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Abstract

Vulnerability detection is not a new topic, but in recent years it has only become
more important. As security requirements for software solutions become increas-
ingly stricter, and the cost of development and testing only rises, there is a need
to catch the vulnerabilities before production. The countermeasures in place
today include heavy static and dynamic analysis, as well as time-consuming
testing and fuzzing. Modern machine learning techniques have been applied on
top of static analyzers, and as standalone solutions in order to contribute and
take some weight off the shoulders of developers.

In this thesis, we review the literature on the topic of vulnerability detection
using machine learning. Based on the literature, we propose several machine
learning approaches to the problem. Our models train only on function snippets,
without any outside context about the code to simplify the problem and improve
processing speeds. Our best model successfully detects 70% of all vulnerabilities
in a test set extracted from real-world source code, while producing fewer than
one false positive for each real vulnerable function found.
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Sammendrag

P̊avisning av s̊arbarheter er ikke er nytt tema, men de siste årene har det
bare blitt viktigere. Ettersom sikkerhetskrav for programvareløsninger stadig
blir strengere, og kostnadene for utvikling og testing øker, er det nødvendig
å finne s̊arbarhetene før produksjon. Tiltakene som er p̊a plass i dag inklud-
erer tunge statiske og dynamiske analyseverktøy, samt tidkrevende testing og
fuzzing. Moderne maskinlæringsteknikker har blitt brukt p̊a toppen av statiske
analyseverktøy, og som frittst̊aende løsninger for å bidra til å lette p̊a arbeids-
mengden til utviklere.

I denne oppgaven gjennomg̊ar vi litteraturen p̊a temaet om p̊avisning av
s̊arbarheter ved bruk av maskinlæring. Basert p̊a litteraturen foresl̊ar vi flere
m̊ater å løse problemet med maskinlæring. V̊are modeller trener bare p̊a kodesnut-
ter av funksjoner uten noe kontekst om den omkringliggende koden for å forenkle
problemet og minske behandlingstid. V̊ar beste modell oppdager 70% av alle
s̊arbarheter i et testsett hentet fra kildekode i den virkelige verden, samtidig
som den produserer færre enn én falsk positiv for hver ekte s̊arbarhet funnet.
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1 Introduction1

1.1 Background

1.1.1 What are Bugs and Vulnerabilities?

A software bug can be defined as the underlying cause of a fault or unintended
output from a program, usually originating from the source code. Common
bugs can cause a program to terminate, cause the displaying of a wrong result,
or have seemingly no effect at all. Bugs are common and are found even in
large-scale software like Microsoft Windows and Linux kernels. To put this
into perspective, Microsoft reported an average of 30 thousand bug reports
produced each month across their development platforms [1]. A bug in itself is
often harmless and has minimal effect on the end-user, but this is not always
the case. More serious bugs can affect the software and render it useless or even
worse; it can be exploited by an attacker. A bug exploitable by an attacker
is also known as a vulnerability. Serious vulnerabilities, especially in large-
scale software like operating systems and web browsers, can be exploited by
attackers to run malicious code or grant unauthorized remote access. This is
a serious security risk and should be addressed as soon as possible. Fixing a
bug in production can often be many times more expensive than fixing it during
development. Because of these factors, one wishes to reduce the number of bugs
that passes quality assurance by using different measures. Catching bugs early
in the development pipeline will reduce time and money spent down the line.

1.1.2 Traditional Analysis and Machine Learning

Today there are a lot of measures taken to avoid and prevent bugs in code.
Testing and reviewing code are some of the most used methods, but as long as
humans are writing code there, there will be room for error. Using static analysis
tools, like those included in Visual Studio [2] and Clang [3], is also common,
but does not guarantee bug-free code. Going one step further, dynamic analysis
like fuzzing can be used. This is a rather time-consuming and heavy task to
run, especially for large-scale projects. This is why this thesis will look at the
state-of-the-art and proposed frontier solutions in this field that uses machine
learning and static analysis to detect bugs. Machine learning is rapidly getting
more popular and is now used in different fields all over the world. For tasks
such as pattern recognition and anomaly detection, machine learning models
can be faster and more effective than humans. One can not expect machine
learning to perfectly detect all vulnerabilities and replace the prior proposed
measures, but it can possibly further optimize the process. This thesis will
look at different methods used to detect vulnerabilities in code using machine
learning and what kind of results they have achieved. Different methods take
very different approaches to solve the problem, where some rely on statistical

1Parts of this thesis consists of content from the specialization project (TDT4501) delivered
autumn 2021.
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analysis and others rely on the semantic relationships in the source code. This
thesis will cover the biggest challenges in the field and potential solutions.

1.1.3 Security Relations

Bugs can range from harmless errors to vulnerabilities exploitable by a malicious
attacker. The latter is the main topic of this thesis. The focus will be on
vulnerabilities related to security and therein vulnerabilities related to low-level
memory manipulation in languages like C or C++. These types of vulnerabilities
are some of the most common and harmful, yet very difficult to detect. Open-
source applications are known for being more secure in the sense that a lot of
people are able to review and contribute to fixing bugs, but this is not always
the truth. In April 2021, researchers at the University of Minnesota were caught
having submitted multiple intentional vulnerabilities to the open-source Linux
kernel [4]. The fact that events like these occur shows the clear lack of proper
solutions to detect these kinds of vulnerabilities automatically.

1.2 Research Questions and Goal

The goal of this thesis is to research how to accurately and efficiently classify and
detect vulnerabilities in C/C++ functions using machine learning. This thesis
aims to improve upon existing approaches to detect and classify vulnerabilities
using only the function source code. Unlike static analyzers like Clang, this
research will only look at the static text semantics and ignore all references
and context that exist outside the function scope. This approach will likely
limit the overall performance, however, it has the advantage of being a more
simple and lightweight problem that can be processed on most modern machines.
Literature branching outside text semantic analysis will also be reviewed in order
to compare results.

Research Question 1

How do common natural language processing approaches (statistical, n-grams,
token-based) to vulnerability detection compare on a dataset of C/C++ func-
tions?

Research Question 2

How do hybrid approaches combining deep representation learning and statisti-
cal features perform for vulnerability detection in C/C++ functions?

Research Question 3

Which combinations of tokens in C/C++ source-code prove to be important in
order to successfully classify vulnerabilities?

2



1.3 Research Methods

The methods used to perform the research in this thesis were both exploration
and experiment based. Literature on the topic of vulnerability detection using
machine learning was first explored. A review of relevant literature was then pro-
duced. The research questions and goals were at this point re-evaluated, and the
thesis scope was narrowed to better fit the time restrictions. The methodologies
described in the remaining relevant literature were then attempted reproduced.
The successfully reproduced models were used as a baseline while moving into
the experiment phase. The experiments were based on more literature as well
as our own experiences. Smaller goals were also set to make sure progress was
made throughout.

1.4 Contributions

1. A review of literature on the topic of vulnerability detection and classifi-
cation using machine learning.

2. An overview of how to implement vulnerability classification using ma-
chine learning approaches like:

2.1. Convolutional neural networks

2.2. Deep representation learning

2.3. Random forest with n-grams and statistical features

3. Experiments and results using the aforementioned implementations

4. Source code for all the implementations can be found on GitHub at the
following link: https://github.com/MathNuts/VulnerabilityClassification

1.5 Thesis Structure

1. Introduction An introduction to the topic of this thesis, as well as re-
search questions and some background.

2. Theory Selected theory that supports the experiments and results of the
thesis.

3. Related Works A look into the existing literature on the topic of vul-
nerability detection and classification for C/C++.

4. Methodology A description of the machine learning methods and re-
spective datasets.

5. Results The results for the selected approaches.

6. Discussion Evaluation of the results, as well as a comparison of the results
against previous literature.

3
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7. Conclusion and Future Work A conclusion to the discussion and ideas
for future work.
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2 Theory

This chapter will cover the background theory necessary to understand the
methods used in this thesis. This includes an introduction to C/C++, vulner-
abilities, code representations and a select few topics on machine learning.

2.1 C/C++

C is a general-purpose programming language created in the 1970s. Despite its
age, C is still one of the most used programming languages to this day. By
design, C provides easy low-level memory access, as well as minimal run-time
support enabling simple compiling over multiple platforms. The C language was
standardized by ANSI in 1989, and the standard has been regularly updated ever
since [5]. In 1979 C++ was made to extend C with new and modern features.
Due to originally C++ being an extension, most of the C syntax remains usable
within C++. The difference between the two is mostly new features like classes,
inheritance, polymorphism, new keywords, and operators. It is worth noting
that C++ does not make C redundant as C’s inherent simplicity makes it a
more efficient and better language for some demanding tasks, and for lower-
end micro-controllers as it requires less run-time support. The syntax of both
C and C++ contains keywords, identifiers, constants, strings, special symbols,
and operators. The difference is in the amount of additional C++ elements.
An example ”Hello, World” program can be seen in Snippet 1 and Snippet
2 for C and C++ respectively. The syntax is very similar between the two,
however, understanding the subtle differences is important when setting out to
detect vulnerabilities. To put the popularity and usage of the languages into
perspective we can look at some statistics. According to the 2021 Stack Overflow
Developer survey, 21% of programmers use C, and 24% use C++ [6].

#include <stdio.h>

int main(void)

{

printf("Hello, world\n");

}

Code Snippet 1: Hello World in C

2.2 C/C++ Memory Exploitation

Many vulnerabilities are related to reading from and writing to memory, usually
by overflowing a buffer. To understand why this is a real threat, and why tools
are needed to prevent them, one needs to dig a little deeper into how a program
is executed. The example program in question can be seen in Code Snippet 3,

5



#include <iostream>

int main()

{

std::cout << "Hello, world!\n";

}

Code Snippet 2: Hello World in C++

and is an example of a buffer overflow on the stack. In this example a user-
type in a system has been set to ”user” by default, however, exploiting the
vulnerability, an attacker can change the type to fit their needs.

The name and type buffers are both allocated right after each other on the
stack, and an attacker can therefore overwrite the second buffer by exploiting
the strcpy function. Both the type and name buffers are 8 bytes long, so filling
one buffer will require 7 characters in addition to the string terminator. To
perform the exploit, simply write a name using 8 characters, and then the rest
will overflow into the type buffer. As seen from the output of the program, the
type has been successfully changed to ”admin” by corrupting and overflowing
the memory. For the sake of this example, the input string has been pre-defined
in the program, but in a real-world scenario, the program will read from user
input.

As one can see, these kinds of exploits can be dangerous, in this case even
giving admin access to the exploiter. An attacker can also perform more ad-
vanced attacks replacing not only buffers on the stack but changing function
calls, effectively allowing root access to the system. To counter these kinds of
attacks safer function counterparts like strncpy have been added. These func-
tions require the programmer to explicitly define the n first number of bytes of
a buffer to read. However, even these functions are still exploitable unless the
programmer chooses the right value for n.

2.3 Common Weakness Enumeration

To better help understand how to differentiate different vulnerabilities, one can
refer to the common weakness enumeration (CWE) [7]. Different vulnerabilities
will tend to have different traits, and differentiation between types is helpful
for detecting these different types in the real world. For instance, a memory
vulnerability will probably include specific functions and operations that are
unique to reading and writing to a buffer. The common weakness enumeration,
as its name suggests, is a list of known software and hardware weaknesses. It
is sustained by a community project supported by large corporations as well
as the U.S. government. The list consists of vulnerabilities of all types and for
many different languages. The different CWE types are all described in detail,
often with examples and references. This thesis will only look at CWE types
related to C/C++.
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#include <stdio.h>

#include <string.h>

#include <stdlib.h>

int main(void) {

char type[8] = "user";

char name[8];

strcpy(name, "SOMENAMEadmin");

printf("name: %s\n", name);

printf("type: %s\n", type);

printf("name addr: %p\n", (void *)name);

printf("type addr: %p\n", (void *)type);

/* Produces output:

> name: SOMENAMEadmin

> type: admin

> name addr: 0x7fffbc83b658

> type addr: 0x7fffbc83b660

*/

}

Code Snippet 3: Example of a simple buffer overflow exploit in C

2.4 Natural Language Processing

Natural language processing (NLP) is a field concerned with programming com-
puters to process, analyze, and understand natural languages. Natural lan-
guages are very complex due to factors such as large vocabularies, seman-
tics, syntax, and contextual nuances. Common tasks in the field of NLP in-
clude speech recognition, and interpretation and generation of natural languages
among other things. A number of different techniques and algorithms are used
in order to process and analyze natural languages. Programming languages are
artificial, not natural languages, and are therefore quite different in a number of
ways. However, programming languages, similar to natural languages, also rely
on semantics and syntax. It should therefore be possible to process and analyze
program code with NLP-based methods. In this thesis, the C/C++ program
code will be processed by applying various NLP techniques.

