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Abstract

Retrieving grazing sheep at the end of the season is typically a very time-consuming process.

After the majority of the animals have been returned, there can often be a few animals left

that did not make it back with the rest. Locating and retrieving the last few animals usually

entails tracking long distances and searching for a long period of time. By properly utilizing

modern technology, this labor-intensive process can be alleviated. Drones, or unmanned aerial

vehicles (UAVs), have become increasingly popular in recent decades for different commercial

sectors such as agriculture. Previous research has shown that using machine learning methods

to detect sheep in drone images can be a viable method of locating grazing sheep for retrieval.

Sheep come in different colors and are often partially occluded by vegetation such as leaves and

grass when being imaged by a drone. This thesis aims to discover which categories of sheep

are difficult to detect in drone images, as well as propose a method of generating additional

synthetic training data to attempt to improve the detection of the categories that were found

to be the most difficult to detect. To generate the synthetic data, the Perception package for

the game engine Unity was used. The machine learning method used for detecting sheep was

YOLOv5. Two models were trained; a baseline model using only real data, and a mixed model

using both real and synthetic data in the training set.

The categories of sheep that were found to be the most difficult to detect were all colors of

sheep as long as they are partially occluded by vegetation and in particular occluded sheep of

darker colors. The mixed model achieved a 9.43% higher recall over the baseline for occluded

sheep in general, and a 37.5% higher recall over the baseline for dark occluded sheep at a

confidence threshold of 0.8.

i



Sammendrag

Gjenfinning av sau p̊a slutten av beitesesongen er ofte en veldig tidkrevende prosess. Etter

flesteparten av sauene er returnert kan det ofte være noen f̊a dyr igjen som ikke kom seg

tilbake med resten. Lokalisering og gjenfinning av de siste dyrene innebærer ofte sporing og

leting over lange distanser over en lang tidsperiode. Denne arbeidskrevende prosessen kan bli

lettere ved å ta i bruk moderne teknologi. Droner har blitt mer populært de siste ti̊arene i ulike

kommersielle sektorer som for eksempel i jordbrukssektoren. Tidligere forskning har vist at å

benytte seg av maskinlæringsmetoder for å detektere sauer i dronebilder kan være en praktisk

måte å lokalisere sauer p̊a beite for gjenfinning.

Sauer finnes i ulike farger og kan ofte være delvis tildekket av vegetasjon som blader og gress

n̊ar man tar bilder med drone. Denne oppgaven har som mål å finne ut av hvilke kategorier av

sau som er vanskelig å detektere i dronebilder, i tillegg til å foresl̊a en metode for å generere

syntetisk data for å forsøke å forbedre deteksjonen av de kategoriene som ble funnet å være

de vanskeligste å detektere. For å generere den syntetiske dataen, ble Perception pakken

for spillmotoren Unity brukt. Maskinlæringsmetoden som ble brukt til å detektere sauer var

YOLOv5. To modeller ble trent; den s̊akalte baseline-modellen som kun ble trent p̊a ekte

dronebilder, og den s̊akalte mixed-modellen som brukte b̊ade ekte og syntetisk genererte data

til trening.

Kategoriene av sau som ble funnet å være de vanskeligste å detektere var sauer av alle farger s̊a

lenge de var delvis tildekket av vegetasjon, men spesielt sauer av mørke farger som var delvis

tildekket. Mixed-modellen oppn̊adde en 9.43% høyere fullstendighet (recall) enn baseline-

modellen for tildekkede sauer generelt, og en 37.5% høyere fullstendighet (recall) enn baseline-

modellen for mørke tildekkede sauer ved en konfidensterskel p̊a 0.8.
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Chapter 1

Introduction

1.1 Problem description

Every fall at the end of the grazing period, sheep farmers need to retrieve all of their sheep

back from the grazing areas. The areas where sheep graze can be quite extensive, and so

finding and returning all of the sheep can be very labor-intensive and time-consuming. One

major component of sheep retrieval is simply locating the sheep in the first place, which can

be quite challenging. Typically, sheep wear bells around their necks so that the farmer can

hear when they get close. This is helpful, but the farmer still needs to get within hearing range

of the sheep first. After most of the sheep have been retrieved, there can be some left that

have strayed further away or for other reasons did not make it back with the rest of the herd

(Hvasshovd 2017). The farmer may spend a large amount of time finding and retrieving these

last few animals, tracking very long distances in the process.

According to the Norwegian Agriculture Agency (Landbruksdirektoratet), out of 748,106 sheep

and 1,154,064 lambs sent out to graze in 2021, 25,485 sheep, and 79,155 lambs never made

it back at the end of the season (Landbruksdirektoratet 2022). There are many different

reasons for sheep not returning, some are killed by predators; according to Rovbase, 2,527

sheep and 14,388 lambs were declared to be killed by predators in 2021. (Rovbase 2022).

This still leaves many sheep that do not return for other reasons, some die of other causes

than predators like disease or accidents, and some are lost for unknown reasons. Losing sheep

during the grazing period can be very costly to the farmer. The Norwegian Association of

Sheep and Goat Farmers (NSG), values a lost lamb at 1,850 NOK, and lost sheep at 3,585

NOK (NSG 2022). In Norway, farmers by law get compensated for sheep killed by predators,

but not for sheep that are lost for other reasons (Lovdata 2014).

For the reasons stated above; the amount of time it takes to locate the last sheep, as well

as the high cost of losing sheep, the farmer can save a lot of time and money by more easily

locating sheep in the vast grazing areas. Being able to track the sheep, or at least getting

an approximate location before going out to search can be a massive help to alleviate these

problems.

1
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1.2 Existing commercial solutions

There are several commercial solutions available to address these problems. The following

products all have in common that they are tracking devices mounted around the neck of the

sheep just like their regular bells. They vary in their connectivity, features, and pricing.

1.2.1 E-bjella

E-bjella is made by the company Findmy and is a tracking collar made for sheep, cattle,

and reindeer (Findmy 2022). It uses Global Positioning System (GPS) to get the sheep’s

location and transmits this data via satellites. They have an advertised battery capacity of

2 to 3 seasons and batteries are replaceable. They claim to be built to the United States

military standard MIL-STD-810, which is a standard for creating rugged products, that can

withstand the environmental conditions that they will face in their use. There is no authority

for certifying such compliance however (MIL-STD-810 2022). Some other features of E-bjella

are; notifications when an animal has not moved more than 40 meters in two days, which

can be a sign that the animal has died; notifications when an animal moves outside of a

predetermined geofence; and notifications of distress in a flock based on ”abnormal” behavior.

The price of E-bjella is 1,749 NOK per unit, in addition to an annual fee of 239 NOK per unit

(Value Added Tax (VAT) excluded). They claim to have sold 40,000 units in total.

1.2.2 Radiobjella

Radiobjella is sold by the company Telespor and is another tracking collar for grazing animals

such as sheep (Telespor 2022). It also uses GPS to track the animal’s location, however,

it transmits over the cellular infrastructure as opposed to using satellites. Radiobjella uses

replaceable batteries that they recommend changing every season. The unit is waterproof and

equipped with a motion sensor. Some extra features of this product are notifications when

the motion sensor has not detected movements in the last three hours; when the animal has

stayed in the same location for a long period; and if it has not been able to report its position

in the last two attempts. The price per unit is 989 NOK, and the annual cost of subscription

and batteries is either 129 NOK or 209 NOK (VAT excluded) depending on whether a 5 or

12-month subscription is needed.

1.2.3 Smartbjella

Smartbjella is another such tracker, made for sheep, goats, cattle, and reindeer (Smartbjella

2022). It uses GPS to get the animal’s location and transmits over a cellular connection. It

is waterproof (IP67 certified), and the battery is advertised to last up to between 1,5 years

(reporting its position every hour) and 17 years (reporting its position every 24 hours). This

product also has a temperature sensor and notifies the farmer when it believes that the sheep

is dead. The cost of Smartbjella is 999 NOK, and the annual subscription cost per unit is

between 109 NOK and 149 NOK (VAT excluded) as they have three different subscription

plans, lasting 5, 7, and 12 months. Smartbjella claims to have sold 30,000 units in Norway.
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1.2.4 Discussion of existing solutions

The existing solutions do address the problems raised in section 1.1, but are by no means

perfect solutions. Since they are all devices mounted around the necks of sheep, they can

generally only be worn by adult sheep since lambs grow too much during the grazing season.

The statistics from the Norwegian Agriculture Agency indicate, that over 50% more lambs than

sheep were sent out to graze in 2021 (Landbruksdirektoratet 2022). However, sheep typically

organize themselves into family groups of 8 to 10 sheep, usually a ewe along with its offspring

(Johanssen and Sørheim 2018). By only tracking the ewe then, one is often able to track the

entire family group. Because of these behavioral characteristics, FindMy recommends tracking

a minimum of only 25% of the adult sheep (Findmy 2022). However, should the ewe die

during the grazing period, one will potentially lose track of the entire family group.

Another issue with Radiobjella and Smartbjella is that they rely on cellular infrastructure to

transmit data. Even though Norway has very good national cellular coverage, the telecom-

munications companies focus on covering the areas where their customers live and do not

necessarily cover remote areas where there are more sheep than people. For this reason, not

all farmers will be able to use these solutions. E-bjella, which uses satellites, should not have

this problem but is also far more expensive than the other options.

Even if only a portion of the sheep needs to be equipped with any of the above products, it

is both a significant upfront investment to purchase these products, as well as a significant

ongoing cost related to using them. It is not known how long these products last before they

need to be replaced, so only the initial purchase costs, as well as the ongoing subscription

costs, can easily be examined.

According to The Norwegian Institute of Bioeconomy Research (NIBIO), the average farmer

had 162 winter-fed sheep (NIBIO 2020a), and for context, they had an average operating profit

on their sheep of 159,000 NOK in 2020 (NIBIO 2020b). Using these numbers the cost of using

these different products for an average sheep farmer in Norway can be estimated, this can be

seen in Table 1.1. For the products with multiple subscription plans, the cheapest available

plan for the latest model they sell was used.

E-bjella Radiobjella Smartbjella
25% tracked
Up-front cost 69,960 39,560 39,960
Seasonal cost 9,560 5,160 4,360

50% tracked
Up-front cost 139,920 79,120 79,920
Seasonal cost 19,120 10,120 8,720

75% tracked
Up-front cost 211,629 119,669 120,879
Seasonal cost 28,919 15,609 13,189

100% tracked
Up-front cost 283,338 160,218 161,838
Seasonal cost 38,718 20,898 17,658

Table 1.1: Up-front and seasonal cost (in NOK) of existing commercial solutions assuming
162 adult sheep
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This is by no means a proper cost-benefit analysis of these products; however, they clearly

represent a significant up-front and seasonal cost to the average sheep farmer in relation to

their slim profits. As mentioned above, FindMy reports having sold approximately 40,000 units

in total, and Smartbjella, approximately 30,000 units. Telespor has not reported their sales

numbers for Radiobjella. Still, this is not close to covering the population of adult sheep being

sent out to graze in Norway each year and it, therefore, appears to be ample room for more

competitive solutions in this market.

1.3 Using drones for sheep retrieval

Drones, also known as Unmanned Aerial Vehicles (UAVs) have traditionally been developed for

military applications (Blyenburgh 1999). In more recent years, drones have seen applications

in commercial sectors, including in agriculture for crop monitoring, crop spraying, soil analysis,

and more. Although the costs of drones have come down significantly over the last decades

due to more companies offering drones for commercial and consumer use, they still represent

a significant investment to an individual farmer (Huang et al. 2013).

There are primarily two different approaches to using drones for sheep retrieval. The first is

using a low-power radio transmitter that can be small enough to be attached to the ear tag of

the animal. This could be possible since the drone can be flown close enough to pick up these

weak signals to get an estimated position. These radio-based ear tags could be made much

cheaper than the existing solutions mentioned above as they do not require GPS or internet

connectivity which would also require much less power and hence, a much smaller battery. The

localization, in this case, comes from the drone’s GPS as well as range estimation between the

drone and sheep. This has been examined by previous master’s students, like (Nyholm 2020),

(Steinsvik 2021), and (Nerland 2021). The second approach is using the drone to image the

areas of interest and using machine learning techniques to automatically detect the presence

of sheep in the images. This has the advantage of not requiring any hardware to be attached

to the sheep. Range estimation is not necessary in this case, as the sheep will be sufficiently

close to the drone for each image taken, assuming that the camera is pointed mostly straight

down.

This thesis focuses on using drones that image an area looking for sheep. In this case, the

costs are relatively fixed and tied to the upfront cost of purchasing the drone itself. In practice,

however, a potential commercial software solution for guiding the drone automatically and

detecting sheep in the images taken may or may not have a recurring cost associated with it.

In theory, at least, the cost would not need to increase with the number of sheep detected in

contrast to the other solutions, so it could create more opportunities for economics of scale.

However, given that the average sheep farmer in Norway has a relatively small number of sheep

(NIBIO 2020a), it could still be prohibitively expensive to purchase a drone outright, so it may

be more economical for multiple farmers to share such a system, or rent a system only when

they need to locate their sheep.

Using drone imaging for sheep retrieval comes with a few key challenges.

1. Making sure the drone is able to image the entire area of interest so that no areas are

left unchecked.
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2. Actually detecting sheep everywhere a sheep is present.

The first problem is related to planning a route for the drone to follow and when images

should be taken to completely cover an area of interest. The route planning problem for sheep

localization has been examined by previous master students, e.g. (Rognlien and Tran 2018).

The second problem relates to the automatic detection of sheep in the captured images and

making sure that the method of choice is able to detect as many of the sheep in the area of

interest as possible. Some of the previous master’s theses related to this topic are e.g. (Muribø

2019), (Kaarud, Nordvik and Paulsen 2020), and (Furseth and Gran̊as 2021). Detecting every

single sheep in an image is not strictly necessary, as it is only necessary to determine whether

any sheep are present in a specific area or not; therefore, it is sufficient as long as at least one

sheep is detected for every image where sheep are present. However, one hard limitation of

using drone imaging for sheep retrieval is that if a sheep is completely occluded in the camera’s

field of view when the image is taken, the sheep cannot possibly be detected. This is especially

problematic in densely forested areas.

