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Abstract

A link between audiobooks and digital e-books makes numerous navigation options available,
including navigation by searching in audiobooks and switching media platforms between audio
and text seamlessly without needing to navigate manually. It will in addition enable solutions
where audio and text are presented simultaneously.

The specialization project “Automatic Synchronization of Text and Speech in Audiobooks” con-
cluded that available algorithms, such as the Montreal Forced Aligner, can provide good quality
time-alignments of Norwegian Bokm̊al speech and text. This is as long as the speech and text seg-
ments are exact matches and within a length limit. This issue can be solved by dividing audiobooks
into suitable segments. To automatically find fitting segments and make the entire synchronization
process automatic, precise anchor points can be found by searching the audio for unique phrases.
This technique is called keyword search.

The keyword search system is realised by extracting i-vector features from the audio, which are used
to construct a lattice describing the most probable word sequences, in classical speech recognition
fashion. Phrases are then spotted if they appear in the lattice with a probability above a set
threshold. The decoding graph is constructed by combining knowledge of pronunciation, grammar,
and acoustics of Norwegian Bokm̊al. This thesis investigates the proposed solution to discover if
it is a viable strategy. The strategy is promising, but the results are unclear as the system is not
managed to be assembled correctly.
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Sammendrag

En kobling mellom lydbøker og digitale e-bøker vil gjøre flere navigeringsmuligheter mulig, blant
annet navigasjon i e-bøker ved tekstsøk og muligheten til sømløs bytting mellom bokformatene
hvor tjenesten automatisk husker siste leseposisjon uavhengig av mediet. Det vil dessuten være
mulig å tilby løsninger hvor brukeren leser og lytter p̊a en bok samtidig.

Spesialiseringsprosjektet ≪Automatisk synkronisering av tale og tekst i lydbøker≫ konkluderte
med at tilgjengelige verktøy, som Montral Forced Aligner, kan generere tilstrekkelig nøyaktige
koblinger mellom lydbøker og e-bøker for norsk bokm̊al. Dette fungerer s̊a lenge segmentene som
kobles sammen stemmer nøyaktig overens og ikke er for lange. Bøker kan deles inn i passende deler
ved å bruke nøyaktige ankerpunkt. Ankerpunktene kan automatisk bestemmes ved å søke etter
unike fraser i lydfilen, ved bruk av nøkkelordgjenkjenning.

Nøkkelordgjenkjenning er realisert ved å ekstrahere ≪i-vector≫ egenskaper fra lydfilene, som blir
brukt til å konstruere ≪lattice≫-strukturer som inneholder de mest sannsynlige ordsekvensene
i klippet, p̊a samme m̊ate som ved vanlig talegjenkjenning. Nøkkelfraser er deretter gjenkjent
dersom de blir funnet med en tilstrekkelig sannsynlighet blant alternativene. Dekodingsgrafen er
konstruert ved å kombinere kunnskap om uttalelse, grammatikk og akustikk ved bokm̊al. Denne
avhandlingen undersøker om en slik strategi er fordelaktig. Strategien er lovende, men resultatene
er utydelige siden systemet ikke er satt sammen feilfritt.
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1 Introduction

Passing on knowledge through books and writings has been a defining factor of human development.
Books have provided people with joy and understanding of advanced topics for decades, and have
only become more and more available. Recently, with the digitisation of society, wast amounts
of books have become accessible from anywhere in the world through smartphones and tablets.
Audiobooks and e-books are popular formats that make combining daily chores with reading
convenient.

Navigation within audiobooks is not always a straightforward exercise. Audiobooks are often
provided as one long audio file lacking navigation tools to bring the listener to desired chapters,
sections, or other points of interest. Creating a link between audiobooks and ordinary books can
enable numerous navigation possibilities, as text is much easier to search than audio recordings.
An accurate link will, in addition to make navigation within audiobooks easier, enable navigation
between audio and text media. This allows seamless navigation between audiobooks and e-books,
perfect for those who like to alternate between listening and reading. Live highlighting of text
spoken, in ”karaoke style”, will be achievable and can give those having trouble reading audio
assistance. It will also be able to assist people with listening issues by displaying belonging text
to the speech uttered.

Bokbasen AS is an organisation that gathers metadata and digital books from over 1500 publishers
and producers, and organises this data in order to distribute it from one place. Bokbasen provides
both audio- and e-books in their online library service, Allbok. Bokbasen AS desires to create a
link between audio- and e-books to provide innovative navigation options and reading experiences
for their customers, and is thus the project description provider of this thesis.

The specialisation project ”Automatic Synchronization of Text and Speech in Audiobooks” in-
vestigated the reliability of the open-source tool Montreal Forced Aligner (MFA) for alignments of
Norwegian speech and text. The results are overall very good. Figure 1 displays a screenshot of a
demonstration of live text highlighting in speech using results produced in the project. Some issues
occurred when attempting to align long sequences. The main issue is that whole books cannot be
aligned in one go because of the vast amount of available computer memory needed. The segments
can not exceed a limit of about 40 minutes of speech and must consist of exact speech and text
matches. Something to keep in mind when finding these segments is that the text and speech may
differ. Books can, for example, contain images not described directly in the text that audiobook
readers choose to describe.
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Figure 1: Demo displaying a joint listening and reading experience in the Allbok application.
Taken from the specialisation project.

In order to solve these alignment issues automatically, precise anchor points have to be found
throughout books. This thesis will research the possibility of utilising Keyword Spotting (KWS)
to find these anchor points by searching and locating unique phrases in audio recordings. The
spoken term detection system developed by Pieter Uys [1] is adapted to Norwegian Bokm̊al to
develop this system.

This thesis starts by introducing relevant theory for the system development and evaluation of the
KWS system in Section 2. The system used is then presented in Section 3, and the implementation
procedure of this system is revealed in Section 4. Results are presented Section 5. The system
choice, implementation process and results are discussed in Section 6, where a conclusion is found
in Section 7. Work left for the future is discussed in Section 8.

2



2 Theory

This section explains the fundamental concepts of a keyword spotting system.

2.1 Keyword Spotting

Keyword Spotting (KWS) shares similarities with Automatic Speech Recognition (ASR) but has
a different goal. KWS is applied to find preselected words or short phrases in continuous speech,
whereas ASR aims to interpret an entire speech segment. KWS is commonly used in surveillance
systems in order to spot statements of interest.

One approach to realise a KWS system is to make acoustic models of the words attempted to spot,
to then compare them to a universal model of all other words [2]. This method is well suited for
spotting a few keywords. Another approach is to do traditional ASR in order to search the output
for chosen keywords.

A KWS system consists in any case of two main components: feature extraction and decoding. A
decoding graph, which essentially is a model of the language, is used to determine spoken words in
a recording by applying extracted features from the audio signal. A word string likelihood given
array features, P (W|X), is modeled as

P (W|X) = P (W)P (X|W) (1)

where W is a word string, X is a feature array, P (W) is the language model, and P (X|W) the
acoustic model, see Section 2.3 and Section 2.4. The most likely string is accepted as recognised
words in ASR, while KWS-systems can search within rejected strings as well if desired.

When using a universal word model, the keyword estimation is compared to the sum of all other
word estimations, see Equation 2. In this equation

∑
W P (W)P (X|W) is substituted in place of

P(X), which gives a ratio used to estimate confidence of keywords. Keywords within a confident
threshold are accepted. The sum of all string probabilities is not used in practice, as it is sufficient
to use a finite number of the highest likelihood estimations. [3, Chapter 9.7]

P (W|X) =
P (W)P (X|W)

P (X)
=

P (W)P (X|W)∑
w

P (W)P (X|W) (2)

2.2 Acoustic Features

Features are extracted to get hold of the relevant information within the sampled speech signal.
There are numerous ways to extract useful information, where frequency-domain features generally
provide much more accurate results than time-domain based features in speech recognition systems.

