs.

58

5.1 Results and their implications

Another measurement to test the usefulness of the expert’s eye-gaze was distances
to the lines with bugs after looking at the help. The difference in number of fixa-
tions in different percentile distances from the bug after looking at the help could
be an indicator of the effect of the exposure to the expert’s eye-gaze. This thesis
shows a significant difference between the conditions and the expertise groups on
specific tasks, but not between the performance groups.

The analysis showed that the control group looked more at lines furthest away,
in the 100 percentile, from the bug on the first task than the help group. For the
first task at least, this shows that the help group concentrated more on meaningful
areas, as the most meaningful areas of the first task were centered around the bug.
The task did have some interesting code in the lines furthest away from the bug.
However, this was code that was meant to be read only once. It is possible that the
help group was guided toward the more meaningful areas by the expert’s eye-gaze
since the expert only had to read the lines furthest away from the bug once. How-
ever, there was no difference between the two conditions for the other percentiles.
This indicates that the help section may not have contributed to the lower number
of fixations on the lines furthest away from the bug.

Furthermore, the analysis showed a significant difference in number of fixations
in the 75 percentile away from the bug on task five between the expertise groups.
Surprisingly though, is the fact that it was the low expertise group that had the low-
est number of fixations in this percentile. This is inconsistent with the findings of
Crosby and Stelovsky [3] that high expertise programmers spend more time con-
centrating on meaningful areas than low expertise. One reason for this deviation,
may be that the high expertise group focused more on comprehending the entire
code to find the root of the bug and put it in context of the rest of the code. Put
in context with Jessup et al. [5]’s finding that high expertise programmers have a
higher fixation count than novices, one could argue that this is true for the high
expertise novice programmers in this study as well. However, as this finding is
only visible on one of the tasks and one of the percentiles, one cannot say anything
for sure about the difference between high and low expertise novices with regards
to percentage distance from lines with bugs.

For the help group, a slight, statistically insignificant, negative correlation between
the study scores and the percentage of first fixations after consulting the help sec-
tion that was on a line with a bug was found. The correlation test presented a
p-value that showed no significant correlation. However, this might be due to the
low sample size in the help group (N = 16). A negative correlation of —0.4146 is
generally considered a medium correlation. Nevertheless, it is a surprising finding,

59

Chapter 5. Discussion

as one would expect the study scores to increase as the percentage of first fixations
on bugs increases.

On the other hand, the definition of a problem being in a student’s zone of proximal
development (see Figure 2.2 in section 2.2) is that the student should be able to
solve the problem with guidance. The results of this analysis, however, show that
after getting help, the participants correctly identified the meaningful areas but did,
for the most part, not manage to answer the problem correctly. This indicates that
the tasks may either have been in the far upper end of the participants’ zone of
proximal development or the right hand side of Figure 2.2.

The analysis of time spent per task showed that the help group spent on average
more time than the control group per task. This finding is inconsistent with Stein
and Brennan [7], who found that the participants exposed to another person’s eye-
gaze found bugs faster than those not exposed. An important distinction between
the study in this thesis and that of Stein and Brennan [7], is that the participants
in this thesis were novices and not professional programmers. Another important
distinction is that the participants in Stein and Brennan [7] first watched the eye-
gaze of a person solving the task and then identified the bugs. In contrast, the
participants in this thesis’ study had the option to interactively choose when to
watch the expert’s eye-gaze during the tasks.

In this thesis, the extra time participants spent on the help section was discarded
before analyzing whether there was a difference in time spent per task between the
two conditions. It is possible that the help group spent more time than the control
group exploring and covering all the code that the expert viewed and then did their
own exploring afterward, being afraid to miss something the expert had looked at.
The control group did not have this option and was only focused on reading the
code to find the bug or comprehend the code.

Furthermore, when analyzing the average time spent per task, there was no signifi-
cant difference between the high and low expertise groups, which further strength-
ens the assumption that all participants were novices at approximately the same
level, as found by analyzing the pretest scores.

However, the high performing group spent, on average, more time per task than the
low performing group. Seeing as Najar et al. [4] found that low performing partic-
ipants did not use the provided help, and Sharma et al. [19] found that they were
more prone to boredom than the high performers, one can draw a line between
the help group and high performing group, and the control group and the low per-

60

5.2 Limitations

forming group. The low performing group might have experienced more boredom
than the high performing group, making them rush through the tasks and ignore
the help as found by Najar et al. [4]. On the other hand, the high performing group
might have been less bored and motivated by the help section. This indicates that
exposure to an expert’s eye-gaze could motivate novices to finish a task correctly.

5.2 Limitations

It should be noted that the study progressed over seven weeks. Seven weeks in
itself is not a long time but put in a university and semester time perspective; a
lot can be taught. This means that the later participants had attended more lec-
tures than the early participants and had therefore learned more Java programming
and concepts. This might have impacted the study scores. However, as seen by
the analysis of the pretest scores, all participants were at the same level of exper-
tise. Furthermore, as indicated by eye-tracking metrics, Yenigalla et al. [30] found
no significant change in novices’ learning throughout two introductory courses in
programming.

Another limitation of this study is that halfway through, the environment in which
the participants completed the study changed. The first half completed the study
in the UX-lab at NTNU, whereas the second half completed it in the supervisor’s
office. Those who completed the study in the lab may have felt more relaxed as it
was a more relaxing environment than an office.

Furthermore, the gaze samples of the participants were low. This means that the
eye-gaze analysis of number of fixations, duration, and distance to bugs may not
be accurate, as the actual number and duration of fixations would have been higher
with more gaze samples. In addition, the accuracy of the collected gaze samples
was not the best, with a mean accuracy of 53 pixels. The AOIs used in the analysis,
for the most part, were single code lines; an accuracy of 53 pixels could have
contributed to categorizing an AOI hit falsely.

5.3 Future work

No significant results in this thesis clearly show that exposing novices to an ex-
pert’s eye-gaze either helps the novice, hampers their abilities, or has no impact at

61

Chapter 5. Discussion

all. Some signs might suggest that the expert’s eye-gaze does, in fact, guide the
novices toward the correct place in the code but not toward the correct solution
to the problem. As stated in section 5.1, it might be because of the task diffi-
culty. Future work should therefore include further investigation on the effect of
exposing novice programmers to an expert’s eye-gaze, with problems being more
well-placed in the participant’s zone of proximal development.

Furthermore, future work should incorporate the other help types, “expert choose”
and “always-on,” as first planned for the study in this thesis. This should be
done to investigate different forms of visualizing the expert’s eye-gaze, as the “on-
demand”-type help included in this thesis’ study might not have been the best way
to provide the participants help.

In addition, other ways of grading the answers to the tasks should be explored.
This could be, for instance, to give partially correct answers a score other than 0,
as was done in this thesis. A more relaxed grading could give other results than
a strict binary grading. Including partially correct answers could, in fact, help
indicate guidance toward the correct answer by the expert’s eye-gaze.

Moreover, future work should consider this thesis’ limitations by maximizing the
accuracy of the eye-tracker, executing the study in the same place for all partici-
pants, and limiting the time gap between participants.

This thesis has focused on the debugging part of the study. This was done mainly
because one cannot debug without comprehending the code; therefore, code com-
prehension was also implicitly analyzed. Future work, however, should be more
focused on code comprehension regarding visualizing an expert programmer’s
eye-gaze to novices. Moreover, interesting analysis for future work includes anal-
ysis of code depth, eye movement speeds, and number of scanpaths.

Once the groundwork of visualizing an expert programmer’s eye-gaze to novices
is fully complete, future work should research the effects of implementing it in
computing education. This could, for instance, be as a supplement to students’
assignments or the lecturer using an eye-tracker while giving a lecture.

62

Chapter

Conclusion

This thesis has presented literature on how eye-tracking is used in programming
and the differences between experts and novices when programming. Furthermore,
it has presented the planning, preparation, execution, analysis, and results of a
study exposing novice programmers to an expert’s eye-gaze during debugging and
code comprehension. This has been done by implicitly answering the research
questions in section 1.2. Here, the research questions will be answered explicitly.

The literature study answered the first and second research questions in section 2.3.
RQ1 asked how eye-tracking is used in programming. It was shown that the inter-
est and acceptance in using eye-trackers in programming are increasing, with the
increasing number of published papers on the topic. Furthermore, it was shown
that eye-trackers are used to identify reading behaviors, strategies, and gaze pat-
terns in programming. RQ2 asked what the differences are between experts and
novices when programming. Through related work, this thesis showed consider-
able differences between experts and novices when programming; Highly experi-
enced programmers tend to read more source code elements and meaningful areas
than low experience programmers, and low experience programmers tend to focus
more on comments and comparisons. Furthermore, advanced programmers seem
to be using help to supplement a problem more frequently and differently than
novices. Moreover, novices tend to have a lower fixation rate on lines with bugs
than experts. Related work also showed little to no difference in fixation duration
between experts and novices when programming.

63

Chapter 6. Conclusion

RQ3 considered what effect exposing novice programmers to an expert program-
mer’s eye-gaze has on their comprehension and debugging abilities, which was
answered through the study performed in this thesis. First, a system used in the
study to present both an expert and novices with code snippets was created. In ad-
dition, the system contained a pretest for the novices to test their level of expertise.
Furthermore, the system incorporated a help section for half of the novices where
the expert’s eye-gaze was visualized.

Then, an expert’s eye-gaze was recorded while they completed a set of code prob-
lems. Later, 32 novices were evenly split into a control group and a help group.
Both groups did a pretest to test their level of expertise and completed the same set
of problems as the expert. The help group had the option to view the expert’s eye-
gaze and code snippet side-by-side. Once the data was collected, it was analyzed
to answer RQ3. This was done by finding differences between the control and help
groups and splitting the participants into high and low expertise and performance
groups to investigate differences further.

The analysis showed no difference in study scores between the conditions or the
expertise and performance groups. Furthermore, it showed no difference in num-
ber of fixations or fixation duration on meaningful areas in the code between the
different groups. However, there was a significant difference regarding distances
to meaningful areas of the code. The control group fixated more on lines furthest
away from the meaningful areas on task one. Moreover, the high expertise group
fixated more on the 75 percentile distance from the bug on task five than the low
expertise group. Furthermore, a small, statistically insignificant, negative corre-
lation between the score on the study tasks and the number of first fixations after
consulting the help section that was on a line with a bug was found. The analysis
also showed that, even without the time spent consulting the help section, the help
group spent on average more time per task than the control group. Lastly, the anal-
ysis showed that high performers spent more time per task than low performers.

This thesis aimed to investigate the effect of visualizing an expert programmer’s
cognitive code comprehension and debugging process through eye-tracking as a
basis for teaching novice programmers how to comprehend and debug code. The
goal of the thesis has been achieved by answering the research questions. This
thesis has presented a way of visualizing an expert’s eye-gaze to novices complet-
ing code problems and has laid the groundwork for research on how this can be
implemented in computing education.

64

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

Merriam-Webster. Problem Solving. https://www.
merriam-webster.com/dictionary/problem-solving,

2021. Online; accessed October 12, 2021.

Daesub Yoon and N. Hari Narayanan. Mental imagery in problem solving:
An eye tracking study. In Proceedings of the 2004 symposium on Eye tracking
research & applications, ETRA *04, pages 77-84. Association for Comput-
ing Machinery, 2004. doi:10.1145/968363.968382.

Martha E. Crosby and Jan Stelovsky. How do we read algorithms? a case
study. Computer, 23(1):25-35, 1990. doi:10.1109/2.48797.

Amir Shareghi Najar, Antonija Mitrovic, and Kourosh Neshatian. Utilizing
Eye Tracking to Improve Learning from Examples, pages 410-418. Springer,
Cham, 2014. doi:10.1007/978-3-319-07440-538.

Sarah Jessup, Sasha M. Willis, Gene Alarcon, and Michael Lee. Us-
ing eye-tracking data to compare differences in code comprehension and
code perceptions between expert and novice programmers. In Proceed-
ings of the 54th Hawaii International Conference on System Sciences,

pages 114-123. Hawaii International Conference on System Sciences, 2021.
doi:10.24251/hicss.2021.013.

Salwa Aljehane, Bonita Sharif, and Jonathan Maletic. Determining dif-
ferences in reading behavior between experts and novices by investi-
gating eye movement on source code constructs during a bug fixing
task. In ACM Symposium on Eye Tracking Research and Applications,

65

https://www.merriam-webster.com/dictionary/problem-solving
https://www.merriam-webster.com/dictionary/problem-solving
https://doi.org/10.1145/968363.968382
https://doi.org/10.1109/2.48797
https://doi.org/10.1007/978-3-319-07440-5_38
https://doi.org/10.24251/hicss.2021.013

BIBLIOGRAPHY

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ETRA °21, pages 1-6. Association for Computing Machinery, 2021.
doi:10.1145/3448018.3457424.

Randy Stein and Susan E. Brennan. Another person’s eye gaze as a cue
in solving programming problems. In Proceedings of the 6th International
Conference on Multimodal Interfaces, ICMI °04, pages 9—15. Association for
Computing Machinery, 2004. doi:10.1145/1027933.1027936.

Sander B. Lindberg. How eye tracking can be used in problem solving.
Trondheim: Norwegian University of Science and Technology, 2021.

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaél Guéhéneuc. A sys-
tematic literature review on the usage of eye-tracking in software en-
gineering. Information and Software Technology, 67:79-107, 2015.
doi:10.1016/j.infsof.2015.06.008.

Florian Hauser, Jiirgen Mottok, and Hans Gruber. Eye tracking metrics in
software engineering. In Proceedings of the 3rd European Conference of
Software Engineering Education, ECSEE’18, pages 39-44. Association for
Computing Machinery, June 2018. doi:10.1145/3209087.3209092.

Lev Semenovich Vygotsky and Michael Cole. Mind in society: Development
of higher psychological processes. Harvard university press, 1978.

Joakim Caspersen, Thomas De Lange, Tine S. Prgitz, Tone D. Solbrekke,
and Bjorn Stensaker. Learning about quality - perspectives on learning out-
comes and their operationalisations and measurement. Oslo: Department of
Educational Research, University of Oslo, 1:10, 2011.

Peter E. Doolittle. Understanding cooperative learning through vygotsky’s
zone of proximal development. In Lilly National Conference on Excellence
in College Teaching. ERIC, 1995.

Barbara Kitchenham. Procedures for performing systematic reviews. Keele,
UK, Keele University, 33(2004):1-26, 08 2004.

Teresa Busjahn, Carsten Schulte, Bonita Sharif, Andrew Begel, Michael
Hansen, Roman Bednarik, Paul Orlov, Petri Thantola, Galina Shchekotova,
and Maria Antropova. Eye tracking in computing education. In Proceed-
ings of the tenth annual conference on International computing education re-
search, ICER 14, pages 3—10. Association for Computing Machinery, 2014.
doi:10.1145/2632320.2632344.

66

https://doi.org/10.1145/3448018.3457424
https://doi.org/10.1145/1027933.1027936
https://doi.org/10.1016/j.infsof.2015.06.008
https://doi.org/10.1145/3209087.3209092
https://doi.org/10.1145/2632320.2632344

BIBLIOGRAPHY

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C.
Shepherd, and Thomas Fritz. Tracing software developers’ eyes and interac-
tions for change tasks. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 202-213. As-
sociation for Computing Machinery, 2015. doi:10.1145/2786805.2786864.

Tamara van Gog, Halszka Jarodzka, Katharina Scheiter, Peter Gerjets, and
Fred Paas. Attention guidance during example study via the model’s
eye movements. Computers in Human Behavior, 25(3):785-791, 20009.
doi:https://doi.org/10.1016/j.chb.2009.02.007.