1.4 Aim of this thesis

This thesis focuses on the second challenge related to drone imaging for sheep retrieval men-

tioned above, that is, making sure the automatic detection performance of sheep in drone

images is adequate. Specifically, this thesis aims to discover which categories of sheep are the

most difficult to detect and whether the detection of these difficult categories can be improved

by generating synthetic training data to supplement the real data that is available.

First, the sheep in the drone images are classified into subcategories based on the color of

their wool and whether they are partially occluded by vegetation. Then, a machine learning

model for sheep detection will be trained on this data and the performance of the different

subcategories will be compared to discover which categories of sheep are the most difficult

to detect based on the recall achieved on the different subcategories. This will give a good

insight into where there is the most room for improvement with regards to detecting sheep in

all images where sheep are present. Next, an attempt will be made to improve the detection of

the subcategories of sheep that are the most difficult to detect. This will be done by generating

additional synthetic training data which focuses on these difficult categories. Finally, a second

machine learning model will be trained using both the real and the synthetic data, and the

performance of both models will be compared to see if it is possible to improve the detection

of these difficult cases without having to go out and get more real data for those categories.

The initial hypothesis is that the categories of sheep that have the lowest number of instances in

the real dataset will also be the most difficult to detect, as the model will have fewer examples

available to learn from. The synthetic data generation will therefore focus on creating more

examples of these underrepresented categories so that the detection can be improved.

Real data is very expensive and time-consuming to create, as going out with a drone and

capturing real images is a lot of work. To get a good amount of variation in the data one

would need to go out at different times of day and year, and in different areas. After that, one

would need to manually label thousands of images which is very time-consuming. Generating

synthetic data is very appealing as it allows doing a fixed amount of work which in principle
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can yield an infinite amount of data. Moreover, it gives a high degree of control with regard

to the variation of the data that is generated.

1.5 Technology choice

YOLOv5 was the chosen machine learning model to detect sheep. It is an object detection

method, meaning that it attempts to find and localize every sheep in a given image. This model

was chosen because of its ease of use, its wide selection of model sizes, and its popularity;

it has over 25k stars on GitHub. It is also relatively new, being initially released in May of

2020 and receiving continual updates ever since to keep up with new developments in the field

(Jocher et al. 2022). It was also the model that was used in the preparatory project for this

thesis.

Unity perception was chosen as a method of generating synthetic data. This is a package

for the popular game engine Unity, and the package is developed by the same company as

the game engine itself. It is currently in an experimental stage; however, it is already quite

feature-rich. The primary appeal of this method for generating synthetic data is that one gets

to utilize the powerful game engine Unity, which is capable of rendering realistic scenes in

real-time, along with all of the existing infrastructure and community support a mature game

engine provides (Unity Technologies 2020).

1.6 Preparatory project

In the preparatory project for this thesis, the inference speed and performance of different

variants of YOLOv5 were examined. There were 10 different variants at the time, all were

pretrained on the Common Objects in Context (COCO) dataset, five were pretrained at a

resolution of 640x640, and the other five were pretrained at a resolution of 1024x1024. The

input data had the same resolution as the pretraining for each model. The different variants

differ in size in terms of no. of parameters. The aim of the preparatory project was to

examine which model was most suited to being run on lower performance hardware that

could be mounted directly onto a drone. This was done by comparing the inference speed

on a Raspberry Pi 3 Model B. The models that were trained on a resolution of 1024x1024

significantly outperformed the models trained on 640x640 in terms of recall. Models of greater

no. of parameters only had a marginal increase in performance while having a significantly

slower inference speed. Inference on higher resolution also had a significant inference speed

reduction, however, they also had a significant performance increase. The conclusion was

that the increase in performance was mostly due to training the custom dataset at a higher

resolution since the no. of parameters had a much smaller impact on performance. Therefore,

using the smallest model available with a suitable input resolution was deemed to be the best

option for running inference on limited hardware, as the larger models used an unacceptable

amount of time with only marginal performance increases.
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1.7 Outline of this document

Chapter 2 - Previous work, presents previous academic work related to topics that are

relevant to this thesis including: previous master’s theses, object detection in drone images,

wildlife monitoring, and synthetic data generation.

Chapter 3 - Theory, gives a theoretical basis for understanding the machine learning method

used, as well as how its performance is evaluated.

Chapter 4 - Sensor data, relates to the dataset captured in the field by the actual drone. It

presents information extracted from the image metadata about when and where the images

were taken, how the images were labeled, how many sheep of different categories are in the

dataset, how the data was split into sets for training, validation, and testing, and what kind

of preprocessing was applied to the images. Throughout this thesis, the dataset captured by

the drone is referred to interchangeably as either the sensor dataset or the real dataset.

Chapter 5 - Synthetic data, explains in detail how the synthetic dataset was generated.

Chapter 6 - Experiment structure, concretizes what will be examined into research questions,

and explains how those questions will be answered, as well as specifying the training and testing

regime.

Chapter 7 - Results and discussion, presents and discusses the results of the experiment as

it relates to the research questions.

Chapter 8 - Conclusion and future work, using the results and discussion from the previous

chapter attempts to answer the research questions posed in chapter 6, as well as suggest future

work in part based on these answers.
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Previous work

2.1 YOLO

You Only Look Once (YOLO) is a series of object detection models. What they have in common

is that they are single-stage detectors, meaning that they perform the entire detection task from

feature extraction to bounding box prediction in a single forward pass. When the first version

of YOLO was released in 2015, the most popular object detection models were Region-Based

Convolutional Neural Networks (R-CNNs), which were reasonably accurate, but due to their

multi-stage detection process were quite slow. The aim of the original YOLO model was to

enable real-time object detection by doing everything in a single stage (Redmon, Divvala et al.

2015). In their paper, they compare the performance of different object detection models with

YOLO on the Pascal Visual Object Classes (VOC) 2007 dataset. One interesting comparison

is YOLO versus Faster R-CNN ZF. YOLO achieved a very similar Mean Average Precision

(mAP) of 0.634 versus 0.621 for Faster R-CNN ZF. The inference speed of YOLO was in

this case approximately 2.5x faster, achieving 45 Frames per Second (FPS) versus 18 FPS for

Faster R-CNN ZF. There were other models in the comparison that performed significantly

better than YOLO in terms of mAP, but they in turn had an abysmal inference speed compared

to YOLO.

YOLOv2 was released one year later by two of the original authors of YOLO (Redmon and

Farhadi 2016). This version of YOLO improved both speed and mAP over the original YOLO.

The inference speed improvement was mostly due to using Darknet-19 as the new backbone for

feature extraction. This backbone requires significantly fewer floating-point operations than the

backbone used in the original YOLO. The mAP was improved by a multitude of modifications,

including but not limited to; adding batch normalization, using a higher resolution classifier,

introducing a passthrough layer that concatenates high resolution and low-resolution feature

maps to improve localization, and randomly scaling the input images when training. Instead

of using a fixed input resolution, YOLOv2 can be run at several different resolutions, where

lower resolutions have a faster inference speed. This enables a smooth trade-off to be made

between speed and precision by running the model on different resolutions. In one of their

tests, they ran YOLOv2 on a resolution of 288x288, which still outperformed the original

YOLO in terms of mAP, but at double the speed. When running at a resolution of 544x544,

the speed was roughly 11% slower than the original YOLO but achieved a 24% higher mAP.

8
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They also introduced a method of training the network on both object detection datasets like

COCO in addition to classification datasets like ImageNet. Classification datasets do not have

any bounding box information, but datasets like ImageNet are very large with a wide variety

of classes. They did this by only reporting a classification loss when applied to classification

datasets, whereas for object detection datasets they would also be reporting an object loss

to improve bounding box fit. Using this method they were able to detect over 9000 different

objects in real-time.

In 2018, the same authors who published YOLOv2 published YOLOv3 (Redmon and Farhadi

2018). This version includes a number of incremental improvements to YOLOv2, including

a new backbone, Darknet-53, in addition to utilizing feature pyramid networks in order to

upsample the feature maps to detect objects at three different scales. It is a bit slower on

inference than YOLOv2 but is in turn more accurate. This is the last version of YOLO created

by the original authors, as they at the end of their paper announced their ethical concerns

regarding computer vision research being used for military applications and to the detriment

of personal privacy.

YOLOv4, released in 2020 by different authors (Bochkovskiy, C. Wang and Liao 2020), intro-

duced several improvements over YOLOv3, starting with their so-called bag of freebies. These

are improvements that strictly concern the training regime, and therefore have no impact on

inference speeds. This includes data augmentation techniques that create more variation in

the input data before being fed into the model for training, for example mixing together mul-

tiple images in random configurations. In addition to these, changes were also made to the

architecture of the model which resulted in a model which is more accurate than YOLOv3,

and much faster than other state-of-the-art models with comparable accuracy.

Shortly after YOLOv4 was released, YOLOv5 was released by the company Ultralytics (Jocher

et al. 2022). It is first and foremost an implementation of YOLO in the PyTorch framework

and is not very different from YOLOv4 in its architecture. The main contribution of YOLOv5

is its ease of use for machine learning practitioners. It is easier to configure as it uses the more

readable YAML configuration files, and provides ready-to-run scripts for training, validation,

and inference, in addition to offering several different model variations with different trade-offs

between inference speed and accuracy. YOLOv5 has not released an official paper, which

makes it difficult to precisely compare its performance with the other versions of YOLO, but

they utilize many of the same improvements as YOLOv4, with even more extensive data

augmentation techniques, and similar improvements in model architecture.

2.2 Previous masters theses

(Muribø 2019) examined how well sheep could be detected by the object detection model

YOLOv3 in UAV images. He additionally examined whether treating all colors of sheep as a

single class or treating them as different classes were preferable in terms of locating the most

sheep. He also examined whether tweaking the input resolution post-training could improve

performance. The model was trained on resolutions between 608x608 and 896x896 with

random scaling between these resolutions. He found that representing sheep as one super-

class comprising all colors outperformed representing differently colored sheep as different
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classes. Between the input resolutions tested (608x608, 832x832, and 1024x1024), he found

that 832x832 gave the best results. The best performing model achieved a mAP@0.5 of 0.94

and a recall of 0.99 at a confidence threshold of 0.1. He goes on to theorize that the reason

for performance dropping on an input resolution of 1024x1024 could be due to the fact that

the model only trained on images significantly smaller than this.

(Kaarud, Nordvik and Paulsen 2020) proposed a complete system for sheep retrieval, from the

flight planning of the drone, transferring the images to a server for performing object detection

to locate sheep, and presenting the results to the user. They also performed tests of object

detection models on the data they had available taken from a DJI Mavic 2 Enterprise Dual

drone to evaluate its performance using different techniques. They used the regular and thermal

images taken by the drone, and evaluated two different object detection models; YOLOv3, and

YOLOv3-tiny. Additionally, they trained the models on the regular images both split into a

grid of tiles and with no splitting, as well as at different resolutions. The performance achieved

by the model when trained on images split into tiles was generally better than when trained

on the full images, especially when the drone was flying at higher altitudes where the sheep

will appear smaller. They also found a resolution of 832x832 to be optimal, which falls in line

with Muribøs results. The performance of YOLOv3-tiny was surprisingly good in comparison

to the regular YOLOv3, only showing a marginal decrease in mAP while the inference speed

of YOLOv3-tiny was much faster.

(Furseth and Gran̊as 2021) used different object detection models from the YOLOv5 family

to evaluate their inference speed and detection performance running on mobile devices. They

used a smartphone to test the different models’ inference time for mobile devices. They used a

similar dataset to this thesis, both Red-Green-Blue (RGB) and Multi-Spectral Dynamic Imaging

(MSX) images of sheep taken with a DJI Mavic 2 Enterprise Dual drone. MSX is an image

format where the thermal camera on the drone is combined with the regular camera. For

the RGB images, they compare the YOLOv5s and YOLOv5m model, where the YOLOv5m

model is larger as it has more trainable parameters. They compared these models at different

resolutions and used both downscaling and tiling to adjust the resolution. They found that

YOLOv5m only had a marginal improvement in performance over YOLOv5s overall, although

the difference was much greater at lower resolutions. The inference time of YOLOv5m was,

however, significantly higher when running on a smartphone. Two interesting results that are

worth highlighting are:

1. Training on tiled images yielded significantly better performance than training on down-

scaled images. Additionally, training on higher resolutions also yielded significantly better

performance up to a point.

2. Having trained the model on tiled images, running inference on high-resolution non-tiled

images outperformed running inference on tiled images.

2.3 Object detection with UAVs

(Petso et al. 2021) applied object detection methods to wildlife monitoring using UAVs. For

monitoring wildlife, the altitude of the UAV is very important because drones flying at low

altitudes tend to disturb the animals, which is not desirable. However, as the altitude of the
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UAV increases, the animals will appear smaller in the images and will therefore be more difficult

to detect. For these reasons, they examined the performance differences in object detection

for images taken at different altitudes to quantify what sort of detection performance can be

expected at different altitudes for a use case such as this. They set out to detect four different

wild African animals; giraffes, white rhinos, wildebeests, and zebras. The animals were labeled

both individually, as well as additional classes for herds of the same animals. The images were

taken at nine different altitudes between 15 m and 130 m. The dataset consisted of a total of

8,659 images. They used two different object detection models; YOLOv3 and YOLOv4. For

low altitudes, both models performed very similarly; YOLOv3 achieving a mAP of 0.863, and

YOLOv4 achieving a mAP of 0.875 at an altitude of 15 m. At higher altitudes the difference

was much greater; YOLOv3 achieving a mAP of 0.639, and YOLOv4 achieving a mAP of

0.765 at an altitude of 130 m. In Figure 2.1, the mAP achieved at different altitudes for the

two models is shown. For YOLOv4, the drop in mAP is close to linear; however, for YOLOv3,

the drop in mAP appears to accelerate after about 90 m of altitude. Their results indicate a

negative correlation between detection performance and altitude when trying to locate animals

in images from UAVs.