2.2.1 MFCC

Mel-frequency Cepstrum Coefficients (MFCC) have been the most common features for a long
time. They provide useful information for speech analysis without being correlated, making them
easier to model statistically. MFCCs are calculated following the steps shown in Figure 2.
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Figure 2: Overview of the MFCC extraction process.

Pre-emph

A common first step is to pass the sampled audio signal through a pre-emphasis filter. This filter
amplifies high frequencies, as they usually have smaller magnitudes than low frequencies. This
effect can also be achieved by mean normalisation of the raw cepstra at a later stage, which makes
this step optional. [4]

Windowing

The sampled audio signal is split into overlapping, short frames in the windowing step. Typical
values for these are 25 ms frames that are shifted 10 ms at the time. The reason for splitting the
signal into shorter frames is that the frequencies through an entire audio signal will vary and thus
not give an accurate frequency profile from a Fourier transform. We assume that the frequency is
stationary within the short frames, meaning that there are no time-varying frequency components.
This division of the signal assures that information about the varying frequency context throughout
the audio signal is kept. The short audio frames are windowed by Hamming windows in order to
reduce altering of the frequency domain information extracted from the Fourier transform step.
This is because the Fourier transform assumes infinite signal length, introducing new, unwanted
frequency components from the sharp edges of a rectangular window.

The Hamming window is a raised cosine window defined as

h(n) = α+ (1− α) cos

[
2π

N
n

]
(3)

where N is the filter length, and α is defined as 25/46. [5]

Fourier Transform

Following the windowing step, a Descrete Fourier Transform (DFT) of the signal is done. This is
often done by using the Fast Fourier Transform (FFT) algorithm, which is an efficient implement-
ation of DFT. The power spectrum is calculated by taking the square of the magnitude of the DFT
for each frame, written out in Equation 4 and Equation 5.

Xi[k] =

N−1∑
n=0

xi[k]e
−j2π n

N k (4)

Pi[k] =
1

N
|Xi[k]|2 (5)

xi is a frame of the windowed signal x, N is the length of the frame, Xi is the DFT of xi, and Pi

is the power of Xi. [3, Chapter 6]

Mel-Filter Bank

The next step is to calculate a Mel-Filter Bank, which is a uniform filter bank on the mel scale. The
mel scale, short for melody, is a scale that describes our perception of sound, being less sensitive

4



to higher frequencies. The mel scale can be formulated as

mel(f) = 1127ln

(
1 +

f

700

)

Filter Banks are computed by applying overlapping triangular filters on the power spectrum. These
triangular filters are placed out following the mel-scale, where the filters have their zeroes at their
neighbours’ filter banks peaks, shown in Figure 3. These triangular filters, defined as H ′(h), are
calculated in Equation 6, where m are the filters, M is the number of filters (m = 1, 2, ..,M), and
f(m) is the mel-filter centers in frequency scale. [3, Chapter 6]

H ′
m(k) =


0 k < f(m− 1)

k−f(m−1)
f(m)−f(m−1) f(m− 1) ≤ k ≤ f(m)
f(m+1)−k

f(m+1)−f(m) f(m) ≤ k ≤ f(+1)

0 k > f(m+ 1)

(6)

Figure 3: An example of a size 40 filter bank. [4]

Log - Cosine Transform

The log energy for each filter bank is then computed as described in Equation 7.

S[m] = ln

[
N−1∑
k=0

|Xi[k]|2H ′
m[k]

]
, 0 ≤ m < M (7)

The mel-frequency cepstrums are then computed by a discrete cosine transform, see Equation 8.
This step decorrelates the MFCCs, as opposed to filter bank coefficients. [3, Chapter 6]

C[n] =

M−1∑
m=0

S[m]cos

(
πn(m+ 1/2)

M

)
, 0 ≤ n < M (8)

Cepstral Mean and Variance Normalisation (CMVN) is an additional step often done with the
raw cepstrums. Normalised cepstrums, C ′[n], are computed as shown in Equation 9. CMVN is
particularly helpful for making recognition more reliable in noisy environments, but it also appears
to improve results in clean environments. [6]

C ′[n] =
C[n]− E{C[n]}

var{C[n]} (9)

2.2.2 MFCC dynamic features

In order to capture temporal information with MFCCs, MFCC can be expanded to include delta-
coefficients, which are approximations of the temporal derivative. These delta features work well
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in systems built on Hidden Markov Models, as HMMs assume that frames are independent of one
another.

The delta differences, ∆cn, are generally defined as

∆cn =

∑N
k=1 k (cn+k − cn−k)∑N

k=1 k
2

(10)

where N is the number of adjacent frames to each side used to calculate the deltas, and cn is the
features used to calculate differences. [7]

The second-order delta features are calculated the same way, using delta features instead of MFCC
features in Equation 10. All these features are normally combined into one feature vector xn, see
Equation 11. The total number of neighbouring frames used to calculate one feature vector is then
4N + 1; see Figure 4 for a visualisation of this when two neighbouring frames are used.

xn =

 cn
∆cn
∆∆cn

 (11)

Figure 4: ∆∆-feature extracted from N = 2 adjacent frames.

It is not common to use delta features of a higher order than two since they do not improve speech
recognition after second order. [3, Chapter 9.3]

2.2.3 The Pitch

A significant amount of languages use pitch to distinguish between words. About 60 to 70 per cent
of languages are tonal languages, meaning that they actively use pitch to disambiguate between
words. Mainly African, East Asian and Southeast Asian languages are, to a large extent, highly
tonal. However, most languages use pitch to some degree even though they are not classified as
tonal. [8, Chapter 1]

Including pitch as a feature can significantly improve the speech recognition performance for tonal
languages. However, even non-tonal languages can use the pitch to improve their performance to
some degree. Some pitch-based features that can be used for speech recognition are the pitch and
the delta-log-pitch. The delta feature can be calculated from the un-normalised log pitch, using N
neighbouring previous and future frames. These pitch based features can be added to the MFCC
feature vector to improve the performance. [9]
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2.2.4 I-Vectors

The i-vector approach, or total variability approach, is a relatively newly suggested approach
initially developed to negate the environmental disturbances for speaker recognition systems. The
i-vector model is built on the Joint Factor Analysis (JFA) model. Compared to JFA, i-vectors are
significantly reduced in dimension, usually having a dimension in the hundreds.

JFA decomposes an ideal speaker supervector s into components consisting of speaker-independent
m, speaker-dependent V y, channel dependent Ux and residuals speaker dependent Dz elements,
see Equation 12. V , U , and D are eigenvoice matrices, while y, x, and z are their corresponding
eigenvoice factors. The matrices are trained one at a time so that the factors can be computed
from them.

s = m+ V y + Ux+Dz (12)

Contrary to JFA, i-vectors model all relevant variability into one low-dimension subspace. For
i-vectors, the environment and speaker-dependent supervector is modelled as

s = m+ Tw (13)

where m is the universal background model supervector. T is a low-dimensional total variability
matrix where relevant variability is modelled, and w is the i-vectors, which are random vectors
that describe the variability not portrayed by T . [10]

The total variability matrix, T , is often referred to as the i-vector extractor. The extractor is
trained similarly to the V , the speaker eigenvoice matrix for the JFA case. The procedure is
described in [11]. The difference is that when training T , all utterances from the same speaker are
labelled as having different speakers. [12]

The supervectors s are essentially obtained by adapting features, such as MFCCs, to a universal
background model using maximum-a-posteriori adaptation. From this, the i-vectors can be found.
[13]

2.3 Language Modeling

Language models describe the grammar of languages, which fundamentally is a description of the
order words typically occur. This can be interpreted as a probability distribution P (W) where W
is a sequence of words. For example, in a Norwegian model, some probabilities could be P(”og”)
= 0.02 and P(”t̊arnet avis Barcelona klump”) = 0. This would mean that the word ”og” is said
on average once every fifty sentences and that the odd word string is practically never spoken.