Janet Siegmund, Christian Késtner, Jorg Liebig, Sven Apel, and Stefan Ha-
nenberg. Measuring and modeling programming experience. Empirical Soft-
ware Engineering, 19(5):1299-1334, 2014. doi:10.1007/510664-013-9286-
4.

Kshitij Sharma, Sofia Papavlasopoulou, and Michail Giannakos. Faces don’t
lie: Analysis of children’s facial expressions during collaborative coding. In
FabLearn Europe / MakeEd 2021 - An International Conference on Comput-
ing, Design and Making in Education, FabLearn Europe / MakeEd 2021. As-
sociation for Computing Machinery, 2021. doi:10.1145/3466725.3466757.

Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Miiller,
Michael Falcone, and Bonita Sharif. Itrace: Enabling eye tracking on soft-
ware artifacts within the ide to support software engineering tasks. In Pro-
ceedings of the 2015 10th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2015, pages 954-957. Association for Computing Ma-
chinery, 2015. doi:10.1145/2786805.2803188.

Rachel Turner, Michael Falcone, Bonita Sharif, and Alina Lazar. An eye-
tracking study assessing the comprehension of c++ and python source code.
In Proceedings of the Symposium on Eye Tracking Research and Applica-
tions, ETRA 14, pages 231-234. Association for Computing Machinery,
2014. doi:10.1145/2578153.2578218.

Sander B. Lindberg. Master-study-system. https://github.
com/skanin/master—-study-system, 2022. commit-hash:
5143738217e5ab425e7cbde4056e510374757bbs.

Sander B. Lindberg. Master-study-system-backend. https://github.

com/skanin/master—-study-system-backend, 2022. commit-
hash: a0a9f9f5647e513d8fa3dd415f07d8a08fb53ebf.

67

https://doi.org/10.1145/2786805.2786864
https://doi.org/https://doi.org/10.1016/j.chb.2009.02.007
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1007/s10664-013-9286-4
https://doi.org/10.1145/3466725.3466757
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1145/2578153.2578218
https://github.com/skanin/master-study-system
https://github.com/skanin/master-study-system
https://github.com/skanin/master-study-system-backend
https://github.com/skanin/master-study-system-backend

BIBLIOGRAPHY

[24] P.B. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):
42-50, 1995. doi:10.1109/52.469759.

[25] Tobii Pro AB. Tobii pro lab. http://www.tobiipro.com/, 2021.
Computer software, version 1.181.

[26] Tobii Pro AB. Pro Lab User Manual. Tobii Pro AB, 2021. v 1.181,
url: https://www.tobiipro.com/siteassets/tobii-pro/

user—-manuals/Tobii-Pro-Lab-User—-Manual/. Online; ac-
cessed May 20, 2022.

[27] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Martin Ugarte, and Do-
magoj Vrgo¢. Foundations of json schema. In Proceedings of the 25th
International Conference on World Wide Web, WWW 16, pages 263—
273. International World Wide Web Conferences Steering Committee, 2016.
doi:10.1145/2872427.2883029.

[28] Sander B. Lindberg. Master-support-scripts. https://github.

com/skanin/master—support—-scripts, 2022. commit-hash:
3629b891611118140f29add36e971eae70dcebbd.

[29] Tobii Pro AB. Accuracy and precision Test report. To-
bii Pro AB, 2015. url: https://www.tobiipro.com/
siteassets/tobii-pro/accuracy—-and-precision-tests/
tobii-pro-x3-120-accuracy—-and-precision-test-report.
pdf. Accessed May 20, 2022.

[30] Leelakrishna Yenigalla, Vinayak Sinha, Bonita Sharif, and Martha Crosby.
How novices read source code in introductory courses on program-
ming: An eye-tracking experiment. In International Conference on Aug-
mented Cognition, pages 120—.131. Springer International Publishing, 2016.
doi:10.1007/978-3-319-39952-2"13.

68

https://doi.org/10.1109/52.469759
http://www.tobiipro.com/
https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/
https://www.tobiipro.com/siteassets/tobii-pro/user-manuals/Tobii-Pro-Lab-User-Manual/
https://doi.org/10.1145/2872427.2883029
https://github.com/skanin/master-support-scripts
https://github.com/skanin/master-support-scripts
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-x3-120-accuracy-and-precision-test-report.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-x3-120-accuracy-and-precision-test-report.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-x3-120-accuracy-and-precision-test-report.pdf
https://www.tobiipro.com/siteassets/tobii-pro/accuracy-and-precision-tests/tobii-pro-x3-120-accuracy-and-precision-test-report.pdf
https://doi.org/10.1007/978-3-319-39952-2_13

Appendix

Diagrams

A.1 Logical view

Figure A.1 shows a more extensive version of the logical view diagram than the
one in Figure 3.7. It contains methods and variables in the different components
of the study system.

69

Chapter A. Diagrams

Login
© subject

o username
CustomRouter 2 inv
= oresponseMsg
© setsubject()
setUsername()
= setinvalid()

© subject.

= onButtonClick()

PrivateRoute

setisBusy()
= setAccess()
8 checkAccess()

summary
© maxTaskid
Home © getstudyanswers(

InformationPage Main

DI © taskid © navigate() ~Setoa

© setLogs() }—{ © setlogs()

B generateHelpText() BddRORSTOCRIl) B startPretest() :g:;;‘;%jé',changeu
= onBackButtonClick()
= onFinishClick()

generateSummaries()

PretestQuestions StudyQuestion

© taskid o subject
© origQuestions 5 answer
© currQuestions 4 question
o showNextButton o maxTaskid
4 showPrevButton © helpVisible T
ISEAEtonGlicked I B setHelpVisible()

setButtonClicked() = setMaxTaskid()

8 setShowPrevButton()
8 setShowNextButton()
8 setCurrQuestions()

8 setOrigQuestions()

© getPretestAnswers()

© setPretestAnswers()

o setLogs|

& generatequestions()

= onQuestionChange()

8 nextPretestTask()

© getStudyAnswers()

skid
© codeSnippets
© setstudyAnswers() ol

© subject
= setCode()

© setLogs()

® handleChange()
handlesubmit()
8 onHelpChange()
B onExpertNext()

Plotting

o startTime
o pauseTime

© pauseTimeDur
o offset.

o disappeartast
© playTimeLast
© seconds

© minutes

© hours

o da

© iskunning

o hasstarted

o dat;

o playing
o disappearActual

0 disappearActualRef
0 maxs

© maxsRef

® setMaxs()
etDisappearActual()

8 setplaying()

8 setLoaded()

B setscatter()

8 setlayout()

setData

8 setHasStarted()

o start()

o pause()

© reset()

8 setPlayTimeLast()

B setDisappearLast()

8 setoffset()

8 setpauseTimeDur()

8 setPauseTimel

® setStartTime()

Question

5 generateAnswers()

8 updateDatal)
= onplay()

= onDisappearvalueChange()
B getHHMMSSFromseconds()
8 padTo:

8 onPlayTimeChange()

8 onDissapearMouseDown()
nDissapearMouseUp(
nPlayTimeMouseDown()
8 onPlayTimeMouseUp()

8 getFullseconds()

Figure A.1: Logical view of the study system. A more extensive version of the diagram
in the thesis. The diagram contains methods and variables for the components.

70

Appendix B

Information letter

71

Chapter B. Information letter

Request for participation in a research project

“Eye-tracking to enhance programming performance.”

This is an inquiry about participation in a research project where the primary purpose is to
investigate the effect of exposing novice programmers to an expert programmer’s eye-gaze. In
this letter, we will give you information regarding the purpose of the project and what your
participation will involve.

Purpose

The purpose of the study is to investigate the effect of exposing novice programmers to an
expert programmer’s eye-gaze. Firstly, the expert programmer will complete a series of
programming tasks (debugging and comprehension in Java) while their eye-gaze is collected
with an eye-tracker. Then, the novices will complete the same tasks while having their eye-gaze
collected. In addition, the novices will be exposed to the expert’s eye gaze on the code and
answer questions regarding the code snippets.

The study is part of a Master's thesis.

The project participants will be students at NTNU Campus Glgshaugen in Trondheim, Norway,
volunteering to participate.

Who is responsible for the research project?

The responsible for the project will be Kshitij Sharma, Associate Professor at the Department of
Computer Science (IDI) at NTNU, Trondheim, Norway (see general information section).

Why are you being asked to participate?

You are being asked to participate because you are currently taking, or has recently taken the
course “TDT4100”, meaning you might be a novice in Java programming. Since the purpose of
the study is to investigate the effect on novices, you are a perfect candidate.

72

What does participation in the project imply?

For the research project's purpose, eye-tracking data will be collected through a Tobii TX120
eye-tracker, and the provided Tobii eye-tracking software. Background information about the
participants (year of study, programming experience, etc.) will be collected through
Nettskjema. The background information will be collected to determine the level of
programming expertise. The programming tasks will be performed in a self-developed
application. Participants’ answers to the programming tasks will also be collected through this
application.

The duration of the user-participation will be approximately one hour, where the participants
will complete six programming tasks (comprehension and debugging) with associated
questions.

Participants can request to see the questions regarding background information and ask for any
additional information regarding any other data collection instrument before giving consent. In
addition, they can request a copy of all data stored about them, including their eye-gaze and
answers to the programming tasks at any point during or after the study. Furthermore,
participation is entirely voluntary, and consent can be withdrawn at any time.

What will happen to the information about you?

All personal data will be treated confidentially in accordance with data protection legislation
(GDPR) and used only for the purpose specified in this letter. Only the project group (see
general information below) will have access to the personal data. The list of the participating
students and experts will be stored in NTNU Sharepoint, according to the data processing
agreement between NTNU and Microsoft. Only the researchers and data controllers will have
access to the data. Eye-tracking data and answers to the tasks will be stored in computers at
NTNU premises and the researchers' personal computers.

The participants will not be recognizable in the publication. The project is scheduled for
completion by June 2022. The personal data will be stored for one year after the project’s
completion — until July 2023 -, so the project leader can continue analysis after the master
student's graduation. The project leader will have responsibility for the personal data during
this period.

73

Chapter B. Information letter

Voluntary participation

It is entirely voluntary to participate in the study. Participants can, at any time, choose to
withdraw their consent without stating any reason. If a participant decides to withdraw their
consent, all personal data will be deleted.

Participants’ rights

Participants have the right to request access to/deletion/limitation/correction of personal data,
the right to data portability, and the right to send a complaint to the Data Protection Officer at
NTNU or The Norwegian Data Protection Authority about the processing of personal data at any
time.

What gives us the right to process your personal data?

We will process your personal data based on your consent.

General information-project group

The leader of the project is Kshitij Sharma, Associate Professor at the Department of Computer
Science (IDI) at NTNU, e-mail: XXXXX.XXXXX@ntnu.no (Redacted for appendix in master thesis),
address: Sem Salands vei 9, IT-bygget * 147, phone number: +47 XXX XX XXX (redacted for
appendix in master thesis).

If you would like to participate or have any questions concerning the project, please contact:

Sander Bjerklund Lindberg, e-mail: sanderbl@stud.ntnu.no, phone number: +47 XXX XX XXX
(redacted for appendix in master thesis), Master student at the Department of Computer
Science (IDI) at NTNU.

Data Protection Officer (Personvernombud) at NTNU (Thomas Helgesen, XXXXX.XXXXX@ntnu.no
(Redacted for appendix in master thesis))

The study has been notified to the NSD — The Norwegian Centre for Research Data AS
(personverntjenester@nsd.no, XX XX XX XX (redacted for appendix in master thesis), and they
assessed that the processing of personal data in this project is in accordance with data
protection legislation.

74

Consent for participation in the study

| have received information about the project, and | am willing to give my consent for my
participation.

Participant’s name:

(Signed by participant, date)

75

Appendix

Pretest tasks

C.1 Pretest task 1

Related question: Which of the following would the Java coding snippet return
as its output?.
Answer options: 0, 10, 1, Compile time error

I class Super {

2 public int index = 1;
30}

class App extends Super {
7 public App (int index) {

8 index = index;

9 }

1 public static void main(String argsl[]) {
12 App myApp = new App(10);
13 System.out.println (myApp.index) ;

Listing C.1: Source code for pretest task 1.

76

1

C.2 Pretest task 2

C.2 Pretest task 2

Related question: Which of the following combinations would the Java coding
snippet print?.
Answer options: 01,10, 00, null

class TestApp {
protected int x, vy;

}

class Main {

public static void main(String argsl[]) {
TestApp app = new TestApp();
System.out.println(app.x + " " + app.vy);

Listing C.2: Source code for pretest task 2.

C.3 Pretest task 3

Related question: What would be the outcome of this Java coding snippet?.
Answer options: Welcome, Welcome Welcome, Type mismatch error, Run infinite-
times

class TestApp {

public static void main(String args([]) {
for (int index = 0; 1; index++) {
System.out.println ("Welcome") ;
break;

Listing C.3: Source code for pretest task 3.

77

Chapter C. Pretest tasks

C.4 Pretest task 4

Related question: Which of the following would the Java coding snippet return

as its output?.
Answer options: Welcome, None, Type mismatch error, Run infinite-times

class TestApp {

public static void main(String[] args) {

for (int index = 0; true; index++) {
System.out.println ("Welcome") ;
break;

Listing C.4: Source code for pretest task 4.

C.5 Pretest task 5

Related question: Which of the following values would this Java coding snippet
print in result?.
Answer options: 0, 1, 2, Compilation error

class TestApp {

int 1i[] = { 0 };

public static void main(String argsl[]) {
int i[] = { 1 };
alter (1) ;
System.out.println(i[0]);

}

public static void alter (int i[]) {
int J[1 = { 2 };
i=73;

Listing C.5: Source code for pretest task 5.

78

C.6 Pretest task 6

C.6 Pretest task 6

Related question: What does this Java coding snippet print on execution?.
Answer options: Compilation fails, 3, 2, 99

class TestApp {

public static void main(String argsl[]) {
int[] table = { 1, 2, 3, 4, 5 };
table[l] = (table[2 x 1] == 2 - args.length) ?
table[3] : 99;

System.out.println(table[1]);

Listing C.6: Source code for pretest task 6.

C.7 Pretest task 7

Related question: Which of the following values would this Java coding snippet
yield?.
Answer options: 199, 199.5, 200, Invalid number

class TestApp {

public static void main(String args([]) {
String text = "199";
try |
text = text.concat(".5");
double decimal = Double.parseDouble (text);
text = Double.toString(decimal) ;
int status = (int)

Math.ceil (Double.valueOf (text) .doubleValue());
System.out.println(status);
} catch (NumberFormatException e) {
System.out.println("Invalid number");

Listing C.7: Source code for pretest task 7.

79

Chapter C. Pretest tasks

C.8 Pretest task 8

Related question: What would this Java coding snippet return as its output?.
Answer options: An exception occurs while instantiating the A class., It’ll print
“This is a class A instance”, The program will print null, Compilation error at line
number 13

class TestApp {

public static void main(String args[]) {
class A {
public String name;

public A(String a) {
name = aj;

}

Object obj = new A("This is a class A instance");
A a = (A) obj;
System.out.println (a.name);

Listing C.8: Source code for pretest task 8.

C.9 Pretesttask 9

Related question: What would the this method yield when called?.

