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Abstract

We extrapolate the forward price curve based on long-term spot price forecasts and an
assumption of a converging forward risk premium in the maturity dimension. The hypoth-
esis of a converging forward risk premium is examined using paired t-tests on the forward
risk premia of two- and three-year contracts. Extrapolations are produced using three
distinct forward risk premium methods, measuring the maturities between one and two
years ahead. The three forward premium methods are referred to as Level, Log-Return,
and Rate premium. To calculate the Level premium, we take the difference between the
average forward and forecast over the period. For the Log-Return premium, we calculate
the log change between the average forward and forecast. Lastly, to calculate the Rate
premium, we take the log-return between the forward and forecast price of every maturity
in the period, discounting each by their maturity, and then taking the average of these
values. The resulting extrapolated forward curves extend to 2050. We measure the out-
of-sample accuracy between the extrapolated forward curves and the elementary forward
prices. The accuracy of the extrapolated curves measured in MAPE is 8.364%, 8.256%,
and 11.439% for the Level, Log-Return, and Rate premium, respectively. Based on the
results, we can conclude that the Level and Log-Return methods provide significantly
higher accuracy than the Rate premium approach for all investigated accuracy measures.
Market participants on both sides of the market can benefit from the long-term forward
prices, for production planning and risk management purposes.
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Sammendrag

Vi ekstrapolerer forward kurven basert pa langsiktige spotprisprognoser og en antakelse
om at risikopremien konvergerer i modningsdimensjonen. Hypotesen om en konvergerende
risikopremie blir vurdert gjennom en paret t-test for to- og trearskontrakter. Ekstrapo-
leringene gjennomfgres for tre ulike metoder: Level, Log-Return, og Rate premie. For &
beregne Level premie, benyttes differansen mellom gjennomsnittlig forward og prognose
over perioden. Log-Return premie benytter log-endring mellom gjennomsnittlig forward
og prognose. Tredje metode, Rate premie beregnes ved gjennomsnitt av log-endring mel-
lom forward og prognose for hvert modningstidspunkt over perioden diskontert for mod-
ningstiden. Vi benytter beregnede premier og langsiktige prognoser til a ekstrapolere
forwardkurver fram til 2050. Vi tester ngyaktigheten mellom metodene og forward kur-
ven ved & benytte out-of-sample tester. Resultatet malt i MAPE er 8.364%, 8.256%, and
11.439% for Level, Log-Return, og Rate premie. Basert pa resultatene kan vi konklud-
ere at Level og Log-Return metodene er signifikant mer ngyaktighet enn Rate premie.
Markedsaktgrer pa bade tilbud- og etterspgrselssiden av kraftmarkedet kan benytte vare
ekstrapolerte forward kurver i forbindelse med risikohandtering og produksjonsplanleg-

ging.
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1 Introduction

This thesis explores the long-term forward curve of electricity in the Nordic market.
We apply an extensive smoothing method to traded electricity futures to construct an
elementary forward curve. By analyzing the long-term ex-ante forward risk premium,
we find evidence that supports the assumption of a stabilizing premium in the long-term
maturity dimension. We extrapolate the forward curves for maturities up to 30 years in
the future by combining the risk premium with long-term forecasts.

The extrapolation of forward curves is of interest for both the buy-side and sell-side of the
power market. They can use the long-term futures prices for investment analysis and risk
management purposes. Participants in the power market are typically strongly susceptible
to market risk, more specifically price risk (Weron, 2007). Investors and power producers
would want to value their projects and expected future cash flows accurately. Using the
prices of long-term futures, one would be able to quantify the expected future income with
higher accuracy and thus make better investment and production decisions. Electricity
consumers would want to minimize the risk associated with the variable cost of electricity
and be able to perform long-term production planning (Benth, Cartea, et al., 2008).
They can achieve this by hedging their market positions with forwards, thereby achieving
stable prices. The maximum duration for contracts offered on the financial market is
five years. Therefore, it will be difficult for players to utilize futures to hedge their long-
term positions. Power purchase agreements (PPAs) are becoming an increasingly popular
way for both consumers and producers to enter into long-term contracts, and variable
renewable power producers sell the majority of their electricity through these agreements
(Akinci & Ciszuk, 2021). Long-term futures prices can be used as a substitute for these
agreements, and increasing the knowledge of the long-term futures price, will thus be of
great interest to all the actors involved.

When hedging their positions, consumers and producers may be incentivized differently
and generally have different hedging horizons. Due to demand inelasticity and sudden
unexpected price peaks, the price can be a critical risk factor for consumers in the short
run. On the other hand, producers of electricity have an incentive to reduce the variability
of their profits by obtaining a stable income in the long run. As a result, we anticipate
that consumers will hedge more in the short run, and producers will hedge more in the
long run. In other words, there will generally be a higher demand for futures in the short
run, pushing the prices up, and a higher supply of futures in the long run pushing the
prices down (Benth, Cartea, et al., 2008).

Electricity possesses some remarkable properties that distinguish it from other commodi-
ties. First, electricity prices are known to be mean-reverting, which indicates that they
tend to revert to their long-term average. Second, spot prices for electricity experience
spikes and jumps (Schwartz & Smith, 2000). Short-term outliers and spikes, are typically
the results of an imbalance between supply and demand. These variations are often ob-
served in the short run, whereas prices converge to a level in the long run. Additionally,
the nature of electricity prices and stock markets is quite different. While stock market
prices can fluctuate “freely”, electricity prices will gravitate toward the cost of production
(Cartea & Figueroa, 2005). As a result, electricity prices have been extensively modeled



using mean-reverting processes and jumps to account for price spikes.

Instant generation and consumption, seasonality, non-storability, and grid-bound trans-
portation are all essential characteristics of electricity as a commodity (Benth, Benth,
et al., 2008; Botterud et al., 2010). Instant generation and consumption imply that the
production and consumption of electricity happen simultaneously. The inability to store
electricity is due to the absence of economically viable methods for storing significant
quantities. As a result, the price is susceptible to changes in demand or supply. In ad-
dition, this implies that the relationship of no-arbitrage observed in other commodity
markets will not apply to the electricity market.

The delicate balance between production and consumption leads to significant price
volatility. Negative spot prices may result from periods of low demand and high sup-
ply, whereas extreme positive outliers may result from periods of high demand and lim-
ited supply (Bessembinder & Lemmon, 2002; Valitov, 2019). These negative prices and
positive outliers increase the risk for the power producers and consumers, respectively.

Another distinguishing characteristic of electricity is that it is a “flow commodity”. In
electricity markets, forward and futures contracts have continuous delivery periods, such
as a month, quarter, or year. In contrast, other commodities have a predefined delivery
date in the future. Thus, electricity contracts are essentially swap contracts. The electric-
ity forward curve comprises several of these contracts with delivery periods of different
lengths, resulting in an overlapping structure.

The most common method for obtaining continuous electricity forward prices is to use
smoothing techniques. This strategy was first applied in fixed-income markets and later to
commodity markets with predefined delivery periods. Fleten and Lemming (2003) do this
using a bi-objective quadratic optimization procedure to estimate the prices by reducing
the squared error between the estimated curve and the prices of bottom-up forecasts.
They restrict the ideal solution using bid and ask prices observed in the market. This
approach recreates the swap contracts using a smooth forward price curve. Dietze et al.
(2022) provide a new structural model for this in electricity markets. They compute a
continuous daily forward curve as a deterministic seasonality plus a residual term. The
residual term is estimated using the maximum smoothness criterion to find residuals
that minimize the arbitrage opportunities between this forward curve and the observed
contracts while being as smooth as possible. This approach is along the lines of the
theory presented by Benth, Benth, et al. (2008), where the fundamental forward prices
are described as a combination of a seasonality function and a residual correction term.

There is no consensus in the literature regarding the thresholds for short-, medium- and
long-term electricity prices. Short-term forwards and forecasts usually include contracts
with maturity up to a few days ahead. This is the category that has the highest priority in
day-to-day market operations (Weron, 2014). The medium-term perspective covers from
a few days and up to some months ahead. The contracts with this horizon are important
for risk management. Historically, the long-term time horizon has been from a couple of
months to several years and is crucial for investment and operational decisions. Most of
the focus in the literature has been on short- and medium-term forecasting. There are
some studies on the long-term horizon for up to one year, e.g., Nowotarski et al. (2013).



However, there is little existing literature for longer horizons, with time to maturity of
more than a year and extrapolations beyond the maturity of tradable contracts.

In this thesis, we obtain an electricity forward curve up to 2050 for the Nordic market.
We exploit some of the key findings from our project thesis (Falch & Rolstad, 2021). The
forward risk premium appears to be decreasing with time to maturity up to a certain
point before it stabilizes for the Y42 and Y+3 contracts. Conducting linear regression
of the differences and testing the significant difference between the premia supports the
assumption of convergence in the maturity dimension. In addition, we perform an ex-
planatory analysis of futures and forecast data through principal component analysis.
Finally, we use our findings to justify extrapolating the forward curve by adjusting it
relative to long-term forecasts.

The remaining sections of this thesis are structured as follows. Section 2 provides a review
of work relevant to extrapolation of forward curves, and background and theory of the
Nordic power markets. Section 3 presents the input data together with an exploratory
analysis conducted using PCA. This section also includes an examination of the assump-
tion of a steady premium. Next, Section 4 explains how we estimated the elementary
future prices and applied the forward risk premium to extrapolate the curve relative to
long-term forecasts. Section 5 presents the main findings of the thesis. Finally, Section 6
concludes the report and elaborates on possible future work.



2 Related Work

This section presents a review of work related to the purpose of this thesis and our
research of the Nordic long-term forward market. First, we analyze the existing state
of knowledge on the extrapolation of forward curves. In addition, we will discuss the
modeling of seasonality in the power market and the smoothing of swap contracts to
establish elementary forward prices. We will also present the forward risk premium work
and discuss how this could be applied to our methodology. Finally, we will describe
briefly how principal component analysis could be utilized to explain and further analyze
our data.

2.1 Extrapolating Forward Curves

Commodity-pricing models are often evaluated based on how well they fit the futures
prices. The prices of such models can be obtained using either risk-neutral or risk-adjusted
probability distributions. Under a risk-neutral probability distribution, futures prices
match the expected spot price. However, for risk-adjusted probabilities, futures are traded
at a premium. Commodity-pricing models are primarily used for pricing derivatives.
However, as pointed out by Cortazar et al. (2015), they are also commonly used for risk
management or net present value calculations.

