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Abstract

Object detectors have established their dominance in several safety-critical sys-
tems. Meanwhile, there are an increasing number of research proving they are
prone to carefully manufactured perturbations, known as adversarial examples.
These examples can disrupt the detectors to misclassify, mislocate or even skip im-
portant objects in the input. Any of these disruptions can cause fatal consequences
in safety-critical systems, thereby being a highly important topic to research as the
usage of object detectors inevitably keeps increasing.

Recently, these attacks have extended to targeting the region proposals mod-
ules in object detectors, namely the bounding box regressor. This introduces an
important issue, as this module is a commonality across the most widely used de-
tectors. This thesis will look into this issue with the following research questions to
answer: What is the state of today’s attacks against bounding box regression? How
well have these attacks been evaluated? And what defenses are there to detect,
mitigate or make the models robust against these attack and their evaluations?

These research questions are answered through a literature review, where the
most recent attacks are discussed and compared to find the state-of-the-art attacks.
Furthermore, defensive strategies that seek to mitigate these attacks are presented
and evaluated. To further landscape this field, and help classify new attacks with
the same attributes, a novel taxonomy is proposed.

The research results in this thesis show that the state of today’s attacks that tar-
gets the bounding box regression achieves great attack performance, while their
evaluations indicate that several of these attacks generalizes to transfer across de-
tectors. This important feature of the attacks makes the regressor an important
attack surface shared across the most common object detectors. Lastly, there were
only three of 16 attacks that have been mitigated, indicating a significant research
gap between the state of attacks and defenses for robust region proposals.
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Sammendrag

Objekt detektorer har etablert sin dominans i flere sikkerhetskritiske systemer,
samtidig er det et økende antall studier som beviser at de er sårbare mot nøye
beregnede forstyrrelser. Disse forstyrrelsene kan føre til feilklassifisering, feilplas-
sering eller at viktige objekter unngår deteksjon. Enhver av disse feilene kan forår-
sake fatale konsekvenser i sikkerhetskritiske systemer, det er dermed et viktig tema
å forske på da bruken av objekt detektorer uunngåelig kommer til å fortsette i et
økende tempo.

Nylig har disse angrepene blitt utvidet til å fokusere på modulene som foreslår
objekt regioner. Ettersom at denne modulen har fellestrekk som er delt blant de
mest brukte detektorene, er dette en svært viktig utfordring.

Denne oppgaven vil se nærmere på denne problemstillingen ved å svare på
følgende forskningsspørsmål: Hva er tilstanden til dagens angrep mot modulen
for region forslag? Hvor godt er disse angrepene blitt evaluert? Og hvilke forsvar
eksisterer for minimere effekten til disse angrepen, eller for å gjøre detektorene
robuste mot de?

Disse forskningsspørsmålene besvares gjennom et litteraturstudie, der de nyeste
angrepene blir diskutert og sammenlignet for å finne de mest lovende angrepene.
Videre er defensive strategier som prøver å dempe disse angrepene presentert
og vurdert. Deretter foreslås det en taksonomi for å ytterligere beskrive landska-
pet for dette feltet, og for å bidra til å klassifisere nye angrep med de samme
egenskapene.

Forskningsresultatene i denne oppgaven viser at dagens tilstand for angrep
mot regions forslags modulen oppnår god angrep ytelse, samt viser deres evalu-
eringer at flere av disse angrepene generaliserer effektivt for overføring på tvers
av detektorer. Dette gjør at regions forslags modulen blir en effektiv angrep over-
flate, som også deles blant de vanligste objekt detektorene. Til slutt var det bare
tre av 16 angrep som er blitt dempet, noe som indikerer et betydelig mellomrom
i forsknings om tilstanden til angrep og forsvar for robuste regions forslag.
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Chapter 1

Introduction

While it has been discovered that neural networks are vulnerable to adversarial
examples, a large part of the studies focuses on how to fool classifiers. Fooling
classifiers were quickly proved to be incredibly effective, both in white-box and
black-box settings. Later work studies how to extend these attacks against object
detectors. This is deemed a harder task since the object detectors can have mul-
tiple proposals for each object. Still, the early work only considered corrupting the
classification of each object, not the regions that contain said objects. Since then,
studies have built a strong case for proving that targeting the classification alone
can be improved by simultaneously targeting the bounding box regression layer
in both one-stage and two-stage detectors. This leads to an important field for the
future, where the bounding box regression is a common bottleneck across the one-
and two-stage detectors, leading to more powerful attacks and better transferab-
ility. This highlights the importance of further investigating the state of today’s
attacks that targets the Region Proposal Network (RPN) or the regressor of the
detector. And to research defenses that aim to improve robust region proposals.

1.1 Research Questions and Contributions

Throughout this survey, we seek to uncover the latest attacks showing the highest
potential in attack performance in white-box settings and when transferred to
black-box settings. Furthermore, the experimental results are to be evaluated to
find how well these attacks have been tested, and to indicate if the performance is
trustworthy. Lastly, we look into defense strategies that may help to mitigate the
consequences of these attacks.

Summarized, the research questions this survey will aim to answer are:

• RQ1: What is the state of today’s attacks against bounding box regression?
• RQ2: How well have the attacks been evaluated?
• RQ3: What defenses are there to detect, mitigate or make the models robust

against these attack and their evaluations?

Data were collected to answer the above research questions. This was done

1



Chapter 1: Introduction 2

through an initial manual database search, followed by a snowball process to
extract all relevant papers following the references and citations of the papers
found in the initial search. Furthermore, a taxonomy is proposed to extract and
cluster the attacks found in the data collection phase.

While answering RQ1, we find that the state-of-art attacks targeting the bound-
ing box regression achieve high attack performance in white-box settings. Further-
more, answering RQ2 discovers that several of these attacks provides extensive
evaluations which prove the attacks generalize well and can transfer across de-
tectors based on different model architectures, backbone networks, training data
and tasks. Lastly, there were only a few of the attacks which have been tried mit-
igated, thus RQ3 brings an important encouragement to further research these
types of attacks to close the gap between their performance and the robustness of
object detectors.

The foremost contribution of this survey is providing a foundation to increase
awareness of the vulnerabilities connected to the bounding box regression in ob-
ject detectors. These insights can contribute to helping future research investigate
these vulnerabilities, and hopefully uncover the risks and possibilities for making
the bounding box regression more robust.

1.2 Structure of the Thesis

Thus, the structure of the thesis is as follows: The relevant theoretical background
is presented in chapter 2. Then, previous work conducted which can relate to this
survey is presented in chapter 3. Section 4 describes in detail the method of how
the survey was conducted, including all steps and the process of extracting the
data. In chapter 5, the proposed novel taxonomy will be presented, along with the
results of the data collection which is discussed to answer the research questions.
The validity of this survey and proposed future work in the field are discussed in
chapter 6 and finally, the thesis is concluded in chapter 7.



Chapter 2

Background

Many topics for the background were covered through my specialization project
and are referred to in Appendix A. Topics that need an extension for this thesis
are further elaborated through this chapter.

2.1 Adversarial Examples

Extending the background from section A.5, the adversarial examples generally
aims to find the perturbation to optimize the objective function Equation 2.1, as
described by Szegedy et al. [1].

min
x ′
||x ′ − x ||p,

s.t. f (x ′) = ŷ ,
(2.1)

where || · ||p denotes the distance metric described in subsection A.11.1, and
where x is the benign example, x ′ is the adversarial example and ŷ is a class label
different from the ground truth class.

2.2 Backbone Networks

For processing the input, the object detector utilizes backbone networks to extract
the features of the input. The backbones are realized through a Convolutional
Neural Network (CNN), and among the most common backbones are Residual
Network (ResNet) [2], VGGNet [3], MobileNets [4] and DarkNet [5]. ResNet in-
cludes ResNet-50, ResNet-101 and ResNet-152, which will be denoted through
this survey as rn50, rn101 and rn152, respectively. VGGNets VGG16 is denoted
V16, Mobilenets is denoted mn and DarkNet-53 as dn53.

2.3 Object Detectors

For a detailed description of object detectors, see Appendices A.1 to A.4.

3



Chapter 2: Background 4

2.3.1 Region Proposal Network

Region Proposal Network (RPN) was introduced to generate high-quality region
proposals to realize the Faster R-CNN (FRCNN) detector [6]. The RPN is a fully
convolutional network that utilizes a novel approach of anchor boxes to produce
these proposals. All anchor boxes are associated with multiple scales and aspect
ratios to enhance the detector’s ability to detect smaller objects. Each region pro-
posal has a binary prediction, named object score, of whether the proposed region
contains an object or not.

Faster R-CNN Regression Layer

Faster R-CNN utilizes the bounding box regression introduced in [7] to improve
the localization performance. This regression layer of the Faster R-CNN outputs
four values: dx , dy , dw and dh to refine the RPNs proposal coordinates (px , py ,
pw, ph). To do so, Faster R-CNN computes the bounding box coordinates following
these equations from [7]:

gx = pw × dx + px (2.2)

g y = ph × dy + py (2.3)

gw = pw × edw (2.4)

gh = ph × edh (2.5)

Where gx , g y , gw and gh denotes the ground truth x- and y-coordinates, and
the width and height of the box.

2.4 Attack formulation on Faster R-CNN

When targeting Faster R-CNN, there are two attack surfaces: The regressor and
the classifier. When targeting the regressor, the attack aims to corrupt the regres-
sion of the bounding box, achieving mislocated and/or out-of-proportion boxes.
Attacks on the classifiers aim to change the label or minimize the confidence of
the predicted class.

The combined loss function for targeting the Faster R-CNN is denoted as:

L = LFasterR−CNN
cls + LFasterR−CNN

reg (2.6)

where LFasterR−CNN
cls is the loss function minimized to reduce the confidence of

the true label. LFasterR−CNN
reg is the loss function minimized to corrupt the regres-

sion of bounding boxes from the region proposals of the RPN. Note that this is the
loss function of the Fast R-CNN [8], which is merged with RPN to implement the
Faster R-CNN detector.
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2.5 Attack formulation on RPN

The RPN has two attack surfaces, one for the binary classification and one for
the bounding box regression. Firstly, the classification outputs two values for each
region, the confidence of the region containing an object and the confidence of
the region being a part of the background. A region proposal that the RPN predicts
contains an object with a confidence higher than a given threshold, is said to be a
positive proposal. Thus, a loss function for this classification task can be designed
to make the RPN output only negative proposals, such that there is no object left
to predict, as seen in Equation 2.7.

Lrpn
cls =

1
M

N
∑

i=1

zi log(si) (2.7)

Where M is the number of positive proposals and N is the total number of
proposals. zi ∈ {0,1}, where zi = 1 if the i-th proposal is positive, else 0 for
negative proposals. si is the confidence score of the given proposal.

Furthermore, the region contains a localization, presented by center coordin-
ates, width and height. The total loss function for attacking RPN can be further
extended to target this regression task. This is done by adding an "offset" which
disturbs the regression such that the RPN outputs out of proportion bounding
boxes which also can have wrong central coordinates, as seen in Equation 2.8.

Lrpn
reg = ex p(−

1
N

N
∑

j=1

z j(|∆x j −∆x j|+ |∆y j −∆y j|

+|∆w j −∆w j|+ |∆h j −∆h j|),

(2.8)

Where

• ∆x j ,∆y j ,∆w j ,∆h j denotes the predicted offset in terms of object center
and bounding box size.
• ∆x j ,∆y j ,∆w j ,∆h j denotes the true offset between the anchor box and the

ground truth.

2.6 Datasets

A large amount of data is needed to train a machine learning model. To simplify
this task, there have been collectively gathered large datasets which are freely
available. Two of the most used datasets for training object detection models are
MS COCO1 and Pascal VOC2, from here on called COCO and VOC, respectively.

1https://cocodataset.org/
2http://host.robots.ox.ac.uk/pascal/VOC/
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Excluding background, VOC provides 20 object classes, while COCO provides
80 object classes. Thus COCO is the more complex dataset, which makes it more
expensive to train an object detector to achieve high accuracy on the dataset.

2.7 Transferability

Transferability measures how well an attack can be transferred to attack another
target than the one used in the training of the attack. This feature is an important
and dangerous attribute, as it can make attacks meant for white-box environments
be able to attack in a black-box fashion. There are different features that can
describe how the attack transfer, given the commonalities and differences between
the target and the source. These are cross-model, -task, -network and -data.

Cross-Model Transferability describes how an attack trained on a source-
detector can target another object detector [9]. This leads to challenges such as
attacks that can try to be transferred between one- and two-stage detectors.

Cross-Network Transferability describes how an attack trained on a source-
detector can target an equal detector with a different backbone network [10].

Cross-Data Transferability describes how an attack trained on a dataset can
target an equal detector trained on different data [10]. This describes how the
attack performs trained on data the target has never seen.

Cross-Task Transferability describes how an attack trained on a detector can
attack an instance segmentation model or vice versa [10]. There are some com-
monalities between the tasks, but the attacks can differ a lot in implementation.

2.8 Adversarial Examples

Xie et al. [10] proposed Dense Adversary Generation (DAG) to generate Adversarial
Examples (AEs). DAG aimed to make the target propose dense proposals, to fur-
ther make the target misclassify the proposals with the highest confidence.

2.8.1 Projected Gradient Descent

PGD is a first-order optimization method, bounded by the L∞ norm, which seeks
to find a perturbation that maximizes the loss while keeping the perturbation dis-
tance within the restriction given by the L∞. To achieve this, PGD utilizes random
starts for each iteration, making it more robust against saddle point problems.
Madry et al. utilized PGD to generate AEs to attack image classifiers [11].

2.8.2 Fast Gradient Signed Method

Goodfellow et al. [12] introduced Fast Gradient Signed Method (FGSM), a simple
and effective method of generating AEs for classifiers. Fast Gradient Signed Method
(FGSM) perturbate the target image in such a way that the prediction is pushed
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across the decision border by following the steepest descent, which is given by the
gradient.

2.8.3 Iterative Fast Gradient Sign

Goodfellow and Bengio [13] introduced the Iterative Fast Gradient Sign (IFGS)
method, an iterative version of FGSM. IFGS applies the gradient step multiple
times with a smaller step size while clipping the intermediate pixel values to en-
sure they are within the L∞ε-neighborhood of the targeted image.

2.9 Performance Metrics of Machine Learning Tasks

A description of common performance metrics can be seen in section A.6. These
performance metrics are often used to evaluate various machine learning tasks.
Moreover, they have been used to evaluate the performance of attacks and de-
fenses by measuring the drop in performance for object detectors when predict-
ing on AEs. The popular mAP metric is both represented by a percentage or by a
decimal number between 0 and 1, where 1 indicates 100%. Throughout the sur-
vey, the mAP representation has been normalized to use the decimal description
of the value.

2.10 Adversarial Training

Adversarial training is one of the effective defenses against adversarial attacks
on classifiers [11, 12] and was later generalized to object detection. Adversarial
training achieves robustness by solving a min-max problem, Equation 2.9, where
the inner maximization generates adversarial examples against the model para-
meters, θ . These AEs are then used for training the model, thus solving the outer
minimization problem with respect to θ .

min
θ
{ max

x ′∈[x−ε,x+ε]
L( fθ (x

′), yt rue)} (2.9)
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Related Work

There have been several studies conducted in the field of Adversarial Input Attacks
over the last decade. And multiple surveys are done to compare and validate the
approaches of generating and defending against AEs. To the best of my know-
ledge, none of these surveys have a particular focus on attacks that target the
bounding box regression of the object detectors. Nor have they been clustered to
differentiate the nuances within this approach.

Nonetheless, there are several studies and surveys which seek to landscape the
field of Adversarial Input Attacks. These are not direct competitors to this thesis,
but they provide taxonomies for attacks and defenses for classifiers and object
detectors and share some attributes with the taxonomy proposed in this thesis.
Some of these studies are discussed and described in this chapter, to provide an
overview of the related work existing in the field.

3.1 Existing Literature Reviews and Surveys

Kong et al. [14] conducts a survey, where the attacks against machine learning are
classified into image-, text- and malware-based adversarial attacks. The image-
based attacks are classified through the main categories of white-box, black-box
and physical attacks. The survey further classifies the attacks within the categories
based on their access permission, if they are targeted or nontargeted, the applic-
ation domain and which metrics or strategies are used. Of all the attacks covered
by Kong et al. [14], 13 are attacks that can target image classifications. The sur-
vey adds contribution by helping researchers quickly enter the field of adversarial
attacks and by reviewing high-quality relevant articles published since 2010.

3.2 Existing Classification on Adversarial Attacks and De-
fenses

Pitropakis et al. [15] proposes a taxonomy for adversarial attacks against machine
learning within the domains such as spam filters, intrusion and classifiers. During

8
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the survey, a comparative analysis of classifiers is conducted where attack know-
ledge is among the attributes. The taxonomy is separated into two distinct phases:
Preparation phase and Manifestation phase. The preparation phase is evaluated
by Attacker Knowledge (Black-Box, White-Box and Gray-Box), Algorithm (Cluster-
ing, Classification and Hybrid algorithms) and Game Theory (Yes/No) attributes.
And the manifestation phase is evaluated across the attributes of Attack Specificity
(Targeted vs. Indiscriminate), Attack Mode (Colluding vs. Non-colluding) and At-
tack Type (Poisoning vs. Evasion). Pitropakis et al. [15] conducts a literature study
and classifies a total of 21 attacks against classifiers according to the proposed tax-
onomy, where none of which is covered by this survey.

Serban et al. [16] conducts a comprehensive survey of attacks and defenses
within the field of AEs. By only limiting the survey to object recognition, the scope
of the survey is broad and includes a large representative set of offensive and de-
fensive papers. The taxonomy outlines the basic threat models of AEs, and intro-
duces the following attributes for classifying attacks: Attacker Goal (Untargeted
vs. Targeted attacks), Attacker Knowledge (Black-Box, White-Box and Gray-Box),
Attack Strategies (Noise-based perturbations vs. Geometric transformations). Fur-
thermore, Serban et al. [16] introduces taxonomy of defenses, where a defender
can be either be reactive to new attacks, or proactive to try to anticipate new at-
tacks. The defenses are further classified by their Defense Strategies (Guards vs.
Defense by design). With the taxonomy, Serban et al. [16] classifies a total of 28
attacks and 45 defenses, where none of the attacks nor defenses overlaps with
those in this thesis.