Answer options: If a and b both are true, then the output is ”A && B”, If a is true
and b is false, then the output is ”!B”, If a is false and b is true, then the output is
“None”, If a and b both are false, then the output is "None”

public void test (boolean a, boolean b) {
if (a) |
System.out.println ("A");
} else if (a && b) {
System.out.println("A && B");
} else {
if (!'b) {

80

C.10 Pretest task 10

System.out.println("!B");
} else {
System.out.println ("None");

Listing C.9: Source code for pretest task 9.

C.10 Pretest task 10

Related question: What will be the output of this Java coding snippet?.
Answer options: abc, abcd, abcde, abcdef

class TestApp {

public static void main(String[] args) {
String obj = "abcdef";
int length = obj.length();
char c[] = new char[length];
obj.getChars (0, length, c, 0);
CharArrayReader io_1 = new CharArrayReader (c);
CharArrayReader io_2 = new CharArrayReader(c, 0, 3);
int 1i;
try |
while ((1i = io_2.read()) != -1) {

System.out .print ((char) 1i);
}
} catch (IOException e) {
e.printStackTrace();

Listing C.10: Source code for pretest task 10.

81

1

Appendix

Study tasks

D.1 Task 1 - Debug

Related question: Do we get the expected output when running this code? If not
- what is the problem and what line(s) contribute(s) to the problem?
Answer: No, we do not get the expected output. Line 6 should be arr[i] =

arr[j]

public class Taskl {

public static int[] reverse(int[] arr)

{ // Takes an

array as input and returns the reversed array

int 1 = 0, j = arr.length - 1, temp;
while (i < j) {

temp = arr[i];

arr[j] = arr[i];

arr[j] = temp;

i++;

==

}

return arr;

}

public static void main(String args([])
int[] arr = {1, 2, 3, 4, 5, 6, 7, 8,
arr = reverse(arr);

10};

82

D.2 Task 2 - Comprehension

for (int i: arr) {
System.out.print (i + " ");

}
/+ Expected output: 10 9 8 7 6 54 3 2 1 «/

Listing D.1: Source code for study task 1

D.2 Task 2 - Comprehension

Related question: What is the output of this code?
Answer: 0000111223,

class Task2 {
public static void main(String[] args) {
int[] A = {0, 1, 2, 2, 0, O, 3, 1, 1, 0};
int[] B = new int[4];
for (int 1 = 0; i < A.length; i++) {
BIA[i]]++;
}
for (int j = 0; j < B.length; J++) {
for (int k = 0; k < B[3]; k++) {
System.out.print (7 + " ");
}

}
System.out.println(".");

Listing D.2: Source code for study task 2

D.3 Task 3 - Debug

Related question: Which line(s) contains bugs, and what are the bug(s)?
Answer: Line 12 contains a bug. We forget to add one to count. Also, line 67
contains a bug, where hasItemreturns false if store has item and t rue if not.

83

10

Chapter D. Study tasks

class ShoppingCart { // Class for simulating a shopping
cart at a Store
private Store store;
private Map<Item, Integer> items = new HashMap<Item,
Integer>();

public ShoppingCart (Store store) {
this.store = store;

public void addItem(Item item) { // Adds an item to the
shopping cart, or increases the amount of an
existing item
if (!store.haslItem(item)) throw new
IllegalArgumentException ("Item not in store");

int count = items.get (item) == null 2 0
items.get (item) ;
items.put (item, count);

public void removeItem(Item item) { // Removes an item
from the shopping cart, or decreases the amount of
an existing item

int count = items.get(item) == null ? O
items.get (item) ;

if (count > 1) items.put (item, count - 1);

else 1f (count == 1) items.remove (item);

public double getTotal() { // Returns the total price
of all items in the shopping cart
return items.entrySet () .stream()
.mapToDouble (entry —-> entry.getKey().getPrice () =
entry.getValue())
.sum() ;

public void print () { // Prints the items in the
shopping cart
for (Item item : items.keySet())

System.out.println(item.getName () + ": " +
items.get (item) + "x" + item.getPrice() +
item.getCurrency ()) ;

System.out.println("Total: " + getTotal());

84

D.3 Task 3 - Debug

35 class Item { // Class for simulating an Item in a Store

37 private String name, currency;

38 private double price;

39

40 public Item(String name, double price, String currency)
{

41 this.name = name;

£ this.price = price;

£ this.currency = currency;

44 }

45

46 public String getName () {

47 return name;

48 }

49

50 public double getPrice() {

51 return price;

52 }

54 public String getCurrency () {

55 return currency;

o0 class Store { // Class for simulating a Store that
contains Items one can put in a ShoppingCart
61 public List<Item> items = Arrays.asList(

62 new Item("Sugar", 20.0, "kr"),

63 new Item("Milk", 16.5, "kr"),

64 new Item("Bread", 25.0, "kr"),

65 new Item("Eggs", 24.0, "kr")

66)i

67

68 public boolean hasItem(Item item){ // Checks if a Store

has an item
69 return !items.contains (item);
70 }

71 public static void main(String[] args) {
72 Store store = new Store(); // Init a Store
73 ShoppingCart shoppingCart = new ShoppingCart (store);

85

Chapter D. Study tasks

// Init a ShoppingCart
shoppingCart.addItem(store.items.get (0)); // Add an
item to the ShoppingCart
shoppingCart.addItem(store.items.get (1)); // Add an
item to the ShoppingCart
shoppingCart.print (); // Print the items in the
ShoppingCart
/+ Expected output: Milk: 1x16.5kr\nSugar:
1.20.0kr\nTotal: 36.5 %/

Listing D.3: Source code for study task 3

D.4 Task 4 - Comprehension

Related question: What is the output of this code?

Answer: 30\n20

class A {

private final int a =
private final int b

public int C() {
return a;

public int D() {
return b;

class B extends A {
private int aj;
private int b;

public B(int a,

this.a = a;
this.b = b;

@Override

10;
20;

{

86

16

D.5 Task 5 - Debug

public int C() {
return a;

public static void main(String[] args) {
B b = new B(30, 40);
System.out.println(b.C());
System.out.println(b.D());

Listing D.4: Source code for study task 4

D.S5 Task S - Debug

Related question: Which line(s) contains bugs, and what are the bug(s)?

Answer: Line 24 contains a bug. We are dividing two integers, which results in

an integer. Also, line 20 makes it impossible to add more of the same score.

import java.util.ArrayList;
import java.util.List;

class CoffeeReview { // Class for storing scores for a

coffee made by a person

private List<Integer> scores = new
ArrayList<Integer>(); // Stores the scores for this
coffee review

private List<Person> reviewers = new
ArrayList<Person>(); // Reviewers in this coffee
review

private String name; // Name of the coffee made

private Person coffeeMaker; // Person that made the
coffee

public CoffeeReview (String name, Person coffeeMaker) {
this.name = name;
this.coffeeMaker = coffeeMaker;

public void addScore (Person reviewer, int score) { //
Adds a score to the coffee in this coffee review
if (score < 1 || score > 6) throw new

24

29

Chapter D. Study tasks

IllegalArgumentException ("Score must be between 1

and 6");

if (reviewer == null) throw new
IllegalArgumentException ("Reviewer cannot be
null");

if (reviewer == this.coffeeMaker) throw new
IllegalArgumentException ("Reviewer cannot be the
owner");

if (!reviewers.contains (reviewer))

reviewers.add (reviewer) ;
if (!scores.contains (score)) scores.add(score);

public double getAverageScore() { // Gets the average
score in this coffee review
return scores.stream().reduce (0, Integer::sum) /
scores.size();

class Person { // A person that can make a coffee or be a

reviewer of a coffee

private List<CoffeeReview> coffees = new
ArrayList<CoffeeReview> () ;

private String name;

public Person (String name) {
this.name = name;

public CoffeeReview addCoffee(String name) {

// Adds a coffee review for a coffee. The coffee is
a fictive coffe made by this person, and exists
only as the name of the coffee review

CoffeeReview coffeeReview = new CoffeeReview (name,
this);

coffees.add (coffeeReview) ;

return coffeeReview;

public double getAverageScore() { // Gets the average
score of all coffees made by this person
return coffees.stream()
.mapToDouble (CoffeeReview: :getAverageScore)
.average ()

88

60

66

D.6 Task 6 - Comprehension

.orElse (0);

public void reviewCoffee (CoffeeReview coffeeReview,

score) { // Reviews a coffee
coffeeReview.addScore (this, score);

public static void

Person pl = new
Person p2 = new
Person p3 = new
Person p4 = new

CoffeeReview coffeeReview = pl.addCoffee ("Monday

coffee");

main (String[] args)
Person ("Personl");
Person ("Person2");
Person ("Person3");
Person ("Persond")

4

p2.reviewCoffee (coffeeReview, 6);
p3.reviewCoffee (coffeeReview, 3);
pd.reviewCoffee (coffeeReview, 5);

System.out.println (pl.getAverageScore());

/* Expected output: 5.5 %/

{

int

Listing D.5: Source code for study task 5

D.6 Task 6 - Comprehension

Related question: What is the output of this code?

Answer: 35.0

class A {

public int b(double dl, double d2) {
return (int) (dl + d2);

class B extends A {

public double a(int i) {

return 1 x 2;

89

Chapter D. Study tasks

@Override
public int b (double dl, double d2) {
return (int) (dl1 / d2);

class C extends B {

@Override
public int b (double dl, double d2) {
return (int) (dl * d2);
}
public List < Integer > d(int f) {
return Arrays.asList(b(f, f), super.b(f + 0.5,

class D extends C {

private List < Integer > e;

public D(int e) {
this.e = d(e);

}

public double e () {
e.stream() .forEach(g -> a(qg));
return e.stream() .reduce (0,

Integer: :sum) .doubleValue () ;

public class Task6 {

public static void main(String[] args) {
D d = new D(5);
System.out.println(d.e());

£));

Listing D.6: Source code for study task 6

90

IS

Appendix

Grading scripts

E.1 Pretest grading script

def grade_pretest (pretest):

col_names = [(f’pretest.{i}-{1}’",
f’pretest.{i}-{1}_correct’) for i in range(l,11)]
pretest[’'no_correct’] = [None]xlen (pretest)

for col in col_names:
pretest[f’ {col[0]}_participant_correct’] =
[None] xlen (pretest)
pretest["helpType’] = [None]x*len (pretest)

for i in range(len(pretest)):
row = pretest.iloc[i]

summ = 0

username = row/[’username’]

for j, colnames in enumerate (col_names) :
helpType = usernames|[usernames[’username’] ==

username] [helpType’].index
pretest.loc[pretest[’username’] == username,

"helpType’] =

usernames [’ helpType’] [helpType] .iloc[0]
score = row[colnames[0]] == row[colnames[1l]]
pretest.loc[pretest[’username’] ==

row[’username’],

f’ {colnames[0]}_participant_correct’] =

91

1

Chapter E. Grading scripts

int (score)
summ += score

pretest.loc[pretest[’username’] == row[’username’],

"no_correct’] = float (summ)
return pretest

Listing E.1: Script for automatically graing the pretest

E.2 Study grading script

def grade_study (df, col):

inds = list (df.index)
1 = [0]+*len(inds)

random.shuffle (inds)

for ind in inds:
print ("#"%40)

print (f'# Now grading for {col. capltallze()}:

(
print (' # Participant\’s answer:\n’
print ("# " + str(dflcol][ind]))
print ("#"x40)
1[ind] = float(input(’Grade: "))
df [f’ {col}_points’] = 1

return df

\n’)

Listing E.2: Script for grading the study answers

92

Appendix

Result and analysis supplement

F.1 Plots and p-values

F.1.1 Study scores

Table F.1 shows results from statistical tests done to find a difference in study
scores between the conditions and between the expertise groups on each study task.
The table presents 2 and p-values from Kruskal-Wallis tests. A Shapiro-Wilk
test was performed to test for normality in these groups as well, which presented
evidence of non-normality in study scores for both groups for every task.

Table F.1: P-values reported from Kruskal-Wallis tests for difference in study scores be-
tween the conditions and the expertise groups. Degrees of freedom were 1 for all groups.
All values are rounded to three decimal places.

Task Conditions Expertise

> p x> p
1 0.125 .727 0.127 .727
2 0.140 .699 1.348 .246
3 0.440 .507 0.440 .507
4 0 1 0.517 472
5 1.094 .296 1.094 .296
6 n/a nfa n/a nja

93

Chapter F. Result and analysis supplement

Table F.2 shows results from Kruskal-Wallis tests done to investigate a difference
in study scores between conditions within each expertise group. Once again, the
tables show x? and p-values. In addition, Shapiro-Wilk tests for normality within
each group presented evidence of non-normality for each group. Furthermore, it
should be noted that the sample sizes were small, so the results should be taken
with a grain of salt.

Table F.2: P-values reported from Kruskal-Wallis tests for difference in study scores be-
tween the conditions within expertise groups. Degrees of freedom were 1 for all groups.
All values are rounded to three decimal places.

Task Low High
X b X p
1 0.238 .626 0.004 .696
2 0.143 706 0.152 .696
3 0.343 .558 2.268 .132
4 0732 .392 0.850 .357
5 1.921 .166 0.004 .951
6 n/a n/a n/a nja

Table F.3 shows results from Kruskal-Wallis tests done to investigate a difference
in study scores between conditions within each performance group. The tables
show x? and p-values. In addition, Shapiro-Wilk tests for normality within each
group presented evidence of non-normality for each group. Once again, the sample
sizes are small, and the results should therefore be taken with a grain of salt.

Table F.3: P-values reported from Kruskal-Wallis tests for difference in study scores
between the conditions within performance groups. Degrees of freedom were 1 for all
groups. All values are rounded to three decimal places.

Task Low High
> p x> p
1 0.250 .617 0.449 .503
2 n/a n/a 0.049 .824
3 0.500 .480 0.007 .931
4 0.042 .838 0.260 .611
5 0.023 .880 1.347 .246
6 n/a nfa n/a nja

94

F.1 Plots and p-values

F.1.2 Number of fixations lines with bugs

Table F.4 shows results from statistical tests done to find a difference in number of
fixations on lines with bugs between the conditions, expertise groups, and perfor-
mance groups. The table presents y? and p-values from Kruskal-Wallis tests.

Table F.4: P-values reported from Kruskal-Wallis tests for difference in number of fixa-
tions on bugs between the conditions, expertise groups and performance groups. Degrees
of freedom were 1 for all groups. All values are rounded to three decimal places.

Bug Conditions Expertise Performance

X2 p X2 p X2 p

Taskl.Bug 0.329 .567 0.329 .567 1.665 .197
Task3.Bugl 0.026 .872 0.511 .475 0.447 .504
Task3.Bug2 1.848 .174 0.002 .963 0.005 .945
TaskS.Bugl 0.002 .965 0.069 .792 0.031 .860
Task5.Bug2 4.906 .029 3.168 .075 2399 .121

F.1.3 Time spent on lines with bugs

Table F.5 shows results from statistical tests done to find a difference in normalized
fixation duration on lines with bugs between the conditions, expertise groups and
performance groups. The table presents x? and p-values from Kruskal-Wallis tests.

Table F.5: P-values reported from Kruskal-Wallis tests for difference in normalized fixa-
tion duration on bugs between the conditions, expertise groups and performance groups.
Degrees of freedom were 1 for all groups. All values are rounded to three decimal places.

Bug Conditions Expertise Performance

X2 p X2 p X2 p

Taskl.Bug 0.025 874 0.039 .843 1.930 .165
Task3.Bugl 0.103 .748 0.280 .597 0.080 .765
Task3.Bug2 1.724 .189 0.002 .963 0.009 .926
TaskS.Bugl 0.840 .359 0.433 .511 1.508 .220
Task5.Bug2 0.756 .385 2.025 .155 .309 578

F.1.4 Distance to lines with bugs

Table F.6 shows results from statistical tests done to find a difference percentile
distance from lines with bugs on the tasks between the conditions, expertise groups
and performance groups. The table presents y? and p-values from Kruskal-Wallis
tests.