Figure 2.1: mAP achieved for images taken at different altitudes
Note. The data is from Table 1 in (Petso et al. 2021)

(S. Wang 2021) compared different versions of YOLO intending to determine which model

is best suited for running in real-time onboard a UAV. They evaluated and compared the

performance of YOLOv3, YOLOv3-tiny, YOLOv3-SPP3, YOLOv4, and YOLOv4-tiny on the

Pascal VOC dataset. The tiny -models are specifically made to have a faster inference speed, as

a consequence, they tend to have fewer trainable parameters which cause the performance to

suffer as a result. The metrics used for comparison were mAP and FPS of inference. To test the

performance running on a drone, they tested the models on the XTDrone simulation platform.

Even though YOLOv4 had the best performance by far in terms of mAP, they concluded that

for real-time detection on a drone, YOLOv3-tiny was the most optimal. YOLOv4-tiny had a

significantly higher inference speed than YOLOv3-tiny; however, its mAP was also significantly

lower, making YOLOv3-tiny the best compromise between speed and performance for this use

case.

(Varga and Zell 2021) proposed a tiling method for input images for object detection models.

They examined whether it is beneficial in terms of detection performance to divide UAV im-
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ages (which are typically sparsely labeled) into tiles. Additionally, they examined the causes

of improvement. They explore different tiling sizes and different levels of overlap between

tiles. They test different configurations of EfficientDet, and CenterNet models, in addition

to YOLOv4 on the VizDrone, SeaDroneSee, and DOTA datasets. When images are split into

tiles, they also discard empty tiles containing no labels. They found that training on tiled

data consistently outperformed training on non-tiled data for every model and dataset they

examined. They found a reduction in the background bias to be a significant part of the

performance improvement, as many empty tiles are discarded, meaning that the portion of the

unlabeled background is reduced. Additionally, they found training on tiled data to be more

efficient as training on full-sized high-resolution images requires much more memory during

the backpropagation step in the training process. For sparsely labeled images such as UAV

images, objects can appear quite small and therefore benefit from maintaining a high resolution

as opposed to downscaling the images, which is an often-used method in other cases. When

running inference on the trained models, they used the full images as opposed to tiling them

as was done during training. Running inference requires much less memory than training, and

tiling is therefore not necessary then. Out of the different resolutions they tested, they found

a tile size of 512x512 to be optimal. For the degree of overlap, they found a minimum of 15%

overlap to be optimal, with more overlap neither increasing nor decreasing performance.

2.4 Synthetic data

(Nowruzi et al. 2019) examined the performance achieved by the object detection model

SSD-MobileNet on detecting cars and persons in autonomous driving datasets. They set

out to discover whether adding cheaply generated synthetic data to a limited real dataset

improved detection performance. They evaluated combinations of three real datasets and

three synthetic datasets in different fractions by reporting their average precision and recall.

They also compared combining the real and synthetic data into a mixed training set versus

first training on only the synthetic data and then fine-tuning on the real data. Their two most

interesting findings are that:

1. Fine-tuning on real data after training on purely synthetic data tended to outperform

mixed training.

2. Fine-tuning on real data after training on purely synthetic data consistently outperformed

training on only real data of the same amount.

Using more real data in combination with synthetic data also tended to increase performance

overall. Additionally, the largest improvement was seen in the average recall, compared to a

smaller improvement in the average precision. In fact, the average recall achieved by using

only a fraction of the data to fine-tune a model trained on synthetic data was in many cases

higher than using 100% of the real data with no synthetic data. They also mentioned that

based on findings in previous literature realistic sensor distortion and environment distribution

are more important than photo-realism, and their results further support this theory as the

most photo-realistic synthetic dataset they used did not in fact produce the best performance,

suggesting that other factors are more important.

(W. Liu, J. Liu and Luo 2020) proposed a method of generating realistic synthetic data
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using the JavaScript-based 3D rendering system Three.js, followed by a style transfer using a

Generative Adversarial Network (GAN) called CycleGAN to make the synthetically generated

images more realistic looking. In this case, they were trying to detect aircraft from aerial

images, which has the challenge of detecting objects at different scales depending on the

altitude of the camera. To generate the synthetic images, they used 3D models of aircraft

over different background images, they also added a directional light representing the sun and

also added some fog. The camera in the scene was looking down from above to simulate

aerial photographs. They used three real datasets; NWPU VHR-10, UCAS-AOD, and DIOR,

and trained two object detection models; Faster R-CNN, and R-FCN. They evaluated and

compared the performance between using purely synthetic data and purely synthetic data with

style transfer from CycleGAN. They also evaluated and compared using different amounts of

real data in addition to the synthetic data. When real data was used, the model was first

trained on just the synthetic data, and then it was fine-tuned on the real data. For the Faster

R-CNN model trained on the NWPU VHR-10 dataset, they found that using only synthetic

data without style transfer yielded a mAP of 0.450, and using only synthetic data with style

transfer yielded a mAP of 0.605. For context, using only real data, the model achieved a

mAP of 0.641. This indicates that using style transfer on synthetic data can be beneficial.

Using the synthetic data with style transfer and the real data for fine-tuning gave a mAP of

0.685, meaning that adding synthetic data can increase performance over just using the real

data which is available. It was also clear from their results that using more data for fine-tuning

increases performance. There was also a clear trend that the less real data was used, the bigger

the impact of adding synthetic data was.

(Borkman et al. 2021) introduced the Unity Perception package for the popular game engine,

Unity. This package provides a toolset for generating random scenes in 3D as well as the tools

to automatically capture and label images taken by cameras positioned within the scene. In

their paper, they give an overview of how these tools work as well as perform an experiment

comparing the performance of an object detection model with and without synthetic data

generated by Unity Perception. For the experiment, they use the object detection model

Faster R-CNN with a ResNet50 backbone, pretrained on the ImageNet dataset. They created

the UnityGroceries-Real dataset, consisting of 1267 images of 63 classes of grocery items for

the real dataset, and then generated 400,000 synthetic images of groceries for the synthetic

dataset. They evaluated the performance of a model trained only on the real training set versus

a model trained on the synthetic dataset followed by fine-tuning on the real dataset. They

trained several models using different amounts of real data for fine-tuning. The baseline model

trained only on the real dataset achieved a mAP@0.5 of 0.719, and the model trained only

on synthetic data achieved a mAP@0.5 of 0.538. When they used half of the real dataset for

fine-tuning the model’s performance surpassed the baseline achieving a mAP@0.5 of 0.815,

and when using the full real dataset for fine-tuning they achieved a mAP@0.5 of 0.854. This

shows that cheap synthetic data generated by Unity Perception can be beneficial to object

detection performance as enough synthetic data can compensate to some degree for the lack

of real data. It is still clear that more real data is always better, but real data is much more

expensive and time-consuming to create.



Chapter 3

Theory

In the following sections, some of the theoretical background behind the machine learning

method used, and the methods of evaluation will be explained.

3.1 Artificial neural networks

The brain uses biological neurons connected by axons and dendrites in order to perform com-

putations. Artificial Neural Networks (ANNs) are inspired by this structure, using artificial

neurons connected together to perform computations (McCulloch and Pitts 1943). ANNs

learn a mapping between inputs and outputs by being presented with input data, and what its

corresponding output should be. This is called supervised learning, and adjusting the weights

between neural connections is typically done through backpropagation. This works by com-

puting a loss; the error between what the network predicted and what the correct output is,

and propagating this loss backward through the layers by differentiating the layers to compute

the gradient with respect to the loss, and adjusting the weights in the direction of lowering

the loss (Goodfellow, Bengio and Courville 2016).

3.1.1 Multilayer perceptrons

Multilayer Perceptrons (MLPs) are the simplest form of neural network. What characterizes

MLPs is that they have multiple layers of neurons, where every neuron is connected with every

other neuron in the next layer (fully connected layers). MLPs consist of an input layer, a

number of hidden layers, and finally, an output layer (Haykin 1999). The structure of this

kind of neural network can be seen in Figure 3.1, where the thickness of the lines between the

neurons represents the weight of the connections.

The value vi of a neuron i depends on the outputs from the previous layer (x1, x2, . . . , xn),

the weight of the connections into the neuron i (wi1, wi2, . . . , win) and the bias bi of the

neuron. The weights between the current neuron and the neurons in the previous layer, as

well as the bias, are all trainable parameters. The value of a neuron is computed according to

Equation 3.1, where n is the number of neurons in the previous layer (Haykin 1999).

14
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Figure 3.1: Multilayer perceptron

vi =

n∑
j=1

(xjwij) + bi (3.1)

This can be calculated very efficiently since it can be trivially expressed as matrix-vector

multiplications that can be computed in parallel on modern hardware. For the network in

Figure 3.1, the input layer can be represented by a vector of length 3, and the hidden layer and

biases as vectors of length 4. The weights between these two layers can then be represented as

a 4x3 matrix. To compute the values of the neurons in the hidden layer, it is simply a matter

of performing a matrix multiplication of the weight matrix and the input vector and adding

the bias vector at the end.

However, before the values are passed on as the input to the next layer, a so-called activation

function is applied to each neuron value. The activation function has to be differentiable in

order to be able to perform backpropagation, and it is usually a non-linear function. If a linear

activation function is used, the network itself is constrained to being linear, and will not be able

to approximate non-linear functions. When using non-linear activation functions between the

hidden layers, the neural network can be seen as a universal function approximator (Cybenko

1989).

3.1.2 Convolutional neural networks

Convolutional Neural Networks (CNNs) are traditionally used for image classification, that is,

determining to which class a certain image belongs. CNNs typically consist of convolution

layers, pooling layers, and fully connected layers. Convolution layers consist of matrices of

numbers called kernels, which passes over the input image and outputs feature maps. For

each image patch the kernel passes over, it multiplies pixel values with the kernel weights

at the corresponding locations, and sums the result; this is illustrated in Figure 3.2. The

kernel weights are learned through training, and learn to map specific patterns into features

(Goodfellow, Bengio and Courville 2016). The output in this figure is an example of a feature

map. Each convolution layer is usually followed by an activation function and then a pooling

layer.
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Figure 3.2: Convolution layer
Note. From ”Convolutional Neural Networks (CNNs)”, by Anh H. Reynolds

(https://anhreynolds.com/blogs/cnn.html).

Pooling layers reduce the size of the feature maps by reducing groups of adjacent pixels into a

single value. The most common pooling function is max-pooling, which takes the maximum

value of a group of adjacent pixels (Goodfellow, Bengio and Courville 2016). An example of

this process can be seen in Figure 3.3, where a pooling size of two is used, taking the maximum

value of 2x2 sections of the image, and thereby reducing the size of each image dimension by

a factor of two.

Figure 3.3: Max-pooling
Note. From ”Convolutional Neural Networks (CNNs)”, by Anh H. Reynolds

(https://anhreynolds.com/blogs/cnn.html).

After a number of convolution and pooling layers, the final feature maps are flattened into a

vector, and then fully connected layers are used at the end to produce the final class predictions.

CNNs essentially work by extracting features from the image. The first convolution layers

extract simple features like edges and corners; deeper into the network these features become

more abstract and semantically meaningful. Since the learned parameters are the kernel weights

themselves, and the kernels pass over the entire image, CNNs are invariant to translation,

meaning that the location of the object in the image is irrelevant. This is a very useful feature

for image classification and a key reason why they outperform simple fully connected neural

networks for image classification. A fully connected neural network would necessarily map

specific pixels with specific weights, making it difficult for the network to generalize when the

objects to be classified in an image are translated.

https://anhreynolds.com/blogs/cnn.html
https://anhreynolds.com/blogs/cnn.html
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3.2 Object detection

Object detection is the task of identifying and localizing multiple objects within an image.

Object detection methods should ideally be able to detect and localize an arbitrary number of

objects of an arbitrary number of classes within the same image. Object detection methods

typically produce 2-dimensional bounding boxes around each object instance as well as a class

prediction and a confidence score for each object prediction. An example of such predictions

can be seen in Figure 3.4. There are other approaches to object detection like producing 3D

bounding boxes around objects. Additionally, there are segmentation techniques that produce

masks around objects with a class prediction instead of simple bounding boxes (Zhao et al.

2018). However, in this thesis, 2-dimensional bounding boxes are used.

Figure 3.4: Example predictions from an object detection model

3.2.1 Intersection over union

Intersection over Union (IoU) in the context of bounding boxes is a measure of overlap between

two different bounding boxes. It is calculated by dividing the area of intersection (overlap)

between the two boxes by the union area of the two boxes. The intersection area can be calcu-

lated directly by knowing the bounding box coordinates. To calculate the union area, sum the

individual areas of the bounding boxes, and then subtract the intersection area (Everingham,

Van Gool et al. 2010). This can be seen intuitively in Figure 3.5, where the shaded blue regions

represent the areas in each part of the fraction.

When two boxes overlap perfectly this will yield a value of 1, and if two boxes do not intersect

at all it will yield 0. This is a very important measure in the context of object detection as it is

used to determine whether predictions are correct depending on whether the overlap between

the predicted bounding box and the ground truth bounding box is large enough; the IoU must

be greater than a predetermined threshold, e.g. 0.5 (Everingham, Van Gool et al. 2010). It is

also used for non-maximum suppression.
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Figure 3.5: Intersection over union of two bounding boxes

3.2.2 Non-maximum Suppression

When an object detection model makes predictions, it may often produce a large number

of partially overlapping boxes related to the same object. However, one true object should

ideally only have one prediction associated with it; this is where Non-Maximum Suppression

(NMS) comes in. In addition to a class prediction, object detection methods typically produce

a confidence value for each prediction. For each overlapping prediction, only the prediction

with the highest confidence is desired, this is illustrated in Figure 3.6.

