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Abstract

This master’s thesis explores how to distinguish pianists based on their expres-
sive style. The styles are quantified based on extracted Mid-Level Perceptual
Features (MLPFs) from piano performances. A new dataset of MLPFs was col-
lected using musical domain experts, and ground truths were calculated based
on the distributions of the experts’ labels. Recurrent Neural Networks (RNNs)
were trained to predict MLPFs and recognize individual pianists. The RNNs
use sequences of played notes, automatically aligned to the original scores, as
input.

The performance of the RNNs on the MLPF prediction task was evaluated
using R? (coefficient of determination) scores. Even though the ground truths
were based on the labels of domain experts, RNN models got closer to the
ground truths than the experts. However, both the models and the experts
had negative R? scores. RNN-based models were able to recognize individual
pianists with an accuracy of 82.8%. The recognition accuracy was reduced by
at least 7.5% when the MLPFs were used as an intermediate step. Calculating
the interclass correlations of the dataset shows that only a few of the MLPFs
for piano performance styles are considered reliable. This indicates that the
new dataset of MLPFs is too small and subjective to train models to predict
MLPFs. Extra collection of data and an MLPF prediction competition will try
to solve these problems.

Keywords: Recurrent neural network, explainable artificial intelligence,
expressive piano style



Sammendrag

Denne masteroppgaven utforsker hvordan man kan skille forskjellige pianis-
ter basert pa deres stiler. Stilene kvantifiseres ved hjelp av sansbare egen-
skaper (sakalte Mid-Level Perceptual Features, MLPF) i opptak fra enkelt-
sanger. Et nytt datasett med MLPF-er ble samlet inn ved hjelp av musikalske
domeneeksperter, og gullstandarder ble beregnet basert pa gjennomsnittlige
fordelinger av ekspertenes svar. Rekurrente nevrale nettverk (RNN-er) ble op-
pleert til a predikere MLPF-ene og til a gjenkjenne individuelle pianister. RNN-
ene bruker sekvenser av preprosesserte noter som er blitt automatisk justert
mot de opprinnelige nedskrevne notene.

Ytelsen til RNN-baserte modeller pa MLPF-prediksjonsoppgaven ble eval-
uert ved & bruke R? score. Selv om gullstandarden var basert pa svarene til
domeneeksperter, kom RNN-modellene naermere gullstandarden enn ekspertene
selv. Imidlertid fikk bade modellene og ekspertene negative R? verdier. De
RNN-baserte modellene var i stand til & gjenkjenne individuelle pianister med
en ngyaktighet pa 82,8%. Gjenkjenningsngyaktigheten ble redusert med minst
7,5% nar MLPF-ene ble introdusert som et mellomtrinn i beregningsprosessen.
Beregning av interklassekorrelasjonene i MLPF-datasettet viser at bare noen
fa av MLPF-ene anses som palitelige. Dette antyder at dette nye datasettet
med MLPF-er er for lite eller at svarene er for subjektive til & trene modeller
til & forutsi MLPF-er. Ytterligere datainnhenting og en kommende prediksjon-
skonkurranse vil prgve & lgse disse utfordringene.

Nokkelord: Rekurrente nevrale nettverk, forklarende kunstig intelligens,
pianostil
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Preface

Due to Covid-19, I could not go on exchange before the final year of my master’s
degree. Thus, I went to Seoul National University (SNU) in Seoul, Republic
of Korea, while my supervisor was at the Norwegian University of Science and
Technology (NTNU) in Trondheim, Norway. Without the help of my supervisors
at SNU and NTNU, the writing of this thesis would not have been possible.

My background is more related to the computer science part of the project
than the music part. I play the guitar and the ukulele, but I have never been
a proficient pianist. My understanding of notes and audio formats has been
developed through school and various side projects. However, my last five years
at NTNU have been dedicated to understanding computer data and its appli-
cation. Primarily the domain of artificial intelligence (AI) has been interesting.
The methods of Al can automate human tasks and aid human decision pro-
cesses. Yet, the study of artificial intelligence has highlighted many weaknesses
of such techniques. For example, a machine cannot learn patterns if the data is
not presented well enough or if the wrong method is used.

The topic of this thesis is interesting because people can relate to musical
style without being able to describe it. Many expressions used to explain music
are subjective and impossible to measure objectively. The domain of piano
provides an excellent basis for researching expressive style. Pianists can be
recorded using electronic pianos, and musical data can be extracted. Notes
in MIDI format are clearly defined by onset and offset times. Additionally,
the notes include information about loudness and pedaling can be measured.
Connecting such low-level data to terms that are relatable to humans is complex.
However, that only encouraged me to try to solve it.

I wrote the thesis mainly to extend the knowledge of objective measurements
for expressive style. Therefore, the research is primarily targetting researchers
interested in obtaining knowledge in that specific subdomain. The methods pre-
sented in the thesis are particular to piano music, but the ideas are transferable
to other domains. The use of deviations from the average performer can, for
instance, be relevant for different branches of art studies. Also, the research can
be interesting for people who only understand either the musical or the machine
learning domains. This thesis could broaden the perspective of their fields.

I want to thank my supervisor at NTNU, Asc. Prof. Rune Satre. Moving to
Korea would not have been possible without his flexibility. Attending SNU has
broadened my perspective in terms of research and artificial intelligence. Ad-
ditionally, living in Seoul has taught me about cultural differences. Asc. Prof.
Saetre’s input has improved my scientific writing and thinking. I also want to
convey my appreciation to my two supervisors at SNU: Prof. Wen-Syan Li and
Prof. Jong Hwa Park. The research project would not have been successful
without Prof. Li’s determination and proactive actions. He helped me under-
stand the methods of explainable Al and the machine learning process. Prof.
Park provided the musical input that the research project depended on. His
willingness to learn about computer science was inspiring. We had many engag-
ing discussions to optimize the approaches for both the musical and computer
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science domains. Finally, I want to thank the group members of the Music XAI
team. The graduate students Jisoo Park and Angela Weihan were crucial to the
results of our research.

Bjorn Are Therkelsen, May 27th 2022, Seoul, Republic of Korea
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1 Introduction

This chapter will introduce the domain and the research questions of the thesis.
The scope of the musical domain will be reduced to the performance style of
the piano. The research questions are related to a set of mid-level perceptual
features, which are used to quantify the style of pianists.

1.1 Background and Motivation

Humans partake in activities that do not relate to the survival of the species,
like arts and sports. In contrast to sports, art is not based upon explicit com-
petition with objective measurements. Art is all about human expression and
giving meaning to life. Artists or pieces of art are however constantly being
compared to each other. Such comparisons can for instance be in the form of
price tags, popularity among fans, or respect from other artists. In the do-
main of piano, a major part of the attention is paid to the interpretation of
previously composed music. This attention can be linked to the domain’s long
history and great respect for the classical. The interpretation of piano music
is an implicit competition, where the styles of well-known pianists are analyzed
and compared. Even though the comparisons are subjective in nature, there
are commonly accepted ideas of what is considered a good performance. Using
machines to evaluate performances could make the evaluation more objective.
This, however, requires machines to be able to capture the individuality of each
pianist and convey the information to humans.

Aljanaki and Soleymani described the three levels of complexity regarding
music [1]. The lowest level consists of notes, chords and other basic building
blocks. Mid-level features, like tonal and rhythmic stability, are a set of con-
cepts based on those lower-level blocks. According to Aljanaki and Soleymani,
the mid-level features are subjective and can be difficult to define clearly [1].
An MLPF is a term commonly used to describe a mid-level feature that is per-
ceptible to humans. The highest level of complexity is based upon the lower
levels. Some high-level features are mood, genre and style.

Chowdhury et al. introduced an approach for explainable emotion recogni-
tion [2]. They used MLPFs as an intermediate step to explain the classifications.
Three architectures were compared by their performance on the prediction task
of MLPF's and the classification of emotions: Audio-to-Emotion (A2E) classified
emotion directly from audio spectrograms. A2Mid2E used audio spectrograms
to predict MLPFs, and MLPFs to predict emotions. The models for each of
these steps were trained independently. A2Mid2E-Joint had the same architec-
ture as the A2mid2E, but the models were trained jointly.

1.2 Goals and Research Questions

This Master’s Thesis goal was to explore how to extract MLPFs from piano
performances in order to quantify the expressive style of the pianists. To
achieve this goal, methods from the domain of machine learning was used.



The architectures of Chowdhury et al. [2] was be modified to fit the challenge
of pianist style. Notes-to-Pianists (N2P) and Notes-to-MLPFs (N2M) recog-
nized pianists and predicted MLPFs, respectively. Notes-to-MLPFs-to-Pianist
(N2M2P) and Notes-to-MLPFs-and-Pianist (N2MP) recognized pianists and
predicted MLPFs, by training separately (N2M2P) or jointly (N2MP). The ar-
chitectures were tested by a prediction task of MLPF data and a recognition
task of pianists. MLPFs was hypothesized to provide a good representation of
the style of pianists if a model was able to perform well on both tasks.

RQ1: How can mid-level perceptual features be automatically extracted from
piano performances?

Because of the difficulty of clearly defining MLPF's, algorithms for automatic
extraction are difficult to develop. The fact that humans can observe MLPFs,
makes the data-driven approach a possible option. However, the subjective
nature of MLPFs introduces the problem of inconsistent labeling of data. The
MLPFs build upon lower-level features that must be extracted first. According
to Stamatatos, extracting the deviations from the norm performance provides
a better representation of a pianist’s individuality than the pianist’s deviation
from the score [3]. Even though the method of using deviations from the average
performance might produce better results, it requires additional retrieval of data
in order to compute the average performance.

RQ2: What is the impact of introducing mid-level perceptual features as an
intermediate step, when recognizing individual pianists?

Aljanaki and Soleymani stated that the MLPF's are important when attribut-
ing high-level features [1]. A high-level feature such as performance style should
at least be explained partially by the MLPFs. Chowdhury et al. computed
the cost of using MLPFs as an intermediary step for recognition [2]. The cost
was called the cost of explainability because the intermediary step of MLPFs
provideed explainable features, but reduced the accuracy of the recognition task.
Explainable features can make humans trust machine learning models since the
predictions can be accompanied by reasons for the predictions. Better explain-
ability will therefore have a positive impact on the overall task. On the other
hand, a decrease in accuracy entails a negative impact.



2 Background Theory

This chapter provides a basic framework of musical and machine learning fun-
damentals to discuss this thesis’s research questions. The musical part presents
concepts linked to the domain of piano. The section regarding machine learning
will introduce the concept of recurrent neural networks. Models based on this
architecture are naturally suited for sequential data and will be used to extract
the style from performances.

2.1 Music

The musical fundamentals include explaining a few key concepts: Score, timing
and pitch are central to the understanding of piano music. Different aspects of
musical style are also presented. The scope of this thesis is only set to one of
the mentioned aspects of musical style: performance style.

2.1.1 Score

Music is typically defined in a score, using symbols to specify pitch and timing
[4]. A musician can read these symbols and recreate the music of the original
creator, called the composer. The score can be represented physically or digitally
and in formats that are easy to understand for humans and machines. People
typically prefer using staff with notes, as we can see in [4]. Standard MIDI
File is often used for devices. This file type has a hierarchical XML structure,
making it possible for people to understand its content. Users can easily find
supported packages for various programming languages and publicly available
musical data sets in this format.
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Figure 1: Score Excerpt from Nocturne in C Minor by Frédéric Chopin

2.1.2 Timing

Rhythm refers to the organization of musical elements in time [5]. The time is
divided into beats and the tempo defines how many beats a specific time interval
should include. Beats, therefore, define relative relationships in time, where the
tempo can be used to adjust the distances when playing. The fundamental
building block of musical structures is a note, representing a sound played for
a given duration. These are often combined in a hierarchical manner, where



the lowest level is called a measure (or a bar). The time signature is the score
component that relates the beats and the notes to each other. The top number
represents the number of beats per measure, and the lower number represents
the beat value attributed to each note (see Figure 2). The onset- and offset
values describe a note’s start- and end times in a MIDI file. These values are
measured seconds after the beginning of the performance.

o)
i;';; VA
A\ g2
)

Figure 2: Time Signature

2.1.3 Pitch

The pitch of a note is how low or high it sounds. The pitch is related to
the physical wavelength of a given sound, where a shorter wavelength (higher
frequency) corresponds to a higher sound. In Western Musical Notation, the
pitches are designated by alphabet letters: A, B, C, D, E, F, G (or sometimes
solfege syllables: Do Re Mi Fa Sol La Ti) [4]. In the score, the pitches are
represented by the vertical placement of a note on the staff. Figure 3 shows the
commonly used staff, with five lines and four spaces. On the left side of the
staff we can see the treble clef. This symbol defines the relationship between
the lines of the staff and the scale of pitches, designated by the alphabet letters.

A\

fan
A3V,

3

Figure 3: Staff with a Treble Clef

In the case of a treble clef, it places the alphabetic scale on the staff such
that the second lowest line corresponds to a G. Figure 4 shows the alphabetic
scale of pitches on top of the staff, given a treble clef.
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Figure 4: Musical Scale on the Staff

2.1.4 Style

Dannenberg discussed how the term style is commonly used in the music domain
[6]. First, style can be associated with historical periods, such as the Baroque
or the Classical period. Dannenberg lists a few characteristics connected to
each of these periods: Contrapuntal and ornamented is typical for Baroque,
and homophonic and internal structure is often associated with the Classical.
The difference between contrapuntal and homophonic concerns the combination
of multiple voices. Ornamentation is about inserting short, fast notes above or
below a note of the melody. Ornamentation can be understood as the deco-
ration of the melody. The classical style is plainer and focuses on developing
formal structure. Both of these dimensions are linked to the composition of the
pieces. A style attributed to a historical period explains the commonalities of
the composers of that period. In this case, the style concerns a piece’s structure,
not its interpretation.

Next, style can also be associated with improvising performers. Dannenberg
stated that especially improvising performers have their own styles, like the
ballad style of Miles Davis [6]. In the case of improvisation, performers are
composing and executing simultaneously. That entails that the style concerns
a combination of the two.

Finally, Dannenberg mentioned that expressive style could be associated
with performers [6]. Expressive style is linked to situations where the style
involves only the interpretation of a piece. The piece is already composed, so
the performer has a limited number of ways to impact how the music will sound.
For example, in the piano case, the performer can vary aspects such as the start
time, the duration and the loudness of notes. Even though these aspects are
defined in the score, the performer still has much room for interpretation. In
addition, some instruments have style aspects that are not defined in the score.
String instruments can, for instance, add vibrato to change the style of the
performance.



2.2 Machine Learning

This section introduces the machine learning methods used in this thesis. Ex-
tracting mid-level features from note information is based on recurrent neu-
ral networks (RNNs). The recurrent neural networks use cells to store states
and compute outputs for sequential data iteratively. Long ShortTerm Memory
(LSTM) and Gated Recurrent Unit (GRU) are two examples of such RNNs,
which will be used in this thesis. Optuna is a tool for optimizing hyperparam-
eters. This tool is used when training the RNN models to produce optimal
results on the machine learning tasks.

2.2.1 Recurrent Neural Network (RNN)

Recurrent neural network denotes a class of machine learning models that maps
sequences of input data to sequences of output data (see Figure 5a). An RNN
comprises cells that compute the output based on the input and a hidden inter-
nal state. These cells are used sequentially, where the output (O;) is calculated
and the hidden state (h;) is updated for each individual input (I;) in the input
sequence (Figure 5b). The basic version of an RNN uses only one cell to compute
the output sequence. It is also possible to stack RNN cells such that the output
of one cell is used as input for the next cell (Figure 6). The input sequences can
be variable in length since the output sequence’s length will match the input
sequence’s length. DiPietro and Hager state that recurrent neural networks are
naturally suited to process time-series and other sequential data [7].
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Figure 5: RNN Architecture with a Single Cell
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Figure 6: RNN Architecture with Stacked Cells

2.2.2 Long Short-Term Memory (LSTM)

LSTM is an RNN cell developed to solve the vanishing gradient problem. This
problem will be briefly summarized based on the explanations of DiPietro and
Hager [7]. When computing the gradients of an RNN cell, the change in output
value concerning the change in input value (6;ZT
sequential steps (Equation 1).

) is based on the sum of all
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The change in output for time step T with respect to the change in output for
time step t (<2 5+ o hy L) is the product of a sequence of matrices (Equation 2).
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If the spectral norm of the matrices is less than 1, the contributions to the gra-
dients from events before the last time step will fall off exponentially. Therefore,
the sequential aspect of the RNN is diminished since the gradients are computed
based on only the last few time steps. The goal of the LSTM cell is to provide
stable spectral norms so that the gradients are based on the all-time steps of the
input sequence. Stable spectral norms are achieved by adding additional paths
between the hidden states. The inner computations of an LSTM cell from the
Pytorch framework [8] is expressed in formulas in Equation 3 and visualized in




Figure 7. The f;, it, g; and o; denote the forget-, input-, cell- and output gates
at time step t respectivelly. x;, h; and ¢; correspond to the input- hidden- and
cell states. The output for a cell is the hidden state, h;. The Hadamard product
corresponds to ® and ¢ is the sigmoid function. The weights, Wy, refers to the
trainable parameters for the xth state (i for input state, or h for hidden state)
and the yth gate (f, i, g, 0). The biases, by, are denoted in the same way.

ft =0(Wipxy +bif + Whrhe—1 + bry)

iy = 0(Wiix + b + Whihy—1 + bps)

gt = tanh(Wigxy + big + Whghi—1 + brg)

o = U(Wiol‘t + bio + Whohi—1 + b}w) (3)
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The visualization in Figure 7 uses the same annotations as in Equation 3. W.SB,
is added as an abbreviation for weigthed sum and add biases for gate x.
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Figure 7: LSTM Cell



2.2.3 Gated Recurrent Unit (GRU)

GRU was created to simplify the LSTM cell. The GRU architecture provides
stable spectral norms, while not using a separate cell state. The inner computa-
tions of the GRU cell from the Pytorch framework [8] are expressed in formulas
in Equation 4 and visualized in Figure 8. As in the case of the LSTM, z; and
h; correspond to the input- and hidden states at time step t. The r;, z; and
n; denote the reset-, update- and new gates at time step t. Weights, biases,
operators and functions are represented in the same way as for the LSTM cell.