The probability distribution can be expressed as

P (W) = P (w1, w2, ..., wN )

= P (w1)P (w2|w1)...P (wn|w1, w2, ..., wN−1)

=

N∏
i=1

P (wi|w1, w2, wN−1)

(14)

where N is the number of words presented. This means that wN is dependent on every previous
word in the sequence presented.

In practice, this is impossible to do as when the sequences, often a sentence, get long, the histories
of the sequences get unique or very rare. Instead, only a small number of previous words are
typically used. A method for this is the n-gram model. In this model, n represents the number of
words used to calculate the probability distributions, often referred to as the order of the model.

7



This leads to the distribution P (wi|wi−N+1, ..., wi−1) for any n. A tri-gram model will for instance
depend on two previous words P (wi|wi−2, wi−1), while a bi-gram only one P (wi|wi−1), and a
uni-gram only the word itself P (wi).

When generating an n-gram model, a corpus containing millions of words is usually used. The
probabilities are determined by simply observing the frequency of unique word combinations. [3,
Chapter 11.2]

A weakness of the n-gram model is that many combinations of words are given an extremely low
probability even with relatively large corpora. For English n-gram models trained on corpora with
a size of several million words, more than half of the detected tri-grams only occur once. If an
utterance spoken is not included in the training data, the correct option will not be considered
even if the acoustic model draws the correct conclusion. N-gram smoothing can be used to work
around this issue. Smoothing makes it that any time P (W) = 0, a low, non-zero probability is
given instead. This assures that no sequences are regarded as impossible at the cost of losing some
information from the training. [3, Chapter 11.4]

2.4 Acoustic Modeling

The most probable sequence of words Ŵ can, by using Bayes theorem, be estimated as

Ŵ = argmax
W

P (W|X) = argmax
W

P (W)P (X|W)

P (X)
(15)

where X is the observation or features, and W is a sequence of words. P (W) is in this context
the language model, and P (X|W) is the acoustic model. P (X) can be disregarded, as it does not
influence the estimation. This gives

Ŵ = argmax
W

P (W)P (X|W) (16)

The most successful method for modelling acoustic models is the Hidden Markov Model (HMM).
A HMM is briefly explained as a powerful statistical method that enables modelling probabilities
of a series of unknown, not observable, events by observing a series of related data. The data
observed are features in the speech recognition case.

An acoustic HMM consists of states describing possible phonetic units and transition probabilities
between them. The acoustic HMM weights are determined by observing the frequency transitions
between states occurring in a training set. In order to make an acoustic model that works for
larger vocabularies, the words are decomposed into smaller units, see Section 2.6. [3, Chapter 8,
9]

2.5 Pronunciation Lexicon

Pronunciation lexicons are lexicons that include phonetic representations of each word in a lan-
guage. Lexicons vary in size and should ideally include all words encountered in a recognition
task.

Lexicons used in ASR-systems include extra words that represent silence and other non-word
noises. These lexicons can include multiple pronunciation alternatives for words with corresponding
probabilities. These pronunciation likelihoods sum up to one for every word. Speech recognition
lexicon are often presented in the following format:

word phone1 phone2 ... phoneN probability

Pronunciation lexicons define phonetic combinations accepted in a model. This ensures that the
recogniser only looks for existing words and not made-up ones. Pronunciation lexicons enable

8



decomposition of languages into corresponding phonemes, and in extension, other phonetic units.
This makes it possible to make more general and less computationally demanding models, see
Section 2.6.

2.6 Phonetic Modeling

There are a couple of ways to model the units used in speech recognition. The most precise unit
that typically gives the best results is words. The advantage of using words over smaller units,
such as phones, is that they capture the acoustic context within words that smaller units cannot.
However, using whole words as units only works for very small vocabularies, as the size of storage
and training data needed would be far too large. This strategy would fail for unknown words.

Phones are more commonly used. They are far fewer, with about 50 phones in English and
Germanic languages, which makes them more trainable and general, and more suited for continuous
speech recognition. The drawback with phones as units is that they tend to overgeneralise. These
units do not consider that phones are usually pronounced differently in separate contexts.

In order to capture some context, units such as triphones and syllables can be used. Triphones
are in this setting phonemes with added context from their neighbouring phonemes. These units
are compromises between words and phones in that they capture more context than phones while
being more general than words. Their numbers are still larger than phones by a fair margin; there
are, for reference, over 30 000 different syllables in the English language. The number of these
units makes systems built on them too complex for most continuous speech use cases. Another
strategy to capture context is distinguishing phones by separating them by their position in words.
Valuable context can be captured by reshaping each phone into four new phones depending on
whether the phone occurs as a one-phone word or at the beginning, middle, or end of a word.
The number of these context-dependent phones is more manageable than words and syllables. [3,
Chapter 9.4]

2.7 Finite-State Transducers

Finite-State Transducers (FSTs) can provide a convenient representation of central components
of speech recognition systems, and enables combination and optimisation of these. These main
components include n-gram language models, pronunciation dictionaries, and acoustic HMMs. [14]

Finite-state transducers are finite automata that have labelled input and output state transitions, in
addition to transition weights. An automaton is a system where input information is automatically
transformed without outside interference. Automata with finite memory change state depending
on inputs, where outputs depend on the current state. Transducers with the same input and output
labels are called acceptors. [15, Chapter 3] See Figure 5 for a visualisation of an FST.
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Figure 5: A finite-state transducer example. Each state is marked with a unique number. The
initial state is represented as a bold cirkle and the final states are drawn as double circles. The
transitions are marked with i : o / w, where i are input labels, o are output labels, and w are
transition weights. Final states f are marked with their final weight wf

FSTs are combined by composition, described in Section 2.7.1. FSTs can be optimised to reduce
its complexity. This is useful as probabilistic models in speech recognition have to be complex to
be accurate. FSTs can be optimized by determinisation, see Section 2.7.2, and minimization, see
Section 2.7.2.

2.7.1 Composition

Composition is used to combine FSTs. The composition of two transducers, a : b / w1 and b
: c / w2, is a : c / w1 ⊗ w2. Weights are often presented as logarithmic values, making weight
compositions the sum. See Figure 6 for an example of FST composition. The state numeration
is rearranged, as it is important that states remain unique. Composition between transducers T1

and T2 is denoted as T1 ◦ T2.

(a) (b)

(c)

Figure 6: Example of FST composition. Composition of a and b results in c. [16]

10



2.7.2 Determinisation

Determinisation reduces the memory required and the duration it takes to process a string by
combining redundant transitions. Determinisation ensures that every state has only one transition
option for a given input label. Determinisation results in an equivalent FST, which means that
the FST produces the same output string given identical inputs, with the same final weight. The
structure of paths, distribution of output labels, and distribution of transition weights within the
FST can however differ.

See Figure 7 for a visualisation of the determinisation process, where ϵ denote that input labels
are not consumed during transitions, or that output labels produce no outputs.

