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Abstract

In this thesis we examine how production planning in industrial salmon
production is affected by the risk of gender maturation and the inclusion of
gender-partioned smolt types. We model a two-stage stochastic mixed-integer
program for the tactical planning problem salmon farmers face in the sea stage
of salmon farming. We develop two objective functions, the expected value
and CVaR of the value of harvests, to incorporate risk-neutral and risk-averse
attitudes in the model. The model determines the timing, location and size of
deployments and harvests, as well as the smolt type of deployments.

We develop a solution method to reduce the running time of the problem.
Firstly, we perform a Dantzig-Wolfe decomposition and use column generation
to exploit the structure of the problem. Thereafter, we propose and apply
a branch and price algorithm with several extensions to find solutions that
comply with the integrality conditions. The branch and price algorithm
performs better than Gurobi’s MIP solver by slightly improving the lower
bound and substantially improving the upper bound of the problem.

When analyzing the production plan, we discover that the expected value and
CVaR of the value of harvests increase with the inclusion of gender-partitioned
smolt types. Independent of the objective function deployments of regular
smolt rarely occur. Determining the preferred smolt type is a trade-off between
increasing the growth of salmon and decreasing the risk of gender maturation.
Moreover, the preferred smolt type for a deployment largely depends upon
the objective function and the relative value of gender matured salmon. The
majority of deployed smolt is male when the decision maker is risk-neutral and
the relative value of salmon that have experienced gender maturation is high.
However, female smolt is preferred when the decision maker is risk-averse and
the relative value of salmon that have experienced gender maturation is low.
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Sammendrag

I denne oppgaven undersøker vi hvordan produksjonsplanlegging i industriell
lakseproduksjon p̊avirkes av risikoen for kjønnsmodning og inkludering av
kjønnsfordelte smolttyper. Vi modellerer et to-trinns stokastisk blandet
heltallsprogram for det taktiske planleggingsproblemet lakseoppdrettere st̊ar
overfor i sjøstadiet av lakseoppdrett. Vi utvikler to objektiv funksjoner,
forventet verdi og CVaR av verdien av høstinger, for å inarbeide risikonøytrale
og risikoaverse holdninger i modellen. Modellen bestemmer tidspunkt,
plassering og størrelse p̊a utsett og høsting, samt smolttype av utsett.

Vi utvikler en løsningsmetode for å redusere kjøretiden til problemet. Vi
begynner med å utføre Dantzig-Wolfe dekomponering og bruker kolonne-
generering til å utnytte strukturen til problemet. Deretter foresl̊ar og anvender
vi en branch and price algoritme med flere utvidelser for å finne løsninger
som innfrir heltallskravene. Branch and price algoritmen gir bedre resultater
enn Gurobi sin MIP-løser n̊ar vi løser problemet, ved at branch and price
algoritmen forbedrer den nedre grensen noe og den øvre grensen vesentlig.

Ved å analysere produksjonsplanen, oppdager vi at forventet verdi og CVaR
av verdien av høstinger øker med inkluderingen av kjønnsfordelte smolttyper.
Uavhengig av objektiv funksjonen forekommer utsett av regulær smolt svært
sjeldent. Valg av smolttype er en avveining mellom å øke veksten av laks
og redusere risikoen for kjønnsmodning. Dessuten avhenger den foretrukne
smolttypen for utsett i stor grad av objektiv funksjonen og den relative
verdien til kjønnsmodnet laks. Mesteparten av utsatt smolt er hannfisk
n̊ar beslutningstakeren er risikonøytral og den relative verdien av laks som
har opplevd kjønnsmodning er høy. Hunnsmolt foretrekkes imidlertid n̊ar
beslutningstakeren er risikoavers og den relative verdien av laks som har
opplevd kjønnsmodning er lav.
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Chapter 1

Introduction

There is an increasing need for a higher production of food as the world
population is projected to reach peak population, with 11.2 billion people,
in 2100 (United Nations, 2017). Since seafood production can be sustainable,
it can play an important part in meeting the increasing demand for food.
Moreover, seafood production is greener than land-based meat production. In
fact, a kilogram of pork or beef, respectively, has a CO2 equivalent (a unit used
to compare CO2 emissions) of 30 and 5.9, while salmon has a CO2 equivalent
of 2.5 (Norwegian Seafood Council, 2016a).

Seafood production is projected to double by 2050 (DNV, 2021). Moreover,
seafood production consists of production at capture fisheries and aquaculture.
The global production at capture fisheries has stagnated in recent years, while
aquaculture still looks like a promising alternative for the future. In the period
from 1995 to 2015, the aquaculture production increased from 28 million tonnes
to over 106 million tonnes (Ritchie and Roser, 2019).

In 2019 aquaculture production accounted for 77 % of all fish production in
Norway (OECD, 2020), where 95 % was salmon production. Also, Norway is
the largest national producer of farmed salmon in the world, having produced
50.4 % of global production in 2020 (Mowi, 2021). An overview of Norwegian
salmon production from 1980 to 2018 is shown in Figure 1.1. Maintaining the
growth, experienced before 2010 is impossible. The average annual growth
rate of Norwegian salmon production is decreasing, with the rate expected to
fall to 4 % in 2024 (Mowi, 2021).
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Figure 1.1: An overview of the production of salmon in Norway form 1980 to
2018. Retrieved from Grefsrud et al. (2019).

Since the first successful farming of salmon in Norway, many developments
have been made within the industry (Misund, 2021). These include
biological and technological advancements, along with production planning
improvements (Global Farming Initiative, 2022). As a result, the production
at existing locations has increased and more locations have been opened
for production. Examples of biological advancements are breeding and the
addition of new smolt types (Nofima, 2022). Technological advancements
include light manipulation, which increases growth, and new equipment
(Stefansson et al., 2005). Improvements made within production planning
contribute to higher production at different locations, while ensuring that
companies comply with restrictions. Many of these advancements have made
salmon grow faster and enable earlier harvests (Aquagen, 2022).

Due to production restrictions, Norwegian farming companies primarily have
two alternatives to increase their revenues and production. One option is to
move into the relatively unexplored industry of offshore salmon production
(The Fish Site, 2022). On one hand, the company will be able to increase
their production drastically, due to fewer restrictions in offshore farming. On
the other hand, the rough weather at offshore installations necessitates higher
start-up, production and maintenance costs. The other option is to make the

2



production system more efficient nearshore (Guttormsen, 2008). To achieve
this, restrictions must be utilized to a greater extent. This can be achieved
with the introduction of gender-partioned smolt types. Here it is possible to
increase production and reduce the risk of lost production value. Increasing
the efficiency nearshore will be the focus for the remainder of the thesis.

Even though a more efficient production system will maximize the profits, it is
important that it is done given a risk level that salmon farmers are comfortable
with. The reason for this is that they are moderately risk-averse. Bergfjord
(2009) presents the biggest sources of risk as diseases, the sales price of salmon
and institutional risks. There are several reasons why salmon experience a drop
in their sales price, such as gender maturation (Iversen et al., 2016). Moreover,
in this thesis we focus upon price drops caused by gender maturation. It is
of interest to avoid gender maturation since it is unpredictable, decreases the
sales price of salmon and increases the risk of lost production value.

This thesis builds upon the work presented in Lien (2021). We will study how
the inclusion gender-partioned smolt types affect the production plan for a
salmon farming company. By deploying different smolt types we can increase
the growth of salmon or reduce the risk of gender maturation. Also, we will
examine the risk of lost production value caused by gender maturation. Both
the expected value and the risk measure CVaR will be used as objectives in
the thesis. Unlike Lien (2021), this thesis will use a different solution method
to solve more scenarios. We will use Dantzig-Wolfe decomposition and column
generation to exploit the structure of the problem. Then, we use a branch and
price algorithm with extensions to find integer feasible solutions. By increasing
the number of scenarios, the results will represent the real world better.

The chapters in the thesis are organized in the following way. We begin
by introducing relevant concepts and information in Chapter 2, such as the
industrial value cycle of a salmon, the regulatory framework and risk-averse
optimization. Next, we present the literature review in Chapter 3. We continue
in Chapter 4 by describing the planning problem which will be the focus of
the thesis. We present the modeling approaches in Chapter 5. In Chapter 6
we describe the mathematical model of the problem. Then, we present the
method used to solve the problem in Chapter 7. In Chapter 8 we examine the
case study which forms the basis for the data used in the problem. Thereafter,
we present the computational results in Chapter 9. We discuss areas for further
research in Chapter 10. Lastly, in Chapter 11 final remarks are presented.
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Chapter 2

Background

In this chapter we introduce relevant aspects of risk-averse production planning
within Norwegian salmon farming. We begin by presenting the stages of the
industrial salmon life cycle to gain a better understanding of the different
types of decisions salmon farming companies need to make. We continue
with presenting a classification of different planning problems that salmon
farming companies face, with a focus on tactical planning. Then, we present
the governmental regulatory requirements and restrictions that limit and steer
production in Norway. Thereafter, we continue by discussing the biological
risks of salmon farming, with a focus on gender maturation, that effect
production planning within salmon farming. Next, we introduce and compare
the characteristics of the three smolt types we use in this thesis. Then,
we describe different methods of performing risk-averse optimization in the
planning process of industrial salmon farming. Lastly, we present the area of
study for the remainder of the thesis.

2.1 Industrial Salmon Life Cycle

The salmon life cycle begins in freshwater before moving to seawater due to
salmon being an anadromous species (Mowi, 2021). Figure 2.1 shows the
different stages within the life cycle of a salmon.

4



Figure 2.1: The salmon life cycle. Retrieved from Munang’andu et al. (2016).

2.1.1 Freshwater Stage

The freshwater stage consists of four development stages, which are eggs,
alevins, fries and parrs. The freshwater stage takes place in closed facilities on
land with a duration between 10 and 16 months (Norwegian Seafood Council,
2022). To get salmon with desirable characteristics breeding companies
analyze a broodstock’s reproductive cells. Then, the breeding company
picks eggs that have the best characteristics, regarding biomass and disease
resistance (Aquagen, 2022). Thereafter, the eggs are put into incubators for
approximately 50 to 60 days, with a temperature that lies between 8 ◦C and
10 ◦C (Salmar, 2022). The hatching of the alevins marks the beginning of the
next stage. Alevins cannot swim and get nutrition through their own yolk sac.

The alevins become fries when they are able to swim (National Park Service,
2019). Unlike alevins, fries get nutrition not only from their yolk sac but also
from their habitat (National Park Service, 2019). Even though fries have high
mortality rates in nature, the use of developed techniques and technologies in
industrial farming have almost eliminated fatalities at this development stage.
When fries begin to develop camouflage patterns, such as vertical stripes and
spots, they become parrs (Marine Institute, 2020). During the transition to
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the next stage, parrs experience the smoltification process, where they become
smolt. At this stage, they are able to survive in seawater (Marine Institute,
2020). Furthermore, their chances of survival in seawater increase with their
increased weight. In industrial production the smoltification process can occur
during all seasons, while it only takes place during the fall in nature.

2.1.2 Seawater Stage

The seawater stage consists of three different stages, which are smolt, pre-
gender maturation salmon and post-gender maturation salmon. In industrial
farming the salmon are placed in pens and nets in the seawater for a duration
between 12 and 18 months (Aquagen, 2022). A cohort is made up of all of the
smolt that are deployed in the same pen simultaneously. Unlike the industrial
freshwater stage, the industrial seawater stage occurs in an open facility where
the salmon are exposed to parasites and diseases (Barentswatch, 2021b). Even
though the stage of post gender maturation is a natural stage of the seawater
development, it is of great interest to avoid it. The main reason for this is that
gender maturation downgrades the value of salmon.

To ensure high quality of meat and avoid lower growth rates, it is important to
minimize the stress that salmon experience (Deependra, 2011). Furthermore,
the salmon are not fed during the week prior to harvest to empty the intestines
(Jakobsen, 2020). Thereafter, the salmon are anesthetized and harvested
(Norwegian Seafood Council, 2016b). After harvest, the salmon are prepared,
before being sold to distributors.

2.2 Planning within industrial salmon farming

The complexity that follows industrial salmon farming makes it beneficial to
focus on planning to optimize production. Furthermore, industrial salmon
farming covers several smaller planning and decision problems. To categorize
these problems and create structure, we will use the framework proposed in
Anthony (1965). Here all planning problems can be classified as operational,
tactical or strategic problems. The problems vary by size, time duration
and involvement from upper management. Moreover, the different types of
planning problems are subject to different types of uncertainty. We have a
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larger focus on tactical planning, since we want to solve a tactical planning
problem of salmon farming in this thesis.

2.2.1 Operational

Operational planning problems are characterized by having little involvement
from the upper management as well as typically having a time duration of
up to three months. Many operational problems involve evaluation, control
and execution at different facilities. Having a focus on operational planning is
important to maintain a company’s relationship with workers, suppliers and
customers. Typical operational planning is made up of short-term decision
making at individual locations. Due to uncertainties like demand for salmon
and timing of deliveries from suppliers, these problems have a high need for
continuous replanning. Examples of operational problems within fish farming
include the use of equipment, daily tasks at a facility and feeding schedules.

2.2.2 Tactical

Tactical planning problems are characterized by having a medium length
duration with a focus on resource utilization. Moreover, tactical planning
largely depends upon the availability and stock of different resources. Tactical
planning applies in fish farming by companies having to abide by requirements
and biomass restrictions with finite capacities, while maximizing profits.

Making a production plan is an important part of tactical planning in fish
farming. A tactical production plan consists of many different decisions. Here
we will present some of the decisions that must be made. The company
must decide upon the timing and number of salmon deployed and harvested
at all locations. Moreover, the company must determine which smolt type
and deployment weight they wish to deploy, according to their different
characteristics. Companies also have to decide when to fallow locations.
Fallowing is the process of cleaning and disinfecting the location and equipment
between deployment and harvest.

In tactical planning a farming company is exposed to uncertainty through
biological risks, such as gender maturation. By focusing on tactical production
planning, companies can increase profits and reduce the risk of gender
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maturation. This will be the focus for the remainder of the thesis.

2.2.3 Strategic

Strategic planning problems are characterized by high involvement of upper
management, little replanning and having a planning horizon with a time
duration between five and 10 years. Planning problems that typically fall
within this level are resource acquisition and management of change. Having
a strong strategic plan is very important for companies, as it steers the
entire company in a good direction. Within salmon farming, strategic
decisions include acquiring production licenses at new locations, the merging
of companies and investments in offshore fish farming. Uncertainty in
strategic planning can appear through the long-term sales price of salmon
and governmental regulations, which in turn can affect whether a strategic
decision is profitable.

2.3 Regulatory framework

The tactical planning problem we want to solve is restricted by the regulations
imposed by the Norwegian government. Requirements and restrictions,
concerning the facility, location, environment, cleanliness and more are
specified. They form the basis for the maximum allowable biomass (MAB)
that can be employed at the same time. The presentation of the regulatory
framework is primarily taken from the Aquaculture Act.

2.3.1 Biomass restrictions and requirements

In 2017 the Ministry of Trade, Industry and Fisheries divided the Norwegian
coast into 13 distinct production zones. The division of the production zones
is shown in Figure 2.2.
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Figure 2.2: The production zones that constitute the Norwegian coast.

For a company to carry out industrial farming production in a production zone,
it must have a production license issued by the Norwegian government. The
location, regional and company-wide MAB are regulated in the production
license. The regional MAB is all production that occurs in a single production
zone. In most cases, production licenses are limited to one production zone. As
a result, all companies that operate in the same production zone must abide by
the same MAB restrictions (Mowi, 2021). Nevertheless, companies can apply
for permission to combine their MAB across separate production zones. The
MAB of a production license varies greatly and is dependent on the facility and
location (Mowi, 2021). However, in a standard production license the MAB is
780 tonnes for most production zones. In the northernmost production zones,
Troms and Finnmark, the MAB of a standard production license is 945 tonnes
(Fiskeridirektoratet, 2022).

2.3.2 Operational restrictions and requirements

The Aquaculture Act specifies operational requirements and restrictions in
industrial salmon farming due to the potential ramifications it can have on
the ecosystem. The location, time and size of the deployments and harvests
for the next two years must be a part of a yearly operational plan.

A company risks losing their production license if a location remains empty for
24 months. Furthermore, the duration of fallowing at a location must at least
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be two months. If a company breaks restrictions, it risks fines and possibly
losing production licenses. Moreover, companies have to limit deployments to
two deployment periods each year.

2.4 Biological risks

Even though the regulatory framework is in place to keep industrial salmon
farming sustainable, biological risks still have a notable impact on production.
Furthermore, the typical salmon farmer’s risk averse attitudes makes it a
priority to minimize biological risks (Bergfjord, 2009). There is a divide
between risk factors that degrade the value of the salmon and lower biomass
production. Moreover, some risk factors fall into both categories. In this
section we present some of the biggest biological risks that affect the tactical
production planning problem of salmon farming.