7



2.5 Text Pre-processing and Code Representations

Before one can apply any machine learning method to detect vulnerabilities in
source code, the source code needs to be represented as features that can be
understood by a machine learning algorithm. Typically this involves convert-
ing the raw data into a vector of some sort. When converting to a vector it
is important to understand the concept of granularity. The extracted vector
should contain the optimal subsection of the original data. When detecting vul-
nerabilities this could be anything from class-level, to functions or lines. The
appropriate granularity decides what ways one should represent the code. The
three specific approaches to representation that will be covered are statistical
characteristics, token-based, and tree/graph-based. The different approaches all
have their own pros and cons, and the use cases can vary.

2.5.1 Statistical and Trivial Characteristics

The simplest way to represent any code fragment is to do a statistical analysis
treating the code as text. This is easy to do and can capture various traits of the
source code. Some possible features to extract are the size of the text, cyclomatic
complexity: the number of possible paths through a piece of code, total counts
of specific characters or words appearing in the text, character diversity: the
number of unique characters in the text, and entropy. The processing of these
calculations is simple, but they all have the same weakness, namely the lack
of semantic and syntactic understanding. The order of the statements has no
effect on the end result.

2.5.2 Bag-of-Words and N-grams

Bag-of-words (BoW) is a statistical way to vectorize a piece of text and is
commonly employed in natural language processing. Each number in the BoW-
vector corresponds to a word in the vocabulary, and the value represents the
number of times that word occurred in the text. The vocabulary encompasses
all the different terms that are counted, meaning that the final output vector
will have a dimensionality equal to the vocabulary size. Usually, the vocabulary
consists of all the unique terms that appear in all of the analyzed texts, however,
a specified vocabulary can also be supplied. In the latter case, terms that do not
appear in the vocabulary are simply ignored. When analyzing natural languages,
it is common to ignore terms that are unlikely to contain useful information such
as stopwords and punctuation characters. Consider the code in Snippet 4. In
a basic BoW vectorizer, only considering words for the sake of the example,
the resulting vocabulary would be {void, test, int, x, y, printf, d}. The resulting
vectorized source code would then be {1, 1, 2, 2, 2, 2, 2}. Notice how both lists
are of equal length. This is because the indexes of each list should match. When
vectorizing actual code, it is common to include special characters as they are
an essential part of code languages.

A BoW approach contains the frequency of each term in the text, however,
it does not contain any information about the order the terms appear relative
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void test(int x, int y) {

printf("%d", x);

printf("%d", y);

}

Code Snippet 4: Function with repetitive identifiers

to each other. In order to capture some information about the order of the
terms, the BoW-model can be extended by using n-grams. N-grams are n long
sequences of terms. The n-gram model is the same as the standard BoW-model,
except it contains frequencies of each of the n-grams, rather than just singular
terms. This has the advantage of retaining some order information from the
original text, although if the size of n is large, the number of n-grams can be
huge, especially if the vocabulary is large. A BoW-model is used to transform
texts of arbitrary size into fixed-length feature vectors which can be used in
machine learning models.

2.5.3 Token-Based Representations

Another simple representation can be achieved by performing a lexical anal-
ysis of the source code. By doing lexical analysis, one transforms the source
code into a sequence of tokens. The sequence of tokens can be all the individ-
ual words, characters, op-codes or categories derived from the different words.
The sequence of tokens is then usually converted into a vector representation.
Word2Vec is such an architecture for vectorizing tokens [8] and is used in several
works [9] [10] [11]. Word2Vec is a term encapsulating algorithms that can learn
word embeddings from data sets, usually with the help of neural networks. A
token-based representation is also often used in deep representation learning.
Deep representation learning, also called feature learning, is a method used to
replace manual feature engineering. This approach uses machine learning as
an intermediate step to learn good features. These new features are then fed
through a classifier at the end.

2.5.4 Tree and Graph-Based Representations

Trees are abstract data types consisting of hierarchically structured sets of
nodes. A node can be linked together with other nodes as either a parent
or a child. The node at the very top is called the root. Similarly, a graph is
an abstract data type consisting of nodes connected by edges that can either
be undirected or directed. Various types of trees and graphs can be used to
represent different aspects of source code such as code structure, control flow,
program dependencies, and syntactic structure. This allows higher-level seman-
tics or relationships in the code to be captured as features.

A structure that is often used to represent code is abstract syntax trees. An
abstract syntax tree (AST) is, as the name suggests, a tree representation of
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the abstract syntactic structure of a piece of source code. The syntax tree is
abstract because it contains the structural details or operations of the code. It
does not contain inessential details such as parentheses and semicolons from the
original text. This separates an AST from what is called a parse tree, which
contains the whole code syntax. Each node in the AST represents a specific
construct from the underlying code. The branches from each node as well as
their location within the tree describe how the various constructs are connected.
Code representation using ASTs has been extensively used [12] [11].

Control-flow graphs (CFG) are representations of all the possible paths
through a program during execution. The nodes in the CFG represent a straight-
line piece of code with no branches, also known as a basic block. The nodes in
the CFG are connected by directed edges that illustrate how the program can
execute. Features based on CFG representation of the code have been tried [10].
Another type of flow graph is the value flow graph (VFG). VFG syntactically
represents semantic equivalence, with the nodes representing equivalence classes
and the edges representing data flow.

A program dependence graph (PDG) is a graph representation of the de-
pendencies within the code. Each node in the graph represents a statement
or predicate. The edges represent the dependencies between the nodes. PDGs
have also been used as an intermediate representation for generating features
[13].

2.6 Machine Learning

Machine learning is a part of artificial intelligence and is the field concerned
with creating methods that can learn. This learning is done by leveraging data
to create a model that can perform tasks that it is not explicitly programmed to
do. Machine learning is a large field with a wide range of different approaches
such as supervised learning, unsupervised learning, and reinforcement learning.
In this thesis only supervised learning is utilized. Supervised learning utilizes a
set of labeled data, referred to as the training data, to create a model that can
predict the label of new, unseen data. In essence, the goal of supervised learning
is to use historical observations to predict future ones. Provided that historical
labeled data is available, supervised machine learning can be used with many
different types of data, for example images or text. As a result, supervised ma-
chine learning has potential applications in a number of different fields including
medicine, finance, and marketing. Most machine learning models have a set of
tunable parameters that can be adjusted in order to improve the performance
of the model. Such parameters are referred to as hyperparameters.

2.6.1 Features and Datasets

Good quality data is paramount in supervised machine learning. To create a
supervised model, data samples with labels are needed. The label dictates which
class each data sample belongs to. Often there are only two possible classes for
data to belong to, in which case it is referred to as binary classification, but
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it is not uncommon to have more classes. There is also a distinction between
multi-class classification, where each sample belongs to only one of the classes,
and multi-label classification, where it is possible for individual data samples to
belong to multiple different classes. Some examples of class labels are whether
an image contains a specific entity, whether the sentiment of a text is positive
or negative, or whether a piece of source code contains a bug. How a set of
data has been labeled varies depending on the type of data, but it is common
that the data has to be labeled by human experts. The information that makes
up the data itself is referred to as the features. Features are a set of variables
that, ideally, are correlated with the class label. Features can be numeric,
binary, or categorical (nominal or ordinal) and are derived from the raw data.
Feature extraction is the process of extracting features from raw data. Features
vary in quality and some features will be better than others. Good quality
features are discriminatory with regards to the class label, and thus good at
separating the data into the different classes. Features can be ranked by their
correlation to the class labels, and lower-quality features can be removed through
the process of feature selection. One possible way to rank features is to use the
chi-squared test for each feature with regard to the class label. This is a test to
check whether two stochastic variables are independent. The chi-squared test
produces a score based on the null hypothesis that two variables are independent.
A low score indicates that there is a high probability that the variables are
independent, whereas a higher score indicates that the variables are dependent.
When selecting features, it is desirable to have features that are dependent on
the class label, thus features with a high score are kept. The process of feature
selection reduces the dimensionality of the data. The dimensionality refers to
the number of features that are in a set of data samples. The complexity and
processing time of a model increases with dimensionality, and as such, it is often
beneficial to remove redundant features and reduce dimensionality.

The data samples used when creating a model are in the form of vectors,
where one (or multiple in the case of multi-label data) element(s) is the class
label(s), and the other elements are the features, each element representing a
specific feature. Multiple data samples are generally referred to as a dataset.
When building a model, it is common to split the dataset into two or three
subsets: training, testing, and validation. The training set is used for creating
or ”training” the model and is usually the largest subset. The testing set is used
to test the performance of the finished model. A validation set is sometimes used
to evaluate the performance during the training phase in order to optimize the
model. In some cases, it is possible for a machine learning model to ”learn”
too much of the specific intricacies of the training data, which results in poor
performance when classifying new data. This behavior is known as overfitting.
To avoid overfitting and create a more generalized model, one can iteratively
change the train and test sets until all samples have appeared in both the
training and testing data. This iterative process is referred to as cross-validation.
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2.6.2 Artificial Neural Networks

Artificial neural networks (ANN) are a class of related algorithms used for ma-
chine learning, and specifically representation learning. Representation learning
is a part of machine learning that deals with models that are able to automati-
cally create high-level features from raw data. Artificial neural networks consist
of a number of connected nodes, structured in layers. The nodes attempt to
imitate biological neurons where synapses transmit signals between connected
neurons. An illustration of the concept can be seen Figure 1. In essence, an
artificial neural network is a function that, given an input, attempts to give the
correct output.

Figure 1: ANN with two hidden layers

There exist multiple different types of ANNs, but their mechanism of action
is similar for the most part. A basic feed-forward, fully connected neural network
will be explained here. As previously mentioned, the nodes are structured in
different layers. The first layer is known as the input layer and has nodes equal
to the dimensionality of the input data. The final layer is the output layer and
has nodes corresponding to the number of classes. The node layers between the
input and output layers are known as hidden layers. In a feed-forward network,
information travels forward in one direction from the input layer to the output
layer. In a fully-connected network, each node in a layer transmits its ”signal”
to every node in the following layer. Nodes are essentially functions that take
input values from all nodes in the previous value and produce a specific output
value based on the input. This value is the signal that a node transmits to
the nodes in the next layer. When classifying, the network takes a fixed-length
numerical vector as input. The values from the input vector are the values
that the input layer feeds forward to the next layer. Each connection between
nodes has a weight. The value passed from one node to the next is multiplied
by this weight. A node in a hidden layer receives a value from every node in
the previous layer, and each value is multiplied by the weight of its specific
connection. The value of a node in the hidden layer thus becomes the weighted
sum of each value from the previous layer. Additionally, a bias value is added
to the sum. Equation 1 shows how the output of a node is computed, where xj
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is the indexed value from a node in the previous layer, wij is the weight on a
specific connection between a node in the previous layer and the current node.
The bias is represented by b.

z = b+

n∑
j=1

xjwij (1)

Before a node transmits its updated value to the nodes in the next layer, an
activation function is applied to the value. The non-linear activation function
adds non-linearity to the network. Additionally, an activation function can
restrict the values to any desired range. There are multiple common activation
functions that serve different purposes, and different layers in a network can have
different activation functions. Some common activation functions are sigmoid
and ReLU. The sigmoid function 2 squishes any input value to a value between
0 and 1.

sigmoid(x) =
1

1 + e−x
(2)

The rectified linear unit (ReLU) 3 converts negative values to 0 while retaining
positive values.

ReLU(x) = max(0, x) (3)

The nodes in all the hidden layers are all updated, layer by layer, each layer
outputting a vector that is used in the next layer. The output vectors of the
hidden layers can be considered as features that have automatically been ex-
tracted by the neural network. These features might not necessarily make sense
to humans in the same way manually extracted features do, but they can still
be good features.

The final, output layer of a neural network works slightly differently than
the hidden layers. The output layer has dimensionality corresponding to the
number of possible output classes, and the network’s classification is the class
corresponding to the output node with the largest value. A special activation
function, such as softmax, is sometimes used before the final layer in order to
get the output as a probability distribution between the possible classes. One
additional thing to point out is that it is possible to use neural networks to
extract features that can then be classified using a different model.

The idea of a neural network as a network of nodes transmitting data to each
other is just a theoretical way to think about it. In reality, the model consists
of vectors and matrices that are multiplied together. The output of a layer in
the network can then be written as Equation 4, where an is the output vector
of layer n, W is the weight matrix, b is the bias vector, and σ is the activation
function.

an = σ(Wan−1 + b) (4)

Gradient Descent and Backpropagation

The previous section explained how data is classified by doing a forward pass
through a neural network. The output of the neural network is dependent on
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the values of all the different weights and biases. When talking about training
a neural network, it actually refers to adjusting the values of the weights and
biases in such a way that the network provides the correct output to a given
input. Before training, all the weights and biases in the network will be randomly
initialized, which means that the network will not perform well. To train it, a set
of labeled training data is utilized. Training samples are fed into the network
in order to receive the output vector that can be compared to the label. To
compare the predicted output to the expected label, a loss function is used to
compute the loss with respect to the weights of the model. The loss function
says something about how the model performed. By training, the goal is to
reduce the loss of the model. Binary cross-entropy 5 is a commonly used loss
function. In this loss function yi is the target value, and pi is the predicted
value.