Ty = U(Wirxt + bir + Whrht—l + bhr)
2t = U(Wizxt + biz + thht—l + bhz)
ny = tanh(Wip 2t + iy + 7t © Whinhi—1 + bpn)) (4)

hy=n © (1 —2)4+ 2 ©hi

In addition to the annotations used in the visualization of the LSTM cell, W B,
is added to Figure 8 to denote the weighting of the xth state and adding biases

for the new gate (ng).
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Figure 8: GRU Cell



2.2.4 Optuna

Optuna is optimization software for hyperparameter tuning, created by Akiba
et al. [9]. In addition to searching the parameter space, the software includes
a pruning feature and a dashboard for monitoring the training phase. The user
defines the search space and the scaling method for each parameter. Optuna
uses the following techniques to optimize the parameters:

The sampling method of Optuna is based on Tree Parzen Estimator (TPE)[10]
and Covariance Matrix Adaption Evolution Strategy (CMA-ES)[11]. TPE uses
independent sampling of parameters, while CMA-ES uses the covariances of pa-
rameters to search for the optimal combination of parameters. The paper uses
TPE for the first 40 steps; then, the CMA-ES method is used. TPE creates two
distributions for the best and worst halves of a parameter based on the objective
scores. The following parameter is sampled from where the worst distribution
is minimized and the best distribution is maximized. CMA-ES is an evolution-
based algorithm. The algorithm uses the covariances of parameters to move the
sampling space towards the global optimum.

Asynchronous Successive Halving (ASHA) is used for pruning in Optuna.
ASHA sequentially tests if the intermediate value of the current trial is in the
top half of all intermediate values at the same time step. The asynchronous
behavior makes it possible for multiple workers to prune trials without waiting
for the information of other workers. Figure 9 shows the optuna dashboard,
with a plot of each combination of hyperparameters and their corresponding
objective value.
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Figure 9: Optuna Dashboard
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3 Related Work

This chapter is written as a Structured Literature Review (SLR). SLR is a
formal way of synthesizing available information from primary studies [12] and
is described in section 3.1. Studies related to the research questions are searched
for and evaluated based on quality. This process is described in section 3.2. The
results of the SLR method are a set of related studies of high quality. Extracted
information from these studies is presented in section 3.3. The relevance of the
studies relating to the research questions is discussed in section 3.4.

3.1 Structured Literature Review (SLR)

The review method was based on the method of Kofod-Petersen, which was
outlined in How to do a Structured Literature Review in computer science [12].
The main guidelines of the SLR method were used, and only minor alterations
were made. The quality screening criteria were identical to the set that Ko-
fodPetersen suggested. The inclusion criteria were specific for this thesis but
based on his examples. In addition to the searching- and snowballing methods
for finding studies, recommended studies were added.

3.1.1 Primary Studies

According to the SLR method of Kofod-Petersen, primary studies are found by
doing the following:

1. Search the relevant subdomain
2. Select primary studies based on inclusion criteria
3. Filter primary studies based on quality assessment

The relevant subdomain of research for primary studies is the intersection of
several domains. Kofod-Petersen used groups of synonymous, key terms to de-
scribe these domains. Interchangeable terms improve the method’s robustness,
since several studies might be related to precisely the same topic even though
they are using different words. The goal should be to get a varied set of studies
that can span the whole subdomain with snowballing. However, the attention
should also be focused on the most relevant studies by narrowing the search
query.

The key terms can be arranged in a table like Table 1, where the columns
represent each domain and the rows represent different ways of expressing them
by words. When searching for the relevant subdomain, OR-operators should
be used within each group, and AND-operators should be used between each

group.
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Table 1: Synonyms for Each Group

Group 1

Group 2

Group 3

Term 1

Synonym; 1

Synonyma 1

Synonyms 1

Term 2

Synonym 2

Synonyms o

Synonyms 2

Term 3

Synonyms 3

Figure 10 shows the interesection of the groups, which results in the relevant

subdomain for primary studies.

Figure 10: Intersect of Groups for Primary Studies

The search results will be too large to include in the quality assessment.
Therefore the inclusion criteria must be set only to select the relevant studies.
Kofod-Petersen stated that the inclusion criteria should be specifically tailored
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to each problem, but some general principles apply regarding exclusion [12]:

e Duplicates (keep the highest-ranking source)

e The same study was published in different sources (keep the highest-
ranking source)

o Studies are published before a specific date (or even after).

A study that was found using this approach is denoted as SQ.

3.1.2 Recommended Studies

The recommended studies constituted a varied set of challenges and solutions
in musical style. They were, in different ways, linked to the research questions
of this thesis. Supervisors of the research project recommended the studies. A
study that was found using this approach is denoted as SR.

3.1.3 Secondary Studies

After the primary and recommended studies was been assessed, the snowballing
method was used to find secondary studies. Snowballing refers to using the refer-
ence list or the citations of a study to identify additional studies [13]. Backward
snowballing is done by exploring the references of a study to find previously
written material on the same subject. Forward snowballing is to explore newly
written material on a given topic by finding studies that cite a previously writ-
ten study on the same issue. Even though Wohlin outlined a great method of
evaluating intermediary studies found by the snowballing method [13], it will
not be used. All seemingly relevant studies was added to the set of secondary
studies and evaluated based on the method of KofodPetersen [12]. This was
done to assess the studies consistently. Both studies found directly and indi-
rectly from the starting set constituted the set of secondary studies. A study
that was found using this approach is denoted as SS.

3.1.4 Quality Assessment

The quality assessment is crucial in selecting relevant studies to base the research
on. Only primary and recommended studies that have passed the quality as-
sessment was used to find secondary studies. Kofod-Petersen categorized the
quality assessment of studies into three screenings. Each of these stages has
their own criteria and level of detail:

1. Primary Inclusion Criteria - Abstract Screening
2. Secondary Inclusion Criteria - Full-Text Screening

3. Quality Criteria - Full-Text Assessment
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The primary and secondary screenings filter studies that are not thematically
relevant. The quality assessment stage is needed to ensure a high quality of the
selected primary studies. Table 2 contains the inclusion criteria that each study
had to satisfy to be evaluated based on quality. IC 4 was the only screening
criteria not linked to thematic relevance. It was added to filter studies that
were difficult to access, even though they were easy to find. Table 3 shows the
proposed quality screening criteria of Kofod-Petersen, which was also used in
this thesis [12].

Table 2: Inclusion Criteria

1D Screening | Criteria

IC 1 | Primary The study is in the domain of MIR,

IC 2 | Primary The study is a primary study, presenting empirical results

IC 3 | Primary The study describes processing of music data

IC 4 | Primary The study is easily accessible

IC 5 | Secondary | The study focuses on features which are relevant for piano

IC 6 | Secondary | The study includes useful elements with regard to performance style

Table 3: Quality Criteria

1D Criteria

QC1 Is there is a clear statement of the aim of the research?

QC 2 | Is the study is put into context of other studies and research?

QC 3 | Are system or algorithmic design decisions justified?

QC 4 | Is the test data set reproducible?

QC 5 | Is the study algorithm reproducible?

QC 6 | Is the experimental procedure throughly explained and reproducible?

QC 7 Is it clearly stated in the study which other algorithms the study’s
algorithm(s) have been compared with?

QC 8 | Are the performance metrics used in the study explained and justified?

QC 9 | Are the test results thoroughly analysed?

QC 10 | Does the test evidence support the findings presented?

In the quality screening, the studies were evaluated if they satisfied (1 point),
partly satisfied (0.5 points), or did not satisfy (0 points) each of the criteria.
The aggregated score was compared to a particular threshold. All the studies
with a score larger or equal to the threshold passed the quality assessment.
Additionally, studies could not achieve 0 points for QC5. The method of the
study must in some way be possible to reproduce.
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3.2 Conducting SLR

This section describes the implementation of the SLR method. That includes
the decisions that were made, which studies were found and how the studies
performed in the quality assessment.

3.2.1 Primary Studies

The research questions were located at the intersection of the following do-
mains: Artificial intelligence, music and style. The intersection of these domains
corresponds to many subfields with a wide variety of data types and methods.
Thus, the intersection needed to be reduced when searcing for related literature.
Each domain will be described by a few key terms used in the search for primary
studies.

This thesis focused on the challenges of music linked to piano performances.
The main reason for using piano is that the instrument imposes a limited way
of applying style for the performer. For string instruments, the performer can
add vibrato, which is hard to quantify and use for research purposes. Also,
the way the performer touches the strings is hard to quantify and will affect
the style. In the piano example, the performer can deviate in timing, velocity
and pedaling. These are easy to quantify and should be ideal as input data for
machine learning models.

The focus of the thesis was also to look at style on a note level. Piano
pieces recorded in MIDI format are ideal for working with since all the input
information is easily extractable. However, other data types and approaches
need to be considered to answer RQ1. Music was not used as a key term
because it was considered to be too broad. Key terms: piano, midi

The research questions are linked to the individual styles of different piano
performers. The results can vary significantly based on the composer and piece
by looking at the performances themselves. Thus, the goal was to isolate the
performers’ styles from the pieces they are playing. This was derived from the
deviations between the performer and the score. Also, the tools and methods
of the performer that are not defined in the score could be used. A score is
often described as robotic and lacks the human interpretation that makes the
music enjoyable. The word expressive is typically used to describe the addition
of style to a score to make it humanlike or enjoyable.

The approaches connected to emotion in music was considered appropriate
for style. Emotion and style are closely related; both are high-level features
of music. Even though the output is different, the underlying methods and
approaches might pertain to both subdomains. Music Emotion Recognition
(MER) is a highly researched field and could offer great insight into music and
ways to handle it.

Key terms: style, expressive, emotion

When it comes to the technical challenges of the research questions, they
are linked to the prediction of mid-level features (RQ1) and the recognition of

15



performers (RQ2). Solutions in this domain of challenges typically do both in
a disentangled step. Emotions, styles of composers, or performers are directly
classified from the music. These approaches could be altered to output a set
of mid-level features, as long as there was data for training. Classification is a
closely related synonym of recognition.

Key terms: prediction, recognition, classification

Kofod-Petersen presented the following resources in his outline of the SLR
method: ACM digital library, IEEE Xplore, ISI web of knowledge, ScienceDi-
rect, CiteSeer, SpringerLink and Wiley Inter Science [12]. Even though these
resources were great for the domain of computer science, they did not include
a lot of articles on music and performeric style. The International Society for
Music Information Retrieval (ISMIR), on the other hand, published a lot of ar-
ticles on this subject. In conjunction with their yearly conference, they posted
all the accepted papers on their website. The advantage of using such resources
was that the autenticity and validity of papers could be trusted. Yet, all the
mentioned resources only contained subsets of the entire domain and had varied
possibilities when it came to searching and filtering.

Searching and filtering were handled well by Google Scholar. The search
engine included the possibility of using boolean expressions when constructing
the search query. This functionality made it possible to combine all potential
combinations of synonyms into a single query. Thus, the risk of not using all
possible combinations was removed. Google Scholar could not verify the quality
of all the articles, but it could redirect the user to external resources that the
user could trust. Even though Google Scholar could not guarantee to find all
or the most relevant articles, it was considered one of the best at both of these
challenges. Google Scholar was therefore chosen as the searching resource.

In order to search for primary studies relating to the research questions, the
key terms were used. Table 4 shows the SLR representation of the terms and
their corresponding group.

Table 4: Search terms for SLR method

Group 1 | Group 2 Group 3
Term 1 piano style classification
Term 2 midi expressive | prediction
Term 3 emotion recognition

The search expression inserted into Google Scholar was: (piano OR midi)
AND (style OR expressive OR emotion) AND (classification OR prediction).
The principles described in subsection 3.1.1 were used, and the year limit was set
from 2015 to 2021. Since the literature review was completed in the beginning
of 2022, the end limit was set to 2021 for reproducibility. The start limit was
set to 2015 in order to get recent and relevant research. The search query gave
23300 results (0.06 sec). The first two pages of results were selected for further
screenings, 20 studies in total. These are shown in Table 5.
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Table 5: Studies from Search Query

ID Title Authors Year
SQ1 | EMOPIA: A Multi-Modal Pop Piano | Hsiao-Tzu Hung, Joann Ching, | 2021
Dataset For Emotion Recognition and | Seungheon Doh, Nabin Kim,

Emotion-based Music Generation Juhan Nam, Yi-Hsuan Yang

SQ2 | Composer Style Classification of Piano | TJ Tsai, Kevin Ji 2020
Sheet Music Images Using Language
Model Pretraining

SQ3 | A Scheme of MIDI Music Emotion Clas- | Peilin Chen, Lei Zhao, Zongyu | 2016
sification Based on Fuzzy Theme Ex- | Xin, Yumeng Qiang, Ming
traction and Neural Network Zhang, Tiemeng Li

SQ4 | An Analysis of Low-Arousal Piano Mu- | Yu Hong, Chuck-Jee Chau, An- | 2017
sic Ratings to Uncover What Makes | drew Horner,
Calm and Sad Music So Difficult to Dis-
tinguish in Music Emotion Recognition

SQ5 | Recurrent Neural Network for MIDI | Wei Zhao, Yinan Zhou, Yun | 2018
Music Emotion Classification Tie, Yushu Zhao

SQ6 | Composer Recognition based on 2D- | Gissel Velarde, Tillman Weyde, | 2016
Filtered Piano-Rolls Carlos Cancino Chacén, David

Meredith, Maarten Grachten

SQ7 | Pop Music Transformer: Beat-based | Yu-Siang Huang, Yi-Hsuan | 2020
Modeling and Generation of Expressive | Yang
Pop Piano Compositions

SQ8 | From Content-based Music Emotion | Jacek Grekow 2018
Recognition to Emotion Maps of Mu-
sical Pieces

SQ9 | Musical instrument emotion recognition | Sangeetha Rajesh, NJ Nalini 2020
using deep recurrent neural network

SQ10 Music recognition without identification | Katherine L. McNeely-White, | 2019
and its relation to déja entendu: A | Anne M. Cleary
study using “Piano Puzzlers”

SQ11] MIDI-VAE: Modeling Dynamics and In- | Gino Brunner, Andres Konrad, | 2018
strumentation of Music with Applica- | Yuyi Wang, Roger Wattenhofer
tions to Style Transfer

SQ12 Measurement, recognition, and visual- | Beici Liang, Gyorgy Fazekas, | 2018
ization of piano pedaling gestures and | Mark Sandler
techniques

SQ13 A Multimodal Music Emotion Classifi- | Changfeng Chen, Qiang Li 2020
cation Method Based on Multifeature
Combined Network Classifier

SQ14 Automated composer recognition for | Nadine Hajj, Maurice Filo, Ma- | 2018

multi-voice piano compositions using
rhythmic features, n-grams and modi-
fied cortical algorithms

riette Awad
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SQ15 Tonal complexity features for style clas- | Christof Weiss, Meinard Miiller | 2015
sification of classical music
SQ16| Music to my ears: Age-related decline in | Ryan Sutcliffe, Peter G. Ren- | 2017
musical and facial emotion recognition. | dell, Julie D. Henry, Phoebe E.
Bailey, Ted Ruffman,
SQ17 Piano Pedaller: A Measurement Sys- | Beici Liang, Gyorgy Fazekas, | 2017
tem for Classification and Visualisation | Andrew McPherson, Mark San-
of Piano Pedalling Techniques dler
SQ18 Music emotion recognition using chord | Yong-Hun Cho, Hyunki Lim, | 2016
progressions Dae-Won Kim, In-Kwon Lee
SQ19 A Computational Study of the Role of | Carlos Cancino-Chacén, | 2018
Tonal Tension in Expressive Piano Per- | Maarten Grachten
formance
SQ20| Analysis of the Practical Value of Cz- | Aiyong Xin 2018
erny Piano Etudes
3.2.2 Recommeded Studies
The recommended studies were provided by Jong Hwa Park, professor at the
College of Music at Seoul National University. Table 6 shows the recommended
studies.
Table 6: List of Recommended Studies
1D Title Authors Year
SR1 | A data-driven approach to mid-level | Anna Aljanaki, Mohammad So- | 2018
perceptual musical feature modeling leymani
SR2 | Towards Explaining Expressive Quali- | Shreyan Chowdhury, Gerhard | 2021
ties in Piano Recordings: Transfer of | Widmer
Explanatory Features Via Acoustic Do-
main Adaptation
SR3 | VirtuosoNet: A Hierarchical RNN- | Dasaem Jeong, Taegyun Kwon, | 2019
based System for Modeling Expressive | Yoojin Kim, Kyogu Lee, Juhan
Piano Performance Nam
SR4 | Performance Error Detection and Post- | Eita Nakamura, Kazuyoshi | 2017
Processing for Fast and Accurate Sym- | Yoshii, Haruhiro Katayose
bolic Music Alignment

3.2.3 Secondary Studies

Secondary studies were found using the snowballing method (subsection 3.1.3).
Table 7 shows the results. The SID column conveys the ID of the study which
lead to the given study. The Method column displays the snowballing method

that was used to find the given study.
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Table 7: Secondary Studies