Liu et al. [17] uses a taxonomy where the attacks are classified by their overall
goals. The four classes are Poisoning, Evasion, Impersonate and Inversion Attack.
Furthermore, the attacks are given attributes within the influence of classifiers
(Causative vs. Exploratory attacks), the security violation (Integrity attacks, Avail-
ability attacks or Privacy Violation attacks) and the attack specificity (Targeted vs.
Indiscriminate attacks). Liu et al. [17] also compare 12 different defenses which
are clustered by the techniques: Reject on Negative Impact, Adversarial training,
defense distillation, ensemble method, differential privacy and homomorphic en-
cryption. Furthermore, the survey illustrates the lifecycle of machine learning and
describes how the four classes target different parts of the pipeline. Lastly, the four
classes of defensive techniques are described how to fit the lifecycle to handle the
security threats. Liu et al. [17] provides contribution by identifying and discuss-
ing the trends of security threats and defensive techniques of machine learning.
Given the reviewed literature, they conclude that new security threats are con-
stantly emerging, while the security assessment is still in its initial stage. Lastly,
they argue that increasing security also increases the overhead, thereby reducing
the generalization performance of the machine learning algorithms. Thus requir-
ing to jointly optimize the three aspects of the machine learning model to make
it feasible in real-world applications.
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Method

The methodology prepared to perform this survey will be described in this chapter.
The research motivation and questions create a foundation of the methodology.

4.1 Research Motivation

The property of transferability [9] is a dangerous property within the domain of
Adversarial Example attacks. When hiding the internal configuration and training
data is no longer enough to mitigate and prevent adversarial input attacks, the
consequences of deploying autonomous vehicles and machine learning in safety-
critical tasks like medical diagnostics can be far beyond acceptable. The risk of
deploying a vulnerable system in the real world is a motivation to research the
field of Adversarial Example (AE) alone, and one of the important areas within
this field is how an attacker can achieve successful attacks against a target with
little to no information.

Throughout the pre-study leading up to this survey, several offensive papers
were found that focus on targeting the regressor, indicating a mature field with
potential. However, there were no surveys found which focused on this class of
attacks. Thereby introducing an interesting angle to research what this attack sur-
face can imply for the attacks and defenses. Besides, the bounding box regression
has commonalities across object detectors, which allows for the attacker to target
a broader surface when generating the AEs.

There are some very strong and promising defense strategies applicable to
classifiers today. To extend these defenses to object detectors, a way would be to
apply these strategies within the bounding boxes. Thus, if one could achieve a
guarantee that at least all objects within the input would receive a bounding box,
this robustness could be combined with other defense techniques for classifiers.

This work will hopefully be the first step towards such a robust detector.

10
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4.2 Research Questions

This thesis targets at answering the research questions below. This will map the
state of today’s attacks with a focus on the bounding box regression in object
detectors. With the purpose of answering what the state-of-the-art attacks and
defenses are, how rigorously they are evaluated and what makes them unique.
Hopefully, this can provide essential information as second-hand research and
help new research progress, both within the scope of attack and defense. Further-
more, any research gap between the state of attack and defense can be accounted
for if there are attacks with no proven defense to mitigate them.

• RQ1: What is the state of today’s attacks against Bounding Box regression?
• RQ2: How well have the attacks been evaluated?
• RQ3: What defenses are there to detect, mitigate or make the models robust

against these attack and their evaluations?

4.3 Research Design

The method described in [18] was used to perform a systematic search and selec-
tion process to collect papers needed to answer the research questions. The overall
methodology followed in this thesis is visualized by the flowchart in Figure 4.1.
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1. Define Key Concepts

2. Query Database

3. Filter on Inclusion/Exclusion Criteria

New relevant
studies
found?

5. Identify Attributes

4. Perform
a Snowball

Iteration

Unique set of
attributes for
all studies?

6. Identify Categories

7. Cluster Studies According to Attributes

8. Compare Studies

9. Define Taxonomy

no

yes

no

yes

Figure 4.1: Flowchart of the methodology used in this survey, with step numbers.
Steps 1.-4. concludes the Data Collection, while steps 5.-9. concludes the Data
Analysis.

4.3.1 Data Collection

The search and selection process described by Molléri et al. [18] were followed to
ensure that all relevant papers are found, as shown by steps 1.-4. in Figure 4.1.
Firstly, a set of key concepts is defined (step 1.) and described in Table 4.1. These
key concepts are combined to construct a search query, such that all selected pa-
pers is relevant according to RQ1 and RQ3. The search query will then be used to
structure an initial base set of relevant papers from the paper database oria.no
(step 2.-3.).

oria.no
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Table 4.1: Key Concepts for the study

Concept Description
Region Proposal The target of the attacks within this survey,

and used as the main attack surface.
Bounding Box Output of region proposal, a successful at-

tack will disrupt the bounding boxes.
Object Detector The region proposals and bounding boxes

are only relevant for object detectors, which
also distinguishes the attacks from attacks
aimed for classifiers.

Adversarial Example The survey will look into attacks providing
adversarial images for detection tasks in im-
ages and/or videos.

And to further help to discover all relevant studies, a snowball procedure was
performed by starting with the base set. This included backward- and forward
snowballing until no new relevant studies were to be found (step 4.). Inclusion
criteria were declared to filter all results during the snowballing process, as shown
in Table 4.2. This meant step 3. and 4. was repeated until no more relevant papers
were found.

Throughout the snowballing process, many of the papers being evaluated
could be excluded by the title due to the terminology used in the title. When
the title stated the paper included an attack/defense regarding classifiers it could
be early excluded as it does not match the relevance criteria Focus on attack or
defense within object detection. The same goes for anchor-free object detection,
which was not relevant for this study as it does not fulfill the relevance criteria of
targeting bounding box regression.

The key concepts described in Table 4.1 were combined for the following query
string:

("region proposal" OR "bounding box") AND "object detector" AND
"adversarial example"

which was used to perform a manual search on oria.no. To reduce the list of pa-
pers to a base set with only relevant papers, some inclusion criteria were elicited,
and summarized in Table 4.2.

oria.no
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Table 4.2: Relevance and Quality Criteria, used to filter relevant papers for this
survey

Relevance Criteria Quality Criteria
English as language The paper is peer-reviewed
Focus on attack or defense within ob-
ject detection

The paper provides empiric data for
evaluation

First published within the last 5 years,
i.e in 2017 or later
The domain is within image and video
Have to target the Bounding Box re-
gression of the detector, not only the
class label loss within each bounding
box

For papers that could not be excluded by the title, an abstract review was con-
ducted. The abstract quickly gave information if the papers focused on the classi-
fication part of detection, and could thus be excluded since they did not provide
any attack or defense with a focus on bounding box regression or mislocation.

When there was doubt about the relevance of the paper after the title and
abstract review, the paper was reviewed in depth. Here, the important parts for
examination were: Methodology, implementation, discussed loss functions and
the conclusion. There were also a handful of studies which has staked out the
background of all these papers. They were easily identified and most date to before
2017, which was the lower limit of relevance. Thus, they can be excluded as they
are only used to build up the background of the papers.

4.3.2 Data Analysis

When all the relevant papers are collected, steps 5.-9. in Figure 4.1 will be con-
ducted to analyze the data, as described byMolléri et al. [18]. Firstly, common-
alities will be defined as attributes (step 5.) and categories identified to cluster
the relevant papers (step 6). When all attributes and categories are identified, the
studies can be clustered into these categories (step 7.). Then, the studies can be
compared within each category, as well as across the categories to help identify
research gaps and propose future work (step 8.). In addition, to answering the
research questions, a proposed taxonomy will be included as a product of this
survey (step 9.).

Furthermore, data will be extracted from each relevant paper in this survey.
The selected data is based on the commonalities of the attacks and defenses and
chosen to answer RQ1 and RQ3, such that the overall state of the attacks and
defenses could be compared and summarized. The relevant details of each study
are

• what the paper is proposing
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• how they formulate the approach to achieve this
• where the attack is deployed

Furthermore, to help answer RQ2, all conducted experiments that are done
to evaluate the performance of the attacks, including potential tested defensive
techniques, are collected and compared.
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Results

To answer the research questions, relevant papers are needed and are found through
the method explained in chapter 4. The results will be presented in this chapter.
This includes the initial search, traces from the snowball process, identification of
categories, brief summaries of the relevant studies and comparisons within, and
across all categories. Lastly, the proposed taxonomy will be presented.

5.1 Data Collection

While following the data collection steps from Figure 4.1, the search query de-
scribed in subsection 4.3.1 provided 62 hits on 29. March 2022 when performing
steps 1. and 2. These 62 papers were closely examined up against the inclusion
criteria described in Table 4.2 during step 3. The final base set consisted of 6 pa-
pers, where 4 papers focused on attacks and 2 on defense measures. The base set
is summarized and enumerated in Table 5.1.

Table 5.1: The resulting base set after querying Oria.no with the query-string
presented in subsection 4.3.1

# Paper Attack Defense First Published
P1 [19] ✓ ✗ 2019
P2 [20] ✓ ✗ 2019
P3 [21] ✓ ✗ 2021
P4 [22] ✓ ✗ 2018
P5 [23] ✗ ✓ 2020
P6 [24] ✗ ✓ 2021

The base set was diverse, both in publication year and authors. P3 and P4
shared three authors, which was naturally as P3 was an extension of P4. This
was the only occurrence of low diversity within the base set. Thus, the base set
was deemed to not be biased, and was used for further mining of relevant studies
through a snowballing process. Nonetheless, the reference list of the two related

16
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papers, P3 and P4, showed to be diverse, as they resulted in different relevant
studies in the backward snowballing, as seen in Table 5.5.

With the base set and inclusion criteria in place, the six papers’ references and
citations were ready to be evaluated through a snowball process. This was done by
repeating steps 3. and 4. twice, when no more relevant studies were found while
performing the second iterations. For the forward snowballing, Google Scholar
was utilized, due to it being a powerful tool to follow the citations of the papers.

Table 5.2: The results of first iteration forward snowballing.

# Paper Attack Defense First Published
P7 [25] ✓ ✗ 2020
P8 [26] ✓ ✗ 2021
P9 [27] ✓ ✗ 2021
P10 [28] ✓ ✗ 2018
P11 [29] ✓ ✗ 2018
P12 [30] ✗ ✓ 2019
P13 [31] ✓ ✗ 2019
P14 [32] ✓ ✗ 2020
P15 [33] ✗ ✓ 2020
P16 [34] ✓ ✗ 2019
P17 [35] ✓ ✗ 2021
P18 [36] ✓ ✗ 2021
P19 [37] ✗ ✓ 2021

As seen in Table 5.2, the resulting papers from the forward snowballing were
fairly newly published, which was of expectation due to the dates published for
the base set. The three defense papers have references to attacks in the base set
and might provide defenses against said attacks.

Then, a backward snowballing of the base set was conducted, which only res-
ulted in two new relevant papers, Table 5.3. This provides evidence for this angle
of attack being new, and only researched in the last couple of years.

Table 5.3: The results of first iteration backward snowballing.

# Paper Attack Defense First Published
P20 [38] ✓ ✗ 2019
P21 [39] ✓ ✗ 2020

Only a few of the papers in the first iteration had been cited after being
published, as shown in Table 5.4, and none provided new relevant papers. And
neither did the second backward snowball iteration on the papers in Table 5.3
and Table 5.2. Thus, the final set consisted of the 21 papers (16 attacks and 5
defenses), and their citation matrix can be seen in Table 5.5.
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Table 5.4: Second iteration forward snowball results pr. 5. April 2022

Paper # Citations
P7 1
P8 0
P9 0
P10 98
P11 32
P12 58
P13 51
P14 11
P15 7
P16 4
P17 0
P18 0
P19 1
P20 15
P21 2

Table 5.5: Citation matrix of all relevant papers from the snowballing process.
The left column represents the papers whose references are listed in the row. "X"
marks that the paper is cited. "-" marks that the paper couldn’t have been due
to the publication date. The base set (P1-P6) is shaded in gray. All papers are
denoted only with their number, without the prefix "P".

Ref. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 - x - - - - - x - - - - - - - -
2 - - - - - - - - - - - - - - -
3 x x - - - x - - -
4 - - - - - - - - - - - - - - - - - - -
5 - - - - - - - - x -
6 x x x - x
7 x - x - - - - - - -
8 x - -
9 x - - x - -
10 - - - - - - - - - - - - - - - - - - - -
11 - - - x - - - - - - - - - - - - - - -
12 - - - x - - - - - x x - - - - - - - -
13 - - x - - - - - x - - - - - - -
14 - x - - - - - x x x x - - - - -
15 - x - - - - - x x - - - -
16 - x - - - - - - - - - - -
17 x - - - x x - -
18 x -
19 - x - - - x x -
20 - - - - - - - - - - - - - - - - -
21 - - - - x x - - -

The citation matrix is presented in Table 5.5, where each row represents the
paper in the left columns references. The base set is represented by faded cells.
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Since most of the papers are relatively new, as seen in Table 5.1, an assumption
would be that most of the papers will be found from backward-snowballing. This
was not the case for the snowballing process, this can be seen in Table 5.5 as
the base-set contains a lot of "-", meaning most papers of the first iteration of
snowballing the base-set came from forward-snowballing. This, together with the
timeline, Table 5.6, indicates that this is a new field, where most research has
happened in the last couple of years.

Table 5.6: Timeline of which years the papers were first published.

Year of publish Papers Count
2017 - 0
2018 P4, P10, P11 3
2019 P1, P2, P12, P13, P16, P20 6
2020 P5, P7, P14, P15, P21 5
2021 P3, P6, P8, P9, P17, P18, P19 7
2022 - 0

When conducting a snowball process, one of the strengths of the final set of
selected papers is that they are intervened through citations. This means that find-
ing any one of the papers from the final set will lead to finding the entire final set
after snowballing. This indicates that the final set covers relevant papers that are
not found in the initial query, and is thereby found regardless of the keywords
used by the authors and in the papers search step.

The citation matrix, Table 5.5, shows that this is almost the case for the final
set in this survey, with the exception of the papers P2, P5 and P20. P20 was only
found through the citations of P5, while P2 and P5 were only found through the
initial query. This reflects the importance of the combination of a careful initial
query and a snowball process when finding and extracting relevant work in the
searching process.

5.2 Classification of Attacks

While analyzing the data, the attributes defined in step 5. of Figure 4.1 will be
identified for each paper. The identified attributes are Attack Knowledge, Target(s),
Transferability, Loss function, Environment, Attack Style and Optimization Scheme.

Attack Knowledge describes what information the attacker assumes it can re-
trieve from the target. The possible values for this survey are Black-Box and White-
Box. If an attack assumes to have no information about the target, the attack is
said to be a Black-Box attack. While if the attacker assumes to have information
about the internal configurations (e.g. the weights of the model) or the training
data, the attack is said to be White-Box. This is an important property to evaluate
how effective the attack can be in the real world, where the information of object
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detectors most likely will be concealed by the enterprises. Thus also important to
evaluate the state of the attacks today to answer RQ1.

Target(s) describes which object detector, or sub-modules, that are targeted
for each attack. This is needed to see a trend of which detector or sub-modules
are successfully attacked and which approaches they are weak to. This can be
the different layers of the model, for instance, the classification layer of a Faster
R-CNN model, or the RPN itself.

Transferability is an important attribute to give a sense of the generalization
of the attack. The possible values are cross-model, cross-network, cross-data and
cross-task, as described in section 2.7. An attack that can be transferred to attack
different models than the one which is targeted has a high level of generalization.
This implies that the attack will be easier to deploy due to the lack of needing in-
formation about the target. This also helps to answer RQ2 if extensive experiments
on transferring the attack are conducted, it indicates a more rigorous evaluation
of the attack. For example, Li et al. [21] reports cross-network transfer for Trans-
RPN where an AE designed to attack a Faster R-CNN detector with a ResNet-50
backbone network achieves to attack another Faster R-CNN detector trained on
the same data with a ResNet-101 backbone.

Loss Function describes the attack surface of the target. More precisely, the
loss functions that the attacks seek to compromise while generating the AE. This
attribute helps to emphasize which parts of the target are vulnerable and explains
how each attack would expect to work if they manage to perform a successful at-
tack. These loss functions can include the binary classification loss of the RPN or
the regression loss of the targeted object detector. For instance, Shi et al. [35] tar-
gets the classification and regression loss of RPN and the regression loss of Faster
R-CNN simultaneously when generating AEs for attacking two-stage detectors.

Environment describes if the attack is deployed Digital or Physical. A digital
attack generates the AE and directly feeds the digital AE to the targeted detector.
A physical attack includes a perturbation or AE whose attack performance is pre-
served when printed out physically and placed in the real world. The early stages
of AEs focused on deploying the generated perturbation digitally, e.g. the FGSM
attack by Szegedy et al. [1]. Digital deployed attacks proved to be very efficient,
but not sufficient to deploy an attack in the real world. To deploy and attack digit-
ally, one would need to be able to change the captured frame with an adversarial.
Later studies have proven perturbation can be deployed in the physical world, e.g.
as shown in [31]. Physically deployable perturbations are a dangerous feature of
AEs and need to be investigated to discuss the state of these attacks.

Attack Style describes the style of the perturbation, and includes the attributes
Patch-based and Noise. Patch-based attacks apply the perturbation to a restricted
area of the target image, these restricted areas can have different forms, where
the most common is a rectangular patch, e.g. as shown in [28, 39]. Noise attacks
apply the perturbation to the entire image, e.g. as shown in [21]. Patch-based
attacks have been more researched in the previous last years, making it important
to distinguish the trend of the attack styles.
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Optimization Scheme describes how the attack solves the loss function and
generates the perturbations. This can be done through gradients (e.g. the boosted
gradient descent in [25]), lpnorms (e.g. the l2-norm restriction in [20]) or by util-
izing Generative Adversarial Networks (GANs) (e.g. as done in [36]). Gradient-
based attacks can be slow, needing several iterations to achieve devastating per-
formance. With computers becoming faster, the computational-time decreases and
may be of less importance in the future.