BCELoss = − 1

N

N∑
i=1

yi · log(pi) + (1− yi) · log(1− pi) (5)

The negative gradient of a multi-variable function provides the direction where
the function decreases the fastest. The gradient descent algorithm uses the
negative gradient to reach a local minimum of a function. It does this in an
iterative manner, by finding which direction to ”move” the weights in order to
reduce the cost the fastest, then ”moving” an amount in this direction, repeating
the process until a local minimum is reached. The updated weights, wt, can
be computed using the current weights by the gradient descent formula 6. The
gradient vector ∇C(wt) reveals what changes should be done to each weight, i.e.
which weights should increase, which should decrease, and the magnitudes of
each weight’s effect on the loss. A scalar factor, γ, is used to control how much
the weights should be updated, and can be thought of as step size when moving
in the gradient direction. This factor is referred to as the learning rate and is
a hyperparameter. A small learning rate will require more steps to converge,
while a large learning rate can potentially miss local minima by overshooting.
It is possible to use an adaptive learning rate that changes during training. To
compute the gradient of the loss function, an algorithm called backpropagation
is used. The gradient is found by computing the partial derivatives of each
variable, and backpropagation works by using the chain rule to compute the
gradient of the loss function for each layer in the network, working backward
recursively from the last layer, one layer at a time. Using backpropagation to
compute the gradients each time, gradient descent can be used to iteratively
update the weights and biases until a local minimum for the cost function is
reached.

wt+1 = wt − γ∇C(wt) (6)

How the weights should be adjusted to best decrease the loss function over the
whole training set, can be found by finding the average of all the gradients
from all the training samples for each step. However, computing the gradients
for every single sample for each weight update is very computationally heavy.
Instead, training batches can be used. Batches are small subsets of the total
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training data that are fed to the network, and the average gradient of each
batch, rather than the whole training set, is used for each step. The average
gradient of the batch approximates the average gradient for the entire training
set while requiring fewer computations per weight update. The batch size is a
hyperparameter and is the number of samples that are fed through the network
before the weights are updated. To optimize the learning process further, it is
common to use an optimization algorithm such as adaptive moment estimation
(ADAM). It is probable that the model weights are not optimal after all the
training samples have been passed through the network once. It can therefore
be beneficial to pass the training set through the network more than once. Each
time the whole training set is passed through the network is referred to as an
epoch. The number of epochs is a hyperparameter. Similar to other machine
learning models, neural networks can also be susceptible to overfitting. One way
to prevent overfitting is to use dropout. Dropout is a technique where random
weights in the network will be dropped by setting their value to 0. This is done
to make the model more generalized, and by preventing very specific features
from the training set to be learned. The probability of a weight being dropped
is a possible hyperparameter.

Convolutional Neural Networks

Convolutional neural networks are a distinct type of neural network that is
commonly used for tasks involving images as input data. They are named for
their special convolutional layers. These layers use filters, or kernels, to perform
a convolution operation on the input. This involves having a kernel matrix
move across the input and computing the dot product between the kernel and
the underlying input for each step. This is done until the whole input has been
processed. Each of the computed dot products is stored in an output matrix.
These outputs are referred to as feature maps. It is common to create several
feature maps, using different kernels, for each input sample. The feature maps
are then combined and fed forward to the following layers in the network. The
values in the kernels are randomly initialized but are updated when training
the network. Since the kernel values are weights similar to any other weight in
the network, they are also updated the same way using gradient descent and
backpropagation. Pooling is an approach to reducing the size of the feature
maps. Max pooling is a common pooling technique that involves keeping only
the maximum value in a given interval while discarding the rest. As a result of
the convolution operations, convolutional neural networks have a few additional
hyperparameters. Stride refers to how much a kernel is moved between each
step when moving across the input. The size of the kernel matrices can also
vary, as well as the number of kernels to use.

While very often used for image classification purposes, CNNs can be ap-
plied to many problems, and a popular scenario is sentence classification. This
application of a CNN was first proposed by Yoon Kim in 2014 [14]. The basic
idea behind this method is to convert each word in a sentence into a fixed-size
vector resulting in a n× d matrix, where n is the number of words and d is the
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number of dimensions. This fixed vector, also called a word embedding, is ei-
ther a result of randomized numbers or a pre-trained vector using Word2Vec or
similar architectures. From this point, convolutional filters of size x× d, where
x is the filter length in words, are applied in parallel. All the resulting vectors
are then max-pooled along their axis in order to output only a single value.
The single value for each filter is then appended to the resulting vector. If two
convolutional filters are used making 512 feature maps each, the resulting vector
will be 1024. The resulting vector is then fed through linear layers to predict
the final class. An illustration of this process can be seen in Figure 2. This
method was originally made by Yoon Kim in order to classify natural language,
however, the approach can be applied to many other texts including code. As
natural languages and code are very different in structure and vocabulary size,
the parameters used may have to be tweaked.

Figure 2: Illustrating CNN for sentence classification [14]

2.6.3 Decision Trees

Decision trees are widely used in machine learning, and are most often used
within other methods rather than by themselves. Decision trees are used both
for regression when predicting a real number, and classification when predicting
discrete labels. The decision tree consists of connected nodes, each internal node
representing a specific feature in the data, and the edges representing specific
values for that feature. Leaf nodes correspond to a specific class label. When
classifying, start at the root node of the tree, and work down the tree by moving
along the edges corresponding to the feature values of the sample that is being
classified. When a leaf node is reached, the sample is classified as the class
label corresponding to that leaf node. There are several different variations of
algorithms for creating decision trees, but in general decision trees are created
as follows: Start by splitting the supplied training data into smaller subsets.
The data is split by looking at which of the features in the training set can best
separate the data into the different target labels. To calculate which feature is
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most suitable, a gain function is used. Commonly used gain functions are gini
impurity 7 and information gain using entropy 8. The same process is applied
recursively each time on each created subset, until all the samples in a subset
possess the same class label, or splitting no longer yields any additional value.

IG(p) = 1−
J∑

i=1

p2i (7)

H(T ) = −
J∑

i=1

pilog2pi (8)

2.6.4 Random Forest

Random forest is a supervised ensemble machine learning method that can be
used for classification or regression. Ensemble learning methods are machine
learning methods that combine multiple diverse models. In a classification prob-
lem, each model in the ensemble provides its own classification, and the ensem-
ble’s prediction is the majority result from all the individual models’ predictions.
When performing a regression task, the average or mean of the predictions is
used. Random forest consists of an ensemble of decision tree models. Each deci-
sion tree in the ensemble is created using a random subset of the training data,
and sometimes also using only a subset of the features. This overcomes the issue
of overfitting on the training data that a single decision tree can suffer from.
As a result, random forests usually outperform decision trees. The number of
decision trees, sometimes called estimators, used in a random forest model is a
hyperparameter and can greatly affect performance, with more trees generally
performing better, up to a certain point.

2.6.5 Evaluation

To rate the performance of a machine learning model, a range of evaluation met-
rics can be used. These metrics are not only useful to determine if a completed
model is performing well or not, but it is also an essential part of training and
adjusting models. The metrics that will be covered in this thesis are strictly
related to classification as this thesis is about vulnerability classification and
detection. The reason to use multiple metrics is that they all reflect different
aspects of the model. For one problem one might prefer to have high speci-
ficity, while other times only the sensitivity matters. The different metrics used
in this paper include accuracy, precision, recall, ROC (receiver operating char-
acteristic) curves, PR (precision-recall) curves, F-score, and MCC (Matthews
correlation coefficient). For ROC and PR, the area under curve (AUC) is used
to convert the curve’s information into a single-number metric.

All the aforementioned metrics are in some way or another related to the
predicted label compared to the true label of a model. The four resulting cases in
classification can be seen in Table 1. The two true cases are true negative (TN),
and true positive (TP). The true negative represents a negative sample that
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has successfully been predicted as negative, while the true positive represents
a true sample predicted as true. A false positive (FP) occurs when a sample
is incorrectly predicted as positive, while a false negative (FN) occurs when a
sample is labeled negative when it is positive. Understanding these four cases
is crucial in order to understand the meaning behind the other metrics. In
addition to these four cases, it is also important to understand that a machine
learning model returns a float between 0 and 1, and not a true or false. This
float is automatically changed into true/false values using a threshold of value
0.5. Some metrics use custom thresholds to evaluate the model.

Predicted Label

Negative Positive

True Label
Negative TN FP
Positive FN TP

Table 1: Confusion matrix for predicted labels and true labels

In a multi-class scenario, the metrics will have to be calculated for each class,
and then the scores are merged. This is usually done either by averaging over
the classes or by doing a weighted average so that all classes are given the same
weight disregarding the number of samples in the test set. Another solution is
to skip the merging step and look at each class’ score individually.

Accuracy

Accuracy is the most simple and commonly used metric. Accuracy tells us how
many true predictions were made compared to the total number of entries in
the dataset. The formula for calculating accuracy is given as follows:

accuracy =
TN + TP

TN + FP + FN + TP
(9)

For a balanced dataset, this measure functions well, however, on a dataset
consisting of 90% TP samples, the accuracy will be at 90% even if all predictions
are positive and none of the negative samples are predicted. To counter this,
precision and recall can be used in their stead.

Precision and Recall

Precision and recall are two closely related metrics in model evaluation. While
accuracy only looks at true predictions over the whole dataset, precision and
recall look at true labels versus the false labels. Precision is defined as follows:

precision =
TP

FP + TP
(10)

This precision value, in other words, is the fraction of TP over all positive
predictions. Recall, also called sensitivity, is defined as follows:
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recall =
TP

TP + FN
(11)

This recall value is the fraction of TP over all true labels. These two values
can in combination tell us a lot about the model’s ability to detect true samples.

F-score

The F-score, also called F1-score, is one metric that uses precision and recall to
calculate an average score that measures a model’s classification accuracy. The
highest value of this score is 1, and the lowest is 0. The F1 score is calculated
as follows:

F1 =
2

recall−1 + precision−1
(12)

MCC

The MCC score is a rather peculiar score and is not very commonly used com-
pared to precision, recall, and F1. It is however used in cases where the data is
severely imbalanced, as it handles this very well [15]. The MCC score handles
imbalanced datasets by ensuring good results in all four prediction values (TN,
FP, FN, and TP). The score ranges between -1 and +1, where 0 is no corre-
lation, +1 is a positive correlation and -1 is a negative correlation. The MCC
score is defined as follows:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(13)

ROC AUC

ROC AUC is one of the more popular metrics as it captures the model perfor-
mance really well. However, this is not always the case for imbalanced datasets.
ROC AUC is the area under the curve of the receiver operating characteristic
(ROC) curve. The ROC curve uses the FP rate and TP rate on its x and y-axis
respectively. The FP rate or FPR and TPR are defined as FP over negatives
and TP over negatives respectively. Machine learning models predict a value
between 0 and 1, and adjusting the threshold can change the resulting class.
FPR and TPR are calculated for a number of thresholds between 0 and 1. The
resulting ROC graph then tells us about what TPR one can achieve with all
thresholds of FPR. This is useful when manually choosing a threshold for the
final model. Note that this is the ROC curve by itself. The final score is the
area under curve (AUC), resulting in the ROC AUC score.

PR AUC

PR AUC, also called mean average precision (mAP), is another metric similar
to the ROC AUC, however, the x and y-axis are the recall and precision values
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respectively over thresholds between 0 and 1. This metric is much better at
handling imbalance in data than ROC. In this curve, one can see at what levels
of recall one achieves the wanted level of precision. This is also a great indicator
of where to put the final threshold. The PR AUC score is calculated by taking
the area under the curve.
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3 Related Works

3.1 Introduction

This chapter will explore some of the published literature on the topic of bug
and vulnerability detection using machine learning. The primary focus is on
works that deal with detecting security vulnerabilities from source code using
machine learning, however, related literature on bug and vulnerability detection
was also researched in order to get a more comprehensive overview of the topic.
Methods for extracting features from the raw data were the primary concern
when researching literature, rather than which classification methods were used.
The literature search provided the starting points for the implementations that
will be covered in the later chapters of this thesis.

Below is a summary of some of the articles that were found during the lit-
erature search. These were selected because they demonstrated interesting and
relevant approaches and promising results. For each article there is a short
paragraph, summarizing the methodology and results of the article, as well as
briefly commenting on possible drawbacks of the article. Due to the differences
in datasets utilized, the complexity of the data, and the nature of the problem
itself, it is difficult to draw any exact conclusions in regards to which methodol-
ogy is best simply by comparing the different works. It does, however, provide
useful insight into different methodologies, possible problems, and what has
worked well for others.