95

Chapter F. Result and analysis supplement

Table F.6: P-values reported from Kruskal-Wallis tests for difference in distance from
lines with bugs between the conditions, expertise groups and performance groups. Degrees
of freedom were 1 for all groups. All values are rounded to three decimal places.

Percentile Conditions Expertise Performance
X p X p X p
Task 1
0 0.003 .955 1.115 .291 2.578 .108
25 0.0128 .910 0.854 .355 1.161 .281

50 0.023 .880 0.259 .611 0.129 .720
75 0.461 .497 0.487 .485 0.461 .497
100 4.432 .035 1.210 .271 0.731 .393
Task 3

0 0.103 .749 0.036 .851 0.103 .748
25 0.751 .386 0.513 .474 0.437 .509
50 2.165 .141 0.889 .346 0.001 .970
75 0.888 .346 0.853 .356 0.104 .748
100 0.172 .679 0.142 .706 0.299 .584

Task 5
0 0.128 .720 1.114 .291 0.542 461
25 0.103 .749 0.240 .624 0.173 .678
50 0.364 .5b47 1.365 .243 0.157 .692
75 0.157 .692 5.115 .024 0.388 .533

100 0.785 .376 2.162 .142 0.343 .559

Table F.7 below shows p-values and Pearson’s r reported from Pearson correlation
tests between total study scores and percent of first fixation after consulting help
section that was on a line with a bug for all bugs.

Table F.7: P-values and Pearson’s r reported from Person correlation between total study
scores and percent of first fixation after consulting help section that was on a line with bug.
Degrees of freedom were 14 for all bugs. All values are rounded to three decimal places.

Bug r P
Taskl.Bug —0.120 .660
Task3.Bugl 0.030 911
Task3.Bug2 —0.294 .268
Task5.Bugl —0.093 .732
Task5.Bug2 0.157 561

96

F.2 Mean and standard deviation tables

F.1.5 Time spent per task

Table F.8 shows results from statistical tests done to find a difference in time per
task between the conditions, expertise groups and performance groups. The table
presents x2 and p-values from Kruskal-Wallis tests.

Table F.8: P-values reported from Kruskal-Wallis tests for difference in time spent per task
between the conditions, expertise groups and performance groups. Degrees of freedom
were 1 for all groups. All values are rounded to three decimal places.

Task Conditions Expertise = Performance

x> p X2 p X2 p

1.740 187 0.751 .386 1.078 .299
0.039 .843 0.352 .553 0.266 .606
0.460 .498 0.036 .851 0.927 .336
0.513 474 0.070 .791 1.078 .299
2273 132 0.061 .821 6.497 .011
3.138 .077 0.036 .851 2.114 .146

AUt AW N =

F.2 Mean and standard deviation tables

This section contains a table presenting mean and standard deviation of number of
fixations and duration of fixations on every AOI that was created for the conditions,
expertise groups and performance groups. In addition, the table contains mean and
standard deviation of the study scores and pretest scores for the different groups.

97

Chapter F. Result and analysis supplement

93ed 1xou uo ponunuo)

$S0°0 T900 ISO0 P00 8900 6S0°0 SE00 SO0 LSOO TSOO TSO0 TSO0 () Sngr1yiseL
IseL
€e6'1 8IIP 8991 L90Y 60T1 79SS 6IL0 ST9T 798’1 St 7991 889°€ [£101 1531914
L0SO TIFO 9ISO L9Y0 6LFO 8890 €00 8810 9ISO S0 S0 SLEO syutod (13593014
€6¢°0 780 850 €eLo §C0 8¢6°0 (0] €290 LYY0 SLO €01°0 CI80 syurod 6)sajR1g
V0 ¥6T0 LOSO 0 TISO T9S0 THEO STI0 S0 SLED 6LYO TIEO sutod g)sja1g
LEVO S9L0 LOSO 90 €0F0 TISO TISO T9S0 LWFO SLO S0 ST90 syutod £353301d
LEVO SETO LOSO 0 TISO T9S0 STO T900 TISO 8EF0 €0F0 8810 syutod 93593914
VO ¥6T0 TSEO €€1'0 6LF0 TIEO THEO STI'0 6LK0 TIEO THEO STIO syutod g)s9391g
PISO ILFO 8SF0 L9TO 9150 S0 LWO STO 6LKO TIEO0 TISO SEP0 sutod 3593214
V0 ¥6T0 8SF0 L9T0 S0 SLEO €0v0 8810 S0 SLED €0v0 8810 sutod g)s3a14
L0SO TI¥O LOSO 90 S0 ST90 S0 SLEO 91S0 S0 91S0 S0 syutod 73533014
7€€0 8110 ¥I¥0 70 €0F0 8810 THEO STI'0 €0K0 8810 THED STIO syutod 13593914
JIREIEAR |
6080 ¥I8'€ SLLO T1 €9T1 8E¥T LOST SLT T9T TI®T SSKT SLET [#10) Apmg
00 00 00 00 00 00 00 00 00 00 00 00 syutod 9yjse],
€6V°0 LV90 8SY0 L9T0 TISO T9S0 S0 SLEO TISO T9S0 S0 SLEO syutod gyse],
€660 ¥T80 LOSO 0 TISO 7950 6LY0 8890 S0 $T90 S0 ST90 syutod pyse],
TEE0 SITT 88¥0 €€€0 TO90 8890 vPSO TISO #HSO TISO TO90 8890 sjutod gyse],
PISO 6750 00 00 €0F0 8810 S0 SLEO 6LYO TIEO LWWO ST syutod gyse],
VO 90L0 ¥IY0 7O TISO 8E¥0 9150 S0 9150 S0 TISO 8EP0 syutod Tyse],
Apmg
0 x 0 x 0 x 0 x 0 x 0 g
Y31 Mo Ys1H Mo dpH [onuo)
AUBULIOJIdJ aspadxy uonIpuo)) dIqerIep

‘suonexy Jo Jaquinu st (ju) Aq pamo[[oJ S9[qeLIeA "uoneInp sI (p) Aq pamoj[o} sojqelep dnoid aoueuriofrad pue
asnradxa mof pue y3iy pue dnoi3 djoy pue [01u0d 3y} 10§ Apnis Ay} UI 9[qRLIEA PUB [QV AJOAQ JOJ UOTIRIAID pIepue)s pue uedy :62 2IqeL

98

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

€l¥y PSI0l 898°TI S8E11 €8TS VILL €00TI €EEHl $S86 TOVTL L806 LLOG (Ju) 91U TYISEL
€000 S000 S000 S000 Y000 S000 Y000 S000 FO00 9000 000 000 (P) 9TRUIT TYSEL
89Tl 911 LOVL 69L'6 6666 L98'6 LITIL 69LTI 1TI'0l T9vTI 80l L9T6 (Ju) STAUIT PISEL
L0O00 S00°0 €000 00°0 L000 000 €000 +00°0 00°0 S00°0 L000 S00°0 (P) STAUIT TYSEL,
LS el L90TI YTL L vLSEl T95°01 L 06 68°C 6C6'L 16Tyl L9911 (Ju) praurT PIsEL
100 L000 #0000 €000 100 9000 €000 $00'0 ¥000 000 100 9000 (P) pTOUIT [SEL
00 01 ueu 0 00 01 LOLO ST LOLO 'l 00 01 (Ju) TIRUIT TYISEL
00 00 weu 000 00 00 00 00 00 1000 00 00 (P) TTAUIT IISEL
ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu Q-.—V T2uryysel,
B/u e/u e/u e/u e/u e/u e/u B/u e/u e/u e/u B/u A@v TI2uryrysel,
SoL'L $9 6ILY 199 $0S9 9v $$99 6T¥'S Sevh 0¢ THS'L 08 (Ju) TRUIT TYSEL
€000 TOO0 TOO0 1000 €000 TOO0 TOOO TOO0 1000 1000 TOO0 ¥000 (P) OTPUIT [SEL
PLO'LT 69L'ST SO'ST SIl 80801 €LT6 L6961 L9181 8EI'ST 11 L6SLL 9¥8'SI (u) 6auIT [SEL
1100 100 L000 9000 8000 8000 I100 6000 €000 S000 TIOO TIOO (P) GAUI'T TYSEL
Y6791 ¢8I CSS'IT 0°SI 6LC6 606°Cl ¥CTer TIS8L 9LSIT 1€C9l 6£¥ 91 LSELI (Ju) goury Tyser,
1100 1100 €100 6000 ¥I00 1100 [I00 6000 9000 000 SIO0 €100 (P) $UI'T [SEL
vIy'cl Scl'el LIL91 0¢l v9Tvl 98CCI €8¢Vl [LS ST 9¢'S1 L90°ST QII'€l SI9TI (Qu) poury yser
6000 8000 8000 LOO0 [00 80000 000 LOOO 6000 LOOO LOO'O LOOO (P) POUIT TYSEL
8¥891 061 919vT €€8'61 6€10T €T691 SO8'0T €9IC TLSSI 0TT €€8°1T 67691 (u) goury pIseL
1100 1100 ¢I00 100 Tlo'0 1100 100 100 TI00 TI00 [I00 6000 (P) €OUIT TYSEL
L9TI €ee'Tl £8¢'8 S¥S'L LOSTI LTLOl 9¢€6'6 06 €1l €eL’6 10°T1 LTL'6 (Ju) goury Iyser
8000 9000 9000 ¥000 8000 LOO0 9000 ¥000 L00O SO00 LOOO 90070 (P) TOUIT [ISEL
81 SL8€ 109€ €€8'F 88T € €09C S8 9€8T 9¢ T80F 09 (u) pRUrTPIseL
1000 1000 2000 2000 1000 1000 TO00 TO00 1000 1000 €000 TOO0 (P) TUIT DISEL
€CCIL LV9S6 9T9'SL LSE'89 ¥89°T8 9'9L TES'89 STO68 SLEI6 EEEL6 669FS 881°0L (Ju) SngryseL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

99

Chapter F. Result and analysis supplement

33ed 1xau uo panunuo)

000 1000 1000 TO00 T000 TOO'0 000 1000 TOO0 TO00 1000 10070 (P) TPUIT'TYSEL
IsEL
990'81 889'TC 6LI'ST €€5TT 6LE'8L T90HT TO9FI L90IT L91'LL L98°0T 6€I91 STHT (Ju) uonsanQd IyseL
v100 ¥100 61000 TO0 TI00 LIOO 1200 8100 I100 TIOO TO0 TT00 (P)uopsand-Ivsel
gecle 1L0Y 8Ll L1V'Y 0¢C (184 cLO'E oy 8L6°1 VIL'E LO'E £e8 ¥y (Ju) ad Ay ysey, TyseL,
€000 €000 TOO0 €000 TOO0 €000 €000 €000 TOO0 TOO0 €000 000 (P)dALMSEL TMSEL
916°S 0L 6€6v 80€L TILY 98T8 £9K'S 09 80 €€€01 19T T9p'E (u) uopngdPH TYSEL
L000 S000 TOO0 ¥000 LOOO 9000 TOO0 €000 LOO0 9000 TO00 €000 (P)uonngdpH ISEL
10°001 c6Cl L9096 ILSPI9T #¥C10I 688°CST 96LL6 geel L6698 L997C91 VIVl 07¢ (Ju) dPH TYSEL
LLOO L600 TSOO SOI'0 ¥90°0 SII'0 8900 €800 8500 €110 00 1000 (P) dRHTISEL
6S1°L91 TSY'SOT LIESL L9TOTI +19°€91 8SI'ELl 9TOOIT TIE'8ST 8SH'SPI 889°TST 6LITEL TISSLI (Ju) 3po) PISEL
1800 €110 8900 L00 6800 SOI'0 €900 800 L900 TLOO €800 €110 (P) 3pOD TYISEL
ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu sz couUIT IYSE],
B/u e/u e/u e/u e/u e/u e/u e/u B/u e/u e/u e/u AE couIrT IYSE],
ueu (07 ueu ueu ueu (V8% ueu ueu ueu ueu ueu (7% Qﬂv ﬁNoﬂmwm.ﬂv—m&,H
ueu €00°0 e/u e/u UL €000 e/u e/u e/u e/u uew €00°0 (P) TZAUIT [SEL
1188 L9T11 IvI't 1L09 8169 0L I¥SL €901 ISOF €26'S LE£9S T90°11 (Ju) ozaurT [SEL
9000 9000 ¥000 $000 S000 SO0'0 SO00 9000 TOO0 €000 9000 LOOO (P) 0TAUIT TYSEL
Sl sTT STl ST $680 I Er9l T I 0T el 91 (Ju) 6TUIT PISEL
1000 1000 1000 1000 1000 1000 1000 1000 00 00 1000 1000 (P) 6TUIT [SEL
€669 TICOl 9008 8€S'8 PS6'L L9%'8 I¥6'9 FITOI ILSL €496 9L 6 (Ju) gTAUIT TYSEL
v00'0 S000 ¥000 ¥000 S000 S000 €000 S000 SO00 SO00 €000 SO00 (P) STAUIT TYSEL
80L'9 06 8686 €£€01 8S6'S 0L 6£56 STI 6568 £85I $999 €769 (Ju) LT2urT PseL
€000 000 €000 ¥000 €000 $00'0 $00'0 S000 €000 SO00 €000 #00°0 (P) LTPUIT TYSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

100

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

€LO°LT TISOL 8S9PE OLL 80FOF 9€C LIY6 ¥IL6 LS6TE 98L'LI 69€'8T L9091 (Ju) €TRUITTISEL
SI00 11000 000 S000 SI00 100 80000 9000 LOOO LOOO 9100 100 (P) €TRUITTNSEL
Ur1 €€8T 89T TT LE80 81 LEI'T L91'E LLSO ST TS6T grle (Ju) TTAUITTISEL
1000 2000 1000 1000 1000 1000 2000 2000 00 1000 1000 2000 (P) TYdUIT TS,
66601 SLS'L 1€8°S 0L €VTIl SL89 9v0'S €€€8 8PSV 0v TErll 8¢l (Ju) TTRUITTISEL
9000 S000 €000 €000 SO00 €000 SO00 9000 TOO0 TOO0 9000 60070 (P) TTAUITTASEL
868°T€ 00V 8IT6E 69L9F 9I6'6E L98TH ILTIE PITEP 89106 LSSLE SSOOF L9S'LY (Ju) OTRUIT TISEL
9200 6200 ¥T00 9200 LTOO LTO0 TCO0 8TO0 1700 1T00 LTOO ¥EO0 (P) OTRUIT'TYSEL
L8€T STOE tHEOE 8ESHE TIO'9T L996T 8IL'LT LSSFE 66SET TOVHE SE6T TIEOE (u) auUITTISEL
€200 200 200 200 200 200 200 €200 00 €200 00 00 () GeUITTIISEL
POL'8T €€6°8C LP8'8CT P¥SI'¥E LISOC LS®'LC 6SS9T 6T¥V¥E SP9'8L 9P8CSEc 6VTLT LI0'LT (Ju) goury-gyser,
8100 €200 8100 6100 8100 1200 8100 TTO0 LIOO 9200 LIOO L1070 (P) SAUITTISEL
W61 6Tv'E 608v SLEY ISTT L99T S9TH SLLY €LTS vt 6991 L€ (u) LourT st
000 TO00 €000 TOOO TOO0 TOO0 COO0 TO00 TO00 TO00 TO00 TOO0 (P) LAUITTYSEL
SLEST SLE9T €19°8C 9'8C 9LSYI LIV'LI 99C VvITYC 95991 9¥'6l SIS9C T69TC (Ju) gaury-gyseL,
€100 TI00 €100 SI00 TIOO TIO0 100 €100 1100 €100 S100 €100 (P) 9UITTSEL
IVE'ET T9SHT LP6OF 80F €0EST €EE9T 8S9E €YOPE IILVT 9S'ST PI'SE 69LTE (Ju) sdurygvsel,
00 6100 8100 TO0 TO0 TO0 IT00 T00 T00 T00 TWO T00 (P) SPUIT'TNSEL
SL8'ST 0%l 8IEET 861 €91 €ECHl ILTIT LSSLL LvY'ST TOVSI TLETT O'LI (u) purTIseL
¥100 TI00 6000 6000 SI00 TIOO 00 6000 100 1100 1100 100 (P) PRUITTASEL
CLU'YL L98°CL LLL'SI Lel 6L Sl €e€el €88°¢cl LLOEl SL8SI 0¢Sl TI6L€l 98L'11 (Ju) goury-gyser
6100 €100 L000 LOO0 1700 SIO0 SO00 9000 6100 $IO0 TIOO 80070 (P) £OUITTISEL
€599 €80°L 196 LS8'8 €OV'L POl €6I'S EE€9 696°L 06 Tt 99 (Ju) durTTIsEL
9000 9000 €000 ¥000 S000 8000 F000 000 9000 LOOO TOO0 ¥0O0 (P) TAUITTASEL
68¢'1 SLT TL8T STS Se81 91T LLOE L99E 9L €¥IT LIEE 0 (u) ToUrTDISEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