2.4.1 Growth

In salmon farming, the main value driver for salmon farmers is the harvested
biomass (Eidsfjord, 2021). The value of the harvested biomass is largely
dependent on the length of a rearing period for a cohort due to farmers being
able to deploy more salmon if the rearing periods are shorter. Furthermore,
shorter production cycles reduce the risk of gender maturation, lice and other
diseases in salmon production. Hence, there is a trade-off between increasing
growth and decreasing the risk of gender maturation, lice and other diseases.

The growth rate of a salmon is determined by its genetic profile and external
factors (Aquagen, 2021). The size and frequency of feedings largely impact
the growth, with most salmon farmers feeding when there is an appetite for
it. External factors that affect the growth rate include salinity, seawater
temperature, oxygen levels, stocking density, disease treatments and light
conditions (Føre et al., 2016). Production facilities are placed at locations
with a favorable seawater temperature and salinity levels. Moreover, facilities
can to a large extent pick the stocking density and manipulate lighting with
floodlights (Eidsfjord, 2021). The occurrence and treatment of lice and other
diseases decrease the growth rates by lowering natural growth conditions and
through the use of necessary treatments (Eidsfjord, 2021).
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The growth of salmon is also influenced by the age and gender maturation
(Aquagen, 2021). In general, the growth rate of a salmon increases after
deployment at sea, until it decreases as it nears the end of its life cycle (Aunsmo
et al., 2014). Moreover, gender maturation decreases the growth rates.

2.4.2 Gender maturation

Gender maturation is a natural biological process that gives salmon the ability
to reproduce. This transformation demands a large portion of energy, which
has adverse consequences within industrial salmon farming (Aquagen, 2021).
Distinctive skin coloration appears on the salmon and the meat quality is
lowered during gender maturation (Deependra, 2011). As a result, there is a
reduction in the market value of the salmon (Eidsfjord Sjøfarm et al., 2017).
The reduction is dependent upon the market and can vary between 5 and 95 %
(Aquagen, 2021). Bergfjord (2009) lists the price risk as one of the main risks
within industrial salmon farming. Therefore, salmon farming companies want
to minimize the percentage of a cohort that experiences gender maturation to
reduce the risk of lost production value. However, this can be challenging due
to salmon experiencing gender maturation at different points in time.

Aquagen AS have carried out studies which show that the percentage of a
cohort that has experienced gender maturation at harvest, also known as the
gender maturation percentage, varies between 0 and 35 %. Most cases of
gender maturation occur during the second late-summer and autumn that the
salmon are employed in seawater. Nonetheless, gender maturation can, in
some rare cases, occur as early as the freshwater stage (Fjelldal et al., 2020).

Studies show that gender maturation is a result of a combination of biological
and environmental factors (Eidsfjord Sjøfarm et al., 2017). The biological
factors consist of the weight, age, gender and fitness factor of an individual
salmon (Eidsfjord Sjøfarm et al., 2017). Environmental factors consist of
the temperature of the seawater, light and the salinity of the seawater.
To minimize the cases of gender maturation, farming companies use light
manipulation (Pino Martinez et al., 2021).
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The gender maturation percentages reported from farming companies in
Norway are increasing (Aquagen, 2021). Even though, there is little research
on the causes of this, it is suspected that higher deployment weights and
increasing sea temperatures during the summer are contributing factors
(Eidsfjord Sjøfarm et al., 2017). When farming companies study salmon, they
get an indication of what percentage of the cohort has gone through gender
maturation. However, the actual percentage of salmon that have experienced
gender maturation may vary greatly from this indication (Aquagen, 2021).
Thus, the company needs to determine if they should let the cohort keep
growing or harvest it. By postponing harvest, more salmon in the cohort
might go through gender maturation, while the quality of the meat will keep
declining. However, salmon in the cohort that have not experienced gender
maturation may still have a large potential for further growth and higher
market value.

2.4.3 Mortality

Salmon farmers expect a cumulative mortality rate of salmon between 10
and 15 % before harvest in a normal production cycle (Bang Jensen et al.,
2020). Most of the fatalities are caused by lice and other diseases. They are
considered the biggest financial and biological risks within the industry. Law
enforced restrictions are in place and good practices are in wide use to ensure
sustainability and good health conditions for salmon. Furthermore, lice and
other diseases easily spread between facilities or onto wild salmon.

Salmon lice live on salmon as a parasite in nature, without doing much harm
to the salmon. However, in salmon farming large amounts of salmon live in a
limited space. Such high concentrations of salmon, do not occur in nature. As
a result, lice are able to reach volumes that cause physical damage to salmon,
even leading to fatalities in some cases (Barentswatch, 2021b).

To minimize the occurrence and severity of lice and other diseases, farming
companies have reactive and preventive measures. Vaccination is used
efficiently to mitigate the number of cases of some diseases (Mowi, 2021).
Moreover, the risk of other diseases has been reduced through improved
environmental conditions, management and treatments. In the time period
where the wild salmon migrate, stricter restrictions are in place to avoid the
spreading of lice and diseases (Nodland, 2016). To ensure that salmon do
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not build resistance towards any type of treatments, farming companies rotate
between different types of treatments (Barentswatch, 2021b). Furthermore, as
an extreme measure to avoid transmission of disease to other farming locations,
it might be necessary to slaughter the entire salmon population at a location.

2.5 Smolt types

Different smolt types are to varying degrees susceptible to different biological
risks. Smolt type characteristics are important aspects of minimizing salmon
fatalities and the number of gender maturation cases, while maximizing
growth. This can contribute to an increased value of harvests or a decreased
risk of lost production value for salmon farmers. In this thesis we focus on three
smolt types, to examine which smolt types should be used in the production
planning problem of salmon farming. They are regular, female and male smolt.
Female and male smolt are regular smolt partitioned by gender. Table 2.1
shows a ranking of how the different smolt types perform when it comes to the
different biological risks. Details concerning the ranking of the smolt types is
explained in the upcoming sections. The presentation of the different smolt
types is retrieved from Eidsfjord Sjøfarm et al. (2017) and Aquagen (2021).

Smolt
type

Growth
rates

Mortality
rates

Gender
maturation
percentage

Regular Medium High Medium
Female Low Low Low
Male High Medium High

Table 2.1: Ranking of the smolt types when it comes to different biological
risks. Green, yellow and red respectively indicate whether the smolt type
performs the best, neutral or worst.

2.5.1 Regular smolt

Most of the smolt that are deployed in Norway are regular smolt. Moreovoer, it
is is a non-gender sorted smolt, with approximately an equal amount of female
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and male smolt. Many of the other smolt types are still at a level of research,
but it is expected that this will change in the coming years (Aquagen, 2021).
Breeding companies sell different types of regular smolt, with small variations
in the biological characteristics. In this thesis all references to regular smolt
are to the version of regular smolt that Aquagen AS provide.

Studies show that male and female smolt have different optimal feeding
schedules due to having different biological characteristics (Aquagen, 2021).
As a result, mixing female and male smolt in a cohort removes the possibility of
optimizing the feeding schedules based upon the gender. Instead, the feeding
schedule becomes a compromise between the two genders. Therefore, the
expected weight development of regular smolt is much closer to the weight
development of female salmon compared to male salmon.

2.5.2 Female smolt

Female smolt have lower growth rates than regular smolt. Therefore, they are
the smolt type that requires the most time to reach harvestable sizes. Their
feeding schedules necessitate less feeding than other types of smolt. However,
female smolt have the lowest risk of gender maturation, with the percentages
being close to zero (Aquagen, 2021). This makes it easier to predict the value
of the salmon before harvest. Lastly, female smolt have the lower mortality
rates than regular smolt.

2.5.3 Male smolt

Male smolt have the highest growth rates of all three smolt types. As a result,
they can be harvested earlier than the other smolt types. This necessitates a
feeding schedule with larger or more frequent feedings. The risk of salmon
experiencing gender maturation before harvest is higher than regular and
female smolt. Therefore, a larger percentage of male smolt experience a price
drop during their rearing period, which makes it more challenging to predict
the value of male salmon before harvest compared to female salmon. Finally,
male smolt have higher mortality rates than regular smolt and lower mortality
rates than female smolt.
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2.6 Risk-averse optimization

Biological risks, like gender maturation, give rise to the risk of lost production
value in salmon farming, which leads to risk-averse decision makers. For
this reason it is necessary to capture risk-averse attitudes when modeling
the tactical problem of production planning in salmon farming. This can be
achieved through the use of risk-averse optimization (Ruszczyński and Shapiro,
2009). Moreover, there is a broad selection of risk measures to choose from.
They have different applications and there is still dispute on which is better
to use in optimization (Roman et al., 2007).

In this section, we report a set of desirable properties that we use to determine
which risk measure to use for the remainder of the thesis. Further, we
present three widely used risk measures: standard deviation, value at risk
and conditional value at risk, and we select one for further use based upon the
desirable properties.

2.6.1 Desirable properties

Artzner et al. (1999) presents four mathematical properties to decide the
quality of a risk measure. If a risk measure satisfies all four it is known as a
coherent risk measure. Coherence has become the most widely accepted set of
properties for a risk measure (Tsanakas, 2004). Moreover, the properties are
sub-additivity, monotonicity, positive homogeneity and translation invariance.

Sub-additivity applies when the combined risk of two portfolios is no higher
than the individual risk of one of the portfolios. Moreover, monotonicity
implies that a portfolio has a lower risk of loss when the return in every scenario
is higher. Positive homogeneity applies when the value of the portfolio and
the amount of risk are proportional. Lastly, translational invariance implies
that the risk of a portfolio decreases with the amount of risk neutral assets
that is supplied to the portfolio.

Risk can be divided into downside and upside risk (Fisher and D’Alessandro,
2021). Downside risk is the risk of obtaining less than the expected value, while
upside risk is the risk of obtaining more than the expected value (Fisher and
D’Alessandro, 2021). Furthermore, for our optimization problem, we want the
risk measure to only include downside risk, as upside risk is rarely of interest
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in risk-averse optimization (Grootveld and Hallerbach, 1999). This is due to
downside risk not meeting expectations, while upside risk exceeding them.

2.6.2 Standard deviation

Standard deviation is the most widely used risk measure. It measures how
spread the dataset is in relation to the mean (Hayes, 2021). The applications
of the risk measure are endless and it has been the dominating risk measure in
many industries such as portfolio selection (Segal, 2022). Standard deviation
satisfies all of the desirable properties of a coherent risk measure (Cirillo,
2022). However, standard deviation measures upside risk and downside risk.
Therefore, since we want to focus on downside risk, other risk measures can
be more appealing.

2.6.3 Value at risk

Value at risk (VaR) became a popular risk measure in portfolio selection in
the 1990’s (Adamko et al., 2015). It is a measure of the upper quantile of the
potential deviation from the expected return (Roman et al., 2007). However,
using VaR as the risk measure in risk-averse optimization is challenging.
Tasche (2002) shows that VaR can give rise to aggregation problems, since it
lacks the property of sub-additivity. Moreover, this discourages diversification
and increases the risk of the portfolio (Danielsson et al., 2005).

2.6.4 Conditional value at risk

The risk measure conditional value at risk (CVaR) has become a well-known
risk measure (Artzner et al., 1999). It measures the expected value of the
losses that lie below the VaR. CVaR is sub-additive and leads to a convex
problem (Artzner et al., 1999). Moreover, CVaR is a coherent risk measure
that only measures the downside risk. Therefore, it is typically a better fit for
optimization and will be the risk measure we use in this thesis.

16



2.7 Area of further study

For the remainder of the thesis we study and model the tactical production
planning problem of salmon farming. The source of uncertainty will be gender
maturation which forms the basis for the risk of lost production value. We
produce a production plan that determines the optimal choice of smolt type
as well as the optimal timing, size and location of deployments and harvests
of salmon. Moreover, the production plan must comply with the regulatory
framework. We maximize the expected value and CVaR to respectively capture
the risk-neutral and risk-averse attitudes of salmon farmers.

17



Chapter 3

Literature review

In this chapter we study literature relevant to risk-averse tactical salmon
production planning. We begin by studying production planning within
aquaculture. Thereafter, due to the limited existing literature on risk-averse
production planning within aquaculture, we review risk-averse production
planning problems within other industries.

3.1 Production planning within aquaculture

The modeling of production planning within aquaculture has developed since
it was introduced in 1986. To begin with, it was modeled as an optimal
rotation problem. Thereafter, it became more common to model it as a linear
optimization problem. More recently, authors have incorporated different
types of uncertainties within the aquaculture industry in their model.

3.1.1 Early models

Karp et al. (1986) apply the optimal rotation problem within aquaculture
production planning to determine the size and timing of deployments, harvests
and restockings. Initially, the optimal rotation problem was used to estimate
the length of a growth period of timber to maximize the present value of the
income stream (Faustmann, 1849). Similar to Karp et al. (1986), Bjørndal
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(1988) studies the optimal timing of harvests within fish farming by applying
the optimal rotation problem to aquaculture. Bjørndal creates a bioeconomical
model where the objective is to maximize profits. Hence, his main focus is to
study the relationship between costs and timing of harvests. He comes to the
conclusion that selective harvesting based upon weight categorization can be
beneficial due to smolt experiencing different growth rates in the same cohort.

Other authors, like Arnason and Hean, build upon the model presented by
Bjørndal. Arnason (1992) looks at the relationship between the feeding
schedule of fish and timing of harvests. He discovers that the two aspects
are largely connected. Later, Hean (1994) introduces a model that finds the
optimal management strategy of fish production. Unlike previous models, it
includes release costs, which lets the decision maker determine the optimal
size of deployments. Heaps (1995) studies whether it is beneficial to perform
culling of cohorts before harvest, given that the growth rates are dependent
upon density. Culling is performed to remove undesirable characteristics in
the fish population, which in this case is small fish with low growth rates.

Pascoe et al. (2002) develop a bioeconomical model and study how existing
models that apply optimal rotation within aquaculture do not represent actual
aquaculture. Their primary reason for this is that most of the existing models
exclude risk. Furthermore, they present a comparison of actual aquaculture
production planning and their model. The comparison demonstrates several
weaknesses of the optimal rotation problem. Moreover, they conclude that
the optimal rotation length is an understatement of the actual rearing period.
Their reasoning is that their rotation problem does not include all critical
aspects of fish farming. They believe that other modeling approaches are
more appropriate for studying production planning within aquaculture, such
as models utilizing dynamic programming.

3.1.2 Linear and dynamic programming

Forsberg (1996) presents a linear programming model that determines the
optimal size of deployment and harvest at an individual facility. Moreover,
the model aims at maximizing profits while abiding by the MAB constraints
of the facility. Each salmon within the cohort is placed into a discrete weight
class. Furthermore, a Markov process is used to estimate the transition
probabilities between the different weight classes. As a result, all of the
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salmon belonging to the same weight classification have equal probabilities
of transition. Weight-dependent prices are also included in the model. Like
Bjørndal (1988), Forsberg (1999) studies different harvesting strategies to use
in a multiperiod linear program to optimize industrial salmon production.
The first strategy is to only harvest the most profitable fish, based upon their
weight. The second strategy is to harvest and sell similar sized fish. He
concludes that the first strategy is the more profitable alternative.

Guttormsen (2008) presents a dynamic programming model that builds
upon the original rotation problem with the addition of some adjustments
to aquaculture. He declares that the importance of production schedules
is increasing as markets within aquaculture are becoming more prone to
competition. Moreover, he claims that timing of harvests can determine
whether the activities of a fish farming company in a time period are profitable
or not. He includes relative price relationships and the limitations surrounding
release time windows. Unlike earlier models, his growth function depends upon
the temperature of the seawater. As a result, seasonal growth development is
a central part of the model.

3.1.3 Modeling with uncertainty

Hæreid et al. (2013) present a multi-stage stochastic model that attempts to
solve a tactical planning production problem of industrial salmon farming.
Furthermore, they study different sources of uncertainty that can appear
in salmon farming. Uncertainties that are included in their model are the
development of biomass, mortality rates and prices.

Næss and Patricksson (2019) propose a model that allows the deployment of
different smolt types, specifically gender-partioned smolt. They study whether
the inclusion of the new smolt types increases the volume of harvested biomass.
Furthermore, they do a comparison of deterministic and stochastic models,
where the stochastic variable is the seawater temperature. Their results show
that both the deterministic and stochastic models benefit with the inclusion
of more smolt types, as male smolt have higher weight development. However,
the stochastic model benefits less than the deterministic model.

Further, Aasen (2021) takes inspiration from the model presented in Næss
and Patricksson (2019), with the addition of even more smolt types and the
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uncertainty of when and how often it is necessary to have lice treatments.
Unlike Næss and Patricksson (2019), Aasen maximizes biomass and revenue
by including weight-dependent prices in his model. The inclusion of new smolt
types increase the revenues and the amount of harvested biomass. However,
the representation of the real world in Aasen (2021) and Næss and Patricksson
(2019) is limited due to both models having a low number of scenarios.