Electricity derivatives are typically priced using two methods: spot and forward modeling.
Spot models attempt to capture the dynamics of spot prices and obtain a closed-form
solution for forward prices using no-arbitrage constraints. One of the most well-known
methodologies in this category is the Schwart-Smith method. The model was modified
to combine two stochastic factors to deal with price spikes. This includes a long-term
equilibrium level, often a Brownian motion process, and an Ornstein-Uhlenbeck process
for the short-term deviations. One then uses the relationship between forward prices and
the conditional expectation of spot prices throughout the delivery dates when constructing
predictable elements such as seasonality with a jump-diffusion method Dietze et al. (2022).

Forward-based methods, often attributed to the Heath-Jarrow-Morton (HJM) category,
attempt to define a solution for stochastic forward curves directly. The HJM framework
is derived from fixed income markets and assumes instantaneous forward prices. For elec-
tricity, the forward contracts with swap structure need to be converted into elementary
forward curves while considering the no-arbitrage assumptions. The usual way of formu-
lating models within the HJM framework is with a number of K factors, each representing
an independent Brownian motion. The number of factors, including the volatility term
structure, is often determined by applying Principal Component Analysis (PCA). This
process is introduced later in Section 2.6.

Our objective is to create estimations of long-term electricity futures prices. Current
practice is to calibrate price models using tradable futures contracts with maturities of
up to a few years. There is limited research on the performance of these models across
longer maturities. The majority of studies focus on calibrating models that forecast the
short-term forward prices, e.g., Nowotarski et al. (2013).



The problem to be solved is how to derive reliable estimates of the long-term forward
curve in the absence of futures contracts with sufficiently long maturities. For example,
Cortazar et al. (2008) demonstrate that extrapolating models calibrated exclusively on
short- and medium-term contract prices to obtain long-term futures prices is unreliable
for the oil market. Consequently, the models must be calibrated based on something with
a longer horizon. One alternative source of information could be power purchase agree-
ments, which are bilateral over-the-counter arrangements in which the parties commit
to long-term power delivery. The contract periods may exceed twenty years and typi-
cally provide consumers with a discount relative to the futures market. Consequently,
the market for power purchase agreements is comparable to the long-term forward mar-
ket. Unfortunately, the information regarding these contracts is considered sensitive, and
hence, the prices and delivery capacity are not publicly available.

Another possible source of information is analytical forecasts from independent providers.
It is not standard among researchers to use analytical forecasts as input in a no-arbitrage
term structure model. It is challenging to quantify the exact amount of new information
offered by predictions that are not already reflected in market pricing. However, if the
forecasts are accurate, they reflect the market’s anticipation of the spot price. It has been
demonstrated through forecasts that macroeconomic indicators, such as yields, inflation,
and GDP, can be accurately predicted (Altavilla et al., 2017; Stark et al., 2010). It is not
common to consider spot price estimates when predicting commodity futures. However,
this has been accomplished with success in oil markets by Cortazar et al. (2019). Their
paper incorporates a consensus curve of long-term forecasts of the oil price and uses this to
calibrate their N-factor Gaussian model of the future oil price. This thesis finds inspiration
from their methodology for extrapolating the forward curve by combining forecasts and
risk premium.

2.2 Seasonality

Seasonality on an annual, weekly, and daily basis must be considered when discussing price
levels. Significant fluctuations in demand and supply account for the seasonality and are
especially evident in regions where seasonal temperature fluctuations are extreme. For
example, in the case of Nord Pool, particularly low-temperature winter months increase
the demand for heating. Temperatures also influence the inflow of water into reservoirs,
which significantly impacts the supply in a hydro-dominated power market. These are
annual cycles that affect the prices. In addition, the weekly demand shifts from being high
during the week to being lower on weekends. Lastly, the general working hours influence
intraday fluctuations, resulting in off-peak demand at night.

Nowotarski et al. (2013) explain that the most common representation of the spot price,
P;, is to combine one stochastic component, X;, and a trend-seasonal component, f;. The
seasonal component comprises a short-term seasonal component (STSC) and a long-term
seasonal component (LTSC). The STSC is weekly periodic and of less importance for
the valuation of power derivatives with long-term delivery periods (monthly, quarterly,
yearly). Minor weekly fluctuations will have a diminishing impact when looking at a 30-
year horizon. As the objective of our study is to evaluate the long-term forward curve,



we believe the short-term weekly seasonalities to be of less value and do not account for
them in our research.

The long-term seasonal component is of more significant importance as it represents
changes in the fuel price levels, seasonal variations in weather, and consumption. Thus,
the LTSC is crucial for the model’s accuracy, and potential misspecification can lead to
bad out-of-sample tests. In the worst case, small mistakes could develop and result in
undesirable future curves where seasonality is inaccurate over 30 years of predictions. The
paper of Nowotarski et al. (2013) goes into depth about seasonal decomposition as they
find that the subject has been neglected in many academic papers.

Studies regarding the modeling of LTSC can be divided into three categories; The first
one is to apply piecewise constant functions, dummies, and linear trends (Fleten et al.,
2011; Haugom & Ullrich, 2012; Lucia & Schwartz, 2002). This includes fitting a piecewise
constant function or dummies typically for each month. Fitting these is a trivial task and
results in the seasonality being relatively well represented, only limited by the number
and frequency of the dummies. However, a consequence of this approach is a non-smooth
trend-seasonal component with clear jumps between months. This may lead to spurious
seasonality as explained by Abeysinghe (1994).

The second approach is wavelet decomposition or similar nonparametric techniques for
smoothing, e.g., Hodrick-Prescott filter, Fredman’s supersmoother, and spline functions
(Conejo et al., 2005; Garcia et al., 2005; Janczura & Weron, 2010; Janczura & Weron,
2012; Stevenson et al., 2001; Weron & Zator, 2014). This technique is less periodic and
more robust against outliers than other approaches. The wavelets come in pairs of so-
called father and mother wavelets, with new sequences being projected onto either one.
The order of the wavelet is decided as a trade-off between smoothness and frequency. The
procedure is a form of lowpass filtering, which yields a linear smoother.

The third and final approach, which will be applied in this study, is to model the season-
ality as a sum of sinusoidal functions of different frequencies (Benth et al., 2012; Cartea
& Figueroa, 2005; Weron, 2008). The spot and forward prices exhibit rather complex
annual patterns. This makes it infeasible only to consider one simplistic sine function.
The solution to this problem could be to apply other sine and cosine functions of higher
frequency. However, whether the periods should be the harmonics of annual frequency is
an open question. Pilipovic (2007) and Weron (2007) shows that Fourier decomposition
of a signal exhibits a natural appearance of harmonics. The choice of the number of terms
in the Fourier series can vary between different papers and is, to some degree, decided
ad hoc (Benth & Koekebakker, 2008). The LTSC of a Fourier series does not perform as
well as the wavelet decomposition for in-sample fitting. However, using a Fourier series
for out-of-sample estimations is straightforward and solely based on the extrapolation of
the Fourier series with known amplitudes and frequencies.

Nowotarski et al. (2013) find that wavelet-based models are significantly better than both
sine-based and simplistic dummy-variable models at forecasting spot prices for the short-
term maturities within a year. This is not the case for the longest forecasting horizons
they tested, 275 — 365 days ahead. A reason for this could be that while the periodic
functions of sinusoidal and dummies are easily extrapolated into the future, the wavelets



LTSC have a hard time being predicted further than the following weeks. The good short-
term fit of wavelets could also make the model perform well in the upcoming months and
quarters. However, the predictive power will decrease with time to maturity, and thus
we expect the sinusoidal-based models to outperform the wavelet decomposition for long-
term extrapolations. Further, the simplistic dummy variable approach also outperforms
the sinusoidal approach in the short term. However, due to the limitations of the dummy
variables as explained above, we choose to model the seasonality using the sinusoidal-based
Fourier series.

2.3 Smoothing

Electricity is a so-called “How commodity”. This means that the forward and futures
contracts have a defined delivery period where the price is set constant for a period (e.g.,
week, month, quarter, or year), as opposed to other commodities where the delivery is
set to a fixed date the future. The contracts are settled in cash against the system price
continuously over the delivery period. Thus, futures contracts are written on the average
hourly spot price for the contract duration. Consequently, electricity contracts are, in
reality, swap contracts with overlapping structures as they introduce a fixed, average
futures price for the floating spot price (Benth & Koekebakker, 2008).

To be able to model the forward price dynamics, it is necessary to represent the forward
prices by continuous term structure curves (Benth & Koekebakker, 2008). Consequently,
it is necessary to calculate so-called elementary forward prices. The concept of elementary
forward prices aims to find forward prices that can reconstruct the swap prices while being
the smoothest function over the analyzed maturities. The curves are derived from the
market’s observable prices for products with a delivery period. This task has been studied
for many years in the fixed income market, with the seminal paper of McCulloch (1971).
Benth and Koekebakker (2008) present a mixture of two main approaches of Anderson
et al. (1996).

Most of the work done on this topic originates from the maximum smoothness crite-
rion, introduced by the study of Adams and Van Deventer (1994). Regarding electricity
markets, Fleten and Lemming (2003) used a bottom-up model to integrate the forward
market prices with forecasts. They then calculate the elementary forward prices through
a quadratic bi-objective optimization problem. In this optimization problem, the first
goal was to minimize the difference between the forward prices and the bottom-up model
results. The second goal was the maximum smoothness criterion, weighted by a factor A.

We base our smoothing approach on the semiparametric structural model introduced by
Dietze et al. (2022). They developed a method based on the no-arbitrage relationships
between overlapping contracts. The work points out that trading a quarterly swap con-
tract is essentially the equivalent of a portfolio of three monthly swaps with consecutive
delivery periods in an efficient market. If this relationship does not hold, we have a source
of arbitrage that market participants should take advantage of without incurring any risk.
The arbitrage net present value is defined as:
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Where F;; is the observed swap price for maturity i on the date ¢ with delivery over the
time period (h;;, hy; + ATy;). fii is the elementary forward price which is not observed
in the market, and r is the risk-free interest rate. With the assumption that there is an
arbitrage-free market, we have that A;; should be zero. This is unrealistic for most real
market cases. A solution would be only to consider contracts without overlaps. However,
elementary forwards are state variables calculated from established swap prices, and thus
the intersection between delivery periods incorporates important information. Dietze et
al. create arbitrage-free prices by adjusting the observed swap contracts to minimize the
arbitrage element. From this, the elementary forward prices can be created (Dietze et al.,
2022).