(a) Candidate boxes before NMS (b) Final prediction after NMS

Figure 3.6: Bounding box prediction before and after NMS

First, an IoU threshold must be set, which will determine whether two boxes overlap enough

to be considered to predict the same object. The raw predictions from the object detector

are considered candidate boxes at this stage and are sorted descending by their confidence

scores. Until the list of candidate boxes is empty, take the first element from the list and add

it to the list of output predictions. Next, look through the list of candidate boxes and remove

those which have an IoU with the added box over the threshold set earlier. This is repeated
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until the list of candidate boxes is empty (Buil 2011). Since the list of candidate boxes is

sorted by confidence, only the highest confidence prediction for each object will be added as

the overlapping boxes of lower confidence are removed before they can be added to the list of

output predictions.

3.3 Evaluation metrics

In standard image classification, an image is classified either correctly or it is not, meaning

that evaluating performance can be as simple as reporting the accuracy as a fraction of correct

predictions over the total number of predictions. For object detection, it is slightly more

complicated because there is more than one way to be incorrect. A False Positive (FP) is

when the model predicts an object that is not actually present, and a False Negative (FN) is

when the model does not predict an object that is present. Correct predictions are either True

Positives (TPs) where an object is present and correctly predicted, or True Negatives (TNs)

where objects are absent and correctly omitted from prediction. However, true negatives

represent correctly predicting the background, which naturally does not contain any boxes,

and therefore cannot be quantified in the same way; it is therefore not a very useful measure

in this context.

Because these three different measures (FP, FN, TP) are obtained when comparing predictions

from object detectors to the ground truth, the metrics that are commonly used to evaluate

object detection models utilize these measures.

It is also relevant to consider the confidence score when looking at these metrics. When using

an object detection model in practice, one would often want to exclude predictions below a

certain confidence threshold. The metrics presented in the following subsections can be used

to find a suitable confidence threshold for the problem at hand.

3.3.1 Precision

Precision measures how many of the total predictions made, are correct predictions. In the

context of object detection, it is a measure of how many of the predicted bounding boxes

actually correspond to an object in the image. Precision ranges between 0 and 1, where 0

means that all predicted boxes are false positives, and 1 means that all predicted boxes are true

positives. This means that the model can get a precision of 1 if it only makes one prediction as

long as that one prediction is correct, even if there are hundreds of other objects in the image

that are not detected. Precision is calculated according to Equation 3.2 (Taha and Hanbury

2015).

Precision =
TP

TP + FP
(3.2)

How does the confidence threshold relate to precision? Typically, a lower confidence threshold

will include more false positives. This is because low-confidence predictions that our model

is very uncertain about are not discarded. When using a high confidence threshold, all but

the most confident predictions are discarded, which only leaves the predictions that are most

likely to be true positives, and hence, precision should increase when the confidence threshold
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increases. Figure 3.7 shows the general relationship between precision and confidence, the

exact shape of the curve varies in practice.

Figure 3.7: Relationship between precision and confidence

3.3.2 Recall

Recall measures how many of the true examples were actually predicted by the model. In the

context of object detection, it measures how many of the true objects had a bounding box

prediction from the model. Recall ranges between 0 and 1, where 0 recall means that none of

the true objects were detected, and 1 recall means that all of the true objects were detected,

irrespective of the number of false positives. Equation 3.3 shows how recall is calculated (Taha

and Hanbury 2015).

Recall =
TP

TP + FN
(3.3)

Recall has the opposite relationship with the confidence threshold as precision. A lower con-

fidence threshold will include more predictions, making it more likely to correctly predict more

true boxes. When the confidence threshold increases, the number of false negatives typically

increases since some of the predictions of low confidence will still be correct, but they are no

longer included. That is why recall typically has a negative correlation with the confidence

threshold. Figure 3.8 shows the general relationship between recall and confidence.

Figure 3.8: Relationship between recall and confidence
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3.3.3 F-score

It is clear that precision and recall by themselves are not sufficient; however, they paint a

clearer picture when considered together. The F-score combines precision and recall into

a single metric. The standard F-score, called the F1-score is the harmonic mean between

precision and recall, and values each measure equally. The F1-score is calculated according to

Equation 3.4 (Taha and Hanbury 2015).

F1 =
TP

TP + 1
2 · (FN + FP )

(3.4)

The F-Score also produces an output between 0 and 1, where 0 indicates that either measure

is 0, and 1 indicates that both measures are 1.

There is also a more general F-score; the Fβ, that uses a positive factor β to put more weight

on either precision or recall. A β of 1 yield the standard F1-score, a β of 2 means that recall

is twice as important as precision, and a β of 1
2 means that precision is twice as important as

recall. The more general Fβ with the additional factor β is calculated according to Equation 3.5

(Taha and Hanbury 2015).

Fβ =
(1 + β2) · TP

(1 + β2) · TP + β2 · FN + FP
(3.5)

The F-scores relationship with the confidence threshold is a little more complicated. Since it

depends on both precision and recall, which have an opposite relationship to each other with

respect to the confidence threshold, the F-score does not simply increase or decrease with

the confidence threshold. However, since precision is usually close to zero at low confidence

thresholds, and recall tends to be close to zero at high confidence thresholds, the F-score

is usually close to zero at both ends. It will then be at its highest somewhere in between,

depending on the weighting β, and the shape of the precision and recall curves. There are many

possible shapes of the F-score curve, some simplified examples are illustrated in Figure 3.9.

Figure 3.9: Possible relationships between F-score and confidence
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3.3.4 Precision-recall curve

Another useful metric is the precision-recall curve. This shows the relationship between preci-

sion and recall directly, that is, for a given recall level, what kind of precision does the model

get. This can be calculated by generating a set of recall levels between 0 and 1, and checking

the maximum precision at or above each level (Everingham, Van Gool et al. 2010). Remember

that precision and recall have an inverse relationship, so when the recall increases, the precision

tends to decrease. If a higher precision is found at a recall level above the currently examined

one, it is always preferable to go to that higher recall level since it is essentially a free lunch.

That is why precision is interpolated this way. This means that the interpolated precision-

recall curve is monotonically decreasing, but not strictly decreasing, as it can be flat in certain

sections (Encyclopedia of Mathematics 2020). The general shape of a precision-recall curve

can be seen in Figure 3.10.

Figure 3.10: Relationship between precision and recall

This interpolated precision-recall curve is also used to calculate other metrics like Average

Precision (AP). AP is calculated as the weighted average precision at each recall level, where

the increase in the recall level from the previous value is used as the weight. For a precision-

recall curve with a constant spacing between recall levels, this is equivalent to taking the mean

of the precision-recall curve (Everingham, Van Gool et al. 2010).

3.3.5 mAP@.5

mAP@.5 has a rather cryptic-sounding name but is a very widely used metric in the field of

object detection. Breaking down the name; mAP stands for mean average precision, @.5 means

at 0.5 intersection over union. It is calculated by creating a precision-recall curve using 0.5 as

the IoU threshold for determining whether predictions are correct or not. Next, the average

precision is calculated for each class in the way explained above, and finally, take the mean

of the average precision for each class. For a single class object detector, AP and mAP are

equivalent (Everingham and Winn 2010).

Since the precision/recall curve is used, which reports the precision at different recall levels,

by taking the mean of this curve both precision and recall are taken into account in a single

number, which turns out to be a very effective way to compare the performance of different

object detection models on the same dataset.
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3.3.6 mAP@.5:.95

mAP@.5:.95 is very similar to mAP@.5. To explain the naming; @.5:.95 means at IoU from 0.5

to 0.95, at steps of 0.05. This means that the mAP is evaluated at 10 different IoU thresholds

between 0.5 and 0.95, the average of these values is reported as the metric (Everingham and

Winn 2010). This is a good metric for the same reasons as the mAP@.5 metric. However, in

addition to taking the precision and recall into account, this metric also measures how well the

bounding boxes fit the ground truth boxes since the higher IoU thresholds will result in more

errors if the predicted bounding boxes do not have sufficient overlap with the ground truth.

For this reason, they do not measure precisely the same thing, and mAP@.5:.95 is therefore

not a substitute for mAP@.5, and one would typically report and compare both metrics.

3.4 YOLOv5

YOLOv5 is a family of object detection models that produce 2D bounding boxes as predictions.

YOLOv5 offers multiple model variations of different sizes in terms of no. of parameters that

affect its speed and accuracy. In general, YOLOv5 consists of four main components: input

augmentation, the backbone, the neck, and the head. The latter three components are what

make up the actual neural network, and its architecture can be seen in Figure 3.11. YOLOv5

uses three different loss functions:

1. Box loss measures the error in box boundaries between the prediction and ground truth.

2. Object loss measures the error in confidence of object presence.

3. Class loss measures the error in class prediction.

Input augmentation is used to improve the model’s generalizability; many augmentation tech-

niques are applied in this stage. Mosaic augmentation takes several input images and puts

them together into a mosaic of a standard size. The individual images are also transformed

randomly using affine transformations (rotation, scale, shear, and translation), images can also

with a certain probability be flipped. Finally, the hue, saturation, and value of the image colors

are augmented as well (Li et al. 2022).

The backbone is responsible for feature extraction, and YOLOv5 uses CSP-Darknet as its

backbone. Although it is more complicated and has some other components in addition to

convolutional layers, it is essentially a CNN, which as explained in subsection 3.1.2 is able

to extract feature maps from the input. However, it lacks the flattening and fully connected

layers at the end for classification, as its job is only to produce the feature maps and hand this

over to the neck (Li et al. 2022).

As mentioned in subsection 3.1.2, the early feature maps of the CNN have a high degree of

localization and low semantic information, and deeper into the CNN, the features have more

semantic information, and because of pooling, the spacial information gets compressed. The

function of the neck of YOLOv5 is to preserve the spatial information of features, otherwise,

precise localization of objects would be difficult. For this, YOLOv5 uses a variation of PANet.

This works by propagating strong semantic features from the high feature maps into the low

feature maps and propagating strong localization features from the low feature maps into the
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Figure 3.11: The network architecture of YOLOv5
Note. From ”A Forest Fire Detection System Based on Ensemble Learning”, (p. 5), by Xu et al., 2021

(https://www.researchgate.net/publication/349299852_A_Forest_Fire_Detection_System_Based_
on_Ensemble_Learning).

high feature maps (Xu et al. 2021).

Finally, the head (called the YOLO layer) is responsible for predicting the labels. It generates

three different feature maps of different sizes to be able to predict small, medium, and large

objects (Xu et al. 2021). The bounding box prediction utilizes anchor boxes. Anchor boxes

are a set of predefined boxes of different aspect ratios. The model will try different anchor

boxes and select the one with the best fit, and the actual numerical prediction is an offset

from the anchor box as opposed to predicting the coordinates directly. This is done because it

simplifies the problem, and models utilizing this technique typically perform better on standard

benchmarks (Zhong et al. 2020). Before the actual training begins, YOLOv5 will analyze the

training set and use K-Means clustering to automatically find appropriate anchor boxes for the

dataset.

https://www.researchgate.net/publication/349299852_A_Forest_Fire_Detection_System_Based_on_Ensemble_Learning
https://www.researchgate.net/publication/349299852_A_Forest_Fire_Detection_System_Based_on_Ensemble_Learning
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Sensor data

The dataset of drone images consists of 2,125 aerial images containing 20,431 total instances

of sheep. The images have a resolution of 4,056×3,040. The images were captured with a

DJI Mavic 2 Enterprise Dual, which has a regular camera as well as a thermal camera. Only

the visual camera images were used. The visual camera has a horizontal Field of View (FOV)

of 85◦. (DJI 2022)

4.1 Data capture

The data was captured in a few different locations over different sessions. When an image is

taken, a lot of metadata is stored along with the image, including capture date and time, GPS

location, and elevation. Insight into these parameters will be useful when generating synthetic

data. In Figure 4.1, the locations where images were taken can be seen in the form of a heat

map.

Figure 4.1: Heatmap showing capture locations

The majority of images are clustered around two different locations, Storlidalen in Oppdal,

and Orkanger, over relatively small areas. This likely limits the variance of background terrain

which can be expected in the dataset; capturing data from more locations could potentially

25
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improve the generalizability of detection. Next, the day of the year when images are captured

affects vegetation, climate, and how much sun is present at different times. This can be seen

in figure Figure 4.2.

Figure 4.2: Day of year when images were captured

The vast majority of images were captured between August and October, with only a few

images captured around April/May. Since sheep are usually retrieved around fall, this is okay.

The time of day when images are captured has a significant impact on the resulting images

as it determines how much sunlight is present as well as the angle of the sun; which in turn

determines how shadows are cast over the terrain and sheep. In Figure 4.3, the time of day

when images are captured can be seen.

Figure 4.3: Time of day when images were captured

The majority of images were captured from mid-day to late in the evening, with no images

captured after midnight before 06:00, and only a few images were captured early in the morning.

For a practical case, having no images during the night is probably okay. However, since a

farmer looking to retrieve sheep would want to go out as soon as possible after images are

taken before the sheep move too far, it would probably be useful to capture images early in

the morning, so that there is time to go out the same day. Having more data for adequate

detection between 06:00 and 10:00 would likely be useful for a practical case.

4.1.1 Elevation

The GPS data also includes elevation, which is based on signals from at least four different

satellites. This gives a height in meters above mean sea level. However, this in and of itself
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is not very useful, as the height above ground level is much more interesting. To calculate

this, the ground height of each GPS coordinate is needed. In Norway, this data is available

from Kartverket at hoydedata.no. This service uses a Universal Transverse Mercator (UTM)

projection at zone 33; however, the GPS reports latitude and longitude based on the World

Geodedic System 1984 (WGS84). Therefore, the GPS coordinates are first converted into

UTM33 using the coordinate transformation software PROJ (PROJ contributors 2022). Then,

each position is queried at hoydedata.no to get the ground elevation above mean sea level at

that position. To get the altitude above the ground then, simply subtract the ground elevation

above sea level from the GPS elevation above sea level. The distribution of capture elevations

above ground level can be seen in Figure 4.4.