3.2 Risk-averse production planning

Companies within a broad variety of industries use risk-averse optimization
as a tool to hedge against uncertainty. The type of planning problem within
other industries varies from the tactical planning problem of industrial salmon
farming. However, the risk measures of CVaR and variance are popular across
different industries. Therefore, in this section we present literature where
CVaR and variance have been used to handle risk-averse attitudes.

Kawas et al. (2011) present a product allocation problem where companies
must make decisions to minimize the risk of regulatory inspections failing,
which in turn leads to loss in revenue. Furthermore, each inspection results in
a Bernoulli distributed stochastic variable that depends upon the decisions
regarding production. Their model maximizes the CVaR of the revenue.
Moreover, for smaller instances they use a branch and bound algorithm to
solve it to optimality. However, for larger instances they apply a stochastic
constraint programming approach, since it is not possible to solve the problem
to optimality. Kawas et al. (2011) shows how CVaR can be used as the
objective function as well as how the size of a problem affects the solution
method.

Vardanyan and Hesamzadeh (2015) propose a multi-objective model that
optimizes coordinated production for a risk-averse hydropower producer.
Furthermore, they have a weighted sum of the expected profit of production
and the variance of profit as their objective function. They study three
different markets, the real time, intraday and day ahead market. Moreover,
their model is tested on a three-reservoir system. They explore how the number
of locations affects risk. Lastly, their results suggest that it is profitable to
coordinate planning in sequential planning.
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Schütz and Westgaard (2018) present a multi-stage stochastic programming
model that determines the optimal hedging decisions for a risk-averse salmon
farmer. Their objective is to maximize the weighted sum of the CVaR of the
revenue from the planning horizon and the expected revenues of sales in future
contracts. Furthermore, they study three different CVaR percentiles and levels
of risk-aversion. Their results indicate that salmon farmers should use future
contracts for low levels of risk-aversion to hedge price risk.
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Chapter 4

Problem description

In this chapter we present the problem description which forms the basis for
the mathematical model in Chapter 6.

The production system of a salmon farming company consists of a set of
locations where deployments of smolt take place. For each deployment the
company must determine initial smolt weight and smolt type. However, not
all smolt weights can be deployed throughout the year. The duration of the
planning horizon is finite and it is divided into a set of time periods. Moreover,
deployments must take place in a set of release time periods. We assume that
all deployments and harvests that take place in the same time period happen
at the same time.

Biomass requirements affect production at different locations. The MAB at
the company and location-level limit employed biomass.

Operational restrictions limit production and contribute to making production
sustainable. The amount of smolt deployed at a location in a time period is
restricted. Moreover, the duration of the employment at sea of a cohort is
limited. There is an activity requirement at all locations which means that
there is a limit on how long a location can be empty.

Occasionally locations must be fallowed. Moreover, the amount of harvested
biomass at a location and company-wide level is restricted. Cohorts cannot be
harvested if the average weight of a salmon in the cohort is too low or high.
In addition, all biomass employed at the end of a planning horizon must be
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above a certain level to ensure continuous production.

The company is exposed to uncertainty through the percentage of gender
maturation. The uncertainty concerning gender maturation gives rise to the
risk of lost production value. Salmon that go through gender maturation
experience a reduction in their value.

We represent the planning problem as a two-stage stochastic problem due to
the uncertainty of gender maturation. Decisions that must be made before
the beginning of the planning horizon make up the first stage of the problem.
Furthermore, they include timing, size and location of deployments of smolt
as well as the initial smolt weight and smolt type of the deployments. In the
second stage, the company has entered the planning horizon and learns the
actual gender maturation percentages. Decisions regarding location, size and
timing of harvests of salmon make up the second stage. Also, as a part of
the second stage the company must keep track of the biomass development for
every cohort.

A company can either be risk-neutral or risk-averse. Therefore, it is of interest
to develop two different objective functions. If the company is risk-neutral the
objective is to maximize the expected value of the harvested salmon. However,
if the company is risk-averse, it wants to maximize the CVaR of the value
of harvests. This corresponds to the expected value of a percentage of the
worst scenarios. Furthermore, the company can select different degrees of risk
exposure by altering the percentage of scenarios that make up the CVaR.
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Chapter 5

Modeling approaches

In this chapter we present the modeling approaches that are used when
formulating the mathematical model presented in Chapter 6. Firstly, we
present how we model biomass development. Then, we introduce the modeling
of gender maturation.

5.1 Modeling biomass development

Biomass development is one of the most central parts of industrial fish farming
since it determines the revenue of harvests. There are many ways to model the
development of biomass with respective advantages and drawbacks. Factors
like growth, mortality and harvests affect the total biomass of a salmon cohort.

We apply the thermal growth coefficient (TGC) for growth modeling as it is
presented in Thorarensen and Farrell (2011). This way of modeling has the
benefit of the TCG value being independent of the weight of the fish, making it
easy to find the final weight of the fish (Jover and Estruch, 2017). Furthermore,
our implementation follows Aasen (2021).
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Equation (5.1.1) shows how TGC models growth development in a salmon
cohort. wt refers to the mean weight of an individual salmon in time period
t, Tt is the average seawater temperature in Celsius during time period t and
Lt is the duration of time period t in days. Lastly, TGCt is a parameter that
is proportional to the growth rate of a salmon and depends on the amount of
time a salmon cohort has spent at sea.

wt+1 = (w
1
3
t +

1

1000
· TGCt · Tt · Lt)

3 (5.1.1)

The mortality rate, µt, is the ratio between deaths and total individuals in time
period t. Moreover, the survival percentage, st, is the percentage of a salmon
cohort that is alive at time period t. Equation (5.1.2) shows the relationship
between µt and st.

st = (1− µt−1) · st−1 (5.1.2)

The product of st and ωt is the expected amount of biomass employed at sea
in time period t. We introduce parameter At, as the ratio between the total
biomass in t and the total biomass at deployment as shown in equation (5.1.3).

At =
st · wt

w1

(5.1.3)

Moreover, we denote the total biomass of a deployed cohort and the total
biomass at the start of t, as y and Wt respectively. The relationship between
the two parameters is expressed in equation (5.1.4).

Wt = At · y. (5.1.4)

We let Rt be the monthly growth rate of a cohort. It measures the ratio
between the total biomass at time period t, At, and the total biomass at time
period t−1, At−1, given that no harvesting occurs. This can be seen in equation
(5.1.5).

Rt =
At

At−1

(5.1.5)
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Unlike equation (5.1.4), equation (5.1.6) takes harvesting into consideration,
by denoting Ht as the harvested amount of biomass at time t.

Wt = Rt(Wt−1 −Ht−1) (5.1.6)

Since the TGCt parameter is incorporated into the parameters At and Rt, it
does not appear in the mathematical model presented in Chapter 6.

5.2 Modeling of gender maturation

In Chapter 2, we discuss the uncertainty concerning gender maturation.
Salmon within a cohort can go through gender maturation at different points
in time. Moreover, the gender maturation percentage in a cohort can never
decrease, since gender maturation is irreversible. When a salmon experiences
gender maturation, the value of the fish decreases. However, we assume that
gender maturation does not affect the growth of a salmon.

We assume that there are three factors that affect the gender maturation
percentage. Firstly, the most important factor is the smolt type of the salmon
cohort, due to male salmon having a higher probability of going through gender
maturation. Secondly, the mean weight of a salmon in a cohort affects gender
maturation. If the weight is below a certain level, gender maturation will
not take place in the cohort. This is a reasonable assumption, since the
number of fish that experience gender maturation below a certain weight level
are negligible (Aquagen, 2021). Lastly, the gender maturation percentage is
affected by how many gender maturation months the salmon have experienced
at sea. A gender maturation month is a month where salmon can experience
gender maturation. Moreover, gender maturation can only take place in late-
summer and autumn. We use Eidsfjord Sjøfarm et al. (2017) and Aquagen
(2021) as the basis for the gender maturation modeling.

We assume that the gender maturation percentage is 0 until the first gender
maturation month GM1. For every gender maturation month, the gender
maturation percentage increases with the same percentage. Hence, the growth
of gender maturation percentage is linear in the gender maturation months.
Ds

t′fglt is the gender maturation percentage of a cohort at time t, deployed at
time period t′ in scenario s.
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We denote ρsg as the increase in the gender maturation percentage a cohort
experiences in a gender maturation month in scenario s, when the smolt type
is g. Moreover, we express Js

t′fglt as the number of gender maturation months
a cohort has experienced at time t, deployed at time period t′ in scenario s.

Equation (5.2.1) shows that the gender maturation percentage, Ds
t′fglt, equals

the product of the monthly increase in the gender maturation percentage, ρsg,
and the number of gender maturation months the cohort has experienced,
Js
t′fglt. Furthermore, ρsg and Js

t′fglt do not appear in the mathematical model
presented in Chapter 6 since they are incorporated into the parameter Ds

t′fglt.

Ds
t′fglt = ρsgJ

s
t′fglt (5.2.1)

An example of the development of the gender maturation percentage is
illustrated in Figure 5.1. Here the monthly increase in the gender maturation
percentage in gender maturation months, ρsg, is 3 %. The cohort experiences
four gender maturation months in total. Furthermore, the gender maturation
percentage does not increase after month 11, since the cohort does not go
through any more gender maturation months.

Figure 5.1: The development of the gender maturation percentage.
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Chapter 6

Mathematical model

In the following chapter we introduce the mathematical model for the problem
presented in Chapter 4. Firstly, we introduce the notation of the model.
Thereafter, we present the two objective functions. Lastly, we describe the
constraints that make up the problem. The model is inspired by Aasen (2021)
and builds largely upon Lien (2021). A compacted version of the objective
functions and constraints is presented in Appendix A.

6.1 Notation

In this section we present the sets and parameters that are used to formulate
the objective function and constraints. Then, we introduce the decision
variables that constitute the problem.
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6.1.1 Sets

Symbol Description

L The set of all locations.

T The set of all time periods that make up the planning horizon.

T + The set of all time periods that make up the planning horizon
with the addition of an extra dummy period representing the time
period following the final time period in T .

T R The set of all time periods in the planning horizon where
deployments of smolt are possible.

T R
0 The set of all time periods in the planning horizon, where

deployments of smolt are possible, with the addition of an extra
dummy time period preceding the first time period in T R.

F The set of all deployment weights for smolt.

Ft The set of all deployment weights for smolt that are available for
deployment in time period t, t ∈ T R

0 .

G The set of all smolt types.

Gt The set of all smolt types, where deployment is possible during
the time period t, t ∈ T R

0 .

S The set of all scenarios.

T G
fglt The set of all time periods where a cohort is of a non-harvestable

size, with a deployment weight f , smolt type g and deployed
during time period t at location l, t ∈ T +, f ∈ Ft, g ∈ Gt and
l ∈ L.

T H
fglt The set of all time periods where a cohort is of a harvestable size,

with a deployment weight of f , smolt type g and deployed during
time period t at location l, t ∈ T +, f ∈ Ft, g ∈ Gt and l ∈ L.

T H+
fglt Identical to T H

fglt, with an additional extra dummy time period
for all situations when harvests can take place after the planning
horizon, t ∈ T +, f ∈ Ft, g ∈ Gt and l ∈ L.
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Symbol Description

T D
fglt The set of all time periods where a cohort can be deployed, with a

deployment weight of f , smolt type g and harvested during time
period t at location l, t ∈ T R

0 , f ∈ Ft, g ∈ Gt and l ∈ L.
T Λ−
t The set of the Λ time periods preceding t, t ∈ T R

0 .

T Λ−
R

t The set of all time periods where deployments can occur in time
period t or during the Λ− 1 time periods preceding t, t ∈ T R

0 .

T Γ−
t The set of time periods consisting of t and Γ − 1 preceding time

periods, t ∈ T .

T ΓINIT

l The set of all time periods where deployments must occur during
the first time periods of the planning horizon at location l, l ∈ L.

T E The set of all time periods taking place after the planning horizon,
where salmon can experience growth.

BG
lt The set of tuples containing (f ,g,t′), t′ ∈ T R

0 , f ∈ Ft′ and g ∈ Gt′ .
When deployment occurs, the tuples represent deployments that
could grow in time period t at location l in scenario s, t ∈ T E and
l ∈ L.

31



6.1.2 Parameters

Symbol Description

πs The probability of scenario s, s ∈ S.
Nf The number of smolt that make up one kilogram, with

deployment weight f , f ∈ F .

LLOC
l The lower bound of the number of smolt that can be deployed

at location l simultaneously, l ∈ L.
ULOC
l The upper bound of the number of smolt that can be deployed

at location l simultaneously, l ∈ L.
LTY PE
l The lower bound of the number of smolt that can be deployed

at location l simultaneously of one smolt type, l ∈ L.
UTY PE
l The upper bound of the number of smolt that can be deployed

at location l simultaneously of one smolt type, l ∈ L.
LH
l The lower bound of the biomass harvested during a time period

at location l, l ∈ L.
UH
l The upper bound of the biomass harvested during a time period

at location l, l ∈ L.
UCOM
t The upper bound of biomass harvested on a company-wide level

in time period t, t ∈ T .

MABl The maximum allowed biomass (MAB) at location l, l ∈ L.
MABCOM The maximum allowed biomass for the company as a whole.

βl0 A binary parameter that is set to the value of 1 if biomass is
employed at location l before the beginning of the planning
horizon, otherwise 0, l ∈ L.

q0fgl0 The initial amount of biomass employed in the first period of
the planning horizon at location l with deployment weight f
and smolt type g, l ∈ L, f ∈ F0 and g ∈ G0.
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Symbol Description

yfgl0 The initial amount of biomass employed in the first time period of
the planning horizon at location l with deployment weight f and
smolt type g, l ∈ L, f ∈ F0 and g ∈ G0.

Γ The maximum number of time periods that a location can be
empty before the risk of the production license being withdrawn
appears.

∆ The maximum number of time periods that a cohort can be
employed in the sea.

Λ The minimum number of time periods that a location must be
fallowed after harvest before deployment of new smolt can occur.

At′fglt The ratio between biomass employed in time periods t and t′,
with deployment weight f , smolt type g and deployed during time
period t′ at location l, t′ ∈ T R

′ , l ∈ L, f ∈ Ft′ , g ∈ Gt′ and t ∈ T +

∪ T E.

Rt′fglt The ratio between biomass employed in time periods t and t− 1,
with deployment weight f , smolt type g and deployed during time
period t′ at location l, t′ ∈ T R

0 , l ∈ L, f ∈ Ft′ , g ∈ Gt′ and t ∈ T +

∪ T E.

Ds
t′fglt The percentage of a salmon cohort that have experienced gender

maturation, in scenario s, t′ ∈ T R
0 , g ∈ G, f ∈ F , l ∈ L, t ∈ T ,

j ∈ J and s ∈ S.
PLow The relative value of salmon that have experienced gender

maturation.

PHigh The relative value of salmon that have not gone through gender
maturation.

α The cut-off point of the distribution, where the breakpoint of VaR
is set.
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6.1.3 Decision variables

Decision variables that have an s indexation are second stage variables, while
all other decision variables are first stage variables.

Symbol Description

δfglt Binary variable that is 1 if deployment occurs for a cohort, with
deployment weight f and smolt type g during time period t at
location l, otherwise 0. t ∈ T R, l ∈ L, f ∈ Ft and g ∈ Gt.

δlt Binary variable that is 1 if deployment occurs for a cohort in time
period t at location l, otherwise 0. l ∈ L and t ∈ T R.

yfglt Amount of biomass within a cohort deployed, with deployment
weight f and smolt type g during time period t at location l,
f ∈ Ft, g ∈ Gt, l ∈ L and t ∈ T R.

ωs
lt Binary variable that is 1 if harvesting takes place in time period t

at location l, in scenario s, otherwise 0. s ∈ S, t ∈ T and l ∈ L.
ωs
t′fglt Amount of biomass harvested from time period t′ to time period

t at location l, with deployment weight f and smolt weight g in
scenario s, s ∈ S, t′ ∈ T R

0 , f ∈ Ft′ , g ∈ Gt′ , l ∈ L and t ∈ T H+s

fglt′ .

βs
lt Binary variable that is 1 if biomass is employed in time period t

at location l in scenario s, otherwise 0. s ∈ S, t ∈ T and l ∈ L.
qst′fglt Amount of biomass that is employed in time period t that stems

from a cohort with deployment weight f and smolt weight g and
deployed during time period t′ at location l in scenario s, s ∈ S,
t ∈ T R

0 , f ∈ Ff ′ , g ∈ Gt′ , l ∈ L, t ∈ T Gs

fglt′ ∪ T H+s

fglt′ .

qslt The amount of biomass employed in time period t at location l in
scenario s, s ∈ S, t ∈ T and l ∈ L.

xs The return shortfall beneath the VaR in scenario s, xs = [0, z−Rs]
with Rs being the harvested value of scenario s, s ∈ S. It is only
relevant when the objective is to maximize the CVaR.

z Variable that is set to the value of VaR at the optimal solution.
It is only relevant when the objective is to maximize the CVaR.
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6.2 Objective function

In this thesis there are two distinct objectives we wish to maximize, depending
upon the risk preference of the decision maker. The decision maker can either
use the expected value of harvests or the CVaR of the value of harvests.
Through the use of a weighted sum, it is possible to include both objectives
in the objective function.