(a) (b)

Figure 7: Example of FST determinisation. Determinisation of a results in b. [17]

2.7.3 Minimisation

Minimisation reduces the number of states and transitions in FSTs to the minimum numbers
realisable while preserving deterministic properties. The resulting FST is equivalent to the original
one. The minimality is achieved by enabling the option to have strings as output labels. See
Figure 8 for an illustration of the minimization effect. This optimisation method further reduces
time and required memory and is often combined with determinisation. [14]

(a) (b)

Figure 8: Example of FST minimisation. Minimisation of a results in b. The number of states
are reduced from five to three, while the number of transitions are reduced from nine to seven. [18]

2.8 Lattices

Lattices are an efficient approach to presenting different decoding hypotheses. Lattices portray
similarly likely strings in branches; see example in Figure 9. This is much more memory efficient
than storing multiple full-length strings. [3, Chapter 13]
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Figure 9: An example of a word lattice displaying likely utterance options. [3, Chapter 13]

Lattices can be constructed from decoding graphs represented as Finite-State Transducers. Scores
from decoding are used to prune unlikely options compared to the most probable within a margin
α. [19]

12



3 System Description

In this thesis, a spoken term detection framework developed by Pieter Uys, Saigen (Pty) Ltd, for
South African languages is used as a basis for Norwegian detection, see [1]. The Kaldi Spoken Term
Detection Wrapper is distributed under the Creative Commons Attribution 4.0 License, making
it available for sharing and adaption, even for commercial purposes. This framework is chosen as
it can spot phrases of multiple words, making it able to find unique sequences in a longer audio
clip. It is constructed similarly to an ASR system in that it searches for keywords or phrases in a
generated lattice. An overview of the central components of the spoken term detection system is
presented in Figure 10.

Figure 10: Overview of the spoken term detection process.

3.1 User Interface

The spoken term detector produces a keyword search result of the users’ specified keywords and
audio files, given that precise models of the desired language are provided. See Figure 11 for an
outline of the interface.

Figure 11: Overview of the spoken term detection interface.

The KWS inputs consist of a list of audio files and a list of keywords to be searched. These
keywords can be either individual words or phrases. Optionally, correct transcripts of the speech
utterances can be inputted. This is used to score the performance of the KWS-system. These
transcripts can be provided with or without word timestamps, where transcripts with timestamps
result in more accurate scoring.

The model inputs include a decoding graph, an i-vector extractor, and information about the phon-
etics of the language. The decoding graph is constructed as a FST which combines all information
used to do KWS. The input model folder also includes configuration files that specify the MFCC
extractions.

The produced results are a list of detected keywords and phrases with corresponding time labels,
as well as an ASR result, which is the recognised transcript of the whole speech utterance. The
spoken keyword detector also scores its performance if the user provides correct transcripts or
alignments. The KWS performance is scored by the F4DE detection evaluation toolkit from NIST
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[20]. Detected keywords are the desired output for this system; the other results are mainly for
debugging. The user is also responsible for providing a working directory where all temporary files
are created.

3.2 Feature Extraction

The first step of the process is extracting features. View Figure 12 for an overview of the process
of extracting the final i-vector features used in the system.

At the start, thirteen-dimensional MFCCs are extracted from the audio with frameshifts of 0.01
seconds. This extraction step downsamples the audio to 8 kHz prior to extraction and does not use
the energy, f0, as a feature. These MFCC features are used for Voice Activity Detection (VAD) in
order to segment long audio clips into appropriate lengths.

Following, high-resolution MFCC features, with dimensions of 40, are extracted. Frame shifts of
0.01 seconds are used for these as well. These features are computed according to user-specified
configurations, including sample and cut-off frequencies. CMVN statistics are computed and ap-
plied to all feature vectors. The high-resolution MFCCs are extracted in order to compute i-vectors
using a pre-trained extractor. Three pitch features are extracted and can be added to the MFCC
feature vectors if desired, see Section 2.2.3.

I-vectors are then computed using a pre-trained extractor. The extractor has to be compatible with
the dimension and contents of the high-resolution MFCC features, meaning that it is trained on
the same features types used in this step. The technique used is called online extraction, meaning
that i-vectors are extracted every couple of frames instead of at the end of an utterance. I-vectors
are extracted every ten frames in this specific process.

Figure 12: Overview of the feature extraction step.

3.3 Decoding and Spotting

Decoded lattices are constructed using i-vector features in combination with the decoding graph.
The decoding graph is modelled as a FST. The decoding algorithm uses the acoustic HMM to scale
the importance of the acoustic part of the FST. The acoustic scaling is set to 1.0, using the FST
as it is. The lattice beam value is set to 8.5 and determines the lattices’ depth. Increasing this
value makes the lattices include less likely options and increases their size.

The lattices are then searched for selected keyword phrases. Any input key-phrase length work,
but longer phrases are more error-prone and less likely to get recognised. Spotted keywords and
phrases are provided alongside their time slot and confidence score.
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4 Implementation

The system is realised by creating a decoding graph, which is provided alongside an i-vector
extractor according to the description of the system. This completes a ASR system that is used
as the basis for KWS.

4.1 Decoding Graph Creation

The decoding graph is made by combining all information available for decoding into Finite-State
Transducers (FSTs), see Section 2.7. The information includes a pronunciation lexicon, language,
and acoustic model. The complete graph is a FST named HCLG, as it is constructed of an
acoustic HMM, the phonetic Context, a pronunciation Lexicon, and a Grammar part.

4.1.1 Pronunciation Lexicon

The pronunciation lexicon used contains nearly 90 000 words with adhering phones. This is a
relatively compact lexicon with only one pronunciation option for each word. The pronunciation
lexicon is listed in the following format, where the word consists of N phonemes:

word phone1 phone2 ... phoneN

This lexicon is used to generate a lexicon FST, L, which transduces phones to words. Each word
gets assigned a unique numeric value that is used as a reference in the FST. The same goes for
phonemes. Index zero is reserved for ϵ for both the word and phoneme list. New phonemes, called
disambiguation symbols, are introduced in order to solve non-determinism. These disambiguation
symbols are added as an extra phoneme at the end of words with similar pronunciations to dif-
ferentiate between them. The phoneme list used contains 51 phonemes frequently used in the
Norwegian language, where six extra disambiguation symbols are added. The original phonemes
used are:

@ A A: Ai C N O O: Oy S Xl Xn ae ae: b d e e: ei f g h i i: j k l m n

oe oe: oei oev ou ou: p r rd rl rn rs rt s t u u: v xl xn y y:

A couple of silent words, such as pausing, hesitation, and coughing, are included in the lexicon.
These words have no phonetic representation and have a chance to be reached in between regular
words. The lexicon FST includes the option of entering silent states, linked to these silent words,
at the end of words and start of sentences. The probability of entering silence is set to 0.5 in this
implementation.

Self-loops are added to all states since words and phones usually are pronounced over an extended
period. The FST is also sorted after output labels in order to make further processing easier. [21]

4.1.2 Language Model

The language model, or grammar, describes the probability of words and word sequences appearing
in the language. The n-gram model describing the grammar is generated from a database con-
sisting of mainly news texts, with roughly 355 million words. In this project, a tri-gram model is
generated, which means that patterns of up to three consecutive words are taken into account, see
Section 2.3. The tri-gram model only models combinations of words where all words are present in
the vocabulary. The language model includes bi-grams and uni-grams in addition to the tri-grams.

In order to reduce the size of the grammar model and, in extension, the final FST, the grammar
model can be pruned. Pruning means that less probable branches in the model are removed.
The pruning value is the probability threshold determining which words and sequences are kept.
Keeping all branches will generally give the most accurate model, as pruning will counteract the
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effect of smoothing. Pruning is therefore a trade-off which is tuned in experiments. Probability
thresholds of 10−8 and 10−7 are values used in testing.

The n-gram model is made using executables from Srilm, a language modelling toolkit that can
be installed in Kaldi [22]. The n-gram model is then converted to FST format and named G for
grammar. The grammar FST is mostly an acceptor. It accepts input symbols and applies weights
according to the language model.