Structural models are time series frameworks that incorporate dynamic evolution through
time where unobservable state variables work as time-varying coefficients. The measure-
ment equation gives the relation between elementary forward prices (state variables) and
the times series swaps and is given as:
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It also includes an error term £;; = 5=. It is unrealistic to have zero arbitrage, especially
N

due to low liquidity particularly in the long-term. The state equation where the transition
of state variables is given:

The measurement equation incorporates a J;; term defined as: J;; = 3}
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The residual € is dependent on time and maturity and assumed to be a function of
the set of smooth functions. The state equation explains the elementary forward price
dynamics. Seasonality effects through sinusoidal functions are inserted in the vector x; ;.
T represents the transpose of the vector. The vector S contains the coefficients of the
seasonality function. The functions have a natural periodicity, and compared to dummy
variables, they are continuous, meaning there are no sudden jumps between periods. Such
a series of sinusoidal functions or a truncated Fourier series with a number of n harmonics

is defined:

(2.4)
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As introduced earlier, the choice of terms for the seasonality can be decided ad hoc. We
can apply any seasonal periodicity through this approach, from yearly to weekly or even
intra~daily resolution. Based on the arguments provided by Benth, Benth, et al. (2008)
we choose to implement a four-term Fourier series with yearly periodicity.

2.4 Forward Risk Premium

When using frameworks to price derivatives on a commodity, it is essential to adjust them
to account for the commodity’s specific characteristics. Since there is a lack of ways to
store electricity in significant quantities, the no-arbitrage assumption of the storage theory
is invalid. A risk-free position cannot be obtained by simultaneously selling the future
and holding the underlying commodity. This is the reasoning behind Nésdkkala (2005)
assertion that energy is not a financial asset.

Further, one approach is to set the equilibrium considerations based on a premium between
the forward price and the commodity price. Weron and Zator (2014) points out that
the terminology “risk premium” is used inconsistently in the literature. The terms risk
premium and forward premium have been used indiscriminately when defining different
premia. Bessembinder and Lemmon (2002), Haugom et al. (2020), and Longstaff and
Wang (2004) among others, uses the terminology forward premium, which we will stick
with throughout this study.

The forward risk premium is defined as the difference between the forward and expected
spot prices and is regarded as compensation for holding the risk of the commodity. The
risk arises from the possibility of demand and price fluctuations. Theoretically, the forward
price is an unbiased estimate of the spot price in a market with equal short and long
hedging demands. However, suppose that the hedging demand is net short or long. In
that case, the futures price will differ from the expected spot price and consequently
appear biased from a statistical standpoint (Smith-Meyer & Gjolberg, 2016).

Producers seeking to manage their risks generate a short position in forwards. In addition,
the idea of normal backwardation argues that market players’ risk preferences influence
the forward premium. A market in backwardation is characterized by futures prices that
are lower than the spot price due to excessive producer hedging pressure. As a result,
producers must pay a premium to hedge future prices. Assuming a complete market, the
premium encourages speculators to purchase futures. However, we observe the reverse
effect when the market is in contango. In this scenario, the forward premium is positive,
and buyers who lock in future prices pay a premium to sellers.

Koolen et al. (2021) analyze how the introduction of various renewable energy technologies
affects the short-term hedging pressure and, consequently, the forward premium. They
find that introducing large-scale renewable energy production (e.g., solar and wind farms)
increases producers’ hedging pressure. Therefore, recent developments of large-scale wind
farms in the Nordic region could have negatively affected the forward risk premium.

When looking at forward risk premium, one often distinguishes between ex-ante and
ex-post and measures it in either level (€/MWh) or log-return (%) values. In contrast
to other financial markets, commodities markets are typically described by log values



representing relative price changes rather than a return. We use the notation log-return
in this analysis when referring to the continuous price change in %. The ex-ante forward
premium FP¢(t,T) is the difference between the futures contract traded at time ¢ with
maturity at time T, F(¢,T), and the expected spot price at time T predicted at time ¢,
E/[S(T)]. The InFP¢“(t,T) is the ex-ante premium measured in log-return values.

FP*(t,T) = F(1,T) — E,[S(T)| (2.5)

InFP*“(1,T) = In(F(1,T)) — In(E;[S(T)]) (2.6)

The ex-post risk premium is defined as the difference between the futures price and
the realized spot price at maturity, i.e., FP’(t,T) = F(t,T) — S(T). Stated in log-
values we have In(FP(t,T)) = In(F(t,T)) — In(S(T)). Ex-post is more practiced in the
literature since it utilizes the captured spot price instead of the more difficult-to-collect
expected spot price. However, one issue with this is the limitation in data for extrapolation
purposes. As ex-post requires realized spot prices, it is not too meaningful to use it for
extrapolation many years into the future.

On the other hand, the ex-ante approach uses expected spot prices from professional
forecast providers. Thus, it can be used to connect futures curves to long-term forecasts,
yielding information about the futures curves’ long-term price level. Nevertheless, this
solution becomes dependent on a subjective choice of spot price expectation if no consensus
forecast exists. Cortazar et al. (2019) analyze the ex-ante risk premium in the oil forward
market. They combine analysts’ forecasts from several sources to create a consensus curve.
They defend their methodology by claiming that market participants utilize forecasts to
estimate market expectations and as a foundation for their resource planning models. In
addition, analysts’ compensation is often related to the accuracy of their forecasts, which
reduces their motivation to withhold information for personal gain. Hence, Cortazar et al.
(2019) claims that the ex-ante risk premium approach is suitable for the energy futures
market.

The literature focuses on different durations when examining the forward risk premium.
Short-term contracts have received great focus in the literature. The reason for this
might be that the trading volumes and liquidity of contracts increase when approaching
maturity and for shorter delivery periods (Fleten et al., 2015). Examples of work done on
short maturities are Botterud et al. (2002), Longstaff and Wang (2004), Weron and Zator
(2014) and Lucia and Torré (2011). Most research on shorter contracts finds evidence of
a positive forward risk premium in the Nordic market.

Medium-term contracts are defined as contracts with up to some months. This contract
length has been examined by Bessembinder and Lemmon (2002), Pietz (2009), Redl and
Bunn (2013), Redl et al. (2009), Valitov (2019), and Viehmann (2011), among others.
Some of these studies have found a positive forward risk premium, whereas others have
identified a negative premium. Bessembinder and Lemmon (2002) present an equilibrium
model that implies the future price to be a downward biased predictor of the spot price
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if predicted power demand is low, and demand risk is modest. This is equivalent to
a negative forward premium. The study also suggests that the forward risk premium
decreases with the expected variance of the spot price and increases with estimated spot
price skewness. Smith-Meyer and Gjolberg (2016) demonstrated that the ex-post risk
premium of Nasdaq had decreased after 2008, making future contracts unbiased and more
precise forecasts of the spot. They argue that the Nordic power futures market may have
fully matured and is currently at least weak-form efficient.

Our literature review did not uncover any analysis of forward risk premia of longer ma-
turity than one-year contracts in the Nordic electricity market. One possible explanation
for this might be that most work is done using the ex-post approach. Thus, many changes
have happened in the market between the trading date of the futures contract and the ac-
tual trading date of the realized spot price. Another reason might be that the short-term
contracts make up a substantial part of the transactions at Nasdaq (as well as in other
commodity futures markets) (Gjolberg & Brattested, 2011). Therefore, we contribute to
the literature by computing the ex-ante forward risk premium for long-duration contracts
and use these premia when extrapolating the forward curves. Table 2.1 summarizes the
main contribution to the field of forward risk premium in the Nordic market.

Table 2.1: The highlights of the literature review are presented in matrix form. The research is mapped
based on different categories presented in different columns. These include the ex-post or ex-ante ap-
proach, duration of the contracts, power market, time range considered, and the sign of the forward risk
premium. We define the contracts with a maturity of up to one month as short. Medium duration is
between one month and one year, while long duration is for contracts above one year. We emphasize
where our work fits in, marked with bold font.

Ex-post vs. . , . Sign of
Paper Ex-ante Duration Market Time Range Premium
Bessembinder and Lemmon (2002) Ex-post Medium PJM and CALPX 138; - 3888 and Negative
Botterud et al. (2002) Ex-ante Short Nordic 1995 — 2001 Positive
Longstaff and Wang (2004) Ex-post Short PIM 2000 —2002 Positive
Redl et al. (2009) Ex-post Medium Nordic and German 2003 — 2008 Positive
Botterud et al. (2010) Ex-post Short Nordic 1996 — 2006 Positive
Gjolberg and Brattested (2011) Ex-post Short Nordic 1995 — 2008 Positive
Lucia and Torré (2011) Ex-post Short Nordic 1998 - 2007 Positive
Weron and Zator (2014) Ex-post Short Nordic 1998 — 2010 POSltlYe and
Negative
Fleten et al. (2015) Ex-post Short Nordic and German 2003 — 2012 Positive
Cortazar et al. (2019) Ex-ante Medium/Long Oil Market 2011 — 2015 Positive
Our Contribution Ex-ante Medium/Long Nordic 2012 — 2021 Negative

We further base our argument for doing this on our risk premium calculations obtained in
our work with a project thesis conducted in autumn 2021 (Falch & Rolstad, 2021). The
data that laid the foundation for calculations of forward risk premium in that project is
applied further in this thesis. The forward risk premium measured for the Nordic market
in our project thesis is presented below. We present the premia based on electricity
futures price observations from Nord Pool and analysts’ forecasts for the same maturity
range for maturities ranging from one month to three years. This forward risk premium
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is calculated based on fewer contracts than for the analysis of this thesis. However, it
shows how the premium changes for different maturity lengths.

Table 2.2: The Nordic electricity market’s forward risk premium. The premium is calculated using
weekly data between February 2012 and June 2021. We present the results as logarithmic values in
percentages and level values as €/MWh. HAC standard errors (Newey and West (1987)) are reported in
parentheses. Stars(*) denote significance levels of 10%, 5%, and 1%.

Nordic premium
Maturity Feb. 2012 — Jun. 2021

Log (%)  Level (€/MWh)
616 ., -103 .,

RO (2.00) (0.43)

O " sy
R gy oy ™
e B g
va e 3

The average premium for the one-month contracts is —6.16%. The premium decreases
and appears to stabilize at approximately —12.30% for the two- and three-year contracts.
Furthermore, the premium is significantly different from zero for all maturities, at a 1%
significance level using Newey-West (HAC) standard errors.