With these defined attributes, the relevant attack studies are clustered with
respect to their Attack Knowledge, Target(s), Transferability, Loss function, Environ-
ment, Attack Style and Optimization Scheme and categorized within the categories
presented in Table 5.7. All categories shares some attributes, which systematically
identify each study, such that each of them has a unique set of attributes.

Table 5.7: The different categories of which the studies are divided into.

Category Description Common Attack Output
Background Evasion
Attack (e.g. [39])

The attack aims to reduce the ob-
jectness and discard positive pro-
posals. Such that all objects are
proposed as a part of the back-
ground.

Evasion of all objects

Offset-Push Attack
(e.g. [21])

The attack aims to disturb the RPN
by maximizing the offset between
the proposed bounding box and
the ground truth.

Large Bounding
Boxes/Segmentation’s
with low confidence

Total Loss Attack (e.g.
[19])

The attack includes classification
and bounding box regression loss
in their total loss functions (and
RPN loss if targeting two-stage de-
tectors), and maximizes the loss.
Thus the attacks try to make the
predictions as wrong as possible,
without any clear targets.

Object fabrication, eva-
sion and misclassifica-
tion

Region of Interest At-
tack (e.g. [28])

The attack focuses all the interest
in one specific region. Effectively
disabling all other proposals from
the detector.

One very confident pro-
posal on the targeted
area. May also break the
detector in a more untar-
geted manner

To further describe the common attack outputs presented in Table 5.7, a deeper
look into how the attacks target the True and False Positive proposals of the de-
tectors can distinguish the attack outputs.

During object detection, the detector will propose several predictions of re-
gions where there might be an object. These predictions are filtered on how con-
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fident the detector is that there actually is an object in the region. The proposals
which pass this filtering are said to be positive proposals, while discarded propos-
als are negative proposals.

For the positive proposals, if the prediction is correct that there actually is an
object in the region, the proposal is a True Positive (TP). On the other hand, if the
detector is wrong and there is no object in the positive region, the prediction is a
False Positive (FP). In other words, False Positives (FPs) are erroneous proposals
where the detector detects an object which is not there.

Furthermore, if there is an object in the frame, and the detector fails to provide
a positive proposal for this region, it is said to be a False Negative. These False
Negatives are by nature adversarial, as it includes an object that has been evaded
by the detector. Thus, the False Negatives are not considered when describing the
common attack outputs. The True Negatives are all regions that do not enclose
any pixels of an object, which means there are way too many True Negatives in
object detection to provide any information. Thus, True Negatives are not useful
in object detection and are also ignored.

Given these definitions, we can look into how the attacks try to affect the de-
tector’s rate and form of the TP and FP predictions. A commonality for all the
cluster classes is that they try to evade the TPs. Further distinguishing of the
cluster classes can be elicited by inspecting whether or not they try to misclas-
sify or distort the TPs, and if they try to remove any FP or increase the number of
FP by fabricating them. This is presented in Table 5.8, where the categories have
a unique distribution of attacking goals.

Table 5.8: Further distinction between cluster categories, with focus on their at-
tack goals on the True Positives (TP) and False Positive (FP).

Category
TP FP

Evade Misclassify Distort Evade Fabricate
Background Evasion Attack ✓ ✗ ✗ ✓ ✗

Offset-Push Attack ✓ ✗ ✓ ✗ ✗

Total Loss Attack ✓ ✓ ✗ ✗ ✓

Region of Interest Attack ✓ ✗ ✗ ✗ ✓

• Background Evasion Attacks seeks to evade all proposals, leaving the detector
to believe the entire scene is background.
• Offset-Push Attacks aims to evade the true positives or distort the height and

width of the bounding box or by shifting the center.
• Total Loss Attacks seeks to attack the true positives by misclassifying and

evading the proposals, in addition, to increasing the false positives by fab-
rication.
• Region of Interest Attacks seeks to evade the objects and increase false pos-

itives with the goal of making the fabricated proposal the only region of
interest for the targeted object detector.
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5.3 Proposed Taxonomy of Attacks

With the attributes identified, a taxonomy can be defined, according to step 9. in
Figure 4.1. Some of the attributes affect the same phases during the lifecycle of
an AE attack. Besides, while the different attacks have their own method of gener-
ating AEs, there are some shared commonalities in how they proceed to generate
and deploy their AEs. The proposed taxonomy groups these commonalities into
three separate phases, which together show the entire framework of how the dif-
ferent Adversarial Input Attacks are conducted. These phases are summarized as
follows:

• Generation
• Deployment
• Transfer

Figure 5.1: The connection between the phases and their attributes of the pro-
posed taxonomy

The Generation-phase envelops all the necessary steps for an attack needed
before the attack can be deployed, here the attributes Attack Knowledge, Target(s)
and Loss Function of the studies in this survey is important. These attributes de-
scribe and distinguish how the different attacks proceed to generate the AEs.

The Deployment-phase utilizes the attributes Environment, Attack Style and Op-
timization Method to realize and deploy the attack. Some attacks are only applic-
able in a digital setting, where the attacker needs to interfere with the pipeline
between when the targeted image is taken, and when it is inputted into the object
detector module. This makes it less realizable in the real world and requires full
access to the targeted system, which would lead to far more simpler and effect-
ive attacks being more suitable, as one can replace the taken image with just an
empty frame instead of perturbating it. Nonetheless, this is an important part of
the research of the state of adversarial examples, and can result in enormous at-
tack performance. Attacks applicable in the physical environment can be deployed
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in the real world, thus interfering with the target before the image is even taken.
The Transfer-phase includes the Transferability attribute by describing if the

AE generated to attack model A is applicable to attack model B. This is given
that model A differs from model B with respect to the detector model itself, its
backbone network, training data or the performed task. This feature can make
an attack meant for white-box settings being able to attack a different target in a
black-box fashion. Furthermore, it describes the state of generalization between
attacks and object detectors.

The connection between the three phases, including their attributes, are visu-
alized in Figure 5.1, which reassembles a general framework for AE attacks.

5.4 Background Evasion Attacks

An attack that can make the object detector perceive the entire presented scene as
a background would make all objects in the given scene evade objection. Such an
attack would lead to fatal consequences in tasks such as autonomous vehicles and
medical diagnosis. As presented in Table 5.8, Background Evasion Attacks has one
goal: Evade all true and false positive proposals. And given that the attacks expect
to evade all positive proposals, there are no true positives left to misclassify or
distort.

Attacking Object Detectors Without Changing the Target Object

Huang et al. [20] proposes an Adversarial Border (AB) algorithm that generates
an AE without alternating any pixels within the targeted object. Instead, the attack
places the adversarial pixels around the border.

Adversarial Border (AB) is generated with regard to Faster R-CNN Regression
Loss. As seen in Equation 2.4 and Equation 2.5 from section 2.3.1, gw and gh are
heavily affected by dw and dh respectively due to the exponential function. This
is a result of the design of Faster R-CNN, which ensures dw and dh can be learned
effectively. Thus, small alterations to these values will lead to huge impacts in the
final regression.

The proposed AB targets the regression layer such that it outputs overly large
bounding boxes for the targeted object. This will in turn lead the classification
confidence to be drastically reduced. More precisely, the size of the output bound-
ing box will increase with a factor of ev × ev . Meaning if the regression layer is
misled to output dw = v and dh = v, where v > 0, the proposed bounding box will
be enlarged by an exponential large factor. The study used experiments which set
v = 1, resulting in a 738% enlargement of the proposed bounding box (where
e2 = 7.38).
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Contextual Adversarial Attacks For Object Detection

Zhang et al. [32] proposes Contextual Adversarial Perturbation (CAP), a novel
attack that optimizes previous methods of targeting both the classifier and the
RPN of object detectors by damaging the contextual information of target objects
by utilizing a background loss. The proposed attack does not rely on ground-truth
information, making it more generalized and subject to attack Weakly-Supervised
Object Detectors (WSOD).

Figure 5.2: Overview of the CAP attack, obtained from [32]

Contextual Adversarial Perturbation (CAP) effectively damages the local and
contextual information of the positive proposal. This is done by combining classi-
fication loss (Lcls, Equation 2.7), regression loss (Lreg , Equation 2.8) and the novel
context loss (Lc , Equation 5.1). Lc aims to corrupt the contextual information of
each positive Region of Interest (RoI), thus CAP attack the contextual information
for a total of M RoIs by optimizing the context loss Lc:

Lc =
1
M

M
∑

j=1

z je
2
j , (5.1)

where M denotes the number of attacked RoI, e j is the highest classification
score for the region and z j ∈ {0,1} indicates false or true proposal, respectively.

And for the contextual background loss Lcb, CAP optimizes:

Lcb =
1
M

M
∑

j=1

−z j ẽ
2
j , (5.2)

where ẽ j denote the highest background score of the contextual region.



Chapter 5: Results 26

The total object function that CAP optimizes to generate AEs is then summar-
ized as:

min
X
{Lcls(X ;D) + Lreg(X ;D) + Lc(X ;D)

+Lcb(X ;D)}, s.t.PSNR(X )≤ ε
(5.3)

where X is the input image, D is the target object detector, PSNR is the Peak
Signal-to-Noise Ratio limited by the threshold ε. As seen in the overview of CAP,
Figure 5.2, the attack first calculates the losses by the positive proposals from the
RPN, and the contextual regions. Then CAP generates the perturbation through
back propagation, applies it to the target image and inputs it to the next iteration.

CAP is also generalized to attack WSOD, which does not utilize RPNs. This
part of the study is not discussed in this thesis, as it no longer falls under the
inclusion criteria of targeting bounding box regression.

G-UAP: Generic Universal Adversarial Perturbation that Fools RPN-
based Detectors

Wu et al. [34] proposes Generic Universal Adversarial Perturbation (G-UAP), an
attack to generate universal perturbations. Generic Universal Adversarial Perturb-
ation (G-UAP) aims to directly mislead the RPN, by making it mistake foreground
object for background.

Figure 5.3: Overview of the attack framework for G-UAP, obtained from [34]

G-UAP optimizes Equation 5.4 to generate perturbation that fools the RPN to
mistake the foreground as the background.

lcls_ob j(x i +δ)≈ lcls_ob j(x i) +Jlcls_ob j
(x i)δ,

lcls_bg(x i +δ)≈ lcls_bg(x i) +Jlcls_bg
(x i)δ

(5.4)

Where Jlcls_ob j
(x i) is an Jacobian Matrix, Jlcls_ob j

(x i+δ) is the probability scores
of foreground that the attack tries to get to 0 and Jlcls_bg

(x i +δ) is the probability
scores of the background that the attack tries to get to 1. This would result in the
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RPN incorrectly give all regions a label of background, leaving no targets for the
classifier to label. This is done when Equation 5.4 is optimized to output:

lcls_ob j(x i +δ)≈ 0 and lcls_bg(x i +δ)≈ 1

Generating Adversarial Remote Sensing Images via Pan-Sharpening
Technique

Yuan and Wei [36] proposes an Adversarial Pan-Sharpening (APS) method that
utilizes a generative network to generate a pan-sharpened image. Adversarial Pan-
Sharpening (APS) includes a shape loss and label loss to generate AEs. The method
applies adversarial noise to a pan-sharpened image, which disturbs the prediction
of the RPN in the targeted model. The label loss (Lrpn

cls , Equation 2.7) decreases the
confidence of positive proposals. In addition, the shape loss (Lrpn

reg , Equation 2.8)
disrupts the bounding box regression of the RPN, as described in section 2.5.

Figure 5.4: Overview of the Adversarial Pan-Sharpening (APS) method, obtained
from [36].

An overview of the proposed attack method APS is shown in Figure 5.4. Ll1 and
Lper loss is used to generate the pan-sharpened image. While the attack module
generates an AE through the loss functions Lrpn

reg and Lrpn
cls to fool the RPN.

By combining these loss functions, the attack generates AEs by optimizing the
objective function:

min{Ll1 +αLrpn
cls + β Lrpn

reg +δLper}, (5.5)

where α, β and δ are relative weights for the different losses.

Sparse Adversarial Attack to Object Detection

Bao [39] proposes Sparse Adversarial Attack (SAA) to perform a pixel-efficient
evasion attack on object detectors. SAA aims to make all objects in the image
evade detection through a sparsely distributed patch attack.



Chapter 5: Results 28

Figure 5.5: Overview of the SAA, obtained from [39]

Figure 5.5 shows the overview of the SAA attack, where the overall goal is to
make all objects evade detections by making the detectors believe the objects are
a part of the background, thus making the detector perceive all proposed regions
as a negative prediction.

To make the object evade detection, SAA constructs a loss function based on
the definition of foreground and background of You Only Look Once (YOLO)v4
[40] and Faster R-CNN. YOLOv4 utilizes a confidence branch to distinguish the
two, and bounding boxes with confidence below a given threshold are discarded
as background. The evasion loss for YOLOv4 is defined as:

LossY OLO = max
c∈C ,b∈B

(con f (c, b)), (5.6)

where C denotes all object categories and B the set of all predicted bounding
boxes. YOLOv4 maximizes the object confidence, con f (·), of an image. To attack
the YOLO detector, SAA seeks to generate AEs by minimizing LossY OLO.

For the evasion loss of Faster R-CNN, SAA increases the softmax output prob-
ability of background, while decreasing that of foreground object categories.

LOSSFRCNN = α1 · Loss1 +α2 · Loss2, (5.7)

where α1 and α2 are hyperparameters. Loss1 and Loss2 in Equation 5.7 are
defined as

Loss1 = max
c∈C ,b∈B

con f (c, b) (5.8)

Loss2 =
1
N

∑

b∈B

max
c∈C
(con f (c, b)) (5.9)

This combination of loss functions is utilized to handle the enormous amount
of region proposals from the output of the RPN, where Loss2 aims to erase as many
bounding boxes as possible, while Loss1 attacks the bounding box with the highest
object probability, given by the confidence that the bounding box containing an
object from the classes in C .
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SAA ensembles the two loss functions of YOLOv4 and Faster R-CNN for the
final loss function:

Loss = LossY OLO + LossFRCNN (5.10)

5.4.1 Attack Evaluation

The CAP attack is benchmarked against DAG [10] and Robust Adversarial Perturb-
ation (R-AP) [21], where CAP outperforms DAG and R-AP on almost all targeted
labels. Furthermore, of the conducted experiments, CAP achieves several 0.0 mAP
scores.

Wu et al. [34] conducts experiments for cross-model transfer, where they test
against another RPN-based detector: Region Fully Convolutional Network (RFCN)
[41] and an one-stage detector: Single Shot MultiBox Detector (SSD) [42]. The
attack transferred to the RFCN detector, but experiments show that the attack
does not transfer well to detectors that do not rely on RPN for region proposals.
The experiments also indicate that the attack can transfer between Faster R-CNN
with different backbones.

Yuan and Wei [36] conducts experiments on six state-of-the-art object detect-
ors and evaluates across five different pan-sharpening evaluation metrics. The
evaluation metrics show that the APS method achieves 0.79 and 0.73 drop of
accuracy on Faster R-CNN and Feature Pyramid Network (FPN) [43] detectors,
respectively.

To further examine how the attack compares, the reported mAPs are presen-
ted in Table 5.9. Henceforth, Faster R-CNN will also be denoted as FR in tables
for simplicity. The APS attack [36] achieves the highest mAP drop and reduction
in percentage when comparing the adversarial result to the mAP achieved on the
benign dataset without perturbations. The CAP attack [32] achieves similar ad-
versarial results and has a comparable drop in mAP to the APS attack

Table 5.9: Reported mAP@0.5 evaluation for the white-box results of the Back-
ground Evasion Attacks. Lower Adversarial Result means better attack perform-
ance, and results in a larger drop in mAP. Bold entries indicates highest attack
performance in the table.

Study Target Detector Dataset Benign
Result

Adversarial
Result

mAP Drop (Drop in %)

CAP [32] FR-rn101
VOC 2007 0.79 0.02 0.77 (97.5%)
COCO 2014 0.55 0.01 0.54 (98.2%)

G-UAP [34]
FR-V16

VOC 0712 0.76 0.34 0.42 (55.3%)
VOC 2007 0.71 0.31 0.40 (56.3%)

FR-rn101 VOC 2007 0.76 0.50 0.26 (34.2%)
APS [36] FR-V16 GaoFen-1 [44] 0.87 0.01 0.86(98.9%)

The AB attack from [20] and SAA from [39] did not report any mAP for their
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experiments but presented their results with Attack Rate and an Evasion Score,
respectively. This makes it difficult to cross-examine these attacks against the three
others from the same category. Neither did they provide a base result for the clean
images, this was rather incorporated into the evaluation metric.

Huang et al. [20] defines the successful attack rate as At tackRate = 1 −
Detadv/Detor g , where Detadv denotes the number of detected stop signs with an
AB and Detor g denotes the total number of detected targeted stop signs without
any border. The experiments gave an Attack Rate of 0.912, as shown in Table 5.10,
which means 91.2% of the stop signs with an AB were successfully evaded from
detection.

Bao [39] defines their evaluation metric as a bit more complex. As a Back-
ground Evasion Attack, they aim to evade all objects, thus their Evasion Score
calculates a score based on the number of Bounding Box predictions. This means
for a single image, the Evasion Score is 2 if there are no Bounding Box predictions
in either the benign or the adversarial example. On the other hand, the evasion
score is 0 if the number of predicted Bounding Boxes is larger than or equal to the
number from the benign example. Bao [39] evaluated the evasion score on 1000
images, giving the best case scenario an Evasion Score of 2000. Table 5.10 shows
that the SAA on YOLOv4 leads to high performance with a score of 1610.03. Bao
[39] does not declare any amount of total bounding box prediction on the benign
dataset, so any percentage of evaded objects can’t be further elicited. Anyhow, the
attack achieves substantially worse on the Faster R-CNN model, with an Evasion
Score of 1174.21. As the two-stage model Faster R-CNN is known to be better at
detecting smaller objects, and one reason for this large drop in SAA’s perform-
ance might be that there were a large amount of smaller objects in the evaluation
dataset, thus making it easier to disturb the one-stage model YOLOv4 in the eval-
uation.