Equation (6.2.1) presents the objective function that maximizes the expected
value of harvests. For each scenario s ∈ S, the value of the harvests consists
of two parts. In the first part we find the value of the harvested salmon that
have experienced gender maturation while we find the value of non-gender
matured salmon in the second part. We find the value of gender matured
salmon by multiplying the total weight of a cohort with the product of the
relative price of gender matured salmon PLow and the percentage of a cohort
that have experienced gender maturationDs

t′fglt. Moreover, to find the value of
non-gender matured salmon we multiply the total weight of a cohort with the
product of the relative price of non-matured salmon PHigh and the percentage
of salmon that have not experienced gender maturation 1−Ds

t′fglt. Lastly, we
sum over the value of the harvests of a scenario multiplied with the probability
of the scenario occurring.

max
∑
s∈S

πs(
∑
t′∈T R

0

∑
f∈Ft′

∑
g∈Gt′

∑
l∈L

∑
t∈T Hs

fglt′

(PHigh(1−Ds
t′fglt)+PLow(D

s
t′fglt))ω

s
t′fglt)

(6.2.1)

We use Uryasev and Rockafellar (2001) as the basis for the linear representation
of the CVaR. When maximizing the CVaR the inclusion of constraint (6.2.2) is
necessary. The constraint determines the excess shortfalls xs for every scenario
s. The excess shortfall must be larger than the difference between the value
that approaches VaR at optimal solution and the expected value of harvests.
As a result of the aim being to maximize the CVaR, the excess shortfall xs,
will approach the right-hand side of the constraint.
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xs ≥ z −
∑
t′∈T R

0

∑
f∈Ft′

∑
g∈Gt′

∑
l∈L

∑
t∈T Hs

fglt′

(PHigh(1−Ds
t′fglt) + PLow(D

s
t′fglt))ω

s
t′fglt

s ∈ S (6.2.2)

The objective function is expressed in equation (6.2.3). It maximizes the
expected value of the value of harvests of the α % scenarios with the lowest
objective value.

max z − 1

1− α

∑
s∈S

πsxs (6.2.3)

For the remainder of the thesis, we will respectively denote the
problem where we maximize the expected value and the CVaR as the
ExpectedRevenueProblem and CV aRProbem.

6.3 Constraints

In industrial salmon farming all companies must comply with regulatory and
operational restrictions. This forms the basis for the constraints presented in
this section. In all constraints we make the assumption that growth, mortality,
gender maturation, deployments and harvests take place at the beginning of a
time period. Moreover, if a cohort is harvested during a time period, it does
not experience growth during this time period.

6.3.1 Smolt deployment constraints

To ensure that the size of an individual deployment of a cohort is within the
bounds of LTY PE

l and UTY PE
l constraint (6.3.1) is in place. The number of

smolt in a cohort is found by multiplying the amount of smolt that constitute
a kilogram, Nf , with the deployment weight of the smolt, yfglt. Furthermore,
the constraint requires δfglt to be 1, when yfglt is positive. The lower bound
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ensures that cohorts with few smolt are not deployed. In addition, the upper
bound is in place to ensure that yfglt takes the value of zero, whenever δfglt
does.

LTY PE
l δfglt ≤ Nfyfglt ≤ UTY PE

l δfglt t ∈ T , f ∈ Ft, g ∈ Gt, l ∈ L (6.3.1)

Constraint (6.3.2) enforces that the number of smolt deployed at location l in
time period t is less than ULOC

l and more than LLOC
l . ULOC

l is in place to
ensure that deployments are of a size below the capacity of a company, while
LLOC
l secures that the costs and resources of all deployments are justified.

LLOC
l δlt ≤

∑
f∈Ft

∑
g∈Gt

Nfyfglt ≤ ULOC
l δlt l ∈ L, t ∈ T (6.3.2)

The model is tightened by including constraint (6.3.3), due to δlt being assigned
to the value of 1, when a deployment of a cohort occurs in a specific time period.
The right-hand side of the constraint (6.3.3) represents the maximum number
of deployments that can occur at a location in a time period.

∑
f∈Ft

∑
g∈Gt

δfglt ≤ |Ft||Gt|δlt l ∈ L, t ∈ T R (6.3.3)

Constraint (6.3.4) is included in the model to ensure that cohorts are employed
throughout their growth phase. As a result, cohorts cannot be harvested before
they reach harvestable weights.

∑
f∈Ft

∑
g∈Gt

δfglt ≤ βs
lτ s ∈ S, l ∈ L, t ∈ T R, f ∈ Ft, g ∈ Gt, l ∈ L, τ ∈ T G

fglt

(6.3.4)

6.3.2 Fallowing constraints

Constraint (6.3.5) is in place to make sure that the fallowing period between
harvest and deployment has a duration of at least Λ time periods. Whenever
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δlt is set to the value of 1, βs
lt must take the value of zero for the Λ preceding

time periods.

Λδlt +
∑

τ∈T Λ−
t

βs
lτ ≤ Λ l ∈ L, t ∈ T R \ (1, ..,Λ) (6.3.5)

6.3.3 Harvesting constraints

There is a need for restrictions regarding harvests due to limited capacities.
The lower bound of the size of a harvest, LH

l , is in place to avoid non-profitable
decisions.

We must sum over all cohorts that can be in their harvest phase to find the
biomass of all harvested salmon at a location. In addition, constraint (6.3.6)
ensures that ωs

lt is solely set to the value of 1 if harvesting takes place, given
that the value of LH

l is greater than zero.

LH
l ω

s
lt ≤

∑
f∈F ′

t

∑
g∈G′

t

ωs
t′fglt ≤ UH

l ωs
lt s ∈ S, l ∈ L, t ∈ T (6.3.6)

By including constraint (6.3.7) we ensure that the total harvest for the
company in a time period is less than UCOM

t . This restriction must be included,
to ensure that the company does not break the company-wide MAB.

∑
t′∈T D

fglt

∑
f∈F

∑
g∈G

∑
l∈L

ωs
t′fglt ≤ UCOM

t s ∈ S, t ∈ T (6.3.7)

6.3.4 Activity constraints

Constraint (6.3.8) is in place to ensure that the company keeps its production
licenses. The constraint enforces that a location has biomass present for
Γ consecutive time periods. This is ensured by giving at least one of Γ
consecutive time periods, βs

lt, the value of 1.
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∑
τ∈T Γ−

t

βs
lτ ≥ 1 s ∈ S, l ∈ L, t ∈ T \ (1, ..,Γ− 1) (6.3.8)

6.3.5 Biomass development and MAB constraints

An employed cohort at a location will either experience growth or be harvested
in a time period. The biomass of a cohort is qst′fglt when the cohort experiences
growth. The value of qst′fglt is the product of the growth ratio, At′fglt, and the
initially deployed biomass, yfglt. This equality is enforced in constraint (6.3.9).
It applies to all time periods where the cohort can experience growth as well as
the first time period where the cohort can be harvested. The latter is included
to account for the growth the cohort experiences in the final time period of
growth. A detailed introduction of the parameters At′fglt and Rt′fgi(t+1) with
fewer subscripts is presented in Section 5.1.

qst′fglt = At′fglty
s
fglt′ s ∈ S, t′ ∈ T R

0 , g ∈ Gt′

s ∈ S, t′ ∈ T R
0 , g ∈ Gt′ , s ∈ S, l ∈ L, t ∈ (T G

fglt′ ∪minT H
fglt′) (6.3.9)

By including constraint (6.3.10) in the model, we ensure that the biomass
employed in a time period equals the product of the monthly growth ratio,
Rt′fgi(t+1), and the difference between the amount of harvested biomass in
the previous period, ωs

t′fglt, and the biomass employed in the previous period,

qst′fglt. We must use t ∈ TH+s

fglt′ , since cohorts can experience growth in time
periods following the planning horizon.

qst′fglt = Rt′fglt(q
s
t′fgi(t−1) − ωs

t′fgi(t−1))

s ∈ S, t′ ∈ T R
0 , g ∈ Gt′ , l ∈ L, t ∈ (T H+s

fglt′ ∪minT Hs

fglt′) (6.3.10)

Constraint (6.3.11) ensures that all deployed cohorts are harvested at a later
point in time. This is achieved by setting the biomass of the harvested cohorts
in the final time period at a location equal to the locations’ remaining biomass.
The final time period is an extra dummy time period and will therefore not
be included in the objective function.
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qs
t′fgi[maxT H+

fglt′ ]
− ωs

t′fgi[maxT H+
fglt′ ]

= 0

s ∈ S, t′ ∈ T R
0 , f ∈ Ft′ , g ∈ Gt′ , l ∈ L (6.3.11)

MAB regulations at locations form the basis of constraint (6.3.12). Constraints
(6.3.12) and (6.3.4) enforce that βs

lt may be set only to the value of 1, when
there is biomass deployed at location l in time period t.

qslt <= MABlβ
s
lt s ∈ S, l ∈ L, t ∈ T (6.3.12)

The decision variable qslt is used to keep track of the amount of biomass at
location l in time period t. Constraint (6.3.13) ensures this by iterating over
the time period t and the ∆− 1 preceding time periods.

qslt =
∑

t′∈T ∆−
R

∑
f∈Ft

∑
g∈Gt′

qst′fglt s ∈ S, l ∈ L, t ∈ T (6.3.13)

Finally, to ensure that the employed biomass is less than the company-wide
MAB, MABCOMP , constraint (6.3.14) is included.

∑
l∈L

qslt ≤ MABCOMP s ∈ S, t ∈ T (6.3.14)

6.3.6 Initial Conditions Constraints

We have an initial dummy time period due to the fact that salmon can be
deployed before the beginning of the planning horizon. Cohorts that have
been deployed before the planning horizon will first experience mortality and
growth in the beginning of the second time period. We must also ensure that
a cohort cannot be employed for more than ∆ time periods. These cohorts are
assigned to the same weight class f , since it does effect further growth.

Constraint (6.3.15) must be included in the model to ensure that fallowing
takes place in at least one of the Γ first time periods of the planning horizon.
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βs
lt ≤ 0 s ∈ S, l ∈ L, t ∈ T ΓINIT

l (6.3.15)

Constraint (6.3.16) makes sure that the activity requirements are satisfied at
the start of the planning horizon. The set of T ΓINIT

l contains all time periods
for location l where there must be biomass present in at least one time period,
to avoid the loss of a production license.

∑
t∈T ΓINIT

l

βs
lτ ≥ 1 s ∈ S, l ∈ L (6.3.16)

6.3.7 End of horizon constraints

Since most salmon farming companies operate for an unknown amount of time
it is necessary to facilitate production after the planning horizon. Therefore,
constraint (6.3.17) enforces that the company-wide biomass employed at the
end of the planning horizon is greater than or equal to the amount of biomass
employed at the beginning of the first time period of the planning horizon.
Without this constraint present, the model would suggest that the company
harvests all biomass before the end of the planning horizon.

In many cases this will be a fitting approach for modeling the end of the
horizon. It allows the farming company to keep salmon at the locations it
identifies as preferable. Furthermore, it functions well when the initial biomass
lies close to the average amount of biomass employed.

∑
l∈L

qsl|T | ≥
∑
f∈F

∑
g∈G

∑
l∈L

yfgl0 s ∈ S (6.3.17)

Constraints (6.3.18) and (6.3.19) ensure that the level of biomass is respectively
below locational and the company-wide MAB in the time periods following the
planning horizon. This is necessary since the MAB is present and salmon keep
growing after the planning horizon.

∑
(f,g,t′)∈BG

lt

At′fglty
s
fglt′ ≤ MABl s ∈ S, l ∈ L, t ∈ T E (6.3.18)
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∑
l∈L

∑
(f,g,t′)∈BG

lt

At′fglty
s
fglt′ ≤ MABCOMP s ∈ S, t ∈ T E (6.3.19)

6.3.8 Requirements of decision variables

δfglt ∈ {0, 1} (6.3.20)

δlt ∈ {0, 1} (6.3.21)

βlt ∈ {0, 1} (6.3.22)

ωs
lt ∈ {0, 1} (6.3.23)

ωs
t′fglt ≥ 0 (6.3.24)

qslt ≥ 0 (6.3.25)

qst′fglt ≥ 0 (6.3.26)

xs ≥ 0 (6.3.27)

z free (6.3.28)
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Chapter 7

Solution method

In this chapter we present the solution method used to solve the mathematical
model presented in Chapter 6. We begin by studying structures that appear in
the problem. Then, we introduce the methods of Dantzig-Wolfe decomposition
and column generation which we apply to the problem structure. Thereafter,
we present the Dantzig-Wolfe reformulation of the model. Lastly, we explain
branch and price as the solution method, to ensure that integrality conditions
are satisfied.

7.1 Problem structure

In this section we identify two different structures in the problem. Then,
we discuss how the structures can be exploited. Lastly, we select one of the
structures to exploit for the remainder of the thesis.

7.1.1 Two-stage structure

The uncertainty in the model gives rise to a two-stage structure in the problem.
The structure can be decomposed to a master problem representing the first-
stage decisions and |S| problems representing the second stage decisions of
individual scenarios. This decomposition is illustrated in Figure 7.1.
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This problem structure can be exploited by using the L-shaped algorithm.
A complete review of the algorithm is presented in Birge and Louveaux
(2011). The main idea of this method is to approximate the recourse function
of the objective function in the master problem. Furthermore, for every
iteration of the algorithm, the solutions retrieved from the subproblems will
be used to generate cuts that are added to the master problem as constraints.
Moreover, two types of cuts can be generated in the subproblems, depending
upon whether the subproblem is feasible. If the solution of the subproblem
is feasible, optimality cuts are generated. However, if the solution of the
subproblem is infeasible, feasibility cuts are generated. The addition of cuts
in the master problem improves the approximation of the recourse function.
By using the L-shaped algorithm, the aim is to solve larger problems and
reduce the computational running time of the problem.

Figure 7.1: The two-stage structure of the problem.

44



7.1.2 Production system

Most of the constraints in the model can be isolated per location, except for
the company-wide regulatory restrictions. The constraints that cannot be
isolated per location make up the set of connecting constraints. By relaxing
the constraints that link locations together, we get a production system
structure. The structure is shown in Figure 7.2. This makes the problem
separable per location and creates |N | independent subproblems, with every
non-connecting constraint linked to one location, and one master problem
containing the connecting constraints. Each subproblem then represents a
two-stage production planning problem at a single location. The structure
can be exploited by using a Dantzig-Wolfe decomposition method, which in
turn can decrease the running time of the problem (Lundgren et al., 2010).

Figure 7.2: The production system structure of the problem.

For the remainder of the thesis, we choose to exploit the production system
structure, since the interpretation of the subproblems and master problem
is clear and practical. Moreover, Føsund and Strandkleiv (2021) reported
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promising results when exploiting the production system structure in a
deterministic land-based salmon production planning problem.

7.2 Dantzig-Wolfe decomposition

Decomposition is a method of solving a problem by dividing it into smaller
problems and separately solving them (Boyd et al., 2003). By solving several
smaller problems instead of one large problem, the complexity and running
time can decrease. To exploit the structure of the problem, we will use Dantzig-
Wolfe decomposition. It is a decomposition method closely tied to column
generation, a tool used to solve large problems (Lundgren et al., 2010). The
presentation of Dantzig-Wolfe decomposition is taken from Williams (2013).

We begin with the linear problem (P), presented in equations (7.2.1)–(7.2.4).
(P) has the production system structure presented in Section 7.1.2, with
constraint (7.2.2) and the set of constraints (7.2.3), respectively making up
the connecting and non-connecting constraints of the problem. Furthermore,
the set of the non-connecting constraints (7.2.3) can be isolated into N sets of
separate constraints.

(P ) max
N∑
n

cTxn (7.2.1)

s.t.
N∑
n

Axn ≤ b (7.2.2)

D1x1 ≤ e1
. . . (7.2.3)

DNxN ≤ eN

xn ≥ 0 (7.2.4)
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By isolating the set of constraints (7.2.3) we can divide (P) into N
subproblems, expressed in equations (7.2.5)–(7.2.7). The connecting constraint
(7.2.2) is not a part of the subproblems. Each subproblem n is subject to a set
of separate constraints, Dnxn ≤ en. The optimal solution of the subproblem is
a vertex in the solution space of the subproblem. Moreover, all solutions of a
subproblem can be written as a linear combination of vertices of the solution
space. A solution of a subproblem and its objective value is known as a column.