Figure 2.1 presents the future and forecast curves at two selected dates. In addition to
the contracts presented in Table 2.2, we add a few more inside the first year to generate
curves for the whole maturity range. M indicates a monthly contract, Q a quarterly
contract, and Y an annual one. Each contract represents the arithmetic mean of daily
prices during the delivery period. Consequently, seasonal factors impact the portion of
the graphs depicting short delivery periods. Spot and futures prices for contracts with
short maturities appear to be higher than the rest of the forward curve. This is due to
the winter effect dominating the contracts having a short time to maturity and delivery
period.
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Figure 2.1: Electricity futures and analysts’ forecasts plotted for a) 6 January 2017 and b) 8 January
2021. The graphs show curves for maturities up to and including three years.
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Further, Figure 2.1 indicates the estimated risk premium as the difference between the
futures and expected spot prices in both plots. It can be seen that the forward risk
premium is negative for the longer maturities for both issue dates presented. It is also
a sign that the forward risk premium is relatively stable and seems to be converging in
the maturity dimension for the longer contracts. One interesting observation can be seen
in Figure A.1 in Appendix. The Y+1 futures, forecasts, and forward risk premium are
plotted against issue dates. It demonstrates that there appears to be a change in the
premium across the time dimension. Consequently, we cannot assume any convergence in
this dimension and must account for these changes in our models.

The descriptive statistics of the forward risk premium are shown in Table B.1 in Appendix.
It is expected that the forward risk premia with a shorter time to maturity and shorter
delivery periods are more volatile than those with longer maturities and longer delivery
periods. This is consistent with the Samuelson effect, which states that the volatility has
an inverse relationship with their time to maturity (Samuelson, 1965). Also, contracts
with longer delivery periods are not affected by seasonal variations to the same degree as
contracts with shorter delivery periods. They are the average value over a larger maturity
range.

Additionally, it is reasonable to expect the volatility to stabilize at a low level for longer
contracts, as it cannot decrease indefinitely. This, combined with Bessembinder and
Lemmon’s results, supports the hypothesis that the forward risk premia converge in the

long run of the maturity dimension. We will examine this assumption further in Section
3.4.
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2.5 The Nordic Power Market

Hydropower is the dominant source of renewable energy in the Nordic power market.
In 2019, hydropower contributed around 51.7% of total renewable energy, while variable
renewable energy (VRE) sources such as solar and wind energy accounted for approxi-
mately 12.9% (Gogia et al., 2019). Hydropower can be stored to some extent, whereas
VRE cannot. Both hydropower and VRE are significantly affected by weather, although
hydropower is less affected in the short run due to its storability.

The Nordic electricity market is divided into two sections based on whether transactions
are settled physically or financially. Nord Pool is the physical delivery power exchange.
It serves 16 European countries, making it Europe’s leading transaction marketplace for
electricity contracts (Nord Pool, 2020). The spot price is the price agreed upon by the
participants and serves as the reference price for financial futures contracts.

The Nordic financial electricity market is known as Nasdaq Commodities Europe. With
250 companies trading from 20 different countries, it is one of the largest international
electricity markets (Nasdaq, 2022a; Nikkinen & Rothovius, 2019). The forward market
was founded in 1993 as Statnett Marked AS and now trades various power derivatives such
as forwards, options, base and peak load futures, and Electricity Price Area Differentials
(EPADs), which were previously known as CfDs. The maximum duration of derivatives
available is five years. Since the contracts are only considered financial, there is no physical
exchange of power (Nasdaq, 2022b).

In recent years, bilateral agreements, commonly known as power purchase agreements,
have experienced growth across the Nordic region and the rest of Europe. PPAs are a
popular strategy for producers and consumers to manage long-term risks. Bilateral power
agreements are not a particularly new creation. Producers and customers have utilized
traditional agreements to trade power for decades. However, in recent years, the market
for these contracts has seen the arrival of new categories of buyers and sellers. Wind
farms have dominated the sell-side of new PPA contracts. Due to substantial up-front
investments, lenders want developers to demonstrate a reliable income stream. According
to Akinci and Ciszuk (2021), investors and financial institutions require producers to sell
roughly 70% of their electricity generation through long-term power purchase agreements.

Over the past decade, the Nordic corporate PPA market has expanded while volumes in
the Nordic futures markets have fallen. In Europe, the volumes of PPAs have increased
from 127 MW in 2013 to 2 330 MW in 2018. Norway and Sweden have been responsible
for the vast majority of the agreements signed over the five years (Copenhagen Economics,
2020). On the buying side, most new players are data centers and multinational corpora-
tions with an ESG initiative. PPAs are an alternative to futures that is gaining popularity
among market participants. Despite the relationship, the majority of the rise in the cor-
porate PPA market is attributable to production capacity that was not previously on the
market.

There are two essential distinctions between power purchase agreements and future con-
tracts that influence the decision of market players. First, PPAs can be tailored to the
special conditions of the parties involved. In addition to increasing the complexity and
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expense of hedging, this possibility also increases the cost of negotiations. Second, coun-
terparty risk may represent a considerable hidden cost in PPAs and must be taken into
account. However, the regulation of the financial markets considerably minimizes coun-
terparty risk.

In Norway, both the forward market and the power purchase agreements offer market
players alternatives for hedging. Due to the importance of the energy-intensive industry,
Norway’s PPA market is considerably larger than that of other nations. The financial
futures market is typically utilized for up to five-year hedges, while the PPA market is
utilized for longer hedging. This is seen when comparing the open interest (or total size
of active contracts) of the financial market and power agreements. The open interest
decreases with time for futures contracts, while it increases with time for power purchase
agreements. As a result, we view the new power purchase agreements as meeting new
market demands and increasing hedging alternatives (Copenhagen Economics, 2020).

A fair price of futures contracts is strongly related to market liquidity. Further, liquid
future markets are needed to ensure sufficient hedging opportunities. Futures market
efficiency will be negatively affected by decreased liquidity. Uncertainty over pricing
signals might enlarge the bid-ask spread, increasing market participants’ costs. Since
the 2008 financial crisis, the total traded and cleared futures volume on Nasdaq OMX
has decreased, from approximately 2 500 TWh in 2008 to approximately 1 000 TWh in
2019 (Copenhagen Economics, 2020; Houmgller, 2017). Thus, there are indications that
the financial Nordic power market is becoming less efficient. A report commissioned by
Statnett highlights growing concerns around a lack of liquidity for the financial derivatives
utilized for power price hedging (Statnett, 2021).

Changes in collateral requirements may be a contributing factor to poor liquidity. The
European Market Infrastructure Regulation (EMIR) and Markets in Financial Instru-
ments Directive (MiFID) have effectively prohibited bank guarantees as an alternative to
posting the necessary collateral for clearing financial contracts. These guarantees were a
far less expensive way for non-financial enterprises to meet their collateral commitments
than borrowing or keeping liquid assets. Before this modification of the law, around sixty
percent of market participants relied on bank guarantees for liquidity (Statnett, 2021).
Thema Consulting conducted interviews with several market participants, including re-
tailers, consumers, and generators. They indicated that the direct financial expenses of
the collateral, management fees, and cash-flow risk associated with an open position are
especially high when placing long-term positions on the exchange. Local asymmetries in
the supply and demand for contracts may also contribute to poor liquidity. For example,
to deliver a similar product to a 10-year PPA starting in 2022, it is necessary to acquire
ten annual futures: from 2023 to 2032. With decreasing liquidity, increasing costs, and
risk related to the absence of futures contracts with maturities longer than five years,
power purchase agreements can be a suitable option for hedging. They are likewise illig-
uid, but they may be preferable if the hedger wants to construct a long-term hedge or
cover area price risk.
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2.6 Principal Component Analysis

Principal Component Analysis (PCA) is a technique for dimensionality reduction. It is
used to explain most of the variance in a data set using fewer components. For empirical
studies of forward prices, the PCA components’ threshold of cumulative explained variance
is frequently set to 95%. Cortazar and Schwartz (1994) studies the term structure of
copper futures prices. They find that three factors can explain 99% of the term structure.
Similar results are found in analyses of oil futures and interest rate markets. The PCA of
electricity markets is, on the contrary, yielding mixed results. Koekebakker and Ollmar
(2005) find in their analysis that ten factors are needed to explain 95% of the total price
variation and that the first two factors explain 75%. They argue that the low total
price variation explained by two factors is, as far as they know, a unique feature of the
electricity market. They create fixed delivery by smoothing and analyzing price differences
and price returns. Benth et al. (2007) take the analysis one step further and go into depth
on the characteristics. They need three risk factors to account for around 70% of the total
variance, with ten factors required to explain 95%. The authors do not find it appropriate
to include that many factors, as the amount of the additional volatility explained by each
new factor after the third only account for a small part of the term structure.

Benth, Benth, et al. (2008) extend previous work on PCA for updated data on swaps
from the Nordic market. Three factors explain around 70% of the variance of log returns,
while ten factors are needed to reach the threshold of 95%. The factor loadings structure
of the three major components followed the typical level, steepness, and curvature profiles
observed in the interest rate and other commodity markets. By evaluating the correla-
tion matrix of normalized electricity futures returns, they find that contracts of different
delivery periods are less correlated than contracts closer together. This finding is more
prominent in electricity compared to other commodity markets (Koekebakker & Ollmar,
2005). The consequence is that the factors chosen can have variable explanatory power
for different contract lengths.

Yu and Foggo (2017) conduct a PCA analysis on the California electricity peak and off-
peak future contracts. The data in their analysis is from 2009 to 2012. They find that
the top 3 factors explain more than 90% of the variability of electricity futures price
curves. This is very different from that of the Nordic market found by Koekebakker
and Ollmar (2005). Another study is presented by Dietze et al. (2022). After removing
the deterministic seasonality component from the forwards time series, they analyze the
Nordic and Brazilian markets by creating smooth elementary forward contracts and then
applying PCA to the residuals. They discover that only three variables are required to
account for 97.4% of the variance in the Nordic market from 2013 to 2018. Further, they
emphasize that the percentage of explained variance is larger than in other studies. They
follow up by pointing out that this could result from taking PCA on the residuals rather
than elementary forward prices.