Figure 4.4: Elevation of the drone above ground

The results of these calculations are clearly not perfect, as a large number of images appear

to be taken below ground level, which is obviously incorrect. However, the majority of images

appear to have a reasonable elevation of between 30 to 60 meters. Several factors could be

contributing to these errors. First and foremost, there is a margin of error in the latitude/lon-

gitude output from the GPS (Ünsalan 2020), meaning that the GPS could report a mostly

correct elevation measurement with an incorrect latitude/longitude location. This would result

in sampling the ground elevation at the incorrect location which is then subtracted from the

GPS elevation. This would then contribute to the error in altitude above ground. Also, the

elevation measurement from the GPS has a margin of error, which is typically larger than the

margin of error for the latitude/longitude (Al-Bukhaiti 2018), meaning that the GPS could

report a mostly correct latitude/longitude position with an incorrect elevation. Additionally,

the ground height data from Kartverket is sometimes calculated using image matching, partic-

ularly in larger areas above the tree line. Image matching is less accurate than laser scanning

which they would otherwise use (Kartverket 2022). This could be a contributing factor to the

error in ground elevation, which would propagate to the error in altitude above ground.

4.2 Labeling

The images were hand-labeled by the master’s students working with this dataset. The sheep

were labeled into four different classes based on their color (white, gray, black, and brown). A

small number of sheep were labeled as a fifth class; occluded, without any color information.

Since it was necessary to know both the color and whether or not sheep were occluded, the
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number of classes had to be increased to eight; one for every color when the sheep was

not occluded, and one for every color when the sheep was occluded. The labels were then

modified where necessary. To clarify, a sheep is defined as occluded when there is something

semi-transparent partially covering it up, like leaves or grass which can be seen through; not

if a sheep is standing behind a rock and only half of the sheep is visible; this is not considered

occlusion in this context.

Some cases were difficult to label; in some cases, the color was difficult to determine, e.g.

whether a sheep is gray or black is sometimes ambiguous. In addition to this, how much

occlusion is necessary to define it as such is somewhat ambiguous, and the author’s best

judgment was used in determining this instead of trying to define occlusion rigorously. In a

few rare cases, like when the drone was flying at a high altitude, the picture was somewhat

blurry, or when partially occluded, it could be difficult to tell whether a sheep was present at

all. These cases did not constitute a significant portion of the data though, and likely had a

small impact on the results. However, due to the factors mentioned above, it is important to

keep in mind when interpreting the results that the distinction between different classes is not

perfect.

4.3 Class distribution

The sheep were classified in four different colors (white, gray, black, and brown) and whether

or not they were partially occluded. The class distribution of the sensor dataset is listed in

Table 4.1.

White Gray Black Brown Total
Non-occluded 12,380 3,515 2,362 1,071 19,328

Occluded 904 149 40 10 1,103

Total 13,284 3,664 2,402 1,081 20,431

Table 4.1: No. of occluded vs. non-occluded sheep for each color

There is a very significant class imbalance in this dataset, where white is by far the most

prevalent color, and occluded sheep are much rarer than non-occluded sheep. The expectation

based on this information is that the classes with the fewest instances will be the most difficult

to detect. This information was also used to inform which classes should be prioritized when

generating synthetic data.

4.4 Training, validation, and test split

The dataset was split into a set for training the model, a validation set used to track the

performance during training and select an appropriate model without overfitting to the training

data, and finally, a test set used to evaluate the performance of the model on data that the

model has never seen before. A split of 70%, 15%, and 15% was chosen for the training,

validation, and test sets respectively. The näıve approach to splitting the data would be to

simply split the images randomly in the above proportions. However, due to the large variety in

the number of instances per image, this will not guarantee a proportional split in the number

of instances for each set, which is more important. Additionally, the näıve method does not
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take into account the number of instances for each specific class per image, and given the

large numerical disparity between different classes, care should be taken in making sure the

data is split proportionally between each class.

A more suitable approach would be a proportionate stratified sampling. However, since only

images can be selected and not individual instances, optimal samples cannot be guaranteed.

Therefore, the number of instances for each class per image is needed to inform the selection

such that an approximately proportional sample for each set can be achieved. Since some of

the classes such as black occluded sheep and brown occluded sheep have an extremely low

number of instances, it is necessary to ensure that the validation and test sets get a number

of instances at least proportional to the number they optimally should have. Unfortunately,

this is likely still too small to make statistically significant observations. In order to accomplish

this, a custom split method was used.

Listing 4.1 shows an excerpt of the Python script used for splitting the data. Some global

variables were declared earlier in the script; including the list of image label names in the labels

variable, the number of instances of each class for each label name in the img class count

variable, and the number of total instances of each class in the class count variable. First, a

target is assigned based on the split proportions; this is the number of instances per class each

set should ideally contain. Next, the list of label names is shuffled to provide randomness.

The calc diff function, is a method of calculating the distance between two set assignments

based on how many instances of each class are contained in both. An important feature of this

function is that the distance for a given class is calculated by division and that this is again

divided by the total number of instances for the class in order to normalize the scale of the

differences. This is important because the classes with a low target will see a big reduction in

the distance by adding only a few instances; that way, underrepresented classes are prioritized

when assigning labels. If a class has assigned an equal or greater number of instances than

the target, the distance for this class is zero. The function calc modified simply adds class

instances to a set. The script iterates over all of the labels, and stores its class instances. For

each iteration, it calculates the distance between what is currently assigned and the target

for each set. It then assigns the class instances of the current label to each set and again

calculates the distance between the modified set and the target. The split with the greatest

reduction in distance will be assigned the label. The resulting split is listed in Table 4.2.

1 split = {"train": 0.7, "val": 0.15, "test": 0.15}

2

3 target = {}

4 for (a_set , proportion) in split.items():

5 target[a_set] = {}

6 for (clas , count) in class_count.items():

7 target[a_set ][clas] = count*proportion

8

9 labels = files.copy()

10 random.shuffle(labels)

11

12 sets = {"train": [], "val": [], "test": []}

13

14 def calc_diff(assigned , target):

15 diff = 0



CHAPTER 4. SENSOR DATA 30

16 for clas in target.keys():

17 if assigned[clas] >= target[clas]: continue

18 diff += (target[clas] / max(assigned[clas], 0.1)) / class_count[clas]

19 return diff

20

21 def calc_modified(assigned , c_count):

22 modified = assigned.copy()

23 for clas , count in c_count.items():

24 modified[clas] = modified.get(clas , 0) + count

25 return modified

26

27 assigned = {}

28 for (a_set , proportion) in split.items():

29 assigned[a_set] = {}

30 for (clas , count) in class_count.items():

31 assigned[a_set ][clas] = 0

32

33 for label in labels:

34 c_count = img_class_count.get(label [:-4])

35 if c_count is None: continue

36

37 weights = {"train": 0, "val": 0, "test": 0}

38 for a_set in weights.keys():

39 start = calc_diff(assigned[a_set], target[a_set])

40 modified = calc_modified(assigned[a_set], c_count)

41 end = calc_diff(modified , target[a_set])

42 weights[a_set] = (start - end)

43

44 winner = max(weights , key=weights.get)

45 assigned[winner] = calc_modified(assigned[winner], c_count)

46 sets[winner ]. append(label)

Listing 4.1: Python code for dataset splitting

Training set
White Gray Black Brown Total

Non-occluded 8,585 2,427 1,638 744 13,394

Occluded 627 87 26 6 746

Total 9,212 2,514 1,664 750 14,140

Validation set
White Gray Black Brown Total

Non-occluded 1,910 546 360 165 2,981

Occluded 139 31 6 2 178

Total 2,049 577 366 167 3,159

Test set
White Gray Black Brown Total

Non-occluded 1,885 542 364 162 2,953

Occluded 138 31 8 2 179

Total 2,023 573 372 164 3,132

Table 4.2: No. of class instances for training, validation, and test split
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4.5 Data preparation

The high resolution of the images posed a challenge during training as the backpropagation

algorithm requires a lot of information to be kept in memory. Since the error is propagated

backward through the network, the activations of the previous layers need to be kept in memory

the whole time. This is especially problematic for CNNs with a large input image, as the kernel

activations over the entire image take a lot of space; this also increases with the depth of the

network. It is however significantly better than fully connected layers of a similar size (Varga

and Zell 2021).

This significantly limits the batch size and therefore the training speed. In this case, training

on the full resolution required too much memory for the hardware used and was too slow to be

feasible. A common solution to this problem is downscaling the images to a more manageable

resolution. However, since the drone flies at high altitudes, the sheep will appear quite small

and downscaling will have a significantly negative impact on the performance as the number

of pixels for each sheep will be too low (Petso et al. 2021). In the preparatory project for

this thesis, the image resolution had a very big impact on the performance achieved on similar

images. Additionally, (Furseth and Gran̊as 2021) and (Varga and Zell 2021) both found that

training on tiled images yielded a significantly better overall performance than training on

downscaled images. For these reasons, the decision was made to divide the images into tiles

instead of downscaling. Tiles including no sheep were discarded in this process, in addition to

labels with a width or height of fewer than 12 pixels to eliminate noisy labels that are too hard

to detect. This has the benefit of keeping the original resolution of the sheep while significantly

improving the training speed.

Each image was split into 48 tiles (width was divided by 8 and height was divided by 6). The

tiles include a padding of 64 pixels in every direction in order to not clip sheep located on

the border between tiles. This ensures that most sheep will be fully visible in at least one

tile, as long as they are not too big. However, it also means that the same sheep can appear

in multiple tiles. For this reason, the training, validation, and test splitting was done before

tiling the images. Otherwise, the same sheep could appear in both the training and test set,

which would threaten the validity of the results. An example of the image tiling is visualized

in Figure 4.5, where red tiles indicate an excluded section (containing no sheep), green tiles

indicate an included section (containing sheep), and the padding width is shown in yellow

around the grid lines.
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Figure 4.5: Example of image tiling



Chapter 5

Synthetic data

The game engine Unity along with the Perception package was used to generate the synthetic

images. The Perception package includes a range of tools for generating randomized scenes

and also performs the automatic labeling. First, a so-called scenario is created, where the

number of iterations is specified along with a set of so-called randomizers. The randomizers

are used to generate a new scene for each iteration in the scenario, drawing random samples

from specified distributions and using these values to modify the scene in different ways. The

Perception package comes with a few randomizers out-of-the-box, along with tools for creating

your own randomizers such as methods for drawing random samples from different distributions

and of different data types (Unity Technologies 2020). Some of the built-in randomizers were

used; however, most of the randomizers were created specifically for this application.

Using a game engine for generating synthetic data has several benefits.

• The resulting images can be close to photo-realistic depending on the quality of the

assets used.

• Realistic lighting and shadows.

• Camera specifications can be emulated.

• Automatic labeling is straightforward and precise.

• Highly controllable and predictable.

• Easy to produce a high degree of variance.

5.1 Randomization

The following subsections describe the different components that make up the scene and how

these components were randomized between iterations.

5.1.1 Terrain

To generate random terrain, a package called MapMagic 2 was used. This package can

procedurally generate terrain geometry, as well as apply textures and grass. MapMagic 2

generates terrain asynchronously, which results in Unity Perception finishing the iteration before

33
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the terrain is generated, as it has no way of knowing when the asynchronous task is finished.

A small modification to MapMagic 2’s code was therefore necessary in order to generate the

terrain synchronously so that it would work within Unity Perception’s framework.

MapMagic 2 works by creating a graph that dictates the geometry, textures, and grass. To

generate the terrain geometry, the first node in the graph generates simplex noise. This is a

type of gradient noise that is suitable for generating terrain. Next, erosion simulates water flow

moving material from one location and settling elsewhere as sediment. Finally, the resulting

map is applied to the height of the terrain. This can be seen in Figure 5.1. The size of the

generated terrain is 60x60 meters.

Figure 5.1: MapMagic graph of terrain geometry

An example of the resulting terrain can be seen in Figure 5.2. The only parameter that is

changed between iterations is the random seed used to generate the simplex noise.

Figure 5.2: Procedurally generated terrain

The texture applied to the terrain geometry consists of three different textures that were

blended together; gravel, yellow grass, and green grass. First, a separate noise map was

generated using Perlin noise. The output of the Perlin noise was fed into three separate

intensity/contrast modifiers, two of which are for the yellow and green grass textures. The

only difference between the contrast modifiers is the intensity, otherwise, they use the exact

same noise map. The textures are applied in layers and are visible depending on if their input

value (the noise map) is above a certain threshold. Gravel does not have an input value as

it is the base layer. Since green grass has a lower intensity input than yellow grass, green

grass will only be applied if the noise value is sufficiently high, and yellow grass is applied at a
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slightly lower value since its intensity modifier is higher. This will effectively blend from gravel

to yellow grass and finally to green grass texture with an increasing value in the noise map.

The graph controlling the texture of the terrain can be seen in Figure 5.3.

Figure 5.3: MapMagic graph of terrain texture and grass

In addition to the green grass texture, tall grass was also generated using the same Perlin noise

map. This has an even higher threshold than the green grass texture so that tall grass was

only generated over the green grass texture. The height of the tall grass varies between 0.5

and 2.5 meters, this is to cause some sheep to be partially occluded by the grass so that the

detection of occluded sheep could be improved. Wind is also simulated for the grass, so the

grass would be bent over in a certain direction instead of simply standing straight up. This

increases the grass’s ability to occlude sheep since they are seen from above. An example of

tall grass can be seen in Figure 5.4.

Figure 5.4: Terrain grass
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5.1.2 Light

The scene had a single directional light representing the sun. The angle of the directional light

was randomized using the built-in Sun angle randomizer. This randomizer works by taking

the hour of the day, the day of the year, and latitude as input parameters. These parameters

are specified as distributions, and in this case, uniform distributions were chosen. The hour of

the day is sampled uniformly between 09:00 and 18:00. These times were chosen as it covers

the majority of the time when the real images were captured. The day of the year is sampled

uniformly from 0 to 365. Latitude is sampled between 50◦and 70◦.

In addition to randomizing the angle, the light intensity, hue and saturation were also random-

ized to provide additional variation. The intensity varied from 0.5 to 2.0. For reference, the

default intensity is 1.0. Hue and saturation were randomized within a much narrower range of

values, as a blue or green sun is unlikely to occur in the real world.