(SPn) max cnxn n = 1...N (7.2.5)

s.t. Dnxn ≤ en n = 1...N (7.2.6)

xn ≥ 0 n = 1...N (7.2.7)

It is possible to write any solution of (P) as a convex linear combination of
vertices of the subproblems. This is expressed in equation (7.2.8), where x(kn)

is a vertex connected to column k and subproblem n. Moreover, λkn is the
weighting variable associated with the vertex x(kn). The weighting variables
must be non-negative and the sum of the weighting variables connected to a
subproblem must be 1.

xn =
K∑
k=1

λknx
(kn),

K∑
k=1

λkn = 1 ∧ λkn ≥ 0, k = 1, ..., K, n = 1, ..., N

(7.2.8)

We can use equation (7.2.8) to substitute the decision variables x in (P).
This reformulates (P) into the master problem (MP), expressed in equations
(7.2.9)–(7.2.12). In the (MP) the aim is to find the optimal mixture of vertices
of each subproblem. However, there is no guarantee that the combination of
the optimal columns of the different subproblems is feasible for (P). The reason
for this is that the combination of the optimal columns might not comply with
the connecting constraint.

The connecting constraints (7.2.2) of (P) appear in the (MP) as constraint
(7.2.10). Furthermore, the non-connecting constraints (7.2.3) are expressed
as a convex combination of vertices of each subproblem and do therefore not
appear as a constraint in the (MP). Moreover, v is a dual value, linked to
constraint (7.2.10). The reformulation from (P) to (MP) reduces the number
of constraints and increases the number of decision variables.
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(MP ) max
K∑
k=1

N∑
n=1

(cTx(kn))λkn (7.2.9)

s.t.
K∑
k=1

N∑
n=1

(Ax(kn))λkn ≤ b |v (7.2.10)

K∑
k=1

λkn = 1 n = 1, ..., N (7.2.11)

λkn ≥ 0 k = 1, ..., K n = 1, ..., N (7.2.12)

Before solving the (MP), it is necessary to have all possible columns from
the subproblems. However, finding all columns can be as difficult as solving
(P) (Tone and Fushimi, 1995). We resort to column generation to avoid this
problem.

Column generation utilizes that most of the decision variables in large problems
are non-basic, taking the value of zero, in the optimal solution (Lübbecke and
Desrosiers, 2005). It exploits the idea that only a selection of the columns will
ever enter the optimal solution. Therefore, there is no need to find all columns.
The presentation of column generation is retrieved from Williams (2013).

In column generation we begin with a restricted master problem (RMP). The
(RMP) has the same structure as the (MP), but it does not need to contain
all columns. New columns, that improve the objective value of the (RMP),
are added until the optimal solution of the (MP) is found.

The generation of new columns takes place in the subproblems. To ensure
that new columns are generated, the objective function of the subproblem is
updated to the reduced cost. The reduced cost incorporates the pricing of
the shared resource, which is the connecting constraint of the (RMP) (7.2.10).
This adjusts the amount new columns use of the shared resource. The updated
objective function is presented in equation (7.2.13). A combination of columns
from all subproblems make up a solution of the (RMP).

max (cTn − vTA)xn (7.2.13)

In column generation information is exchanged between the subproblems and
the (RMP), illustrated in Figure 7.3, to find the optimal solution of the
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problem. The dual value v of the (RMP) is sent to the subproblems and
becomes a part of the objective function. This ensures that new columns are
generated that contribute to increasing the objective. Moreover, the values of
the decision variables in the subproblems are sent and used as parameters in
the (RMP). The exchange of dual values and columns between the (RMP) and
subproblems continue until all newly generated columns in the subproblems
already exist in the (RMP). Then, the optimal solution of the (RMP) is the
same as the optimal solution of the (MP).

Figure 7.3: Information exchanged between the (RMP) and the subproblems.

If the original problem (P) is a mixed-integer or integer problem additional
considerations are necessary. Binary and integer restrictions do not generate
dual values. Since dual values are an essential part of the column generation
algorithm, we remove binary and integer restrictions in the (RMP). Hence,
the column generation algorithm solves the linear relaxation of the problem.
Therefore, the optimal solution obtained from the column generation algorithm
is not guaranteed to comply with the binary or integer restrictions. In such
cases an additional algorithm, like branch and price, is required to ensure that
the solution complies with the binary and integer restrictions.
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7.3 Dantzig-Wolfe reformulation

In this section we use Dantzig-Wolfe decomposition on the mathematical
problem presented in Chapter 6. We begin by presenting the subproblems
of the ExpectedRevenueProblem, which generate the production plan for a
location, by using dual information retrieved from the (RMP). Thereafter, we
introduce the (RMP) of the ExpectedRevenueProblem, which combines the
production plans from the subproblems into a company-wide production plan,
while complying with the connecting constraints and maximizing the value of
harvests. Lastly, we discuss how reformulating the CV aRProblem demands
additional considerations.

7.3.1 Subproblems

Each subproblem corresponds to the two-stage production planning problem
at a single location l. Moreover, for every iteration of the column generation
algorithm each subproblem generates a column that corresponds to the
production plan of a location.

By relaxing the constraints that connect locations together, we can isolate
the subproblems for each location. We let uH

ts , uM
ts , uF

s and uE
ts be dual

values connected to the company-wide regulatory constraints (6.3.7), (6.3.14),
(6.3.17) and (6.3.18) respectively. The objective of the subproblems is to
maximize the reduced cost, shown in equation (7.3.1).

max
∑
s∈S

πs(
∑

t′∈T R0

∑
f∈Ft′

∑
g∈Gt′

∑
t∈T Hs

fglt′

(PHigh(1−Ds
t′fglt) + PLow(D

s
t′fglt))ω

s
t′fglt)

−
∑
s∈S

∑
t∈T

(
∑

t′∈T D
fglt

∑
f∈F

∑
g∈G

ωs
t′fglt)u

H
ts −

∑
s∈S

∑
t∈T

(qslt)u
M
ts −

+
∑
s∈S

(qsl|T |)u
F
s −

∑
s∈S

∑
t∈T Es

(
∑

(f,g,t′)∈BGs
lt

As
t′fglty

s
fglt′)u

E
ts (7.3.1)

The constraints of the subproblems (7.3.2)–(7.3.23) are nearly identical to the
ones used in the original problem formulation in Chapter 6, with the exception
being that the scope decreases from the set of locations to a single location.
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Deployment constraints

LTY PE
l δfglt ≤f yfglt ≤ UTY PE

l δfglt t ∈ T , f ∈ Ft, g ∈ Gt (7.3.2)

LL
l δlt ≤

∑
f∈Ft

∑
g∈Gt

Nfyfglt ≤ UL
l δlt t ∈ T (7.3.3)

∑
f∈Ft

∑
g∈Gt

δfglt ≤ |Ft||Gt|δlt t ∈ T R (7.3.4)

∑
f∈Ft

∑
g∈Gt

δfglt ≤ βs
lτ s ∈ S, l ∈ L, t ∈ T R, f ∈ Ft, g ∈ Gt, τ ∈ T G

fglt (7.3.5)

Harvesting and fallowing constraints

Λδlt +
∑

τ∈T Λ−
t

βs
lτ ≤ Λ t ∈ T R \ (1, ..,Λ) (7.3.6)

LH
l ω

s
lt ≤

∑
f∈F ′

t

∑
g∈G′

t

ωs
t′fglt ≤ UH

l ωs
lt s ∈ S, t ∈ T (7.3.7)

Activity constraints

∑
τ∈T Γ−

t

βs
lτ ≥ 1 s ∈ S, t ∈ T \ (1, ..,Γ− 1) (7.3.8)

Biomass development and MAB constraints

qst′fglt = At′fglt

s ∈ S, t′ ∈ T R
0, g ∈ Gt′ , t ∈ (T G

fglt′ ∪minT H
fglt′) (7.3.9)

qst′fglt = Rt′fglt(q
s
t′fgi(t−1) − ωs

t′fgi(t−1))

s ∈ S, t′ ∈ T R
0 , g ∈ Gt′ , t ∈ (T H+s

fglt′ ∪minT Hs

fglt′) (7.3.10)
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qs
t′fgi[maxT H+

fglt′ ]
− ωs

t′fgi[maxT H+
fglt′ ]

= 0

s ∈ S, t′ ∈ T R
0, f ∈ Ft′ , g ∈ Gt′ (7.3.11)

qslt ≤ MABlβ
s
lt s ∈ S, t ∈ T (7.3.12)

qslt =
∑

t′∈T ∆−
R

∑
f∈Ft

∑
g∈Gt′

qst′fglt s ∈ S, t ∈ T (7.3.13)

Initial conditions constraints

βs
lt ≤ 0 s ∈ S, t ∈ T ΛINIT

l (7.3.14)∑
t∈T ΓINIT

l

βs
lτ ≥ 1 s ∈ S (7.3.15)

End of horizon constraints

∑
(f,g,t′)∈BG

lt

At′fglty
s
fglt′ ≤ MABl s ∈ S, t ∈ T E (7.3.16)

Binary and non negativity constraints

δfglt ∈ {0, 1} (7.3.17)

δlt ∈ {0, 1} (7.3.18)

βlt ∈ {0, 1} (7.3.19)

ωs
lt ∈ {0, 1} (7.3.20)

ωs
t′fglt ≥ 0 (7.3.21)

qslt ≥ 0 (7.3.22)

qst′fglt ≥ 0 (7.3.23)
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7.3.2 Restricted master problem

The restricted master problem corresponds to the company-wide production
planning problem. It generates a company-wide production plan.

Each location l has a set of available columnsKl. Let x
(kl) be the column found

in the subproblem representing location l during iteration k of the column
generation algorithm. In cases where a subproblem generates a new column, we
extend the (RMP) with x(kl). The column consists of the following parameters,
[δkfglt, δ

k
lt, y

k
fglt, β

sk
lt , ω

sk
lt , ω

sk
t′fglt, q

sk
lt , q

sk
t′fglt] and its objective value. We combine

columns from all subproblems in the (RMP). The decision variable in the
(RMP) is the weighing variable, λlk, connected to location l and iteration k of
the column generation algorithm.

The objective function of the (RMP) for the ExpectedRevenueProblem is
presented in equation (7.3.24).

max
∑
s∈S

πs(
∑

t′∈T R0

∑
f∈Ft′

∑
g∈Gt′

∑
l∈L

∑
t∈T Hs

fglt′

∑
k∈Kl

λlk(PHigh(1−Ds
t′fglt) +

PLow(D
s
t′fglt))ω

sk
t′fglt) (7.3.24)

The constraints from the original formulation that we cannot isolate per
location are included in the (RMP). These are the company-wide harvesting
limit, MAB during the planning horizon, minimum final biomass and MAB
after the planning horizon, respectively expressed in constraints (6.3.7),
(6.3.14), (6.3.17) and (6.3.19). They are reformulated as constraints (7.3.25)–
(7.3.28) and are included in the (RMP). Furthermore, the connecting
constraints are respectively linked to the dual values uH

ts , u
M
ts , u

F
s and uE

ts.∑
f∈F

∑
g∈G

∑
l∈L

∑
t∈T D

fglt

∑
k∈Kl

ωsk
t′fgltλlk ≤ UCOM

t s ∈ S, t ∈ T | uH
ts (7.3.25)

∑
l∈L

∑
k∈Kl

qskltλlk ≤ MABCOMP s ∈ S, t ∈ T | uM
ts (7.3.26)

∑
l∈L

∑
k∈Kl

λlkq
s
l|T | ≥

∑
f∈F

∑
g∈G

∑
l∈L

yfgl0 s ∈ S | uF
s (7.3.27)
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∑
l∈L

∑
(f,g,t′)∈BGs

lt

∑
k∈Kl

At′fglty
k
fglt′λlk ≤ MABCOMP s ∈ S, t ∈ T Es | uE

ts

(7.3.28)

Constraint (7.3.29) is in place to ensure that there is a convex combination
of all of the weighting variables. In constraint (7.3.30) we require that the
decision variables λlk are non-negative.

∑
l∈Kl

λlk = 1 l ∈ L (7.3.29)

λlk ≥ 0, l ∈ L, k ∈ Kl (7.3.30)

Since the production plan for a location is represented as a column, the convex
combination of the decision variables belonging to different columns equal the
original decision variables, expressed in constraints (7.3.31)–(7.3.38).∑

k∈Kkl

λlkδ
k
fglt = δfglt l ∈ L, t ∈ T R, g ∈ Gt, f ∈ Ft (7.3.31)

∑
k∈Kkl

λlkδ
k
lt = δlt l ∈ L, t ∈ T R (7.3.32)

∑
k∈Kkl

λlkω
sk
lt = ωs

lt l ∈ L, t ∈ T R (7.3.33)

∑
k∈Kkl

λlkβ
sk
lt = βs

lt l ∈ L, t ∈ T R (7.3.34)

∑
k∈Kkl

λlky
k
fglt = yfglt l ∈ L, s ∈ S, l ∈ L, t ∈ T R (7.3.35)

∑
k∈Kkl

λlkω
sk
t′fglt = ωs

t′fglt l ∈ L, s ∈ S, l ∈ L, t ∈ T R (7.3.36)

∑
k∈Kkl

λlkq
sk
t′fglt = qst′fglt s ∈ S, t ∈ T R

0, f ∈ Ff ′ , g ∈ Gt′ , l ∈ L,

t ∈ T Gs

fglt′ ∪ T H+s

fglt′ (7.3.37)
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∑
k∈Kkl

λlkq
sk
lt = qslt s ∈ S, t ∈ T , l ∈ L (7.3.38)

7.3.3 Decomposition with CVaR objective

In this section we present the Dantzig-Wolfe reformulation of the
CV aRProblem. We introduce and discuss the (RMP) and subproblems.

Restricted master problem

We use the standard CVaR formulation according to Rockafellar and Uryasev
(2000) and Kaut and Wallace (2007) as a starting point when formulating the
(RMP) of the CV aRProblem. The reason for this is that the formulation
is the same as the (RMP) for the ExpectedRevenueProblem, presented in
Section 7.3.2, with the inclusion of two additional constraints.

The (RMP) of the ExpectedRevenueProblem with the additional constraints
is shown in equations (7.3.39)–(7.3.41). Constraints (7.3.25)–(7.3.30) are also
a part of the (RMP). The CVaR constraint (6.2.2) is included in the (RMP)
as constraint (7.3.41) since it links locations together. The dual value uC

s is
linked with this constraint. Constraint (7.3.40) ensures that the CVaR is above
the minimal allowable CVaR, θ. By including this constraint, we can use the
expected value, instead of the CVaR, as the objective function of the (RMP).

max
∑
s∈S

πs(
∑

t′∈T R
0

∑
f∈Ft′

∑
g∈Gt′

∑
l∈L

∑
t∈T Hs

fglt′

∑
k∈Kl

(PHigh(1−Ds
t′fglt)

+ PLow(D
s
t′fglt))ω

sk
t′fgltλlk) (7.3.39)

s.t. z − 1

1− α

∑
s∈S

πsxs ≥ θ (7.3.40)

xs ≥ z−
∑

t′∈T R
0

∑
f∈Ft′

∑
g∈Gt′

∑
l∈L

∑
t∈T Hs

fglt′

∑
k∈Kl

(PHigh(1−Ds
t′fglt)+PLow(D

s
t′fglt))ω

s
t′fgltλlk

|uC
s s ∈ S (7.3.41)
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The drawback of including constraint (7.3.40) is that we must assign a value
to θ. On one hand, setting it too high, will make the problem infeasible. On
the other hand, setting it too low, will make the problem not incorporate the
element of risk sufficiently. To deal with the issues of assigning a value to θ, we
change the objective function of the (RMP) to the left-hand side of constraint
(7.3.40). Hence, we maximize the CVaR in the (RMP). This reformulates the
ExpectedRevenueProblem to the CV aRProblem. As a result, we can remove
constraint (7.3.40) from the (RMP). The final (RMP) of the CV aRProblem
is then shown in equations (7.3.42)–(7.3.43) and (7.3.25)–(7.3.30).

max z − 1

1− α

∑
s∈S

πsxs (7.3.42)

xs ≥ z−
∑

t′∈T R
0

∑
f∈Ft′

∑
g∈Gt′

∑
l∈L

∑
t∈T Hs

fglt′

∑
k∈Kl

(PHigh(1−Ds
t′fglt)+PLow(D

s
t′fglt))ω

sk
t′fgltλlk

|uC
s s ∈ S (7.3.43)

Subproblems

For the subproblems of the CV aRProblem we use the subproblems from the
ExpectedRevenueProblem, presented in Section 7.3.1, as the starting point.

The objective function of the subproblem is presented in equation (7.3.44).
Furthermore, the objective function of the subproblems of the CV aRProblem
differs only from the subproblems of the ExpectedRevenueProblem, with
the inclusion of the additional dual variable uC

s , linked with the the extra
connecting constraint. The constraints of the subproblems (7.3.2)–(7.3.23) are
the same as in the subproblems of the ExpectedRevenueProblem.

max
∑
s∈S

πs(
∑

t′∈TR0

∑
f∈Ft′

∑
g∈Gt′

∑
t∈THs

fglt′

(PHigh(1−Ds
t′fglt) + PLow(D

s
t′fglt))ω

s
t′fglt)

−
∑
s∈S

∑
t∈T

(
∑

t′∈T D
fglt

∑
f∈F

∑
g∈G

ωs
t′fglt)u

H
ts −

∑
s∈S

∑
t∈T

(qslt)u
M
ts −

+
∑
s∈S

(qsl|T |)u
F
s −

∑
s∈S

∑
t∈TEs

(
∑

(f,g,t′)∈BGs
lt

As
t′fglty

s
fglt′)u

E
ts
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+
∑
s∈S

(
∑

t′∈T R
0

∑
f∈Ft′

∑
g∈Gt′

∑
t∈T Hs

fglt′

∑
j∈J

PjD
s
t′fgitjω

s
t′fglt)u

C
s − v∗l (7.3.44)

7.4 Branch and price algorithm

In this section we describe the branch and price algorithm. Next, we explain
algorithmic configurations, like the branching and search strategy. Lastly, we
present algorithmic extensions to reduce the running time of the algorithm.