The grammar G and the pronunciation lexicon L are composed into a combined FST, LG. LG
is then determinised and minimised in order to become less computationally demanding. The
determinisation algorithm removes ϵ’s besides its standard operation. The minimising algorithm
used in this implementation differs from ordinary algorithms in that it does not push weights. Not
pushing weights conserve stochasticity, meaning that weights throughout transitions, including
final weights, sum up to one. The resulting FST can be expressed as LG = min(det(L ◦G)).

The combined FST is additionally weight pushed, ensuring that all weights sum up to the same
value if they already are not. The FST is also sorted after input labels in order to speed up future
compositions. The label sorting step is optional. [21]

4.1.3 Phonetic Context

Phonetic context is then introduced to the FST. See Section 2.6 for an explanation of why this
is important. Every ordinary phoneme is transformed into one of four newly created phonemes
depending on their position within words. The phoneme ae is for example substituted with ae B
if it is located at the start of a word, ae I if it appears in the middle of a word, ae E if it is ending
a word, and ae S if the phoneme stands alone.

The resulting FST after including context dependency is then CLG = C ◦ LG. [21]

4.1.4 Acoustic Model

The acoustic HMM is transformed into an FST in order to be combined with the CLG. The H
transducer is constructed as a FST that has the same state as its initial and final state, which
makes the FST loop.

As in previous steps, the two FSTs H and CLG are combined and optimised. The FST is then
HCLG = min(det(H ◦ CLG)). All disambiguation symbols are then removed, as well as the ϵ’s
that are easily removable. At last self-loops are added to complete the FST. [21]

4.2 System Assembling

The necessary directories are created and provided to the spoken term detection system. This
includes a folder containing audio clips and a keyword list, and a models folder. The models folder
contain the decoding graph created in Section 4.1. A few versions of the decoding graph is made,
where both pruned and full language model are used. This is done to make lightweight systems
that can run on most computers. The model folder also contains an acoustic HMM, lists of indexed
phonemes and words, and a pre-trained i-vector extractor. The HMM and i-vector extractor are
both previously made, where the HMM is constructed using the same phone set as the one used
in this implementation. The i-vector extractor is trained on high resolution MFCCs in the same
format as the ones used in this system.

The system is originally developed for audio sampled at 8kHz. Audiobooks are generally sampled
at much higher sampling frequencies, typically 44.1kHz. The system is adapted to work for 16kHz
sampled audio, as the i-vector extractor is trained on high-resolution MFCCs extracted from a
16kHz sampled data set. The audio files are down-sampled to 16kHz prior to being organised in
the input folder. The segmentation step of the system still uses 8kHz sample frequency. The audio
signal used for segmentation is down-sampled from whatever frequency it is originally sampled at
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within the system. Their respective configuration files set the sample frequencies for the thirteen
and 40-dimensional MFCC extractions.

The original system built for South-African languages includes three pitch features in the 40-
dimensional high-resolution feature vectors. Pitch is, however, excluded from the Norwegian im-
plementation.
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5 Results

Three KWS experiments are presented as results. The reference times used in experiments 1 and
2 are generated by force aligning the audio clips with their corresponding texts. The Montreal
Forced Aligner (MFA) [23] is used to produce these time labeled alignments.

5.1 Experiment 1

Keyword Spotting is done on the following utterance, an excerpt from ”Det Ellevte Manus” by
Hanne Wilhelmsen.

”Brilleglassene hennes var av en eller annen grunn gule og det gjorde det vanskelig å
fange blikket hennes. Hun bar en ensfarget lysegrønn genser (...)”

The audio clip is nine seconds long and read by a woman. From this clip, the words ”brilleglassene”
and ”ensfarget” are not included in the vocabulary. Tri-grams not included in the language model
from this utterance are ”annen grunn gule”, ”grunn gule og”, and ”̊a fange blikket”, in addition
to the ones containing unknown words. All possible bi-grams and uni-grams from the utterance
are present in the grammar model.

5.1.1 Pruned Grammar Model

The following results are produced by a system where the n-gram model pruned with a cut off
probability of 10−7. The decoded ASR lattice is displayed in Figure 13, where the most likely
utterance recognised is determined as:

”drill gassen en sara hjemmel ram rund gullet og jo anke fang bytte hugg a m ens arg
dis i en genser”

In this recognition, no tri-grams are present from the n-gram model. Seven bi-grams from the
model are found in the utterance, they are: ”gassen en”, ”gullet og”, ”og jo”, ”jo anke”, ”a m”, ”i
en”, and ”en genser”.

In this experiment, every single word of the audio clip is attempted to spot. The list of keywords
attempted to spot is provided as follows:

brilleglassene

hennes

var

...

genser

The results of this KWS is presented in Table 1. In this table, reference time displays all correct
word starts and endings, while system times are displayed only when the system recognises the
keywords. The systems confidence scores for the keywords are also displayed, where 1.0 is the
maximum score achievable.
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Figure 13: Lattice of the ASR result, used as basis for KWS. The result is not a FST, it is only
presented as one. Weights, or ”scores”, are not included in this graphic. The numbers next to the
words indicate their unique vocabulary indexes.
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# Word Ref.
start

Ref.
end

Sys.
start

Sys.
end

Sys.
score

Comment

1 brilleglassene 0.48 1.19

2 hennes 1.19 1.50

3 var 1.50 1.74

4 av 1.74 1.91

5 en 1.91 2.23 1.23 1.44 1.0

6 eller 2.23 2.45

7 annen 2.45 2.66

8 grunn 2.66 2.96

9 gule 2.96 3.41 2.97 3.48 0.004 ”gullet” recognised as
more likely

- -

10 og 3.79 3.87 3.69 3.93 1.0

11 det 3.87 3.95

12 gjorde 3.95 4.12

13 det 4.12 4.15

14 vanskelig 4.15 4.53

15 å 4.53 4.56

16 fange 4.56 4.84

17 blikket 4.84 5.16

18 hennes 5.16 5.52

- -

19 hun 6.06 6.17

20 bar 6.17 6.47

21 en 6.47 6.67 7.77 7.95 1.0

22 ensfarget 6.67 7.36

23 lysegrønn 7.36 7.94

24 genser 7.94 8.48 7.95 8.52 1.0

Table 1: Word level KWS results. Timestamps are given in seconds.

5.1.2 Full Grammar Model

Full tri-gram recognition of the same utterance gives the results displayed in Table 2. Only re-
cognised words are included in this table. The most probable word sequence from the lattice
is:

”drill gassen en sara hjemmel ram rund gullet og jo anke fang bytte hugg a m ens arg
dis i en genser”
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# Word Ref.
start

Ref.
end

Sys.
start

Sys.
end

Sys.
score

Comment

5 en 1.91 2.23 1.23 1.44 1

9 gule 2.96 3.41 2.97 3.48 0.004 ”gullet” recognised as more likely

10 og 3.79 3.87 3.69 3.93 1

21 en 6.47 6.67 7.77 7.95 1

24 genser 7.94 8.48 7.95 8.52 1

Table 2: Recognised words from KWS. Timestamps are given in seconds.