3.2 Annotated Literature

Vulnerability detection using n-grams and statistical characteristics

Chernis et al. [16] demonstrate the possibility of catching a large percentage of
bugs using machine learning classifiers on text features extracted from C source
code. They have taken two different approaches to this problem, the first of
which was to extract simple statistical characteristics like character count, di-
versity, entropy, nesting depth and different word counts. The second approach
was to use more complex, yet statistical characteristics like n-grams and suffix
trees. The first data set they compiled consisted of 100 vulnerable functions
extracted from Github, as well as 100 non-vulnerable functions from the same
files. The second data set contained the same vulnerable samples, but non-
vulnerable functions from popular Linux programs that are unlikely to contain
bugs. For the first data set, the simple features turned out to be better perform-
ing than the more complex ones. The simple features all exceeded 60% percent
accuracy and character diversity alone reached 75% using a K-means classifier.
The n-gram and suffix tree approach reached a maximum accuracy of 63.5%
and 60% respectively using a naive Bayes classifier. Cross-validation was used
in all three cases. As for the second data set, a combination of simple features
and n-grams performed the best at 69%. The data used in this approach is
scarce and a conclusion as to what works best is difficult to make based on this
fact. However, the results do suggest that even simple statistical characteristics
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can give us some information about whether a function contains a bug or not.
Combining simple features with more complex ones like syntax trees or natural
language processing might give satisfactory results.

Bug detection by introducing soundness to static analysis tools

Heo et al. [17] take a unique approach to the problem by introducing soundness
in already existing unsound static analysis tools. The many unsound static
analysis tools that are used today, all miss a large portion of true positives (TPs)
in exchange for having a small number of false positives (FPs). Sound analysis
tools are often heavy to run and introduce huge amounts of FPs. This approach
introduces some soundness to detect these missed bugs, as well as keeping FPs
down to a minimum. To do this they selectively apply soundness to functions
that are likely to contain bugs. To determine which functions probably contain
bugs, they use a One-Class SVM classifier. This is an unsupervised algorithm
based on SVM that detects outliers. The data set used consisted only of harmless
code, as the classifier only requires one class to determine outliers. The features
they use for this classifier are 37 handcrafted semantic and statistical features.
As for the evaluation, a data set of 23 open-source C programs were used,
containing a total of 138 documented bugs. For reference, applying unsound
analysis resulted in 33 TP and 104 FPs, and using sound analysis resulted in
118 TP and 677 FPs. Using the proposed hybrid method they achieved 100 TPs
and 264 FPs. The FP rate is still considerably high compared to the unsound
analysis, but in exchange, they get close to the TP rate of true sound analysis
with less than half the FPs.

Bug detection using n-grams and op-codes

Chappel et al. [18] from Oracle labs apply various off-the-shelf machine learning
techniques for detecting bugs in C programs and compare the results to other
static bug detection tools. The different techniques are trained and tested on
both publicly available data, as well as some of Oracle’s own internal code
bases. The data used includes artificial examples of just a few lines of code
that illustrate the presence or absence of certain types of bugs, as well as real
code examples where specific bugs have been reported. For some of the data
used, the bugs have been reported by Oracle’s internal static bug detection,
and then manually evaluated to create a ground truth. In this data, not all
bugs present in the code are necessarily labeled, since only bugs found by the
tool are evaluated. Several types of features are considered. The first type
relates to n-grams of instruction opcodes (load, store, etc.), and counts how
many times a sequence of n specific opcodes appear in a function. The second
type of features were complexity measures such as lines of code, nesting depth,
and cyclomatic complexity. Various text features from the source code such as
reserved words and parenthesis are also extracted. Over 2500 different features
are extracted from the source code in total. Using a random forest classifier,
models were trained to detect different types of bugs in the source code, with
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a separate model used for each class of bugs. The trained models were able
to match or even slightly outperform the static analysis tools on some classes
of bugs but had fewer correct detections overall. They did, however, also have
fewer false positives, being able to correctly identify 46 out of 116 bugs with
3 false positives compared to 56 correctly identified and 34 false positives by
their static detection tool. However, the machine learning-based models only
achieved adequate results when relying on features from the other static analysis
tools.

Vulnerability detection using deep representation learning

Russell et al. [9] demonstrate how using deep representation learning is a promis-
ing approach for detecting bugs in source code. Their method directly interprets
lexed source code and sends it through a CNN or RNN for the generation of
new features. The data used is on function level and consists of functions from
the SATA IV Juliet Test Suite (a benchmark for static and dynamic analyzers),
Debian source code, and public Github repositories. The data is processed and
run through a custom lexer that represents the source code with a vocabulary
of 156 tokens. This lexer filters out comments and combines similar types of
words to reduce detail and overfitting. To prevent other kinds of biases, a strict
filter removed about 90% of the raw functions, as these consisted of real dupli-
cates and duplicate lexed representations. Using a lexed function, they embed
it into a l × k matrix, where l is the number of tokens and k is a fixed-length
randomized vector for each unique token. This matrix is then used as the initial
embedding for the CNN and RNN. Using the neural networks to perform the
final classification turned out to be worse than using them for feature engineer-
ing, and they, therefore, used the final layers and states as features for a RF
classifier. To evaluate the performance of their approach they also trained a
RF classifier using a BoW representation that ignores the token order. As for
the results, the CNN slightly outperformed the RNN both as a classifier and
for feature generation. On the Juliet Test Suite, the CNN alone and CNN with
RF achieved a ROC AUC of 0.954 and 0.936 respectively. The BoW baseline
achieved a lower score of 0.913, indicating that their approach is indeed bene-
fiting from being able to retain the order of tokens. For the combined Debian
and Github data set, the highest ROC AUC achieved was with the CNN and
RF at 0.904. In this case, the baseline was a little closer at 0.883, but still quite
a step down.

Vulnerability detection using abstract syntax trees

Bilgin et al. [12] use an AST representation and a CNN in order to attempt to
distinguish vulnerable and non-vulnerable software at a function level. Before
they could feed the AST to the neural network they need to convert it to a
numeric vector. In order to preserve the structural relations of the AST as a
one-dimensional vector, they converted it to a binary tree first. In a binary
tree, all internal nodes have two children, and they made sure that all leaf
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nodes have the same depth. By performing this conversion, the tree will be of
equal size for each function, with the same placement of nodes, and therefore
be optimal input for a CNN. Empty nodes have a default NULL value. They
then convert the binary tree into a vector sorted by depth. This vector now
consists of tokens, and to do its final conversion, all equal tokens are converted
to their own unique numerical three-dimensional vector. Increasing the depth
of the binary tree resulted in an exponential increase in processing time, and for
performance reasons, they chose a depth of 8 for the evaluation. The dataset
used is an undersampled and balanced subset of the dataset proposed by Russell
et al. [9]. The subset includes four different CWE types. The performance of the
model varied according to what vulnerability was classified. CWE-476 (NULL
Pointer Dereference) had an AUC ROC score of 0.882, while CWE-120 (Classic
Buffer Overflow) got a lower score of 0.778. This study shows that some types
of vulnerabilities can be significantly harder to detect than others.

Vulnerability detection using control flow graphs and BoW

Harer et al. [10] use two different types of features to create an automatic
vulnerability detection system for C/C++ code at a function level. The first
type are build-based features extracted during the compilation process. These
features include the CFG of the code, as well as the opcode vectors and use-
def matrices from the basic blocks. The second type are source-based features
extracted directly from the code. This includes using a custom lexer that cat-
egorizes the code elements into different bins such as string literals, numbers,
operators, keywords, function calls, etc. Two sets of vectorized features are
extracted from the lexed tokens using a bag-of-words (BoW) approach and the
word2vec algorithm respectively. Two distinct data sets are used for testing.
The first is the full set of C/C++ packages distributed with Debian, while the
second is a large set of C/C++ functions from public Github repositories. The
data is then labeled by analyzing the code with the Clang static analyzer. The
code is labeled as either ”good” or ”buggy”, using the result from the static
analyzer as the ground truth. Based on the fact that R. Russell contributed
to this work as well, it can be assumed that the dataset is similar to the one
described by R. Russell et al. Using the BoW vector and an extra-trees (ET)
classifier, a ROC AUC of 0.85 was achieved. Using a CNN initialized with the
word2vec representation achieved a slightly better result with a ROC AUC of
0.87. By using the features from the CNN-model as input in an ET-classifier,
the precision-recall AUC increased slightly while ROC AUC remained at 0.87.
Using the build-based features with a random forest classifier performed worse
overall, achieving ROC AUC scores of 0.76 and 0.74 on the Debian and Github
data sets respectively.

Vulnerability detection using program dependence graphs

Li et al. [13] investigate whether more semantic code information helps with de-
tecting vulnerabilities related to specific library/API calls in source code. This
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is done by comparing classification using just data dependency features to us-
ing control dependency and data dependency features at the same time. They
use the open-source tool Joern [19] to analyze programs and generate various
features. The program’s AST is extracted and used to identify library/API
function calls. Then, a program dependence graph is generated for each func-
tion. Program slices that show data dependency and control dependency are
generated from the PDG. Finally, code gadgets are generated from the pro-
gram slices. Code gadgets are lines of code in the order of the dependency
between them. The code gadgets are vectorized by mapping to a sequence of
symbols which are transformed into fixed-length vectors. After testing using
code gadgets with just data dependency and comparing with also using control
dependency, the authors conclude that using both control dependency and data
dependency performs better than using just data dependency alone. A range of
different neural networks was tested in order to decide which is better for vul-
nerability detection. A bidirectional long short-term memory (BLSTM) neural
network is found to perform the best, achieving an F1 score of 92.4 on a data
set of 68,353 code gadgets where 13,686 were labeled as vulnerable. Different
methods to accommodate imbalanced data are tested, including oversampling
based on interpolated data, as well as undersampling, however, both of these
performed worse than using no sampling.

Vulnerability detection using graph neural networks

Cheng et al. [20] leverage the recent advancements in graph neural networks
(GNN) to represent the source code while maintaining high-level programming
logic. A PDG is constructed from the source code by combining the VFG
and CFG. From this PDG they extract structured information, that can be
directly used in the GNN, as well as unstructured information. The unstructured
information needs to be filtered and vectorized using a word2vec approach before
it can be used as input in the GNN. The GNN used in this paper is a k-GNN,
a k-dimensional GNN, understanding higher-order graphs. The data used is
collected from SARD, a vulnerability database containing a wide range of CWE
categories. The final data set contained about 150k vulnerable samples and
400k safe samples after extracting samples from the source files. The final
GNN network got an average F1 score of 0.956 over the different CWE types.
They also compare their k-GNN approach with other GNNs and achieve very
similar, but slightly worse results. Even though graph neural networks are very
new, they seem to perform particularly well in classifying vulnerable snippets
of code. The clear downside to this complex approach is the amount of context
and processing needed to extract the different graphs.

3.3 Summary

In this chapter, a total of eight pieces of literature have been annotated. The
type of machine learning used, as well as methods of pre-processing and repre-
sentations are many. According to the literature, trivial features do not perform
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very well compared to more advanced representations like lexed and graph-
based representations. The majority of the approaches use graph-based rep-
resentations of some sort, but they all have the same drawback; they require
the surrounding code and context. The NLP-based approaches using a lexed
representation only, do not have this problem, and they still achieve similar
results.

As stated when introducing the goal and research questions, this thesis will
focus on text semantics and not context captured by graph-based representa-
tions. However, it is still important to review the literature on different topics
as their methodologies can be compared, and new ideas can come to life.
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4 Methodology

In this chapter, a range of NLP approaches to vulnerability detection are de-
scribed. Multiple methods of pre-processing have been applied to create different
representations, all based on previous literature. The machine learning models
are also inspired by the previous literature, however, new combinations of mod-
els and features are explored. The main approaches include the representation
learning method used by R. Russell et al. [9], as well as n-grams as used in the
works by B. Chernis et al. [16] and Y. Pang et al. [21]. All pre-processing and
representations of data described in this section were calculated using only the
train set before transforming the whole dataset.

4.1 Data

The Draper VDISC dataset is the main dataset used in this thesis. The dataset
consists of 1.27 million functions labeled by their CWE number. It was created
by R. Russell et al. [9] as a part of their approach to classifying vulnerable func-
tions. The functions have not been labeled manually, nor by dynamic analysis,
but rather by static analysis. The static analysis tools used for labeling were
a combination of multiple open-source analyzers including Clang [3], Cppcheck
[22], and Flawfinder [23]. R. Russell et al. used a team of security researchers
to properly map each vulnerable result to its correlated CWE. This approach
to labeling might introduce a number of incorrectly labeled samples, but other
options like using pull requests were deemed too hard to automate, and it is too
time-consuming to manually label large amounts of data. Even without a per-
fect dataset, this method should still prove sufficient to train models to mimic
the behavior of static analysis. Other means of improving the dataset have
been done. Strict data curation has already been performed on the data. This
curation included the removal of all duplicates that could result in overfitting,
as well as removing functions that compiled into the same set of op-codes. To
put this into perspective, the 1.27 million entries in the dataset are only about
10% of the originally collected data samples.