7.4.1 Overview of the algorithm

The branch and price algorithm can be used as the solution method to solve
a Dantzig-Wolfe decomposed mixed-integer problem as it ensures that the
integrality conditions are satisfied. A detailed description of the branch and
price algorithm can be found in Barnhart et al. (1970).

The branch and price algorithm builds upon the branch and bound algorithm.
The column generation algorithm, expressed in Algorithm 1, is applied to
every node in the branch and bound tree. The root node is the first node
that is solved using the column generation algorithm. Moreover, after having
performed the column generation algorithm on a node, no more profitable
columns can be found and the solution to the (MP) is found. However, since
the column generation algorithm finds the linear relaxation of the problem,
there is no guarantee that the solution is integer feasible. Hence, branching
occurs on the original decision variables and creates two new nodes. This
will continue, until a feasible solution from the column generation algorithm
is generated from a node that fulfills the stopping criterion of the algorithm.
Throughout the algorithm, the incumbent IP keeps track of the objective
value of the best feasible solution. A visual overview of the branch and price
algorithm is shown in Figure 7.4.
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Algorithm 1 Pseudocode for the implementation of column generation
algorithm. Retrieved from Føsund and Strandkleiv (2021).

Set up initial columns;
Optimize the (RMP) and extract dual values from the (RMP);
Optimize subproblems based on dual values from RMP;
while Subproblems generate new columns do

Add new solutions as columns to (RMP) and re-optimize the (RMP);
Extract new dual values from (RMP)
and re-optimize subproblems with new values;

end while
Results λkl variables are the optimal weighting of columns.

Figure 7.4: Overview of the branch and price algorithm.
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7.4.2 Algorithmic configurations

Morrison et al. (2016) state that the performance of the branch and price
algorithm depends greatly on which strategies and configurations are in place.
In this section we present the algorithmic configurations used for the problem.
We explain how we generate the initial columns in the root node and the
stopping criterion for both the column generation and branch and price
algorithm. Lastly, we describe the search and branching strategy.

Initial columns generation

We generate two sets of initial columns for the root node of the branch and
price tree. In the first column the value of all variables is set to zero, while the
second column contains a feasible set of solutions retrieved from the initial
column matheuristic presented in Section 7.4.3. By combining a column
containing a feasible solution and a column where all variables are set to zero,
the objective value of the (RMP) increases quickly in the beginning of the
column generation algorithm.

Stopping criterion of branch and price algorithm

The algorithm stops running when the total running time of the algorithm has
exceeded two days or when the optimality gap, defined in equation (7.4.1), is
below 5 %. Such an optimality gap is acceptable due to the complexity and
size of the problem. The upper bound is the highest upper bound of a leaf
node in the branch and price tree. Furthermore, the lower bound is the best
integer feasible solution.

Optimality Gap =
Upper Bound− Lower Bound

Lower Bound
(7.4.1)

Stopping criterion of column generation algorithm

In Section 7.2 we mention that the column generation algorithm is complete
when all newly generated columns of an iteration already exist. When using
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this stopping criterion the runtime of the column generation algorithm can be
very high. The reason for this is that both binary and continuous variables
are a part of the subproblems. This can lead to the subproblems generating
several columns with the same values assigned to the binary variables and
almost identical values assigned to the continuous variables. As a result, the
objective value of the (RMP) can increase minimally with the inclusion of new
columns.

It is of great interest to reduce the running time of the column generation
algorithm, since it will increase the number of nodes the branch and price
algorithm can solve. We replace the stopping criterion to reduce the running
time of the column generation algorithm. We stop the algorithm when all
newly generated columns are less than 0.1 % different from existing columns.
This will prevent columns from having the same value assigned to binary
variables and very similar values assigned to the continuous variables.

When using the new stopping criterion there is no guarantee that the optimal
solution of the (RMP) corresponds to the optimal solution of the (MP). This
is not a problem as long as the solution found in the (RMP) is better than
optimal solution of the original mixed-integer problem (P). Therefore, we only
consider the new stopping criterion valid as long as the best-feasible solution
is worse than the solution of the (RMP)

Even though the optimal objective value of the (RMP) can be lower than the
optimal objective value of the (MP), we consider using the stopping criterion
as beneficial as it drastically reduces the running time of the column generation
algorithm.

Search strategy

Morrison et al. (2016) highlights the benefits of picking the right search
strategy in the branch and price algorithm as it may reduce computation time
and memory requirements. Savelsbergh (1997) argues that a combination of
a best first search and primal heuristic is effective. The reason for this being
that the branch and price tree focuses on finding the best dual bound. It
generates many different columns for the primal heuristic, by exploring the
branch and price tree in a scattered manner. Therefore, we use the best first
search strategy in the implementation. The node that has the highest objective
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value is chosen from the queue as the next node. To find an estimate of the
objective value for unexplored nodes, we use the parent nodes objective value.

Branching strategy

Branching leads to the creation of two new nodes, with the binary variable
being set to zero or one. Moreover, branching is performed when the final
solution of the (RMP) does not meet the binary requirements. We do not
branch on the weighting variables since they are continuous. Instead, we
branch on the binary variables of the original problem.

We give the different sets of binary variables branching priorities. This
determines which set of binary variables we branch on first. Within a set
of binary variables, we always branch upon the variable with the fractional
value closest to 0.5.

The binary variables in the subproblem are deployment at a location δlt,
deployment of a cohort δfglt, harvesting ωs

lt and biomass present βs
lt. We firstly

branch upon δlt and δfglt. This is due to both sets of variables being first stage
variables. We expect that first stage variables add a much stricter guidance
than second stage variables and will therefore lead to the optimal solution
faster. The binary variable δlt is given the highest branching priority followed
by δfglt. This is due to the value of δlt being more general than δfglt. When δlt
is set to 0, it forces all δfglt at location l during time period t to 0. Moreover,
ωs
lt is given a higher branching priority than βs

lt, since harvest implies that the
location has biomass present in a several preceding time periods.

7.4.3 Extensions to the branch and price algorithm

We have implemented algorithmic extensions to the branch and price
algorithm, to reduce the amount of time needed to find a solution within the
optimality gap. Firstly, we parallelize the process of solving the subproblems
to optimality. Next, we generate additional columns in each subproblem every
iteration. Lastly, we include two matheuristics to improve the algorithm.
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Parallelization of subproblems

Since there are |L| subproblems, it is possible to exploit the structure of the
problem, by solving the subproblems in parallel. For every iteration, we supply
each subproblem with its relevant dual information from the (RMP). Then,
we solve the subproblems in parallel. After all subproblems have been solved,
the value given to the decision variables is sent as parameters to the (RMP).

Generating multiple columns

For every iteration of the column generation algorithm, presented in Algorithm
1, up to five columns from each subproblem are sent to the (RMP). The five
best feasible solutions are collected, when an individual subproblem is solved.
Furthermore, if the columns do not already exist in the (RMP), they are
added as columns. We include this extension, since there is a chance that
the optimal column of the subproblem is not a part of optimal solution of the
(RMP). However, non-optimal solutions can be. Therefore, by adding multiple
columns during the same iteration, the chance of a column being a part of the
optimal solution of the (RMP) increases.

Initial column matheuristic

Before running the column generation algorithm, we generate a feasible
solution for the problem, which is used as one of the sets of initial columns.
This gives a head-start in the column generation algorithm, as the first
iteration of the (RMP) results in a higher objective value. As a result, we
are able ignore the addition of columns that would be added during the first
iterations of the column generation algorithm. The branch and price algorithm
with this matheuristic is illustrated in Figure 7.5.

To find the initial feasible solution, we solve the deterministic problem with
a time limit of 2000 seconds. Then, we take the first-stage decisions of
the deterministic problem and fix them, before evaluating the first-stage
solution on the stochastic problem, with a time limit of 2000 seconds.
This results in a feasible solution. Furthermore, when the problem is the
ExpectedRevenueProblem we set the gender maturation percentages to the
mean gender maturation percentages over all scenarios. However, when the
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problem is the CV aRProblem, we select the scenario with the highest gender
maturation percentages, since this solution will to a larger extent be tuned for
scenarios with lower gender maturation percentages.

If no solution has been found within the time limit of a problem, we choose
the first feasible solution found after.

Primal bound matheuristic

To speed up the process of finding primal bounds, we implement a
matheuristic. Figure 7.5 depicts the branch and price algorithm with this
matheuristic. After the column generation algorithm stops, we solve the
(RMP) as a mixed-integer problem to find a feasible solution to the original
problem. Moreover, here a feasible solution refers to a weighted combination
of columns from the (RMP). The binary requirements of the original problem
are included here. We set the time limit to 3600 seconds.

To reduce the time needed to find a good primal bound within the time limit,
we force all deployment variables, δlt, that have a weighted sum,

∑
k∈Kkl

λlkδ
k
lt,

above 0.85 to 1. If we obtain a solution from this matheuristic and it is better
than the incumbent IP, it is updated. However, if this is not the case the
branch and price algorithm continues.
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Figure 7.5: Overview of the branch and price algorithm with matheuristics.
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Chapter 8

Case Study

In this chapter we present the input data for the case study of the
production planning problem representing Eidsfjord Sjøfarm. We introduce
the production system of Eidsfjord Sjøfarm and the planning horizon. Then,
we present the deployment weights, parameters that depend upon smolt type
and seawater temperatures. Next, we present gender maturation parameters
and describe how we generate scenarios. Lastly, we present all other
parameters.

8.1 Production system and planning horizon

In this section we present the production system of Eidsfjord Sjøfarm and the
planning horizon used in the case study.

8.1.1 Production system

Eidsfjord Sjøfarm is a Norwegian salmon farming company of medium size.
Their production facilities are located in northern Norway. The company
produces approximately 15 000 tonnes of head-gutted (HG) salmon annually.
HG salmon have their head and viscera removed. The production facilities
are located in Vester̊alen, Senja and Inner-Troms, with respectively 11, three
and three facilities in each production zone. Vester̊alen, Senja and Inner-
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Troms are located in three different production zones. Moreover, Eidsfjord
Sjøfarm has gained permission to have an inter-regional MAB between all its
production zones. The inter-regional MAB is 14 528 tonnes. Details regarding
its production facilities can be found in Table 8.1. The geographic location of
the production facilities is presented in Figure 8.1.

Location
MAB
(tonnes)

Initial
mean weight
of salmon (g)

Total initial
biomass (kg)

Months
at sea

Holand 3120 0 0 0
Innerbroksløysa 3120 0 0 0
Reinsnes 3120 1464 1007000 5
Bremnes 3900 2207 1864000 10
Toftenes 3120 0 0 0
Sandan Sø 2340 0 0 0
Kuneset 3120 2641 999000 5
Trolløya 3120 0 0 0
Langholmen 3120 3273 2316000 13
Daljorda 3120 0 0 0
Flesen 3120 5261 1033000 17
Lavika 2700 689 571000 2
Kvenbukta 2700 317 225000 2
Stretarneset 2700 0 0 0
Haukøya 3600 0 0 0
Hagebergan 3600 6000 1497000 17
Russelva 3500 1591 1298000 5

Table 8.1: Overview of the locations Eidsfjord Sjøfarm operates.
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Figure 8.1: The geographical locations of the facilities of Eidsfjord Sjøfarm.

8.1.2 Planning horizon

We use a planning horizon with a duration of five years and a monthly time
resolution. As a result, we have a total of 60 time periods. January 2021 marks
the beginning of the first time period, while the last time period is December
2025. Deployments can take place in all months except for February, March,
October and November.

8.2 Deployment weights and smolt types

In this section we present deployment weights and parameters that are
dependent upon the smolt type of the salmon.

8.2.1 Deployment weights

Eidsfjord Sjøfarm has the choice of deploying 100, 150 or 250 g smolt. However,
they do not deploy all weights throughout the year. There are fewer smolt
weights available during the months the seawater temperatures are lower. This
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is due to the growth of the salmon depending upon the seawater temperature.
In January and December, deployed smolt must weigh 250 g. Moreover, in
April, May and June the weight of deployed smolt cannot be 100 g. During
the remaining months all smolt weights are permitted.

8.2.2 Characteristics of smolt types

Aquagen AS study and sell a number of different smolt types. In this case
study, three of these smolt types are included, being regular, male and female
smolt. We include these three smolt types since there have been extensive
studies performed on them by Aquagen AS. The smolt types differ when it
comes to mortality, TGC and gender maturation rates. The TGC rate is
proportional to the growth rate of salmon. The data regarding TGC rates and
mortality rates is taken from Aasen (2021).

Even though the smolt types have different biomass development
characteristics, all can be deployed in all release months. The development
of the TGC for the different smolt types is presented in Figure 8.2. Generally,
the TGC rates are slightly higher for male smolt, which corresponds to higher
growth rates.

The mortality rate is presented in Figure 8.3 and is dependent upon the smolt
type and the number of months a cohort has been employed in the sea. When
comparing the smolt types, we observe that the rates are generally lower for
female.

Figure 8.4 shows the survival percentage of the different smolt types. At the
end of a rearing cycle, female salmon have the highest survival percentage.

The biomass development of a salmon cohort is affected by the growth and
mortality rates. The expected weight development for the three different smolt
types deployed in the month of January with an initial weight of 250 g can
be seen in Figure 8.5. Moreover, the expected weight development for regular
cohorts is higher than the average weight development of female and male
cohorts, since regular cohorts have higher mortality rates.

The month of deployment affects the mean seawater temperature for a cohort,
which in turn affects the weight development of a cohort. Cohorts deployed in
January have the lowest weight development of all cohorts.
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Figure 8.2: The development of the TGC for all smolt types.

Figure 8.3: The development of the mortality rates for all smolt types.
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Figure 8.4: The development of the survival percentages for all smolt types.

Figure 8.5: The expected biomass development for the different smolt types
when the month of deployment is January.
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8.3 Seawater temperatures

The most important factor of the TGC rate is the seawater temperature. We
use the historical monthly seawater temperature at the different locations,
retrieved from Barentswatch (2021a), to calculate the mean historic monthly
temperature. We assume that seawater temperatures are repeated yearly. An
overview of the temperatures at different locations is illustrated in Figure 8.6.

Figure 8.6: An overview of the temperatures in Celsius at all locations.

8.4 Gender maturation and

scenario generation

In this section we specify the value of the several gender maturation
parameters. Next, we explain and discuss how we perform scenario generation
to get the gender maturation percentages, Ds

t′fglt.

8.4.1 Gender maturation

The source of uncertainty in the model is the percentage of a salmon cohort
that have experienced gender maturation at harvest, Ds

t′fglt. From Section 5.2
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we know that the gender maturation percentage is dependent upon the mean
weight of a salmon in a cohort, smolt type and number of gender maturation
months the salmon have been at sea.

We set the lower limit of when a salmon can experience gender maturation
to 2.5 kilograms, since smaller salmon rarely go through gender maturation
(Aquagen, 2021). Furthermore, the months where gender maturation can
occur, known as the gender maturation months, are August, September,
October and November (Aquagen, 2021). A cohort never experiences gender
maturation months in two different years. For this to happen a salmon would
have to be employed at sea one year after reaching 2.5 kilograms. However,
all salmon are harvested before this occurs. Hence, the maximum number of
gender maturation months a cohort can go through, Jmax, is four.

Salmon that go through gender maturation experience a reduction in their
value. Furthermore, in this thesis, gender maturation is the only factor that
causes such a reduction. We set the relative value of salmon that have not
experienced gender maturation, PHigh, to 1. However, setting the relative value
of the gender matured salmon, PLow, is challenging since it depends upon the
market. The reduction can vary between 5 and 95 % (Aquagen, 2021). To
capture risk-averse attitudes of farmers we decide to set PLow to 30 %.

8.4.2 Scenario generation

Aquagen AS have supplied data of the gender maturation percentage at harvest
for the different smolt types. The data is presented as histograms in Figure
8.7, 8.8 and 8.9. The collection of data points for all smolt types is presented
in Figure 8.10.