] 1D \ Title \ Authors \ Year‘ SID \ Method ‘
SS1 | Detecting Emotions in Classical | Jacek Grekow, Zbig- | 2015| SQ1 | Backward
Music from MIDI Files niew W. Ras
SS2 | Modeling Musical Style with | Maria Hontanilla, Car- | 2013 | SQ6 | Backward
Language Models for Composer | los Pérez-Sancho, Jose
Recognition M. Inesta
SS3 | On the Characterization of Ex- | Carlos Cancino- | 2020 | SR2 | Backward
pressive Performance in Classi- | Chacén, Silvan Peter,
cal Music: First Results of the | Shreyan = Chowdhury,
Con Espressione Game Anna Aljanaki, Ger-
hard Widmer
SS4 | Computational Models of Ex- | Carlos E. Cancino- | 2018 | SS3 | Backward
pressive Music Performance: A | Chacédn, Maarten
Comprehensive and Critical Re- | Grachten, Werner
view Goebl, Gerhard Wid-
mer
SS5 | Using listener-based perceptual | Anders Friberg, Erwin | 2014 | SS3 | Backward
features as intermediate repre- | Schoonderwaldt, Anton
sentations in music information | Hedblad, Marco Fabi-
retrieval ani, Anders Elowsson
SS6 | A formalization of relative local | Jeroen Peperkamp, | 2017 | SS4 | Backward
tempo variations in collections | Klaus Hildebrandt,
of performances Cynthia Cheng Sien
Liem
SS7 | Expressive timing from cross- | Cynthia C.S. Liem, | 2011 | SS4 | Backward
performance and audio-based | Alan Hanjalic
alignment patterns: an ex-
tended case study
SS8 | A phylogenetic approach to mu- | Elad Liebman, Eitan | 2012 | SS4 | Backward
sic performance analysis. Ornoy, Benny Chor
SS9 | Towards computer-assisted un- | Maarten Grachten, | 2017 | SS4 | Backward
derstanding of dynamics in | Carlos Eduardo
symphonic music Cancino-Chacon,
Thassilo Gadermaier,
Gerhard Widmer
SS10| An evaluation of linear and non- | Carlos Eduardo | 2017 | SS4 | Backward
linear models of expressive dy- | Cancino-Chacén,
namics in classical piano and | Thassilo Gadermaier,
symphonic music Gerhard Widmer,
Maarten Grachten
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SS11| MidiBERT-Piano: Large-scale | Yi-Hui Chou, I-Chun | 2021 | SQ1 | Forward
Pre-training for Symbolic Music | Chen, Chin-Jui Chang,
Understanding Joann Ching, Yi-Hsuan
Yang
SS12| Performer Identification From | Syed Rifat Mahmud | 2021 | SQ12 Forward
Symbolic  Representation of | Rafee, Gyorgy Fazekas,
Music Using Statistical Models | Geraint A.Wiggins
SS13| Towards Explainable Music | Shreyan  Chowdhury, | 2019 | SR1 | Forward
Emotion Recognition: The | Andreu Vall, Verena
Route via Mid-level Features Haunschmid, Gerhard
Widmer
SS14| On Perceived Emotion in Ex- | Shreyan ~ Chowdhury, | 2021 | SR1 | Forward
pressive Piano Performance: | Gerhard Widmer
Further Experimental Evidence
for the Relevance of Mid-level
Perceptual Features
SS15| Tracing Back Music Emotion | Shreyan  Chowdhury, | 2021 | SR2 | Forward
Predictions to Sound Sources | Verena Praher, Gerhard
and Intuitive Perceptual Qual- | Widmer
ities
SS16| An Interdisciplinary Review of | Alexander Lerch, Claire | 2021 | SR3 | Forward
Music Performance Analysis Arthur, Ashis Pati, Sid-
dharth Gururani
SS17| Computational Analysis and | Zhengshan Shi 2021 | SR3 | Forward
Modeling of Expressive Timing
in Chopin Mazurkas
SS18| Score and Performance Features | Dasaem Jeong, Tae- | 2019 | SR4 | Forward
for Rendering Expressive Music | gyun Kwon, Yoojin
Performances Kim, Juhan Nam
SS19| Rendering Music Performance | Akira Maezawa, | 2019 | SS4 | Forward
With Interpretation Variations | Kazuhiko Yamamoto,
Using Conditional Variational | Takuya Fujishima
RNN
SS20| Modeling and Estimating Lo- | Hendrik Schreiber, | 2020 | SS6 | Forward

cal Tempo: A Case Study on
Chopin’s Mazurkas

Frank Zalkow, Meinard
Miiller

3.2.4 Quality Assessment

All types of studies (SQ, SR and SS) were evaluated based on the quality as-
sessment described in subsection 3.1.4. When a study did not pass the quality
assessment, the screening criteria column states the reason for failure. For the
studies that passed the primary and secondary screenings, their quality scores
are shown in the last column. Only the studies with quality scores of 7 and
higher passed the quality screening. SQ3, SQ5, SQ17 did not satisfy the score

20




requirement. SQ4, SQ10, SQ16 and SQ20 did not include processing of musical
data. SQ8 was only attainable by purchase. SQ18 focused on the effect of chord
progression for emotion recognition. This relates only to the style of the com-
poser and was not applicable to performance style. The results for the primary
studies are shown in Table 8. The quality scores of all the studies are presented
in the appendix (Al).

Table 8: Results of Quality Assessment of Primary Studies

ID Pass | Screening Criteria | Quality Score
SQ1 | Yes 8
SQ2 | Yes 9,5
SQ3 No Quality Score
SQ4 | No IC 3 -
SQ5 No Quality Score 6
SQ6 | Yes 9
SQ7 | Yes 8
SQ8 | No IC 4 -
SQ9 | Yes 7,5
SQ10 | No IC 3 -
SQ11 | Yes 9,5
SQ12 | Yes 7,5
SQ13 | Yes 8,5
SQ14 | Yes 8,5
SQ15 | Yes 7
SQ16 | No IC 3 -
SQ17 | No Quality Score 5,5
SQ18 | No IC6 -
SQ19 | Yes 8,5
SQ20 | No IC 3 -

All of the recommended studies passed the quality assessment, and Table 9
shows the quality scores.

Table 9: Results of Quality Assessment of Recommended Studies
ID | Pass | Screening Criteria | Quality Score
SR1 | Yes 8
SR2 | Yes 9,5
SR3 | Yes 8,5
SR4 | Yes 10

Table 10 shows the result of the quality assessment of the secondary studies.
SS4 and SS16 are both reviews of the domain, and did not present any new
methods or results. However, they were great for high level overview of the

21



existing approaches and further snowballing. SS5 is a book which was only
attainable by purchase. SS8 focused on features and methods regarding the
violin, which were not applicable for piano. SS2 did not mention the language
model that was used or explain the method thoroughly. Thus, the study scored
0 points for QC5 and did not pass the quality assessment. SS1, SS6 and SS18
did not satisfy the quality score requirement of 7.

Table 10: Results of Quality Assessment of Secondary Studies

ID | Primary Study | Screening Criteria | Quality Score
SS1 No Quality Score 5
SS2 No QC5 -
SS3 Yes 8,5
SS4 No 1C2 -
SS5 No 1C4 -
SS6 No Quality Score 6,5
SS7 Yes 9
SS8 No 1C5 -
SS9 Yes 9
SS10 Yes 8
SS11 Yes 8,5
SS12 Yes 7
SS13 Yes 9
SS14 Yes 8,5
SS15 Yes 7,5
SS16 No 1C2 -
SS17 Yes 7,5
SS18 No Quality Score 3
SS19 Yes 7,5
SS20 Yes 9
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3.3 Results of SLR

The primary and secondary studies represented various subdomains linked to
musical style. Some of the studies compared music with different compositions.
These comparisons primarily highlighted the composition style of the music,
not the expressive style. This class of studies is denoted as Inter-Composition.
However, studies that focused on expressive style within a specific composition
are labeled as Intra-Composition. The studies related to Intra-Composition and
Inter-Composition are presented in subsection 3.3.1 and subsection 3.3.2, respec-
tively. The relevance of the studies concerning the research topic is discussed in
subsection 3.4.1.

3.3.1 Intra-Composition

Jeong et al. combined a Hierarchical Attention Network (HAN) and a Condi-
tional Variational Autoencoder (CVAE) to extract performance style and gen-
erate expressive performances (SR3)[14]. The score encoder consisted of a note
encoder using LSTM and beat/measure extraction methods using attention.
Extracted information was given to the CVAE for probabilistic autoencoding.
The latent vector was used to extract style and transfer it to another piece.
Piano performances were collected and transcriptions were manually refined for
consistency. Two versions were tested, with measure-level modules (HAN-M) or
without (HAN-S). The method was validated with a listening test. The authors
stated that their proposed models (HAN-M, HAN-S) perform better than Basis
Mixer (BM) and a baseline LSTM in 7 different categories. The model was
praised for its human expressiveness by listeners, but it also got some negative
feedback. The authors stated that the predicted pedal usage was often too deep
and dirty, or too shallow.

Nakamura et al. proposed a method for aligning polyphonic performances
in symbolic format to the score or other performances (SR4)[15]. The method
handled wrongly played notes, which could be extra notes, missing notes or
wrong pitch. MIDI files were used for audio representation and merged-output
Hidden Markov Models (HMM) for realignment. The method was compared
with several methods on three datasets. It performed better in terms of accuracy
and efficiency on all tests.

Liang et al. used an optical sensor and piano recordings to create a dataset
for sustain pedal usage (SQ12)[16]. Signal processing was used to determine the
ground truth labels for part-pedaling, onset- and offset timings. Support Vec-
tor Machine (SVM), HMM, k-Nearest Neighbors (k-NN), Decision Tree (DT),
Random Forest (RF) and Gaussian Naive Bayes (GNB) were compared in the
classification task. The SVM method performed best. It was able to distinguish
the quarterly levels of part-pedaling.

Cancino-Chacon and Grachten used recurrent neural networks and mea-
sures of tonal tension to predict expressive performances of Mozart’s sonatas
(SQ19)[17]. Three quantities were used to capture the tonal tension, first pro-
posed by Chew[18]: cloud diameter, cloud momentum and tensile strain. The
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extraction method of Herremans and Chew|[19] was used to capture these quan-
tities. The authors concluded that the method could be used for relative tempo
and dynamics, but only when low level pitch information was available. The
dependence on this information makes the tension quantities unable to capture
the expresiveness fully.

Cancino-Chacén et al. did an online questionaire to explore the expressive
character of classical piano performances. (SS3)[20]. The participants listened
to 9 classical pieces by different performers and were asked to describe the per-
formances in free text and choose their favorite. The resulting dataset was tested
for semantic simmilarity, performance preference and PCA word dimension cor-
relation with mid-level features. The authors stated that different performances
of the same piece tended to be described in a similar manner. Three of the
pieces rejected the null hypothesis of not a preferred performance with an alpha
of 0.01, and five at the 0.05 level. The authors showed that there are relation-
ships between the mid-level features and the word dimensions: ”For instance,
the analysis suggests that louder performances or performances with large out-
liers in the valence curve would be perceived as more irregular and agitated.”

Liem and Hanjalic used an entropy based measuring method to study align-
ment differences between performances (SS7)[21]. The method was based on
Chroma Discrete Cosine Transform-Reduced Log Pitch (CRP) and Dynamic
Time Warping (DTW), which outputs aligned local tempos. The authors stated
that the entropy based method captured only the diversity of local errors. This
is in contrast to standard deviation, which captured the aggreagation local er-
rors. The authors ran two tests to verify that both standard deviation and
entropy were not returning sequences of random noise. They concluded that
the methods were strongly correlated, yet using entropy entailed less noise and
amplification of positive peaks.

Grachten et al. used basis functions that were extracted from MusicXML
files to predict dynamics (SS9)[22]. The method was usable for both single
instruments and orchestras. When there were several instruments, all the basis
functions of all the intruments were merged together in a specific way. The
authors compared several model architectures: linear, bidirectional RNN and
Feed Forward Neural Network (FFNN). The bidirectional RNN performed the
best, with the FFNN close behind. However, the authors stated that there
could have been a possibility of overfitting for both methods, because of the
small dataset.

Cancino-Chacén et al. built upon the work regarding basis functions by
thorougly testing non linear models on several datasets (SS10)[23]. The datasets
comprised of large amounts of notes, but only a few players and composers:
Magaloff/Chopin, Zeilinger/Beethoven, RCO/Symphonic. The authors used
the same methods as Grachten et al.[22], in addition to a model with the LSTM
architecture. A method for calculating the contribution of each basis function
to the total variance of the model was also proposed. The authors concluded
that the non linear models were substantially more accurate and also able to
learn interaction effects of the score. Additionally, the analysis of the non linear
models indicated the validity of previous hypotheses such as high notes should
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be played louder.

Rafee et al. aligned each performance with the average performance of
the same piece and use the deviation distributions to classify the performer
(SS12)[24]. The features were extracted from the MIDI files: Onset time, inter
onset interval, offset time duration, dynamic level and note duration. All the
deviation distributions were modeled by histogram, KDE and Gaussian Mixture
Model (GMM). The KL-divergence was computed for all combinations of the
unknown performer and a known performer. The authors used equal weighting
when combining the KL-divergence of each feature. The unknown performer was
classified as the performer with the smallest amount of divergence. Using the
average performance as a reference point worked well according to the authors,
as long as there were enough performances for the same piece. The combination
of inter inset interval, dynamic level and note duration performed the best for
histogram and KDE. Onset time performed the best for single features.

Shi used a recurrent neural network to predict expressive piano timings
in Chopin Mazurkas (SS17)[25]. The proposed method preprocessed the data
based on the inter-beat-interval of the score and a chosen value for the mean
tempo. A bidirectional LSTM was used to learn signature rhythms of piano
performers. Performances were generated based on the score of different pieces,
then compared to human performances and generated performances by Virtu-
osonet [14]. Shi showed that the proposed method had a higher correlation
of relative tempo to human performances than Virtuosonet. Furthermore, the
method was better at capturing the rhythmic structures of Chopin Mazurkas.

Maezawa et al. proposed a Conditional Variatonal Recurrent Neural Net-
work (CVRNN) to extract performance style from piano recordings and gener-
ate new performances (SS19)[26]. The generative model was decoupled from the
score in order to learn piece independent variability in performances. The pro-
posed method was compared to the Finale software, human playing and score
recreation in a listening test. The model produced better results in naturalness
and worse in expresiveness when compared to the human in the listening test.
Pearson’s correlation coefficient was used to qualitatively test the model’s abil-
ity to predict the next notes of a human performance. Based on the results, the
authors concluded that the model was able to recreate the style of a performer
when given a snippet.

Schreiber et al. trained Convolutional Neural Nets (CNNs) to model local
tempo and measure tempo stability (SS20)[27]. The models were based on the
DT-Maz architecture, and were compared to the DeepTemp- and Bock-software.
Two models were trained, with different splits of the dataset: Each fold included
all versions for the same piece, or all pieces for the same version. Local tempo
was modeled by median aggregated inter beat interval, and tempo stability by
the coeflicient of variations of local tempo values. The models were specifically
trained in the piano domain, and performed better than the general purpose
softwares on the modelling task. The differences in training splits were used to
learn differences of the Mazurka pieces.
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3.3.2 Inter-Composition

Aljanaki and Soleymani collected a dataset annotated with 7 mid-level features,
and used mel-spectogram and CNN to recognize emotions (SR1)[1]. The par-
ticipants did pairwise comparison to create absolute scales for each dimension,
then annotated each song according to the scales. Only users who passed a
musical test were recruited for the annotation. If they answered randomly or
far away from the average, their annotations were not used in the final dataset.
The authors concluded that the mid-level features can model different emotions
well, despite having no information about tempo or loudness. The annotation
consistencies for the features were high, except for rhythmic tonal stability and
complexity.

Chowdhury and Widmer presented a three-step approach to adapt a mid-
level feature extraction method to the domain of expressive piano performances
(SR2)[28]. The extraction method of Aljanaki and Soleymani [1] was based on
songs from different wide variety of genres. Thus, the MAESTRO dataset was
added to make a distilled student model adaptive to the piano domain. Different
model architectures were tested: VGG, RF-ResNET, RF-ResNet with domain
adaption and RF-ResNet with domain adaption and teacher student learning.
The authors concluded that the performance was significantly improved by the
domain adaption and the teacher student training scheme. They also believed
the method showed potential for further adaptions in the realm of musical style.

Hung et al. collected a multimodal dataset of pop piano music, with audio-
and MIDI-representation, for tasks related to emotions (SQ1)[29]. The MIDI
files were automatically transcribed from the audio of downloaded Youtube
videos. The dataset contained only solo performances of professional piano
players which conveyed a specific emotion. Every piece was assigned to a spe-
cific quadrant in the valence-arousal plane. Emotion recognition with symbolic
data was tested with a LSTM model, and music in Revamped MIDI Derived
Events- (REMI) and MIDI-format. With audio data, CNN was compared to the
combination of MFCC features and logistic regression. Symbolic domain classi-
fiers performed better with regard to valence. Yet, no model outperformed the
others in all areas. Emotion generated music was also tested with Compound
Word Representation (CP) and a transformer model. The authors concluded
that it was possible to generate music, given a specific target emotion, to a
certain degree.

Tsai and Ji used Natural Language Processing (NLP) with unlabelled pre-
training to classify the composer of a sheet of music (SQ2)[30]. The sheets were
converted into sequences of words and used to train the language model in an
unsupervised manner. A text classifier was added to classify composers. The
language models used are AWD-LSTM, GPT-2 and RoBERTa. In addition,
these architectures were compared with a CNN model, with a linear classifier
instead of the text classifier. The transformer models (GPT-2, RoBERTa) per-
formed better on the full page classification task. The pretraining improved the
performance significantly. The tSNE-plot of music by five different composers
showed clear clustering.
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Velarde et al. used a CNN, pitch-time representations (piano-rolls) and
filters to classify composers from MIDI files (SQ6)[31]. The method used no form
of feature extraction or splitting the input into several voices. A comparison
was conducted of Chromatic pitch and Morphetic pitch for preprocessing, and of
Morelet Wavelet and Gaussian for filters. Different input lengths and centering
methods were also compared. The best combination of settings achieved state-
of-the-art performances on the Haydn/Mozart discrimination task. The authors
show that the filtering significantly improved the performance of the method.

Huang and Yang proposed the REMI representation for audio data and
tested its appropriateness with a music generation task (SQ7)[32]. The method
was supposed to represent the bar structure of music better than MIDI. This is
beacuse REMI used note positions (in accordance to a bar) to describe the po-
sition of a note instead of time shifts. The proposed method also used duration
instead of note-off events, to easily capture the dependence of beginning and end
of notes. In addition, REMI had local tempo changes as a parameter and chords
as a seperate musical token. Several transformers were trained with different
data representations and their generated music was evaluated in a listening test.
The REMI representation achieved the highest scores, with large margins, both
for the professional and the amateur group. Objective evaluation of the models
indicated that REMI produced music with less deviations in rhythm.

Rajesh and Nalini compared different feature extraction methods and mod-
els, to classify instruments and emotions (SQ9)[33]. The extraction methods
include Mel Frequency Cepstral Coefficient (MFCC), Chroma Energy Normal-
ized Statistics (CENS) and Chroma Short-Time Fourier Transform (STFT).
SVM and LSTM was used for classification. The combination of MFCC and
LSTM performed the best, with a significant margin. It should be noted that
the MFCC method extracted the largest set of features in the study, more than
the rest of the methods combined. The authors concluded that the instrument
impacts the emotion classification of monophonic instrument recordings.

Brunner et al. used a Variational Autoencoder (VAE) to apply style transfer
to polyphonic music (SQ11)[34]. The autoencoder handled three kinds of data
features in the form of rolls: Pitch, instrument and velocity. The model was
comprised of dense layers and GRU. It was trained on a dataset including the
genres: Jazz, Pop and Classic. Style classifiers for each data feature were trained
to test the model’s ability to successfully transfer style. The style transfer
affected the classification, but only slightly. When changing from jazz to pop,
all the instruments changed. Latent space evaluation with tSNE-plots showed
clusters and a disentangled dimension from jazz to classic along the x-axis.