The combination of randomizing the sun angle and terrain geometry provides a good amount

of variance in the background, as the terrain casts shadows onto itself (see Figure 5.5), in

addition to the wide variety of shadows cast by the other objects placed in the scene. This

makes the images overall appear much more photo-realistic than e.g. using a flat background

image.

Figure 5.5: Shallow sun angle casting shadows on the terrain

5.1.3 Cameras

It is desirable to match the camera specifications from the sensor dataset, as mentioned by

(Nowruzi et al. 2019). Since the real images are tiled, the FOV of the cameras in Unity were

reduced correspondingly. That way, tiling the synthetic images was not necessary. The camera

on the DJI Mavic 2 Enterprise has a horizontal FOV of 85◦(DJI 2022). Since the images are

divided by 8 horizontally, the cameras in Unity were given a horizontal FOV of 10.625◦.

For the sensor data, a single image is tiled into many images, therefore having multiple cameras

per iteration when generating the synthetic data is analogous. It also takes a lot of computa-

tional power to generate each iteration, so using multiple cameras in different locations speeds

up the process of generating data significantly. Therefore, an array of 28 cameras per iteration

that are placed in a 7x4 grid were used.
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The cameras were randomized by adjusting the height and angle in the X-direction. The height

was sampled uniformly between 30 and 60 meters since the majority of the sensor data was in

that range. The angle was sampled uniformly between 75◦and 90◦, where 90◦corresponds to

looking straight down, and 0◦corresponds to looking straight ahead. Because of the rotation

randomization, the cameras are placed further apart along the X-axis to avoid multiple images

of the same area. In the sensor dataset, the tiles close to the edges of the image have a

significant parallax effect which results in the objects in these tiles not being seen from directly

above. The random rotation of the cameras in Unity provides a similar effect; however, it may

not be of the same magnitude. The camera configuration can be seen in Figure 5.6.

Figure 5.6: Camera array with randomized height and angle

5.1.4 Rocks

In the sensor dataset, there are often rocks on the terrain, these can sometimes be of a similar

size to sheep and could therefore be mistaken for sheep. It is important to include this kind

of variety in the synthetic dataset as well, especially since it is a very low-hanging fruit that

is easy to implement. In each iteration, a random number of rocks were sampled uniformly

between 50 and 200. There were six different rock models and one was selected at random for

each rock to be placed. Additionally, the scale of each rock was sampled randomly between

a very small size, and a size larger than a sheep. The rotation of each rock was also selected

randomly. Finally, the rock was placed at a random point on the terrain surface. An example

of rocks randomly scaled, rotated, and placed on the terrain surface can be seen in Figure 5.7.

Figure 5.7: Example of rock placement and ground texture transition
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5.1.5 Trees

There are also trees in the sensor dataset, and often, sheep could be located under or near the

edges of trees. This is often the source of partially occluded sheep and so placing enough trees

is critically important for improving the detection of occluded sheep. In the sensor dataset,

there are generally a lot of fir and birch trees. The trees are positioned slightly differently

from rocks, as in the real world some areas are completely free of trees (like grassy fields) and

other areas are densely forested. For this reason, trees were positioned in clusters of the same

species. Two different tree species were used; pine and oak (high-quality free birch models

were difficult to find). Each species had several different 3D models. For each iteration, a

random number of tree clusters were sampled uniformly between 3 and 7. For each cluster,

a species was selected at random. Next, a random number of trees per cluster was sampled

uniformly between 15 and 30. The area of the cluster was determined by the number of trees

together with a density that was also sampled uniformly. For each cluster, the trees were

placed randomly within a circle around a randomly selected point on the terrain surface. Each

tree placed got a randomly selected model from its species. The height and width, as well as

the rotation along the Y-axis, were randomized in order to increase the variance. An example

of tree-randomization and clustering can be seen in Figure 5.8.

Figure 5.8: Examples of tree clusters

5.1.6 Sheep

Randomizing the sheep is the most important aspect of generating the synthetic data. It is

very important to get enough variance so that the model can generalize to real images of

sheep. Unfortunately, there was only one high-quality 3D model of sheep available for use

in this project; however, the randomizations performed should ensure an adequate level of

variance regardless. For each iteration, 300 sheep were placed randomly on the terrain surface

with a random Y-rotation. Each sheep got a random scale ranging from the size of a small

lamb to a big fully grown sheep. In addition to this, the width was multiplied randomly to try

and emulate the fact that many sheep in the sensor dataset have very thick wool. Additionally,

the sheep model was animated, so a random animation pose was selected for each sheep. The

animations range from running, lying down, standing, eating, and much more. This is critical

for ensuring enough variance as the sheep are rarely standing completely straight in the sensor

dataset. Next, since the sheep were classified into four different colors (white, gray, brown,
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and black) the wool texture also needed randomization. The texture that came with the 3D

model was a relatively plain white color. However, in the sensor dataset, the wool had more

variety in both colors and spots of lighter or darker wool. To emulate this, a set of textures for

each color was generated. First, a general base color was selected for each of the four colors.

Next, the wool texture is shifted in hue, saturation, and value so that the average color of the

wool texture matches this base color. Finally, a fractal noise map for saturation and value was

generated and applied to the texture in order to increase the variance of the wool, and provide

spots of lighter/darker and more/less saturation, while still keeping the general color of the

wool.

The goal was to improve the detection of the most difficult classes, which were assumed to be

the classes with the lowest number of instances in the real dataset. The probability of selecting

a specific base color was therefore informed by Table 4.1 from the previous chapter. Colors that

were underrepresented in the real dataset were given a higher probability of being selected. The

probability of selecting a specific base color was the following: brown (40%), black (30%), gray

(20%), and white (10%). After the base color was selected, one of the randomly generated

textures of that color was applied to the sheep. An example of the sheep-randomization can

be seen in Figure 5.9.

Figure 5.9: Sheep with randomized features

5.1.7 Other animals

In the sensor dataset, there are sometimes other animals present, particularly cows. The

model may mistake other animals for sheep, so it is important to include some other animals

in the synthetic dataset so that the model will learn to distinguish sheep from other animals.

Another use case for this could be to include other animals explicitly, this is especially relevant

for detecting predators like wolves, which are notorious for killing sheep. Since wolves are quite

rare in Norway, it would be difficult to get enough real data for detection, so using synthetic

data could be very useful. This is however outside the scope of this thesis and so predators

were not included. The other animals that were included are 3 chicken models, 2 cow models,

1 goat model, and 1 pig model. For each iteration, a random number of animals were sampled

uniformly between 20 and 100. For each animal, one of the above models was selected at

random. Each model got a random Y-rotation and a random scale. In addition to this, all the

models were animated, so a random animation pose was also selected at random before being

positioned at a random point on the terrain surface. Randomizing the rotation, scale, and
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animation should provide a sufficiently high degree of variance for the animals, even if there

were a limited number of models available. Some examples of the other animal models with a

random animation pose applied can be seen in Figure 5.10.

Figure 5.10: Other animals with randomized pose

5.2 Limitations

One limitation of Unity Perception is that it currently does not handle transparent objects

very well. Bounding boxes are drawn correctly when occluded by an opaque object, however,

if the occluding object is semi-transparent it does not properly deal with it. For example,

grass and leaves are typically rendered using a simple mesh and a semi-transparent material to

reduce the number of polygons used and thereby speeding up the rendering significantly. This

is also the case for the vegetation models used in this project. In these cases, the shader used

can be modified so that Unity Perception either sees the mesh as entirely opaque or entirely

transparent; it cannot properly label sheep that are easily seen through a transparent object

while at the same time excluding those that are completely occluded by transparent objects.

This is something that the Perception team is planning to address, but at the time of writing,

this limitation exists. Since one of the most important aspects of generating the synthetic

data was increasing the presence of sheep partially occluded by leaves and grass, this is rather

unfortunate. For this reason, all grass and leaves were seen as transparent when generating

labels for the synthetic data, as no better option was possible with the current state of the

Perception package. This means that the bounding boxes of sheep behind leaves were drawn

as if the leaves were not there. For most cases, especially with respect to grass cover, this is

fine. However, if a sheep was located behind a tree in such a way that the leaves completely

occluded it, it would still draw the bounding box around the sheep even though it was not

visible. The tree trunks and branches are still considered as opaque and were handled properly.

To address this limitation, these labels had to be manually removed from the synthetic dataset.

Another problem with the current state of Unity Perception is the stability of the package.

While creating the scene in Unity, several bugs and problems occurred where the cause was

unknown and that were not straightforward to fix. Because of these stability issues, the Unity

project had to be recreated several times over the course of this project. This is not completely

unexpected as the Perception package is still in an experimental stage, and bugs and stability

issues are to be expected.
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For the above reasons, it is the author’s view that Unity Perception still has some work ahead

of it before it can be widely used in practical applications.

5.3 Resulting data

With everything put together, the final scenes can look something like in Figure 5.11. This rep-

resents only one example iteration, and everything about the scene changes between iterations

as specified in section 5.1.

Figure 5.11: Result of a complete scene generation

For the generation of the synthetic dataset, the scenario was run for 200 iterations; creating

200 random scenes. For each scene, the 28 cameras generated one image each resulting in

5,600 images. The images were rendered at a resolution of 640x640 pixels. Some examples

of the generated images along with their labels can be seen in Figure 5.12. Generating these

images only took around 14 minutes on a Macbook Air (M1), running the Intel version of Unity

using Rosetta 2 (Apple’s software for converting x86 instructions to be compatible with the

ARM instruction set used by Apple’s chips). Any later version of Unity with native support for

Apple silicon is not officially supported by the Unity Perception package yet. This is very fast,

and one could easily generate very large synthetic datasets this way. One limiting factor, in

this case, was that certain labels needed to be removed manually because of the transparency

limitation mentioned in section 5.2.

After generating the images, images containing no sheep were removed from the dataset since

that was also done for the sensor dataset. That left 4,570 images containing 10,410 sheep.

Next, the labels where sheep are completely occluded by leaves or grass were removed manually.

Labels were removed if there was only vegetation visible within the bounding box or if it was

very difficult to tell that a sheep was present. This turned out to be quite labor-intensive, so,

unfortunately, there was not enough time to create as much synthetic data as initially planned.

However, it adds the most data to the underrepresented classes with the fewest instances, so
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it should hopefully still be helpful. After removing those labels there were 3,867 images left

with 8,079 total instances of sheep. Finally, the synthetic dataset could be added to the sensor

training set to create the mixed training set. The number of instances for each color for the

sensor, synthetic, and mixed training sets can be seen in Table 5.1.

In the synthetic dataset, the sheep were only labeled by their color and not whether they were

partially occluded. This is because automatically determining whether sheep are occluded is

not a trivial task, since the question of how much occlusion is enough to define it as such is not

straightforward, and not necessarily comparable to the result of doing it manually. In addition

to this, integrating such an automatic checking and label modification into Unity Perception

would not be straightforward; it would likely be necessary to extend the Bounding Box Labeler.

For these reasons, and because manually checking each instance for occlusion in the synthetic

dataset would be very labor-intensive, the sheep in the synthetic dataset were not classified

by occlusion. Instead, the scenario was made to generate plenty of grass and trees, providing

ample opportunity for partial occlusion by vegetation. For the sensor dataset, it was necessary

to manually label occlusion to determine whether the performance of the test set on occluded

sheep had improved or not, in addition to making sure that the split between the training,

validation, and test sets had a representative sample of each class. This information was not

strictly necessary for the synthetic dataset, even though it would be nice to know precisely how

many occluded examples were added.

White Gray Black Brown Total
Sensor 9,212 2,514 1,664 750 14,140

Synthetic 851 1,644 2,401 3,183 8,079

Mixed 10,063 4,158 4,065 3,933 22,219

Table 5.1: No. of instances of each color for the sensor, synthetic, and mixed training sets
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Figure 5.12: Synthetically generated training images
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Experiment structure

6.1 Research questions

This thesis will attempt to answer the following research questions:

• RQ1: Which classes of sheep are difficult to detect?

• RQ2: Can the detection of the difficult classes be improved by adding synthetic training

data?

To clarify, the different classes of sheep that were explored are as previously described; white

sheep, gray sheep, brown sheep, black sheep, white occluded sheep, gray occluded sheep,

brown occluded sheep, and black occluded sheep. Additionally, some of the classes were

grouped together for analysis. The groups of classes that were examined are the following:

• Non-occluded sheep (white sheep, gray sheep, brown sheep, and black sheep)

• Occluded sheep (white occluded sheep, gray occluded sheep, brown occluded sheep, and

black occluded sheep)

• Dark non-occluded sheep (gray sheep, brown sheep, and black sheep)

• Dark occluded sheep (gray occluded sheep, brown occluded sheep, and black occluded

sheep)

To determine whether sheep were difficult to detect or not, the recall of each class was used.

To see whether there is an improvement in using synthetic data, two models were trained; the

baseline model using only sensor data, and the mixed model using a combination of sensor

data and synthetic data. Results of these models on the test set were then compared to

determine whether there was an improvement in detection or not. Even though precision is

not considered to be the most relevant metric, in this case, the precision before and after

adding synthetic data was also reported to see if the model suffers from any unintended side

effects.

The hypothesis related to RQ1 is that classes that are underrepresented in the dataset will be

more difficult to detect. It is expected that the less data, the lower the recall will be. The

hypothesis for RQ2 is that the detection of these difficult-to-detect classes can be measurably

44
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improved by adding additional synthetic examples of these classes, without any measurable

negative side effects.

6.2 Training

The object detection model YOLOv5 was used for these experiments. There are several variants

of YOLOv5 of different sizes in terms of no. of parameters. In these experiments, YOLOv5m

was used. YOLOv5m represents a trade-off between speed and complexity as it is in the

middle of the pack compared to the rest of the YOLOv5 family of models. The model has

been pretrained on the COCO dataset at a resolution of 640x640 (Jocher et al. 2022), which

is very similar to the resolution of the images used in this experiment after tiling is performed.