We denote Bs
g as the gender maturation percentage at harvest for salmon

belonging to smolt type g in scenario s. Moreover, we generate a lognormal
distribution of the data points of the gender maturation percentages at harvest
received from Aquagen AS. By sampling from the lognormal distribution we
can find Bs

g in different scenarios. Using the lognormal distribution prevents
sampling of negative values. To generate the lognormal distribution we need
the mean of the logarithmic values, µ, and standard deviation of logarithmic
values, σ, of the data points provided by Aquagen AS. µ and σ for the different
smolt types are presented in Table 8.2. The lognormal distributions are fitted
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to the data provided by Aquagen AS in Figure 8.8, 8.9, 8.7 and 8.10.

Female Male Regular
µ -0.3251 2.5385 1.8149
σ 1.2753 0.6122 0.7343

Table 8.2: The µ and σ for the different smolt types.

In Figure 8.10, we observe that the gender maturation percentage at harvest,
Bs

g , is much higher for male and regular cohorts than female cohorts. We use
a lognormal distribution, to sample Bs

g for regular and male salmon. We do
not use a lognormal distribution to sample Bs

g for female smolt since the data
points are very close to zero, with the mean being 0.13 %. Instead, we set Bs

g

for female salmon to the constant value of 0. This is an acceptable approach
since it will have minimal effect on the outcome of the model due to the data
points for female salmon being much lower than the data points for other smolt
types.

Figure 8.7: Lognormal distributions fitted to data of the gender maturation
percentages at harvest of regular salmon. Provided by Aquagen AS.
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Figure 8.8: Lognormal distributions fitted to data of the gender maturation
percentages at harvest of female salmon. Provided by Aquagen AS.

Figure 8.9: Lognormal distributions fitted to data of the gender maturation
percentages at harvest of male salmon. Provided by Aquagen AS.
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Figure 8.10: Lognormal distributions fitted to data of the gender maturation
percentages at harvest for all smolt types. Provided by Aquagen AS.

To be able to incorporate gender maturation into the model, we must assign
values to the gender maturation percentage, Ds

t′fglt, for the cohort respectfully
deployed and harvested in time period t′ and t in scenario s. From Section
5.2, we know that equation (8.4.1) applies. Js

t′fglt is the number of gender
maturation months a cohort has experienced in time period t, deployed in t′,
while ρsg is the monthly increase in the gender maturation percentage.

Ds
t′fglt = ρsgJ

s
t′fglt (8.4.1)

Finding a relationship between Bs
g and ρsg is necessary to model gender

maturation. However, it is difficult since Bs
g measures the gender maturation

at harvest, while ρsg the monthly increase in the gender maturation percentage.
Therefore, to set up a relationship between Bs

g and ρsg we need to make
assumptions concerning the number of gender maturation months the cohorts
Aquagen AS studied have experienced and the development of the gender
maturation percentage.

We assume that all the cohorts from Aquagen AS studies have experienced
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Jmax gender maturation months at harvest. The reason for this is that many
salmon go through Jmax gender maturation months in the year following
their year of deployment (Eidsfjord, 2021). Hence, Bs

g is the gender
maturation percentage at harvest for salmon that have experienced Jmax

gender maturation months, where g is the smolt type and s is the scenario.
This assumption lets us express the relationship between Bs

g and ρsg in equation
(8.4.2). ρsg is the gender maturation percentage at harvest, Bs

g , divided by the
maximum number of gender maturation months a cohort can experience Jmax.
We have now found a way to incorporate the data points from Aquagen AS
into Ds

t′fglt.

ρsg =
Bs

g

Jmax

(8.4.2)

8.5 Other parameters

In this section we present the value of the remaining parameters. Aquagen AS
have provided the data that has been used to estimate the HG yield of salmon.
The market demand for salmon is dependent upon their weight. Moreover, the
demand is the highest when the HG weight is between 3.5 and 6.5 kilograms.
To find the harvest thresholds we divide the limit of the preferable HG weights
by the HG yield. Table 8.3 presents the HG yields and the harvest thresholds
of salmon. We assume that all smolt types have the same HG yield. Salmon
that have a weight that lies in this interval are in their harvest periods and
can be harvested. However, salmon that weigh less than the lower limit are in
their growth periods and cannot be harvested. All salmon must be harvested
before they reach their upper weight limits.

HG yield (%)
Lower harvest
limit (kg)

Upper harvest
limit (kg)

0.8124 4.31 8.00

Table 8.3: The HG yield and harvest weight limits of salmon.

Due to Norwegian law requiring that fallowing periods must be two months
or more, we set Λ to two. Also, the maximum time duration a cohort can
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be employed at sea, ∆, is set to 18 months. At that point cohorts approach
the upper harvestable weight limit. Lastly, the maximum number of months
a company can leave a location empty Γ is 24, to avoid risking withdrawal of
production licenses.

Restrictions regarding deployment are necessary to avoid cost inefficient
operations and stay within capacities of the company. The number of smolt
that can be deployed at a location is limited by how many would fit in four and
12 net pens. As a result, we respectively set LLOC

l and ULOC
l to 480 000 and

1 440 000. In addition, we set LTY PE
l to 240 000, to ensure that the deployed

cohort at least fills two net pens. The upper limit for the size of a deployed
cohort corresponds to the limit for the location. Hence UTY PE

l is set to ULOC
l .

The monthly harvesting goal of Eidsfjord Sjøfarm forms the basis for their
harvesting restrictions. Their aim is to harvest two full net pens every month.
The restrictions regarding deployments of smolt represent the amount of smolt.
Furthermore, the harvesting bounds represent the biomass in kilograms. The
company-wide limit for maximum biomass that can be harvested, UCOM

t , is
set to 3 800 000, which corresponds to twice the monthly harvest goal. The
upper harvesting bound is set to the minimum of the company-wide upper
bound and the MAB of the location, UH

l = min (MABl, 3 800 000). The
lower harvesting limit, LH

l , is set to 425 000, since it is slightly less than a full
net pen. It ensures that cost inefficient harvests do not take place.

The percentage of scenarios that make up the CVaR, α, is set to 10 %.

8.6 Problem instances

In this thesis we primarily study five instances to get a better understanding of
how the risk of gender maturation affects production planning within salmon
farming. The instances are shown in Table 8.4. They differ by the use of
objective function, available smolt types and number of scenarios. The name
of the problem instance consists of three parts: the objective function, number
of scenarios and available smolt types.

EV 1All corresponds to the expected value problem where the gender
maturation percentage is the mean of the gender maturation percentage over
all scenarios. All instances with the same number of scenarios contain the
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same scenarios.

Problem
instance

Objective function
Number of
scenarios

Available
smolt types

EV 1All Expected value 1 All
EV 10All Expected value 10 All
CV aR10All CVaR 10 All
EV 10Reg Expected value 10 Regular
CV aR10Reg CVaR 10 Regular

Table 8.4: Overview of the main instances used in this thesis.
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Chapter 9

Computational Study

In this chapter we present and analyze the results retrieved from solving the
problem instances of the production planning problem. Firstly, we present
the technical analysis, where we study the results and benefits of using the
branch and price algorithm as the solution method. Thereafter, we discuss
and compare the production planning problem of the different instances.

9.1 Technical analysis

The branch and price algorithm is implemented with Python version 3.9.6 as
the programming language. Moreover, we use Gurobi version 9.5 to solve all
linear and mixed-integer problems. To solve the problem instances, we use
a computer with a 2x 2.4GHz Intel Xeon Gold 5115 CPU – 10 core CPU,
linux-64 operating system and 96 GB of RAM.

In this section, we discuss and analyze technical aspects that appear when
using the branch and price algorithm as solution method. We begin by
comparing the results of solving EV 10All and CV aR10All with Gurobi’s MIP
solver and the branch and price algorithm. Next, we study the performance
and areas of improvement for the branch and price algorithm.

79



9.1.1 Comparison of solution methods

In Table 9.1, we present the lower bound (LB), upper bound (UB) and
optimality gap (Gap) associated with the problem instance EV 10All and
CV aR10All when varying the solution method.

Problem
instance

Solution
method

Runtime
(s)

LB
(106)

UB
(106)

Gap (%)

EV 10All MIP solver 172 800 123.74 140.05 13.18
CV aR10All MIP solver 172 800 119.50 137.80 15.31
EV 10All Branch and price 172 800 123.93 132.43 7.04
CV aR10All Branch and price 172 800 122.07 131.30 7.56

Table 9.1: Overview of results for EV 10All and CV aR10All when varying the
solution method.

The optimality gap of EV 10All and CV aR10All respectively decreases with
6.14 and 7.75 percentage points as the solution method is changed from
the MIP solver to the branch and price algorithm. The reduction in the
optimality gap is due to improvement in both the lower and upper bounds,
but primarily the latter. The lower bound improves with 0.15 % and 2.15
% respectively for EV 10All and CV aR10All. The increase in the lower
bound is due to the matheuristics of the branch and price algorithm finding
better feasible solutions than the MIP solver. Furthermore, the upper bound
respectively improves with 5.44 % and 4.35 % for EV 10All and CV aR10All.
The substantial decrease of the upper bounds when the solution method is the
branch and price algorithm indicates that the algorithm describes the convex
hull of the mixed-integer problem well.

Independent of the solution method the optimality gap is higher for
CV aR10All compared to EV 10All. One possible reason for this is that
CV aR10All maximizes the objective value of the scenario with the lowest
objective value while EV 10All maximizes the expected value of all scenarios.
Furthermore, the improvement of finding the lower bound when using the
branch and price algorithm compared to the MIP solver is higher for
CV aR10All compared to EV 10All since the matheuristics of the branch and
price algorithm are able to find better feasible solutions.
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Figure 9.1 and 9.2 show the respective development of the bounds for EV 10All
and CV aR10All when the solution method varies.

Figure 9.1: Development of bounds when maximizing the expected value.

Figure 9.2: Development of bounds when maximizing the CVaR.
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When the solution method is the MIP solver the bounds are improved
continually, with the improvements becoming smaller as the running time
increases. Moreover, the upper bound experiences improvement throughout
the running time of the algorithm, while the lower bound stagnates towards
the end of the running time of the algorithm. One possible explanation is that
the lower bound cannot be greatly improved, but it can also be due to it being
difficult to find better feasible solutions. It takes a longer time to find the first
bounds of CV aR10All compared to EV 10All when the solution method is
the MIP solver. This is due to CV aR10All being more difficult to solve than
EV 10All.

When the solution method is the branch and price algorithm the bounds rarely
improve after having found the first bounds. It takes approximately 16 hours
before a lower and upper bound are found when the solution method is the
branch and price algorithm. This shows that the branch and price algorithm
is better at finding good upper and lower bound than the MIP solver early in
the runtime of the algorithm. However, having a higher runtime leads to little
improvement in the lower and upper bounds.

9.1.2 Technical aspects of branch and price

In this section, we study the performance and areas of improvement of
the branch and price algorithm. We present the number of solved nodes
in the branch and price tree (# Nodes), the total number of iterations
from the column generation algorithm (# Iterations), the number of solved
subproblems (# Solved SP) and the percentage of time the program uses to
solve the subproblems. Time not spent in the subproblems primarily involves
matheuristics and solving of the (RMP).

Problem
instance

Runtime
(s)

# Nodes # Iterations
# Solved
SP

Time
in SP
(%)

EV 10All 172 800 3 396 20196 78.5
CV aR10All 172 800 3 411 20961 79.2

Table 9.2: Technical aspects regarding the branch and price algorithm.
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Both instances stop running due to the runtime having reached maximum
runtime rather than the optimality gap becoming less than 5 %. Branching
occurs in both instances, but the time limit prevents the program from solving
more than three nodes in each instance. The bounds can only improve when
the branch and price algorithm has completed a node. Furthermore, the low
number of nodes explain why there is little improvement in the bounds after
the first bounds have been found. Even though the branch and price algorithm
performs better than the MIP solver, it is of interest to increase the number
of solvable nodes. More binary variables will be fixed, which can lead to the
branch and price algorithm improving the lower and upper bounds further.

Solving the (RMP) takes substantially less time than solving the subproblems.
The main reason for this is that the (RMP) is a linear problem while the
subproblems are mixed-integer problems. The (RMP) is solved to optimality.
Moreover, proving that the optimal solution of the subproblems is found make
the subproblems difficult to solve. Therefore, we set a time limit of 25 seconds
for the subproblems. This reduces the time spent in the subproblems. This
means that there is no guarantee that the best columns are sent to the (RMP)
every iteration. However, we consider the inclusion of a time limit in the
subproblems acceptable as all subproblems are either solved to optimality or
produce solutions with low optimality gaps.

Since the subproblems are the bottleneck of the program reducing the time
spent solving subproblems is of interest since it can lead to an increased
number of nodes being solved in the branch and price algorithm. This can
be achieved by solving fewer subproblems or decreasing the runtime of an
individual subproblem.

A method of decreasing the number of subproblems in future work is to reuse
columns in the different nodes in the branch and price tree. All columns of a
parent node can be used in one of its two children nodes. By reusing columns
in a child node, the number of columns that must be generated in the child
node can be reduced. Hence, the amount of time spent solving an individual
subproblem remains the same, but the number of subproblems that need to be
solved is reduced. Moreover, it will not change the number of subproblems that
need to be solved in the root node, but it decreases the number of subproblems
that need to be solved in the children nodes.

Even though, the branch and price algorithm only solves three nodes in the
branch and price tree, it performs better than the MIP solver. However, to
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improve and study how well the algorithm can perform, it is necessary to
increase the number of solvable nodes. This can be achieved by reducing the
time spent in the subproblems of column generation algorithm, which can be
done by reusing columns.

9.2 Analysis of the production

planning problem

Traditionally companies have been using regular smolt in industrial salmon
farming. However, studies have found that each gender has different
characteristics. This makes it beneficial to separate female and male salmon
(Aquagen, 2021). Both the results of Lien (2021) and Aasen (2021) indicate
that male salmon is preferable for risk-neutral decision makers, due to higher
growth rates. Nevertheless, is this still the case when the decision makers are
risk-averse and the salmon experience a substantial drop in their relative value
when experiencing gender maturation?

In this section we begin by presenting how we evaluate the solution over an
increased number of scenarios to make the production plans represent the
real world better. Then, we present an overview of the expected value and
CVaR of harvests of different evaluations. Thereafter, we study the overview
of deployments for the different instances. We continue by comparing key
performance indicators of the instances. Lastly, we do a sensitivity analysis,
where we vary the relative value of salmon that have experienced gender
maturation PLow.

The results retrieved in the different runs correspond to the five-year
production plan for a salmon farming company. Moreover, the initial value of
PLow is set to 30 %.

9.2.1 Evaluating the solution on more scenarios

When optimizing the production planning problem, it is of interest to use a
substantial number of scenarios to represent the real world. This applies in
particular when maximizing the CVaR of the value of harvests, since only 10
% of the scenarios determine the production plan. However, increasing the
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number of scenarios increase the complexity of the problem. When setting the
number of scenarios to 20, the branch and price algorithm is unable to find a
solution in two days.

Rather than solving an increased number of scenarios, we evaluate the first
stage solution from the instances with 10 scenarios, on a problem with 200
sampled scenarios. We use 200 scenarios since it represents a number of
scenarios that is a trade-off between representing the real world sufficiently
and having a reasonable runtime. This approach prevents the setting of an
upper bound to the problem. Hence, we are not able to estimate the optimality
gap. Nonetheless, for the decision maker it is more important to find a feasible
solution, as it corresponds to a production plan. Further in this section we
use branch and price with this approach on all instances with the same set of
sampled scenarios.

9.2.2 Overview of expected value and CVaR

We analyze the production planning problems of six different evaluations.
Table 9.3 presents the problem instance used for finding the first-stage solution,
the objective function for the evaluation, the expected value and the CVaR
of the value of harvests for all evaluations. If the problem instance for the
first-stage solution is the same, the first-stage solutions are the same. To be
able to compare all evaluations, the expected value and CVaR of the value of
harvests are included independent of the objective function.

Problem instance
for the first-stage
solution

Objective function
for evaluation

Expected
value of
harvests
(106)

CVaR of
the value
of harvests
(106)

EV1All Expected value 123.90 121.60
EV1All CVaR 122.50 121.60
EV10Reg Expected value 117.06 110.62
CVaR10Reg CVaR 113.41 110.79
EV10All Expected value 123.93 121.72
CVaR10All CVaR 122.46 122.04

Table 9.3: Overview of the expected value and CVaR of the different
evaluations.
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The inclusion of gender-partioned smolt types respectively increase the
expected value of harvests by 5.87 % and the CVaR of the value of harvests by
10.15 %. The increase of the expected value is mainly due to deployments of
male smolt while the increase of the CVaR is primarily due to deployments of
female smolt. This shows that both male and female deployments are better
than regular deployments.

The difference between the expected value and the CVaR is smaller when
maximizing the CVaR compared to when maximizing the expected value. The
reason for this is that maximizing the CVaR improves the objective value of the
worst scenarios and worsens the objective value of the best scenarios. When
varying the objective function for the evaluation of EV 1All there is no gain in
the CVaR when maximizing the CVaR compared to maximizing the expected
value. Hence, it is better to maximize the expected value since it will lead to a
1.14 % higher expected value of harvests. However, when evaluating EV 10All
and CV aR10All there is a 0.34 % increase in the CVaR when maximizing the
CVaR. Here it is can be beneficial to maximize the CVaR if the decision maker
is sufficiently risk-averse.