Chen and Li proposed a multimodal model for classifying emotions (SQ13)[35].
Both lyrics and audio were processed in several dimensions. Chi-squared method
was used to extract one dimensional information from the lyrics. Feature ex-
traction methods, such as MFCC and Zero Crossing Rate (ZCR), were used
to do the same for audio. An architecture with CNN and LSTM was used to
model two dimensional input of audio and lyrics. Spectograms and Word2vec
were used for this embedding. Both dimensions of each modal were merged into
one classifier. Then, a softmax layer was added to merge the two modals into
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one classifier. The multimodal approach to emotion recognition produced better
results than unimodal. The model of Chen and Li performed comparingly to
other state-of-the-art methods for multimodal emotion recognition. However, it
did not achieve the highest average accuracy.

Hajj et al. used n-grams and CA to recognize classical music composers
(SQ14)[36]. The method distinguished voices in a MIDI score, constructed n-
grams and generated a large feature vector. The vector was used to classify
the composers with different methods: Cortial Algorithm (CA) was compared
to SVM and one nearest neighbor classifier. CA performed the best. In addi-
tion, they were able to reduce the feature set to 0.1% and still achieve a high
recognition rate.

Weiss and Miiller proposed a new set of audio features which was tested on
a classification task of historical music periods (SQ15)[37]. The features were
based on chroma features. Four chroma extration methods were used, with four
different time frames of smoothing. Half of the dataset consisted of orchestra
music and the other half consisted of piano recordings. SVM and GMM were
used for classification. The Linear Discriminant Analysis (LDA) plot showed
clear clusterings of the historical periods. The authors stated that the results
indicated the features ability to capture tonal aspects that are not related to
timbre. The features also exhibited robustness towards artist- and composer-
specific properties.

Chou et al. tested BERT’s ability to tackle note level prediction, melody
extraction, velocity prediction, composer classification and emotion classifica-
tion (SS11)[38]. The input data was tokenized, both in REMI format and CP
format. A baseline bidirectional LSTM model was used for comparison. Several
datasets were used for different purposes: Popl7K and ASAP for pre-training,
Pop909 for melody- and velocity prediction, Pianist8 for composer classification
and EMOPIA for emotion classification. The study indicated that the CP repre-
sentation performed better than REMI. MidiBERT performed well on several of
the tasks, and beat the LSTM model in all of them. The authors also concluded
that the pretraining of the models improved the performance significantly.

Chowdhury et al. explored the cost of using mid-level features as an interme-
diary step when classifying emotions (SS13)[2]. The first model consisted of two
models that were independently trained: From audio to mid-level features and
mid-level features to emotion (A2mid2E). The second model used both models,
but was trained jointly (Joint). The last model classified emotion directly from
the audio (A2E). The audio extraction part of the model consisted of CNN-layers
and used spectrograms as input. Joint and A2mid2E performed slightly worse
on the emotion classification task, 1% and 5% respectively. The joint method
performed comparingly on the mid-level classification task. It can therefore
be concluded that the method for jointly training optimized explainability and
performance.

Chowdhury and Widmer tested several feature sets by their ability to predict
emotions in the valence-arousal spectrum (SS14)[39]. The feature sets included:
mid-level perceptual features, pre-trained emotion features, low level audio fea-
tures, and score-based features. To test the methods, the authors collected a
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dataset of ratings by 29 students. The average rating for each piece and piano
performer was used as ground truth labels. Statistical methods, such as R? and
correlation, were used to compare the feature sets. The authors concluded that
the mid-level features are the most robust method. In addition to the ability
of prediction, the features included intuitive musical meanings which humans
could understand easily.

Chowdhury et al. used audioLIME and mid-level perceptuala features to
explain models for emotion recognition (SS15)[40]. The study included three
datasets, with different distributions of genres: Mid-level Perceptual Features
Dataset, Database for Emotional Analysisin Music (DEAM) and Popular Mu-
sic with Emotional Annotation (PMEmo). Performance of explainability was
measured by complexity and fidelity. The authors stated that the metrics look
related on a dataset level, but showed that it was not the case on a local level.
The explainability was tested qualitatively by finding the cause of valence error
for hip hop songs. This was traced back to the rhythmic stability of vocals. The
authors explained that the model with valence error placed more importance on
rhythmic stability than the one that was trained on multiple datasets. Thus,
the explanation was considered to be correct.

3.4 Discussion

This section provides a discussion about the implementations and results of
the SLR method. The relevance of the studies related to Intra-Composition
and Inter-Composition are presented in subsection 3.4.1 and subsection 3.4.2,
respectively. Subsection 3.4.3 discusses the choice of search terms. The conse-
quences of selecting the given search terms is discussed in subsection 3.4.4.

3.4.1 Relevance of Intra-Composition

The method of Jeong et al. (SR3)[14] is related to the both research questions
(RQ1, RQ2). Their score encoder module was a new approach of capturing
note level interactions, which is important for mid-level features. The encoder
part of the CVAE can be used to classify the style of performers.

The alignment method of Nakamura et al. (SR4)[15] is related to the ex-
traction of mid-level features (RQ1). Alignment of performances is important
in order to extract the deviations of each performer. The method is especially
useful if the performances should be aligned to the score or directly to another
performance. The study did not discuss the task of aligning a performance to
the average performance of a given piece. This is possible with the proposed
method as long as another method is used to compute the average performance.

The part-pedaling classification of Liang et al. (SQ12)[16] could be used in
relation to mid-level features extraction (RQ1). The amount of sustain pedal
usage is one aspect of performance style. To extract mid-level features from this
information, its sequences and variations must be captured.

Since the musical style of an performer can be determined in a small time
frame, the relative tempo and dynamics features of Cancino-Chacén and Grachten
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(SQ19)[17] are relevant. The dependence on low level pitch information entails
that there is a need for more features to distinguish expressive performances of
piano performers (RQ1).

The dataset creation of Cancino-Chacén et al.(SS3)[20] entails several in-
teresting discussions when it comes to participant knowledge and mid-level fea-
tures. Their finding that the same pieces tend to be described simmilarly is
a problem for the study of performance style. The style characteristics of an
performer should ideally be independent of the piece (as long as that is the pur-
pose of the performer), in order to be used for performer classification (RQ2).
This suggests that the PCA method is not precise enough or that the set of
performers are too similar with regard to style.

The measuring method of Liem and Hanjalic (SS7)[21] is related to the
pre-processing of audio data. The feature was highly correlated with similar
methods using standard deviation, yet it has some interesting properties. When
preparing the audio data for mid-level features extraction (RQ1), several meth-
ods like this need to be tested. The proposed method might be the best way
of processing the raw audio data for the models to understand the underlying
relationships.

The dynamics that Grachten et al.(SS9)[22] predicted with their model is
an important element of performance style. Even though the dynamics are
noted in the score, there is no ground truth to what the correct loudness should
be. In addition, piano performers can deviate from the timings of the score to
express their own styles. The study’s problem with lack of data is fixed in the
work of Cancino-Chacén et al.(SS10)[23]. In this study, the authors provided
larger datasets and more evidence. The prediction of loudness does not provide
additional knowledge, since the information is already known from the velocity
attribute in MIDI files.

The work of Rafee et al.(SS12)[24] is closely related to both research ques-
tions. The authors extract 5 low level features in order to classify piano per-
formers (RQ2). Extracted low level features could be combined or used as
input to a model in order to get mid-level features (RQ1). The study’s use of
distributions entailed the incosideration of note context. This is in contrast to
mid-level features, which are mostly centered around the interaction of notes.
Thus, it will be difficult to reuse methods like histogram, KDE and GMM.

The method of Shi (SS17)[25] predicted the timing variations of piano per-
formers. This is an important feature when analyzing performance style. The
proposed preprocessing is a great approach which might provide features that
produce better results. Yet, the model for prediction is hard to reuse. The
tempo variations could be extracted directly from the MIDI file, so the predic-
tion provides no additional information.

The model of Maezawa et al.(SS19)[26] was able to distinguish performance
styles (RQ2). Their feature extraction was extensive and combines several
methods to optimize performance. The idea of using an ensemble model that
handles different aspects of the input differently is good.

The measurement methods of Schreiber et al. (SS20)[27] are related to the
mid-level features extraction (RQ1). These can be used to model the local
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tempo variations of performers, which is an important aspect of performance
style. The values can be used directly or in order to extract higher level concepts.

3.4.2 Relevance of Inter-Composition

The dataset collection and methods of Aljanaki and Soleymani (SR1)[1] are
closely related to RQ1. They extracted mid-level features and used them to
recognize emotion. However, the mid-level features used in this study might
not produce the best results when it comes to performance style. The features
are tightly coupled to the composition of a song, which can be more useful for
emotion recognition. This is the same for the CNN based extraction method.
It captured the features of the overall song, not the performance variations that
are piece independent.

The adaption method of Chwodhury and Widmer (SR2)[28] is related to
the research topic. The extraction method produced mid-level features and was
adapted to the domain of performance style. This is exactly the domain of the
research topic. However, the method introduces a lot of complexity through
its three-step process. Using several techniques to adapt a model from another
domain might produce worse results than creating a model specifically for the
task domain.

The dataset and emotion tests of Hung et al. (SQ1)[29] are related to the
extraction of mid-level features (RQ1). The study included a range of methods
related to the audio format and their performances. The study focused on
emotion recognition, where the differences in audio format is shown to not affect
the performance significantly. This might not be the case in the domain of
performance style.

The method of Tsai and Ji (SQ2)[30] is partly connected to the research
topic. The model was difficult to use because of its goal of classifying composer
style. In this thesis the goal of the method is to be independent of composer
style and only capture the variations of the performers. However, the use of
language models is an interesting approach which can be used to model the
sequence of variations of performers.

The model of Velarde et al. (SQ6)[31] is connected to the research topic.
The same model could be used to recognize performers of the same piece (RQ1,
RQ2). However, the method is likely to be dependent on the piece. It might
be possible to preprocess the data for independence and use the same method.

The data representation of Huang and Yang (SQT7)[32] is strongly related
to the mid-level feature extraction (RQ1). The proposed method represented
the information in relation to the basic structure of music, such that machines
would have an implicit understanding of musical structure. This was specifically
constructed for the domain of music generation. However, in the domain of
performance styles, the underlying principles of deviations from the score or
other performances must be represented. Thus, the data must be processed
further in order to extract mid-level features, regardless of the input format.

The comparison of Rajesh and Nalini (SQ9)[33] highlighted several well
known feature extraction methods related to audio recordings. The method
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of representing music in spectrogram format can be difficult to use in the do-
main of performance style. This type of embedding is highly dependent on the
piece and does not highlight the variations of individual performers.

The autoencoder of Brunner et al. (SQ11)[34] is slightly related to the
research topic. The use of polyphonic is not relevant. The autoencoder is a
good method to use when there is not enough labeled data available. This can
be the case for the task of mid-level features extraction (RQ1). In that case,
pre-trained models from other domains can also be adapted.

The multimodal architecture of Chen and Li (SQ13)[35] is not particularly
related to the research topic. Some of the methods or ideas they used can be
adapted to performance style. However, lyrics cannot be used in the domain
of performance style for piano. The classification method for audio does not
highlight the deviations of a performer. Thus, it will likely produce poor results
if it is adapted to the task of performance style classification.

The method of Hajj et al. (SQ14)[36] is not directly related to the research
topic. It is not able to distinguish piano performances of the same piece. How-
ever, some parts of the method could be altered to fit the tasks of this thesis.
The feature generation with n-grams (RQ1) and feature reduction with CA
(RQ2) showed promising results.

The set of audio features, proposed by Weiss and Miiller (SQ15)[37], is re-
lated to the task of extracting mid-level features (RQ1). Even though the
features were not explainable for humans, they captured local style patterns
of music. The extraction method was tested for historical periods, which is
strongly related to composer style. This focus on musical structure might be
too high level to be used in the domain of performance style.

The study of Chou et al. (SS11)[38] is related to most of the subdomains
of Music Information Retrieval (MIR). It is possible to adapt their techniques
to this thesis’ tasks. The comparison of tokenization methods (REMI, CP)
could indicate what format is best for machines to understand the underlying
structure of music. This is one of the challenges related to the extraction of
mid-level features (RQ1).

The study of Chowdhury et al. (SS13)[2] is strongly related to the method of
this thesis. The overarching challenge of explainable performance recognition is
divided into two research questions (RQ1, RQ2). However, this study discussed
the consequences of the two step approach. It showed that the best results were
achieved when these steps were combined and the models were trained jointly.

The statistical study of Chowdhury and Widmer (SS14)[39] tested lower
level features’ ability predict high level features like emotion. This is strongly
linked to the overall goal of this thesis, where mid-level features will be used to
predict performance style (RQ1, RQ2). The authors showed that the mid-level
features have a better accuracy and are more explainable. Since the mid-level
features are used for emotion recognition, they might not be able to distinguish
individual piano performers.

The method of explainable models by Chowdhury et al. (SS15)[40] is re-
lated to the goal of understanding differences in musical performances. The
authors used several techniques, including importance calculation of mid-level
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features, to explain differences on local and global levels. These explanations
could be used to find biases in datasets, model deficiencies or improve human
understanding. The audioLIME method for explainability might not work in
this thesis’ tasks because of the required input.

3.4.3 Small Presence of Performance Style in Query Results

Only one study in the query result was in the subdomain of performance style.
As discussed in subsection 3.1.1, this did not have to be a problem as long as
it was possible to use snowballing to get to the most relevant research. Several
studies pointed towards the domain review of computational models for per-
formance style (SS4), which included a lot of highly relevant material. It was
interesting to look at why most primary studies were not directly related to the
research questions. One of the reasons might have been a result of the query
being too broad. The 23300 results from the search query could indicate such
an explanation. In addition, the domain of performance style is less researched
than Music Emotion Recognition (MER). More researched domains increase the
number of potential citations. This can result in a skewed query result, where
most of the studies are linked to a single subdomain.

3.4.4 Recommended Studies not in Query Results

The fact that the recommended studies did not appear in the query results was
not a good sign for the search engine, the query, or the relevance of recommended
studies. Ordering studies by relevance is complex because the top studies should
be new and highly cited studies. This is typically a trade-off since the number
of citations is correlated with time. Yet, Google Scholar was seen as a trusted
search engine and has often been used to solve this problem.

As discussed in subsection 3.4.3, the subdomain of performance style was not
well represented in the query results. Since most of the recommended studies
were in this subdomain or linked to it, they were less likely to be represented.
The recommended studies could also be of lower relevance in the specified sub-
domain. For instance, the graph method of Daejeong et al. [14] was a novel
approach to note embedding. The method will have a lower priority because of
its lack of research history. The alignment tool of Nakamura et al. [15] is a part
of the subdomain of music alignment, which was narrow and partly related to
performance style. Since Nakamura et al. focused on timing deviations instead
of performance style, the study broaden the perspective on how to capture and
process music. Yet, its distance to the topic of style lowered its relevance.
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4 Method

This chapter presents the methods used for answering the research questions.
The collection of piano performances and labeling of mid-level perceptual fea-
tures are described in section 4.1. The collected data is processed to be used for
the tasks of this thesis. The processing methods are presented in section 4.2.
The different model architectures used for the tasks are described in section 4.3.
To answer the first research question, the prediction task of MLPFs is used.
The classification task of pianists answers the second research question. The
MLPF prediction- and pianist classification tasks are presented in section 4.4
and section 4.5, respectively.

4.1 Data Collection

Collecting data consisted of gathering performances of the same piece and la-
beling segments of these performances. Subsection 4.1.1 describes the gathering
of performances from the e-competition website. This dataset is denoted as the
pianist dataset used for the pianist recognition task. The collected performances
were segmented and converted into audio files, which were labeled for MLPFs.
The process of creating the MLPF dataset is described in subsection 4.1.2.

4.1.1 Piano Performance Dataset

The dataset of pianist performances was retrieved from the International Pi-
ano e-Competition [41]. This was the same resource that Rafee et al. used
for their KDE model [24]. The competitors in the e-competition played several
well-known pieces on Yamaha CFX concert grand pianos. These pianos were
equipped with competition Yamaha Disklavier software which made it possible
to capture all aspects of the performance and replay it on corresponding pianos.
There were separate Schubert Sonata rounds in previous years of the compe-
tition. This made it possible to find multiple performances of the same piece
and study performance style. As in the paper of Rafee et al., this thesis used
Schubert’s Sonata in B-flat Major, D960. There were 11 performers available
on the website (year of participation in parentheses): Jean-Selim Abdelmoula
(2018), Vasyl Kotys (2018), Cheng Guang (2014), Peter Friis Johannson (2014),
Piotr Rozanski (2009), Eric Zuber (2009), Gregory DeTurck (2006), Konstantin
Krasnitsky (2006), Mikhail Mordvinov (2006), Edisher Savitski (2006), Ben-
jamin Kim (2004). Rafee et al. only used nine of the same performers and
excluded Eric Zuber and Benjamin Kim. When reproducing the model of Rafee
et al., the same nine performers were used. All of the performances were in
midi format and downloadable as single files. Some of the performances were
additionally divided into four movements, where each movement could be down-
loaded separately. All movements of all eleven pianists were used in the dataset.
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4.1.2 Mid-Level Perceptual Feature (MLPF) Dataset

As of May 2022, the MLPF Dataset was neither completed nor published [42].
The project was being conducted at the time of writing this thesis by the College
of Music and the Graduate School of Data Science coalition at SNU. However,
there were plans to publish a paper on the topic and publicly make the dataset
available. A brief explanation of the dataset’s creation process is provided.

The goal of the MLPF dataset was to provide a framework for quanitfying
the style of pianists. Prof. Jong Hwa Park and graduate student Jisoo Park from
Seoul National University created a list of musical dimensions. After assessing
the musical dimensions with a focus group of graduate students from the College
of Music at SNU, the list was refined. Dependent and conditional dimensions
were added for musical research. The dimensions could be viewed as continuous,
one-dimensional vector spaces. In most cases, the words used to describe these
dimensions mark the extremes of the dimension. In some cases, the terms are
relative and mark only the direction of the extreme for that dimension. All the
dimensions were linked to a category to make them specific and unambiguous.
Each row in Table 11 corresponds to one MLPF dimensions. The values for
the columns Eztreme 1 and Extreme 2 defines the dimension, for the specific
category. Synonyms were added for some of the dimensions. A term in the
Synonym 1 column is synonymous with the term in the FEztreme 1 column.
The same relationship applies to Synonym 2 and FExtreme 2.

Performances of Schubert’s Sonata (B-flat Major, D960) were segmented into
segments of 8 bars. This was viewed as the shortest interval where all dimensions
could be determined. Simultaneously, the length entailed a possibility of change
in dimension values during the segment.