Table 5.10: Reported evaluation for the white-box results of the Background Eva-
sion Attacks which did not provide mAP evaluation

Study Target Detector Dataset Evaluation Metric Adversarial Result
AB [20] FR-V16 COCO Attack Rate 0.912

SAA [39]
YOLOv4

COCO 2017 Evasion Score
1610.03

FR-rn50 1174.21

The studies [20], [34], [36] and [39] conducted experiments to evaluate their
attacks against black-box targets, this was done by transferring the attack to an-
other model, a model trained on a different dataset or with another backbone
network.

Wu et al. [34] conducted experiments for cross-model and cross-data trans-
ferability for the G-UAP attack, as shown in Table 5.11. The first lines show that
the attack achieves a 39.2% mAP reduction when transferring the AE to another
two-stage model, RFCN, which also utilizes an RPN. When transferring to a one-
stage model on the other hand, the reduction is quite smaller. Likely due to the
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one-stage model having no RPN in the base network. Thus the attack surface, the
objectness label loss in the RPN, loses its effect when the target is not dependent
on it.

Lastly, and quite remarkably, Wu et al. [34] reports evaluation showing that
several of the cross-data attacks outperforms the white-box G-UAP attacks. This
applies to the attacks on both VGG16 and ResNet-101 trained on VOC 2007, where
the AE trained on the same models, but trained with VOC 0712 outperforms the
white-box attacks. Thus indicating that the G-UAP attack is indifferent to the dif-
ference between the training data for the attack and the target detector.

Table 5.11: Reported mAP@0.5 evaluation for the black-box results of the Back-
ground Evasion Attacks. Lower Adversarial Result means better attack perform-
ance, and results in a larger drop of mAP. Bold entries indicates highest attack
performance in the table.

Study Source Detector Target Detector Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

G-UAP [34]
FR-rn101 RFCN 0.74 0.45 0.29 (39.2%)
FR-V16 SSD 0.78 0.68 0.10 (12.8%)
FR-V16 VOC0712 FR-V16 VOC07 0.71 0.28 0.43 (60.6%)
FR-rn101 VOC0712 FR-rn101 VOC07 0.76 0.47 0.29 (38.2%)

APS [36] FR-rn50 FR-V16 0.87 0.38 0.49(56.3%)

Bao [39] reported an evasion score of 355.69 when transferring the SAA attack
to two black-box models. Given that no transfer enhancement was implemented
in the attack, this is a strong foundation showing the promise of the attack in
black-box settings.

5.5 Offset-Push Attack

Section 2.5 describes how the regressor in RPN can be disrupted by adding a
large offset. The Offset-Push Attacks mainly targets this regression loss, Lrpn

reg , of
the RPN. The goal of pushing the offset is to disrupt the regressor to output out
of proportion bounding boxes, which may have shifted the center such that the
bounding box no longer contains the original object, or contains both the object
and a large part of the background. This will firstly result in erroneous predictions,
but also predictions with lower confidence such that they may are evaded in the
final prediction.

TransRPN: Towards the Transferable Adversarial Perturbations using
Region Proposal Networks and Beyond

Li et al. [21] extends a previous work of Li et al. [22] and proposes TransRPN which
targets the RPN as the common bottleneck of the existing object detectors. The
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attack is done by attacking the intermediate features of the RPN, thus disrupting
it.

Figure 5.6: TransRPN framework, obtained from [21]

The attack utilizes the confidence loss (Lrpn
cls , Equation 2.7) and shape loss

(Lrpn
reg , Equation 2.8) of the RPN to generate AEs. TransRPN also includes a feature

loss (L f , Equation 5.11).

L f =
1
k

k
∑

i=1

f T
i · f

′
i

|| fi|| · || f ′i ||
(5.11)

Which is the cosine distance between the k features of the benign image fi
and the k features of perturbated image f ′i , where f T

i denotes the transpose of fi .
By minimizing L f , the attack seeks to increase the error between the two sets of
features and thus achieve higher attack performance.

The shape loss attacks the bounding box regression by explicitly disturbing
the shape regression, such that the proposed boxes are diverging from the ground
truth boxes as described in section 2.5. Hence, minimizing Equation 2.8 encour-
ages pushing the predicted offsets away from the true offsets, leading to misloc-
alization of the bounding box.

Li et al. [21] focuses on the transferability of the attack between RPNs. And
through their experiments, they observe that solely attacking the feature loss,
L f , achieved higher transferability than including Lrpn

cls and Lrpn
reg . Furthermore,

following the DIM Method described in Xie et al. [45], Li et al. [21] adopts the
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Momentum Iterative Fast Gradient Sign Method (MI-FGSM) method [46] for op-
timizing the TransRPN loss function. This was due to Xie et al. [45] observing that
a mixture of optimization schemes can improve transferability for attacks against
classifiers, and Li et al. [21]wished to observe the effect this had on transferability
among object detectors.

Robust Adversarial Perturbation on Deep Proposal-based Models

Li et al. [22] proposes a Robust Adversarial Perturbation (R-AP) method to attack
object detectors and instance segmentation models. R-AP generates AEs by an ob-
jective function combining label and shape loss. This objective function is further
optimized by using an iterative gradient-based method [13]. R-AP aims to disturb
the bounding box shape regression, by increasing the offset, such that the shape
regression can’t successfully adjust the anchor boxes to the ground truth bounding
box.

Figure 5.7: R-AP framework, obtained from [22]

R-AP proposes a novel variant of the Lrpn
reg in Equation 2.8, by substituting the

ground truth coordinates of the offset by large offsets.
The novel shape loss is thus defined as:

Lshape =
m
∑

j=1

z j

�

(∆x j −τx)
2

+(∆y j −τy)
2 + (∆w j −τw)

2 + (∆h j −τh)
2
�

(5.12)

Where m is the total number of proposals, τx ,τy ,τwandτh denotes the large
offsets and ∆x j ,∆y j ,∆w jand∆h j are the predicted offsets. z j ∈ [0, 1], where
z j = 1 if the j-th proposed box either has an Intersection over Union (IoU) above
a given threshold τ1 or if the confidence score of the proposal is above a given
threshold τ2, and z j = 0 otherwise. By minimizing Equation 5.12, the predicted
offsets will be forced to approach the large substituted offsets (τx ,τy ,τw,τh),
such that the bounding box will be incorrect.
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Adversarial Attacks on Object Detectors with Limited Perturbations

Shi et al. [35] proposes DTTACK, a framework to attack both one- and two-stage
detectors. DTTACK utilizes a salient map to target the more salient part of the
targets to increase the probability of a successful attack.

One-Stage Detectors

To attack one-stage detectors, DTTACK introduces LBB as a penalty for correctly
detected bounding boxes with high confidence:

LBB =
∑

i∈{ j|g j>t}

gi (5.13)

where gi is the score of every bounding box, for all proposed bounding boxes with
confidence larger than the threshold t.

Two-Stage Detectors

For two-stage detectors, DTTACK targets the RPN, classification and regressor.
DTTACK uses a pre-defined offset vector used to corrupt the shape of the original
proposals from the RPN. Furthermore, DTTACK selects a dense set of proposals
and seeks to distort and push the regression of these proposals with a distortion
offset vector. This leads the detector to shift the regressed bounding boxes away
from the center and distort the aspect ratio.

The final loss function for the DTTACK attack is defined as:

LTS = Lrpn +λ1 Lcls +λ2 Lreg (5.14)

Where Lrpn is a combination of Lrpn
cls and Lrpn

reg from Equation 2.7 and Equa-
tion 2.8, respectively. λ1 and λ2 are hyperparameters used to tune the weight of
the terms in the loss function.

Fooling Detection Alone is Not Enough: First Adversarial Attack against
Multiple Object Tracking

Jia et al. [38] focuses on object tracking, a vital part of the vision system of
autonomous vehicles. They discover that attacks that target object detection alone
needs to successfully attack at least 60 frames consecutively to fool a Multiple Ob-
ject Tracking (MOT) process. The proposed attack in [38], called tracker hijacking,
effectively attacks the MOT process using AEs on object detectors.

The tracker hijacking attack generates an adversarial patch, with the goals to

(1) erase the bounding box of the target object, and
(2) fabricate a bounding box with a similar shape as ground truth but shift the

location a little towards an attacker-specified direction.
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By achieving goal (1), the tracker belonging to the targeted object will be
erased. Furthermore, if goal (2) is achieved, the Kalman filter will be disturbed
and predict an adversarial movement that is not actually happened. Thus making
the tracker hijacking attack capable of mimicking the car moving, which can be
used to fake the target changing lanes or leaving the road.

Tracker hijacking utilizes two loss functions, where L1 is used to minimize the
target class probability at the given location to erase the target bounding box (and
set λ= 0 to remove the last term), thus aiming to achieve goal (1).

L2 controls the fabrication of the adversarial bounding box at the given center
coordinates (cx t , c yt) with a width and height of (wt , ht), where the adversarial
bounding box tries to hijack the tracker and thereby achieving goal (2).

Combined, the tracker hijacking aims to optimize Equation 5.15.

min
∆∈patch

L1(x t +∆) +λL2(x t +∆), (5.15)

Where L1 and L2 in Equation 5.15 are defined as

L1 =
B
∑

i=0

1ob j
i [C

2
i − C rossEnt rop y(pi , classt)]

L2 =
B
∑

i=0

1ob j
i {[(cx i − cx t)

2 + (c yi − c yt)
2]+

[(
p

wi −
p

wt)
2 + (
Æ

hi −
Æ

ht)
2]+

(1− Ci)
2 + C rossEnt rop y(pi , classt)}

(5.16)

Where
∑B

i=0 1
ob j
i identifies all bounding boxes, B, with their confidence score

Ci . The location and shape of the targeted bounding box is given by (x i , yi) and
(wi , hi), respectively. The attack seeks to push the targeted bounding box to-
wards the center location given by (x t , yt) and the shape (wt , ht). On top of this,
C rossEnt rop y(p, c), see Equation 5.17, is used to calculate the probability of the
detector correctly identifying the targeted class, which is used to make the de-
tector mislabel the target object as background. If the attack succeeds by doing
this, the detector will fail to track the targeted object, and instead, track the new
fabricated object.

C rossEnt rop y(p, c) = −
∑

x∈X
p(x) log(c(x)) (5.17)

Jia et al. [38] utilizes Adam optimizer [47] to minimize the objective function
in Equation 5.15, by iteratively perturbating the pixels within the patch location.

5.5.1 Attack Evaluation

Li et al. [21] studies four different types of RPNs, and validates the proposed
method on each type of RPN on the COCO dataset with nine object detectors
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and two instance segmentation methods. This extensive validation indicates the
strong transferability of the proposed attack. Li et al. [21] conducts experiments
and benchmarks the TransRPN attack against DAG [10] and Unified and Effi-
cient Adversary (UEA) [48] attacks. Where TransRPN outperforms both on Faster-
RCNN. UEA is only slightly better than TransRPN on SSD300. TransRPN achieves
great cross-model transferability for attacks transferred from Faster R-CNN to SSD
and YOLOv2 and YOLOv3, by reducing mAP from 0.42, 0.37 and 0.40 to 0.16,
0.04 and 0.05, respectively. This shows the effect of targeting the RPN, which
has share properties with the one-stage models, such as SSD and YOLO, leading
to improved transferability between one- and two-stage detectors. Furthermore,
the experiments discover that more simple backbone networks, such as VGG16,
achieve greater transferability and are more robust against the tested defense
methods. Li et al. [21] also studies the robustness of TransRPN under two scen-
arios: Adversarial defense and image compression. Where the adversarial defense
is a strategy to mitigate the effect of perturbations. They tested TransRPN against
the Random Resizing and Padding (RRP) method proposed in [10]. The defense
measure only slightly improved the detection performance, leaving the attack ef-
fective against this defense. The experiments on image compression show that
the detection rate only slightly improved with reduces image quality when under
TransRPN attack.

Shi et al. [35] conducts experiments and uses DAG, DPatch and R-AP as bench-
marks. DTTACK outperforms all three attacks it compares to. Following [22] and
[28], [35] focus on Misclassification Rate (MC) and Invisible Rate (L) when gener-
ating patches. Furthermore, [35] generates patches with and without limitations,
where both versions outperform DAG [10], DPatch [28] and R-AP [22]. The exper-
iments show that making the patches less visible was a harder task than evading
the targeted objects.

TransRPN [21] and R-AP [22] has their performance evaluated and reported
by mAP, see Table 5.12, where TransRPN achieves to reduce all targets mAP down
to 0.00 in white-box settings, thus achieving a 100% mAP drop. Furthermore, Li
et al. [21] reports the highest drop in mAP of 0.63, this is when attacking a Faster
R-CNN detector with the ResNet-152 backbone network.

Li et al. [22] also reports strong white-box attack performance for the R-AP
attack, with mAP drops of 0.54 and 0.48 on Faster R-CNN detectors with VGG16
and ResNet-152 backbones, respectively.
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Table 5.12: Reported mAP@0.5 evaluation for the white-box results of the Offset-
Push Attacks. Lower Adversarial Result means better attack performance, and res-
ults in a larger drop of mAP. Bold entries indicates highest attack performance in
the table.

Study Target
Detector

Dataset Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

TransRPN [21]
FR-V16 COCO 2014 0.47 0.0 0.47 (100%)
FR-r152 0.63 0.0 0.63 (100%)

R-AP [22]
FR-V16 COCO 2014 0.59 0.05 0.54 (91.5%)
FR-r152 0.65 0.17 0.48 (73.8%)

Shi et al. [35] and Jia et al. [38] reported their experiments evaluation in Suc-
cess Rate, defined by the ration of the successfully attacked number of images in
the evaluation set, see Table 5.13. Both attacks achieved great attack perform-
ance, with a success rate of 97.89% and 98.3%, respectively. Shi et al. [35] repor-
ted performance with respect to two metrics: Misclassification rate and invisible
rate. Their experiments discovers that making the objects evade detection was a
harder task than misclassification alone. This is seen in Table 5.13, where the lim-
ited perturbation added achieved an 88.51% Success Rate for evasion, as opposed
to a 97.89% Success Rate for misclassification.

Table 5.13: Reported evaluation for the white-box results of the Offset-Push At-
tacks who report their experimental results by Success Rate.

Study Target Detector Dataset Success Rate

DTTACK [35] YOLOv3 COCO 2014
97.89%
88.51%

Tracker Hijacking [38] FR-V16 Berkeley Deep Drive [49] 98.3%

Of the four papers, only Li et al. [21] and Li et al. [22] experimented with
black-box settings when transferring the attack, see Table 5.14. Both attacks were
tested for cross-task transferability, and achieved a substantial mAP drop when
transferred to instance segmentation models. Furthermore, the R-AP attack [22]
was transferred across backbones, and the experiments revealed that the attack
had poor cross-network transferability, only decreasing the mAP from 0.59 to 0.54
when transferring from Faster R-CNN with a ResNet-101 backbone to a VGG16
backbone. When transferring to RFCN [41], another RPN-dependent detector,
and the instance segmentation models Fully Convolutional Instance-Aware Se-
mantic Segmentation Method (FCIS) [50] and Mask R-CNN [51], Li et al. [22] dis-
covered that the accumulated perturbation, denoted P, achieved best cross-model
and cross-task transferability. However, the attack is not reliable in transfer set-
tings, as the attack achieved a marginal reduction of 21.7% for cross-model attack,
and a 24.6% and 26.7% drop in mAP when performing cross-task attacks against
FCIS and Mask R-CNN, respectively.
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Table 5.14: Reported mAP@0.5 evaluation for the black-box results of the Offset-
Push Attacks. Lower Adversarial Result means better attack performance, and res-
ults in a larger drop in mAP. P denotes an accumulated perturbation, from V16,
mn, rn50, rn101 and rn152. Bold entries indicates highest attack performance in
the table.

Study Source Detector Target Detector Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

TransRPN [21] FR-V16

SSD 0.42 0.16 0.26 (61.9%)
YOLOv2 0.37 0.04 0.33 (89.2%)
YOLOv3 0.40 0.05 0.35 (87.5%)
Mask-RCNN 0.54 0.02 0.52 (96.3%)
YOLACT 0.49 0.07 0.42 (85.7%)

R-AP [22]

FR-rn101 FR-V16 0.59 0.54 0.05 (8.5%)

P
RFCN 0.60 0.47 0.13 (21.7%)
FCIS 0.61 0.46 0.15 (24.6%)
Mask-RCNN 0.60 0.44 0.16 (26.7%)

5.6 Total Loss Attack

Total Loss Attacks target the entirety of the model, this includes both the regression
and classification of RPN, as well as the classification and regression layer of the
detector. Such attacks have a large range of results, where the focus is on max-
imizing the attack output, with no clear target for the attack. Thus making this
type of attack results in a variety of attack results, where objects may be evaded
or fabricated, and the attack can lead to misclassification of objects within the
image.

The total loss function toward Faster R-CNN, Equation 5.18, can be denoted
as a combination of the Faster R-CNN loss and the RPN losses from Equation 2.6
and section 2.5, respectively.

L = LFastR−CNN
cls + LFastR−CNN

reg + LRPN
cls + LRPN

reg (5.18)

Adversarial attacks on Faster R-CNN object detector

Wang et al. [19] uses PGD [11] to attack Faster R-CNN by targeting the total loss
of the object detector. Wang et al. [19] conducts a thorough analysis of how the
attack performs when targeting separate parts of the loss function, as well as the
entire loss function which includes the RPN loss. The experiments reveal that the
most effective attack is done by targeting the total loss, including RPN loss, of the
target model, which gives the total loss as seen in Equation 5.18.
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MI-FGSM on Faster R-CNN Object Detector

Liu et al. [25] uses Momentum Iterative Fast Gradient Sign Method (MI-FGSM) to
stabilize the optimization and escape from poor local maxima. Compared to PGD
[11], which starts from a random value, MI-FGSM is more stable and powerful in
both white- and black-box environments.