The computation of principal components should yield a large amount of information
concerning the process of electricity price movements. We want to apply this to both
electricity futures and forecast data. Thus, we assume that the processes can be charac-
terized by a set of independent factors that continuously influence the curves to a specific

16



extent. The results of PCA will be estimates of the most influential factors, and thus
there is no guarantee of reaching the optimal eigenvectors. There are chances that we
converge at vectors that incorporate estimation errors in the levels of derived components.

Finally, we will use the results from PCA to evaluate both futures and forecasts from an
empirical point of view. This is done to explore the assumption of a converging forward
risk premium in the long run of the maturity dimension. These analyses are interesting
as there is little existing literature on performing PCA of forecast data. The analyses will
thus be included in our thesis, regardless of their ability to make inferences about our
hypothesis.
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3 Data

In this section, we present the data used for our research. A brief overview of our data
can be seen in Table 3.1. The futures and forecast data sets consist of two dimensions; the
time dimension covering trading/issue dates, and the maturity dimension covering time
to maturity and delivery period. Finally, we conduct an exploratory analysis focusing on
principal component analysis after describing how we clean the data.

Table 3.1: Overview of data. We present both raw input data from external providers, including
futures prices and forecasts, and the resulting data from our analysis is the long-term extrapolation.
Issue Frequency is the frequency of issuance of new data, e.g., daily settled futures prices. The Time
Period of data limits the data analysis.

Data Type Source Issue Frequency Time Period
Raw Input

Futures Prices Montel Daily Jan. 2004 — Nov. 2021
Short-Term Forecast Volue Weekly Feb. 2012 — Nov. 2021
Long-Term Forecast Confidential Yearly May 2011 — Sept. 2021
Our Analysis

Long-Term Extrapolation Daily Feb. 2012 — June 2021

3.1 Future Prices

Our analysis uses M+1, ... ; M+6, Q+1, ... , Q+8, Y+1, Y+2, and Y+3 closing forward
prices from 2012 to 2021. The volume of traded futures contracts for Y+4 and Y+5 is
deemed insufficient for inclusion in our analysis. We use this large number of contracts
to capture as much of the forward curve’s dynamics as possible. This is crucial when
constructing the smoothed curve in an attempt to avoid arbitrage opportunities.

Contracts in the Nordic power market have delivery periods corresponding to the calendar
year. This implies that monthly contracts correspond to distinct calendar months, whereas
quarterly and annual contracts correspond to distinct calendar quarters and years. When
discussing contracts in our analysis, we refer to rolling futures contracts. We produce
the data series by concatenating consecutive calendar contracts to create data series for
each contract type. This is demonstrated in Figure 3.1. Here the M+1 contract traded
in November has a delivery in the following month, December. When December begins,
the M+1 contract traded will have delivery in January, and so on. The same holds for
the remaining monthly contracts, as well as the quarterly and annual contracts. These
contracts can be merged into data series, as explained in the lower section of the figure.
These are the data series we use in this thesis.
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Figure 3.1: Visualization of how consecutive calendar contracts are merged into data series. Contracts
presented are M+1, M+2, M+3, Q+1, and Y+1.

Contract Delivery Period, j
Month type Nov. Dec. Jan. Feb. Mar. Apr.
Month
Nov.  Quarter Q+1
Year
Month
Dec.  Quarter
Trading Year
Date, t Month
Jan.  Quarter
Year
Month
Feb. Quarter

M+1

+
Merged M+2
M+3
Contracts
Q+l -
Y+1

As shown in Table 3.1, futures prices are updated daily, and the accessible data set covers
February 2004 to November 2021. There are also internal variations in data accessibility.
Some contracts have been traded on the market since 2004, while others were added later.
Because we need all accessible contracts to compute the elementary forward prices, we
have excluded the data for all contracts before February 2012.

Financial markets must have sufficient liquidity to ensure the correct pricing of the futures
contracts. Various methods for measuring liquidity include trading volumes, bid/ask
spread, order book depth, and trade frequency. We selected the futures with sufficiently
high trading volumes using a comparison of daily volume averages. In addition, we have
communicated with the commercial provider of futures prices, Montel, who confirmed
that the settled prices and corresponding volumes are substantial enough to be trusted.

Table 3.2 present the futures contracts evaluated in our analysis. Volume is stated in
MWh and represents the sum of all contracts traded between February 2012 and June
2021. The total trading volume is largest for contracts with the shortest time to maturity.
The Q+1, M+1, and Q+2 contracts are the most liquid, followed by the M+2 and Y+1
contracts. The missing trade days denote days for which future prices are unavailable. An
explanation for this is that there may be no resolved contracts for those dates. Overall,
just a small percentage of pricing days are unavailable. For M+6 contracts, 5.3% of days
are absent, while for Q+8 contracts, the volume is only 8 651MWh. We choose to include
these futures because they contribute to adjusting the elementary forward prices to avoid
arbitrage. There is no structural overlap for the contracts four and five years into the
future, Y44 and Y+5. In addition, their volumes are considered low. As a result, we
decided to exclude these contracts from our analysis. They are still displayed to illustrate
the decline in trading volumes.
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Table 3.2: Information on trading volumes for different futures contracts. Missing Futures are expressed
as a percentage and represent days without a settled price.

. Volume Missing
Maturity (MWh) Futures (%)
M+1 445 588 0
M+2 153 820 0
M+3 64 453 0
M+4 35 139 0
M+5 21 735 0
M+6 13 171 5.3
Q+1 870 484 0
Q+2 219 462 0
Q+3 72 512 0
Q+4 42 529 0
Q+5 21 935 0
Q+6 14 891 0
Q+7 10 778 0
Q+8 8 651 0
Y+1 141 958 0.1
Y42 49 329 0
Y+3 24 866 0
Y44 7514 0.9
Y+5 2 386 0.1

When a futures contract has no trading volume during a trading date, Nasdaq OMX can
decide on the theoretical closing price for that contract on that date. The price may
be determined on trading days with no transactions through a so-called Chief Trader
Procedure. A Chief Trader Procedure is a procedure where the price is determined based
on prices that exchange members provide. Exchange members must be approved by the
exchange at its sole discretion to be eligible for this task. The exchange determines the
closing price by calculating the average of all the prices received. The exchange may also
choose to remove prices provided through the procedure at its sole discretion. (Nasdaq
OMX Commodities, 2022)

The descriptive statistics of future prices are presented in Table 3.3. The bottom section
of the table shows the descriptive statistic of each contract length. The table shows that,
on average, the length of the delivery period appears to have an inverse relationship with
the average price of the contracts. The average prices for contracts with delivery monthly,
quarterly, and yearly delivery periods are 31.06, 30.03, and 29.27 € /MW h respectively. In
addition, we observe that the standard deviation decreases with time to maturity and con-
tract duration. The average standard deviation for the M+1 contract is 10.62 €/MWh,
nearly double that of the Y+3 contract at 5.65 €/MWh. The decreasing standard devi-
ation with increasing maturity is as previously mentioned a sign of the Samuelson effect
(Samuelson, 1965). Contracts with shorter duration are composed of fewer delivery dates
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than longer ones. Thus, the average price is more sensitive to short-term factors on both
the supply and demand sides. The same holds for contracts that are closer to their deliv-
ery period. These contracts are more susceptible to seasonal effects, such as higher prices
and volatility during the winter season in the Nordic market. Short-term price spikes
affect contracts with monthly delivery or a shorter time to maturity than contracts with
yearly delivery and a longer time to maturity. As a result, they are more exposed to
natural variations and become more volatile.

Table 3.3: Descriptive statistics of futures contract prices.

Maturity No. of obs. ( €1\//I§/f&7h) P(jg;l(i/I%V]i) ( €}\1/{/1[r‘1Nh) ( €1/V[1\{/C1[)\(Nh) Skewness Kurtosis
M+1 2 340 30.56 10.62 4.20 60.53 -0.04 0.25
M+2 2 340 30.78 10.07 4.48 57.3 0.02 0.19
M+3 2 340 31.02 9.86 4.70 57.00 0.02 -0.06
M+4 2 340 31.22 9.61 5.95 56.85 -0.02 -0.28
M+5 2 340 31.31 9.36 8.35 57.25 -0.04 -0.39
M+6 2215 31.46 9.28 9.00 57.00 -0.06 -0.50
Q+1 2 340 30.88 9.55 7.65 56.70 0.05 -0.22
Q+2 2 340 31.09 8.72 9.00 54.70 0.01 -0.44
Q+3 2 340 30.77 7.85 10.43 49.70 0.05 -0.58
Q+4 2 340 30.04 7.18 15.00 49.80 0.19 -0.51
Q+5 2 340 29.53 7.36 14.20 46.20 0.14 -0.78
Q+6 2339 29.48 7.29 13.30 45.30 0.03 -0.72
Q+7 2 340 29.43 6.96 15.20 45.60 0.14 -0.69
Q+8 2 340 29.06 6.85 16.10 47.20 0.26 -0.60
Y+1 2 338 30.06 6.56 13.18 46.85 -0.09 -1.02
Y+2 2 340 29.04 5.89 16.40 42.40 0.06 -0.88
Y+3 2 340 28.72 5.65 16.40 42.50 0.11 -0.48

Monthly 13 015 31.06 9.81 4.20 60.53 -0.03 -0.06

Quarterly 18 719 30.03 7.80 7.65 56.70 0.14 -0.35

Yearly 7018 29.27 6.07 13.18 46.85 0.05 -0.82

3.2 Analysts’ Forecasts

The primary objective of the analysts is to forecast electricity prices accurately. The
analysts have customers on both the buy and sell sides of the market. Consequently,
they want to reduce the forecast biases, i.e., the systematic differences between predicted
prices and the actual realized spot prices. When examining the ex-ante forward risk
premium, Fleten et al. (2015) asserts that the construction of an analysts’ consensus curve
is advantageous. Cortazar et al. (2019) describe how they accumulate a broad range of
analytical forecasts to eliminate any bias and maintain an objective market perspective.

We were only able to collect data on analyst predictions from two commercial forecast
providers. One of the forecasters provided short-term forecasts with high-resolution data
for the next four years, and the other provided long-term forecasts with yearly resolution
through 2050. As a result, we cannot generate a consensus curve and must anticipate
that the results will be less reliable than they could have been. As previously mentioned
in Section 1, electricity markets are highly volatile, with large price spikes and jumps.
Consequently, accurate forecasting of electricity prices is challenging in the long run.
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We argue, however, that the forecasts provided by the commercial providers should be
adequate. They are both considered among the market leaders when analyzing the power
market, and their enduring business models build on providing solid forecasts. Thus, we
anticipate that both forecast providers will have relatively accurate predictions.