101

Chapter F. Result and analysis supplement

33ed 1xau uo panunuo)

000 TO00 9000 9000 S000 €000 FOO0 000 SO00 Y000 €000 €000 (P) €OUIT'ENSEL
SIET 688CT T98E STS IPI'E €EEE 896T LS8E 88TE €vl't 809C 0¢ (u) zaurTesel,
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 00 00 (p) TourTEYSE,
€l6€ 9v8F 9ST6 SI1 €689 L9I'8 T6SS SSKS 6IS9 STL 88L'S L99°C (u) pRurTEvseL
1000 1000 TOO'0 €000 TOO0 TOO0 1000 1000 2000 TOO0 1000 10070 (P) TRUITEASEL
TLS6E ST6E 1OV'EY EE8TF 606'SE [LOSE P98'SH €¥OTH €YO'Eh 80€'8F SSTBE LIPEE (Ju) g3ngrevseL
8000 1000 TI00 TI00 1100 TI00 6000 [I00 I10°0 +10°0 8000 60070 (p) T8ng-gviselL
91T €£6'8C 8CL'O0I €T6'SS £€88°0¢ T8C 8SGL6 69L9S LYLIE 98L'IE 8066 £¥I'IS (Ju) T3ng-eyse],
1100 8000 L00 LTOO 6000 8000 LOO 8200 6000 8000 8900 LTOO (P) 13ngrevse],
£ISEL,
STIy ILF9 919°CI 0Sl 116 86 69101 €€S0I 161'S L99°8 9SO L9911 (Ju) uonsand-ysel,
v100 L0000 9100 TIO0 TO0 CIO0 9000 9000 ¥000 S000 T00 €100 (P)uonsand-yseL
6579 LSEL E€ISYT 6THTI 66L'€T €€S0I LIS9 vSI'6 6v'ST T69Tl €899 €e€'8 (Ju) adALNSEL TNSEL
L0O00 9000 6000 9000 800°0 000 80070 L000 80070 S00°0 L000 L0O00 (p) adA1yseL TyseL
69T€ 10V 660F 09 L8€Y L9I'S 6II'E T6OY 60TH €859 vepT S8¢'e (Ju) uonngdpPHTASEL
000 €000 Y000 S000 P0O0 F000 €000 €000 €000 ¥000 €000 €000 (P)uoyngdPHTISEL
LOV'E8 086 9SS'T6 §LTI LY'68 EPIOEI PSI'SE 009 EISHS 9SSHII ueu ueu (u) dPH TIIseL
L60°0 600 8¥0'0 SLOO 8900 I0I'0 TO0 TCO0 6900 +80°0 e/u B/u (P) dRH"TISEL
9819V 8EV'LLI S6'0ST €¥9'60T 190°0ET TISHOT 106°0ET €49'8LI SHE00T 98T'861 €6€T8I SLELYI (Ju) 3po) TseL
¥600 €10 1800 S600 T600 SII'0 8800 <TI0 100 IO ¥OI'0 LITO (P) 9p0D TSEL
ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu Q—C Mﬁu:m‘.—.Nv—mﬁrﬁ
'/u '/u B/u '/u '/u B/u '/u B/u '/u '/u B/u '/u Aﬁv caurygsel,
ueu 01 ueu ueu ueu 01 ueu ueu ueu 01 ueu ueu Q-C yrauryese],
ueu 00 B/u e/u ueu 00 e/u B/u ueu 00 B/u B/u qu prauryese],
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

102

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

LES'0 8T ¥68°0 1 LLS0 €EET 1S60 VILT $68°0 91 $680 91 (Ju) 91U EMsEL
00 00 00 00 00 00 00 00 00 00 00 00 (P) 9TRUIT'ENSEL
€81°0T CTIS9T 9799C STET ¥L68I 8€C 60TLT OLT €008l $ST €FLT 1L0ST (Ju) STUrTESEL
9000 800°0 S00°0 9000 9000 L000 9000 L000 9000 L0O00 €000 9000 (p) STAUIT EYSEY,
TP9'ET SEP'EE €L8°0T 606'9C SI0TT ¥ITTE SSSET I€T6T SS861 T69TE 60I'ST 06T (u) praurTevseL
8000 100 S00'0 8000 L000 100 9000 8000 9000 6000 8000 60070 (P) pTUIT £ASEL
€86°'LC OLE 6VE9T LIVTE SYYLT vTE TI0LT LLOSE LLS'ET 98L'EE 90L0OE 98T9E (Ju) CTRUIT EMseL
T1I00 1100 8000 6000 €100 100 8000 100 000 6000 ¥100 TIOO (P) €TRUITENSEL
8T6HC 8€6'0€ 1¥TTE TSE IPP'8l €T6LT TEEPE IE€TLE TOVET 06T 69v1E PSI'9E (Ju) ZTAUITESEL
100 100 9000 6000 10°0 100 L0O00 6000 6000 800°0 6000 1100 (p) TIdUIT EYSeY,
geee SLE'E 1761 LI91°C 7€8°¢ (49 16C°C L99°C Iv'c (343 60¢°¢ 1LSC (Ju) TTaUrTEYSEL,
1000 1000 00 1000 00 1000 1000 1000 1000 1000 00 00 (P) TTUITE£NSEL
8€6°TT ¥'ST LTTIE 688PE €I8TT €8S°9T 8LY'6T CECIE POVIT 9¥89T L6TIE SSYIE (Ju) oTaUrTESEL
9000 L000 LOOO 6000 LOO0 800°0 9000 8000 9000 8000 9000 8000 (P) QTRUIT ST
LL'6C 09¢ L680c 9€9°SE €L86C VILYE P$SS0E LLOLE ¥8Y'TE 69L'Ey TEL'ST 6'8¢C (Ju) goury-eyser,
6000 100 100 1100 100 100 6000 100 [100 €100 S000 L000 (P) SAUITENSEL
SOTIT L99°6T SLYOT 6LT €9€TT SO TEY6l SESLT PTHIT 9¥80E 881°0T LI69T (u) Ldurrevsel
8000 8000 SO00 LOOO 60070 100 ¥000 LO0O 8000 6000 S000 LOOO (P) LOUIT'ENSEL
S60°1 81 LLSO 1991 00 01 680 0 01 0T 680 91 (Ju) gaurTevsel,
00 00 00 1000 00 00 00 1000 00 00 00 1000 (P) 9UITENSEL
IvSvl 8eSvl 686°€l STO91 9991 ¢Sl LS6'IT T8I'ST +8€Sl SSPI9l 1S0°¢l I'vi (Ju) goury-eyser,
v000 $000 €000 SO00 Y000 S000 €000 ¥000 000 $O00 Y000 0070 (P) SOUITESEL
66€1 T6911 THTI SLEEl P06'91 €EESI S09'6 €80°01 SLYST 160°€l S6E0I Sl (Ju) pRurTevsel,
P00'0 €000 €000 $000 S000 F000 COO0 €000 SO00 Y000 €000 €000 (P) POUITENSEL
1Y9'6 $IT6 €PE0T SL89L SHI'SI 9€9'I1 6TS01 #9€T1 90S'LL #9€¥I €011 9€9°6 (u) gaurT st
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

103

Chapter F. Result and analysis supplement

93ed 1xou uo ponunuo)

7000 2000 €000 €000 TOOO €000 €000 €000 €000 €000 €000 TOOO (P) 6TPUIT£SEL
OLL ST96 8689 SISEl PSTS €HITL 969 TOY0l 9169 OVl €ISL LS8'S (Ju) gzaurTEsEL
000 TO00 ¥000 S000 €000 FOO0 FOO0 €000 €000 Y000 ¥000 €000 (P) §TAUIT'ENSEL
SEL'OT L9901 0L I TITIT 1€TTl 68L9 6 9¢'6 L91°CI 6€S°L 0L (Ju) LTaurTEYse],
€000 €000 ¥000 000 $OO0 Y000 €000 €000 $OO0 SO00 €000 TO00 (P) LzoUIT€NSEL
9vS'El €€6'11 SSP9 SSPTI 6LEEl 6T6T1 V9L STIL LEEl 8€S91 I¥ES 69L'L (Ju) 9zauIT EMsEL
P00'0 €000 €000 ¥000 $000 ¥000 €000 000 Y000 SO00 TOO0 TOOO (P) 9TAUIT'ENSEL
€CI'8 1988 LSSS €LTL 6S6L 6TF6 S68'S SL'O TT68 8E€SOl 6LSE 9H8'S (Ju) sTaurTEseL
7000 TO00 TOO0 TOO0 TOO0 TOO0 CO00 TO00 TO00 €000 1000 TOO0 (P) STRUITENSEL
00 01 ueu 01 ueu 01 00 0’1 00 0’1 00 01 (Ju) paurTese,
00 00 ueu 00 ueu 00 00 00 00 00 00 00 (P) pTAUIT £ASEL
LLSO €€€T ueu 01 LLSO L99'] ueu 0€ LOLO $T LOLO Sl (Ju) €TAUIT EMSEL
00 00 ueu 00 00 00 ueu 00 00 00 00 00 (P) €TRUITENSEL
€96TI 98L°€l 88L'8T O°€C 60LLI 98T6l ILKFI 091 6€FI €76'61 SLI'ST €8SSI (Ju) TZaUrTSEL
00°0 7000 9000 9000 S00°0 000 S00°0 S00°0 G000 S00°0 S00°0 00°0 (P) TTUIT EYseY,
650VT T9SHT S8I¥LY EEELY 899 ¥LE €58 69L0E LVO'EE 6T6'SE T6TIF YIL'6T (Ju) TTAUIT EvseL
8000 000 8000 100 6000 6000 9000 00O 6000 100 L000 900°0 (P) TZAUITE£ASEL
STL'8 LS89l TEO'ET SPSOE I¥90T PILTT 9ISEl 160°€T €LE6l 9¥8HT 69091 SLOT (Ju) ozauUrT£SEL
000 ¥000 ¥000 L000 $000 SO00 €000 S000 Y000 9000 €000 SO00 (P) 0TI T £SEL
LOLO Sl LOL0 Sl LOLO Sl LOL0 Sl LOLO Sl LOLO Sl (Ju) gTaUITEYSEL
00 00 00 00 00 00 00 00 00 00 00 00 (P) 6TRUITENSEL
96'SE T6E 9E6'LT LLOTE TSTIT STOTE VIL'E STOY 6SS6E EFI9F €OVLI €v9'ST (Ju) gTaUIT EMsEL
6000 100 9000 8000 LOOO 6000 8000 6000 60000 TIOO ¥000 LOOO (P) STAUIT'ENSEL
weel 01T 88€1T 09T 66'L1 L90FT 12991 LLOTT t6E6] $9T LTEFI 98L61 (Ju) LT2urTesel
L000 9000 S00'0 LOO0 LOO0 800°0 SO0'0 S000 000 8000 S000 9000 (P) LIPUITENSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

104

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

ESLT SL'T LOLO ST 981 0T 00 01 8¥S0 1 9€TT 0T (Ju) THRUIT ESEL
100°0 00 00 00 1000 1000 00 00 00 00 1000 1000 (P) THOUITENSEL
TIge 'S 61T 160€ 19S°€ PILY 6TFT €80F ST9C vSI'S STT T69'E (Ju) opRuUIT EvSEL
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 (P) opRuUIT EYSE,
656'€ L99S SEYE 0S 9WLT €8SF vy 7819 9S°C S¥S9 peb'e STV (Ju) 6EauUIT EMSEL
7000 1000 €000 TOO0 TOOO 1000 €000 TOO0 TOO0 TOO0 TOO0 10070 (P) 6£UITESEL

00 01 00 01 00 01 00 01 00 01 ueu 01 (Ju) geAUIT EMsEL

00 00 00 1000 00 00 00 00 00 00 ueu 00 (P) SEAUIT ST
L6VT 199°T ST €€€T S0ST LIVT ST 199C 6TL1 6C 89I'l T8IT (Ju) LEdurTseL

00 1000 10070 1000 1000 1000 1000 1000 00 1000 1000 1000 (P) LedurTeysey,
9TI'E PP €0TT 9€9€ €£0T EHIT 65°€ Oy 98I'C €€8F% SI0T €E€€ (Ju) 9gaurT gvseL
1000 10000 TO0'0 1000 1000 1000 TOO0 1000 1000 1000 1000 10070 (P) 9£UITESEL
SSI'T L99°1 ueu ueu ueu weu GGl 99T bIb] 0C ueu 01 (Ju) SEdUITEMsEL
1000 1000 e/u e/u e/u B/U 1000 1000 1000 1000 ey 00 (P) SEUITENSEL
oLs 09 CILT €8SV PIORS STS VLTS €LT'S eres 69°S £€86'C LY (Ju) peauryeyse],
7000 1000 1000 1000 OO0 1000 1000 1000 1000 1000 1000 10070 (P) pEAUITEASEL
SL8E €¥9F 69€T III'v 16LT LOI'S 9LL'E 9€9°E T9SE 1609 SLTT LI6T (Ju) geauITEvseL
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 (P) £ERUITENSEL
aral 0C ey 01 00 01 Pl 0 togl 8l ueu ueu (Ju) ZEAUITESEL

00 00 ueu 00 00 00 1000 1000 00 00 e/u e/u (P) TEAUITENSEL
vOSY LLO9 8T9S SSYL €6L'S 80EL T8EF 09 SOI'S €€€8 vISP €80 (Ju) TEdUIT EvSEL
1000 1000 2000 TOO0 1000 TOO0 TO00 TOO0 TO00 TO00 1000 1000 (P) TEAUIT EASEL
8Y9t 8£S9 €S 0L 60S €269 €08Fv SS9 9T6r LIFL LO6F €809 (Ju) gAUIT EMSEL
1000 1000 TO00 CO00 TO00 000 1000 TO00 1000 TO00 TOO0 TO00 (P) 0£AUIT£SEL
$9T9 S8€'8 600S 1606 ¥SE9 6T68 S69F v8 LvL'S 69L6 LYY'S SSYL (Ju) 67U SEL