5.1.3 Automatic Speech Recognition Results

Some simple ASR experiments are conducted using the same vocabulary and audio file. The
words ”brilleglassene” and ”ensfarget” are still out of vocabulary. Table 3 and Table 4 display
some ASR performances on the audio clip. The experiment in Table 3 is conducted with a plain
HMM acoustic model, triphone phonetic units, and ordinary thirteen-dimensional MFCC features,
while the test presented in Table 4 is done with hybrid HMM and TDNN model and i-vector
features. The grammar model is a tri-gram model, where the pruning threshold is set to 10−8 in
the experiments. The recognised words are labelled either Correct (C), Substitution (S), Insertion
(I), or Deletion (D).
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Referance Pruned n-gram Full grammar

# Words Recognised Score Recognised Score

det I det I

lille I lille I

1 brilleglassene glasset S glasset C

2 hennes hennes C hennes C

3 var var C var C

4 av av C av C

5 en en C en C

6 eller eller C eller C

7 annen annen C annen C

8 grunn grunn C grunn C

9 gule gravide S gullet S

10 og og C D

11 det det C all S

12 gjorde gjorde C jord S

13 det det C er S

14 vanskelig vansker S vanskelig C

15 å D å C

16 fange fanget S fange C

17 blikket blikket C blikket C

18 hennes mens S hennes C

19 hun det S men S

20 bar bare S bare S

21 en en C en C

ens I ens I

22 ensfarget farget S farget S

23 lysegrønn lysegrønn C lysegrønn C

24 genser genser C genser C

Total (C - S - I - D) 15 - 8 - 3 - 1 16 - 7 - 3 - 1

Table 3: ASR results of a pruned and full grammar model, using acoustic HMM and ordinary
MFCC features.
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Referance Pruned n-gram Full grammar

# Words Recognised Score Recognised Score

biller I briller I

1 brilleglassene glasset S glasset S

2 hennes hennes C hennes C

3 var var C var C

4 av av C av C

5 en en C en C

6 eller eller C eller C

7 annen annen C annen C

8 grunn grunn C grunn C

9 gule gullet S gullet S

10 og og C og C

11 det det C det C

12 gjorde gjorde C gjorde C

13 det D D

14 vanskelig vanskelig C vanskelig C

15 å å C å C

16 fange fange C fange C

17 blikket blikket C blikket C

18 hennes hans S hans S

19 hun hun C hun C

20 bar bare S bar C

21 en en C en C

ens I ens I

22 ensfarget farget S farget S

lise I lise I

23 lysegrønn grønn S grønn S

24 genser genser C genser C

Total (C - S - I - D) 17 - 6 - 3 - 1 18 - 5 - 3 - 1

Table 4: ASR results of a pruned and full grammar model, using hybrid HMM and TDNN model,
and i-vector features.
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5.2 Experiment 2

Keyword Spotting is done on a new utterance, another excerpt from ”Det Ellevte Manus”, with the
same reader. The two words ”forfattertype” and ”skrøner” are out of vocabulary in this text. The
audio clip is 15.3 seconds long and automatically segmented by the system into two clips covering
0 to 5.3 and 5.3 to 15.3 seconds. The phrase read in the audio clip is:

”Hun lar seg p̊a et vis ikke korrigere. Selv n̊ar folk skjønner at hun lyver. Katja er p̊a
mange m̊ater den mest salgbare forfattertype som fins. Sjarmerende, selvopptatt, full
av skrøner og uten særlig mange hemninger.”

This audio clip contains three tri-grams not present in the language model, in addition to the com-
binations containing unknown words. These three unrecognised tri-grams are ”vis ikke korrigere”,
”ikke korrigere ⟨s⟩”, and ”katja er p̊a”, where ”⟨s⟩” denotes silence.

5.2.1 Pruned Grammar Model

The pruning threshold of the n-gram model is set to 10−7. The decoded ASR lattice is displayed
in Figure 14, where the most likely utterance recognised is:

”unn a kjapp vis ikke korn gjerde selv og fag skjønn av tull iver katja a p̊a mate dem
mest salgbar fatt rips og fins skei mene selv å katt kulda skauen ordens alma henning
er”

No tri-grams from the language model are present in this recognition.

Results of a word level KWS of all individual correct words are presented in Table 5 and Table 6.
Two-word phrase search results in one correct hit: ”vis ikke” in the period from 1.47 to 2.04
seconds into the clip.
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Figure 14: Lattice of ASR result. Result is decoded as two segments.
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# Word Ref.
start

Ref.
end

Sys.
start

Sys.
end

Sys.
score

Comment

1 hun 0.89 0.96

2 lar 0.98 1.15

3 seg 1.15 1.31

4 p̊a 1.31 1.42

5 et 1.42 1.51

6 vis 1.51 1.74 1.47 1.77 1.0

7 ikke 1.74 2.02 1.77 2.04 1.0

8 korrigere 2.02 2.63

- -

9 selv 3.21 3.42 3.21 2.48 1.0

10 n̊ar 3.42 3.53

11 folk 3.53 3.84

12 skjønner 3.84 4.18

13 at 4.18 4.32 4.17 4.35 0.008 Decision: NO

14 hun 4.32 4.43

15 lyver 4.43 4.80

- -

16 katja 5.75 6.28 5.73 6.39 1.0

17 er 6.28 6.39

18 p̊a 6.39 6.54 6.39 6.57 1.0 Detected twice

19 mange 6.54 6.77

20 m̊ater 6.77 7.22

21 den 7.22 7.69

22 mest 7.74 8.20 7.77 8.22 1.0

23 salgbare 8.20 8.98

24 forfattertype 9.20 9.57

25 som 9.67 9.85

26 fins 9.85 10.35 9.87 10.47 1.0

- -

27 sjarmerende 10.77 11.45

28 selvopptatt 11.55 12.33 11.58 11.85 1.0 Only ”selv” detected

29 full 12.61 12.85

30 av 12.85 12.92 12.87 12.96 5 · 10−17 Decision: NO

31 skrøner 12.92 13.50

32 og 13.50 13.58

33 uten 13.58 13.82

34 særlig 13.82 14.05

35 mange 14.05 14.29

36 hemninger 14.29 14.99

Table 5: Individual words recognised from KWS. Timestamps are given in seconds.
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#FA Word Sys. start Sys. end Correct word

1 og 3.48 3.57 #10 n̊ar, or #11 folk

2 av 4.14 4.26 #13 at

3 og 9.78 9.87 #25 som

4 og 11.85 11.94 #28 selvopptatt - middle

5 er 14.73 14.91 #36 hemninger - ending

Table 6: KWS false alarms with scores of 1.0. Timestamps are given in seconds.

5.2.2 Full Grammar

A full grammar system recognises the words displayed in Table 7, and falsely recognises the words
in Table 8. The most likely path through the word lattice is:

”unn a kjapp vis ikke korgen av selv og faxen at ulver katja a p̊a mate dem mest salgbar
fatter p̊a pins skei mene selv å tatt kulda skauen ordens alma henning er”

# Word Ref.
start

Ref.
end

Sys.
start

Sys.
end

Sys.
score

Comment

6 vis 1.51 1.74 1.47 1.77 1.0

7 ikke 1.74 2.02 1.77 2.04 1.0

9 selv 3.21 3.42 3.21 2.48 1.0

13 at 4.18 4.32 4.14 4.35 1.0

16 katja 5.75 6.28 5.73 6.39 1.0

18 p̊a 6.39 6.54 6.39 6.57 1.0

21 den 7.22 7.69 7.23 7.68 0.008

22 mest 7.74 8.20 7.77 8.22 1.0

28 selvopptatt 11.55 12.33 11.58 11.85 1.0 Only ”selv” detected

30 av 12.85 12.92 12.87 12.96 5 · 10−17 Decision: NO

Table 7: Correctly recognised words. Timestamps are given in seconds.