A Likert scale from one to seven was used to label the segments for all the
dimensions. The extremes in Table 11 define the scale. Extreme 1 corresponds
to one on the scale, Fxtreme 2 corresponds to a seven on the scale and four is
in the middle. Users were also able to use 0 if they were not sure. Three con-
ditional dimensions were shown based on other dimension answers of the user.
If the user chose a value on the side of Stable (1-3) in the first dimension (Sta-
ble/Unstable Beat), the second dimension (Mechanical/Natural Tempo) would
be shown. However, Unstable Beat (5-7) would show the third dimension (Inten-
sional/Unintentional). The fourth dimension (Regular/Chaotic Beat Change)
was only shown if the user answered Unstable (5-7) in the first dimension and
Intentional (1-3) in the third dimension.

The labeling process was conducted by Crowdworks, an online crowdsourcing
company for AI. The labelers were experienced musicians, with more than 10
years experience. All of the labelers had at least a bachelor’s degree in music.
At the time of writing, data was only been collected for the second movement
of Schubert’s Sonata and a selection of performances: The score version of
the piece and the six first pianists (Abdelmoula, Kotys, Guang, Johannson,
Rozanski, Zuber).

Intraclass correlation (ICC) was used to test the reliability of the dataset.
The labelers are one sample of domain experts. Since the results of the ICC
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Table 11: Dimensions of MLPFs

Category Extreme 1 Extreme 2 Synonym 1 | Synonym 2
Stable Unstable
Time Mechanical Natural
(Beat / Tempo) Intentional Unintentional
Regular Change Chaotic Change
. . Long Short
Articulation Cushioned Solid Soft Hard
Saturated Sparse Wet Dry
Pedal Clean Blurred
Subtle Change Obvious Change
Even Colorful
Tone Rich Shallow
Bright Dark
Pure Dramatic Expressive
Intensity SOf.t Loud
(Tone/ Contrast) Sophisticated Raw Mellow Crude
Balanced Unbalanced
Large Dynamic Range | Small Dynamic Range
Fast Paced Slow Paced
Music Making Flov.ving Choppy . Articul.ated
(Musicality) Swing Steafdy Flexible Inflexible
: Flat Spacious
Harmonious Disproportioned
. Optimistic Pessimistic Pleasant Sad
Emotion -
(Characteristic) High Energy Low Encrgy
Dominant Subdued Forceful
Imaginative Honest
Mood Ethereal Mundane
Interpretation Convincing Unsatisfactory Doubtful

analysis should be relevant for other samples of domain experts as well, the
two-way random method was used. Both single score and the average score was
tested to see if one label can be used on their own. The absolute agreement was
used in both cases. If the scores were reliable for a two-way random method
with a single score and absolute agreement, ICC(2,1), the labels could be used
independently. If this was not the case, an aggregate of the labels must be used
for the data to be considered reliable. This was tested by the two-way random
method with average measures and absolute agreement, ICC(2,k).
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4.2 Processing

This section describes the adaption of the datasets to the given tasks. The
performances of the pianist dataset are aligned and the deviations of each per-
former are computed. These processes are described in subsection 4.2.1. The
labels from the MLPF dataset are aggregated for better reliability. The aggre-
gation method is presented in subsection 4.2.2.

4.2.1 Audio Processing

To compare the performances of several pianists, the performances were aligned
to the score. This was achieved by using the alignment tool of Nakamura et
al. [15]. To align the score in the MIDI version with itself, the settings of the
alignment tool needed to be configured. The threshold setting of the ScorePer-
formMatcher program was set to zero. The alignment of a performance to a
score outputted a match file with low-level features: ID, onset time, offset time,
spelled pitch, onset velocity, offset velocity, channel, match status, score time,
note ID, error index and skip index.

The preprocessing of low-level features from the match files was based on
the work of Rafee et al. [24]. Four low-level features were used directly: Onset
time, offset time, onset velocity and offset velocity. The duration of a note was
computed by subtracting the onset time from the offset time. IOI was calculated
by subtracting the previous note’s onset time from the current note’s onset time.
OTD was computed by subtracting the offset time of the current note from the
onset time of the following note. The computed features are shown in Figure 11.

Unmatched and duplicated notes from the alignment were removed. The
note IDs are used to group notes by different pianists and compute the average
note. The method of using deviations is described by Stamatatos [3] and Rafee
et al. [24]. The deviations of each pianist from both the score and the aver-
age performance were calculated. These deviations were used as inputs to the
models.

4.2.2 MLPF Processing

The MLPF dataset contains a distribution of answers by different users. Three
different methods were tested to create a ground truth label for all combinations
of performers and segments. First, mean and median values for the distributions
were calculated. Second, KDE was used, where the apex of the curve was
considered as the ground truth. The KDE method was used with a bandwidth
of 1 and a gaussian kernel. The distribution curve was computed using 100
steps. Discussions with prof. Jong Hwa Park and Jisoo Park revealed that the
apex ground truth method was considered the best approximation of the ground
truth label. The methods are visualized in Figure 12.
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4.3 Models

The model architectures that were introduced in section 1.2 are described in
detail in this section. Models that have the N2-abbreviation are novel. These
models were based on recurrent neural networks and linear layers for predictions.
However, the model based on Kernel Density Estimation was introduced by
Rafee et al. [24].

4.3.1 Notes-to-MLPFs (N2M)

Figure 13 shows the architecture of the N2M model. The models included a
dropout layer to improve their ability to generalize on unseen data. In addition,
fully connected linear layers were added to transform the output of the RNN-
cells to the correct output dimensions. RELU activation functions were used
for the linear layers.

e a

Input (Features x Sequence Length)

Stacked RNN Cells

v Regressor
Dropout Layer Model

v

Fully Connected Linear Layers

Y

MLPF Vector (25 Dimensions)

& J

Figure 13: RNN Regressor Architecture

The training loop consisted of training and validation on the MLPF dataset.
The Optuna software was used to tune hyperparameters and find the best-
performing models. The search space was defined for all parameters. Log scale
was used when the search space had significant differences in value sizes and
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where minor differences near the lower bound should be studied as closely as
significant differences near the upper bound. The random seed was added to
minimize the probability of unfortunate initializations of weights or ordering of
batches. Different combinations of deviation type and RNN type were trained
in separate studies. Both the best intermediate model (Int) and the best model
of the last epoch were saved (End) based on the score on the validation set. The
following hyperparameters were tuned to reach the best results for the regressor:

e Deviation type: Score, Average

e RNN Type: GRU, LSTM

e RNN Hidden size: 10 - 1000, log-scale
e RNN Layers: 1-5

e Linear Layers: 1 -5

e Linear Nodes: 10 - 1000, log-scale

e Learning Rate: 1le-6 - le-2, log-scale
e Random Seed: 0 - 10

e Batch Size: 10 - 60

e Dropout: 0 -1

4.3.2 Notes-to-MLPFs-to-Pianists (N2M2P)

The architecture of the regressor model was identical to the regressor architec-
ture of the N2M model. Figure 14 shows that a classifier model was added to
the pipeline to classify pianists based on the MLPFs. This module consisted of
fully connected linear layers and a softmax layer. The regressor models of the
MLPF prediction task were reused. The weights of these models were frozen so
that only the classifier model was trained.

To reduce computation, an intermediary dataset was created using the re-
gressor model. The input values of the dataset were the MLPF output of the
regressor model and the outputs were the correct pianists. Classifier models
were trained using the different RNN models trained in the MLPF prediction
task. This includes all combinations of the RNN types (LSTM, GRU), deviation
types (Score, Average) and save times (Intermediary, End). Optuna optimized
the following hyperparameters:

e Linear Layers: 1 -5

e Linear Nodes: 10 - 1000, log-scale
e Learning Rate: 1e-6 - 0.1, log-scale
e Random Seed: 0 - 10
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e Batch Size: 10 - 60

Input (Features x Sequence Length)
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Dropout Layer Model
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Fully Connected Linear Layers
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N
{ MLPF Vector (25 Dimensions)

Fully Connected Linear Layers
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v

Softmax Layer

[ One-hot encoded vector (11 pianists) }

Figure 14: RNN Classifier via MLPFs (N2M2P, N2MP)
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4.3.3 Notes-to-MLPFs-and-Pianists (N2MP)

The N2MP architecture was identical to the N2M2P architecture (see Figure 14).
The only difference is that both the regressor and the classifier of the model
were trained jointly. The N2MP approach used both the MLPF dataset and
the pianist dataset in the same training loop. Each training loop started with
the regressor model and the classifier model trained using the pianist training
set. Then, the regressor model was trained using the MLPF training set. The
specific order of training was set because of the large differences in dataset
sizes. Since the MLPF dataset was smaller than the pianist dataset, the MLPF
training was put last to ensure an impact. The pianist training set had 20872
samples, while the MLPF training set had 92 samples. Both the regressor and
classifier models were finally validated using the validation sets. In the N2MP
case, none of the weights were frozen during training.
Optuna optimized the following hyperparameters in the N2MP case:

e Deviation type: Score, Average

e RNN Type: GRU, LSTM

e RNN Hidden size: 10 - 1000, log-scale

e RNN Layers: 1-5

e Linear Layers: 1 -5

e Linear Nodes: 10 - 1000, log-scale

e N2M Learning Rate: 1le-6 - 0.1, log-scale
e N2P Learning Rate: le-6 - 0.1, log-scale
e Random Seed: 0 - 10

e Batch Size: 10 - 60

e Dropout: 0 -1

Since two metrics evaluated the N2MP approach simultaneously, it was dif-
ficult to evaluate the best performing models during training. Therefore, the
scores were saved instead of the models. After training, the best performing
models were retrained with the same parameters. Even though the parameters
are the same, the results could be different after retraining. This is a result of the
non deterministic parts RNNs in the pytorch library [8]. The best performing
models were at the score frontier of the two dimensional metrics plot. The score
frontier is defined by the coordinates that do not have better results in both
dimensions. Three models for each configuration was selected for retraining. All
of these models were above -1 in R? score. One model was selected for its R?
score on the prediction task, one for its accuracy on the pianist classification
task and one for both. The models saved models were tested on the test set of
the MLPF dataset.
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4.3.4 Notes-to-Pianists (N2P)

For the N2P approach, the architecture of the RNN models were similar to
the N2M models. As Figure 15 shows, only a softmax layer was added to the
model. In addition, the size of the output vector was changed to 11, to reflect
the output of the recognition task.
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Dropout Layer Model
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Fully Connected Linear Layers

v

Softmax Layer
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N
[ One-hot encoded vector (11 pianists)

J

Figure 15: RNN Classifier Architecture (N2P)
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4.3.5 Kernel Density Estimation (KDE) - Reproducing

The model based on Kernel Denisty Estimation by Rafee et al. [24] was used
to compare the results of the RNN based models. The model captured the
distributions of the pianists’ low-level features. When classifying the pianist of
a set of notes, the KL-divergence between the known performer distributions
and the unknown pianist were calculated. The divergences of all features were
summed, either weighted or with equal weights. The unknown performer was
classified as the performer with the smallest summed divergence.

To test that the KDE model was correctly reproduced, it was tested in the
same way as the original paper: An 8-fold cross validation scheme. Rafee et al.
viewed the notes as independent data points. This approach resulted in folds
that contained notes at random placements throughout the piece.

Precision, recall and f1 score were used to measure the models’ performances.
Sklearns package was used to compute these scores [43]. The original paper of
Rafee et al. did not specify which method of averaging the classes was used
for the score functions [24]. The argument was needed in the case of multilabel
classifaction tasks. The scores in this thesis was calculated with the 'micro’ con-
figuration for the average parameter. This computation method calculated the
metrics globally. Confusion matrices were used to further explain the models’
performances.

A model with the same architecture as the reproduced model was optimized
using Optuna. The hyperparameters that were optimized are n samples and
bandwidth. Bandwidth defines the size of the kernel. N samples determines
the amount of values that the log-likelihood function will be computed for.
N samples was added as a tunable hyperparameter. The paper of Rafee et
al. [24] discussed the distributions, but did not state how many values they
used for the distributions. Since the parameter had to be added to create the
distributions, a wrongly chosen value could impact the results negatively. A
high value for n samples correspond to a more fitted distribution. In the case
of two configurations with the same score, the one with the smallest value for
n samples was chosen. This distribution was considered to be less fitted and
more appropriate for generalization.

Two sets of features were tested for the original and the optimized models.
Using all the features did not produce the best results in the original paper of
Rafee et al. [24]. The combination that performed the best was: IOI+DL+ND.
101 denotes Inter Onset Interval. DL is short for Dynamics Level, which cor-
responds to the Onset Velocity feature in this thesis. ND is short for Note
Duration, which is denoted Duration in this thesis. The other model used all
the features: OT+IOI+OTD+DL+ND. OT and OTD are short for Onset Time
and Offset Time Duration.
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4.4 MLPF Prediction Task

The MLPF prediction task was conducted by quantitatively testing different
models on the ground truth data of the MPLF dataset. The task is connected
to the first research question: what are the best methods for extracting MLPFs?
The MLPF data is divided into three sets. The training set consisted of 80%
of the data, 10% for validation and 10 % for testing. The evaluation metric for
the task was the coefficient of determination (R? score). The Adam optimizer
and Mean Square Error loss function were used for model training.

4.4.1 Input and Output

Since the MLPFs are based upon relationships between the notes, these rela-
tionships needed to be present in the input data. Therefore, this prediction task
used sequences of notes as input. This is in contrast to Rafee et al., who used
notes independently of their context [24]. To speed up the training process with
data batching, all the sequences needed to be of equal lengths. The shortest
sequence size in the MLPF dataset, 78, was used. Longer sequences are cut so
that only the last 78 notes are used for the input data. As discussed in subsec-
tion 2.2.2, the recurrent nature of RNN models will place higher importance on
the last input data. Therefore, the final notes of the segments were used. The
input data consisted of either the deviations from the average performance or
the deviations from the score.

The output was a vector with 25 values in the interval from -1 to 1. The three
conditional dimensions of the MLPF dataset, described in subsection 4.1.2, were
excluded from the multi-output prediction. These three dimensions comprised
of 81.6%, 91.5% and 97.1% nan values, respectively. The output data was
normalized from the Likert scale of 1-7 to a scale from -1 to 1. The normalized
scale was used to convey the duality of the MLPF dimensions, where 0 was
supposed to be the default value.

4.4.2 Models

The N2M and N2MP models was compared to the baseline models and hu-
mans. There were two baseline models to be tested. The first baseline model
predicted the central value (0 when using the normalized MLPF dataset, called
Center) for all inputs and dimensions. The second model predicted the average
of each MLPF dimension based on the samples in the training dataset (Average
Training). These models did not provide differences in style output and were
only meant as benchmarks for model and human performances. Each labeling
participant of the MLPF dataset contributed to the underlying data of the apex
ground truths. Even though the participants contributed to creating the apex
ground truths, they was also measured on how well their labels predicted the
derived ground truths. The RNN based models were trained for 100 epochs.
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4.5 Pianist Classification Task

The pianist classification task was conducted by evaluating the classification
accuracy of different models on the pianist dataset. This task is connected to
the second research question concerning pianist classification based on MLPFs.
As in the prediction task, the model’s input was sequences of subsequent notes.
The output was, in contrast, one-hot encoded vectors representing the eleven
pianists. The evaluated models include a baseline model, the reproduced KDE-,
N2P-, N2M2P- and N2MP models.

4.5.1 Input and Output

Chunking was used to create sequences of notes for input to the models. The
chunking consisted of a sliding window with a given offset and size that grouped
together individual notes. In this task, the window size was set to 78, corre-
sponding to the sequence size of the MLPF prediction task. The window offset
determines how far the window will be moved each time. This parameter was
used to increase the number of data sequences acquired from the same under-
lying sequence of data. If the window offset was set to the window size value,
there would be no overlap in the data sequences. The window offset was set to
10 to maximize the amount of data extracted while not having too similar se-
quences. The data obtained from chunking could not be divided into training-,
validation- and test sets. The overlap of sequences would lead to data leakage,
where the same notes would potentially be present in several sets. Therefore,
a performance was divided into non-overlapping segments before chunking was
conducted. The same ratio of sets was used as in the MLPF prediction task:
80% for training, 10% for validation and 10% for test. For the KDE models, the
training data was not chunked. This is because the model is based on creating
distributions for each pianist and computing the entropy of each unknown sam-
ple. Therefore, the known pianist distributions were calculated based on all the
notes in the training set. However, the validation and test sets were chunked to
test the models fairly.

4.5.2 Models

The N2M2P-, N2MP- and N2P models was compared to a baseline and the
reproduced KDE models. The baseline model predicted the pianist most repre-
sented in the training dataset. The first KDE model used the same parameter
configuration as in the original paper of Rafee et al. [24]. The hyperparameters
of the second KDE model were tuned using the performance of the validation
set.
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5 Results

This chapter presents the results of the models on each task and the results of
the data collection and processing. The reliability and data sizes for the MLPF
dataset are shown in section 5.4. Results of the alignment process are presented
in section 5.2. Reproducing of the Kernel Density Estimation (KDE) model is
presented in section 5.3. The results of each model on the MLPF prediction
task and the pianist classification task are shown in section 5.4 and section 5.5,
respectively.

5.1 Mid-Level Perceptual Features (MLPF) Dataset

The dataset consists of 1690 responses. Each response includes the labels for
28 dimensions. There are a total of 111 unique combinations of segments and
pianists. When this is divided into training-, validation- and test sets of 80%,
10% and 10%, the resulting sample sizes are 92, 11 and 12, respectively. Table 12
shows the number of labeled segments for each user. The users are ordered by
their amount of labels, in descending order. Two users were excluded from the
table because their user ID included their email addresses. These two users had
62 and 1 label, respectively.