The function sources are fetched from popular GitHub repositories, as well
as the Debian Linux source code. Only the top four CWE types are labeled
individually, while the rest are bundled into their own category. A function can
have one or more CWEs at the same time. This dataset is very unbalanced,
containing only about 6.5% vulnerable samples across all classes. This is how-
ever, a very real-world scenario compared to balanced datasets like the Juliet
Test Suite [24]. The dataset is also pre-split into train, validate and test versions
using an 80:10:10 split. This makes it easy to compare with results from other
papers. An overview of the dataset can be seen in Table 2.

The Juliet Test Suite is also used in some of the experiments. This suite is
a collection of test cases for C/C++. This suite was made by the National In-
stitute of Standards and Technology (NIST) as a benchmark for static analysis
tools. Similar to the VDISC dataset, this collection also labels the vulnerable
samples by their CWE type, but does so by including 118 different types. An-
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other difference is that this dataset is a collection of compilable files with helper
functions. This makes this dataset more complex and not restricted to specific
functions. The Juliet Suite consists of 64 099 test cases where each case consists
of at least one vulnerable, and one safe function. All test cases in the Juliet
Test Suite has been artificially created and does not represent real-world code,
but rather fabricated vulnerable functions and their fixed counterpart.

In the next part of this chapter, five relevant categories of CWEs are de-
scribed with examples. These five categories make up the VDISC labels, and
they will be the main focus for classification. Understanding how the differ-
ent CWE types are produced can help during lexing and pre-processing of the
source code.

CWE Train Validate Test

CWE-119 1.9% 1.9% 1.9%
CWE-120 3.7% 3.7% 3.8%
CWE-469 0.2% 0.2% 0.2%
CWE-476 1.0% 0.9% 0.9%
Other 2.7% 2.8% 2.7%

Table 2: VDISC Dataset - Distribution of vulnerable functions

4.1.1 CWE-119

CWE-119 is the second most common vulnerability in the VDISC dataset. It is
defined as an improper restriction of operations within the bounds of a memory
buffer [25]. Generally, this means that the programmer does not check whether
or not the requested index is in the allocated buffer. An example of a typical
CWE-119 vulnerability can be seen in Code Snippet 5.

int main(void) {

char *items[] = {"one", "two", "three", "four"};

int index = GetRandomIndex();

// Unsafe - This index might be outside bounds!

printf("You selected %s\n", items[index]);

}

Code Snippet 5: CWE-119 example

4.1.2 CWE-120/121/122

CWE-120, 121, and 122, are all vulnerabilities related to buffer overflows. CWE-
120 is today often referred to as a ”Classic Buffer Overflow”, as it is the most
common one. In this case, the programmer simply forgets to check the length
of the input and ends up writing more data than the space they have allocated.
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An example of this vulnerability can be seen in Code Snippet 6. CWE-121 and
CWE-122 refer to buffer overflow on the stack and heap respectively.

void function(char *string){

char buffer[24];

// Unsafe - String might be longer than buffer

strcpy(buffer, string);

}

Code Snippet 6: CWE-120 example

4.1.3 CWE-469

CWE-469 is a vulnerability that takes place when pointers are subtracted to
determine size. If the pointers are not in the same memory chunk, the size will
be invalid and might point outside of the allocated memory. An example of a
program with this vulnerability can be seen in Code Snippet 7.

int size(int *start, int *end) {

// Unsafe - End and start might not be in same memory chunk

return end - start;

}

Code Snippet 7: CWE-469 example

4.1.4 CWE-476

CWE-476 is a NULL pointer dereference. In simpler terms, this occurs whenever
a used pointer turns out to be NULL. An example of CWE-476 can be seen in
Code Snippet 8.

int times(int *ptr, int num) {

// Unsafe - Ptr might be NULL

int i = *ptr;

return i * num;

}

Code Snippet 8: CWE-476 example

4.1.5 CWE-Other

R. Russell et al. merely focused on classifying the top four CWE types. As
such, they merged the remaining vulnerability types into one single class. Ex-
actly which CWE types are present is unknown, however, CWE-20, CWE-457,
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and CWE-805 are documented. It is very likely that some CWE types in this
category are easier to detect than others.

4.2 Pre-processing

In order to create good representations of the source code, where only specific
keywords are selected, it is necessary to parse the individual functions and group
the different symbols and keywords. A custom pre-processing approach has been
taken. To parse the functions, Clang is utilized. Clang is often only used to
fully compile C/C++ programs, but in order to do so, it also parses the source
code first. This parsing step using Clang’s preprocessor does not require the
code to be complete or functioning, and it can therefore be used on all functions
in the VDISC dataset. One additional step is taken before the functions are
sent to Clang for parsing. All statements starting with a hashtag (#), also
called preprocessor directives, are processed and removed by the Clang. We do
not want this as parts of code between #if statements may be removed due
to missing environment variables. To counter this, a simple replacement occurs
where all hashtags are replaced by ”hash ”, which means that ”#if” becomes
”hash if”. An example of a function and its output from the Clang pre-processor
can be seen in Code Snippet 9. As one can see from this example, all keywords
and symbols are successfully grouped and the value of the individual keywords
are kept and ready to be filtered.

Approaches using abstract syntax trees and other tree-based methods, re-
quire the functions to be compilable to properly map types and function calls.
Such approaches are therefore not possible in this case without discarding all
functions that are not compilable. Using an approach that only looks at the
function itself is therefore preferable with this kind of dataset. It is also more
efficient, disregarding all outside context when pre-processing.

The Juliet Test Suite from Chapter 4.1 has also been used for experimenting.
All vulnerable and benign functions were extracted before applying the same
pre-processing as the VDISC dataset. All CWE types defined in Juliet that did
not exist in VDISC were merged into the CWE-others category. It was then
manually filtered to remove all functions with duplicate lexed representations.

4.3 Lexing and Vectorizing

After pre-processing, the functions are still lists of text, and therefore need to
be processed further in order to become the input to a machine learning model.
In this step, two methods of lexing are introduced, as well as a general method
of vectorizing the functions into numbers instead of words.

The first lexed representation is of similar traits to the one described by R.
Russell et al. This representation uses the output from Clang in order to keep
all native C/C++ keywords but only include some identifier names. Russell et
al. do not disclose what function, type, and variable names are included in their
paper, but do mention that they included vulnerable functions from C standard
libraries. The C standard libraries do not only contain functions that interact
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#include <iostream>

int main()

{

std::cout << "Hello, world!\n";

}

/* Output from custom Clang pre-processor:

identifier 'hash_include'

less '<'

identifier 'iostream'

greater '>'

int 'int'

identifier 'main'

l_paren '('

r_paren ')'

l_brace '{'

identifier 'std'

coloncolon '::'

identifier 'cout'

lessless '<<'

string_literal '"Hello, world!\n"'

semi ';'

r_brace '}'

eof ''

*/

Code Snippet 9: Custom Clang pre-processor input and output

closely with memory in C, but also functions used in C++ code. As such, this
lexed representation includes all C/C++ symbols and keywords, as well as all
types and functions from all C standard libraries. Another handful of custom
tokens has also been added, resulting in a total token count of 268, which is
more than the 156 tokens used by Russel. In this lexing process, comments are
removed, integers are split into separate digits and other types like floats and
strings are mapped to placeholders. The total list of included tokens can be
found in Appendix 1.

The second lexed representation is not taken from any of the previously
reviewed literature. This method uses the raw function sources. The Clang
representation removes all comments, spaces, and newlines. A different repre-
sentation that keeps these features might be beneficial. The problem is that we
cannot easily lex the code, as we do not know where to split the keywords and
identifiers without a proper parser like Clang. A basic approach is taken where
all brackets, braces, and operators get a space added on both sides before split-
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ting the function source on all spaces. This retains most of the original data.
The number of unique tokens in the dataset is still too many at this point for
a practical embedding and is therefore reduced to tokens appearing in at least
1000 samples, which resulted in a total of 4253 unique tokens. These tokens
include many of the same as the first lexed representation, however, they also
include combinations due to lack of spaces, as well as library-specific types and
functions. This representation is able to represent the code at a given token
threshold without manually creating a list of whitelisted keywords.

Before these representations can be used in a neural network or another
model, the lexed functions must be converted to integers. This is done by making
a numbered vocabulary list from the 268 or 4253 tokens and then replacing the
tokens with their index in the vocab list. A special padding token is also added
to the vocabulary at index 0. This token is then added as padding to the end
of each function to ensure a fixed length of 500. The padding is only performed
where it is needed, and as such is not included in n-gram approaches.

The first and second lexed representation will from now be referred to as
lexed-1 and lexed-2.

4.4 Machine Learning Approaches

In this chapter, several machine learning models trained on the lexed data are
introduced. Details about each model will be explained, as well as details about
what ideas did not work well, and were discarded under development. While
exploring and experimenting the PR-AUC score was used to measure model
performance.

4.4.1 Trivial Features using Random Forest

In the literature, there were some experiments done using simple statistical or
trivial features, for example by Chernis et al. [16]. These features contain
very little information about the actual contents of the source code they are
extracted from, but they still reveal some information about things like the
size, diversity, and complexity of the code. Additionally, statistical features are
simple to understand and fast to extract from the source code. Therefore some
experimenting with a small set of statistical features was done, even though the
results in the literature were not very promising. A simple python script was
used to extract the statistical features from the raw source code, and as such, no
lexed representation is used. These features included character count, symbol
count, character entropy, symbol entropy, character diversity, symbol diversity,
and max nesting depth. In the aforementioned features, symbol refers to only
non-alphanumeric characters.

4.4.2 BoW and N-grams using Random Forest

As was mentioned in section 2, n-grams and BoW-models are commonly ap-
plied when working with natural languages. One of the goals of this thesis was
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to explore the effectiveness of applying these techniques to detect and classify
vulnerabilities in a large dataset of program code. Both Chernis et al. [16], and
Pang et al. [21] experiment with source code n-gram models, achieving some-
what promising results, although differences in datasets make it difficult to say
anything conclusive about n-gram features for vulnerability detection. Despite
program code largely consisting of the same characters as natural language text,
programming languages are not natural languages and differ greatly from them
in many ways. For example, in programming languages, identifiers like function
and variable names can be anything, which means that functionally identical
pieces of code, are not necessarily the exact same textually. This can cause
issues when attempting to find specific patterns in code text that can help with
identifying vulnerabilities.

If n-grams are extracted from the raw code text, the resulting vectorization
becomes very large because identifier names are mostly unique from one function
to another, resulting in a very large vocabulary. All these features are mostly
useless since the specific n-grams containing the unique identifier names will
only appear in one of the samples. To combat this, it is possible to use a
minimum document frequency threshold and remove the n-grams that appear
infrequently. The document frequency is defined as the fraction of documents
that a specific term or n-gram appears in. However, a threshold can result
in the opposite problem, as most n-grams containing identifiers are going to
be removed, resulting in very few n-grams. This is a problem, as possibly
useful code patterns are left out because the identifiers were different between
the various samples. To overcome the aforementioned obstacles, the n-grams
are extracted after the raw code text has been lexed. This solves the issues by
removing most identifiers and replacing them with the same generic placeholder,
only keeping specific identifiers from certain libraries that were believed to be
useful.

The raw data from the VDISC-dataset was first lexed using the lexed-1
approach described previously. After lexing the raw code text, the n-grams
were extracted from the lexed code texts. For n > 1, a minimum document
frequency threshold was used to limit the total number of n-grams, as extracting
every single n-gram that appeared in the data would simply be infeasible. At
the same time, the goal was to extract as many as feasible, in order to have as
many features as possible when performing feature selection. The idea is that
some of the less frequent n-grams could be correlated with vulnerabilities, while
the very infrequent n-grams simply occurred too rarely in the data to be useful.
Various different configurations and combinations of n-grams from lexed data
were experimented with. After extracting the n-grams, a chi-square feature
selection was performed on the sets that exceeded 1024 n-grams, in order to
reduce the feature space before classification.

4.4.3 Convolutional Neural Network

This approach using convolutional neural networks is inspired by the article
by R. Russell et al. [9]. The approach is based upon sentence classification as
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described in Chapter 2.6.2. Ze Zhang et al. have done extensive testing on what
parameters should be considered for sentence classification problems [26], and
as such the values that were chosen in this implementation are based on these
recommendations in addition to experimenting. Both lexed-1 and lexed-2 are
used to create two distinct CNN models.