#FA Word Sys. start Sys. end Correct word

1 og 3.48 3.57 #10 n̊ar, or #11 folk

2 p̊a 9.60 9.84

3 er 14.73 14.91 #36 hemninger - ending

Table 8: KWS false alarms with scores of 1.0. Timestamps are given in seconds.
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5.3 Parameter Tuning

The lattice generation step allows configuration of the acoustic scale and lattice beam. This
experiment uses pruned language model on the same audio clip as Section 5.2, where the spoken
utterance is:

”Hun lar seg p̊a et vis ikke korrigere. Selv n̊ar folk skjønner at hun lyver. Katja er p̊a
mange m̊ater den mest salgbare forfattertype som fins. Sjarmerende, selvopptatt, full
av skrøner og uten særlig mange hemninger.”

5.3.1 Acoustic Scale

The acoustic scale in the lattice generating step is set to new values in this test. The word sequence
recognised as most likely by the KWS system is presented for each acoustic scale value.

Acoustic scale = 0.2:

”la kjapp vis ikke kurere selv og fag skjønn at river katja p̊a ung m̊ate den mest salgbar
fatter p̊a pins skei mene selv å katt kulda skr̊a nordens alma henning er”

Acoustic scale = 0.5:

”lars av ris ikke korene selv og fag skjønn av tull iver katja a p̊a matte den mest salgbar
fatter p̊a pins skei mene selv å katt kulda gr̊a nordens alma henning er”

Acoustic scale = 2:

”unn a kjapp vis ikke korn gjerde selv og fag skjønn av tull iver katja a p̊a matte den
mest salgbar f̊att rips om inn sved skei mene selv å katt kulda skauen ordens alma
henning er”

Acoustic scale = 5:

”unn a kjapp vis ikke k̊ar g det selv og fag skjønn av tull iver katja a p̊a matte den
mest salgbar f̊att rips om inn sved skei med med selv å katt kulda skauen ordens alma
henning er”

The utterance recognised with an acoustic scale of 0.2 included one tri-gram from the language
model, ”m̊ate den mest”. The rest of the acoustic scale experiment results contain no modelled
tri-grams at all.

5.3.2 Lattice Beam

The lattice beam value is raised to 20 from 8.5 in this test. Figure 15 displays a snippet of the
word lattice generated with this value.
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Figure 15: Snippet of word lattice when the lattice beam value is raised to 20. Correct utterance
for this part is ”katja er p̊a mange m̊ater den mest”.
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6 Discussion

The traditional Automatic Speech Recognition (ASR) approach for Keyword Spotting (KWS) is
chosen as it is flexible when searching for longer keyword phrases. The other approach discussed
in Section 2.1, regarding comparing models of keywords with a universal background model, will
have to have readily available models of every keyword phrase searchable. This is not practical as
the keyword phrases used to find exact anchor points are supposed to be unique, meaning that a
new model has to be used for every KWS attempt.

The proposed solution will be more general and suitable for this task. Searching a word lattice
containing several likely sequences of words allow for a robust KWS system that spots phrases
that do not appear as the most probable phrase in the direct ASR result. This is long as they are
recognised with a similar likelihood.

Either way, the recognition is as good as the coverage of the dictionary. Out-of-dictionary words
will not appear in any of these KWS systems without a particular way to handle them. The
simplest solution to this issue is to only search for known words. This solution can be realised in
this application, as audiobook segmentation can be done wherever as long as the splitting is precise.
Unique phrases of known words can surly be found throughout audiobooks within required steps.
These phrases do not have to get particularly long on average as they quickly become unrepeated
in most cases. This can nonetheless be assured by simple text searches of selected phrases.

A complete system for aligning an entire audiobook with its transcript will first merge all audio
recordings and text clips of the book into one long audio file and a single text. The KWS system
will then find anchor points used to divide the text and speech into corresponding segments of
suitable lengths for the alignments. These anchor points can be placed next to figures in the text
to work around potential text notes inside these, or other illustrations possibly described by the
audiobook reader. Forced alignment can then be done with corresponding audio and text segments.

6.1 Implementation

The original system built for South-African languages is designed to include three pitch features
in its high-resolution MFCCs. This system does however not include pitch feature vectors as
Norwegian is not a very tonal language. Similar words that are differentiated by pitch can generally
be distinguished by their grammatical context. Including pitch features will increase the system’s
complexity without improving performance much, if at all, and is therefore left out.

The pronunciation lexicon chosen for this implementation is relatively short and contains no altern-
ative pronunciation options. This is used instead of larger vocabularies because the FST decoding
graph gets too large otherwise. The Norwegian pronunciation lexicon used contains nearly 90 000
words. The lexicons of the original implementations of Afrikaans and Sesotho contain nearly 30
000 words, while the isiZulu lexicon contains almost 20 000 words, for reference.

A much larger, automatically generated lexicon with multiple pronunciation options for each word,
totalling over 600 000 words, is at first attempted used to construct a decoding graph. The FST
construction fails in this case at an early stage because of RAM shortage, using a computer with
64GB available RAM. A sizeable vocabulary increases the proportions of the decoding graph be-
cause the grammar model gets larger. This system built on the large lexicon is too computationally
expensive as the lattice decoding process is even more RAM demanding than the FST creation
algorithms and is therefore not used.

Even a full tri-gram grammar model of the shorter vocabulary makes the decoding graph too large
for lattice generation utilising 64GB RAM. The size of the FST is reduced by pruning the grammar
model. This is not ideal as unusual word sequences not encountered in the training set will not be
considered in the decoding process, as explained in Section 2.3. Books are often written differently
than news texts, which this n-gram model is trained on, making the pruned model more likely to
come across word combinations not included in the model. It is therefore better to increase the
computational power and use the full grammar model. 128GB RAM is sufficient for this system
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using the shorter lexicon.

The memory limitation will not be a problem later on as the system segments the audio prior to
KWS, ensuring that the computational requirements do not scale with the length of audio files.
A KWS system built on ASR will by default have the same memory issues as a forced alignment
system. Segmentation using Voice Activity Detection (VAD) negates this issue. The VAD used for
segmentation uses ordinary thirteen-dimensional MFCC features which are extracted from 8kHz
sampled audio. The sampling frequency for this extraction step is not changed from the original
system since the VAD works well as it is.

6.2 Results

This KWS system realisation is clearly not usable for its purpose, as visible from the results in
Section 5. The decoded lattices are far off the truth, making the KWS attempts fail.

The grammatical model looks at first glance guilty for the poor results, as the recognised utterance
possibilities visualised by the lattices in Figure 13, 14, and 15 do not make sense grammatically. The
fact that the recognised words do not look utterly random from an acoustic point of view supports
the hypothesis that the language model holds the blame. Examples of this are ”brilleglassene”
recognised as ”drill gassen” in Section 5.1.1 and 5.1.2, and ”Sjarmerende, selvopptatt, full av
skrøner (...)” to ”skei mene, selv å katt, kulda skauen (...)” in Section 5.2.1. However, looking
at the results of acoustic scale tuning in Section 5.3.1, it is apparent that neither the acoustic or
grammatical model is by themselves accountable for the poor performance, as the results do not
get better when one of the models is weighted significantly more than the other.

Comparing the pruned grammar experiment results in Section 5.1.1 and 5.2.1 to the full models
results in Section 5.1.2 and 5.2.2 show no notable impact to the quality of the recognition. N-gram
model pruning should make the results worse to some degree, but it is not visible in these tests
as both provide unrecognisable results. Pruning should especially affect sequences that do not
appear in the training data and are only included in the n-gram model as a smoothing effect, see
Section 2.3.

The lack of grammar modelling of unknown word sequences is likely not the sole reason for the
performance issues either, as the first segment of the utterance in Section 5.2 only contains known
words. This segment is recognised independently from the later part of the same utterance but
is not recognised any better than the other utterances presented in the results section. It can be
speculated that out-of-vocabulary words introduce follow-up errors because the language model is
led in the wrong direction trying to find likely following words to the system’s false prediction of
unknown words. This hypothesis can not be verified from the observations as none of the results
gives logical results; the segment including exclusively known words is recognised as poorly as the
others.