0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

105

Chapter F. Result and analysis supplement

93ed 1xou uo ponunuo)

00 00 00 00 00 00 00 00 00 00 00 00 (P) SSAUITESEL
€€TTL 986 SETOI 08 66LTI 91l 9786 0L +80°01 €€€8 L86TI 001 (Ju) psauryeNsel,
2000 TO00 TOO0 1000 TO00 €000 <000 1000 TO00 TO00 TOO0 TOO0 (P) pSPUIT ST
611 oyl +v99°¢cl SL8VI SSP Il 1'1¢ I8 818 66'¢l Syl L8O'ST TIT¥I (Ju) gsauryeyse],
€000 €000 S000 S000 FOO0 9000 €000 €000 €000 Y000 Y000 €000 (P) £SPUITENSEL
vL91 6C6'61 TOL'ST SLPL L6691 LS8'81 STL'ST 091 SLESI €€€6l ITOLL 160°SI (Ju) gSAUIT EMSEL
v00'0 S00°0 100 9000 S000 SO00 6000 S000 6000 LOOO 000 €000 (P) TSPUIT'ENSEL
STSLL L98TT TSYSI L99ST LS61 YILIT I9L91 TOKLL TIO6L SEFSI 6TLI SSHIT (Ju) TSAUITESEL
€000 S000 €000 Y000 Y000 9000 TOOO $000 FOO0 FO00 €000 9000 (P) TSPUIT'ENSEL
I88IC SLEYC 8L9'ST e€VI'€C VI9EC 0°S¢C 8L'€C 6CY'CC 9YL'ST L9¥'ST ¥8EIT €Ll (Ju) psdurTEyseL,
S00°0 9000 8000 L000 8000 8000 S000 S000 9000 LOOO 8000 LOOO (P) 0SPUITE£SEL
el CTIV'0C L68'IT 6T¥8l 19%°0C SLEET 6861 'Sl TLEVCT 0Cc €IS L9891 (Ju) epPurT eYseL,
¥00'0 S000 8000 9000 LOO0 LOO'0 SO00 000 000 9000 SO00 SO00 (P) 6FOUIT'ENSEL
SPT81 889°1T SLOIT 081 1LTOT SLY'ST 8TH9l FITEl 86€TC YTT 98191 €€SLI (Ju) gpaUrTLSEL
G000 S00°0 L000 S00°0 L0000 L000 €000 €000 G000 S00°0 9000 9000 (P) 8pUITEYSE,
LY9'1 9'C 7ET'8 9L 6881 VILY 89L°S GLY'E L669 6CY'9 L8] GLET (Ju) Lpdureyse],
00 1000 TOO0 TOO0 1000 1000 TOO0 1000 TOO0 TOO0 00 1000 (P) LrUIT£NSEL
669 9TP LIS6E SI99E I¥80E TTE SEL'Eh S198Y TE6LE PSI0S PPI9E L9SOE (Ju) spauryeNsel,
€100 €100 8000 6000 8000 6000 ¥IO0 ¥IO0 L0O0 TIOO #1000 100 (P) SPOUITENSEL
0T0r L90°€S 1€TEr TO9PP Y8I'SE SLY'EY 6PESH STIS €06'Eh LS8'8S LY0LE ST6E (Ju) ppaurTesel,
6000 SI00 6000 100 100 €100 6000 ¥100 6000 SIO0 100 TI00 (P) proUITENSEL
vT99T €EI'TY PPSSE LOITH LOYPE 9Sh L6'ST €E8'LE 19SPE LS'SY IE0'ST €T6HPE (Ju) gpauIT EvseL
1100 2100 100 1100 €100 ¥100 S000 8000 8000 CIOO TIOO 1100 (P) €POUITENSEL
LES'0 Sl 01 'l 01 ST L£80 Sl 01 0C 00 01 (Ju) THIUIT ESEL
00 00 00 1000 00 00 00 1000 00 1000 00 00 (P) THUITENSEL

0 z 0 Zz 0 xz 0 z 0 z 0 Zz

YsIH i | Y3IH L | dpH [ouo)

AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

106

F.2 Mean and standard deviation tables

33ed 1xau uo panunuo)

80S'€ O¥8y t9L9 €€€'8 THP'S III'9 I€ES S8€9 8ekE LILY S8€9 8ISL (u) gaurypsel,
€000 #0000 100 1100 100 L000 SO00 LOO0 SO00 SO00 6000 6000 (P) 9UITPISEL
1v6'v €esy 80¢°L SLEL 6L'¢ 6881 0L 626'S €09 A 96°S 818G (Ju) goury-pyser,
L0000 S000 TIOO 6000 8000 9000 100 L00O 8000 SO00 100 80070 (P) SPUITPMSEL
886'¢ LI6E SILT 6TFE 8S9T TE LE6E €€V SLTY St €SPl 688T (Ju) gaurTpysel,
S000 000 TO00 ¥000 ¥000 €000 SO00 F000 9000 SO00 TOO0 TOOO (P) €OUIT'PYSEL
55T 0¢ 8€T SE 9l TT TLT sLE ST8T ST9E LISTT T (u) gaurTpsel
€000 €000 €000 00°0 2000 2000 €000 00°0 €000 7000 2000 2000 (p) TaUITHYSEL,
96L°0 Sl Sl SL'T 111 L99°1 L]0 Sl 8II'I L99°1 LLSO €ee’l (Ju) TouryHyser
1000 10000 TO0'0 TOO0 TO00 1000 1000 1000 1000 1000 1000 10070 (P) TAUITPSEL
PISEL
S6EYT 9LT PEL'ST S0E61 S6S61 €EE€IT TILTT 8ES9T 99881 LSEET TSK'EC Pl () uopsanQ esel
TI00 6000 8000 6000 LOO0 L0OO0 TIO0 I10°0 9000 LOOO TIO0 1100 (P)uonsanQd-eyseL
S8 YA 8LY (474 919°¢ LIV'Y SY9'€ [16L°C L'e L98'S L99°C (Ju) ad L1 ysey eyseL,
v000 €000 $00'0 TOO0 SO00 €000 TOO0 TOO0 1000 1000 S000 000 (P)IdALMSEL'ENSEL
SIOY €IS ¥I6T vy ThTT 1€TE 886'€ €859 8L0°C 9Y8F LIV €€t (Ju) uopnngdpPH ENSEL
1000 1000 TO00 TO00 1000 1000 CO00 TO00 TO00 T000 1000 1000 (P)uoyngdPH ENsEL
98€'897 E€EETEE I8°SSE EPIPLE 909FIE I'6EC 89V'66T €€8°69€ SSTLT 80€IED 00 01 (u) dPH"seL
600 ¥800 9SI'0 €410 €600 6800 S9I'0 €410 €210 SEI0 00 00 (p) dPH EYISEL
LLS€EC 6TSIey 8YI'v9¢ 6Cr'8ch LT8CST 0Chy LS'IVE L9Y'LIY 16'88C TIC'LEY LEL'60E LIV CTY (Ju) apo) eyse],
LSOO LITO €00 110 9900 9210 1900 10 900 6010 ¥900 6110 (P) 3P0 €seL,
ueu 01 00 01 00 01 ueu 01 ueu 01 00 01 (Ju) 9gauUIT EMsEL
ueu 00 00 00 00 00 ueu 00 ueu 00 00 00 (P) 9SPUIT'ENSEL
LLSO Sl 00 01 LLSO L99'1 00 01 S0 STIL LOLO 'l (Ju) ssaurTEsEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

107

Chapter F. Result and analysis supplement

93ed 1xou uo ponunuo)

100 100 2000 €000 6000 8000 LOO0 SO00 9000 90070 100 L000 (P) ETAUITPASEL
SIS9 8LLY SSI'T L991 8L69 SL8Y 8ST'I STT SE0'l STT €IL6 S'L (Ju) T7UITpSEL
S000 000 1000 1000 S000 $000 €000 €000 1000 TOO0 LOOO LOOO (P) TTAUITPYSEL
L8E6 SL8TT 9¢C0l 8¢S'6 86L'I1 ST9°CI 188°S S19'8 PSSOl 98C01 €cre eeell (Ju) pzaurTPseL,
8000 1000 ¥I00 1100 TI0O0 11000 100 1100 TIO0 6000 6000 TI00 (P) 0TAUITPYSEL
6118 €€6'6 16€S €€8°6 vS9L SI901 €9€9 YIT6 909°S L91'6 ¥S6'L L9YOI (Ju) 6TRUIT pYSEL
8000 60000 000 TIOO LOOO 100 000 100 000 100 L0000 1100 (P) 6TRUIT'PYISEL

V9 7886 €ILS SL'S 6€TL SEI0l LILY €498 65C9 T6 YEI'9 €496 (Ju) gTaUITpYsEL
9000 6000 £L000 100 9000 6000 L000 00 9000 8000 LOOO 11070 (P) STRUITPSEL
¥91°6 2969 ¥S°9 1’01 7869 SL'6 96¢ v LSE9 1234Y 69L°L 9 LLO'8 (Ju) 9TauUITPYSEL,
S000 9000 L000 100 LOO0 6000 ¥000 L000 9000 8000 9000 8000 (P) 9TAUIT pYSEL
w6CS 0L SOt 0L SSV'S pILL SEL'E L91'9 ILOS €858 880F £F9°C (Ju) STRUITpYSEL
S000 000 SO00 8000 SO00 LOO0 ¥00'0 LOO0 SO00 8000 ¥000 90070 (P) STRUIT'PYSEL
88CH SL8S €TSS $9 90TS K9 €I€r 69L'S 69LY €PI9 €E8F €809 (Ju) praurTpsel
€000 S00°0 S00°0 S00°0 €000 000 S00°0 9000 €000 7000 000 9000 (P) prUITPYISEL,

ueu 0¢ ueu ueu ueu 0¢ ueu ueu ueu ueu ueu 0¢ Qﬂv Nﬁ@ﬂﬂm.ﬂv—w&,ﬁ

ueu 100°0 e/u e/u uew 1000 e/u e/u e/u e/u w1000 (P) TIAUITPYSEL
SPET 0€ LS60 SLT ¥LOT e S0 STI €SL0 €€81 SS0E L99°€ (Ju) TTUITpSEL
1000 €000 1000 1000 C000 €000 1000 T000 1000 2000 1000 #00°0 (P) TTRUITpYSEL
SLLY 08 €0TS ST9 9€S 09 9sL'€ 1116 PL9T L99F TI0S 68801 (Ju) oTUI T PSEL
L0000 6000 1100 6000 9000 S000 100 €100 €000 $000 100 SI00 (P) OTRUIT pYSEL
vIS'8 ¥ITS 9669 TTT8 €LT8 LI6L LO9L SPS'8 €TLE 9Lt 666 LTI (u) GuITpIseL
8000 8000 TI00 100 8000 8000 TI00 100 v000 v000 1100 SI00 (P) 6AUIT'PYISEL
€LST 6THT ueu 0T L9g€ 0€ LS60 SLT LLSO L99T €€0°€ 8¢ (u) Lourypsel
2000 €000 WRU €000 000 TO00 TO00 €000 1000 TOO0 €00°0 €£00°0 (P) LAUIT'PISEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

108

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

STOl 9Y8'E SE6'l LLOE L8LT 69LT E€LST ¥SI'v 6€6'l YILE TPl L91'E (Ju) uopngdPHpASEL
000 €000 Y000 S000 $000 F000 TOO0 Y000 €000 ¥000 €000 $00'0 (P) uoyngdPH pNSEL
P09'TL ST9901 6SL'SE TSS S6LT9 07Tl €6'89 L9169 S8¥OH9 9¥8'98 ueu ueu (u) dPH"psEL
SIT0 €ero LO0 €L0°0 800 cIro €ro LOT°0 101°0 170 e/u e/u (p) dPH PYSEL
S6S°LEL TILYVPST 68S°SIT LIV PIT 8eL €9l 88I'L9T $TL'8Y STPOL S69'IST STOLET 6% C01 TI8EEl (Ju) apo) pise],
9800 6210 8800 III'0 6800 S8TI'0 S80°0 €110 LSOO 9600 €010 910 (P) 3p0D"pIsEL,
ueu 01 ueu ueu ueu 01 ueu ueu ueu ueu ueu 01 @Ev geaurypyse],
ueu 00 B/u e/u ueu 00 '/u B/u B/u e/u ueu 00 A@v geaurypyse],
LOLO Sl 00 01 LSO €£€71 ueu 01 ueu 01 LSO €€€1 (Ju) ZEAUITPSEL
00 2000 10070 1000 1000 1000 ueu 2000 ueu 1000 00 2000 (P) TEUIT PISEL,
919'6 ¥6C°CI P8I'L 1LO'TI 61¥9 S0l LTeOol L90El 7689 £ee’6 6076 ovl (Ju) TedurTPSeL,
1100 1100 1100 SI00 9000 100 #1000 LIO0 9000 8000 €100 LIOO (P) TEAUITPYSEL
1096l SLOT $P0T 6TKTC 866l €€SHT LSO'El €€S81 698°0T LS8PT LIETI ST9'8I (Ju) ogaUIT ST
LI00 TO0 LI0O 6200 9100 €200 TO0 STO0 9100 €200 6100 STOO (P) O£UITpYISEL
Sov'el 889°61 8LYV'El ILSLT 8SEST C9S°0C 10S0I ILS91 CTI6ST 6CvIT 6£€0l CTIE9l (Ju) gTaurTPIsEL
L100 1200 €100 6100 SI00 TO0 9100 TO0 LIOO TO0 ¥IO0 TO0 (P) 6TAUITPMSEL
1911 78861 SELTL vITPL TOOSI 8€H0T LPOO OFI 99L°€l L9T6l 8I86 SSI (Ju) gTauIT pYSEL
100 L100 8000 €100 100 9100 6000 SI00 100 9100 6000 SI00 (P) STAUITPASEL
8006 LS8'S 60ET €€€T 6LII $8 ISLT €€€T 990T €€€T SOL'II '8 (Ju) 9zaurT pYSEL
S000 S000 F000 €000 SO00 SO00 ¥000 €000 SO00 FO00 S000 SO0 (P) 9TAUIT'PISEL
620'IT €€6'11 LST'O1 €806 vIv'El L9TTI SURY L99'8 T1TO01 LI¥IL 9CI'TT L9001 (Ju) sToUrTPYSE,
8000 100 TI00 1100 TI0O0 [100 8000 1100 CIOO 1100 6000 1070 (P) STAUITPASEL
¥88'8 ST901 L8LL ¥SI'S PSI'6 8601 ¥CTL 69LL 1796 1LSOI 8I'L €£6°8 (Ju) pTaurTpYseL
8000 100 8000 8000 6000 6000 8000 6000 6000 6000 LOOO 8000 (P) PTAUITPYSEL
€8L'6 00l SS€T S€ 9SK6 L9¥8 16L'S LI¥'S IT¥L LLOL S98'8 €¥I'L (Ju) ETaUITPSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

109

Chapter F. Result and analysis supplement

33ed 1xau uo panunuo)