Table 12: Amount of Labeled Segments for Each User in the MLPF Dataset

User | Labels User | Labels
1 115 90 59 User | Labels
2 115 0 53 73 15
3 115 121 51 93 15
4 114 120 45 95 14
109 70 116 39 7 13
97 70 84 28 103 12
70 70 96 27 87 11
101 70 100 22 85 10
113 70 102 22 6 10
28 70 104 21 108 7
71 70 110 20 107 4
86 70 117 20 91 1
114 70 78 19

Table 13 and Table 14 presents the two ICC methods for all the dimensions
of the MLPF dataset. The differences in amounts of labels shown in Table 12
are incompatible with ICC computation for all users. The four users with the
most labels produced a compatible set for the calculation of ICC. The columns
Lower Bound and Upper Bound corresponds to the lower and upper bound of
the 95% confidence intervals.
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Table 13: ICC(2.1) for Each Dimension of the MLPF Dataset

Category Extreme 1 Extreme 2 ICC(2.1) | Lower Bound | Upper Bound
(BeatT/”%‘;mpo) Stable Unstable 0.09 0.02 0.17
Articulation Long Short 0.17 0.08 0.27
Cushioned Solid 0.10 0.03 0.19
Saturated Sparse 0.39 0.3 0.5
Pedal Clean Blurred 0.28 0.17 0.4
Subtle Change Obvious Change 0.09 0.02 0.19
Even Colorful 0.14 0.06 0.23
Tone Rich Shallow 0.15 0.07 0.25
Bright Dark 0.35 0.24 0.47
Pure Dramatic 0.14 0.06 0.24
Intensity Soft Loud 0.25 0.16 0.35
(Tone, Contrast) Sophisticated Raw 0.25 0.13 0.37
Balanced Unbalanced 0.17 0.08 0.27
Large Dynamic Range | Small Dynamic Range 0.18 0.09 0.29
Fast Paced Slow Paced 0.32 0.22 0.42
. . Flowing Choppy 0.13 0.05 0.22
I\&E‘;ﬁi}?lig Swing Steady 0.18 0.1 0.28
M Flat Spacious 0.26 0.17 0.37
Harmonious Disproportioned 0.09 0.02 0.18
Emotion Optimistic Pessimistic 0.35 0.22 0.48
(Characteristic) High Energy Low Energy 0.24 0.15 0.35
Dominant Subdued 0.16 0.08 0.26
Mood Imaginative Honest 0.18 0.09 0.29
Ethereal Mundane 0.15 0.07 0.25
Interpretation Convincing Unsatisfactory 0.14 0.05 0.24
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Table 14: ICC(2,k) for Each Dimension of the MLPF Dataset

Category Extreme 1 Extreme 2 ICC(2,k) | Lower Bound | Upper Bound
(BeatT;HTlimpo) Stable Unstable 0.28 0.07 0.45
Articulation Long Short 0.45 0.27 0.6
Cushioned Solid 0.31 0.11 0.48
Saturated Sparse 0.72 0.63 0.8
Pedal Clean Blurred 0.61 0.45 0.73
Subtle Change Obvious Change 0.29 0.07 0.48
Even Colorful 0.39 0.19 0.55
Tone Rich Shallow 0.42 0.22 0.58
Bright Dark 0.69 0.56 0.78
Pure Dramatic 0.40 0.2 0.56
Intensity Soft Loud 0.57 0.43 0.69
(Tone/ Contrast) Sophisticated Raw 0.57 0.38 0.7
Balanced Unbalanced 0.45 0.27 0.59
Large Dynamic Range | Small Dynamic Range 0.48 0.27 0.63
Fast Paced Slow Paced 0.65 0.53 0.74
Music Making Flowing Choppy 0.37 0.17 0.53
(Musicality) Swing Stea.dy 0.47 0.3 0.61
Flat Spacious 0.59 0.45 0.7
Harmonious Disproportioned 0.29 0.08 0.46
Emotion Optimistic Pessimistic 0.69 0.53 0.79
(Characteristic) High Energy Low Energy 0.56 0.41 0.68
Dominant Subdued 0.44 0.26 0.59
Mood Imaginative Honest 0.47 0.28 0.62
Ethereal Mundane 0.42 0.23 0.58
Interpretation Convincing Unsatisfactory 0.39 0.18 0.55
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5.2 Processing

This section presents the statistics for the processing of audio data. Subsec-
tion 5.2.1 shows the frequencies of alignment statuses for all performers in the
pianist dataset. Matched notes were used to calculate the average notes. The
amount of notes that were used for this computation is shown in subsection 5.2.2.

5.2.1 Alignment

Figure 16 shows an excerpt of the alignment result of Abdelmoula and the score.
The result was visualized using the alignment website of Nakamura et al. [15].
The yellow color indicates error regions. Blue notes correspond to added notes
by the performer. Pink notes correspond to missing notes. Missing notes are in
the score but are not played by the performer.
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Figure 16: Alignment of Abdelmoula and Score

The results of the alignment process are shown in Table 15.

Table 15: Aligned Notes for Pianist Dataset

Performer | Matched | Added | Erroneous | Missing
Score 20644 1504 109 314
Johannson 18931 2249 341 1365
Kotys 18281 2659 495 1965
Abdelmoula 18240 2697 483 1952
Guang 15989 2439 448 4342
Kim 15834 2530 429 4371
Zuber 15826 2576 479 4484
DeTurck 15763 2571 398 4514
Rozanski 15742 2658 374 4467
Krasnitsky 15736 2997 392 4545
Savitski 15733 2515 420 4534
Mordvinov 15646 2753 470 4569
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5.2.2 Calculating the Average Performance

The process of calculating the average performance was conducted for all notes
of the MLPF and pianist datasets. The results are shown in Table 16 and
Table 17, respectively.

Table 16: Number of Notes per Average Note for the MLPF Dataset

Notes Per Average | Frequency | Share
6 2109 93.4%
5 91 4.0%
4 16 0.7%
3 8 0.4%
2 7 0.3%
1 26 1.2%

Table 17: Number of Notes per Average Note for the Pianist Dataset

Notes Per Average | Frequency | Share
11 13794 71.1%
10 1452 7.5%
9 366 1.9%
8 171 0.9%
7 111 0.6%
6 56 0.3%
5 39 0.2%
4 38 0.2%
3 2544 13.1%
2 209 1.1%
1 623 3.2%
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5.3 Reproduced Kernel Density Estimation (KDE)

This section presents the results of the reproduced Kernel Density Estimation
models on the original classification task of Rafee et al. [24], using k-fold testing.
The results for both the original parameters and optimized parameters are pro-
vided in subsection 5.3.1 and subsection 5.3.2 respectively. Confusion matrices
for the models are presented in the appendix (A2.1).

5.3.1 Original Parameters

Table 18 shows the scores of the different feature combinations with original
parameters.

Table 18: Scores for KDE models with Original Parameters

Model Precision | Recall | F-Score
All features 0.444 0.444 0.444
Selected 0.458 0.458 0.458

Figure 17 presents the model of KDE with only the selected features. The
figure shows that all the pianists have been classified as Abdelmoula but to
varying degrees. Each of the eight folds included one sample for each of the
nine pianists. Abdelmoula was predicted to be the unknown pianist 35 times.
The total number of predictions was 72.
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Figure 17: Original KDE with Selected Features

Figure 18 shows the onset time distributions of the correct classification of
Abdelmoula. The test distribution of Abdelmoula is computed from the first
fold and is shown in light green. Abdelmoula’s training distribution is computed
from the last seven folds and is shown in dark green. The right-hand side of the
figure shows the known pianist distributions. Next to the pianists’ names are the
computed entropies between the known pianist distributions and the unknown
pianist sample. In this case, all of the computed entropies were infinite.

93



oo A/\ R
N T

| 01| — |
1T ——
o

-300 -200 -100 0 100 200 300

Figure 18: Onset Time Distributions, the Unknown Pianist Sample is from the
1st fold of Abdelmoula

5.3.2 Optimized Parameters

The optimized parameters for each of the individual feature dimensions are
shown in Table 19. The KDE method can perfectly predict all the pianists by
only using the onset time feature.

Table 19: Optimized Parameters for Single Feature Dimensions

Feature Bandwidth | N samples | Precision | Recall | F1

Time Onset 33.96 5 1.00 1.00 | 1.00
Velocity Onset 1.53 76 0.96 0.96 | 0.96
Duration 0.29 29 0.86 0.86 | 0.86

Inter Onset Interval 0.05 315 0.50 0.50 0.50
Offset Time Duration 0.17 61 0.71 0.71 | 0.71

The distributions and entropies for each feature dimension are shown in
Figure 19, Figure 20, Figure 21, Figure 22 and Figure 23. These are examples
from the first fold, where Abdelmoula is the unknown pianist. Abdelmoula is
correctly classified for all the feature dimensions except offset time duration.
In the case of offset time duration, the divergence is the smallest between the
sample distribution and Kranitskiy’s distribution.
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Figure 19: Pianist Distributions for Onset Time
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Figure 20: Pianist Distributions for Onset Velocity
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Figure 21: Pianist Distributions for Duration
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Figure 23: Pianist Distributions for Offset Time Duration

Table 20 shows the scores for the KDE model with optimized parameters on
the k-fold classification task.

Table 20: Scores for KDE models with Optimized Parameters

Model Precision | Recall | F1
All Features 0.67 0.67 | 0.67
Selected 0.42 0.42 0.42

96



5.4 MULPF Prediction Task

R2 scores measure the performance on the MLPF prediction task. These are
presented in tables, one for each method. First, human and baseline scores are
shown for all-, training-, validation- and testing data. Next, the method scores
are shown for training-, validation- and test data. Finally, the relationships
between ground truth labels and the predicted labels are added for the best
performing models of each category. These relationships are visualized through
scatterplots and represented by Pearson correlation coefficients. The model
parameters for the best performing models are presented in the appendix (A3).

5.4.1 Baseline

The R?-scores for the baseline models are displayed in Table 21. Training Aver-
age corresponds to the method of predicting the average of the training samples
for all dimensions. The method of always choosing the center value (0 for the
normalized MLPF dataset) is denoted as Center. The methods are ordered by
their test score (Test column in Table 21) in descending order.

Table 21: Baseline Scores

Method All | Training | Validation | Test
Average Training | 0.00 0.00 -0.09 -0.13
Center -0.17 -0.15 —-0.40 -0.67

5.4.2 Humans

The R2%-scores for humans participating in the labeling of piano segments are
shown in Table 22. In descending order, the participants are sorted by their
score on the whole dataset (All).

Table 22: Human R? Scores

Participant | All | Training | Validation | Test
109 0.12 0.06 -0.98 0.18
86 0.03 0.04 -3.54 -0.39
116 -0.11 -0.15 —0.66 -1.86
114 -0.17 -0.22 -5.05 -1.79
121 —0.18 -0.11 -5.35 -14.07
113 -0.21 -0.10 —0.62 -1.71
93 -0.21 -0.62 -41.00 -9.43
120 -0.25 -0.20 —0.85 -8.08

3 —-0.32 -0.30 —0.76 -0.47
90 —0.44 -0.39 -3.21 -1.81
71 -0.49 -0.52 -1.24 —4.69
28 —-0.51 -0.34 —4.16 —47.96
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78 -0.68 —0.74 -11.25 -8.20
97 -0.71 -0.61 -8.59 -1.11
0 -0.81 -0.99 -0.44 —-0.98
4 -0.90 -0.83 -3.14 —1.46
70 -1.08 -1.00 —6.03 -1.25
1 ~1.55 —1.48 -2.05 -2.89
2 -1.60 -1.53 -2.50 -2.97
73 -1.98 -2.33 —374.85 -6.67

Table 23 shows the different boundary values for confidence intervals at dif-
ferent confidence levels. The confidence intervals are computed using Student’s
T-distribution because of the small sample size.

Table 23: Confidence Intervals for Averaged Human R? Scores on All Data

Confidence Level | Average | STD | Upper | Lower
90% -0.603 | 0.575 | —0.381 | —0.825
95% -0.603 | 0.575 | -0.334 | —0.872
99% -0.603 | 0.575 | —0.235 | —0.971

5.4.3 Notes-to-MLPFs (N2M)

The R2-scores for models with the N2M-architecture are shown in Table 24.
The Save Time column denoted when the model was saved. Int is short for
Intermediate and corresponds to the model which performed the best on the
validation data during training. FEnd denotes the model saved after the last
epoch of the training loop. The methods are ordered by test score, in descending
order

Table 24: N2M Scores

RNN | Deviation | Save Time | Training | Validation | Test
GRU Average End 0.372 0.163 -0.007
LSTM | Average Int 0.285 0.262 -0.009
LSTM | Average End 0.461 0.209 -0.073
GRU Average Int 0.418 0.251 -0.202
GRU Score End 0.259 0.048 -0.307
LSTM Score Int 0.257 0.073 -0.350
GRU Score Int 0.261 0.104 -0.399
LSTM Score End 0.403 -0.015 -0.401

Table 25, Table 26 and Table 27 shows the average scores for each of the
configurations for different confidence intervals. The confidence intervals are
computed using Student’s T-distribution because of the small sample size.
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Table 25: Average Scores for N2M Models with 90% Confidence Interval

Configuration | Sample size | Average | STD | Lower | Upper
Average 4 -0.073 | 0.092 | -0.180 | 0.035
LSTM 4 -0.208 | 0.196 | —0.439 | 0.023
GRU 4 -0.229 | 0.168 | —0.427 | —0.031
Score 4 —0.364 | 0.045 | -0.417 | —0.311

Table 26: Average Scores for N2M Models with 95% Confidence Interval

Configuration | Sample size | Average | STD | Lower | Upper
Average 4 -0.073 | 0.092 | -0.218 | 0.073
LSTM 4 -0.208 | 0.196 | —0.520 | 0.104
GRU 4 -0.229 | 0.168 | —0.496 | 0.039
Score 4 -0.364 | 0.045 | —0.436 | —0.293

Table 27: Average Scores for N2M Models with 99% Confidence Interval

Configuration | Sample size | Average | STD | Lower | Upper
Average 4 -0.073 | 0.092 | —0.340 | 0.195
LSTM 4 -0.208 | 0.196 | —0.781 | 0.365
GRU 4 -0.229 | 0.168 | -0.720 | 0.262
Score 4 -0.364 | 0.045 | —0.496 | —0.233

5.4.4 Notes-to-MLPFs-and-Pianists (N2MP)

Table 28 shows the number of trials that passed the threshold of having an R2
score greater than -1. The results are listed by the different configurations of
the models: all combinations of RNN type (GRU, LSTM) and deviation type
(deviations from the average performance, deviations from the score).

Table 28: Training Results for N2MP

Model | Deviation | R? > —1 | Completed Trials | Percentage
GRU | Average 137 353 38.8%
GRU Score 142 306 46.4%
LSTM | Average 74 297 24.9%
LSTM Score 175 313 55.9%

Figure 24, Figure 25, Figure 26 and Figure 27 show the frontiers of the
N2MP models for each of the configurations. The selected models are indicated
by yellow, orange and red data points. Each color corresponds to different
reasons for selecting the model configuration. First, yellow entails that the
model is chosen for its R2 score on the MLPF prediction task. Next, orange
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indicates that the model is chosen because of its accuracy score on the pianist
classification task. Finally, red entails that the model is chosen because of
relatively good scores for both the MLPF prediction and pianist classification
tasks. The scores of the models on the validation sets after training are shown
next to the data points.
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Figure 24: Training Results for GRU with Deviations from the Average
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Figure 25: Training Results for GRU with Deviations from the Score
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Figure 26: Training Results for LSTM with Deviations from the Average
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Figure 27: Training Results for LSTM with Deviations from the Score

The R2-scores of the retrained models with the N2MP-architecture are shown
in Table 29. The Selection column displays the reason for selecting the model
for retraining. R2 corresponds to a model selected from the frontier based on
its R2 score on the validation set of the MLPF dataset. Accuracy corresponds
to a model that was selected based on its accuracy score on the validation
set of the pianist dataset. Combination denotes a model selected because of
good scores for both tasks. The Save column displays the reason for saving the
model. R? corresponds to the model that performed the best on validation data
of the prediction task for that given RNN type, deviation and trial. Accuracy
corresponds to the model that performed the best on the validation data of the
classification task for that given RNN type, deviation and trial. End denotes
the model saved after the last epoch of the training loop. The methods are
ordered by test score, in descending order.
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Table 29: N2MP Scores

RNN | Deviation Selection Save Training | Validation | Test
LSTM | Average Accuracy R? 0.385 0.131 -0.014
GRU Average Accuracy End 0.355 0.172 —0.042
LSTM | Average Accuracy Accuracy 0.313 -0.112 —0.052
GRU Average Accuracy R? 0.325 0.247 —0.054
GRU Average | Combination End 0.322 0.086 -0.064
GRU Average | Combination | Accuracy 0.322 0.086 —0.064
GRU Average | Combination R? 0.316 0.091 -0.070
GRU Average Accuracy Accuracy 0.324 0.084 —0.081
LSTM | Average Accuracy End 0.394 -0.076 -0.166
LSTM | Average | Combination End 0.552 -0.025 -0.293
LSTM | Average | Combination | Accuracy 0.541 0.062 -0.309
LSTM | Average | Combination R? 0.465 0.176 -0.323
GRU Score Accuracy R? 0.104 —0.142 -0.324
GRU Score R? R? -0.013 -0.165 —-0.476
GRU Score Accuracy Accuracy 0.658 —0.352 —0.592
LSTM Score Combination R? 0.265 -0.275 —-0.641
GRU Score R? Accuracy 0.191 —0.454 —0.714
LSTM Score Combination End 0.341 -0.430 —-0.820
LSTM Score Combination | Accuracy 0.341 —0.430 —0.820
GRU Score Accuracy End 0.668 -0.294 -0.833
GRU Score R? End 0.274 -0.321 —0.855
LSTM | Average R? R? —0.034 —-0.179 -1.288
LSTM | Average R? End 0.039 -0.956 —1.488
GRU Score Combination End 0.471 —0.148 -1.509
LSTM Score Accuracy Accuracy 0.279 -0.241 -1.534
GRU Score Combination R? 0.477 -0.036 —-1.641
GRU Score Combination | Accuracy 0.479 —0.082 —-1.652
LSTM | Average R? Accuracy | —0.119 -0.434 -1.707
LSTM Score Accuracy End 0.340 -0.055 -1.903
LSTM Score Accuracy R? 0.340 —0.055 -1.903
LSTM Score R? End 0.268 -0.323 -2.320
LSTM Score R? Accuracy 0.251 -0.315 —2.596
LSTM Score R? R? 0.141 -0.123 -2.616
GRU Average R? End 0.505 -0.211 -4.550
GRU | Average R? R? 0.402 0.058 -5.341
GRU Average R? Accuracy 0.459 —0.057 -5.730

The best models presented in Table 29 are used to calculate confidence inter-
vals. The threshold set for a well-performing model is an R2 score larger than
-1. All combinations of RNNs and deviations are represented with six models,
except the combination of LSTM and Score. For the combination of LSTM and
Score, three models perform better than the threshold. Table 27, Table 28 and

62




Table 29 present the average R2 scores and confidence intervals, with confidence
levels of 90%, 95% and 99%, respectively.