Both models were trained for 1,000 epochs; some preliminary testing showed that the model’s

performance on the validation set stabilized well before this. The hardware used to train the

models is part of the IDUN cluster at NTNU (Själander et al. 2019). The machine used

had two Intel Xeon Gold 6148 CPUs, where both jobs were allocated 32 CPUs and 64GB of

RAM. Both jobs were also allocated four NVIDIA Tesla V100 GPUs with 32GB memory each.

Since YOLOv5 is implemented using PyTorch, training on multiple GPUs was trivial using the

torch.distributed module. A batch size of 300 was used, as this was the maximum batch size

that was possible to achieve for the hardware used. Aside from this, all other hyperparameters

related to training used the default values specified by YOLOv5.

The baseline model used the training, validation, and test split specified in section 4.4. The

mixed model was trained on the exact same split, except that the synthetic dataset was added

to the training set. The validation and test sets were not altered when training the mixed model.

This means that mixed training was used as opposed to first training on purely synthetic data

before fine-tuning on the real data. For fine-tuning to be practical, it would be necessary to

have a much larger synthetic dataset in comparison to the real dataset, which because of the

limitations of Unity Perception discussed in section 5.2 was not practical to achieve. Instead,

an attempt was made to rectify the class imbalance in the real dataset by adding a relatively

small amount of synthetic data where the classes which are underrepresented in the real dataset

are more numerous.

After the 1,000 epochs were completed, the best model achieved throughout the training was

used instead of the latest model. This was to avoid overfitting the model. YOLOv5 determines

the best model by using a fitness function, which can be seen in Figure 6.1. This function

computes a score from the weighted average of precision, recall, mAP@.5, and mAP@.5:.95

achieved for the validation set during training. The standard weights used for this calculation

are 0, 0, 0.1, and 0.9 respectively.

Figure 6.1: The fitness function used to determine the best model

Although the sheep were classified into different categories depending on color and whether they
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were partially occluded, this information was not used during training. The model only used a

single super-class representing all sheep. The different classes were only used for evaluating the

performance between the different classes afterward. This means that an individual precision for

each sub-class cannot be computed, however, an individual recall is still possible to calculate.

The reason for training the model on a single super-class is that it is not necessary to detect

what color the sheep is, only whether a sheep of any color is present or not. Additionally,

results by (Muribø 2019) suggest that modeling all sheep into a single super-class gives better

performance overall than using separate classes for each color.

6.3 Testing

Even though the drone images were divided into tiles, and the synthetic images generated are

of a similar resolution; when testing, no tiling was done to the test set, and the full images were

used instead. As explained in section 4.5, tiling the images was only necessary for training,

as the backpropagation step in the training process requires too much memory to use the

full images without any downscaling or tiling. This is not necessary when running inference,

as there is no backpropagation step involved then. Additionally, (Furseth and Gran̊as 2021)

found that running inference on the full images, after having trained the model on tiled images

actually yielded a higher average precision than running inference on tiled images.

To test the models, both models ran inference on the test set, and the output predictions were

stored. Next, NMS was applied to the raw predictions with an IoU threshold of 0.6, before

being checked against the true labels of the test set to determine the number of true positives,

false positives, and false negatives at 1,000 evenly spaced confidence thresholds between 0

and 1, as well as at the 10 different IoU thresholds necessary to compute the mAP@.5:.95.

Using this information, the relevant metrics were computed in accordance with section 3.3.

Metrics like precision, recall, and F-score were computed at an IoU threshold of 0.5, and for

all confidence thresholds.



Chapter 7

Results and discussion

The links to the code repository, training logs, and datasets are available in Appendix A.

7.1 General performance comparison

Figure 7.1 shows the mAP@0.5:0.95 achieved for each epoch on the validation set during

training. It shows a running average, as the actual data is quite noisy. It is clear that training

for 1,000 epochs is more than sufficient to reach maximum performance from the models.

Even though it may appear as if performance increases towards the end, it is actually just in

the very last epoch where it jumped higher for an unknown reason. Figure 7.2 shows the box

loss and object loss on the validation set during training. The validation loss starts to rise at

around 200 epochs suggesting that the model is overfitting beyond this point. The class loss

is not relevant since the model is trained on a single class and will therefore always have a

class loss of zero.

Figure 7.1: Baseline vs. mixed: mAP@0.5:0.95 on the validation set during training

Training only took approximately 9 hours for the baseline model and 11 hours for the mixed

model. Even though powerful hardware was used to train the models, this is quite good. Since

the model reaches maximum performance well before the 1,000 epochs are completed, similar

results would likely be achievable in a fraction of the number of epochs used in this case. One

47
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(a) Box loss (b) Object loss

Figure 7.2: Baseline vs. mixed: Box and object loss on validation set during training

would therefore be able to quite rapidly improve upon these results by experimenting with

YOLOv5’s numerous hyperparameters, e.g. by using their hyperparameter evolution method.

It can see from Figure 7.3, Figure 7.4, and Figure 7.5 that the two models perform very similarly

to each other in general, and it looks like the mixed model performs marginally better than

the baseline. From the F-score curve in Figure 7.5, it is apparent that the maximum F-score

is obtained at a confidence threshold of 0.78 for the baseline model, and 0.80 for the mixed

model. This represents the best confidence threshold to use assuming that precision and recall

are equally important. Since a confidence threshold of around 0.8 is a likely value to use in

practice for both models, this is used as a point of comparison in addition to the entire curves

for context. In Table 7.1, the standard metrics for object detection are listed for both models.

Note that precision and recall values are evaluated at a confidence threshold of 0.8.

Based on the results in Table 7.1 and in the previously mentioned figures it is apparent that the

models, on the whole, perform very similarly and that there are not any major disadvantages

to adding the synthetic data. If anything, the results as a whole appear to suggest a marginal

improvement after adding synthetic data to the training set. The improvement is however

small and could be partially attributable to random differences during training.

Precision Recall mAP@.5 mAP@.5.95
Baseline 0.9469 0.9457 0.9619 0.7472

Mixed 0.9512 0.9518 0.9620 0.7424

Table 7.1: Baseline vs. Mixed: main performance metrics on the test set
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Figure 7.3: Baseline vs. mixed: total precision on the test set

Figure 7.4: Baseline vs. mixed: total recall on the test set

Figure 7.5: Baseline vs. mixed: F1-score on the test set
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7.2 Research question 1

Which classes of sheep are difficult to detect? To answer this question, the recall of each

class obtained by the baseline model trained only on the sensor dataset must be examined.

Figure 7.6 shows the recall individually for sheep of each color and whether or not they are

occluded.

Figure 7.6: Baseline: recall for all classes on the test set

It is very clear from Figure 7.6 that sheep of every color are difficult to detect as long as they

are occluded, and that non-occluded sheep in general have a similar performance between the

different colors that is significantly better than their occluded counterparts. It is also clear that

of the four colors, white is the least difficult. Unfortunately, there is very little data available

in the test set for black and brown occluded sheep, which makes it difficult to make accurate

reports about the degree of improvement. For this reason, a clearer picture may be seen by

looking at the dark groups, which aggregate the gray, black, and brown classes. This can be

seen in Figure 7.7.

Figure 7.7: Baseline: recall for white/dark and occluded/non-occluded on the test set

As mentioned, there is also a large difference in performance between occluded and non-

occluded sheep in general which is also worth examining. The comparison of occluded vs.

non-occluded groups can be seen in Figure 7.8
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Figure 7.8: Baseline: recall for occluded vs. non-occluded sheep on the test set

In the introduction and the previous chapter, it was hypothesized that the most underrepresen-

ted classes of sheep would also be the most difficult to detect, and this hypothesis was applied

when generating the synthetic data. From these results, it appears that in reality, it was not

quite that simple. As expected, white sheep performed the best by far compared to any other

color, and non-occluded sheep performed better than occluded sheep. However, even though

brown sheep were by far the rarest, black sheep performed worse both when occluded and

not occluded. Brown actually performed quite similarly to gray in both cases. However, it is

difficult to say anything definitive about brown occluded sheep, as there were only two such

instances in the test set. When looking exclusively at non-occluded sheep, which has a more

comfortable number of instances in the test set, the brown class clearly outperforms black,

suggesting that there is something inherently difficult about detecting black sheep and that

its underperformance cannot be entirely attributed to its under-representation in the dataset.

Additionally, even though it falls in line with the hypothesis, there is likely also something

inherently difficult about detecting sheep that are partially occluded, and that its underper-

formance is also not completely attributable to its underrepresentation. This is because many

of the instances had quite a lot of vegetation covering them, and it would be difficult even for

a human to quickly tell whether there was a sheep present or not. Additionally, the number of

occluded white sheep is only marginally smaller than the number of non-occluded brown sheep,

yet the recall achieved for non-occluded brown sheep is significantly better than for occluded

white sheep.

7.3 Research question 2

Can the detection of the difficult-to-detect classes be improved by adding synthetic training

data? To answer this question, the recall of the different classes obtained by the baseline and

mixed model must be compared. Based on the results obtained for RQ1, the classes/groups

that were determined to be difficult to detect were: occluded sheep, dark occluded sheep,

and black occluded sheep. The recall achieved by both models on these classes/groups at a

confidence threshold of 0.8 is listed in Table 7.2.

Figure 7.9 shows the difference in recall for occluded sheep between the baseline model and
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the mixed model. They are mostly the same for low confidence thresholds, however, at higher

confidence thresholds the mixed model clearly outperforms the baseline model. In fact, at a

confidence threshold of 0.8, the mixed model has a 9.43% higher recall than the baseline

model.

Figure 7.10 shows the difference in recall between the baseline model and the mixed model on

the dark occluded group. The results for this group show a similar pattern, where the recall

is largely similar at low confidence thresholds, but the mixed model outperforms at higher

confidence thresholds. At a confidence level of 0.8, the mixed model has a 37.5% higher

recall than the baseline model.

Finally, Figure 7.11 compares the difference in performance achieved on black occluded sheep

between the two models. In this case, the mixed model outperforms over most confidence

thresholds with a 66.7% improvement at a confidence threshold of 0.8. However, for this

class there are only eight samples in the test set, so we cannot put too much stock in the

exact differences in performance. Adding synthetic data likely made a positive contribution

to the recall of black occluded sheep, but nothing definitive can be said about the degree of

improvement without significantly more instances of this class in the test set.

Occluded Dark occluded Black occluded
Baseline 0.5922 0.3902 0.3750*

Mixed 0.6480 0.5366 0.6250*

*Black occluded only has eight samples in the test set

Table 7.2: Baseline vs. Mixed: recall achieved for the difficult classes at a confidence threshold
of 0.8 on the test set

Figure 7.9: Baseline vs. mixed: recall for occluded sheep on the test set
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Figure 7.10: Baseline vs. mixed: recall for dark occluded sheep on the test set

Figure 7.11: Baseline vs. mixed: recall for black occluded sheep on the test set



Chapter 8

Conclusion and future work

8.1 Conclusion

Based on the results and discussion in the previous section, the two research questions posed

in chapter 6 will be answered, as well as determining whether the hypotheses related to the

research questions were accurate or not.

8.1.1 Research question 1

Which classes of sheep are difficult to detect?

Based on Figure 7.6, Figure 7.7 and Figure 7.8, the classes/groups of classes that were deemed

difficult to detect were in decreasing order of difficulty:

1. Black occluded sheep

2. Dark occluded sheep

3. Occluded sheep

It was initially hypothesized that the classes which are the most underrepresented in the dataset

would also be the most difficult to detect, and the results mostly fall in line with this hypothesis.

The only exception is that black sheep seem to be more difficult to detect than brown sheep

even though black sheep were more numerous, suggesting that there is something inherently

difficult about detecting black sheep. Comparing the performance between brown occluded

sheep and black occluded sheep is more problematic, as there are not enough samples to say

anything conclusive. Another case that is not strictly in conflict with the hypothesis, is that

white occluded sheep had a significantly worse recall than brown non-occluded sheep, even

though the number of instances of white occluded sheep was only marginally smaller than

the number of brown non-occluded sheep, suggesting that there is also something inherently

difficult about detecting occluded sheep. This was anticipated even though it was not explicitly

stated in the hypothesis. It was omitted as the number of occluded sheep of every color was

lower than the number of non-occluded sheep of every color, so it would not conflict with the

stated hypothesis in this specific case.
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8.1.2 Research question 2

Can the detection of the difficult classes be improved by adding synthetic training data?

Even though the amount of synthetic data used was very low compared to previous studies, by

focusing the synthetic data on the underrepresented classes and thereby improving the class

imbalance found in the real dataset, the addition of synthetic data did measurably improve

the recall of the three classes/groups of classes that were determined to be difficult to detect.

This can be seen in Table 7.2, Figure 7.9, Figure 7.10, and Figure 7.11. The mixed model

achieved a 9.43% higher recall over the baseline for occluded sheep in general, and a 37.5%

higher recall over the baseline for dark occluded sheep at a confidence threshold of 0.8. In

conclusion, the answer to RQ2 is that: yes, detection of difficult-to-detect classes can be

measurably improved by adding synthetic training data. Additionally, there were not any

measurable negative side-effects to the addition of the synthetic data judging by the other

metrics in section 7.1, meaning that the initial hypothesis regarding RQ2 was accurate.

8.2 Suggestions for future work

The use of synthetic data to improve the detection of grazing sheep appears to be quite

promising, but there are many more avenues to explore concerning this specific problem.

Some of these suggestions are methods applied successfully in previous research that was not

examined here; other suggestions are ways of building upon and improving the synthetic data

generation framework proposed in this thesis.

8.2.1 Fine-tuning as opposed to mixed training

(Nowruzi et al. 2019) found that first training on purely synthetic data before fine-tuning

on the real data gave better results than training on a mixed set containing both real and

synthetic data. In their experiments, they generally used much larger synthetic datasets than

in this experiment. This synthetic dataset was limited in size due to the limitations of Unity

Perception discussed in section 5.2; it was decided that to use the same technique a much

larger synthetic dataset would be needed, or it would not really be fine-tuning at all. Given

that the largest difference between mixed training and fine-tuning was the average recall, it

would be very interesting to examine whether this method could be successfully applied to the

problem of sheep retrieval. If Unity Perception fixes the limitation with regard to transparent

objects, it would be trivial to produce very large synthetic datasets using the method proposed

in this thesis.