S000 9000 8000 8000 ¥000 9000 8000 8000 000 SO00 8000 8000 (P) OUI'T'SYSEL
68C01 +IT0I 88€'8 8ISTI SL9'8 SI9OI TOKOI STII €6£8 €8SI1 ISH0l 80€01 (u) Lourygsel,
€000 €000 000 9000 7000 000 S00°0 S00°0 €000 7000 000 G000 (p) LourT Syse],
6L891 ¥C891 TELTI 8ELSLI ¥ELSI 06l LO6VI L9T'ST 99¥'Cl vyl 6Ccl'Ll L98°61 (Ju) gaury-Syser,
000 S000 L0O0 60000 SO00 9000 8000 LOO0 €000 F000 8000 60070 (P) 9UIT SSEL
168°S1 STI'Pl S0T6 ILSIT ISOLL +TI S9I'ST L9V'€l €9¥'01 €p911 TITSI T90¥I (Ju) sdurysysel,
¥00'0 ¥000 9000 9000 $000 $00'0 SO00 S000 €000 €000 9000 9000 (P) SPUIT'SYSEL
62911 L9911 CLL9 9¢€9°6 Sov'6 SIT LSEO0T vITOI SOI'0OT 8ESTII L6 LLOOT (Ju) poury-syser,
$00'0 €000 €000 Y000 Y000 F000 €000 €000 €000 FOO0 €000 000 (P) pOUIT SSEL
20¢Cl 0¢€l 99611 8I8CI vLS'6 €v1'01 ¥I6Cl T9¥'81 T88°01 SI9°¢l I0I'€El €¥9vI (Ju) goury-gyser,
€000 ¥000 L000 8000 €000 €000 LOOO LOO0 €000 ¥000 LOOO 9000 (P) €OUIT'SYSEL
S80I ILS0l €9¥L 6068 TSI'S LIYL 8TI'Ol LLOTI SO6IL €80°01 699 S19%6 (u) gaurySsel
€000 €000 000 00°0 2000 2000 7000 +00°0 €000 €000 000 000 (p) TourTSYSE,
1S08 LI6L SLL9S 09T SILOS €T 1998 08 ¥8y T8I'TT ISI'S 9559 (u) pRurTSYseL
7000 2000 SIO0 8000 ¥I0O0 9000 $OO'0 €000 €100 9000 €000 €000 (P) TUITSASEL
LLY'ST 88S'Iv 186'ST €v9'9T TIOIE T9SEr 9881 €E€SST 9SLVT L9vhb TTL'ST TIST (Ju) Z3ng-SseL
1100 €100 6000 [1000 [100 +10°0 6000 6000 6000 €100 1100 1100 (p) T8ng svsel,
€PL9T STOPE 60°LI S0ETE 9LYIT TISIE €9SPT 69L'SE ¥S6TT ILSHE €86TT L99TE (Ju) 13ngrgyseL,
80070 10°0 1200 200 L10°0 Y100 7100 S10°0 G000 6000 200 6100 (p) 13ng syseL,
SMseL
e g6 vt 98LY P09F Sy 18T 80€S WIS 0S 8ITE €ELY (Ju) uopsand pyisel
6000 9000 9000 LOO0 9000 SO00 6000 8000 9000 ¥000 6000 8000 (P)uonsand pyseL
LyL'T € 999°¢ TYS 610€E STY €TLE 69LY 1STT Te 6ILE v’ (u) 9dALYSeL pYsel
8000 9000 000 £000 100 LOO'0 900°0 9000 TOO0 €000 6000 6000 (P)dALMSELpMSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

110

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

oSl 8ev'IC g8l 6Tyce TO8SI SC9Tc 1eL'Ll [LO'TT SICLL €£6'CC 8091 L98°0¢C (Ju) gTaurT SYse,
S000 9000 9000 8000 SO00 LOO0 9000 LOO0 9000 LOOO SO00 80070 (P) TTAUITSYSEL
TITEl €€S0T 8SYOI LS8PI 890°€l SL88I €9I'Il TOW9l 611 616'1C 68811 €€6°€l (Ju) T7aUrT SSEL
€000 S00°0 S00°0 9000 €000 000 S00°0 S00°0 €000 S00°0 €000 S00°0 (P) TZUIT SYSEY,
S0 STl ueu 01 00 01 LOLO Sl 00 01 LLSO €€€T1 (Ju) 0zauIT SMSEL
00 00 ueu 00 00 00 00 00 00 00 00 00 (P) 0TAUIT SSEL
10vT 91T 0T 0T 68L1 81 809C YT 091 €€81 0¢ $T (Ju) 6TRUIT SMSEL
1000 1000 00 00 00 1000 1000 1000 00 1000 1000 1000 (P) 61U SYSEL
610°61 SEP0E 6V9°ST LSS'LI SE90T 8E6'8T £PSHI ILS6l 6C9FI 00E L8E0T TI86I (Ju) LT2uUrT SsEL
80070 100 000 L0O00 L0O00 100 9000 9000 000 6000 6000 80070 (P) LYdurT SYsey,
STt 0'C 00 0’1 70¢'1 81 9180 eee’l 14041 0'C 80%°0 LI9T°1 (Ju) 9TauUIT SYSe,
00 00 00 1000 00 1000 00 00 00 00 00 1000 (P) 9TUIT SSEL
€E€9C SE€T6T LTVl YITOE SEV9l STO9T 9Y8'8T €E6TE LISET EESIE OMOET 8E6'LT (Ju) prourySyselL
8000 6000 9100 LIOO 6000 100 9100 ¥I00 L000 6000 9100 SI00 (P) PTAUITSYSEL
€LLCTT 8€6'8C S6S'SC vITYE PPE8I SLEST 9LT6C LS8PE LES6I 01€ €ELLT SL'TE (Ju) gTaUITSYSEL,
L0000 8000 ¥TO0 1200 TCO0 FIO0 ¥IO0 ¥I00 00O 6000 ¥TO0 61070 (P) ETAUIT SNSEL
60L°61 LT TLT8L YITI9T 991'61 L90'9C IL88I 6TV LT I7'LT 8ES'LT 0T 7909¢ (Ju) graUIT SYsEL,
8000 8000 6100 LIOO 8100 TIO0 TIO0 [I00 8000 8000 8100 SI00 (P) TTAUIT SSEL
I18v°€l 8II'IT SETI 98TTC 8LE'II S0C TO6'El L98°TT TEOEl €€SIT 696TI SLIT (Ju) TTAUIT SYSEL
¥000 9000 100 TIOO 6000 8000 LOO0 8000 000 9000 100 1100 (P) TTRUITSYSEL
LY'Ol 88T°LI vLS'8 LS8TI C0¢'8 SL8TCI 9¢8°01 98L°LI 91¥'8 ¥IL¥I L6601 TI9S°SI (Ju) oTaUIT SSEL
€000 S000 ¥000 9000 €000 SO00 €000 9000 €000 Y000 €000 9000 (P) OTPUIT SSEL
01 ST S£5°0 ST LPKO T 9SL0 YILT 8¥S0 vl L8L0 1LSTT (Ju) GuITSMsEL
00 00 1000 1000 1000 1000 1000 1000 00 00 1000 1000 (P) 6AUI'T'SHSEL
879°0C L9T0T +60°TI €80°91 98011 LS89l 88ETT LLOOT 89ETL 9¥891 960°1T LS8'61 (Ju) gaurygseL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

111

Chapter F. Result and analysis supplement

93ed 1xou uo ponunuo)

00 1000 00 1000 00 1000 00 1000 00 1000 00 1000 (P) SEAUITSSEL
€L6'0T €S€0€ L'6T SI9IE SI'LT T90'6E €L ILSIT L81'9T L9TEE €OL'ET €€SST (Ju) peaurySysel
L000 60000 8000 1100 LOOO TIO0 9000 LOO0 9000 6000 8000 1100 (P) pEAUITSYSEL
6£07C Lv9'8T 9I'E€C STST 98€'ST TSE €508l FIL'SI SLYOT L90'6T T8Y9T 98T'ST (Ju) gEUIT SSEL
100 6000 9000 8000 6000 1100 9000 9000 SO00 8000 II00 6000 (P) ££UIT SSEL
8T8°C 0¢ S60°1 81 0T 0T SSI'T €€€T SSI'T €€€T 0T 0T (Ju) TEAUIT SSEL
00 1000 00 1000 00 00 00 1000 00 1000 00 1000 (P) TEAUITSYSEL
687’8 STI1 LITOl SLTL TH9'6 <TISTI LT98 L9901 €SEL ¥ILOL TSLOL ILOEL (Ju) TEUIT SSEL
€000 €000 $000 S000 €000 Y000 €000 €000 TOO0 €000 000 SO00 (P) TEAUITSYSEL
SE'TI 14! S1°ee S1c sveel 0Ll SITIT g6l 6L9°81 06l 8ISSI PSI'LI (Ju) pgaurT SyseL,
S000 S000 6000 8000 9000 9000 8000 L0OO LOO0 9000 LOOO LOOO (P) 0£UITSSEL
6IS11 STI'ST 68€HE 1LS0E L9E'81 TISTT €ITE +ITST LOSOE €€6°8T €981 €€€761 (Ju) 6TaUIT SMSEL
¥00'0 S000 €100 TIO0 8000 8000 CIO0 8000 1100 6000 6000 80070 (P) 67PUIT SYSEL
LLI'IT T90ST LS9T 9¥8'6T LLY'SL ST9T 89I'6C SSE'ST 1€6'1T 98L'IE TOLYT €£6'TT (Ju) gzaUIT SSEL
L0O00 L0O00 100 1100 800°0 6000 100 6000 80070 100 6000 6000 (p) 8zaUIT SYSEY,
10L91 SL80C Lcevl SI1981 8¥6'Cl T90°0C S€9'81 S19'61 ICI'LL €€I've evvCl 98CSI (Ju) LTaurT SYsE,
9000 9000 S000 9000 S000 9000 9000 9000 9000 LOOO Y000 S000 (P) LTAUIT SSEL
SES0 6TK1T 8S0 91 8¥S0 ST 8¥S0 ST 88K0 VILT L0 Tl (Ju) 9zaurT SYseL
00 00 1000 1000 1000 1000 00 00 1000 1000 00 00 (P) 9TAUIT SYSEL
6€9°S 1LSO1 €SS9 8€S0I €CS L9T0l STOL L1601 SLY'S YSI'TL €959 00l (Ju) STaUrT SSEL
7000 €000 $000 S000 TOO0 €000 POO'0 ¥0O0 OO0 €000 Y000 000 (P) STAUIT'SSEL
6776 SLETL LSS'S 80CTI €€96 STl 6TLL €266 ILIL Ol 66¥0L vILTI (Ju) pTaurT SseL
v00'0 Y000 €000 ¥000 $000 ¥000 000 000 €000 ¥000 ¥000 SO00 (P) $TAUIT SYSEL
¥88'9 011 €TLOl ¥SI'TL $SE6 L9TIL ¥OK'S LIGII 9208 €26Tl LYS6 98TOL (Ju) g7aUrT SSEL
€000 €000 $000 S000 #0000 ¥000 $000 S000 $00'0 #000 #0000 +00°0 (P) £TAUIT SYSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

112

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

wo'L TL oV 0¢ TYOL 606S ve6T 111t SLL vPF9 668€ 0 (Ju) LpdurTsvsel,
2000 TO00 1000 1000 2000 1000 000 1000 TO00 TO00 1000 10070 (P) LPOUITSYSEL
T6IPl LLOEL S81'9 ¥9€'6 66V'El 98TEl $8S9 L8 L€l OSI 86€9 SLL (Ju) 9paurTSsEL
00°0 000 €000 00°0 000 000 2000 €000 00°0 S00°0 2000 €000 (P) 9puUIT SYSEY,
169°CC 6T¥'TC L6 9¥8'Sl 6STI91 L90°IT 6L°61 0°LT €6891 1€CCC GG8l S91 (Ju) spaurT Syse,
9000 9000 $00'0 9000 Y000 L0O0 SO00 SO00 SO00 LOOO SO00 90070 (P) SPOUITSASEL
L8'61 €€€1T vOSOI €€8'81 99T S0C S98'LI 81861 10LST 1L0IT 9ITLL 80E61 (Ju) ppIurTSseL
9000 9000 ¥000 L000 S000 9000 SO00 9000 000 9000 9000 LOOO (P) PPOUIT SYSEL
SLTYL L9THC 90°€T LLOLT SIOIT ILSTIE 9L6'El ILS'6] 8981 80E€6C LT9SI EE€TT (Ju) gpaUrT SSEL
G000 800°0 80070 100 800°0 1100 S00°0 L000 000 800°0 8000 6000 (P) gpaurT SYSEY,
¢ss6l TI80C 66V°CC SL'E€T PSLET ¢'6T ¥9891 €981 SOV'ET £€¥V9°9C 69L°91 SLI (Ju) TpaurT SYse,
6000 000 9000 8000 6000 6000 LOO0 9000 6000 8000 LOOO LOO0 (P) THOUIT SASEL
6CTSI €ELLT TEL'El TOYEl 86TYI €V LTLPL ILSEl S68°€l LLO'ST 880°SI €€6°€El (Ju) TpAUrTSYSEL
L000 9000 €000 SO00 SO00 9000 9000 F000 000 SO00 9000 SO00 (P) THRUIT SSEL
S61'ST 6TV 91 w89 g6 69¢vl S8l 687'8 VIL'S 2989 S19°01 €091 9¥8°CI (Ju) opPuIT SSEL
S000 S000 TOO0 €000 FOO0 9000 €000 €000 €000 €000 S000 SO00 (P) OpPUIT SASEL
961'11 69LTI ¥SE'S 0L SISOl LSETL 9vI'L [91'8 TEC9 001 I¥ST1 696 (Ju) 6EUIT SSEL
€000 ¥000 10000 €000 €000 Y000 TOO0 €000 TOO0 €000 €000 €000 (P) 6€9UIT'SHSEL
LLSO €E€1 ey 0T LOLO ST LOLO ST LOLO ST LOLO 'l (Ju) ggaUIT"SSEL
00 00 weu 1000 00 1000 00 00 00 1000 00 00 (P) 8EAUITSYSEL
S69°€l €ESST SPOEl €80°ST 9€HI €EL'8T LLTIT €80°11 SIETI SEl 6ELPI S0ELI (Ju) LedurTsvsel,
€000 ¥00'0 ¥000 9000 $000 9000 ¥000 €000 €000 Y000 Y000 9000 (P) LEAUIT SASEL
I¥9¥1 8898l [6LCl T9Y91 8LEVI ¢coc VvISTI 8eSPI LSEST ev1'0C 606°11 a3 (Ju) 9gaury SYyse],
€000 S000 F000 9000 €000 9000 ¥000 SO00 €000 9000 000 S000 (P) 9€RUIT SYSEL
LES'0 TT LOLO 0T T€90 0T LS60 STT LE8O TT LOLO 0¢ (Ju) SEauUrTSSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

113

Chapter F. Result and analysis supplement

33ed 1xau uo panunuo)