Table 30: Average R? Scores for Best N2MP Models with 90% Confidence

Interval
RNN | Deviation | Sample size | Average | STD | Lower | Upper
GRU Average 6 -0.062 | 0.013 | -0.073 | —0.052
LSTM | Average 6 -0.193 | 0.137 | —0.305 | —0.080
GRU Score 6 -0.632 | 0.208 | —0.804 | —0.461
LSTM Score 3 -0.760 | 0.103 | —0.934 | —0.587
Table 31: Average R? Scores for Best N2MP Models with 95% Confidence
Interval
RNN | Deviation | Sample size | Average | STD | Lower | Upper
GRU Average 6 -0.062 | 0.013 | —0.076 | —0.049
LSTM | Average 6 -0.193 | 0.137 | —0.336 | —0.049
GRU Score 6 -0.632 | 0.208 | —0.851 | —0.414
LSTM Score 3 -0.760 | 0.103 | —1.016 | —0.505
Table 32: Average R? Scores for Best N2MP Models with 99% Confidence
Interval
RNN | Deviation | Sample size | Average | STD | Lower | Upper
GRU Average 6 -0.062 | 0.013 | —0.084 | —0.041
LSTM | Average 6 -0.193 | 0.137 | —0.418 | 0.032
GRU Score 6 -0.632 | 0.208 | —0.976 | —0.289
LSTM Score 3 -0.760 | 0.103 | -1.350 | -0.171
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5.5 Pianist Classification Task

This section presents the performance of each model to classify pianists, which is
measured by accuracy. The accuracy scores are presented in tables, one for each
method. In addition, confidence intervals are computed for the RNN models.
Confusion matrices for the models are presented in the appendix (A2.2). The
model parameters for the best performing models are presented in the appendix
(A3).

5.5.1 Baseline

Johannson was the pianist with the highest representation in the training dataset.
His shares of the training-, validation- and test sets are presented in Table 33.

Table 33: Baseline Scores

Method Training | Validation | Test
Highest Representation | 10.3% 10.9% 10.9%

5.5.2 KDE

The accuracy scores of the KDE models are presented in Table 34. Figure 28
and Figure 29 show the confusion matrices on the test data for the KDE models
with all features for original and optimized parameters, respectively. These
figures show that both versions can distinguish most of the performers. The
samples of the pianists Abdelmoula, Kotys, Johannson, Rozanski, and DeTurck
are perfectly classified for both models. There are significant decreases in scores
when only using the selected features described in subsection 4.3.5.

Table 34: Accuracy Scores for KDE methods

Model Features | Validation | Test

Original All 72.9% 73.0%
Original | Selected 24.0% 27.0%
Optimized All 76.2% 74.5%

Optimized | Selected 14.5% 12.4%
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Figure 28: Original KDE with All Features

65

1.0

0.8

0.6

-04

-0.2

-0.0



Abdelmoula 0 0 0 0 0 0 0 0 0
Kotys - 0 0 0 0 0 0 0 0 0
Guang - 0 0 0.36 0 0 0 0 n 0 0
Johannson - 0 0 0 0 0 0
B Rozanski- 0 0 0 0 0 0
c
©
o
- Zuber - 0 0 0 0.36 0 0 0.11
O
(]
fud
o
O DeTurck - 0 0 0 0 0 0
Krasnitsky - 0 0 0 0 0.55 0 0 0.45 0 0 0
Mordvinov - 0 0 0.061 0 0 0 0 0
Savitski - 0 0 0 0 0 0 0 0
Kim - 0 0 0 0 0 0.24 0 0.68 0 0 0.076
! ! ! ! ' !
N o O L > >3 NS o &
S ,{_od & Q&O 4?04, A5 é\\)(c (_\\&,;d 0 & &
& @ S J 3 S &
& & <€ & o

Predicted Pianist

Figure 29: Optimized KDE with All Features

5.5.3 Notes to Pianists (N2P)

1.0

0.8

0.6

-04

-0.2

-0.0

The accuracy scores of the N2P methods are presented in Table 35. The methods
are ordered by their score on the test data (Test), in descending order.

Table 35: N2P Results

RNN | Deviation Time Train | Validation | Test
GRU | Average End 99.3% 92.3% 82.8%
GRU | Average | Intermediate | 99.5% 92.7% 81.3%
LSTM | Average | Intermediate | 96.5% 91.7% 79.5%
LSTM | Average End 99.5% 90.9% 77.4%
GRU Score Intermediate | 91.6% 81.3% 71.2%
GRU Score End 99.4% 79.4% 69.8%
LSTM Score End 96.7% 81.8% 68.1%
LSTM Score Intermediate | 96.7% 81.8% 68.1%
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Table 36: Confidence Intervals for the 4 Best N2P Models (Deviation: Average)

Confidence Level | Average | STD | Lower | Upper
90% 0.802 0.023 | 0.775 | 0.830
95% 0.802 0.023 | 0.765 | 0.840
99% 0.802 0.023 | 0.734 | 0.871

Table 37: Confidence Intervals for the 4 Worst N2P Models (Deviation: Score)

Confidence Level | Average | STD | Lower | Upper
90% 0.693 0.015 | 0.675 | 0.710
95% 0.693 0.015 | 0.669 | 0.717
99% 0.693 0.015 | 0.649 | 0.737

5.5.4 Notes-to-MLPFs-to-Pianists (N2M2P)

The accuracy scores of the N2M2P models are presented in Table 38. The
models are ordered by the average placement (Avg No.) in the prediction task
(R? No.) and in the classification task (Acc No.).

Table 38: N2M2P Results

RNN | Deviation | N2M | M2P R? Acc | R? No. | Acc No. | Avg No.
GRU Avg End | Int | -0.007 | 63.7% 1 1 1
GRU Avg End | End | -0.007 | 63.3% 1 2 1.5
LSTM Avg End | End | -0.073 | 42.2% 3 3 3
LSTM Avg End Int —0.073 | 40.6% 3 4 3.5
GRU Avg Int Int -0.202 | 38.9% 4 5 4.5
GRU Avg Int End | -0.202 | 37.1% 4 6 5
LSTM Avg Int End | -0.009 | 31.4% 2 8 5
GRU Score Int Int | —0.399 | 31.8% 7 7 7
LSTM Avg Int Int -0.009 | 29.8% 2 12 7
GRU Score End | Int | -0.307 | 30.6% 5 10 7.5
GRU Score Int End | -0.399 | 31.1% 7 9 8
GRU Score End | End | -0.307 | 29.3% 5 13 9
LSTM Score End Int -0.401 | 30.1% 8 11 9.5
LSTM Score Int Int | —0.350 | 20.2% 6 15 10.5
LSTM Score End | End | -0.401 | 25.6% 8 14 11
LSTM Score Int End | -0.350 | 20.0% 6 16 11

Figure 30 shows the correlation between the R? scores on the prediction task
and the accuracy score on the classification task. The correlation between the
scores is 0.67.
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The 4 best models of the N2M2P task, based on the average placement, is
used to compute confidence intervals. Confidence intervals for multiple confi-
dence levels are displayed in Table 39.

Table 39: Confidence Intervals for the 4 Best N2M2P Models

Confidence Level | Acc Avg | Acc Lower | Acc Upper | R2 Avg | R2 Lower | R2 Upper
90% 0.525 0.374 0.675 -0.040 —0.084 0.005
95% 0.525 0.321 0.728 -0.040 -0.100 0.020
99% 0.525 0.151 0.898 —0.040 -0.150 0.071

5.5.5 Notes to MLPFs and Pianists (N2MP)

Selection of N2MP models for retraining is described in subsection 5.4.4. The
accuracy scores of the retrained N2MP models are presented in Table 40. The
models are ordered by the average placement (Avg No.) in the prediction task
(R? No.) and in the classification task (Acc No.).

Table 40: N2MP Results

RNN | Selection | Deviation | Save | R? Acc | R? No. | Acc No. | Avg No.
LSTM Comb Average R? | -0.323 | 75.3% 12 6 9
LSTM | Comb Average | Acc | —0.309 | 75.3% 11 7 9
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GRU Acc Average | End | —0.042 | 67.8% 2 16 9
LSTM Comb Average | End | —0.293 | 72.9% 10 9 9.5
GRU Acc Average | Acc | —0.081 | 70.2% 8 12 10
LSTM R? Average | R? | -1.288 | 79.2% 22 3 12.5
GRU R? Score R? | —0.476 | 70.8% 14 11 12.5
LSTM Comb Score R? | 0.641 | 72.7% 16 10 13
LSTM R? Average | End | —1.488 | 77.0% 23 4 13.5
GRU Acc Average R? | -0.054 | 64.6% 4 24 14
LSTM R? Average | Acc | -1.707 | 83.1% 28 1 14.5
LSTM Acc Average | Acc | —0.052 | 62.0% 3 27 15
GRU R? Score Acc | -0.714 | 69.1% 17 14 15.5
GRU Acc Score Acc | -0.592 | 65.2% 15 20 17.5
LSTM Acc Average R? ] -0.014 | 55.6% 1 34 17.5
GRU R? Score End | -0.855 | 68.0% 21 15 18
GRU Comb Average End | -0.064 | 60.5% 5 31 18
LSTM Comb Score End | -0.820 | 65.2% 18 19 18.5
GRU R? Average | Acc | -5.730 | 80.6% 36 2 19
GRU Comb Average | Acc | —0.064 | 60.5% 6 32 19
GRU R? Average | End | —4.550 | 76.4% 34 5 19.5
LSTM Comb Score Acc | -0.820 | 65.2% 19 21 20
GRU Comb Average R? | -0.070 | 56.6% 7 33 20
GRU R? Average | R? | -5.341 | 74.2% 35 8 21.5
GRU Comb Score Acc | -1.652 | 67.1% 27 17 22
LSTM R? Score Acc | —2.596 | 69.5% 32 13 22.5
GRU Acc Score End | —0.833 | 63.2% 20 25 22.5
LSTM Acc Average | End | —0.166 | 52.3% 9 36 22.5
GRU Comb Score End | —-1.509 | 64.9% 24 22 23
GRU Acc Score R? | 0.324 | 55.3% 13 35 24
LSTM R? Score End | —2.320 | 66.9% 31 18 24.5
LSTM Acc Score Acc | -1.534 | 62.4% 25 26 25.5
LSTM R? Score R? | 2616 | 64.7% 33 23 28
GRU Comb Score R? | 1.641 | 61.0% 26 30 28
LSTM Acc Score End | -1.903 | 61.2% 29 28 28.5
LSTM Acc Score R? | -1.903 | 61.2% 30 29 29.5

scores is -0.45.

Figure 31 shows the correlation between the R? scores on the prediction task
and the accuracy score on the classification task. The correlation between the
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Table 41: Confidence Intervals for the 4 Best N2MP Models

Confidence Level | Acc Avg | Acc Lower | Acc Upper | R2 Avg | R2 Lower | R2 Upper
90% 0.728 0.687 0.770 -0.242 -0.399 -0.085
95% 0.728 0.672 0.785 -0.242 —-0.455 —0.029
99% 0.728 0.625 0.832 -0.242 -0.632 0.148
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6 Discussion

This chapter presents discussions of model performance on each task, as well
as data reliability and processing. The Mid-Level Perceptual Features (MLPF)
dataset is analyzed in section 6.1 and is considered to be unreliable. Section 6.2
discusses the processing methods that were used. The ground truth calculation
method, based on Kernel Density Estimation (KDE), is analyzed. The results
of reproducing the KDE model is discussed in section 6.3. The next sections
include the performance of the models on each task, and relate it to the researtch
questions. Section 6.1 and section 6.5 are about the MLPF prediction task and
pianist recognition task, respectively.

6.1 Mid-Level Perceptual Features (MLPF) Dataset

The dimensions of the MLPF dataset had poor reliability, even when the labels
were averaged. The ICCs of the dimensions in Table 13 show that the labels
were not reliable on their own. The largest ICC in the case of single score
(ICC(2,1)) was 0.35, for the Bright/Dark- and Optimistic/Pessimistic dimen-
sions. However, the lower bounds of the 95% confidence intervals were 0.24 and
0.22 respectively. These values were not close to the score of 0.5, which Koo
and Li used as the dividing value for poor and moderate reliabilty [44].

In the case of the average measure (ICC(2,k)), most of the MLPFs were
still considered to have poor reliability. According to Koo and Li [44], none
of the dimensions were considered to have good reliability. This is achieved
when the lower boundary of the 95% confidence interval is between 0.75 and
0.9. Only 3 of the 25 dimensions were considered moderately reliable: Sat-
urated/sparse pedaling, bright/dark tone and optimistic/pessimistic emotion.
The rest were considered to have poor reliability. The least reliable dimensions
regarding average measure were stable/unstable beat, subtle/obvious change of
pedal and harmonious/disproportioned music making. These dimensions had
lower bounds of 0.07, 0.07 and 0.08 respectively.

The results from the ICC analysis indicated that it would be difficult to
train a model to predict the MLPF features. First, the data must have been
aggregated to be considered more reliable. This reduced the amount of training
data from the total amount of responses to the amount of distinct musical
segments. In the case of the MLPF dataset, the amount of data samples was
then reduced from 1690 to 115. This amount was too small to expect good
performances by the models. Secondly, most of the dimensions werre considered
to have poor reliability. Even though some of the dimensions would be possible
to predict, the unreliable dimensions could decrease the overall score of all the
models on the prediction task.

The MLPF dataset was not completed at the time of writing. The reliability
of the dataset should therefore be re-evaluated when all the data is collected.
Table 12 shows that only a three users have labelled the whole dataset. This
was an issue, since it made it difficult to compute the ICC of the whole dataset.
Conclusions based on the reliability of four experts cannot be given too much
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weight. However, the results indicated that the MLPFs were subjective in na-
ture. This finding coincides with the findings of Aljanaki and Soleymani [1].

6.2 Processing

The processing of piano performances was conducted in several steps. Each of
the steps increased the complexity and could potentially have introduced errors.
The alignment process of notes was necessary for individual performances to be
compared to each other, when the data was in midi format. Table 15 shows
significant differences in the amount of aligned notes. The notes of the score
were correctly aligned 91.5% of the time. This was suprisingly low since the score
is aligned with itself. Johannson was the performer with most aligned notes,
82.7% of his notes were correctly aligned. Mordvinov had the least amount of
correctly aligned notes, with 66.8%.

The computation of deviations from the average was dependent on a signif-
icant amount of performances. Because of alignment errors, each average note
was computed based on a subset of the performances. Table 17 and Table 16
shows the amount of notes that were used for each average note, for the pianist
and MLPF datasets. In the MLPF case, all performers were used to compute
the average for 93.4% of the notes. For the pianist dataset, this was only true
in 71.1% of the cases. When the average notes were computed based on only a
few pianists, they were less reliable. In these cases, deviations from the score
might have been a better option.

The apex method for aggregating labels was affected by the configuration
of the kernel density estimation. This included the bandwidth parameter, the
kernel and the amount of samples to compute the distribution. The small size
of the MLPF dataset made it possible to go through the whole dataset and eval-
uate the appropriateness of the method. The default settings were considered
to work well for the given task. In the case of mean and median, there were no
parameters to configure. The choice of using mean or median would not intro-
duce any bias. However, the methods were not chosen because of their inability
to model the collective opinion of the domain experts. Figure 12 illustrates this
point.
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6.3 Reproduced Kernel Density Estimation (KDE) Model

This section discusses the reproducing of the KDE method on the original k-
fold pianist recognition task. Original and optimized parameters are analyzed
in subsection 6.3.1 and subsection 6.3.2 respectively.

6.3.1 Original parameters

The original version of the KDE method did not perform as well as in the
original paper. The score of the reproduced model (F1 score: 0.458) was signif-
icantly lower than the score of the orginal method (F1 score: 0.807)[24]. The
reproduced model showed a clear bias towards classifying the unknown pianist
as Abdelmoula. He was predicted to be the unknown pianist in 35 of 72 cases,
even though the nine pianists were equally represented in the test- and training
data. Figure 18 shows the reason for the bias. Even though the known pianist
distribution of Abdelmoula closely resembled the unknown pianist distribution
of himself, the computed divergence was infinite. The KDE model predicted
the pianist to be the one with the minimal summed divergence. As in the case
of Figure 18, all of the pianists had have infinite summed entropies. This was
regardless of the entropies of the other dimensions or the weighting between
the dimensions. Since all the summed entropies were equal, the minimum was
considered to be the first value. Abdelmoula was therefore predicted to be the
correct pianist in all the cases where the divergence was infinite in at least one
feature dimension for each pianist.

A computed divergence of infinite entailed that the distributions were too
dissimilar to compare. The test- and training distributions of Abdelmoula in
Figure 18 seemed comparable, even though the divergence was infinte. This
indicated that the chosen bandwidth was too small. This did not mean that
the chosen parameter was too small in the original paper. Even though the
input data was the same, the feature scaling might have differed between the
two versions of the method. The reason for this difference was searched for, but
without any results. Therefore, the optimized version of the reproduced KDE
method was considered to be a better candidate for a fair comparison.

6.3.2 Optimized Parameters

The paper of Rafee et al. [24] stated that their values for bandwidths was found
by optimization, but the process was not described. In the reproduced case, the
training folds were used as training data and the test fold was used to tune the
parameters. This approach regarded the test data as validation data, and was
not a good measure of the method’s ability to generalize. However, it was seen
as the most appropriate approach when comparing with the original method.
All of the scores for single input features were greater than what was stated
by Rafee et al. [24] in the original paper. The most notable difference was the
method’s ability to perfectly predict all the pianists based on only the onset
time feature. Figure 18 shows the known pianist distributions from fold 2 to
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8 (dark green for Abdelmoula and blue for other pianists), and the test distri-
bution of Abdelmoula from the 1st fold (light green). The distributions were
quite different, which made sense. All the pianists played the notes at their
own tempo. The onset time was computed by subtracting the pianist’s onset
time from the onset time of the average performer. That means that the fea-
ture was centered, but not standardized. This had the effect that later notes
had accumulated larger deviations to the average notes, which made it easier
to predict pianists based on its distributions. The predictive power of the KDE
method was also enhanced by randomly dividing notes into folds, as if the notes
were independent of each other. The accumulated deviations of onset times
was distributed equally to all the folds, which means that the test distributions
would be similar to the training distribution. This was not the case for the
other features. Note duration, velocity, inter onset interval or offset time du-
ration did not accumulate like onset time. This can be observed by studying
the distribution differences between onset time (Figure 19) and the rest of the
features (Figure 20, Figure 21, Figure 22, Figure 23).
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6.4 MLPF Prediction Task

The performance of the machine learning models on the prediction task were
poor, even though they generally have higher R? scores than the baseline mod-
els and domain experts. As can be observed in section 4.4, all of the machine
learning models had negative R? scores on the test set of the MLPF dataset.
This is typically not observed in prediction tasks, where simple models should
easily fit the data better than the average of that data. However, there were
some challenges with the given MLPF prediction task that made it more diffi-
cult: First, the MLPF data was unreliable. As mentioned in section 6.1, only 3
of the 25 dimensions were considered to be moderately reliable. The rest were
considered to have poor reliability. Secondly, the MLPF dataset was small. The
aggregated MLPF data consisted of 115 samples, which was split into training-,
validation- and test data. This was to small to produce generalizable models
and to be able to test them fairly. Thirdly, the input data consisted of sets
of subsequent notes. This datatype is difficult to work with, where both note
alignment- and feature extraction tasks introduce challenges. Finally, the rela-
tionship between the input data and the output data is complex. As stated in
section 1.1, mid-level features are difficult to define clearly. Complex relation-
ships entail complex models with large amounts of parameters. Larger amounts
of parameters requires more data for training.