MI-FGSM utilizes the total loss function from Wang et al. [19], as seen in
Equation 5.18, which was proved to be the most efficient to generate AEs in white-
box settings.

Equation 5.18 is inserted into the attacks loss function, and then the mo-
mentum is used to update the direction, thus achieving the property of avoiding
occurrences of undesirable local maximums. Liu et al. [25] claims this achieves
the highest attack performance.

Adversarial Attacks on Faster R-CNN: Design and Ablation Study

Liu et al. [26] applies PGD to solve the optimization problem of the attack. The
optimization problem includes the objective function of the attack, defined by
the model’s classification results, coordinates of predicted bounding boxes, region
proposals and feature maps. By applying PGD, the constraints of the adversarial
perturbations are dealt with.

The ablation study shows that the best attack results come from attacking both
the Fast R-CNN submodule and the backbone network, which includes the RPN.

The final loss function of the attack, Ladv , is given by the loss function of both
the Fast R-CNN submodule and the RPN loss function, as shown in Equation 5.18.
Furthermore, Liu et al. [26] adds a novel term, Lbac , which targets the extracted
feature maps of the backbone network. This term is added to the total loss function
Equation 5.18, giving the final loss function for the attack as

Ladv = λ1 LRPN
cls +λ2 LRPN

reg +λ3 LFastR−CNN
cls

+λ4 LFastR−CNN
reg +λbac Lbac

(5.19)

The ablation study performed for the attack shows that attacking both Fast
R-CNN and the backbone network submodule can reduce the detection accuracy
for large objects further than only targeting the Faster R-CNN.

Adversarial attacks on YOLACT instance segmentation

Zhang et al. [27] extends PGD to attack the instance segmentation model You
Only Look At Coefficient (YOLACT) [52].
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Figure 5.8: Overview, obtained from [27]

Through their testing, they observe that the bounding box regression loss is
the most effective loss of the three parts of the total loss function. But all three are
slightly worse alone than combined to the total loss. Furthermore, the attack was
tested on different network architectures and proved great cross-network trans-
ferability.

The total loss function used to generate AEs is the sum of the box regression
loss Lbox , classification loss Lcls and the mask loss Lmask, where both Lbox and Lcls
are defined as in [42], and Lmask from [52]. The total loss of the attack is then
defined as

L = w1 Lbox(x + r,θ , l, g) +w2 Lcls(x + r,θ , c)

+w3 Lmask(x + r,θ , m)
(5.20)

where w denotes the different weights of the separate loss functions, r is the
generated perturbation, θ is the parameters of the YOLACT model, l is the pre-
dicted boxes, g is the ground truth boxes and c is the object confidence.

Zhang et al. [27] then uses an improved PGD to maximize Equation 5.20 and
generate the AE.

Exploring the Vulnerability of Single Shot Module in Object Detectors
via Imperceptible Background Patches

Li et al. [29] explores the vulnerability of the Single Shot Module (SSM) commonly
used in recent object detectors. For two-stage detectors, like Faster R-CNN, this is
the RPN. For one-stage detectors, the SSM is the detectors as a whole. The attack
adds a small perturbation to patches within the background of the scene, thus not
altering the targeted object directly.

The attacks have similarities to [21], only this extends further to both one-
and two-stage detectors, where Li et al. [21] only targets the RPN, thus only the
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two-stage detectors. Furthermore, this attack also impairs the false positives, on
top of the true positives, effectively increasing the objectness of the background
meanwhile decreasing the objectness of true objects.

Figure 5.9: Overview of the Single Shot Module (SSM), obtained from [29]

An overview of a SSM is presented in Figure 5.9. The goal of targeting the
SSM is to corrupt it, such that it can’t provide any correct object proposals or
detections. This is done by letting the output ranking of the proposals give false
positives a higher ranking, such that they are pushed ahead of the true positives.

The attack minimizes the combination of

• True Positive Class loss, correct label loss of the true positives
• True Positive Shape (TPS) loss, which is the correctness of the shape offset

regression of the true positives.
• False Positive Class loss, the non-background class scores of false positives

arising from the background.

The three above loss functions are combined as terms in a sum, and minimized
by IFGS.

The TPS loss, here given as Lshape, is designed to increase the offset, such that
the predicted localization is pushed away from the ground truth. This is done
similar to how [21] pushes the predicted offset away from a large constant, as
described in section 5.5. Instead of a large constant, Li et al. [29] pushes the
predicted offset away from the ground truth.

The attack is a white-box attack, where the gradients are considered in optim-
izing the attack. The attack does show some transferability strength between de-
tectors with similar architectures. Nonetheless, the attack barely transfers between
one- and two-stage detectors. There is almost no effect when transferring the at-
tack from YOLOv2 or YOLOv3 to Faster R-CNN models, and vice versa. Li et al.
[29] performs an ablation study to compare the different combinations of the
three loss terms, where the three terms combined outperform all other combina-
tions of them.
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Universal Physical Camouflage Attacks on Object Detectors

Huang et al. [31] proposes Universal Physical Camouflage Attack (UPC), which
crafts a camouflage by jointly fooling the RPN, classifier and the regression layer.

UPC generates a universal pattern, which can attack all instances that belongs
to the same category, e.g. person or cars. To make this attack work in the physical
world, Huang et al. [31] proposes to model the deformable characteristics and ex-
ternal physical environments. These steps are summarized in the pipeline shown
in Figure 5.10.

Figure 5.10: Overview of the UPC attack pipeline, obtained from [31]

When targeting the Faster R-CNN detector, the attack aims to reduce the num-
ber of valid proposals from the RPN. Then, corrupt the classifier and regressor to
output incorrect predictions.

For the RPN-attack, UPC aims to minimize the loss function for RPN, Lrpn.
Thus, the goal is to generate adversarial patterns for RPN such that the foreground
proposals are severely reduced and the proposed candidate boxes are corrupted.

This loss function is added as a term in the total object function, together
with terms for the classification and regression layer loss, Lcls and Lreg respect-
ively. Where UPC selects a dense set of region proposals and aims to corrupt the
regression by adding a distortion offset, similar as described in [35].

The attack is conducted in two stages.

• First stage focuses on only attacking the RPN to reduce the number of valid
proposals.
• Second stage attacks the Faster R-CNN classification and bounding box re-

gression tasks.

5.6.1 Attack Evaluation

Wang et al. [19] achieves three success cases, which leads to a minimum of one
of the class label or bounding boxes being incorrectly proposed. The success cases
are summarized in Table 5.15.
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Table 5.15: Success cases which includes either or both of successfully attack the
bounding box shape/location or the predicted class label.

Success Case Bounding Box Class Label
SC1 ✓ ✗

SC2 ✗ ✓

SC3 ✗ ✗

SC2 and SC3 in Table 5.15 are when the attack successfully mislocates the
bounding box of the target detector.

Furthermore, the attack does not achieve a 100% success rate, thus leading
to some failure cases. The failure cases are where the target manages to correctly
detect objects in the AE, both with correctly placed bounding box and correct class
label.

Wang et al. [19] conducts experiments, where the cross-network transferabil-
ity of the attack is proven. AEs was generated based on a detector with the back-
bones VGG-07, VGG-0712, RN-07 and RN-0712. Each of the AEs was detected by
the four different detectors with a high success rate. The AEs generated by VGG
was also proved to be effective against ResNet, leading to an effective black-box
attack.

The attack outperforms the state-of-the-art attack DAG [10], which is reasoned
by adding the total loss of the target, including the RPN Regression Loss. Rather
than only the classification score in DAG. Wang et al. [19] also reports stronger
transferability than DAG, due to the extended loss function.

Wang et al. [19] failed to find any transferable attack that failed, no matter
what the detection model is. These results strengthen the discussed property of
AEs which targets the bounding box regression of the targeted model as a com-
monality across detection architectures.

The experiments [19] show that AEs generated on the total loss, which in-
cludes the RPN regression and classification loss, hinder the RPN from generating
proposals with high confidence. Nonetheless, the experiments also discover that
using only the RPN bounding-box regression loss alone to generate AEs achieves
a much lower success rate than with other terms.

Wang et al. [19] used DAG as a benchmark, where the proposed attack out-
performs DAG in both black- and white-box settings. This was also achieved with
fewer iterations.

Liu et al. [25] conducts experiments of the MI-FGSM, and benchmarks against
the PGD attack. The experiments show that PGD reduces the mAP value of Faster
R-CNN with VGG16 backbone to 0.23, while MI-FGSM reduces the mAP further
to 0.17, with the same parameters.

The MI-FGSM attack is also tested across different backbones, transferring the
attack to a black-box Faster R-CNN with a different backbone. MI-FGSM achieves
great transferability which infers that the attack is effective in black-box environ-
ments.
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Zhang et al. [27] conducted experiments for the proposed attack and bench-
marked it against FGSM, CI-FGSM and AI-FGSM on image classification tasks. The
proposed attack achieved the highest mAP-drop of all benchmarked attacks. On
COCO 2017, under white-box attacks, the proposed method achieves 0.01 box
mAP and 0.02 mask mAP on YOLACT with ResNet101 backbone.

Huang et al. [31] conducts experiments and manages to generate a perturb-
ation that drastically lowers the quality of the proposals from the Faster R-CNN
detector. The UPC also outperforms ShapeShifter [53], ERP [54] and AdvPat [55]
during the conducted experiments.

Furthermore, Huang et al. [31] conducted experiments to test the cross-training
transferability and cross-network transferability of the UPC attack. The experi-
ments show that UPC achieves great cross-training strength, but achieves only a
slight drop in precision in cross-network transfer attacks.

Five of the six Total Loss Attacks presented their evaluation metrics in mAP,
as shown in Table 5.16. All show great promise in attack efficiency, especially
PGD [19], MI-FGSM [25] and YOLACT [27] which all reported above 90% mAP
reduction. Improved PGD [26] and SSM [29] also achieved sufficient attack per-
formance, but less robust, with all evaluations above 30% reduction.

Table 5.16: Reported mAP@0.5 evaluation for the white-box results of the Total
Loss Attacks. Lower Adversarial Result means better attack performance, and res-
ults in a larger drop of mAP. Bold entries indicates highest attack performance in
the table.

Study Target Detector Dataset Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

PGD [19]
FR-V16

VOC 2007
0.71 0.01 0.70 (98.6%)

FR-rn101 0.80 0.03 0.77 (96.3%)

MI-FGSM [25]
FR-V16

VOC 2007
0.70 0.02 0.68 (97.1%)

FR-rn101 0.75 0.00 0.75 (100%)
Improved PGD [26] FR-rn50 COCO 2017 0.59 0.37 0.22 (37.3%)

YOLACT [27]
FR-rn101

COCO 2014
0.45 0.01 0.44 (97.8%)

FR-dn53 0.44 0.00 0.44 (100%)
FR-rn50 0.43 0.01 0.42 (97.7%)

SSM [29]

FR-V16

COCO 2014

0.62 0.42 0.20 (32.2%)
FR-rn152 0.70 0.37 0.33 (47.1%)
SSD-V16 0.48 0.25 0.23 (47.9%)
YOLOv3 0.49 0.33 0.16 (32.7%)

The last Total Loss Attack, UPC [31], did not report their evaluation in mAP.
Huang et al. [31] provided a custom probability metric, Probability Score (PS).
The PS represents the probability of whether the detector can hit the true cat-
egory. Huang et al. [31] discovered through their experiments that the joint attack
paradigm, which inclusively targets the RPN, achieves stronger attacking strength
than when only targeting the classification layer.
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Table 5.17: Reported PS on Standard and Adversarial datasets for the UPC attack,
where PS represents the probability that the targeted detector will label the object
with the correct class. A lower PS indicates stronger attack performance.

Study Target Detector Dataset Standard
PS

Adversarial
PS

PS Drop
(Reduction in %)

UPC [31]
FR-V16

VOC 0712
0.95 0.04 0.91 (95.8%)

FR-rn101 0.99 0.06 0.93 (93.9%)

Table 5.18 presents the reported black-box mAP result from [19], [25], [27]
and [29]. Where all papers conducted experiments to find the cross-network trans-
ferability of their attacks. MI-FGSM in [25] achieved a 100% reduction of mAP
when transferring the attack across Faster R-CNN models with different backbone
networks. While the rest had difficulties with a more robust transferring of their
attacks, where [29] could not transfer the attack across models, nor backbone
networks, leaving it improper in black-box settings. Wang et al. [19] achieved
medium transferability, with a reduction of 35.0% and 22.5% when transfer-
ring between ResNet-101 and VGG16 backbones for Faster R-CNN. Zhang et al.
[27] did extensive testing between several backbones, where almost all transfers
achieved above 70% reduction, making the attack invariant to backbones in the
target.

Furthermore, the experiments in [19] reveals that the attack achieves high
cross-data transferability, with a reduction of 94.7% and 75.0% when transferring
the attack from VOC 2007 to VOC 0712 on Faster R-CNN VGG16 and ResNet-101,
respectively.
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Table 5.18: Reported mAP@0.5 evaluation for the black-box results of the Total
Loss Attacks. Lower Adversarial Result means better attack performance, and res-
ults in a larger drop of mAP. Bold entries indicates highest attack performance in
the table.

Study Source Target Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

PGD [19]
FR-V16 FR-rn101 0.80 0.42 0.38 (47.5%)
FR-rn101 FR-V16 0.71 0.55 0.16 (22.5%)
FR-V16 VOC 2007 FR-V16 VOC 0712 0.75 0.04 0.71 (94.7%)
FR-rn101 VOC 2007 FR-rn101 VOC 0712 0.80 0.20 0.60 (75.0%)

MI-FGSM [25]
FR-V16 FR-rn101 0.75 0.00 0.75 (100%)
FR-rn101 FR-V16 0.70 0.00 0.70 (100%)

YOLACT [27]

FR-dn53
FR-rn50 0.43

0.10 0.30 (69.8%)
FR-rn101 0.03 0.40 (93.0%)
FR-dn53

FR-rn101 0.45
0.05 0.40 (88.9%)

FR-rn50 0.12 0.33 (73.3%)
FR-rn101

FR-dn53 0.44
0.15 0.29 (65.9%)

FR-rn50 0.13 0.31 (70.5%)

SSM [29]

FR-rn152
FR-V16 0.62

0.62 0.00 (0%)
SSD-V16 0.60 0.02 (0.3%)
FR-rn152 FR-rn101 0.66 0.60 0.06 (9.1%)
YOLOv3 SSD-V16 0.48 0.48 0 (0%)

5.7 Region of Interest Attacks

Region of Interest (RoI) attacks seeks to evade foreground objects by targeting the
proposed RoIs. This is done by fabricating false positives which seek to disrupt
the RoI by being the only regions that are interesting for further proposals. If the
attack succeeds, it will fabricate a strong false positive, whilst evading all actual
foreground objects.

DPatch: An Adversarial Patch Attack on Object Detectors

Liu et al. [28] proposes the DPatch attack as an extension of the Adversarial
Patch attack of Brown et al. [56] to attack object detectors, with a focus on YOLO
and Faster R-CNN detectors. The original Adversarial Patch showed great attack
strength against classifiers and was able to attack them in the real world with a
printed physical patch. Liu et al. [28] found that to make the patch applicable
against object detectors, the bounding box regression and the object classification
need to be attacked simultaneously.
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Figure 5.11: Overview of the DPatch attack, obtained from [28]

Liu et al. [28] proposes two separate loss functions, extended from Google’s
Adversarial Patch [56], to perform targeted and untargeted attacks.

DPatch’s untargeted and targeted attacks prove to degrade the mAP of Faster
R-CNN and YOLO from 0.75 and 0.66 down to below 0.01, respectively. Further-
more, the study shows that a patch achieves cross-model transferability, as a patch
trained on YOLO can successfully transfer to attack Faster R-CNN and vice versa.

The attack framework of DPatch is shown in Figure 5.11, where a random
patch is applied to the targeted image at the first iteration. Then, depending on
the target model, the patch is iteratively updated by targeting the RPN of Faster
R-CNN or the classification and regression layer of YOLO.

5.7.1 Attack Evaluation

Concerns about the DPatch attack [28] have been raised, as it shows some weak-
nesses not disclosed in the paper, and not by the peer reviewers. See Appendix B
for further information about the concerns.

DPatch shows very promisingly white-box attack performance from the repor-
ted evaluation of Faster R-CNN and YOLOv2 detectors, as shown in Table 5.19. Liu
et al. [28] performs experiments on both targeted and untargeted attacks, where
both attack settings achieve to reduce the mAP of the targeted detectors close to
0.00.

Table 5.19: Reported mAP@0.5 evaluation for the white-box results of the RoI
Attack DPatch. Lower Adversarial Result means better attack performance, and
results in a larger drop of mAP. Bold entries indicates highest attack performance
in the table.

Study Target Detector Dataset Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

DPatch [28]
(Targeted)

FR-rn101 VOC 2007 0.75 0.01 0.74 (98.7%)
YOLOv2 0.66 0.02 0.64 (97.0%)

DPatch [28]
(Untargeted)

FR-rn101 VOC 2007 0.75 0.03 0.72 (96.0%)
YOLOv2 0.66 0.00 0.66 (100.0%)
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Furthermore, [28] performs several black-box attacks with DPatch, where they
test for both cross-model and cross-data transferability, as shown in Table 5.20.
The experiments validate that a YOLO-trained DPatch can attack Faster R-CNN
detectors and vice versa, which is a dangerous and powerful attribute of the attack.
Furthermore, the experiments for cross-data transferability indicate that the attack
has some more difficulties transferring to another dataset than what the patch is
trained on. Nonetheless, a DPatch trained on the COCO dataset in a cross-data
setting achieved to drop the mAP of the detectors trained on VOC dataset to 0.28
and 0.24 for YOLO and Faster R-CNN, respectively.

Table 5.20: Reported mAP@0.5 evaluation for the black-box results of the RoI
Attacks. Lower Adversarial Result means better attack performance, and results
in a larger drop in mAP. Bold entries indicates highest attack performance in the
table.