00 1000 00 00 00 00 00 1000 00 00 00 1000 (P) SPUI'T'9YSEL
9TI'l STI'T LLSO L99T LESO 81 691l L91'T LESO 7T 691'1 €£8°1 (u) pury9sel,
00 1000 00 1000 00 1000 1000 1000 00 1000 1000 1000 (p) pourT9YSE,
glIcel 6'¢cl 6CL'S v 60001 08 #6801 L'6 18811 8I8TCI 9¢¥'9 LTLY (Ju) goury-9yser,
000 S000 €000 TO00 FOO0 €000 Y000 F000 SO00 SO00 €000 TO00 (P) £UIT9YSEL
£€09°9 9L ¥8LT L99Y TII'9 SL'9 T6LY 8ISS 99€9 thb'S ¥80°€ Ty (Ju) aurT9Msel,
000 €000 TOO0 TOOO TOO0 TOO0 CO00 €000 TOOD €000 TOO0 TOOO (P) TAUIT'9YSEL
0T ¢ §29°¢ LEY0 Sl 1761 LI91°C LET'E Sere 607'¢ 6CY'e 8CS'1 07¢ (Ju) Toury9yser,
1000 1000 00 00 00 10000 1000 1000 1000 1000 00 1000 (P) TUIT9YSEL
9sE,
§99°01 8II'Il vLO'8I 6T6'€C POOFI SLELL €89°LL +91 866F1 €€€1T LOSSI SLTI (Ju) uonsanQ syseL
v000 ¥000 TIO0 €100 TIO0 100 9000 9000 9000 8000 TIO0 8000 (P)uonsanQsyseL
re'e 9v 196 LYY LTI'9 €8T 1S6T Py V019 v9Et €pPE 9€9F (Ju) dALNSELSYSEL
7000 TOO'0 TOO0 TOO0 TO0O0 000 CTO00 TO00 TOO0 1000 TOO'0 €000 (p) 2dALyseL, SYseL,
PP ILS'E vPET ILS'E 9€9T 98L°C 860C LSEE 89F'T S8¢F 990°C L98°C (Gu) uopngdpH SYSEL
1000 1000 €000 TO000 CO00 TOO0 €000 TOO0 1000 1000 €000 2000 (P)uopngdPH SYSEL
ELLPST O11TC 19°09T L91'S6T 808YIT vPy'80E ELI'6YI €VITLL 9EI'€8 €vI'¥8T LOLO Sl (u) dPH"SseL
1L00 1800 #TI'0 610 9010 IE'0 SSOO 8500 1600 €110 1000 1000 () dPH"SYISEL
¥89°0TC 9L1'18E 914’861 S'80E 96V'8IT SLE96E €STI6I EE1'L6T 8S8°061 L9Y'99E PLITET SLETEE (Ju) 3po)-gyse,
$900 II'0 SO0 9TI'0 ISO0 TEL'0 ¥900 TOI'0 TSO0 TOI'0 €900 IEI0 (P) 9p0)"sseL,
ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu ueu (Ju) gpRuryTSYSe],
'/U B/U '/U '/U B/U B/U '/U B/U '/U '/U B/U '/U (p) ¢rourySYysey,
00 01 ueu 01 ueu ueu 00 01 ueu 01 00 01 (Ju) gpaurTSSEL
00 00 ey 00 e/u e/u 00 00 ueu 00 00 00 (P) $PAUIT SYSEL
0 x 0 xT 0 x 0 x 0 x 0 xT
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

114

F.2 Mean and standard deviation tables

93ed 1xou uo ponunuo)

€9T°6€ €ESSH 8TP9E 06E l6F 1Y €€6'6F 11€TE 9VE €9§°8€ 0TS ILTSE SLEE (Ju) LT3urT9MseL
SI00 61000 €900 9500 6100 TOO T900 €€0°0 61000 TTOO 1900 €£0°0 (P) LTRUIT'9YSEL
611°81 ST Teo6l 1LSLT 18981 98T 60881 6T6'€C C6I'6l VITIE OvELI 81T (Ju) 9TauUIT9YSEL
L0O00 100 1100 Y100 800°0 100 1100 ¢100 100 ¢100 6000 ¢100 (P) 912UIT 9y SE],
9160 SLET 9¢6¢’1 GLY'] 9¢l'l 160°C 70¢'1 (e rL0 S29'1 20¢’1 ge9'C (Ju) sTaUIT9YSE],
1000 1000 1000 1000 000 10000 1000 10070 00 00 1000 TO00 (P) STAUIT9YSEL
€856 €EIVl €680l LIV6l STH6 6TPTT 9v6'9 LLOOI LL8'S ¥SI'6l STTII (¥4l (Ju) pTaUIT9MsEL
¥00'0 9000 ¥000 6000 $000 100 $000 S000 SO00 8000 Y000 LOOO (P) $TRUIT9NSEL
SE00I €9l S6L'8 LIY'El 98601 €€I91 TSSE LTL' 88€8 09I 956 6T 01 (Ju) ETUIT9YSEL
00°0 S00°0 000 9000 S00°0 L000 €000 00°0 €000 9000 000 G000 (P) gT2UIT 93 SE],
101°¢ (4184 L90'Y 19 0S¥ wmr'¢ 89C°C Sy £€86°C 949 % (430 4 LS (Ju) TTaUIT9SE,
1000 TO00 €000 €000 €000 TOO0 1000 TOO0 1000 TOO0 €000 €000 (P) TTAUIT9YSEL
wer S19S PLLY L998 €99°S 668 9LT LILY TE9Y 08 TLES 1€T9 (Ju) TTAUIT9YSEL
7000 TO00 S000 S000 S000 F0O0 TO00 TO00 TO00 €000 SO00 $000 (P) TTRUIT9YSEL
ueu 0’1 ueu 07¢ LOLO Sl ueu ueu ueu ueu LOLO Sl (Ju) oTaUIT9SEL,
weu 1000 weu 1000 00 1000 e/u e/u e/u e/u 00 1000 (P) OTPUIT9YSEL
1901 SLET 00 01 S9T1 0T 01 0T 01 0T $9T1 0T (Ju) GAurT9MseL
00 1000 00 00 00 1000 00 1000 00 1000 00 1000 (P) 6OUIT'9NSEL
8LL'S €PI'Il 8L0S €€8°L S9I'L ILS'6 TIEL 1996 9098 80E0l LSI'9 €768 (Ju) gaury9ysel,
¥00'0 S000 €000 $000 €000 F000 F000 S000 Y000 ¥000 €000 SO00 (P) OUIT'9YSEL
Pol'L S8ETI €LO'Y G8¢’L 9699 L9Y'6 'S €LT6 8L8'S 0Tl Y119 0’8 (Ju) LourT-9¥se],
9000 9000 TOO'0 €000 9000 S000 €000 ¥000 TOO0 FOO0 9000 S000 (P) LOUIT9SEL
666 SL'6 LLSL €266 6659 €56 TOO'Ll €¥1'01 6766 SOl ¥86'L 6 (Ju) gaurT-9vsel,
S000 000 9000 9000 9000 S000 9000 SO00 9000 SO00 9000 9000 (P) 92UIT'9NsEL
SO 00 01 00 01 LLSO €E€T1 S0 STl 00 01 (u) soury9yseL

0 z 0 Zz 0 xz 0 z 0 z 0 Zz

YsIH i | Y3IH L | dpH [ouo)

AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

115

Chapter F. Result and analysis supplement

93ed 1xou uo ponunuo)

$000 9000 $00'0 8000 Y000 8000 $OO'0 9000 000 LOOO Y000 OO0 (P) 0£UIT9YSEL
9¢°61 S6l SOL'SI €VI'VT TL961 8€6'ST €€811 98L91 6788l €€€€C STISI 00T (Ju) 67aUIT9YSEL
8000 6000 6000 TIO0 LOOO 1100 100 [00 6000 6000 6000 1100 (P) 623U T'9NSEL
6VS'1 0T ¥ogl 81 9T8'l 0€ 88K0 98TT €¥9'l 8T 80V0 L91'1 (Ju) SZaUIT9YSEL,
00 00 1000 1000 1000 1000 00 00 1000 1000 00 00 (P) STAUIT9YSEL
43 ¢ST O6LLIY VILYY 6V0Tr 8ev'er ce€ Sl vITYC S98'PE e SYETE €EL6C (Ju) LTaurT 9NSE],
9000 100 9100 T00 SI00 8100 8000 [100 SIO0 9100 100 +100 (P) LTAUIT9NSEL
vSEOY TISSE 6910 69L8E 6161y TICEr TEST 8€S6T 9s€’€h vITYS 168FI TIT (Ju) 9zauIT 9MsEL
9100 L100 9100 6100 9100 TO0 SIOO SIOO 6100 STO0 LOOO 11070 (P) 9ToUIT'9YSEL
1€6'ST L99°1C L9881 6TV ¥C CL6SL 8E6'SC LISHI S8E61 6L6'IT £££8C €L9 98TLI (Ju) sTourT9SE,
9000 100 TIO0 Y100 9000 TIO0 €100 1100 TI00 €100 S000 1070 (P) STAUIT9YSEL
L6111 I'C ¢ese R RS I61'¢C 0¢ 419! 0 wr'e 818'C Se0'l 4 (Ju) paury9yse],
1000 1000 2000 1000 1000 10000 1000 1000 2000 1000 1000 1000 (P) YZRUIT9SEL
668°0C 889°€C €€€81 SI98T 9SI'IT TISOE TOS9I FSI0T +ET6! SPE 88L9I L9S'LI (Ju) E7aUrT9YsEL
L0O00 6000 6000 Y100 800°0 100 80070 10°0 80070 7100 L000 6000 (P) gzaurT 9 sk,
YLY'81 0'1¢ 6'Sl vITTC T69'81 L98°9C Seel 6c6'Sl PLI'6I ¢9T LeL¢l 0Ll (Ju) TToUIT9SE],
9000 8000 6000 1100 9000 1100 100 8000 LOOO 100 6000 6000 (P) TTAUIT9SEL
rovl e¥9'6l YeP Yl CT69LI LYOl €el'CC 8LSOL LIVYL T8E9L 69LICT 60¢ClI LSYCI (Ju) TTauUrT9ysEL,
L000 8000 8000 8000 LOO0 8000 8000 8000 L0OO0 8000 8000 8000 (P) TZRUIT9SEL
1TL'6 L90TI 60S8 T690l +S'8 €€6TI 1796 7696 TEL8 €T6Il LLS6 Ol (Ju) ozaUIT9SEL
L0000 9000 9000 S000 000 SO00 8000 9000 9000 $OO0 9000 90070 (P) 0TUIT9YSEL
'l SL'T ueu 01 TELT 0T 00 01 ueu 01 Sl L1 (Ju) 6T3UIT 9MSEL
1000 1000 ueu 00 1000 1000 00 00 ueu 00 1000 1000 (P) 6TPUIT'9NSEL
8€l 98TT 9SL0 vILT €I YILT 880 98T €60°1 SLLT bl v'T (Ju) gTaUIT9YSEL
1000 100°0 00 00 1000 1000 00 00 00 00 1000 1000 (P) STAUIT'9YSEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

116

F.2 Mean and standard deviation tables

6959 1LOL 686'€E LOI'LL 16€1E 98L'ST S6¥'L 0L €IE€L SSP'8 T690E E€EI'Pl (Ju) uonsanQd-oyseL
2000 2000 Y100 6000 ¢100 9000 6000 00°0 2000 €000 €100 L0O00 (p) uonsanQ-9yse],
8S6T SLY 9LE'S S0E'S S98°€ TOKS L8P €8St 968T SLE€ 8II'S 169 (Ju) ddALNSEL 9NSEL
2000 TO00 €000 €000 TOO0 COO0 €000 €000 1000 1000 €000 $00'0 (P)dALNSEL'9NSEL
6697 €26t €61'T 9Y8'E SLEY 9K8Y €I8T €I6'€ 9STH ILSS PLIT 0'¢ (u) uonngdpPH 9NseL
000 T000 €€00 1100 TOO0 TOO0 €€0°0 1100 TOO0 TOO0 ¥EO0 1100 (P) uopngdpH 9NsEL
Iy’ 00C 1LS681 800PEl ¥ILOCI CTOS6LI §66l €96°Lyl €€ 101 S96°L91 SL'OSI LOLO Sl (Ju) dpPH 9¥sEL,
€500 9900 TOI'0 6900 600 6800 SO0 8€0°0 800 8L00 €000 TO00 (p) dPH"9SEL
$T9'891 SL'68T 601°9TC L99°S6T TO6TIT SLES9E 109°6€1 811T TI'661 €€6°TTE 9PE'€E6l 88149T (Ju) 3po)93sEL,
6300 8TI'0 100 6€I'0 IL00 8SI'0 TS8O0 LOI'0 SLOO STI'0 S800 TPI0 (P) 3p0D’9YisEL,
ueu 0¢ ueu 0¢ LOL0 [Syd ueu ueu ueu 0¢ ueu 0¢ sz geauryoyse],
weu 1000 weu 7000 00 1000 e/u e/u weu 7000 weu 000 (P) £ERUIT9YSEL
144! 0 ueu 0'¢ 00 0¢ ueu 01 VIv'1L 0 ueu 0'¢ (Ju) zeaurT9sE],
00 1000 weu 000 00 1000 weu 1000 1000 1000 ueu 1000 (P) TEAUIT9YSEL
POI'01 €EC€1 TOTII 0ST SE8T1 L908I LTS9 8ES6 TSO0L vSI'LL L9VOl LOV'IL (Ju) TERUIT9MSEL
9000 9000 9000 8000 L00O0 8000 SO00 S000 LOOD 8000 SO00 9000 (P) T€AUIT9NSEL
SOFII OSI TLOTI LS$'LI ¥8¥'TI SLEOT SL89 TOKII SSTEl +6l TOSL Ehl€l (Ju) 0gaUIT9SEL
0 z 0 Zz 0 xz 0 z 0 z 0 Zz
YsIH i | Y3IH L | dpH [ouo)
AUBULIOJIdJ aspxadxy uonIpuo)) dIqerIeA

aged snoraad woay panunuod — ¢ dqe],

117

@ NTNU

Norwegian University of
Science and Technology

9ze8-a/9 s,1uadxa ue 03 siawwelSoud adinou Suisodxy

	Abstract
	Sammendrag
	Preface
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Background and motivation
	Research questions and objectives
	Research method
	Thesis structure

	Background and related work
	Eye-tracking terminology and technology
	Zone of Proximal Development
	Related work
	Eye-tracking in problem solving
	Eye-tracking in programming
	Determining programming expertise
	Difference between novices and experts
	Using other people's eye-gaze

	Methodology
	System design
	System mockups
	Architecture

	Research design
	Participants
	Determining programming expertise
	Study tasks
	Execution of the study

	Analysis
	Preprocessing
	Datasets
	Difference in study and pretest scores
	Number of fixations and total duration of fixations
	Distance to lines with bugs

	Results
	Conditions
	Pretest scores
	Study scores
	Number of fixations on lines with bugs
	Time spent on lines with bugs
	Distance to lines with bugs
	Time spent on tasks

	Expertise groups
	Study scores
	Number of fixations on lines with bugs
	Time spent on lines with bugs
	Distance to lines with bugs
	Time spent on tasks

	Performance groups
	Study scores
	Number of fixations on lines with bugs
	Time spent on lines with bugs
	Distance to lines with bugs
	Time spent on tasks

	Discussion
	Results and their implications
	Limitations
	Future work

	Conclusion
	Bibliography
	Diagrams
	Logical view

	Information letter
	Pretest tasks
	Pretest task 1
	Pretest task 2
	Pretest task 3
	Pretest task 4
	Pretest task 5
	Pretest task 6
	Pretest task 7
	Pretest task 8
	Pretest task 9
	Pretest task 10

	Study tasks
	Task 1 - Debug
	Task 2 - Comprehension
	Task 3 - Debug
	Task 4 - Comprehension
	Task 5 - Debug
	Task 6 - Comprehension

	Grading scripts
	Pretest grading script
	Study grading script

	Result and analysis supplement
	Plots and p-values
	Study scores
	Number of fixations lines with bugs
	Time spent on lines with bugs
	Distance to lines with bugs
	Time spent per task

	Mean and standard deviation tables