9.2.3 Overview of deployments

We do not present complete production plans that specify when biomass is
present and when harvesting occurs, since it can vary in different scenarios.
Instead, we present an overview of the deployments since they are a part of
the first-stage decisions and remain the same in all scenarios. The overview of
deployments for EV 1All, EV 10Reg, CV aR10Reg, EV 10All and CV aR10All
are respectively presented in Figure 9.3, 9.4, 9.5, 9.6 and 9.7. Initial
deployments are deployments that take place before the planning horizon and
consist of regular salmon. Moreover, if a box contains several colors it means
that different types of deployments take place in different nets at a location.
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Figure 9.3: Overview of deployments for EV 1All.

Figure 9.4: Overview of deployments for EV 10Reg.

Figure 9.5: Overview of deployments for CV aR10Reg.
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Figure 9.6: Overview of deployments for EV 10All.

Figure 9.7: Overview of deployments for CV aR10All.

Figure 9.8 shows which smolt type is used for deployments in the different
problem instances. Initial deployments are not included in this distribution
as they take place in all instances. Moreover, almost all deployments in the
problem instances use the highest deployment weight of 250 g, since they grow
to harvestable weights the fastest. When other deployment weights are chosen,
it is to comply with MAB restrictions.
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Figure 9.8: The distribution of smolt types of deployments of the different
problem instances.

When all smolt types are available both female and male deployments take
place. However, the most deployed smolt type depends largely upon the choice
of the objective function. Even though male smolt have the highest gender
maturation percentages, they are the most appealing smolt type when the
objective is to maximize the expected value. The reason for this is that male
smolt have the highest growth rates. When the objective is to maximize the
CVaR female smolt is slightly more preferable than male smolt. The reason for
this is that they do not experience gender maturation. This means that there
is no risk of lost production value when deploying female smolt. Regular smolt
is the least appealing smolt type since they only have slightly higher growth
rates and significantly higher gender maturation percentages than female smolt
while having considerably lower growth rates than male smolt.

It is of interest to study whether some deployment months are more popular
for the different smolt types. There are potentially two main reasons that
contribute to making a month attractive for deployment. Firstly, for all
smolt types May, June, July and August are attractive deployment months
since cohorts deployed in these months experience a higher mean seawater
temperature during their rearing period compared to smolt deployed in other
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months. As a result, these deployments have higher growth rates. Secondly,
male smolt deployed in May, June, July and August have the highest gender
maturation percentages at harvest. The reason for this is that they experience
four gender maturation months. To avoid high gender maturation percentages
these smolt types should be deployed in other months. By studying the
overview of deployments, we clearly see that this is not the case. Male
deployments largely occur in these months. Moreover, in all instances where
all smolt types are available, over 30 % of all deployments take place in May.
Hence, higher growth rates outweigh lower gender maturation percentages.

Independent of the objective function and available smolt types, we observe
that few deployments take place in January and February. The reason for
this is that cohorts deployed in these months experience lower mean seawater
temperatures during their rearing period compared to all other deployments.
As a result, they have the lowest weight development of all cohorts.

In EV 1All, EV 10All and CV aR10All no deployment takes place after time
period 48, while deployments take place throughout the planning horizon for
EV 10Reg and CV aR10Reg. This indicates that there is a weakness in the
end of horizon modeling. The end of horizon modeling we have implemented
ensures that a certain amount of biomass is employed at the end of the planning
horizon, this is not harvested and does not contribute to the objective value.
However, it does not specify how big the remaining salmon must be, which
make deployments at the end of the planning horizon unnecessary. The lack of
deployments at the end of the planning horizon can create issues in the time
following the planning horizon. Nonetheless, this is not a problem since we do
not compare any of the results with the actual results of Eidsfjord Sjøfarm and
the same end of horizon constraints apply to all instances. Moreover, the final
deployments in all instances do not contribute to the objective value, which
makes the results of the different instances comparable.

9.2.4 Key performance indicators

We examine different key performance indicators to study how salmon farming
is affected by available smolt types and the objective function. The value
of harvests, MAB utilization rate (MAB), mean length of a rearing period
(Length), mean weight of a harvested salmon (Weight) and mean gender
maturation percentage of harvests (Gender maturation) of the instances are
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presented in Table 9.4. The MAB utilization rate is the average amount of
company-wide biomass divided by the company-wide MAB. It is included to
examine which instances utilize the company-wide MAB constraint the best.

Problem
instance
for first-
stage
solution

Objective
function
for
evaluation

MAB
(%)

Length
(Months)

Weight
(kg)

Gender
maturation
(%)

EV 1All
Expected
value

89.3 14.76 6313 3.16

EV 1All CVaR 88.2 14.71 6155 3.07

EV 10Reg
Expected
value

87.7 15.19 6161 5.17

CV aR10Reg CVaR 84.5 15.46 5989 5.16

EV 10All
Expected
value

89.4 14.70 6081 3.48

CV aR10All CVaR 88.2 14.79 6071 2.73

Table 9.4: Overview of key performance indicators for all instances.

The MAB utilization rate is higher, the length of a rearing period is lower and
the mean weight of salmon is often higher when all smolt types are available.
The main reason for this is the inclusion of male smolt. Male smolt have higher
growth rates that allow earlier harvests and more deployments compared to
other smolt types. Also, we observe that when the objective is to maximize the
CVaR rather than the expected value the mean gender maturation percentage
at harvest is lower. The reason for this is that female salmon make up a larger
part of the harvests. Moreover, the difference between the gender maturation
percentage in the evaluation of EV 10All and CV aR10All is higher than the
evaluation of EV 10Reg and CV aR10Reg. The reason for this is that when
all smolt types are available it is possible to lower the gender maturation
percentage when the objective function changes by deploying female smolt.
This is not possible when regular smolt is the only available smolt. Hence, the
inclusion of male and female smolt increases the flexibility of the model.

In Table 9.5 we present the percentage of harvests that belong to the different
smolt types for the evaluation of EV 1All, EV 10All and CV aR10All. The
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percentage of harvests that belong to the different smolt types can vary from
the percentage of deployments that belong to different smolt types due to
varying lengths of rearing periods and differences in the biomass development
for different smolt types. Most of the regular harvests are due to the initial
deployments. Harvests consist mainly of male salmon when the objective is
to maximize the expected value, since they have the highest growth rates.
However, when maximizing the CVaR harvests primarily consist of female
salmon as they are a less risky alternative since they do not experience gender
maturation.

Problem
instance
for first-
stage
solution

Objective
function
for evaluation

Regular
harvests
(%)

Female
harvests
(%)

Male
harvests
(%)

EV 1All Expected value 21.59 29.13 49.28
EV 1All CVaR 21.55 29.43 49.02
EV 10All Expected value 20.74 29.26 50.00
CV aR10All CVaR 20.33 44.51 35.16

Table 9.5: Overview of the harvested amount of the different smolt types for
all instances.

It is of great interest to compare the evaluation of EV 1All when varying
the objective function of the evaluation since they have the same first-stage
solution. This means that the deployments are the same. The length of
a rearing period, the mean weight of a salmon and the gender maturation
percentage is slightly higher in the evaluation that maximizes the expected
value compared to the evaluation that maximizes the CVaR. The reason for
this is that salmon are harvested earlier and at lower weights to decrease the
gender maturation percentage. Moreover, the percentage of female harvests
slightly increase while the percentage of male harvests slightly decrease. The
percentage of female harvests would be even larger for the evaluation that
maximizes the CVaR if the first-stage solutions were not fixed.
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9.2.5 Sensitivity analysis

To highlight how the value assigned to the relative value of gender matured
salmon PLow affects the solution of the production planning problem, we
perform a sensitivity analysis where we vary PLow. Firstly, we study how
the expected value and CVaR of the value of harvests is affected. Thereafter,
we examine how the choice of smolt type differs.

We respectively use EV 10All and CV aR10All for fixing the first-stage solution
when maximizing the expected value and the CVaR of the value of harvests,
before evaluating it on the 200 scenarios. Moreover, for each objective function
we perform four runs where PLow is set to 10 %, 30 %, 50 % and 70 %. The
default case where PLow is set to 30 % is discussed in detail above.

Table 9.6 shows the expected value and CVaR of the value of harvests when
varying PLow. The expected value and CVaR of the value of harvests decrease
when PLow decreases. The reason for this is that gender maturation takes place
in all runs and all gender matured salmon experience a price drop. Moreover,
as the relative value of gender matured salmon decrease the optimal production
plan does not fully avoid gender maturation, it rather reduces the number of
salmon that experience gender maturation.

P Low
(%)

Maximizing
expected value

Maximizing
CVaR

Expected value
of harvests
(10ˆ6)

CVaR of
harvests
(10ˆ6)

Expected value
of harvests
(10ˆ6)

CVaR of
harvests
(10ˆ6)

10 122.99 121.01 122.04 121.43
30 123.70 121.72 122.46 122.04
50 124.52 122.05 123.43 123.01
70 126.19 123.86 124.12 123.73

Table 9.6: The expected value and CVaR of the value of harvests when varying
the relative value of gender matured salmon.

When maximizing the CVaR the expected value is on average 1.09 % lower
than what it would have been if the objective was to maximize the expected
value. However, when maximizing the expected value, the CVaR is on average
0.32 % lower than it would have been if the objective was to maximize the
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CVaR. This shows that there is only a small gain in the CVaR for risk-averse
salmon farmers compared to risk-neutral salmon farmers, when α is 10 %.

Figure 9.9 shows the percentage of deployed salmon that belong to the different
smolt types. In all evaluations female and male deployments occur, while
regular deployments rarely occur. However, the preferable smolt type for
deployment is largely dependent upon PLow. Generally, female deployments
become more appealing while male deployments become less appealing as PLow

decreases. Moreover, regular deployments largely remain unattractive for the
same reasons as mentioned in Section 9.2.3.

Figure 9.9: Percentage of deployed salmon that belong to different smolt types.

Another important factor when it comes to the choice of smolt type is the
objective function. Female deployments are more attractive when maximizing
the CVaR of the value of harvests. Moreover, the amount of deployed female
smolt is between 7.62 and 19.71 percentage points higher for a specific value of
PLow when maximizing the CVaR compared to when maximizing the expected
value. When maximizing the expected value of harvests male salmon is usually
the most preferable choice for deployment. When PLow is set to 10 %, slightly
more female smolt are deployed than male smolt. When the objective is to
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maximize the CVaR and PLow is set to 10 % or 30 %, female smolt is the most
deployed smolt type.

The inclusion of male and female smolt improve the solution independent of
the choice of objective function and relative value of gender matured salmon
PLow. Regular smolt is the least attractive smolt type for deployment, since
it does not have the highest growth rates or the lowest gender maturation
percentages. Generally, regular smolt should not be deployed. The number of
female deployments increase when the decision maker is risk-averse and PLow

is low. However, the number of male deployments increase when the decision
maker is risk-neutral and PLow is high. The difference between the CVaR is
higher than the difference between the expected value when maximizing the
expected value and CVaR. As a result, only sufficiently risk-averse salmon
farmers should maximize the CVaR. When PLow is above 50 % male smolt
should make up most of the deployments independent of the risk-attitudes of
the decision maker. However, when PLow is less than 30 % and the decision
maker is sufficiently risk-averse, female smolt should make up most of the
deployments.
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Chapter 10

Further research

In this chapter we outline suggestions for further research. Even though, the
complexity of this model has increased compared to models presented in earlier
projects, it is beneficial to increase the number of scenarios the program can
solve further. One way of doing this is by reducing the time spent solving
subproblems, the bottleneck of the problem. This will speed up the column
generation algorithm, which will enable the inclusion of additional scenarios.
Furthermore, this can be achieved by reusing columns in different nodes in the
branch and price tree. This can reduce the number of generated columns and
time spent solving subproblems.

It can be of great interest to study how the inclusion of production costs in
the model impacts the production planning problem. In particular, feeding
costs and the cost of purchasing smolt can be incorporated into the model.
By capturing currently overlooked aspects, the model can to a greater extent
represent an actual salmon farming production system.

Another aspect for further study is to include additional sources of
uncertainties since gender maturation is currently the only included source
of uncertainty in the model. Moreover, examining how the combination of
gender maturation and other sources of uncertainty affect industrial salmon
production can lead to a more realistic and reliable production plan. It is
of particular interest to include sources of uncertainty that depend upon the
smolt type, since it can to a greater extent clarify which smolt types should
be used within salmon farming.
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Chapter 11

Concluding remarks

In this thesis, we model the tactical production planning problem of industrial
salmon farming as a two-stage stochastic mixed-integer problem. The model
determines where, when, how much smolt and which smolt type to deploy and
harvest. The uncertainty of gender maturation gives rise to the risk of lost
production value. Therefore, we develop two objective functions, the expected
value and CVaR of the value of harvests, to incorporate risk-neutral and risk-
averse attitudes in the model. We apply a Dantzig-Wolfe reformulation and
column generation to exploit the structure of the production system of the
problem. Moreover, to ensure that the solution complies with integrality
conditions we use a branch and price algorithm with several extensions.

We solve the problem with Gurobi’s MIP solver and the branch and price
algorithm. The branch and price algorithm performs better than the
MIP solver by having a notably smaller optimality gap, mostly due to an
improvement of the upper bound. To improve the results of the branch and
price algorithm further, the algorithm must solve an increased number of
nodes. This can be achieved by reducing the time spent solving subproblems.

The inclusion of additional smolt types leads to a respective improvement of
5.87 % and 10.15 % in the expected value and CVaR of the value of harvests.
There is no superior smolt type. Regular smolt is the least attractive smolt
type, while the appeal of male and female smolt depends upon the objective
function and relative value of gender matured salmon. Generally, maximizing
the CVaR and decreasing the relative value of gender matured salmon increase
the use of female smolt, while maximizing the expected value and increasing
the relative value of gender matured salmon increase the use of male smolt.
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F. V. Willumsen, G. Lange, Åsa Espmark, and B. F. Terjesen. Modelling
growth performance and feeding behaviour of atlantic salmon (salmo salar

100

https://www.dnv.com/Publications/marine-aquaculture-forecast-to-2050-202391
https://www.dnv.com/Publications/marine-aquaculture-forecast-to-2050-202391
https://doi.org/10.3905%2Fjpm.2021.1.263
https://doi.org/10.3905%2Fjpm.2021.1.263
https://www.fiskeridir.no/Akvakultur/Drift-og-tilsyn/Biomasse
https://www.fiskeridir.no/Akvakultur/Drift-og-tilsyn/Biomasse
https://doi.org/10.1186/s12863-020-00927-2
https://www.sciencedirect.com/science/article/pii/0378475495001328
https://www.sciencedirect.com/science/article/pii/0378475495001328
https://www.tandfonline.com/doi/abs/10.1080/13657309909380241
https://www.tandfonline.com/doi/abs/10.1080/13657309909380241


l.) in commercial-size aquaculture net pens: Model details and validation
through full-scale experiments. Aquaculture, 464:268–278, 2016. ISSN 0044-
8486. doi: https://doi.org/10.1016/j.aquaculture.2016.06.045. URL https:

//www.sciencedirect.com/science/article/pii/S0044848616303490.

J. Føsund and E. Strandkleiv. Using branch and price to optimize land-based
salmon production. 2021. Master’s thesis, Norwegian University of Science
and Technology.

Global Farming Initiative. About salmon farming, 2022. URL
https://globalsalmoninitiative.org/en/about-salmon-farming/.
Last accessed: 2022-06-06.

E. Grefsrud, T. Sv̊asand, and K. Glover. Risikorapport norsk
fiskeoppdrett 2019, 2019. URL https://www.hi.no/hi/nettrapporter/

fisken-og-havet-2019-5. Last accessed: 2022-06-06.

H. Grootveld and W. Hallerbach. Variance vs downside risk: Is there
really that much difference? European Journal of Operational Research,
114(2):304–319, 1999. ISSN 0377-2217. doi: https://doi.org/10.
1016/S0377-2217(98)00258-6. URL https://www.sciencedirect.com/

science/article/pii/S0377221798002586.

A. Guttormsen. Faustmann in the sea: Optimal rotation in aquaculture.
Marine Resource Economics, 23(4):401–410, 2008. ISSN 07381360,
23345985. URL http://www.jstor.org/stable/42629671.

A. Hayes. Variance, 2021. URL https://www.investopedia.com/terms/v/

variance.asp. Last accessed: 2022-06-06.

R. Hean. An optimal management model for intensive aquaculture — an
application in atlantic salmon*. Australian Journal of Agricultural and
Resource Economics, 38:31–47, 1994.

T. Heaps. Density dependent growth and the culling of farmed fish. Marine
Resource Economics, 10(3):285–298, 1995. ISSN 07381360, 23345985. URL
http://www.jstor.org/stable/42629592.
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Appendix A

Compact model

A.1 Objective function
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A.2 Constraints
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