To start, each unique token in the lexed dataset is embedded into a unique
vector of dimensions either 13 or 64 depending on performance. The vectors
are randomly initiated between -1 and 1 as Russell et al. found that pre-trained
values using Word2Vec had little to no effect on the end results. Multiple convo-
lutional layers and the combinations of these were tested. A single convolutional
layer consisting of 512 filters, each with a filter length of 5, making 512 feature
maps, followed by ReLU, proved to perform the best. The 512 feature maps
each apply max-pooling along the total length of 500 (length of the input func-
tion with padding) before flattening the feature maps into 512 total features.
A dropout of 0.5 is applied before a single linear layer reducing the output to
the number of classes, which is 5 in the VDISC dataset. The optimizer used
is ADAM with a learning rate of 0.001. This learning rate is a bit high, how-
ever, lower learning rates yielded similar results. The loss function used was
binary cross-entropy with sigmoid applied to the input. Sigmoid is used over
softmax as this is a multi-label problem where multiple CWEs can occur in a
single function. One can also say that the network is trained on a shared feature
representation. A summary of the network can be seen in Table 3.

Layer name Output shape Param count Info

Embedding [500, 13] 3,549 dim: 13 or 64
Conv1d (ReLU) [512, 500] 33,792 kernel: 5

MaxPool1d [512, 1] - kernel: 500
Flatten [512] - -
Dropout [512] - rate: 0.5
Linear [5] 2,565 -

Table 3: Summary of CNN model

Russell et al. stated that class-weighing the vulnerable functions in the
loss function was one of the keys to their performance. Different weights were
explored, but a weight of around 10 : 1 for all vulnerable classes proved most ef-
ficient. Experiments revealed that multiple fully-connected layers significantly
improved the CNN’s predictions, however, the feature maps from the convo-
lutions suffered in quality. The model trained the linear layers rather than
optimizing the feature maps. In a scenario where one uses the CNN as a pre-
dictor, this works well, but according to Russel, random forest has proved to
be better at classification. The linear layer is therefore just a single layer in
order to prioritize training feature maps for deep representation learning. The
classification results using this CNN are not optimized for direct vulnerability
prediction, but rather deep representation learning. This is also reflected in
Table 3, where the linear layer has a mere 2565 trainable parameters.
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Both the CNN for lexed-1 and lexed-2 were trained for a total of 20 epochs.
The best performing epoch for each of the CNNs were chosen as the final two
models. Because this CNN approach produces two different networks based on
the lexed input, the networks will from now on be referred to as CNN-1 and
CNN-2, trained on lexed-1 and lexed-2 respectively.

4.4.4 Deep Representation Learning using Random Forest

As described in Chapter 2.6.2, neural nets can be used for representation learn-
ing, or in this case, deep representation learning. Much like the findings from R.
Russell et al. [9], the CNN itself did not perform particularly well at classifica-
tion. Instead, deep representation learning is used, and the 512 raw weights are
extracted from the CNN before the dropout layer. These features were extracted
from both CNN-1 and CNN-2 and were trained on using random forest.

From this point onward, the random forest models trained on CNN-1 and
CNN-2 will be referred to as RF-CNN-1 and RF-CNN-2 respectively. A third
model was also created. This model combines the 512 features from both CNN-1
and CNN-2 in order to create a random forest model with 1024 features. This
model will be referred to as RF-CNN-3.

4.4.5 Other Combinations

Including the different methods described previously, other combinations were
also tested. Among these are RF-CNN-3 combined with trivial features and
different n-grams. None of these performed any better in combination. The
feature overlap is likely too large to improve performance. With more than
1000 estimators using RF, the trivial features and n-grams actually decreased
the final model performance. In addition to other combinations, the Juliet
dataset was also merged with VDISC in order to create a larger set to train on.
The Juliet dataset turned out to negatively affect the VDISC dataset. This is
likely due to the test suite being artificial, as well as the VDISC labels being
slightly mislabeled due to the static analysis performed to create the labels.
These combinations, as well as the Juliet dataset, will not be discussed further
as they did not positively affect performance and further research was dropped.

4.5 Experimental Setup

4.5.1 Resources

All machine learning models and pre-processing was run on resources provided
by NTNU IDI. The server used had the following specifications:

CPU 2x Intel Xeon Gold 6132

GPU 2x Nvidia Tesla V100 32 GB

RAM 768 GB

CUDA Version 11.6
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All the different resources are used to their full extent at different stages of
the approaches. The pre-processing utilizes significant amounts of memory. The
CNN utilizes almost 100% of both GPUs, and RF utilizes close to 100% of all
CPU resources. The CPU and GPU resources are not required to reproduce the
results, however, the memory is important to reproduce the best results using
RF.

4.5.2 Libraries and Software

Different Python libraries and software were used to implement the pre-processing
as well as the models. All the software and libraries that were used are open-
source projects. For creating the neural networks, PyTorch was used. PyTorch
is a high-performance deep learning library for Python with great possibilities
for GPU acceleration [27]. For NLP-based processing, PyTorch-NLP was used
[28]. This library includes text encoders that are used extensively to convert
vectors of words into vectors of numbers. Scikit-learn is a library that provides
machine learning tools and models, and was used along with matplotlib for eval-
uation and for the random forest implementation [29] [30]. To make handling
matrices easier, the libraries Pandas and NumPy were used [31] [32].
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5 Results

In this chapter, the results of the different methodologies will be presented.
The results include relevant metrics and hyper-parameters for each approach.
Because both vulnerability detection and CWE classification are important, all
results include both a multi-label classification of CWEs and a binary classifica-
tion (except CNN-1 and CNN-2). The binary classification is done by merging
all CWE types into one ”vulnerable” y-value. The binary classification is only
performed on methods using random forest. As mentioned in the theory part,
multi-label and multi-class are different. Multi-label models can predict multi-
ple vulnerability types at the same time, while multi-class can have one of many
types. The CNN models are strictly trained on multi-label data. All metrics
that require a selected threshold, like F1 and MCC, have their threshold cal-
culated on the validation set. All methods utilizing random forest have used
100 estimators and entropy as the gain function unless another configuration
is specified. The tables containing the different evaluation metrics will contain
the two metrics called ROC W and PR W. W in this case refers to the metric
being weighted. This means that the score is calculated based on the number
of vulnerable samples in each class, rather than an average over the number of
classes. Note that both ROC and PR refer to the AUC score.

5.1 Trivial Features using Random Forest

The small set of trivial statistical features was primarily created to be used
in conjunction with other feature sets, however, the trivial feature set alone
was also used to train two different random forest models, one for multi-label
and one for binary classification referred to as RF-trivial and RF-Trivial-Binary
respectively. Each model consisted of 100 estimators. The results of both models
can be seen in Table 4. RF-Trivial-Binary achieved twice as high PR-AUC as
RF-Trivial.

Model ROC ROC W PR PR W MCC F1 ACC

RF-Trivial(100) 0.679 0.692 0.072 0.082 0.108 0.122 95.42

RF-Trivial-Binary(100) 0.680 - 0.146 - 0.143 0.208 83.66

Table 4: Metrics for RF multi-label and binary models trained using trivial
features

5.2 BoW and N-gram using Random Forest

A total of 5 different n-gram feature sets were extracted from the lexed dataset.
A minimum document frequency of 0.001 was used for all feature sets, except
for 1-grams, as there were only 268 possible tokens. Table 5 shows the different
n-gram feature sets that were tested, including the number of n-grams that each
yielded. In order to reduce the number of features before training, the n-gram
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features of each feature set were ranked with the chi-squared-test, and only the
top 1024 features for each set were kept.

n n-grams

1 268
2 1328
3 3872
4 7376
1-4 12757

Table 5: N-gram combinations and number of extracted n-grams

To test the various feature sets, random forest models were used. For each
of the models, the Scikit-learn RandomForestClassifier class was used with 100
estimators and entropy as the splitting criterion. The various models for the
feature sets in table 5 will be referred to as RF-N1, RF-N2, RF-N3, RF-N4, and
RF-N1 4 respectively. The results of all models are shown in Table 6. The best
performing model was RF-N3. A second model based on the best performing
model was also created, with the same parameters as RF-N3, except with 1000
estimators, instead of 100, and is included at the bottom of Table 6.

Model ROC ROC W PR PR W MCC F1 ACC

RF-N1(100) 0.891 0.904 0.342 0.394 0.409 0.413 97.62

RF-N2(100) 0.898 0.911 0.378 0.432 0.446 0.449 97.77

RF-N3(100) 0.902 0.914 0.390 0.443 0.463 0.464 97.90

RF-N4(100) 0.897 0.911 0.386 0.438 0.455 0.457 97.77

RF-N1 4(100) 0.900 0.911 0.383 0.436 0.459 0.457 97.76

RF-N3(1000) 0.930 0.930 0.415 0.463 0.471 0.473 97.88

Table 6: Metrics for all RF multi-label models trained using n-grams

The same feature sets were also used to train models for binary classification
on combined class labels. These models have the binary suffix and the results
can be seen in Table 7.

Model ROC PR MCC F1 ACC

RF-N1-Binary(100) 0.884 0.469 0.477 0.510 92.56

RF-N2-Binary(100) 0.895 0.499 0.505 0.537 93.30

RF-N3-Binary(100) 0.899 0.506 0.513 0.543 92.98

RF-N4-Binary(100) 0.895 0.500 0.506 0.537 93.00

RF-N1 4-Binary(100) 0.893 0.496 0.507 0.537 92.95

RF-N3-Binary(1000) 0.907 0.522 0.516 0.547 93.22

Table 7: Metrics for all RF binary models trained using n-grams

In both multi-label and binary classification, the 3-gram feature set yielded
the best performing models. Figure 3 provides a visualization of the 100 most
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important n-grams, as scored by the chi-squared test. A larger font corresponds
to a higher score.

Figure 3: Visualization of the 100 most important 3-grams scored by the chi-
squared-test

5.3 Convolutional Neural Network

Classifying performance for the CNN alone was not prioritized in this thesis,
as the real goal was deep representation learning. However, optimizing the
models was still a priority. Only multi-label models classifying CWE types
were trained. The only varying parameter for the CNNs was the embedded
dimension. Dimensions of 13 and 64 were applied to both lexed-1 and lexed-2,
in order to decide which dimension fit better for which representation. The
evaluation metrics for CNN-1 and CNN-2 for both dimensions can be seen in
Table 8. For CNN-1 (lexed-1), an embedded dimension of 13 performed better,
while 64 dimensions performed better for CNN-2 (lexed-2). This comparison is
done by looking at PR-AUC values only.

Model ROC ROC W PR PR W MCC F1 ACC

CNN-1(13) 0.919 0.920 0.318 0.375 0.427 0.425 97.59

CNN-1(64) 0.916 0.918 0.316 0.375 0.422 0.419 97.56

CNN-2(13) 0.921 0.926 0.349 0.404 0.443 0.441 97.63

CNN-2(64) 0.897 0.916 0.354 0.413 0.439 0.440 97.70

Table 8: Metrics for CNN-1 and CNN-2 with embedding dimensions 13 and 64

Both networks were trained for a total of 20 epochs, and the best epochs
among these were selected. For CNN-1 and CNN-2 this corresponds to epochs 18
and 20 respectively. After these epochs, the model loss increases in both cases,
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and it started to overfit. Lower learning rates helped counter the overfitting,
however, the model PR performance did not improve.

5.4 Deep Representation Learning using Random Forest

The three different deep representation learning models RF-CNN-1, RF-CNN-2,
and RF-CNN-3 were all trained with RF using 100 estimators as stated earlier.
Two different methods of measuring the quality of a random forest split were
tried: Gini and entropy. Entropy proved to consistently outperform gini and
was therefore used. Using class weights proved only to reduce performance
over manually selecting thresholds after the fact. The best model RF-CNN-
3 reached PR-AUC scores of 0.449 and 0.555 on the multi-labels and binary
labels respectively. These are the best scores achieved out of all the models
trained with 100 estimators. In an attempt to further increase these scores,
the estimator values were expanded to the values [100, 1000, 2500] for RF-CNN-
3 and RF-CNN-3-Binary. The results for the multi-label models and binary
models can be seen in Table 9 and Table 10 respectively.

Model ROC ROC W PR PR W MCC F1 ACC

RF-CNN-1(100) 0.910 0.920 0.434 0.484 0.499 0.500 98.01

RF-CNN-2(100) 0.907 0.918 0.424 0.481 0.495 0.496 97.90

RF-CNN-3(100) 0.913 0.925 0.449 0.505 0.514 0.514 98.00

RF-CNN-3(1000) 0.939 0.940 0.468 0.519 0.522 0.522 98.01

RF-CNN-3(2500) 0.942 0.942 0.468 0.520 0.523 0.524 98.02

Table 9: Metrics for all RF-CNN multi-label models

Model ROC PR MCC F1 ACC

RF-CNN-1-Binary(100) 0.906 0.538 0.548 0.577 93.78

RF-CNN-2-Binary(100) 0.906 0.534 0.544 0.572 93.63

RF-CNN-3-Binary(100) 0.915 0.555 0.564 0.589 93.69

RF-CNN-3-Binary(1000) 0.920 0.567 0.568 0.593 93.72

RF-CNN-3-Binary(2500) 0.921 0.568 0.567 0.591 93.68

Table 10: Metrics for all RF-CNN Binary models

The improvement of increasing the random forest estimators can be seen in
Figure 4. This figure showcases a PR curve for the lower 100 estimators model
versus the higher 2500 estimators model. The PR score improved significantly
from 100 to 2500 estimators for both the multi-label and binary models. All
the metrics calculated for both models using 2500 estimators can be found in
Appendix 2.