6.4.1 Baseline

The scores of the Center method (Table 21) shows that the data samples in
the test and validation sets were less centralized than the data in the training
set. This means that validation and test sets consisted of more distinct styles
on average than the training set. Training Average had higher scores for all
subsets, in relation to the Center basline model. However, both baseline models
had mostly negative R? scores.

6.4.2 Human

The average human domain experts had lower R? score than the baseline models
on the MLPF dataset. Four of the human experts were performing equally or
better than the Center method on all the data. This was observed by comparing
the R? scores of the humans in Table 22 to the R? scores for the baseline models
in Table 21. No humans scored better than the Training Average method on
the validation data, and only one human scored better than Training Average
on the test data. The fact that the baseline methods were simple in nature
and disregarded the input values when making predictions, while having better
scores than the domain experts, was not promising for the task. The R? scores
for the experts were also low. Only the top two experts (109, 86) were able to
achieve positive scores for the whole or subsets of the dataset. Positive scores
mean that they are able to better predict the values than the average value for
all the dimensions in that particular data set. User 109 ranked 1st on all- ,
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training- and test data, and 6th on the validation data. Even though user 109’s
performance was the best in the pool of domain experts, its R? scores were low.

Table 23 shows large differences between the boundaries of the confidence
intervals. This was due to the large deviation of human scores. The upper
boundary of the averaged human R? on the whole dataset at the 99% level was
-0.235. Even at the upper boundary at the 99% confidence level, the average
human scored worse than the Center method. As shown in Table 33, the Center
method scored -0.17 on the whole dataset.

The human domain experts had an advantage over other methods when
it came to predicting the ground truth labels. That is because the ground
truth labels were based on the labels of the experts. However, the relationships
between the participants’ labels and the ground truth labels are complex. The
method of computing the ground truth labels was based on finding the x-values
of the apexes of the label distributions. One of the disadvantages for the humans
is that they could only label the segments of music on the likert scale from 1
to 7. The baseline- and machine learning models were able to output real
numbers. This is a major disadvantage when it comes to performance, because
the humans would most likely introduce errors for each dimension and never be
able to predict perfectly. At the same time, introducing a discrete scale with
more options or continuous scale might have lead to more inconsistencies and
confusion for the experts.

6.4.3 Notes-to-MLPFs (N2M)

For the training- and validation sets, all the models had better R? scores the
human and the baseline models. For the test set, three of eight models score
better than the Training Average baseline model. All of the models had worse
scores than one domain expert (User 109) on the test set. However, all of the
N2M models scored better than the rest of the humans. The N2M models that
used deviations from the average, had better R? scores than the average human
at the 95% confidence level.

The results in Table 24 show a decrease in R? scores based on the subset
of the MLPF dataset: There were significant decreases in R? scores from the
training set to the validation set, and from the validation set to the test set. The
decreases in scores indicated overfitted models, which were unable to generalize
on new data. This was related to the size of the MLPF dataset, which was to
small for generalizing. All of the scores for the test set were negative. Negative
scores entail that the models are worse at predicting the values of the test set
than the average of the test set.

Table 26 shows that at the 95% confidence level, the upper boundary of
Score was smaller then the lower boundary of Awverage. This indicated that
the use of deviations from the average performance performed better than the
deviations from the score. Table 25 shows that the confidence intervals of LSTM
and GRU overlapped. Based on this, the higher average score of LSTM could
have been a result of chance. Only four datapoints were used to calculate the
confidence intervals. Even though the student’s t-distribution takes the sample
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size into account, the confidence interval would be more reliable with larger
sample sizes. Additionally, the average scores should not be averaged across
configuration combinations. This was done to have more datapoints for interval
computation.

6.4.4 Notes-to-MLPFs-and-Pianists (N2MP)

The models using the N2MP architecture performed similarly to the models to
the N2M architecture. A decrease in R? scores was observable, from the training
set to the validation set and from the validation set to the test set. All the test
scores of the N2MP models were negative. This entails that the models were
worse than the average of the test set. The GRU and Average configuration
scored better than the average human at the 99% level. This was also true for
LSTM and Average configuration at the 90% level of confidence.

Table 31 shows that the models using deviations from the average perfor-
mance had better R? scores than the models that used deviations from the
score, on average, at the 95% confidence level. Both in the case of LSTM and
GRU were the lower boundaries for Average larger than the upper boundaries
for Score. Table 30 indicate that GRU scores better than LSTM, because of
higher averaged scores and interval boundaries. Yet, the difference could not
be observed for all configurations at the 90% confidence level. In the case of
deviations from the average performance, the lower interval boundary of GRU
was larger than the upper boundary of LSTM. This was not the case when
deviations from the score was used.

6.4.5 Best Method of MLPF Extraction (RQ1)

Both the N2M- and the N2MP architectures produced only models that had
negative R? scores on the MLPF prediction task. These results were worse
than predicting the average of the test set. The models trained with the N2M-
and N2MP architecture generally have higher scores than the baseline methods
and the human domain experts. The best N2MP model, on average, was using
GRU and deviations from the average performance. This model had a confidence
interval from -0.07 to -0.05 at the 90% level of confidence. In the N2M case,
the best models used deviations from the average. These N2M models had
an confidence interval from -0.18 to 0.035 at the 90% level. The interval of the
human domain experts was from -0.825 to -0.381 at the same level of confidence.
It was not possible to claim that the average human scored better than the
Center method at this level of confidence. Even though the Center model had
an R? score of -0.67 on the test set, the lower bound of the average human was
lower. The average human score was worse than the Training Average baseline
model, which scored -0.13 on the test set.

The poor results on the prediction task was linked to the reliability discussed
in section 6.1. When 22 of 25 dimensions was considered to have poor reliability,
the models would not be able to learn the patterns of the data. Additionally,
the poor results was also linked to the size of the MLPF dataset. Both the N2M
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and the N2MP architectures had large decreases in R? scores from the training
set to the validation set, and from the validation set to the test set. This
indicated overfitted models. As mentioned in section 6.1, the MLPF dataset
had 115 samples after processing. The training set of 92 samples was not likely
to produce generalizable models. The validation and test sizes of 11 and 12,
respectively, were too small to be able to fairly evaluate the models.

The results showed that models that used deviations from the average per-
formance scored better than the models that used deviations from the score, on
average. This was shown for both the N2M and the N2MP architectures at the
confidence level of 90%. The results also showed that LSTM performed better,
on average, when using N2M. GRU performed better, on average, in the case
of N2MP. Neither of the results were significant at the 90% level of confidence.
It was therefore not possible to conclude which of the RNN cells were best for
extracting MLPF's.
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6.5 Pianist Recognition Task

This section includes the comparison of models on the pianist recognition task.
The baseline model, KDE models and N2P models are compared to the models
which use the MLPFs as intermediate steps: N2M2P and N2MP. The The cost
of explainability is computed in subsection 6.5.6, by analyzing the accuracy
differences of N2M2P and N2MP in relation to N2P. Finally, the results are
related to RQ2 in subsection 6.5.7.

6.5.1 Baseline

The baseline model disregards the input when classifying the pianist. The fact
that the model outputs the same prediction every time reduced its usefullness.
The model was used as a benchmark for the rest of the models, even though it
produced results that were far worse.

6.5.2 KDE

Table 34 shows that there are small differences between the original and the
optimized models when they were evaluated on the pianist classification task
described in section 4.5. Both of the versions had more than 6 times higher
accuracy than the baseline model on the test set.

The differences between the original and the optimized models were larger
when they were evaluated based on the original classification task (described
in subsection 4.3.5), using k-fold and no chunking. This was an unexpected
result since the original method should have been optimized for the original
task, and was unlikely to improve performance when tested on a different task.
This indicated that the original classification task was wrongly reproduced.

6.5.3 Notes-to-Pianists (N2P)

Table 35 shows that the N2P architecture performed well on the pianist classi-
fication task. All of the models using deviations from the average have better
accuracies than the KDE models. This is also true in the average case, where
the N2P models perform better than the KDE models at the 95% level of confi-
dence. The good scores on the test set showed that the approach of using RNNs
to distinguish pianists was appropriate.

The confidence intervals presented in Table 36 and Table 37 substantiated
the discussion in subsection 6.4.5. Models that used deviations from the average
performer performs better than the models that use of deviations from the score,
on average. This was determined at the 95% confidence level.

6.5.4 Notes-to-MLPFs-to-Pianists (N2M2P)

Figure 30 shows that there was a positive correlation (0.67) between the R?
scores on the prediction task and the accuracy score on the classification task
for the N2M2P models. Additionally, Table 38 shows that the two best models
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on the classification task used the regressor model which performed the best on
the prediction task. There was a significant decrease in recognition accuracy to
the next model: From 63.3% to 42.2%. These results indicated that a better
ability to extract the MLPFs entailed better results on the classification task,
when using this architecture.

When computing the average scores of the N2M2P models, only the best
performing models were interesting to look at. This was because a poor model
would not be considered for the given task. At the same time, the sample
size should not have been too small either. Subsection 6.4.5 indicated that
deviations from the average produced better results than the deviations from the
score. N2M2P models were therefore only included if they used deviations from
the average. It was important too rank the models based on both the tasks. In
order to answer the second research question, models must be able to predict the
MLPF when they were evaluated by accuracy. Even though the predictions were
poor in an absolute sense, which was discussed in subsection 6.4.5, the relative
comparisons of the models were interesting for the second research question.

The relative ranking method of using the average placement on each task
was not a perfect solution. The method could be unfair in situations where
there were small absolute differences between sets of models. At the same time,
using absolute ranking methods could treat models unfairly in cases of outliers.
In the case of the N2M2P methods, the ranking worked well. Figure 30 shows
that both the scores correlate. This entailed that the combined ranking did not
contradict both of the individual rankings to significant extents.

6.5.5 Notes-to-MLPFs-and-Pianists (N2MP)

Figure 31 shows that there was a negative correlation (-0.45) between the R?
scores on the prediction task and the accuracy score on the classification task for
the N2MP models. These results indicated that the model regressors optimized
for other features than the MLPF's to perform better on the classification task.
Models using the N2MP architecture are able to specialize on either of the tasks.
This is not possible in the seperate training loops of the N2M models.

The same ranking method was used in the N2MP case as is described in
subsection 6.5.4. In the N2MP case, the correlation of the R? and Accuracy
scores was negative. This made it difficult to rank the models fairly, since the
individual rankings were likely to be inverse of each other. However, the method
of ranking seemed to be working well. Top ranked N2MP models had relatively
high scores on both tasks compared to the other N2MP models.

6.5.6 Cost of Explainability

The best N2M2P model had an accuracy score of 63.7% and an R? score of
-0.007. In the N2MP case, the best model had an accuracy score of 75.3% and
an R? score of -0.323. These models was compared to the best N2P model,
which had an accuracy score of 82.8%. There was a decrease in accuracy when
introducing the MLPFs. The reductions were 7.5% and 19.1% for N2MP and
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N2M2P, respectively. A decrease in accuracy score was also observable when
improving the predictive ability of MLPFs. The improvement in R? score from
-0.323 (N2MP) to -0.007 (N2M2P) reduced the accuracy by 11.3 %.

The average scores and confidence intervals for the 4 best models of each
architecture were computed. The average accuracies were 80.2%, 52.5% and
72.8% for N2P, N2M2P and N2MP, respectively. In this case, the explainability
costs from N2P were 27.7% to N2M2P and 7.4% to N2MP. The improvement in
R? score from -0.242 (N2MP) to -0.040 (N2M2P) reduced the accuracy by 20.3
%. The confidence intervals were analysed in order to see if the averaged results
could be attributed to chance or not. The differences in average accuracy scores
between N2P and N2M2P was determined at the 95% confidence level. In the
case of N2MP, the results showed that the architecture was outperformed by the
N2P architecture at the 90% confidence level. When it came to the differences
in R? score between the N2M2P- and N2MP architectures, the difference was
significant at the 90% level of confidence.

6.5.7 Impact of MLPFs as an Intermediate Step (RQ2)

The overall impact of introducing MLPFs as an intermediate step in the recog-
nition task was negative. That is because the explainability of the MLPFs was
unreliable and the decrease in accuracy was significant. Subsection 6.4.5 showed
that none of the models were able to accurately predict the MLPFs. Humans
cannot base their understanding on the MLPFs if the values for each MLPF
is likely to be wrong. Furthermore, the MLPFs do not represent something
meaningful if they are subjective by nature.

Even though the predicted values for each MLPF might be wrong, the in-
troduction of MLPFs can improve explainability. Models which use MLPFs as
an intermediate step will base their pianist recognition on inaccurate values,
since the MLPFs are not predicted correctly. Such models will convey the in-
accurate assumptions of the MLPFs to the user. A domain expert will be able
to evaluate the values for each MLPF and come to his or her own conclusion.
The output of the regressor model can be altered, to align with the views of
the domain expert. Then, the values can be given to the classifier model for
pianist recognition and possibly produce better results. The domain expert will
be able to learn from the classifier part of the model, and connect performance
styles to each pianist. The explainable MLPFs can also be used to pinpoint the
weaknesses of models. However, the knowledge cannot be fully trusted since the
classifier model is trained on inaccurate MLPFs.

The decreases presented in subsection 6.5.6 showed that there were large
decreases in accuracy when introducing MLPFs as an intermediate step. For
the best models of the N2MP- and N2M2P architectures, the decreases were
7.5% and 19.1%, respecitvely. It is difficult to compare these results to the
results of Chowdhury et al., since they used correlation coeffiecient as the score
metric. The architectures A2mid2E (N2M2P) and A2Mid2E-Joint (N2MP) were
compared to the A2E (N2M): The decreases were 7% in the case of A2midE
and 1.5% for A2Mid2E-Joint [2]. Correlation coefficient has a bigger range than
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accuracy, so it can be argued that the cost of explainability in this case is larger
than in the paper of Chowdhury et al.
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7 Conclusion

The small size and poor reliability of the MLPFs dataset made it challenging to
answer the research questions of this thesis. Only 3 of the 25 MLPFs used for
model training were considered (moderately) reliable: Saturated/sparse pedal-
ing, bright/dark tone, and optimistic/pessimistic emotion. This reliability was
only achieved when the human labels were averaged. Averaging of labels en-
tailed reducing the number of samples from 1690 to 115. Such a small dataset,
with mostly unreliable features, was not considered likely to produce models
that could predict MLPFs accurately.

The first research question is about the best methods for extracting MLPFs.
All the models had negative R? scores, which means that the models were worse
at predicting the MLPFs than the average of the test set. The domain experts
had, on average, worse scores than the N2M models that used deviations from
the average. That was determined at the 95% confidence level. The N2MP
models that used deviations from the average performance and GRU performed
better than the average human domain expert at the 99% confidence level. One
expert was able to achieve a positive R? score on the test set of the MLPF
dataset. Thus, the expert outperformed all the models. It was shown that the
deviations from the average performance were better at predicting the MLPFs
than the deviations from the score. That was determined at the 95% level of
confidence for both the N2M and N2MP architectures. The results did not
indicate which RNN cell was better for MLPF extraction. For N2M, it was
indicated to be the LSTM cell. For N2MP, it was indicated to be the GRU
cell. The results regarding the best RNN cell were not significant at the 90%
confidence level.

The second research question is about the impact of introducing MLPFs
when recognizing individual pianists. Introducing MLPFs as an intermediate
step entailed significant decreases in accuracy. For the best models of the N2MP-
and N2M2P architectures, the decreases were 7.5% and 19.1%, respectively.
The accuracies of these architectures were compared to the N2P architecture.
The best N2P model was able to recognize the pianists with an accuracy of
82.8%. That was higher than the reproduced model that used Kernel Density
Estimation (KDE), which scored 74.5% on the same task. Because of the poor
results of MLPFs prediction linked to the first research question, explainability
via MLPFs would not be considered trustworthy.
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8 Future Work

In order to research musical concepts with data-driven approaches, reliable
datasets need to be collected. Aljanaki and Soleymani described the mid-level
features to be subjective and difficult to define clearly [1]. However, it is not
scientific to use such features if they cannot be defined or objectively measured.
As long as the data for these features are unreliable, different approaches cannot
be researched in a meaningful way. Future work can therefore collect more data
for the given set of mid-level perceptual features (MLPFs) or new data for new
sets of features. This thesis was based on a partially completed dataset. Hope-
fully, the completed dataset will result in more reliable features than shown in
this thesis.

Data reliability can be an issue for pianist classification tasks as well. It
was concluded that deviations from the average performance better capture the
individuality of a performer than deviations from the score. Eleven pianists have
been used in this thesis, in contrast to the 9 in the paper of Rafee et al. [24].
These amounts of performers can be hypothesized to produce good averages for
model training. However, this hypothesis has not been researched. Future work
can address the issue of how many pianists are needed to produce a reliable
average for deviation computation. In the cases where average performance is
computed, the pianists’ level can also be researched.

Only one piece of Schubert is used for classification in the paper of Rafee et
al. [24] and this thesis. This piece was chosen because of the many pianists who
have played it to compute a reliable average performance. However, methods to
be developed should be able to generalize across pieces, performers and epoques.
Therefore, generalizable models should be addressed in future work. That can
entail the research of different feature extraction methods and machine learning
architectures.

A competition of predicting MLPFs has been planned at SNU. The goal
is to make more people interested in music and artificial intelligence. Then,
hopefully, new approaches will be developed for the MLPF prediction task,
which will produce better results.
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