Study Source Target Benign
Result

Adversarial
Result

mAP Drop
(Reduction in %)

DPatch [28]
FR-rn101 YOLOv2 0.66 0.00 0.66 (100%)
YOLOv2 FR-rn101 0.75 0.02 0.73 (97.3%)
YOLOv2 COCO YOLOv2 VOC 0.66 0.28 0.38 (57.6%)
FR-rn101 COCO FR-rn101 VOC 0.75 0.24 0.51 (68.0%)

5.8 Attacks Summary

The 16 attacks included in this survey have been clustered into the 4 different cat-
egories Background Evasion, Offset-Push, Total Loss and RoI Attacks. The identified
attributes are explained and described in subsection 4.3.2, and are uniquely dis-
tributed for all the attacks, as shown in the two tables Table 5.21 and Table 5.22.

As described in Table 5.21, several attacks can be implemented in black-box
settings. Nonetheless, all attacks are white-box based, which implies all attacks
can only be executed in black-box settings through a transferring of the attack.
How the attack can transfer is denoted by the Transferability attribute, summar-
ized in its respective column in Table 5.21. The Transferability-attribute is given to
an attack if they have reported transfer-attack experiments with sufficient attack
performance.

For the Target(s) attribute, & is used to denote that the attack targets the men-
tioned modules simultaneously, while ∨ denotes that the attack targets either of
the modules.
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Table 5.21: Generation and Transfer Phase Attributes for each study, with their
respective category from Table 5.7. The attributes are as described in subsec-
tion 4.3.2, and the different optimization schemes are introduces through their
representative papers discussions. "-" denotes that the paper has not provided
enough information to declare which transferability attribute to assign the at-
tack.

Generation Phase Transfer Phase
Category Ref. Attack Knowledge Target(s) Loss Function Transferability

Background
Evasion
Attack

AB [20] White & Black Box FRCNN LFRCNN
reg Cross-Model

CAP [32] White & Black Box RPN Lrpn
reg & Lrpn

cls Cross-Data

G-UAP [34] White Box RPN Lrpn
cls None

APS [36] White & Black Box RPN Lrpn
reg & Lrpn

cls Cross-Network

SAA [39] White & Black Box FRCNN & YOLOv4 LFRCNN
reg -

Offset-
Push
Attack

TransRPN [21] White & Black Box RPN Lrpn
reg & Lrpn

cls Cross-Model, -Network and -Task

R-AP [22] White Box RPN Lrpn
reg & Lrpn

cls None

DTTACK [35] White Box (RPN & FRCNN) ∨ YOLOv3 Lrpn
reg & Lrpn

cls & LFRCNN
reg None

Tracker Hijacking [38] White Box YOLOv3 LY OLO
reg & LY OLO

con f None

Total
Loss
Attack

PGD [19] White & Black Box RPN & FRCNN Lrpn
reg & Lrpn

cls & LFRCNN
reg Cross-Data and -Network

MI-FGSM [25] White & Black Box RPN & FRCNN Lrpn
reg & Lrpn

cls & LFRCNN
reg Cross-Network

Improved PGD [26] White Box RPN & FRCNN Lrpn
reg & Lrpn

cls & LFRCNN
reg None

YOLACT [27] White & Black Box YOLACT LY OLAC T
reg Cross-Network

SSM [29] White Box RPN ∨ SSD ∨ YOLO Lrpn
reg & Lrpn

cls & LY OLO
reg & LSSD

reg None

UPC [31] White & Black Box RPN & FRCNN Lrpn
reg & Lrpn

cls & LFRCNN
reg Cross-Data, -Model and -Network

Region of
Interest
Attack

DPatch [28] White & Black Box FRCNN ∨ YOLOv2 LFRCNN
reg & LY OLO

reg Cross-Data and -Model
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Table 5.22: Deployment Phase Attributes for each study, with their respective
category from Table 5.7. The attributes are as described in subsection 4.3.2

Deployment Phase
Category Ref. Environment Attack Style Optimization Scheme

Background
Evasion
Attack

AB [20] Digital & Physical Patch-based l0
CAP [32] Digital Noise Gradient (IFGS [13])
G-UAP [34] Digital Noise Gradient (GD-UAP [57])
APS [36] Digital Noise GAN
SAA [39] Digital Patch-based l0

Offset-
Push
Attack

TransRPN [21] Digital Noise Gradient (MI-FGSM [46])
R-AP [22] Digital Noise Gradient (IFGS [13])
DTTACK [35] Digital Patch-based l2
Tracker Hijacking [38] Digital Patch-based Gradient (Adam [47])

Total
Loss
Attack

PGD [19] Digital Noise Gradient (PGD [11])
MI-FGSM [25] Digital Noise Gradient (MI-FGSM [46])
Improved PGD [26] Digital Noise Gradient (PGD [11])
YOLACT [27] Digital Noise Gradient (PGD [11])
SSM [29] Digital Patch-based Gradient (IFGS [13])
UPC [31] Digital & Physical Patch-based Gradient (IFGS [13])

Region of
Interest
Attack

DPatch [28] Digital Patch-based Gradient (IFGS [13])

5.8.1 Cross-Category Evaluation

While the attacks have been compared within each category, it’s important to com-
pare across categories to discover any trends in the strength of the categories. To
do so, common evaluation metrics have to be used. Most of the papers provide
their experimental results in mAP, which will be used to cross-category evaluate
the attacks. This shows the importance of a common agreement on which empiric
evaluation metric should be included in all papers, to make it feasible to compare
attacks against each other.

Furthermore, given the importance of which datasets are used for training the
model and the attack, only the two most common datasets are considered, namely
COCO and VOC. All the conducted experiments of the attacks are tested against
different models with different configurations and training data, the provided res-
ults of the experiments may not be fair to evaluate against each other, given their
difference in performance under normal circumstances. Hence, the evaluation is
clustered on the targeted models, to provide an overview of how well the different
attacks manage to transfer from their source to target, meanwhile also providing
a useful overview of how the most common detectors react to attacks.

Given that four of the studies ([31], [35], [38] and [39]) did not provide their
evaluations i mAP and Yuan and Wei [36] evaluated APS on a different dataset
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from VOC and COCO, their attacks are excluded from the following cross-category
evaluation. This was due to their evaluations being infeasible to compare against
the remaining attacks. Thus, the following evaluation only considers 11 of the 16
attacks.

Cross-Category White-Box Evaluation

Table 5.23 summarizes the results of all white-box experiments conducted for the
attacks that provide their empirical data in mAP. Table 5.23 describes the attacks
whose experiments were reported in mAP@0.5. For simplicity of the table, COCO
2014 and COCO 2017 dataset is denoted as C14 and C17, respectively. And VOC
datasets are denoted as V07 and V0712 for VOC 2007 and VOC 0712, respectively.

Table 5.23: White-Box cross-category evaluation for the studies which reported
experimental results in mAP@0.5 scores. All scores are given as drop in mAP, and
relative mAP percentage reduction. U: Untargeted, T: Targeted

Attack Target Detector
FR-V16-C14 FR-V16-V07 FR-V16-V0712 FR-rn50-C14 FR-rn50-C17 FR-rn101-C14 FR-rn101-V07 FR-rn101-V0712 FR-rn101-C17 FR-rn152-C14 FR-dn53-C17

PGD [19] 0.70 (98.6%) 0.73 (97.3%) 0.72 (94.7%) 0.77 (96.3%)

TransRPN [21] 0.47 (100%) 0.58 (100%) 0.62 (100%) 0.63 (100%)

R-AP [22] 0.54 (91.4%) 0.49 (82.4%) 0.47 (73.5%) 0.48 (73.3%)

MI-FGSM [25] 0.70 (99.8%) 0.75 (99.5%)

Improved PGD [26] 0.22 (37.4%)

YOLACT [27] 0.42 (98.3%) 0.44 (97.5%) 0.44 (99.8%)

DPatch (U) [28] 0.72 (96.1%)

DPatch (T) [28] 0.74 (98.7%)

SSM [29] 0.21 (32.9%) 0.25 (38.5%) 0.30 (45.2%) 0.33 (47.4%)

CAP [32] 0.74 (100%) 0.77 (98.0%)

G-UAP [34] 0.40 (56.0%) 0.42 (55.5%) 0.25 (33.6%) 0.27 (33.8%)

Table 5.23: (Continuation) White-Box cross-category evaluation for the studies
which reported experimental results in mAP@0.5 scores. All scores given as drop
in mAP, and relative mAP percentage reduction. U: Untargeted, T: Targeted

Attack Target Detector
FR-mn-C14 FR-mn-V07 SSD-V16-C14 SSD-rn50-C14 YOLOv2-V16-V07 YOLOv2-mn-C14 YOLOv3-mn-C14 RFB-V16-C14 RFB-rn50-C14 FSSD-V16-C14 FSSD-rn50-C14

PGD [19]

TransRPN [21]

R-AP [22] 0.36 (76.6%)

MI-FGSM [25]

Improved PGD [26]

YOLACT [27]

DPatch (U) [28] 0.66 (100%)

DPatch (T) [28] 0.64 (97.2%)

SSM [29] 0.20 (42.3%) 0.24 (49.3%) 0.19 (40.1%) 0.24 (52.1%) 0.16 (32.0%) 0.22 (46.2%) 0.23 (46.6%) 0.21 (38.0%) 0.22 (43.8%)

CAP [32] 0.47 (93.4%)

G-UAP [34]

Of these white-box evaluations in Table 5.23 TransRPN [21] and MI-FGSM
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[25] from Offset-Push, YOLACT [27] from Total Loss, untargeted DPatch [28] from
Region of Interest and CAP [32] from Background Evasion all achieve some very
close to or actual 100% reduction in mAP. Thus reporting the highest mAP re-
duction of the white-box attacks. The distribution of highest performing attacks
is relatively even among the four categories, thus not showing any clear trends
from white-box evaluation alone.

Cross-Category Black-Box Evaluation

For the black-box evaluation of the attacks, the reported cross-data, -model, -
network and -task performance is summarized in Table 5.24. Given that many
of the attacks report high mAP reduction of more than 80%, attacks failing to re-
duce any performance by more than 40% is deemed insufficient for that style of
transfer.

Table 5.24: Black-Box cross-category evaluation for the studies which reported
experimental results in mAP@0.5 scores, denoted as mAP drop and relative per-
centage reduction. U: Untargeted.

Attack Source Detector Target Detector
FR-V16-C14 FR-V16-V07 FR-V16-V0712 FR-rn50-C14 FR-rn50-C17 FR-rn101-C14 FR-rn101-V07 FR-rn101-V0712 FR-rn101-C17 FR-rn152-C14 FR-dn53-C17

PGD [19]

FR-V16-V07 0.71 (94.4%) 0.29 (38.8%) 0.27 (34.4%)
FR-V16-V0712 0.63 (88.7%) 0.34 (44.7%) 0.38 (47.1%)
FR-rn101-V07 0.19 (27.1%) 0.17 (22.1%) 0.60 (75.4%)

FR-rn101-V0712 0.20 (28.3%) 0.21 (27.4%) 0.63 (83.2%)

TransRPN [21]

FR-V16-C14 0.56 (96.6%) 0.59 (95.2%) 0.59 (93.7%)
FR-rn50-C14 0.41 (87.2%) 0.60 (96.8%) 0.60 (95.2%)

FR-rn101-C14 0.39 (83.0%) 0.56 (96.6%) 0.61 (96.8%)
FR-rn152-C14 0.39 (83.0%) 0.56 (96.6%) 0.60 (96.8%)

R-AP [22]

FR-V16-C14 (p1) 0.12 (19.5%) 0.11 (17.0%) 0.09 (14.4%)
FR-mn-C14 (p2) 0.02 (4.1%) 0.03 (4.7%) 0.03 (4.6%) 0.03 (3.9%)

FR-rn50-C14 (p3) 0.05 (9.1%) 0.11 (16.9%) 0.09 (13.7%)
FR-rn101-C14 (p4) 0.04 (7.4%) 0.10 (16.0%) 0.09 (13.6%)
FR-152-C14 (p5) 0.04 (7.1%) 0.10 (16.3%) 0.10 (15.6%)

P=
∑5

i=1 pi 0.22 (36.7%) 0.28 (47.4%) 0.26 (40.3%) 0.23 (36.1%)

MI-FGSM [25]
FR-V16-V07 0.75 (99.4%)

FR-rn101-V07 0.70 (99.5%)

YOLACT [27]
rn50-C17 0.33 (72.8%) 0.30 (69.5%)
rn101-C17 0.33 (75.8%) 0.29 (65.4%)
dn53-C17 0.40 (93.0%) 0.39 (87.1%)

DPatch (U) [28]

FR-rn101-V07
YOLOv2-V16-V07 0.73 (97.7%)

FR-rn101-C14 0.47 (62.7%)
YOLOv2-V16-C14

SSM [29]

FR-V16-C14 0.03 (4.8%) 0.03 (4.5%) 0.02 (3.1%)
FR-rn50-C14 0.02 (3.4%) 0.04 (6.1%) 0.02 (3.4%)

FR-rn101-C14 0.00 (0.0%) 0.04 (6.2%) 0.04 (5.3%)
FR-rn152-C14 0.01 (0.8%) 0.05 (7.3%) 0.07 (9.8%)
SSD-v16-C14 0.02 (3.4%) 0.01 (0.8%) 0.01 (1.4%) 0.01 (0.7%)
SSD-rn50-C14 0.01 (1.6%) 0.00 (0.0%) 0.01 (0.9%) 0.00 (0.0%)

YOLOv2-mn-C14 0.01 (1.3%) 0.00 (0.0%) 0.00 (0.0%) 0.00 (0.0%)
YOLOv3-mn-C14 0.01 (1.1%) 0.00 (0.0%) 0.01 (2.0%) 0.00 (0.0%)

G-UAP [34]

FR-V16-V07 0.42 (55.0%) 0.19 (24.7%) 0.16 (20.6%)
FR-V16-V0712 0.43 (60.0%) 0.20 (26.0%) 0.18 (21.9%)
FR-rn101-V07 0.36 (51.0%) 0.31 (41.5%) 0.23 (28.7%)

FR-rn101-V0712 0.36 (50.4%) 0.32 (41.6%) 0.29 (38.0%)
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Table 5.24: (Continuation) Black-Box cross-category evaluation for the studies
which reported experimental results in mAP@0.5 scores, denoted as mAP drop
and relative percentage reduction. U: Untargeted.

Attack Source Detector Target Detector
FR-mn-C14 SSD-V16-C14 SSD-V16-V07 SSD-rn50-C14 SSD-mn-C14 YOLOv2-V16-V07 YOLOv2-mn-C14 YOLOv3-mn-C14 RFCN-rn101-C14 RFCN-rn101-V07

PGD [19]

FR-V16-V07
FR-V16-V0712
FR-rn101-V07

FR-rn101-V0712

TransRPN [21]

FR-V16-C14 0.35 (85.4%) 0.26 (61.9%) 0.23 (67.6%) 0.33 (89.2%) 0.35 (87.5%)
FR-rn50-C14 0.20 (48.8%) 0.11 (26.2%) 0.11 (32.4%) 0.21 (56.8%) 0.23 (57.5%)
FR-rn101-C14 0.20 (48.8%) 0.11 (26.2%) 0.11 (32.4%) 0.20 (54.1%) 0.21 (52.5%)
FR-rn152-C14 0.21 (51.2%) 0.11 (26.2%) 0.11 (32.4%) 0.22 (59.5%) 0.23 (57.5%)

R-AP [22]

FR-V16-C14 (p1) 0.12 (26.1%) 0.06 (9.3%)
FR-mn-C14 (p2) 0.03 (4.3%)

FR-rn50-C14 (p3) 0.08 (16.1%) 0.06 (10.6%)
FR-rn101-C14 (p4) 0.06 (13.0%) 0.08 (13.5%)
FR-152-C14 (p5) 0.05 (11.3%) 0.06 (9.3%)

P=
∑5

i=1 pi 0.21 (43.9%) 0.13 (21.8%)

MI-FGSM [25]
FR-V16-V07

FR-rn101-V07

YOLACT [27]
rn50-C17
rn101-C17
dn53-C17

DPatch (U) [28]

FR-rn101-V07 0.66 (100%)
YOLOv2-V16-V07

FR-rn101-C14
YOLOv2-V16-C14 0.41 (63.0%)

SSM [29]

FR-V16-C14 0.02 (3.3%) 0.00 (0.0%) 0.02 (4.5%) 0.00 (0.0%)
FR-rn50-C14 0.01 (1.0%) 0.00 (0.0%) 0.01 (2.4%) 0.01 (1.0%)
FR-rn101-C14 0.01 (1.2%) 0.00 (0.0%) -0.01 (-1.1%) 0.01 (1.4%)
FR-rn152-C14 0.01 (1.4%) 0.00 (0.0%) 0.02 (3.9%) 0.00 (0.0%)
SSD-v16-C14 0.01 (2.6%) 0.00 (0.0%) 0.01 (1.4%)
SSD-rn50-C14 0.01 (1.7%) 0.00 (0.0%) 0.00 (0.0%)

YOLOv2-mn-C14 0.01 (1.0%) 0.00 (0.0%) 0.03 (6.9%)
YOLOv3-mn-C14 0.01 (1.0%) 0.00 (0.0%) 0.07 (14.4%)

G-UAP [34]

FR-V16-V07 0.08 (9.9%) 0.23 (31.7%)
FR-V16-V0712 0.10 (13.0%) 0.24 (33.1%)
FR-rn101-V07 0.07 (8.7%) 0.26 (34.7%)

FR-rn101-V0712 0.07 (8.5%) 0.28 (38.5%)

Firstly, one can observe from Table 5.24 that G-UAP [34], R-AP [22] and SSM
[29] struggle to generalize the attack, as the mAP reduction for some of the trans-
fer attacks is not sufficient and far away from their white-box performance. How-
ever, PGD [19] manages to transfer the attack cross-data, seemingly invariant to
the data used in the detector and attack.