Considering the fact that CNN-RF-3 (multi-label and binary) is the best
performing model, it is natural to include the confusion matrices for each CWE
type. As for the multi-label classifier, Table 11, 12, 13, 14, 15 presents the
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Figure 4: PR curves for RF-CNN-3 at 100 and 2500 estimators

confusion matrices for the types CWE-119, CWE-120, CWE-469, CWE-476,
and CWE-other respectively. Because this is a multi-label model, one can not
simply create a single confusion matrix. The reason for this is once again that
multiple labels can be true at the same time. A such combined confusion matrix
would not make sense. The confusion matrix for the binary classification, or
detection, can be seen in Table 16.

Predicted Label

Negative Positive

True Label
Negative 122903 2064
Positive 529 1923

Table 11: CWE-119 Confusion Matrix for best model (multi-label)

Predicted Label

Negative Positive

True Label
Negative 118434 4094
Positive 1056 3835

Table 12: CWE-120 Confusion Matrix for best model (multi-label)
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Predicted Label

Negative Positive

True Label
Negative 126925 216
Positive 181 97

Table 13: CWE-469 Confusion Matrix for best model (multi-label)

Predicted Label

Negative Positive

True Label
Negative 125915 312
Positive 584 608

Table 14: CWE-476 Confusion Matrix for best model (multi-label)

Predicted Label

Negative Positive

True Label
Negative 121948 1981
Positive 1573 1917

Table 15: CWE-other Confusion Matrix for best model (multi-label)

Predicted Label

Negative Positive

True Label
Negative 113552 5614
Positive 2434 5819

Table 16: Confusion Matrix for best model (binary)

5.5 Result Summary

In order to put into perspective how each of the proposed methodologies per-
formed, it is important to compare their PR curves as well as ROC curves. In
Figure 5, the best performing models from each class (using 100 RF estimators)
have their PR curve displayed. RF-Trivial is the only outlier performing signifi-
cantly worse than the rest. In Figure 6, the same models have their ROC curves
displayed. Once again RF-Trivial is the only model to severely underperform.
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Figure 5: PR curves for selected binary RF models (100 estimators)

Figure 6: ROC curve for selected binary RF models (100 estimators)
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6 Discussion

This chapter covers a discussion of the results in the previous chapter. The
models will be discussed, compared to literature and outstanding challenges
will be addressed.

6.1 Models

The trivial statistical features performed by far the worst out of all the models
tested, achieving a PR-AUC of only 0.072 for the multi-label classification. This
was not very surprising, as most of these features say very little about the un-
derlying code and this feature set was by a large margin the smallest set tested.
On the binary classification, it performed better, although still subpar, with a
PR-AUC of 0.146. A larger set of trivial statistical features could potentially
yield better results up to a certain point, although it is unlikely that trivial
statistical features could outperform more complex features. Program code is
simply too syntactically intricate. It is also important to remember that the
difference between a non-vulnerable and vulnerable code sample can be very
small, and good features must be able to capture this. Trivial features similar
to the ones tried in this thesis were used in Chernis et al. [16], achieving sim-
ilar results, with trivial features performing quite a bit better than randomly
guessing, but still not very impressive compared to the other models in this
thesis.

Bag-of-words and n-grams encompasses larger and more complex statistical
features and generally performed quite well in the literature. Just using the
frequencies of each individual token (1-grams) yielded a PR-AUC of 0.342, which
is a massive improvement over the trivial statistical features. Extending to 2-
grams gave a good improvement, reaching a PR-AUC of 0.378, and 3-grams
performed better still, yielding the highest scores of the tested n-gram models
with a PR-AUC of 0.390 using 100 estimators. 4-grams performed only slightly
worse. Quite surprisingly, selecting the top n-grams from the combined pool of
1-4-grams also performed slightly worse than just the top 3-grams. This suggests
that perhaps the chi-square test did not actually find all the ”best” features.
One reason for this could be that there was some overlap between differently
sized n-grams. Although it should be noted that the difference in performance
was very small. When increasing the number of estimators to 1000, the 3-gram
model saw a further increase in PR-AUC to 0.415.

Relating to RQ3, Figure 3 displays some of the best 3-grams, and by exten-
sion also which tokens were important when detecting vulnerabilities. The most
prominent 3-gram is char identifier l square which simply indicates the decla-
ration of an array of characters. In C/C++, arrays are stored as contiguous
memory blocks, and several common vulnerabilities relate to array operations
and improper restrictions of their boundaries. As such, it makes sense that there
is a correlation between functions dealing with arrays and functions containing
vulnerabilities. Similarly, buffer is a custom token, resulting from a few different
identifier names in the code related to the word ”buffer”, which also indicates
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operations related to arrays. A number of tokens from library functions related
to memory operations and file operations, for example, memcpy, strcmp, sizeof,
and fopen, are also prominent in some of the top 3-grams. It is difficult to draw
accurate conclusions about why these specific token combinations are impor-
tant, but certain tokens do give some information about the underlying purpose
of the code.

The convolutional neural network models; CNN-1, CNN-2, and CNN-3 do
not perform on par with n-grams when it comes to classification performance.
Looking back on Table 8, the PR-AUC was recorded at 0.318 and 0.354 for
CNN-1 and CNN-2 respectively, while the 3-grams got a value of 0.390 using
only 100 estimators. The mediocre performance was expected as the linear
classification layers of the model have been limited to a single layer. CNN-2
produces significantly better results than CNN-1 in our results. This is likely
because the larger lexed-2 vocabulary contains tokens that are closely related to
vulnerabilities, and the simple linear layer easily manages to capture this. CNN-
1 is trained on lexed-1 with a smaller vocabulary, and will therefore need more
neurons to better understand the real semantics of the code. After all, these
models are trained using as few linear layers as possible in order to force the
other weights to update and produce good features for representation learning.
As for the embedded dimensions for both models, the results do not come as a
surprise. When the vocabulary size increases, the model also benefits from an
increase in the embedded dimensions. A too-large dimension will just require
more training. Only a multi-label implementation was considered for the CNNs
because of time restrictions and complexities.

The deep representation learning approaches perform the best out of all
models implemented in this thesis. As expected, the CNN-1 features perform
very similarly to the CNN-2 features when allowed to properly train its classi-
fier, random forest in this case. The large vocabulary behind RF-CNN-2 works
better for detecting vulnerabilities deeply connected to specific tokens, but RF-
CNN-1 retains more semantic information due to the generalized vocabulary.
Combining these two makes RF able to learn from both representations, and
perform even better. This hybrid approach resulted in our best model for multi-
label as well as binary classification, RF-CNN-3, trained with 2500 estimators.
This model achieved a PR-AUC of 0.468 and 0.568 on the multi-label and bi-
nary results respectively. Compared to the best n-grams model, our second-best
approach, this model achieves an increase in PR-AUC of 5.3% on multi-class
and 4.6% on binary classification. Looking at Table 16 again, we can extract a
detection rate along with a relative rate of false positives for the binary model.
70.5% of all vulnerable functions in the test set are detected, and for every
detected function 0.96 false positives are generated. Assuming that the distri-
bution of vulnerable samples in the test set is representative of real-world code,
this is a very acceptable result. The multi-label model achieved worse results,
yet good compared to our other models, and two reasons can explain this. First
of all, the multi-label model needs to learn separate features for each class, also
called a shared feature representation. Using the same models for both multi-
label and binary classification clearly limits the multi-label case. The second

45



explanation is that the multi-label models predict the wrong class, but does
indeed predict that the function is vulnerable. Take CWE-119 and CWE-120
for instance, these two classes can have fairly similar code semantics. When
classifying binary, the classes are not considered, and this case will simply be
labeled vulnerable, thus resulting in an increase in the evaluation metrics.

Generally, for random forest, a higher number of estimators yielded better
results. Random forest is great in this way, as it does not overfit. However, the
increase in estimators does come at a cost. The computation time scales with
the estimators, and so does the model size. Anything above 2500 estimators
would take up several gigabytes of memory. The increase in estimators from
1000 to 2500 for RF-CNN-3 did not prove a significant increase in performance
compared to moving from 100 to 1000, indicating that the model is plateauing.

Looking back at the multi-label confusion matrices in Table 11, 12, 13, 14,
15, we can see that the difficulty of detecting some CWE types is harder than
others. This is caused by the variance in different vulnerabilities, sometimes
occurring on a single line and other times consisting of complex semantics.
CWE-119 and CWE-120 perform very similarly, but this makes sense as both
CWE types have similar semantics. The vulnerability type our model has the
hardest time detecting is CWE-469. This vulnerability is simple for a human
to detect, but harder for a machine learning model to understand, as semantics
are very important. The model needs to understand that two variables in a
subtraction are pointers. Such an understanding is hard to achieve but could
be done better by using value flow graphs or other graph-based representations
like described by Cheng et al. [20]. This would, however, require a dataset
parseable by the respective graph extractor tools.

Having implemented, evaluated, and discussed machine learning approaches
to vulnerability classification using statistical features, n-grams, and token-
based representation learning, RQ1 has already been answered. Looking back
at Figure 5 and 6 showing PR and ROC respectively, we can see the differ-
ences between the distinct approaches. Statistical features do not perform well
by themselves, but do give some insight and are better than a random guess.
N-grams perform surprisingly well, just a small step down from using deep rep-
resentation learning. Unsurprisingly, BoW performs worse than n-grams, as
BoW capture no semantics. Out of the n-grams, 3-grams perform the best for
our dataset.

In addition to evaluating the different approaches using statistical features,
n-grams, and token-based representation learning, hybrid combinations have
also been explored. Combining statistical features and n-grams with our best
non-hybrid model, RF-CNN-1, proves that the overlap in understanding is about
100%, rendering a hybrid approach redundant. A hybrid approach using two
lexed representations and deep representation learning for each of them proved
itself excellent. This approach reached the highest results in all of our exper-
iments and beat all pure NLP approaches in the referenced literature. The
answer to RQ2 is that hybrid approaches do perform better, however, both
methods need to capture enough semantic information, as well as have minimal
overlap.
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6.2 Dataset

The NLP-only approaches in this thesis were taken both to keep complexity
and processing times down, but also to be able to use any dataset. The VDISC
dataset used in this thesis only contains functions without any outside code
context. This severely restricts the methodologies that can be used to more
statistical and NLP-based approaches. For our approach, the dataset has per-
formed well, but the reviewed literature has proven that graph and tree-based
approaches also perform well, and likely learn different and more semantic fea-
tures [20] [13].

One positive of the VDISC dataset is its sheer size. It contains over a million
function samples. The labels however are made by static analysis. This does not
mean much for our models, as they can always be retrained on new data. Our
methodologies prove that our models can successfully extract context from the
functions. If significant changes are made to the tokens in C/C++, the dataset
will need updating. One problem using this dataset might be the bias toward
specific code bases. The VDISC dataset consists of 35% code from Debian.
Tokens specific to Debian are especially prominent in the lexed-2 representation.
This means that real-world performance outside Debian source code will likely
perform worse using the lexed-2 representation. Our lexed-1 representation
addresses this problem as it merely contains C/C++ keywords, standard library
functions and a select few custom tokens.

One downside to using the pre-determined VDISC train-val-test split is that
cross-validation is not used. Cross-validation is often used to tune the hyper-
parameters, as well as a method of generalization to counter over-fitting. How-
ever, in the case of VDISC, the size of the dataset is relatively large. Whether
it would benefit from cross-validation was not tested in order to produce results
that would be comparable with the literature.

6.3 Comparison to Literature

As we know from Chapter 2.6.5, evaluation metrics can be skewed, especially
on unbalanced datasets. In the case of the dataset used in this thesis, this is
also true. Comparing literature using dramatically different datasets will not
provide good comparisons. However, in the reviewed literature there are three
different articles covering model implementations on top of the VDISC dataset.
These implementations include the one by R. Russell et al. [9], which the deep
representation learning approach in this thesis is based upon, Z. Bilgin et al.
[12] and J. Harer et al. [10].