To test whether the spot price forecasts are better predictors of the future spot price than
the futures prices, we analyze the performance accuracy of the forecasts. We compare the
average of the realized spot prices of the following calendar year with the average predicted
spot price of the delivery period. First, we find accuracy measures for each issue date and
then take the average. We then repeat the procedure for the futures prices by comparing
Y+1 contracts with the average of the realized spot prices of the following calendar year.
We find that the short-term forecast, long-term forecast, and futures prices result in Mean
Absolute Errors (MAE) of 6.32, 6.49, and 7.46 €/MWh respectively. We see that both
the short-term and long-term forecasts have higher predictive power than the futures data
in our data sets. Thus, we conclude that the forecasts can provide additional value when
extrapolating.

Calculating the forward risk premium is restricted by the forecast input data regarding the
time period of the data and the frequency of issue dates. These constraints are displayed
in Table 3.1. The forecasts, beginning in February 2012, restrict the time period for
calculating the Nordic forward risk premium. In addition, the frequency of the forecasts
is limited to weekly increments. The data for the long-term forecast spans from May
2011 to September 2021, thereby limiting the endpoint. In addition, Europe has endured
an energy crisis over the past year. High inflation rates, rising oil, gas and electricity
prices, and an uncertain macroeconomic situation, have contributed to abnormally high
prices and volatility. This situation impacted the Nordic power market, which has also
experienced a dry year with low water reservoir levels. The spot price of Nord Pool from
February 2012 through May 2022 is shown in Figure A.2 in the appendix. As a result, the
relationship between forecasts and futures from the second half of 2021 is highly variable
and unpredictable. Consequently, we have chosen to cut off all data after 30 June to cover
exactly half of 2021.

3.2.1 Short-Term Forecasts

The Sintef EMPS model, optimized for hydropower-dominated markets, is utilized to
forecast spot prices in the Nordic market. It is the only application supported by The
Norwegian Water Resources and Energy Directorate (NVE), and all major hydropower
producers in the Nordic region use it. The inputs for the model include climatic scenar-
ios, consumption, generation from thermal, solar, and wind power plants, transmission
constraints, nuclear production forecasts, and fuel market prices (Mo, 2021). The fore-
casts are generated weekly and have a five-year horizon. By extracting the correct prices,
we can generate forecasts that correspond to various periods of the year and match the
futures. The issue dates used in this thesis are shown in Table 3.1.

Table 3.4 provides descriptive statistics for the short-term forecasts data series. We have
selected to extract the forecasts corresponding to the forward contracts M+1, Q+1, Y-+1,
Y+2, and Y+3. These contracts provide a reasonable perspective and incorporate the
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longer-term contracts, which are of greater significance to our analysis. In terms of missing
data, the forecast for the Nordic one-month contract on March 13, 2013, is absent. Due
to the law of large numbers, we assume that this data point has a negligible impact on
the overall mean premia (Bolthausen & Wiithrich, 2013). Therefore, this data point is
omitted from our analysis. The table demonstrates that the forecasts have a relatively
stable mean price. Looking at the standard deviation column, one can see the Samuelson
effect as there is a decline in volatility as maturity increases.

Table 3.4: Descriptive statistics of short-term forecasts, grouped by a set of maturities. The standard
deviations in the Price S.D. column are the normal standard deviations.

Maturity No. of obs. ( €1>/[1\(/3§7I\1/h) }?@rl/clf/l\sﬂfi)) (€ /1\16[1&/.}1) ( €}\1/\I/;Ii\)7(Vh) Skewness Kurtosis
M+1 266 31.51 9.23 5.35 54.61 -0.05 0.63
Q+1 267 31.45 8.93 8.29 55.92 0.29 0.53
Y+1 267 32.59 6.21 21.42 49.04 0.45 -0.35
Y+2 267 32.68 5.24 21.73 46.64 0.22 -0.65
Y+3 267 32.33 5.12 21.32 42.57 0.01 -0.94

3.2.2 Long-Term Forecasts

The long-term forecast provider is a reputable agent who operates in Europe’s major en-
ergy markets. The price forecasts result from an advanced simulation model of the power
market that considers the primary price drivers, such as technological advancements, fuel
prices, and national climate policies. Long-term predictions place greater emphasis on the
latter factor than short-term predictions. We will not disclose the name of the forecast
provider as they have requested anonymity.

Table 3.5 presents the descriptive statistics for long-term forecasts. First, we observe that
the number of observable forecast series varies from Y+1 to Y+432. The number of annual
forecasts is modest and decreases for the longest maturities. Only one price is available
for the longest available forecast, Y+32. This number increases relatively quickly to 27
prices between Y+1 and Y+425. The average price rises from Y+1 to Y+32. Moreover,
we note that the standard deviation decreases with time to maturity up to Y+10. After
Y+10, the standard deviation generally increases with time to maturity to the same level
as the shortest contracts for the longest maturities. This increase may be due to the
shortage of data points. In comparison to the yearly contracts of the short-term forecasts,
both the mean and volatility of the prices in the long-term forecasts are somewhat higher.
In addition, the number of observations is almost scaled by a factor of ten, which may
explain why the volatility is greater for the long-term forecasts. Lastly, it is worth noting
that from Y+1 to Y428, the mean price exhibits a strict upward trend. Since we do not
have a comprehensive knowledge of the methodologies used in the forecasting model, it
is difficult to determine the reason for this. The anticipated inflation is a possible cause
for the increase. Adjusting for a 2% yearly inflation yields a forecast curve with more
reasonable prices. For the maturities Y410, Y+20, and Y+28, we obtain prices of 39.92,
43.96, and 45.31 €/ MW h, respectively.
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Table 3.5: Descriptive statistics of long-term forecasts. The forecasts are given with annual delivery
and grouped by time to maturity. The standard deviations under the Price S.D. column are the normal
standard deviations.

Maturity No. of obs. ( €1>/Il\$[i71\l7h) g;c&%f]}?) € /1\16[1;th) ( €}\1/\I/?\);/.h) Skewness Kurtosis
Y+1 28 34.02 8.05 21.93 54.77 0.62 0.00
Y+2 28 34.72 7.60 22.26 49.84 0.24 -1.01
Y+3 28 35.30 7.34 21.97 48.28 -0.03 -1.17
Y+4 28 36.81 7.7 24.14 52.61 0.08 -0.65
Y+5 28 38.44 7.04 27.71 54.32 0.25 -0.76
Y+6 28 40.54 6.70 29.96 54.84 0.23 -0.99
Y+7 28 42.61 6.48 32.74 57.09 0.38 -0.62
Y+8 28 44.92 5.93 35.85 56.83 0.15 -0.85
Y+9 28 47.01 5.56 38.48 57.05 0.06 -0.90
Y+10 28 48.76 5.53 40.23 59.71 0.15 -0.88
Y+11 28 50.16 5.97 39.66 62.44 0.14 -0.80
Y+12 28 51.89 6.26 41.98 65.26 0.22 -0.70
Y+13 28 53.64 6.30 44.89 68.17 0.45 -0.50
Y+14 28 55.49 6.22 46.58 70.96 0.68 -0.09
Y+15 28 57.10 6.33 48.18 73.83 0.83 0.35
Y+16 28 58.73 6.46 49.97 76.79 0.99 0.90
Y+17 28 60.36 6.64 51.67 79.84 1.20 1.59
Y+18 28 62.03 6.84 53.42 82.98 1.40 2.32
Y+19 28 63.77 6.98 55.94 85.78 1.60 2.93
Y+20 28 65.58 7.15 58.30 88.65 1.78 3.49
Y+21 28 67.39 7.39 59.89 91.61 1.93 3.94
Y+22 28 69.20 7.58 61.68 94.64 2.14 4.71
Y+23 28 71.03 7.94 63.53 97.77 2.23 4.93
Y+24 27 71.97 6.49 64.31 92.00 2.08 4.92
Y+25 27 73.94 7.12 61.26 95.16 1.69 4.17
Y+26 25 75.70 8.30 58.07 98.40 1.19 3.20
Y427 22 78.65 8.36 69.32 101.56 1.77 3.28
Y+28 18 79.33 8.28 69.36 104.98 1.76 4.63
Y+29 13 78.38 6.24 69.36 87.19 0.18 -1.43
Y+30 8 77.22 7.68 69.34 89.60 1.09 -0.38
Y+31 4 84.34 10.24 75.36 93.88 0.02 -5.91
Y+32 1 95.48 NAN 95.48 95.48 NAN NAN

3.3 Data Cleaning

There is a question regarding which maturity range one should consider when analyzing
the forecasts or the elementary forward prices. The maturity range covered by the tradable
contracts varies with trading dates throughout the year. The variable maturity range is
due to the long-term contracts having delivery periods of whole calendar years, while the
trading dates are continuous throughout the year. Figure 3.2 below illustrates this for
two years of trading dates. The contracts with the longest time to maturity that are
analyzed are the Y+3 contracts, which trade between January 1 and December 31. If
the Y+3 contract is traded on January 1, the highest maturity covering the elementary
forward curve for this trading date would be approximately 4 - 365 = 1460 days. The first
3 - 365 = 1095 days correspond to the time to maturity of the Y+3 contract, while the
last 365 days are its delivery period. If, however, the contract is traded on December
31 of the same year, the highest maturity covering the elementary forward curve would
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decrease to approximately 3 - 365 = 1095. This decrease is because the time to maturity
has now decreased to 2-365 = 730. The first 1095 maturity days constitute the convex set
of maturities common for all trading dates. The red triangles in the figure represent the
breaks that are not covering the elementary forward curve. In the maturity dimension,
these breaks occur for every new calendar year between 1096 and 1460. To achieve
consistency in the weighting of each issue date and to get consistent sizes of the training
and validation data sets, we have decided to cut all elementary forward curves at maturity
1095.