Both G-UAP [34] and PGD [19] only successfully transfer the attack cross-
data and -network to the Faster R-CNN target with VGG16 backbone network.
Notably, R-AP [22] achieves an acceptable reduction in mAP when combining all
perturbations from the five different detectors. SSM [29] has almost no impact
when transferring the attack, and even provides one unique case where the mAP
is increased instead of reduced during the attack.

Total Loss reported 3 out of 4 successfully transfer attacks, while Background
Evasion and Offset-Push only had 1 out of 2 successfully transfer attacks. The con-
ducted Region of Interest transfer attacks shows the most successful cross-model
transfer attacks of all categories, while the cross-data attacks achieve a lower mAP
reduction. Thus, Total Loss seems to have the highest chance of transferring the
attacks across datasets, networks and models. Nonetheless, none of the Total Loss
Attacks reported a successful cross-task transfer attack.

An interesting observation is that the experiments conducted in TransRPN [21]
show that attacks based on less complex backbones, here VGG16, achieve higher
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attack performance against detectors, defense strategies and achieve better trans-
ferability across networks and models. Zhang et al. [27] reports similar findings,
where AEs generated on Faster R-CNN detectors with DarkNet-53 backbone net-
work is more valid to attack ResNet backbones than the other way around. Li et
al. [21] also reports experiments that indicate that the VGG16 backbone outper-
forms ResNet backbones when transferring the attack from Faster R-CNN to the
one-stage detectors SSD and YOLO, as shown in Table 5.24.

5.9 Classification of Defenses

To discuss and answer RQ3, the five selected defensive papers for this survey are
considered. Two main classes of defensive strategies are denoted as proactive and
reactive strategies.

Proactive strategies seek to preemptively make the detectors robust such that
the AEs can be input to the main detector with neglected effect. The most common
proactive strategy is adversarial training, which adds AEs to the training data, as
described in section 2.10.

The reactive defenses focus on adding an intermediate module that intercepts
the input image to conduct the security measure before the image is input to the
main detector. The reactive strategies thus seek to disturb the perturbations and
thus prevent the AEs to be input to the main detector as intended by the attacker.
Two common strategies for this are adversarial detection and denoising.

Of the five papers, two are proactive and propose methods of adversarial train-
ing, while the last three were reactive strategies, as shown in Table 5.25.

Table 5.25: The five defenses discussed through this chapter.

Defense methods
Study Reactive Proactive

T-SAT [23] ✓

OR [24] ✓

TOR [30] ✓

DR [33] ✓

FUSE [37] ✓

5.10 Proactive Defenses

Proactive defense mechanisms are implemented in the training and design phase
of the detector, thus seeking to create a robust detector. The proactive defenses
seek to reduce the overhead when the robust detector first is deployed, as there
is no intermediate between the input and the detector.

Despite reducing the overhead in run-time, a common weakness of proactive
defenses is their need for information about current attacks. While adversarial
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training has shown great potential, new attacks may bypass them as the detector
has not seen the perturbations of these new attacks before. Thus creating a con-
stant need for re-training to maintain the performance of the defenses against
new attacks.

Towards Practical Robustness Improvement for Object Detection in
Safety-Critical Scenarios

Hu and Zhong [23] proposes a Two-Stage Adversarial Training (T-SAT) algorithm
to increase the robustness of state-of-the-art object detectors practically. Their fo-
cus is on adversarial training of a YOLOv3 [5] detector on the COCO dataset.
This is barely done before, as most adversarial training has been focused on both
smaller networks and datasets.

Furthermore, the proposed adversarial training method focus on attacks that
can either make the target misclassify the main objects, or ignore the main ob-
jects in the image. This is a cause of the adversarial training utilizing the PGD
[11] attack to generate the AEs used in training, which is mainly for classification
attacks.

Generally, adversarial training tries to solve the min-max problem described
in section 2.10. With this in mind, the proposed adversarial training algorithms
consist of two main parts:

1. Adversarial Example Generation

• Where the method tries to solve the inner maximization problem of
Equation 2.9 with the PGD method.

2. Training

• Where the method tries to solve the outer minimization problem of
Equation 2.9 on the AEs generated in the previous step.

As an extra measure against overfitting, the method freezes the convolution
layers and trains the output layers for part of the training, and re-train from the
weights of the frozen layers and trains the whole model with a smaller learning
rate.

The proposed T-SAT method is tested against the one proposed by Zhang and
Wang [30], where T-SAT achieves a higher mAP than the method proposed by
Zhang and Wang [30].

The robust model is trained on AEs generated by PGD, [23] also studies the
robustness of their new model against other white-box noise attacks, namely C&W
[58] and FGSM [12]. Where C&W is an iterative attack, like PGD, and FGSM in a
one-step gradient attack. The robust model shows little to no robustness against
the C&W attack, which may imply that the defense can’t transfer to other iterative
attacks. Another interesting result of the conducted experiments is that a robust
model trained on "weak" PGD examples is more robust against FGSM than a model
trained on stronger PGD examples. This indicates that the generated AEs used
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in the training step needs to replicate the attack it is trying to mitigate, which
indicates that there is a lack of generalization of the defense.

The defense theoretically would expect to defend against several of the attacks
examined in this study, as there are multiple Background Evasion, Offset-Push and
Total Loss attacks which use PGD to solve their objective function, as shown in
Table 5.22, and more having the attributes of Digital and Noise while solving their
objective function iterative. Nonetheless, the initial experiments in [23] show that
there is still further work to be done to have the robust model more generalized
and able to defend against these attacks.

Towards Adversarially Robust Object Detection

Zhang and Wang [30] proposes TOR, a practical approach for achieving adversarial
robustness. This is done by

1. Categorization and analysis of different attacks, to reveal the underlying
mechanism.

2. Analyzes the different impacts of the task losses of the attacks.
3. Generalize adversarial training from classification to detection.

Zhang and Wang [30] discovers cross-task transference when targeting the
attack to the classification or localization tasks of the detector. This was discovered
through experiments, where they isolate the impact of class and localization loss
and observe that only using the localization loss affects the pure classification task.
Likewise, only using the class-loss decreases the accuracy of the localization task
of an object detector.

Zhang and Wang [30] proposes the following definition of adversarial train-
ing:

min
θ
[ max

x̄∈Scls∪Sloc

L( fθ ( x̄), {yk, bk})] (5.21)

where the loss function, L(·), is defined as the combination of classification
and localization loss, as shown in Equation 5.22.

min
θ

losscls( fθ (x), {yk, bk}) + lossloc( fθ (x), {yk, bk}), (5.22)

The inner maximization of Equation 5.21 is approximately solved by FGSM.
The min-max problem in Equation 5.21 differs from the standard min-max de-
scribed in section 2.10 by splitting into task-oriented domains Scls and Sloc . These
task-oriented domain constraints maximize either the classification loss or the
localization loss, then the AE used in the adversarial training is the one that max-
imizes the overall loss. By doing so, the proposed method isolates the effect of the
classification- and localization-loss, without suffering from the inferences between
the two tasks.

The proposed robust model was tested across SSD [42], Receptive Field Block-
based Detector (RFB) [59], Feature Fusion Single Shot Multibox Detector (FSSD)
[60] and YOLO [5, 61] detectors with various backbone networks. The robust
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model achieved a substantially higher mAP than the standard models against R-
AP attacks, see Table 5.26. Anyhow, one of the challenges of adversarially trained
models becomes clear, the mAP of the clean images is reduced by 0.26 on average,
and the reported clean mAP drops from 0.72 on the standard model, to 0.46 for
the robust model.

Table 5.26: The evaluation of experiments conducted by Zhang and Wang [30]
against the R-AP attack [22]. STD denotes the performance of the standard de-
tector

R-AP
Architecture STD Robust model from [30]

SSD-V16 0.07 0.45
RFB-rn50 0.09 0.49

FSSD-dn53 0.08 0.47
YOLO-dn53 0.08 0.44

Zhang and Wang [30] compares the proposed min-max problem, shown in
Equation 5.21, against the standard definition, shown in Equation 2.9. Where the
adversarial training with the proposed min-max contributes to a better mAP than
the standard definition. Implying the interference between the two tasks has a
negative impact on the robustness gained through adversarial training.

5.11 Reactive Defenses

Reactive defenses seek to intercept the pipeline of the system and conduct security
measures for all inputs before it is input to the detector. These security measures
include adversarial detection and denoising. For adversarial detection, the target
system consists of a detector with the sole role of classifying the input as benign
or adversarial. Denoising seeks to remove parts of the potential perturbations,
effectively disabling the perturbation and increasing the likelihood of the main
detector providing the correct prediction.

These reactive defenses have their positives and negatives, where the main
positive is reducing the need to re-training the main detector as needed in several
of the proactive defenses, which adds overhead in the design and training phase.
The reactive defenses can also be added as a layer of defense on top of a robust
detector that has been secured with proactive measures, leaving an even more
rigorous defense. The main negative of reactive defenses is that they only react in
response to known attacks, which makes them susceptible to new attacks.

The reactive defense can be an isolated module of the pipeline, and improving
or changing this module does not need to affect the main detector. The reaction
to the input does add overhead in run-time, which can turn the defense method
infeasible in real-time demanding scenarios.
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Improving Adversarial Robustness of Detector via Objectness Regular-
ization

Bao et al. [24] argues that adversarial training is only efficient against attacks with
perturbations of small l2 and l∞ norm. This is not sufficient against patch-based
attacks, as they often have a very large l∞. Thus, they propose an Objectness
Regularization (OR) method to defend against patches that seek to evade objects
from detection. OR also achieve a proper trade-off between robustness and clean
image detection performance.

The objectness score of bounding boxes represents the confidence that the
bounding box contains a foreground object. In addition, objectness can be repres-
ented by the sum of all foreground object probabilities.

The impact of evasion attacks is defined as:

1. The patch reduces the objectness of the image
2. The patch compresses the objectness to a small range, such that the differ-

ence between foreground and background become smaller.

Thus, to defend against this, OR aims to increase the overall objectness of the
image, such that attacks struggle to reduce the objectness of the objects. This is
done by applying the objective function, shown in Equation 5.23, before the final
classification and regression. This is further visualized in Figure 5.12.

f ′ob j(x) = r ∗ S( fob j(x)) + b (5.23)

Where fob j(x) denotes the objectness features of an image x , and S(·) denotes
the boosting function chosen as the sigmoid function, described in Equation 5.24,
which maps the objectness features from 0 to 1. r and b are regularization para-
meters, which is necessary for balancing the objectness regularization to avoid
increasing false predictions in normal circumstances. This is done by having both
r and b tightly connected to the objectness threshold τ, which is used to remove
redundant and false bounding boxes during the post process of the detector. r
controls the range of the regularization, and b controls the lowest prediction ob-
jectness.

S(t) =
1

1+ e−t
(5.24)
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Figure 5.12: Overview of OR, obtained from [24]

Bao et al. [24] conducts experiments to test the OR method against Targeted
Adversarial Objectness Gradient (TOG) [62] and SAA [39]. In their experiments,
the strongest implemented SAA achieved a Vanishing Rate of 91.0% and 78.3% on
YOLOv3 and YOLOv4, respectively. When applying OR to both models, the robust
YOLOv3 [5] and YOLOv4 [40] achieved a superior Vanishing Rate of 42.2% and
37.0%, respectively.

Another observation from the data represented in [24] is that for weaker SAA
patches, the OR method had a very small impact in comparison to the strong at-
tacks. For a patch of size 2500 pixels and 100 attack iterations, the vanishing rate
only decreased by 14.1% and 2.9% when applying OR to YOLOv3 and YOLOv4, re-
spectively. Thus indicating that the OR method does not generalize well to weaker
attacks.

Detection as Regression: Certified Object Detection by Median Smooth-
ing

Chiang et al. [33] presents Detection as Regression (DR) as a reduction from ob-
ject detection to a regression problem, then enables certified regression. The re-
gression problem envelops the proposal, classification and Non-max suppression
(NMS) stages of the detection task. Furthermore, the certified regression is en-
abled by the proposal of median smoothing.

Chiang et al. [33] argues that the defense proposed by Zhang and Wang [30]
would fail against stronger, more sophisticated attackers and that their proposed
DR can guarantee robustness against all possible attackers within the threat model.

DR proposes a set of 16 bounding boxes, containing all combination of a lower
bound, (x1, y

1
, x2, y

2
), and upper bound, ( x̄1, ȳ1, x̄2, ȳ2), bounding box set. Then,
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the worst case bounding box, defined as the bounding box which achieves the
lowest IoU with the ground-truth box, is selected. As long as the worst-case IoU is
above the NMS threshold, τ, the bounding box is considered certifiably correct.

Figure 5.13: Overview of the proposed method, obtained from [33]

DR is implemented as a certifiably-robust wrapper, as shown in Figure 5.13, of
different black-box detectors. The wrapper estimates the bounding boxes through
an ensemble of proposals and majority voting. The median smoothing is utilized
to minimize the effect of outliers. The robust wrapper outputs both the detection
and a robust certificate. The certificate annotates bounding boxes which can be
distorted or evaded with a perturbation with ||δ||2 < 0.36, where δ is bounded
by the l2-norm.

Robust Object Detection Fusion Against Deception

Chow and Liu [37] proposes a deception-resilient detection fusion approach they
name FUSE. FUSE utilizes a fusion framework, using the detection outputs of
objectness fusion, bounding box fusion and classification fusion.

The bounding box fusion in FUSE combines all bounding boxes of multiple
detectors: The victim detector and the verification detectors. This is done such
that false proposals can be discarded and positive proposals are kept for the clas-
sification fusion to ensure the correct label are assigned.

To ensure a robust model, FUSE aims to ensemble a diverse set of detectors
with different backbones. To further ensure diversity, FUSE minimizes the correl-
ation between the selected detectors.

Furthermore, FUSE aims to maintain the performance on the clean images, an
improvement of the mAP drop on benign examples discussed in [30].

Chow and Liu [37] conducts experiments with an ensemble of 11 detectors,
which consists of Faster R-CNN, YOLOv3 and SSD detectors with different back-
bones.

Furthermore, Chow and Liu [37] conducts experiments against R-AP [22],
where the R-AP attack achieves to reduce the mAP of the victim Faster R-CNN
detector from 0.67 to 0.05. The adversarial training method proposed by Zhang
and Wang [30] was also tested, where the robust model achieves a mAP of 0.36
on the same benign set (reduction of more than half from the standard detector).
The robust model achieves a mAP of 0.36 on the R-AP attack. FUSE manages
to maintain the performance on the benign set, with a mAP of 0.81. FUSE also
mitigates the R-AP attack by achieving 0.77 mAP during the attack.
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Furthermore, FUSE is tested against the vanishing TOG attack [62], where
FUSE mitigates the attack fully. Chow and Liu [37] also claims to be effective
against other digital evasion patch attacks, thus inclining to be effective against
DPatch [28] and SAA [39].

5.12 Defense Summary

Five different defense approaches have been presented with methods strategies
as adversarial training, objectness regularization, detection fusion and detection
certification.

The defenses performed experiments on different attacks, where only three of
the attacks in this survey are mitigated: DPatch [28], SAA [39] and R-AP [22].

The defenses also claim to have an effect against attacks beyond those that
are mitigated in the papers. This theoretical mitigation potential is mapped to
the attacks in this survey, and the proposed possible mitigations are summarized
in Table 5.27. These proposed possible mitigations are derived by mapping the
properties that the defenses claim to be effective against and the attributes of the
attacks described in Table 5.21 and Table 5.22.

Table 5.27: Summarized mitigation of attacks of the five defenses discussed
through this chapter. Theoretical effect denotes attacks which is of interest to
conduct experiments on, as the defense has described features which may make
them robust against these attacks. Bold entries in Mitigated Attacks are the rel-
evant attacks discussed in this survey.

Study Mitigated Attacks Theoretical Mitigation Potential
T-SAT [23] C&W [58], FGSM [12] PGD-based attacks (PGD [19], Improved

PGD [26] and YOLACT) [27]
OR [24] SAA [39] Vanishing Patches (DTTACK [35], Tracker

Hijacking [38], AB [20], DPatch [28])
TOR [30] R-AP [22], DAG [10] Attacks which targets both localization and

classification (Total Loss Attacks)
DR [33] DAG [10] l2-bounded attacks (DTTACK [35])

FUSE [37] R-AP [22], DPatch [28], DAG [10],
TOG [62], UEA [48], Patch of [63]

Digital evasion patches (SAA [39], AB [20])

Collectively, the defenses discussed in this survey have a theoretical potential
to mitigate most of the discussed attacks, though many of them are still theoretical
and has not been verified through experiments. The remaining attacks are CAP
[32], G-UAP [34], APS [36] and TransRPN [21]. From Table 5.21 and Table 5.22
one can observe that these four attacks share some important features which it
does not seem to exist any effective mitigation against, including they target RPN
solely. This shows a clear trend: There are no defenses focusing on mitigating attacks
which targets the RPN.
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Discussion

This chapter will discuss the novelty and contributions of this survey compared to
the related work. Then the potential usage of the results will be discussed along
with proposed future work for academia and industry. Lastly, any known threats
to the validity of this thesis will be disclosed.

6.1 Comparison with related work

A novel taxonomy has been proposed in through this survey, which has been used
to classify 16 different attacks within the four separate categories. Furthermore,
these attacks have been examined against existing defenses. This taxonomy dif-
fers from the related work described in section 3.2, first of all by targeting object
detectors, and also by focusing on the region proposals of the detectors. Lastly, the
taxonomy covers the generalization of the attacks, used to describe how well they
transfer across targets. This attribute has not been found in any other taxonomies,
still being a very important aspect of attacks to further research and hopefully one
day mitigate.

Of the related work, Pitropakis et al. [15] proposed a taxonomy for classifiers,
where the Attacker Knowledge is the only shared attribute with this survey. The
taxonomy targeted general attacks on machine learning and was only regarding
image classifiers for computer vision tasks. This makes several of the attributes
irrelevant for AE attacks against object detectors.