In the results section by R. Russell et al., they do not provide any multi-
label metrics other than PR Curves showcasing the different CWE types. It
is therefore hard to compare the multi-label performance. The PR Curves for
RF-CNN-3(2500), the best performing model in this thesis, have in Figure 7
been overlayed over Russel’s results. The graph is cluttered, but the vibrant
colored graphs represent our model, while the stapled and non-vibrant colors
represent theirs. The difference is quite staggering, where our model clearly
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Figure 7: PR AUC for best multi-label model layered over results by R. Russell
et al. [9]. All dotted lines, as well as the dull blue continuous line, represent
the work by Russell et al. The vibrant continuous lines represent the results in
this thesis.

outperforms on classes like CWE-469 and CWE-Other. The PR score is closer
for CWE-119, CWE-120, and CWE-376, however, it still performs significantly
better. Removing most of the linear layers at the end of the CNN likely had
a big impact on these results. For CWE-Other the automatic lexer-2 provided
extra context. Using only a fixed vocabulary has proved excellent, however,
using automatically picked tokens likely helped classify the many different CWE
categories in CWE-other. The lexed-1 representation also includes more tokens
that the original proposition by Russel.

As for binary classification, Russell et al. provided several metrics. In Table
17, our best model is represented both for binary and multi-label classification
along with results from the literature. Looking at the table the multi-label
model, RF-CNN-3 outperforms the binary model by Russell in ROC and PR by a
little. This is impressive, as this model is trained on a multi-label representation
and not a binary one. Our binary model RF-CNN-3-Binary outperforms every
model in the table on PR, MCC, and F1. Comparing the PR AUC, our model
reaches a whole 5% above the baseline by Russel. Similar values are seen in
MCC and F1 with about a 3% improvement. These values may not seem like
too much, but on such a complex topic as vulnerability detection using only
semantic features from functions, this is a good improvement.
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Model ROC PR MCC F1

R. Russell et al. [9] 0.904 0.518 0.536 0.566

Z. Bilgin et al. [12] 0.804 - - 0.414

J. Harer et al. [10] 0.870 0.490 - -

RF-CNN-3(2500) 0.942 0.520 0.523 0.524

RF-CNN-3-Binary(2500) 0.921 0.568 0.567 0.591

Table 17: Our best models compared to literature. Weighted averages are used.

In Table 17, Bilgin et al. and Harer et al. are also represented. Bilgin et al.
used a multi-label methodology, while Harer et al. focused on binary classifica-
tion. Both of their results are worse than the results by R. Russel, which means
their AST and CNN/ET implementations did not perform as well on the VDISC
dataset. Based on the metrics that were available, it would seem that our best
model performs better even when classifying multi-label data. As for the AST
implementation by Bilgin et al., this makes sense. In their implementation, they
severely under-sample the dataset in order to only include AST-parseable func-
tions. Our multi-label RF-N1(100) model, essentially a BoW model, achieved
an almost identical F1 score. This means that an under-sampling of the VDISC
dataset for AST extraction is likely not a good approach to the problem.

6.4 Outstanding Challenges

There are several outstanding challenges to using machine learning for static
vulnerability detection in source code. Based on the reviewed literature and our
own experiments, two main challenges that could be considered to be the most
important for this problem have been identified.

6.4.1 Lack of Data

The most important part of any supervised machine learning is the data used for
actual learning. A good data set needs to be large enough and contain enough
samples of all classes in order to sufficiently train the model. It needs to be
diverse enough so that the model becomes generalized and is able to accurately
classify data from different sources. In this thesis, the data consists of source
code, which has both upsides and downsides. A positive is that there is a lot of
source code available that can potentially be used as training and testing data.
A potential challenge is the fact that the difference between a ”good” piece of
code and a code with a security vulnerability can be very tiny. This also means
that security vulnerabilities can be hard to spot, which makes manually labeling
data very time-consuming. Some of the reviewed literature used existing static
analyzers in order to generate a labeled data set from publicly available source
code. This approach has the advantage that it can create a data set from any
piece of source code, however, it also means that only the vulnerabilities detected
by the static analyzers will be found and labeled correctly. If the goal is to
achieve better performance than the available static analyzers, this approach is
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simply not an option because the data would be too noisy; containing instances
of buggy code that is labeled as clean and vice versa. Taking the aforementioned
reasons into consideration, we believe that obtaining a good data set is one of
the major challenges in using machine learning for vulnerability detection. That
being said, there are several publicly available data sets on the topic, some of
them containing actual code, while others contain specific features extracted
from code.

6.4.2 Feature Engineering

In order to create a useful machine learning model, we need to extract a good
set of features from the data. As mentioned, the difference between vulnerable
code and good code can be minuscule, so we need features of a fine enough
granularity in order to capture these tiny differences. Additionally, security
vulnerabilities in code can present in a range of different ways, which possibly
means that we require a range of different types of features to accommodate
them all. Some vulnerabilities may be captured by statistical or token-based
features, while others require more complex features that capture the context
of the code. This has been proved by the methodologies implemented in this
thesis. As seen in Chapter 2.5, there are a lot of different features that can be
extracted from code, and finding a good feature set that is able to be used for
accurately classifying security vulnerabilities is one of the big challenges. From
the methodologies restricted to natural language, deep representation learning
on lexed tokens proved to perform well, however, the results are still far away
from fully automating vulnerability detection. More feature engineering and
better data are needed.
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7 Conclusion and Further Work

7.1 Conclusion

With the rise of technology, computers now play an important role in our lives.
Software systems are now responsible for performing essential tasks and han-
dling personal data concerning billions of people. It is, therefore, more impor-
tant than ever that such systems are secure and behave as expected. Detecting
vulnerabilities during development play a significant part in securing these sys-
tems. At the start of this thesis, a goal was set to research how accurately and
efficiently vulnerabilities in C/C++ functions could be detected and classified
using machine learning. Through a literature review, reproduction of method-
ologies, and contributions of our own, the goal was successfully achieved. After
reviewing the literature, a choice was made to narrow the scope of our method-
ologies to natural language-based methods. A large C/C++ dataset containing
vulnerable and benign functions was chosen to fit this new scope. This dataset
has been processed by two lexers, as well as a custom statistical analysis. Three
distinct machine learning approaches were taken which include convolutional
neural networks, deep representation learning, and random forest using n-grams
and statistical features.

Based on previous successful methodologies from the literature, this thesis
developed a system for detecting and classifying vulnerabilities in source code by
using custom lexers and various NLP-based feature engineering methods. Using
deep representation learning and a random forest classifier, this thesis provided
a model that was able to outperform the reviewed literature on the same dataset.
For binary classification, this model managed to achieve a detection rate of over
70% while producing fewer than one false positive for each real vulnerability
found. A very simple method of using 3-gram features and a random forest
classifier is also provided in this thesis. A model using this method also provided
results comparable to the literature, while reducing computational complexity.
Despite the performance uplifts provided in this thesis, there is still a great deal
of room for improvements in general when it comes to detection and classifying
vulnerable code using machine learning. To further see large improvements, a
combination of more accurate data collecting and labeling, more complex feature
sets, and more powerful models would probably be required. However, the aim
of this thesis was never to achieve perfection, but rather to explore possible
alternatives to heavy, traditional vulnerability detection methods.
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7.2 Future Work

7.2.1 Better Data Collection

In chapter 6.4.1, the lack and importance of good data were addressed. Manually
labeling data is too time-consuming, and code labeled by static analysis is not
optimal as the number of undetected cases, false negatives, is often too high.
While researching for this thesis, G. Bhandari et al. published their paper called
CVEfixes [33]. A CVE is a recorded vulnerability in some published software.
Their paper proposes a method for automatically collecting the vulnerable code
and fixed code of all registered CVEs in the public U.S. National Vulnerability
Database (NVD). Implementing this solution and using the vulnerable functions
and fixes as data for our models is a great step in the right direction.

7.2.2 Incorporate Tree/Graph-based Methods

As stated at several points throughout this thesis, tree and graph-based models
are widely used on the topic of vulnerable source code. Due to our selected
dataset being scoped to individual functions only, this method is hard and in
some cases impossible to implement. However, custom parsers can be developed,
and new datasets can be generated. Combining graph or tree-based methods
with our current models will provide interesting and likely better results.

7.2.3 Detect First Then Classify

A logical next step in attempting to achieve better performance on the vulnera-
bility classification would be to first utilize binary classification to detect which
samples contain vulnerabilities and which do not. Our current models primarily
use multi-label classification to distinguish CWE types, while some do binary
classification in addition. The binary results proved to have a higher detection
rate. Therefore, by first detecting with binary classification, we can ensure a
higher detection rate, and then sequentially achieve the same or better CWE
classification. This also means that our CNN-1 and CNN-2 approaches could
be converted to binary classification models.
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Appendices

1. List of Manually Selected Tokens

This is a list of tokens that were used to lex the functions for lexed representation
1. Numbers (0-9) are not included. Tokens in parenthesis are merged into the
single token before the parentheses.

comment identifier raw_identifier numeric_constant char_constant

wide_char_constant utf8_char_constant utf16_char_constant

utf32_char_constant string_literal wide_string_literal header_name

utf8_string_literal utf16_string_literal utf32_string_literal l_square

r_square l_paren r_paren l_brace r_brace period ellipsis amp ampamp

ampequal star starequal plus plusplus plusequal minus arrow minusminus

minusequal tilde exclaim exclaimequal slash slashequal percent

percentequal less lessless lessequal lesslessequal spaceship greater

greatergreater greaterequal greatergreaterequal caret caretequal pipe

pipepipe pipeequal question colon semi equal equalequal comma hash

hashhash hashat periodstar arrowstar coloncolon at lesslessless

greatergreatergreater caretcaret auto break case char const continue

default do double else enum extern float for goto if inline int _ExtInt

long register restrict return short signed sizeof static struct switch

typedef union unsigned void volatile while _Alignas _Alignof _Atomic

_Bool _Complex _Generic _Imaginary _Noreturn _Static_assert _Thread_local

__func__ __objc_yes __objc_no asm bool catch class const_cast delete

dynamic_cast explicit export false friend mutable namespace new operator

private protected public reinterpret_cast static_cast template this throw

true try typename typeid using virtual wchar_t alignas char16_t char32_t

constexpr decltype noexcept nullptr static_assert thread_local memchr

memcmp memcpy memmove memset strcat strchr strcmp strcoll strcpy strcspn

strerror strlen strncat strncmp strncpy strpbrk strrchr strspn strstr

strtok strxfrm clearerr fclose feof ferror fflush fgetc fgetpos fgets

fopen fprintf fputc fputs fread freopen fscanf fseek fsetpos ftell fwrite

getc getchar gets perror printf putc putchar puts remove rename rewind

scanf setbuf setvbuf sprintf sscanf tmpfile tmpnam ungetc vfprintf

vprintf vsprintf NULL size_t wchar_t abort abs atexit atof atoi atol

bsearch calloc div exit free getenv labs ldiv malloc mblen mbstowcs

mbtowc qsort rand realloc srand strtod strtol strtoll strtoul system

wcstombs wctomb hash_if hash_endif hash_ifdef hash_elif hash_ifndef

hash_else hash_define hash_undef hash_error hash_include hash_line strdup

strndup snprintf vsnprintf null bufsize len fd dest stdin stdout stderr

EOF TRUE FALSE FILE cin cout endl u32(u32 uint32_t UINT32 uint32 DWORD)

i32(int32_t INT32 int32 INT) buffer(buf buff buffer)

2. All Evaluation Metrics for RF-CNN-3

This is appendix contains all metrics calculated for RF-CNN-3 and RF-CNN-
3-Binary using 2500 estimators.
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RF-CNN-3

Thresholds: [0.2847, 0.2928, 0.1295, 0.1172, 0.2042]

CWE-119

[[122903 2064]

[ 529 1923]]

ACC: 97.965

AUC ROC: 0.961

AUC PR: 0.546

MCC: 0.606

F1: 0.597

CWE-120

[[118434 4094]

[ 1056 3835]]

ACC: 95.958

AUC ROC: 0.955

AUC PR: 0.557

MCC: 0.597

F1: 0.598

CWE-469

[[126925 216]

[ 181 97]]

ACC: 99.688

AUC ROC: 0.964

AUC PR: 0.244

MCC: 0.327

F1: 0.328

CWE-476

[[125915 312]

[ 584 608]]

ACC: 99.297

AUC ROC: 0.912

AUC PR: 0.527

MCC: 0.577

F1: 0.576

CWE-other

[[121948 1981]

[ 1573 1917]]

ACC: 97.211

AUC ROC: 0.918

AUC PR: 0.470

MCC: 0.505

F1: 0.519

Overall

AUC ROC: 0.942

AUC ROC weighted: 0.942

AUC PR: 0.468

AUC PR weighted: 0.520

MCC: 0.523

F1: 0.524

ACC: 98.024
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RF-CNN-3-Binary

Thresholds: [0.25268]

AUC ROC: 0.921

AUC PR: 0.568

MCC: 0.567

F1: 0.591

ACC: 93.684
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