8.2.2 Alternative camera setup

It is not apparent from the sensor dataset what angle the camera is pointing at when images

are captured, it is assumed that the camera is pointed more or less straight down. However,

due to the wide field of view, the image tiles close to the edges are not seen from straight

above, but rather at a substantial angle. In the synthetic dataset generated here, the variation

in angle is relatively small, and may not fully represent the diversity found in the real dataset

when tiled. Therefore, a camera setup more akin to what is seen in Figure 8.1 could be

considered, where the position of all of the cameras is centered in the scene, and only the
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angle is changed to cover the terrain as opposed to translating the cameras, which was done

in generating the synthetic data here.

Figure 8.1: Suggestion for an alternative camera setup

8.2.3 Increased variation in the synthetic data

Even though the synthetic dataset used in this thesis had a lot of important variations, it is

quite trivial to extend with even more variety. One area in particular that could benefit from

more variation, is the ground textures and vegetation. The ground textures are limited to

blending between gravel, yellow grass, and green grass. This could be extended to include

more types of terrain where sheep or other livestock inhabit around the world. In this case,

the vegetation was limited to one type of grass that grows when the underlying grass texture

is green, as well as two different tree species. More vegetation in the forms of different grass

species, as well as different types of bushes and flowers, could be added to further increase the

variation. Additionally, a more sophisticated method of tree clustering could be considered to

avoid trees overlapping with each other too much, and to avoid clusters of different species

overlapping. Adding fog and simulating cloud cover is also a way to add more variation.

Another possible avenue for increased variation is adding more animals that can be found in

the areas where sheep graze. Additionally, increasing the variation of the sheep themselves.

Even though they are scaled, and their fur is somewhat randomized using noise, more sheep

models could be added, with more variety in their wool, as there is quite a bit of variation in

the sheep’s wool in the real dataset.

8.2.4 Hyperparameter optimization

In this experiment, the default hyperparameters for YOLOv5 were used. However, YOLOv5

has a large number of tunable hyperparameters that can be adjusted to try to get even better

performance out of the available data. YOLOv5 also provides an option in its training script

for performing hyperparameter evolution which uses a genetic algorithm. That way many

different model configurations can easily be tested to see if there is anything to gain by

tweaking hyperparameters.
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8.2.5 Style transfer using GANs

As was mentioned in section 2.4, (W. Liu, J. Liu and Luo 2020) found that performance was

significantly better when performing a style transfer on the synthetic data using CycleGAN to

more closely resemble the real dataset. They did not however compare the performance with

fine-tuning on the real data between the synthetic dataset before and after style transfer, as

they only tested fine-tuning using the real data on the synthetic dataset after style transfer was

performed with CycleGAN. It is possible that fine-tuning on the real data will to some degree

serve the same purpose as applying the style transfer to the synthetic dataset, but this was

unfortunately not tested in their experiments. They only used flat background images instead

of complete 3D terrains which were used in this experiment, so it would be interesting to learn

whether using GANs for style transfer on this type of synthetic dataset which is already quite

photo-realistic could improve the performance over using the synthetic data as is. Comparing

these methods in conjunction with fine-tuning on real data would also be very enlightening.

8.2.6 Determining the optimal flight altitude

Previous master’s theses have already explored the problem of planning an optimal flight path

for the drone to follow to cover an area of interest (Rognlien and Tran 2018). However, it would

be interesting to explore the optimal flight altitude of the drone. When the drone is flying at

a higher altitude, it will be able to image a larger area and as a result, fewer images need to

be taken, speeding up the process of localizing sheep. However, a higher altitude will make

the sheep appear smaller in the images, and therefore make detection more difficult (Petso

et al. 2021). Determining the optimal flight altitude, therefore, is an interesting problem to

examine. It requires examining the performance of object detection models on images taken at

different altitudes, as well as determining the amount of time required to cover an area when

flying at the same altitudes. That way, a suitable trade-off may be found.
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2020). “Drone-based Detection of Sheep using Thermal and Visual Cameras: A Complete

Approach”. In: url:

https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777509/no.

ntnu%5C%3ainspera%5C%3a57384149%5C%3a16365942.pdf?sequence=1&isAllowed=y

(visited on 09/05/2022).

Kartverket (Mar. 2022). Status for nasjonal detaljert høydemodell. nb-NO. url:

https://kartverket.no/geodataarbeid/nasjonal-detaljert-

hoydemodell/status-hoydemodell (visited on 04/05/2022).

Landbruksdirektoratet (2022). Produksjonstilskudd PT-900. url:

https://ldir.statistikkdata.no/pt-900_del2_2021_land.html (visited on

30/04/2022).

https://www.findmy.no/
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2834578/no.ntnu%3ainspera%3a74730513%3a33262087.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2834578/no.ntnu%3ainspera%3a74730513%3a33262087.pdf?sequence=1&isAllowed=y
http://www.deeplearningbook.org
https://doi.org/10.3965/j.ijabe.20130603.001
https://www.statsforvalteren.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://www.statsforvalteren.no/contentassets/cbf122460efa4e37a051c17c07fade0d/droner-buskerud-2017.pdf
https://doi.org/10.5281/zenodo.6222936
https://doi.org/10.5281/zenodo.6222936
https://orgprints.org/id/eprint/33947/1/NORS%5C%C3%5C%98K%5C%20FAGINFO%5C%20Nr.%5C%205%5C%202018%5C%20Atferd%5C%20og%5C%20velferd%5C%20hos%5C%20sau.pdf
https://orgprints.org/id/eprint/33947/1/NORS%5C%C3%5C%98K%5C%20FAGINFO%5C%20Nr.%5C%205%5C%202018%5C%20Atferd%5C%20og%5C%20velferd%5C%20hos%5C%20sau.pdf
https://orgprints.org/id/eprint/33947/1/NORS%5C%C3%5C%98K%5C%20FAGINFO%5C%20Nr.%5C%205%5C%202018%5C%20Atferd%5C%20og%5C%20velferd%5C%20hos%5C%20sau.pdf
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777509/no.ntnu%5C%3ainspera%5C%3a57384149%5C%3a16365942.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2777509/no.ntnu%5C%3ainspera%5C%3a57384149%5C%3a16365942.pdf?sequence=1&isAllowed=y
https://kartverket.no/geodataarbeid/nasjonal-detaljert-hoydemodell/status-hoydemodell
https://kartverket.no/geodataarbeid/nasjonal-detaljert-hoydemodell/status-hoydemodell
https://ldir.statistikkdata.no/pt-900_del2_2021_land.html


REFERENCES 60

Li, Zhuang et al. (Jan. 2022). “A Two-Stage Industrial Defect Detection Framework Based

on Improved-YOLOv5 and Optimized-Inception-ResnetV2 Models”. en. In: Applied

Sciences 12.2, p. 834. issn: 2076-3417. doi: 10.3390/app12020834. url:

https://www.mdpi.com/2076-3417/12/2/834 (visited on 20/05/2022).

Liu, Weixing, Liu, Jun and Luo, Bin (2020). “Can Synthetic Data Improve Object Detection

Results for Remote Sensing Images?” In: CoRR abs/2006.05015. arXiv: 2006.05015. url:

https://arxiv.org/abs/2006.05015.

Lovdata (2014). Forskrift om erstatning n̊ar husdyr blir drept eller skadet av rovvilt. url:

https://lovdata.no/dokument/SF/forskrift/2014-05-30-677 (visited on

30/04/2022).

McCulloch, Warren S. and Pitts, Walter (Dec. 1943). “A logical calculus of the ideas

immanent in nervous activity”. en. In: The bulletin of mathematical biophysics 5.4,

pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259. url:

https://doi.org/10.1007/BF02478259 (visited on 19/05/2022).

MIL-STD-810 (Feb. 2022). en. Page Version ID: 1069836851. url:

https://en.wikipedia.org/w/index.php?title=MIL-STD-810&oldid=1069836851

(visited on 30/04/2022).

Muribø, Jonas Hermansen (2019). “Locating Sheep with YOLOv3”. In: url:

https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2619041.

Nerland, Trygve (June 2021). “Radio tracking of sheep - Developing MAVLink enabled

devices, MAVLink control and the basis for MAVLink enabled autonomous UAVs”. In: url:

https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2778080/no.

ntnu%5C%3ainspera%5C%3a80718798%5C%3a14595913.pdf?sequence=1&isAllowed=y

(visited on 03/05/2022).

NIBIO (2020a). Hovedtabell 17f, del 3. Drift og driftsresultat p̊a bruk med sauehold. url:

https://driftsgranskingane.nibio.no/drgr/hovudtabellar/?vis=htab&tabell_

id=52&aar=2020&lang=BM (visited on 03/05/2022).

– (2020b). Hovedtabell 17f, del 4. Drift og driftsresultat p̊a bruk med sauehold. url:

https://driftsgranskingane.nibio.no/drgr/hovudtabellar/?vis=htab&tabell_

id=53&aar=2020&lang=BM (visited on 03/05/2022).

Nowruzi, Farzan Erlik et al. (2019). “How much real data do we actually need: Analyzing

object detection performance using synthetic and real data”. In: CoRR abs/1907.07061.

arXiv: 1907.07061. url: http://arxiv.org/abs/1907.07061.

NSG (2022). Verdisatser - Norsk Sau og Geit. no. url:

https://www.nsg.no/om-nsg/okonomi/verdisatser/ (visited on 30/04/2022).

Nyholm, Henrik (July 2020). “Localizing Sheep using a Bluetooth Low Energy enabled

Unmanned Aerial Vehicle for Round-trip Time of Arrival-based Multilateriation”. In: url:

https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2778147/no.

https://doi.org/10.3390/app12020834
https://www.mdpi.com/2076-3417/12/2/834
https://arxiv.org/abs/2006.05015
https://arxiv.org/abs/2006.05015
https://lovdata.no/dokument/SF/forskrift/2014-05-30-677
https://doi.org/10.1007/BF02478259
https://doi.org/10.1007/BF02478259
https://en.wikipedia.org/w/index.php?title=MIL-STD-810&oldid=1069836851
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2619041
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2778080/no.ntnu%5C%3ainspera%5C%3a80718798%5C%3a14595913.pdf?sequence=1&isAllowed=y
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2778080/no.ntnu%5C%3ainspera%5C%3a80718798%5C%3a14595913.pdf?sequence=1&isAllowed=y
https://driftsgranskingane.nibio.no/drgr/hovudtabellar/?vis=htab&tabell_id=52&aar=2020&lang=BM
https://driftsgranskingane.nibio.no/drgr/hovudtabellar/?vis=htab&tabell_id=52&aar=2020&lang=BM
https://driftsgranskingane.nibio.no/drgr/hovudtabellar/?vis=htab&tabell_id=53&aar=2020&lang=BM
https://driftsgranskingane.nibio.no/drgr/hovudtabellar/?vis=htab&tabell_id=53&aar=2020&lang=BM
https://arxiv.org/abs/1907.07061
http://arxiv.org/abs/1907.07061
https://www.nsg.no/om-nsg/okonomi/verdisatser/
https://ntnuopen.ntnu.no/ntnu-xmlui/bitstream/handle/11250/2778147/no.ntnu%5C%3ainspera%5C%3a53184405%5C%3a31392769.pdf?sequence=1&isAllowed=y


REFERENCES 61

ntnu%5C%3ainspera%5C%3a53184405%5C%3a31392769.pdf?sequence=1&isAllowed=y

(visited on 03/05/2022).

Petso, Tinao et al. (Oct. 2021). “Individual Animal and Herd Identification Using Custom

YOLO v3 and v4 with Images Taken from a UAV Camera at Different Altitudes”. In: 2021

IEEE 6th International Conference on Signal and Image Processing (ICSIP), pp. 33–39.

doi: 10.1109/ICSIP52628.2021.9688827.

PROJ contributors (2022). PROJ coordinate transformation software library. Open Source

Geospatial Foundation. doi: 10.5281/zenodo.5884394. url: https://proj.org/.

Redmon, Joseph, Divvala, Santosh Kumar et al. (2015). “You Only Look Once: Unified,

Real-Time Object Detection”. In: CoRR abs/1506.02640. arXiv: 1506.02640. url:

http://arxiv.org/abs/1506.02640.

Redmon, Joseph and Farhadi, Ali (2016). “YOLO9000: Better, Faster, Stronger”. In: CoRR

abs/1612.08242. arXiv: 1612.08242. url: http://arxiv.org/abs/1612.08242.

– (2018). “YOLOv3: An Incremental Improvement”. In: CoRR abs/1804.02767. arXiv:

1804.02767. url: http://arxiv.org/abs/1804.02767.

Reynolds, Anh H. (2019). Convolutional Neural Networks (CNNs). en-us. url:

https://anhreynolds.com/blogs/cnn.html (visited on 05/06/2022).

Rognlien, Even Arneberg and Tran, Tien Quoc (June 2018). “Detecting Location of Free

Range Sheep - Using Unmanned Aerial Vehicles and Forward Looking Infrared Images”. In:

url: https://ntnuopen.ntnu.no/ntnu-

xmlui/bitstream/handle/11250/2558594/15911_FULLTEXT.pdf (visited on

24/05/2022).

Rovbase (2022). Rovbase. url: https://rovbase.no/erstatning/sau (visited on

30/04/2022).
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Appendix A

Code repository, training logs, and

datasets

All of the code used for image tiling, dataset splitting, training, evaluation, and all of the

custom randomizers used in Unity Perception are available in the GitHub repository for this

project at:

• https://github.com/bjosttveit/masters-thesis

The training runs were logged using Weights & Biases and are available at:

• https://wandb.ai/bjosttveit/Masters

The two datasets used are available on Kaggle at:

• Real, not tiled:

https://www.kaggle.com/datasets/bjosttveit/yolo-sheep-colored-and-occluded

• Synthetic:

https://www.kaggle.com/datasets/bjosttveit/yolo-sheep-synthetic
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