Serban et al. [16] introduces taxonomy for AE attacks against object detectors,
and only shares the Attacker Knowledge attribute with the proposed taxonomy in
this thesis. The Attack Strategy attributes also has similarities, where Serban et al.
[16] includes noise-based and geometric-based attacks. For the taxonomy of de-
fenses, the reactive defenses discussed in this thesis have similarities to the guards
discussed by Serban et al. [16], where the reactive defenses are placed early in the
pipeline with the task of responding to potential attacks. While Serban et al. [16]
provides a more comprehensive categorization of defenses, the defense strategies
discussed in this survey is categorized by the more abstract classes reactive and
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proactive. None of the defenses in this thesis is covered by the literature study in
[16].

The classification given by Liu et al. [17] does not share any attributes for the
taxonomy of attacks. For the defenses, similarities are found in both taxonomies
discussing the adversarial training strategy, and defensive methods which require
ensembles of detectors.

Lastly, the literature study and survey of Kong et al. [14] focuses only on how to
attack classifiers but shares the discussion of the attacker’s knowledge and physical
attacks. Nonetheless, the survey does not extend to object detectors.

While the related work proposes taxonomies with some similar attributes, the
taxonomy proposed during this survey adds a novel focus on the generalization
of the attacks. As discussed throughout the survey, the bounding box regression
is a common module across most of the detectors that are used today. We see
from the results that attacks that target this module can achieve great transfer-
ability across networks, models, training data and even tasks. Thus leaving the
localization module an important attack surface that needs to be investigated.

6.2 Implication to Academia and Industry

The usage of object detectors in machine learning tasks is increasing. And there
are many pre-trained and open-source detectors available, which makes it im-
portant to gain knowledge about the security risks of the different detectors be-
fore choosing a detector for the task. Here, this survey provides an examination
of how different detectors behave under different attack settings, thus providing
necessary information for the industry when selecting detectors.

The state of today’s attacks targeting the bounding box regression (RQ1) shows
that they are able to achieve great attack performance while jointly targeting the
regressor and classifier. Furthermore, their evaluations (RQ2) indicate that tar-
geting this common feature of region proposals makes the attacks transfer well
to black-box targets. Lastly, none of the discussed defenses (RQ3) have proved to
mitigate attacks that target the RPN.

Of the four categories introduced in this survey, the Background Evasion cat-
egory proves to be efficient both in white- and black-box settings, while not having
any clear defense strategies to mitigate their effect. This is further strengthened
by the results of Table 5.27, where the attacks which miss theoretical mitigation
all share the commonality of targeting the RPN. This commonality is shared by
the Background Evasion attacks, hence there is an identified research gap in how
to mitigate attacks that targets the RPN.

The proposed taxonomy is provided to further mitigate this research gap and
aims to be the first step toward robust bounding box regression for object de-
tectors. Overall, the taxonomy describes how an AE can be generated to attack
different object detectors, based on various information. Next, it describes how
the attack can be deployed to realize the attack. Lastly, to uncover the strength in
transferring the attacks, the taxonomy describes the potential of the attacks being
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transferred to attack other targets than used in the generation. This can be util-
ized in future research to categorize attacks and help to map out how to defend
against attacks with a particular focus on the bounding box regression.

In this survey, some defense techniques that show potential in mitigating the
discussed attacks have been proposed. This is still just theoretical and has not
been verified through experiments. Experiments of implementing these defenses
against the discussed attacks are left for future work.

6.3 Threat to Validity

The work done in this thesis contains some threats to validity that will be dis-
closed, and which can be improved through future work. Firstly, all the evalu-
ations used in this survey are obtained from their respective studies. This means
that the different attacks and defenses have been evaluated on different detectors
with different internal configurations. The difference in the detectors may have
resulted in unfairness when comparing some of the attacks. To help mitigate this
error, the attacks were compared by both the mAP reduction and the relative drop
of mAP between their benign results and the results on the AEs.

Furthermore, even though the results of the attacks are discussed to show
transferability, their performance in black-box settings when transferred is not
evaluated against other state-of-the-art black-box attacks. Ideally, this would be
included in this thesis to justify whether or not targeting the region proposals can
outperform the state-of-the-art black-box attacks.
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Conclusion and Future Work

This chapter will summarize the contribution and findings of the discussed re-
search questions, and conclude the thesis. Lastly, any work I intend for the future
to further improve the contributions of this survey are presented.

7.1 Conclusion

In this thesis, the results of a literature review have been presented and used
to discuss the state of today’s attacks and defenses targeting the bounding box
regression in object detection according to the research questions. The search and
selection process of the literature review resulted in a total of 21 relevant studies,
where 16 studies focused on attacks and the last five focused on defense.

The main findings of RQ1 show that these attacks are capable of disrupting the
object detectors’ capability to provide true region proposals. Thereby, the bound-
ing box regressor serves to be an important attack surface for adversarial input
attacks.

The evaluations collected from each of the selected studies for RQ2 proved
that some of these attacks could transfer across different internal settings in the
object detectors, without loss of attack performance. As the regressor shares com-
monalities between different object detector architectures, it can be exploited to
improve the generalization of the attacks.

The findings of RQ3 show that there were only a few defensive studies related
to the bounding box regression, and only three of the 16 attacks have been mitig-
ated. This indicates that there is a significant gap between the research of robust
region proposals and exploiting them in attacks.

After the literature review, the important commonalities of the selected attacks
were identified as the attributes Attack Knowledge, Target(s), Transferability, Loss
function, Environment, Attack Style and Optimization Scheme. Then, the attacks
were clustered into four abstract categories depending on their attack output.
These categories were Background Evasion Attacks, Offset-Push Attacks, Total Loss
Attacks and Region of Interest Attacks.
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To define a taxonomy, three phases of an AE attack were elicited: Generation,
Deployment and Transfer. Each of these phases is connected to separate parts of
the attributes while providing important insights into the different ways AEs are
generated, how they are deployed to attack their target, and lastly how they can
generalize to transfer across different object detectors.

7.2 Future Work

For future work, I would like to implement all the discussed attacks, to conduct
experiments in both white- and black-box settings while evaluating all the at-
tacks. This would be done by using the same detectors for all targets and attacks,
providing a fair baseline for evaluation. The evaluation would be done by a com-
mon evaluation metric which would let me compare all the attacks more fairly,
and thus improve the shortcomings of different detectors used in the experiments,
as discussed in section 6.3.

And to further validate the generalization of the discussed attacks, I would
want to implement the outperforming transfer attacks in this survey and bench-
mark them against other state-of-the-art black-box attacks. This would preferably
be done as an ablation study of different transfer settings, such that the attacks
can be evaluated across all combinations of cross-data, -model, -network and -
task transfer to further research how targeting the region proposal as a common
vulnerability among object detectors affects transferability.
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Appendix A

Background

A.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs), has become the model architecture of
choice for any task including analyzing images [64]. Furthermore, CNN is used to
realize most modern object detectors and has become the state of the art in terms
of classification and segmentation tasks.

CNNs utilizes features in images to extract feature maps, which are further
analyzed to make predictions [65].

A.2 Image Classification

Image classification has become the fundamental problem for computer vision
tasks. The task of image classification is given an image, the classification models
are to provide a list of the predicted classes of the object dominating the image
and their respective confidences.

A.3 Bounding boxes

Taking computer vision a step further from classification alone, certain tasks de-
pends on detecting and localizing multiple objects within an image or a single
frame from a video stream.
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Figure A.1: A cat with a predicted bounding box detected by a Faster RCNN object
detector.

A.4 Object Detectors

Object detection combines the concept of bounding boxes and classification, where
we introduce localization of the object to be classified in the image or video. The
objects localization can be described through the bounding boxes proposed by the
object detectors.

Throughout the years, several object detectors have been developed to per-
form computer vision tasks. In particular, You Only Look Once (YOLO), Single
Shot MultiBox Detector (SSD) [42] and Faster R-CNN are leading object detec-
tion models in computer vision tasks [66].

Object detector models can be further divided into one- and two-stage mod-
els. Where Faster R-CNN (faster region-based CNN)[6] is an example of a model
with two-step architecture. Faster R-CNN extracts possible object regions and per-
forms classifications of the object within the proposed region in two separate steps.
While YOLO, a one-stage model, extracts the proposed bounding boxes and per-
forms classification at the same time.

The one-stage models trades off the accuracy of smaller objects for higher
speed, giving them the property to achieve real-time object detection. Two-stage
models aim for higher mean Average Precision (mAP) scores while reducing the
detection speed, making it generally less viable for tasks requiring a high update
rate, such as autonomous driving. Faster R-CNN is several times faster than its
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predecessor, Fast R-CNN, making it near real-time detector, as described in [6].

A.4.1 YOLO

"You Only Look Once" is the core principle of YOLO, making it an one-stage object
detector. YOLO both propose regions for objects and classify the regions in the
same step, achieving real-time detection speed with a cost of lower accuracy.

There have been several iterations of the object detectors, where YOLOv1 [61]
directly returns the bounding boxes and classification at the output layer. YOLOv2
[67] removes the fully connected layer by adding batch-normalization. This iter-
ation improved the accuracy of the object detector. Detecting small objects was
still a problem with YOLO, this was improved in YOLOv3 [5] where multi-scale
predictions were used. Lastly, several optimizations were proposed for YOLOv4
[40] to achieve a state-of-the-art mAP and speed.

A.4.2 Faster R-CNN

Faster R-CNN is a two-stage object detector. The first stage of the detector is to
propose regions where objects exist. The second stage classifies said regions. Two
realize the first stage of Faster R-CNN, a RPN is used to output a feature map which
again is used as input to a fully connected neural network for object classification.

A.5 Adversarial Examples

CNNs and object detector has been known to be prone to imperceptible non-
random perturbations to input images, leading to misclassification [1]. These per-
turbed examples were termed adversarial examples.

Adversarial examples and why they are effective were further explored in [12].
Goodfellow et al. [12] argues that the reasoning for why adversarial examples are
effective is due to the linearity in neural networks. This was a new argument
from the focus on nonlinearity and overfitting which was the previous hypothesis.
This is further backed up by the generalization of the attacks which makes them
transferable across datasets and models.

A.6 Performance Metrics

When building an object detector, there is a need to measure how accurate the
predictions of the classification model are. Some basic measures which are widely
used are precision, recall and F1. Later, the more advanced metrics AP and mAP
have become a more all-around metric heavily used in the field.

Common for these three measures is that they utilize true/false negatives and
positives.

Precision is in place to measure whether the model avoids mistakes while
classifying a specific class.
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Precision=
T P

T P + F P
where T P = True Positive and F P = False Positive

Recall measures how well the model finds all the positives. If the model avoids
mistakes of classifying a given class as other classes, the model has a high recall.

Recal l =
T P

T P + FN
where T P = True Positive and FN = False Negative

F1 takes in account both precision and recall.

F1= 2 ·
Precision · Recal l
P recision+ Recal l

In some scenarios, a model with high recall at the cost of precision is beneficial.
More precisely, when the cost of false negatives are extremely higher than false
positives. E.g. for autonomous vehicles, false negative on a pedestrian crossing
the road can’t be allowed to happen. Thus, focusing on high recall would be more
beneficial.

For a better comparison of prediction models, a precision-recall curve can be
analyzed to evaluate the trade-off between precision and recall. This introduces
another performance metric, Average Precision (AP). Which can be further used
to calculate mAP. AP and mAP has become the most popular metrics for evaluat-
ing prediction models, and have proved to be great at evaluating models against
each other on the same datasets. The metrics gained heavy popularity through the
usage of the metrics in the challenges COCO 1 and PASCAL VOC2.

Firstly, let’s look at Intersection over Union (IoU), see Figure A.2 for visualiz-
ation. IoU is a metric to evaluate the intersection of the area of the ground truth
and the area of the predicted mask. Where IoU will be a number between 0 and
1, and closer to 1 means a more accurate prediction.

Figure A.2: Intersection over Union illustration

1https://cocodataset.org/
2http://host.robots.ox.ac.uk/pascal/VOC/



Chapter A: Background 78

By defining a threshold, here α, for the intersection to determine whether to
mark the predicted bounding box to be correct or not, we can calculate the IoU.

AP@α=

∫ 1

0

p(r)dr, (A.1)

where α is the threshold, and p(r) is the Precision-Recall curve

For each class, AP can be calculated. For COCO, this means at one specific α,
one can calculate 80 different APs, one for each of the 80 classes. To evaluate a
model given all classes in the dataset, all AP values can be averaged to get the
resulting mAP.

mAP@α=
1
n

n
∑

i=1

APi , (A.2)

sum over all n classes, and α is the IoU-threshold

A.7 Non-max suppression

Non-max suppression (NMS) is an algorithm to solve the problem of multiple over-
lapping proposals of bounding boxes of the same classes. In short, NMS iterates
over all classes and compares IoUs to discard the proposals of lowest confidence
when the IoU is above a predefined threshold. This makes the less confident pro-
posals regarded as false positives.

A.8 Region of Interest Pooling

When processing an image, it’s first preprocessed in a trained CNN to generate
a feature map. This feature map will then be inputted into a Region Proposal
Network (RPN) to get proposals of Region of Interest (RoI). These RoIs describes
where the RPN predicts there exists object, and are then inputted into the RoI
pooling

RoI pooling was needed for object detectors based on fully connected CNNs,
since they expect a fixed-sized feature map. RoI pooling handles the output of the
RPN which will be of different shapes.

A.9 Attack types

The different attacks can be divided into one of three attack types: Black-box,
white-box and gray-box attack. The difference is what kind of information about
the target that is available to the attacker. If the attack has full access to the target
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model, including weights, dataset, input and output, the attack is classified as a
white-box attack.

Furthermore, if only the input and output, optionally with the scores of the
output, the attack can be classified as black-box attack. Effective black-box attacks
can have severe consequences in safety-critical tasks like autonomous vehicles, as
the internal structures of the object detection models will less likely be publicly
available. If an attacker can successfully attack given no information about the
target, keeping the configuration and output of the object detector private no
longer prove as any security measure.

A.10 Transferability

While the most effective attacks often came from white-box attacks, attacks often
transfer to other models which the attack was not initially attended to attack [1,
9, 12]. This proves some serious concerns, as the attacker no longer may need to
have any information about their target. Transferability can be thought of as the
measure of how well an attack against a target can be performed on a separate
target with no further configurations.

The transferability can further be specified into cross-model and cross-dataset,
where the latter focuses on transferability of an attack meant for model A trained
on dataset X can be used for a model similar to A, only trained on dataset Y.

A.11 Attack Constraints

As discussed, the perturbations are meant to be imperceptible for the human eye.
To achieve this, attacks can implement certain constraints on how to perturbate
the images. These constraints can seek to minimize changes in pixels, or how the
images are to be rotated or transformed to generate an adversarial example [68].

A.11.1 Distance Metrics

The most common constraint of perturbations are the ℓp-norms ℓ0, ℓ2 and ℓ∞
[69]. These are distance metrics that can be used to analyze how perceptible the
perturbations are. The ℓp-norms are a mathematical definition, and not a perfect
measurement for how perceptible the perturbation will be for the human eye.
ℓp-norms are defined by

||x − x ′||p (A.3)

where the p-norm is defined as

||x ||p = (
∑

i=I
|x i|)

1
p (A.4)

These norms specify how close the adversarial examples are to the benign
examples in terms of pixels changed.
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• ℓ0 seeks to minimize the number of pixels perturbated, with no limits on
how much they change.
• ℓ2 minimizes the Euclidean distance between the adversarial and the benign

example, as Equation A.3 becomes the Euclidean distance with p = 2. Mean-
ing the ℓ2 can stay minimized if there are many pixels with small changes.
• Lastly, ℓ∞ only measures the maximum change of any pixel, with no regard

to how many pixels changed up to this maximum.

A.11.2 Patches

Patch-based adversarial examples utilized small patches that are heavily perturb-
ated, but limited to a small area of the image. These types of attacks quickly proved
to have great attack effects on image-level classifiers, and they also contained the
property to be able to attack physical real-world objects. To achieve a physical at-
tack, the patch could be printed out and attached to the physical world, resulting
in the detector failing to detect objects properly [70–72].

A.12 DPatch

Liu et al. [28] introduces DPatch, an adversarial patch-attack with a high attack
effect with a limited-sized, location-independent patch. The attack focuses on two
state-of-the-art object detectors, YOLOv2 and Faster R-CNN. DPatch has the pos-
sibility to perform both targeted and untargeted attacks, leading to devastating
attack results. A DPatch trained on YOLO was proved to be effective on a Faster
R-CNN based detection model, and vice-versa, meaning the attack contains great
transferability potential. Due to the location-independent property, [28] claims
the attack is practical for a real-world implementation of the attack. This was
further explored in [71, 73].

The targeted attack aims to make the patch the only RoI, with a given label,
thus breaking the object detector and making it fail to detect the other objects in
the frame. Thus the targeted attack is with the purpose of evading objects in the
frame. The untargeted attack on the other hand, seek to break the RPN in such a
way that the object detector proposes objects that are not in the frame, simultan-
eously removing detection of actual objects. Thereby having the untargeted attack
both be with the goal of evasion and fabrication.
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Issues of DPatch

Throughout a pre-study1, examples has been provided which doubts the effect of
the DPatch attack. The attack seems to achieve manufacturing a fake object with
the target label, but suppression of real objects was not found.

An interesting remark is that the original paper [28] was published by Ad-
vancement of Artificial Intelligence (AAAI)2 2019, which brings a certain legitim-
acy to the paper and the attack. The findings in these experiments, which confirms
the problems described in [71], shows that the publishing can be misleading and
that further validation should be in place to verify the published papers.

As discussed in [74] and [71], the colors of the patch is not clipped to match
the targeted images pixel values. Thus, there is a mismatch between the colors of
the patch and the target image, making it less suitable for physical attacks and
less robust in digital attacks.

This leaves future work to be done to investigate the attack further, with a
goal of pinpointing the problem of the attack and further improve it such that it
can perform more reliable. And we can for now conclude that the DPatch attack
is not robust.

1https://github.com/mariusblarsen/dpatch-experiments/blob/
a03848019642c63b312c175994225fb20e84a6ac/A%20study%20of%20the%20robustness%20of%
20DPatch%20attack.pdf

2https://www.aaai.org/
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