Figure 3.2: Visualization of the maximum maturity of the three-year futures contracts (Y+3). The
green area is covered by contracts, while the red triangles to the right are not covered. This structure
appears as a result of yearly contracts covering full calendar years. The time to maturity decreases for
trading dates throughout the year. When reaching a new calendar, a new three-year contract is being
traded, and thus the time to maturity increases by a year. This maturity will then decrease throughout
the next year until reaching a new calendar year. This decrease in maturity results in the structure shown
in the figure.
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3.4 Testing for a Stable Long-Term Forward Risk Premium

Our forward models build on the assumption of a stable risk premium in the long run of
the maturity dimension. To test this assumption, we analyze the risk premia for different
maturities. Since the length of the tradable forward contracts limits our data sets, we
can only achieve empirical tests for this assumption for maturities up until three years.
Thus, we compare the risk premia of the two-year and three-year contracts by testing the
difference between the two.
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One way to test our assumption is to test the statistical significance of the differences
between the two premia. We calculate the premium for each issue date as the log-return
between the traded forward price and the average of the forecasted price for the corre-
sponding delivery period. We do this for both two- and three-year contracts. We then
calculate the difference between these two premia for each issue date, defined as the pre-
mium for the three-year contract minus the premium for the two-year contract. We can
test if the difference between the forward premia is statistically significant. The series are
stationary and normally distributed for both the log and the level premium difference.
Since the spread between the forward risk premia is autocorrelated, we use the Newey-
West robust standard error (HAC) to test the statistical significance. In addition to this,
the Goldfeld Quandt test in the last column of the table shows that the level difference is
heteroscedastic. The complete list of tests performed is presented in Table 3.6. We find
that the spread is not significantly different from zero, supporting our assumption that
the forward risk premium converges in the maturity dimension for longer maturities.

Table 3.6: Examining the significance of the difference in forward risk premium between two- and
three-year contracts. We conduct these tests on the time series obtained by subtracting the forward
risk premium of the two-year contracts from that of the three-year contracts. Furthermore, we test
for stationarity, normal distribution, autocorrelation, and heteroscedasticity. The result of each test is
underneath their p-values.

Mean Newey-West Newey-West ADF Jarque Bera Breuch Godfrey Goldfeld Quandt
’ Standard Error (p-value) (p-value) (p-value) (p-value) (p-value)
Log Premium Difference  -0.0001 0.004 0.97 0.0186 0.600 1.2E-35 0.18
Conclusion No Significant Difference Stationary Normally Distributed Autocorrelated ~— Homoscedastic
Level Premium Difference -0.0008 0.132 0.995 0.0224 0.801 3.5E-37 0.002
Conclusion No Significant Difference Stationary Normally Distributed Autocorrelated ~ Hetroscedastic

We also want to perform linear regressions of the difference in premium with the logarithm
of the price points at different maturities as explanatory variables. We are interested in
testing if the difference in risk premium can be explained by the logarithm of the prices
of either the two-year or three-year contracts. First, we again calculate the difference
between the two-year and three-year contract premium. We then extract and take the
logarithm of the prices of the two- and three-year contracts for each issue date. We run
linear regressions getting estimations of the coefficients for the intercept and the slope of

the explanatory variables. The relationships are visualized in the scatter plot in Figure
3.3.
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Figure 3.3: Two scatter plots of the difference between the three- and two-year forward risk premia.
The top graph plots the difference against the log-prices of two-year contracts. The graph below plots
the difference against the log-prices of three-year contracts.
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The estimated coefficients from the linear regressions can be seen in Table 3.7. We use
the Newey-West robust standard error (HAC) to test the significance of these coefficients.
Estimates of the analysis with two- and three-year contracts result in p-values of 0.077 and
0.053, respectively. We conclude that the slope coefficients are not significantly different
from zero, using a significance level of @ = 0.05. The logarithm of the prices has no
significant explanatory power on the difference between the risk premium observed for
two-year and three-year contracts.
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Table 3.7: Significance test of the difference between the three- and two-year forward risk premia. The
test examines whether the slope coefficient of the regression is significant. HAC standard errors (Newey
and West (1987)) are applied, and stars denote significance levels of 10%, 5%, and 1%.

Moan Newey-West Newey-West
Standard Error (p-value)
Twovear slobe cooff 0.0026 0.014 0.077 *
WO P No Significant Difference
0.028 0.014 0.053 *

Three-year slope coeff No Significant Difference

3.5 Exploratory Analysis: Principal Component Analysis

We performed PCA on the elementary forwards and the short-term forecasts as an ex-
ploratory analysis to better understand our data. We wanted to test if PCA could be used
to support our hypothesis of a converging forward risk premium in the maturity dimen-
sion. Our analyses result in us being able to explain a large part of the variance of the
forwards with only a few components. The variance of the forecasts, on the other hand, is
more difficult to explain. Consequently, these analyses cannot make any inferences about
the stability of the forward risk premium in the maturity dimension. Nevertheless, due to
the limited existing work on PCA of forecasts, our analyses might contribute to this area
of the literature. Thus, we have decided to include the results of the PCA in this part of
our thesis.

The time series should be stationary to perform PCA, which can be explained by having a
constant mean, variance, and autocorrelation structure over time. Time series with a trend
or seasonality are non-stationary; the value of the time series will depend on the point
in time. Not considering this could lead to spurious regressions (Granger et al., 2001).
Electricity is a commodity well known for seasonality, and both elementary forwards and
forecasts exhibit seasonal patterns. One can conduct the Augmented Dickey-Fuller (ADF)
test to check for the hypothesis of stationarity in the data (Hyndman & Athanasopoulos,
2018).

There are different ways to handle the issue of non-stationarity. One solution is to take the
difference in the data until one gets all stationary data. However, this approach makes
it difficult to interpret the original data, and one can only make inferences about the
new data sets created. Another solution is to apply seasonal differencing, the difference
between an observation and the previous observation from the same season, y, = y,—y,_, +,
where m is the number of seasons. This method subtracts the observation after a lag of
m periods and is also known as “lag-m difference'. One focuses on the last observation
from the relevant season when forecasting from this system. This is equivalent to having
naive seasonal forecasts.

Our analysis already has a fitted function for the seasonality found in the elementary
forward curve. By removing the four-term truncated Fourier series from the series, we
expect to obtain non-seasonal data series.
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3.5.1 Futures

Firstly, we obtain the price correction term by subtracting the seasonality-adjusted Fourier
series from the elementary forward curve. Then, analyzing the correction term with the
Augmented Dickey-Fuller test reveals that, assuming the presence of unit root, we cannot
reject the null hypothesis. Consequently, we choose to compute the differences in the data
series before applying PCA.

Table 3.8 shows the output of the analysis. We find the first three components to account
for 86.61% of the total variance in the data. We need ten components to explain more
than 95%. This result is interesting as the explainable variance is less than the findings of
Dietze et al. (2022), even though we apply much of the same methodology. The difference
is that we take the differences in the price correction term to obtain stationary data. Our
findings are closer to the results of Benth, Benth, et al. (2008) and Koekebakker and
Ollmar (2005).

Table 3.8: PCA outcomes of elementary forward prices, with variance from the largest components
explained. To capture more than 95% of the variance, we require ten components.

Number of % Variance % Cumulative
factors explained variance
1 67.82 67.82
2 13.37 81.19
3 5.43 86.62
4 2.16 88.78
5 1.63 90.41
6 1.26 91.67
7 1.17 92.84
8 1.04 93.88
9 0.85 94.73
10 0.73 95.46

Only the first three principal components and corresponding factor loadings are chosen
after considering their importance and cumulative size. The factor loadings are modeled
in-sample using regressions with equations of linear and exponential forms:

w(j) = —are™" +c; (3.1)
w(j) = —aze™"* + ¢y (3.2)
w(j) =c3 (3.3)
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The original factor loadings are presented in Figure 3.4 together with the estimated equa-
tions. We see that all three components seem to stabilize at a value for increasing matu-
rities. This is analogous to the futures curve of every issue date having a constant slope
when maturity increases. Further, if the PCA of the forecasts yields similar results, this
could be used to make inferences about our assumption of the forward premium stabilizing
in the long run of the maturity dimension.

Figure 3.4: The three largest factor loadings of the forwards data are plotted together with their
estimated curves.
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3.5.2 Short-Term Forecasts

Applying PCA to the short-term forecast follows the same routine as in the case with
futures data. First, we remove the seasonality of the forecasts by subtracting the same
Fourier function as the elementary forward curve. This was done for simplicity and as
it proved to match the natural seasonality of the forecast relatively well. Further, we
calculated the differences of remaining residuals to obtain stationary time series.

The results from the PCA show that we need 40 factors to explain 95% of the term
structure, presented in Table 3.9. The first factor only represents 13% of the variance,
which is an apparent reduction from the PCA of futures prices. The plot of factor loadings
also shows little to extract from this analysis. It is unclear how to represent the graphs
based on simple equations as done in the literature and for the futures, and thus we
cannot say that they are stabilizing in the maturity dimension. Further, there are signs

of seasonality in the factors. This is clear from the curve where the periods are exactly
50 weeks.
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Table 3.9: Principal Component Analysis (PCA) outcomes of short-term forecast data, with variance
from the largest components, explained. The initial four and last two components are shown. To capture
more than 95% of the variance, we require 40 components.

Number of % Variance % Cumulative
factors explained variance
1 30.38 30.38
2 15.66 46.04
3 12.41 58.45
4 4.53 62.98
39 0.24 94.78
40 0.22 95.00

Figure 3.5: The three largest factor loadings of the forecast data are plotted.
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One explanation for the outcome of the forecast PCA might be that the seasonality for
the futures data did not cover all the seasonality in the forecasts. Therefore, we attempted
to fit another seasonality function to the forecasts and subtract this curve, with no better
results.

After analyzing the PCA results of forecasts, it is clear that PCA cannot be used to test
the hypothesis of a converging forward premium for our data sets.
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4 Model

First, we present the method applied when estimating the long-term forward curve, in-
cluding smoothing the swap contracts and calculating the shifting variable. We apply
a deterministic seasonality of the futures price curves, based on the approach of Dietze
et al. (2022). We build our approach on the assumption that the forward risk premium
will stabilize in the maturity dimension in the long run.

4.1 Extrapolating the Long-Term Forward Curve

The long-term extrapolated forward curve consists of elements, including a long-term
seasonality component (LTSC) and a shifting variable. The deterministic seasonality
component is given by a truncated Fourier series as defined by Equation 2.4. The trun-
cated Fourier series consists of an equilibrium line of the seasonality and n = 4 pairs of
sine and cosine terms. We decide on the seasonality function after constructing the ele-
mentary forward prices. The shifting variable is a time-varying price level that depends
on the long-term forecast, the calculated forward risk premium, and the equilibrium line
of the seasonality. The forward risk premium is calculated with three different methods.