From all the utterances recognised it is evident that the language model does not influence the
recognition at all. Some of the recognitions are done with pruned models. One would expect
that the system only predicts tri-grams included in the grammatical model in these cases, as the
smoothing effect that models unseen word combinations is removed. The fact that the most likely
recognised utterances in all experiments include close to none modelled tri-grams suggests that the
decoding graph is assembled falsely. It looks more specifically like the language model is not added
to the decoding FST correctly, as the grammar appears to be non-existent while the acoustics make
some sense. The system does e.g. recognise the word ”Katja” correctly several times with different
combinations of neighbouring words. Continuity between recognitions suggests a systematic error,
such as a defect decoding graph.

The i-vector extractor used for feature extraction in this keyword spotter is used to successfully
conduct ASR experiments, see Table 4. The i-vector representation is therefore most likely not
defective. Nonetheless, the feature extraction step should not confuse the results in this manner
if it is faulty. The experiment recognitions should result in mostly modelled tri-grams even if the
input features are incorrect, especially when the language model is heavily favoured. This supports
the hypothesis that the system error is located at the decoding step.

31



The KWS system made multiple false alarms. Examples of these are listed in Table 6. The
false alarms are primarily short, common words that are recognised in place of other phonetically
resembling words. It makes sense for an ASR system to conclude that common words are spoken
often, as they by default are given higher likelihoods by the language model to appear in varied
sentence combinations. The false alarms observed in the results are, as discussed, not correctly
impacted by the grammar model in this case. False alarms should either way not be an issue for
this application since false detections of unique keyword phrases are fairly unlikely for a functioning
system.

Results of simple ASR tests presented in Section 5.1.3 show that decent performance is feasible
when recognising utterances involving words absent from the vocabulary. These results suggest, as
expected, that unpruned grammar models tend to perform better than pruned ones. The results
displayed in Table 4 confirms that using i-vector features can be a good idea. The ASR system built
on i-vector feature representation performs better than the more elementary thirteen-dimensional
MFCC system. This can be because the system realisation is more complex overall, but using the
more advanced portrayal of acoustic properties can nevertheless be beneficial.

Increasing the lattice beam allows deeper searching of keyword phrases. Section 5.3.2 displays an
example of an expanded lattice. Increasing the lattice beam is not a solution to system errors,
as the system will draw the same conclusion as earlier and not get any more confident. It can
however help tune a working system to spot less likely keyword phrases, or alternatively, increase
the decoding speed by lowering the value if the ASR is exceptionally precise.

6.3 System Issues

Several compromises are made when assembling the system. A small dictionary and pronunciation
lexicon is used to compress the final decoding graph, keeping the memory requirements within
practical limits. Including multiple pronunciation variations for words is beneficial, as it will make
the system more robust when handling alternative pronunciations. It is experimented with pruned
language models to compress the decoding graph. N-gram pruning is not advisable as it can hinder
spotting unique phrases, which the system is meant to handle. It is not ideal that the language
model is trained on a database consisting of mainly news texts when the application is all kinds
of books. The model should be trained on the same type of data that the system is meant to be
applied on.

Audiobooks are originally sampled at a significantly higher frequency than what this KWS system
utilises. According to the Nyquist theorem, downsampled audio recordings lose information of
high-frequency components. The Nyquist theorem states that the sampling frequency must be at
least double of a signal’s highest frequency component to reconstruct the signal perfectly. 16kHz
sampled audio will only be able to successfully portray frequencies up to 8kHz fully, while 44.1kHz is
able to retain frequencies up to 22.05kHz. Keeping original recordings can only make performance
better as more information is available. This would demand more computational power and lower
the decoding speed. Higher sampling frequencies should regardless be used when it is realisable,
as it should improve performance.

None of the compromises mentioned above is responsible for all of the significant performance
issues of the complete system, individually or altogether. The issues are more likely caused by
incorrect assembly of the system, as discussed earlier. The results suggest that the problems occur
at the decoding phase in a way that does not include the language model as intended because
”illegal” results are achieved.

The main structural differences to the original South African spoken term detector are the change
of sampling frequency of the input audio and the absence of pitch features. None of these differences
influences the system negatively, as discussed. The original system provides a test for validating
the setup process. The Afrikaans utterance ”hierdie jy moet elkeen van ons laat met ’n gevoel
van se realistiese” is recognised perfectly, making any KWS attempt within the recording succeed.
The original system does likely not always have perfect performance, but the test shows that the
system has good potential. This indicates that a functional Norwegian adaptation of the system
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should be achievable if correct models are supplied.

6.4 Alternative Solutions

The KWS solution proposed in this thesis is promising in theory, and is worth attempting fixed.
Some alternatives do however exist.

The need for phrase search can be removed altogether if audiobooks are produced according to
some guidelines. Audiobook readers can manually segment the recording into appropriate lengths
when producing them while marking the divisions in the text. The narrator can additionally note
down information about illustrations and other deviations they might make from the script. This
assures that corresponding audio recordings and texts are accessible for time alignment. This is a
good solution for future audiobook productions, but will not work on existing audiobooks.

An alternative to pre-segmentation before the alignment is to develop another forced alignment
strategy that handles longer text than audio clips. Using such a method will allow alignments of
small steps at the time. This will result in a procedure that resembles online speech recognition in
the sense that alignment happens continuously throughout the audio recording without a reference
of endpoints.
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7 Conclusion

In conclusion, a Keyword Spotting (KWS) system suited for finding unique phrases in audio
recording for Norwegian Bokm̊al is constructed. The KWS system is built on ordinary Automatic
Speech Recognition (ASR) technology that produces recognition options of audio recordings. This
technology enables precise segmentation of audio and text into suitable lengths by identifying
unique phrases in the speech. These segments are used as inputs in forced alignment systems,
producing time-aligned audiobook transcripts.

A decoding graph combining Norwegian acoustics, phonetics, phonetic context, and grammar is
constructed in a Finite-State Transducer (FST) format, which is used to decode i-vector feature
inputs into lattices containing recognition results. A decoding graph using pruned language model
is additionally made to have a lightweight system that can run on ordinary computers.

The performance of both these systems is however not as expected. Results of experiments sug-
gest that the decoding graph is assembled incorrectly. Grammatical rules are not followed in the
recognition attempts, meaning that the language model is not included in the equation. Several
compromises are made, including downsampling of audio, and using a short dictionary and pro-
nunciation lexicon. The compromises influence the quality of keyword spotting, but the extent of
this is not visible as the system has more critical issues.

This KWS approach is reasonable for the application, so fixing the system will be worthwhile. How-
ever, alternatives exist. The simplest solution is to provide clear guidelines for future audiobook
production, which can eliminate the need for automatic segmentation using KWS altogether.

8 Further Work

The KWS strategy proposed in this thesis is interesting even though the results are lacking, as
the strategy is well suited for the application. The system should therefore preferably be fixed.
A working system will solve most of the challenges hindering the Montreal Forced Aligner from
being automatically applied on entire books. The first step to fix the keyword spotter should be to
remake the decoding graph as it appears to by faulty, and make sure that all parts are put together
correctly.

The system should be adjusted to use higher frequency sampled audio inputs in order to improve
its performance, as discussed in Section 6.3. A new i-vector extractor must be trained to realise
this enhancement.

Other techniques can alternatively be used to work around the issues, for example the strategies
proposed in Section 6.4.

A Norwegian Nynorsk keyword recognition system should additionally be made to handle a larger
diversity of books. New language models, acoustic models, and i-vector extractors have to be made
to realise this system.
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