Long-Term Forward = Truncated Fourier Series + Shift Variable
= Truncated Fourier Series + Long-Term Forecast
— Forward Risk Premium — Equilibrium Line of Seasonality
= Truncated Fourier Series with Equilibrium Line of Zero

+ Long-Term Forecast — Forward Risk Premium

4.1.1 Smoothing and Seasonality

To create long-term models for electricity forwards, we need smoothed elementary forward
curves that fit the swap contracts of different maturities and with overlapping delivery
periods. This is analogous to the approach of Dietze et al. (2022). We split the observable
swap contracts into new contracts with as short delivery periods as possible. In a no-
arbitrage environment, the price of one of the observed swap contracts should be equal
to the weighted average of the elementary forward prices over the delivery period of the
observed swap contract.

We generate arbitrage-free prices for the observed swap contracts. In real electricity
markets, minor market imperfections and changes in market power could lead to the
existence of arbitrage opportunities between the overlapping swap contracts for short
periods. Thus, small adjustments are made to the prices of the contracts to minimize the
arbitrage between the overlapping contracts. Figure 4.1 shows the elementary forward
curve for 11 December 2019, together with the corresponding tradable contracts.
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Figure 4.1: The elementary forward curve for 11 December 2019, along with the tradable futures
contracts at the corresponding issue date. There are in total six monthly, eight quarterly, and three
annual futures contracts.
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As explained in Section 2 using Equation 2.3, Dietze et al. (2022) assume the elementary
forward prices to be equal to the deterministic seasonality component plus the residual
term. The residual terms are subject to the maximum smoothness criterion in both the
time and maturity dimensions. This allows for a smoother interpolation in the presence
of missing data points. We model the deterministic seasonality function using a truncated
Fourier series with four terms as suggested by Benth, Benth, et al. (2008). This seasonality
function contains one intercept term and four sets of sine and cosine terms, and it only
depends on the maturity and the trading date. Due to the deterministic nature of the
seasonality function, we can easily extrapolate it in the maturity dimension.

Looking at the long-term extrapolation of forwards, we observe that the amplitude of
the seasonality remains constant throughout the maturity range. One alternative model
could be to scale the amplitude of the seasonality relative to the price level for that
maturity. In this case, the amplitude would increase in absolute terms, while the relative
variations would be constant. We could implement this by observing the relative size of
the amplitude compared to the price level in-sample. This relationship could then be
used to scale the coefficients related to the amplitudes of the Fourier series relative to
the appropriate price level for each maturity. A relevant discussion is if changes in the
amplitude would make sense. Electricity prices change over time because of deviations in
the relationship between supply and demand. More specifically, sources of change can be
in the fundamental variables for production, e.g., an increase in CO9 quotas or a decrease
in LCOE of new wind production. One could have implemented an anticipated change
differently, e.g., by considering the linear, logarithmic, or exponential relationship between
the amplitude and the forward price level. We have chosen to keep the amplitude constant
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across the series as we think this is a good proxy for the fundamental factors. Changes
in supply and demand drive the amplitude observed in the market, and for simplicity we
assume that this relationship is kept constant.

4.1.2 Shift Variable

The shift variable is the coefficient that shifts the seasonality function relative to changes
in the long-term forecast. The shift is time-varying nominated in €/MWh and dependent
on the forward risk premium between the elementary forward prices and the long-term
forecasts. We propose three different ways to calculate the forward risk premium. We
calculate the premium for maturities between one and two years ahead. Consequently,
when calculating the averages, we sum from 365 to 730 and divide by 365.

1. Level Premium

Defined as the difference between the average forward and average forecast of maturities
from one to two years for each of the respective trading dates. We see this in Figure 4.2
as taking the difference between the light blue and the pink curve for each trading date ¢:

730 730
FRPLevel — =365 Ft,i _ Zi=365 E [St,i]
! 365 365

(4.1)

2. Log-Return Premium

Defined as the log-return between the average forward and the average forecast between
maturity one and two years for each of the respective trading dates. In Figure 4.2 this
can be seen as taking the log-return between the light blue and the pink curve for each
trading date :

730
FRP[Log—Return _ ll’l( Z1'2365 Fl’i (4.2)

365 365

—n ( Zz?j??% E [St,i]

3. Rate Premium

We base the Rate premium on a slightly different expression of the relationship between
the forward contracts and the forecasts. The log-return between the forward and forecast
is calculated for every maturity between one and two years ahead. In Figure 4.2, this can
be seen as finding the log-return between each point on the red curve and the equivalent
point on the black curve. Each of these premia is discounted with maturity, and then the
average of these discounted premia is calculated for each trading date t.

The forward and the forecast are related through the forwards being risk-neutral predictors
of the future spot price and the forecasts being risk-adjusted predictors. As a result,
there should be an equivalence relationship between the two. The forward contract FW; r
discounted by the risk-free interest rate, r; 7, equals the forecast FC;r discounted by an
appropriate discount rate p;r. Below are the expressions when the interest rates are
discretely discounted annually.
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FWI,T _ FC[’T
(1+ ”t,T)T (1+ Pt,T)T

The appropriate discount rate for the forecast is defined as the risk-free rate minus the
forward risk premium. The forward risk premium is assumed to stabilize in the maturity
dimension in the long run, and thus it will only vary with issue date ¢.

pir =riT — FRP,

This is the theoretical starting point for the rate premium approach. Using this premium,
one can derive an expression for the forward risk premium to measure the premium in-
sample and then derive an expression for the forward contract. A complete derivation
can be found in Appendix C.

32730 in(Fri)-tn(E[s.])

i=365 i
365

FRPRare - (4.3)
We measure the forward risk premium from the elementary forward prices and the long-
term forecasts. It is assumed that the methods consist only of the seasonality component
and the shifting coefficient. Instead of the residual terms, we shift the forwards to the
price corresponding to the measured premium and the relevant forecast. The out-of-
sample modeling starts 730 days ahead, i.e., maturity of 2 years. The shifting is performed
by finding the closest long-term forecast and the forward premium corresponding to that
forecast. From this, we can find the shifting coefficients of the forward price curves beyond
the maturities of the tradable contracts, being only limited by the length of the long-term
forecasts.
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Figure 4.2: Calibrating the in-sample forward risk premium for the issue date 2 June 2021. The shaded
area indicates the maturity for which the forward premium is computed. This is between the maturity
of one and two years ahead. We determine the premia by calculating the average premium over the
maturity period using different approaches. The plot shows the elementary forward curve and the long-
term forecast alongside average prices over every one-year maturity period.
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5 Results

This section presents the extrapolated forward curve. We show graphs and describe the
three distinct forward risk premium strategies. Further, out-of-sample performance and
accuracy analysis is conducted to determine the best approach. Finally, we discuss our
results and elaborate on how they can be applied by market participants.

5.1 Long-Term Forward Estimation

Figure 5.1 presents elementary forward prices with maturities of up to three years and the
estimated forward prices for two different issue dates, 21 March 2012 and 02 June 2021.
The three forward risk premium techniques are presented for maturities between two and
three years. The difference between the Level and Log-Return curves is marginal in this
maturity range. The Rate premium curve deviates slightly from the others. This can be
explained by the Rate approach differing slightly more from the others.

The curves are not smooth across the predicted forward curves; there are jumps at specific
maturity points. The provider of long-term predictions provides annual forecasts. The
forecast curve will show one price for each calendar year before jumping to a new price
for the following year. The shift of the estimated forward curves is dependent on both
the observed risk premium and the forecasting level. Consequently, the estimated forward
curves will include price jumps when the curve reaches a maturity date when a price jump
occurs.

The three different forward premium approaches are plotted together with the long-term
forecast in Figure 5.2. Since the long-term forecasts have different horizons, the extrapo-
lations are also different. The upper plot extrapolates the curves until maturity year 23
(2035), and the lower plot extrapolates until maturity year 29 (2050). We see that the
premium approaches deviate more in the long run. We observe the Log-Return premium
method deviates downwards from the other methods in the upper graph. In the second
graph, we observe the Log-Return and Rate premium methods to follow the same direc-
tion, while the Level premium is diverging upwards. The further away the forecast gets
from the initial price level, the more significant deviation between the different models is
expected.

Another interesting point to notice is that for the lower plot in Figure 5.2 the estimated
forward curves are clearly below the long-term forecast. The elementary forward curve
is substantially lower than the forecast between maturity years one and two, yielding a
significantly negative forward risk premium. As a result, the estimated forward curve for
this issue date will stay below the forecast.
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Figure 5.1: Extrapolation of forward curves for two different issue dates. The top graph displays data
from 21 March 2012, while the graph below displays data from 2 June 2021. The elementary forward
prices are seen from the date of issuance. The extrapolated forward curves begin at maturity year 2,
which is denoted by the grey region indicating the out-of-sample maturity range.
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Figure 5.2: Extrapolated forward curves for the long term. The top graph displays the forward curve
from 21 March 2012 through 2035. The graph below displays the forward curve from 2 June 2021 through
2050. The black curves indicate the long-term forecast. The extrapolated forward curves for the Level,
Log-Return, and Rate premium techniques are represented by blue, yellow, and green curves. The shaded
portion of the curve represents the extrapolated range of maturity.
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5.2 Accuracy Measurements and Out-of-Sample Testing

To evaluate the performance of the three models, we perform out-of-sample accuracy mea-
surements comparing the estimated forward curves with the validation set of elementary
prices. These accuracy measurements are performed on data with maturity between two
and three years, marked as the shaded area in Figure 5.1. This is the range where we
have both the estimated forward curves and the elementary forward prices.

The accuracy measurements applied are Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Mean Absolute Percentage Error (MAPE). As we estimate the forward
curve for each issue date, we get a set of accuracy measures for every date. We calculate
the average accuracy for each of the three forward premium techniques. The formulae for
the accurate measurements are presented in Appendix D.

The results from the accuracy measurements are presented in Table 5.1. We only find
a small difference in the performance between the Level and Log-Return premium ap-
proaches. On average, the Log-Return approach yields marginally better performance
than the Level approach. The MAPE of Log-Return is 8.256%), while Level has a slightly
higher value of 8.364%. The Rate premium approach yields, on average worse results with
11.439%. The results of MSE are similar to the findings of MAPE, with Level and Log-
Return yielding 8.859(€/MWh)? and 8.503(€/MWh)? respectively. The Rate premium
results in an average MSE score of 13.896(€/MWh)?. Finally, the MAE of Log-Return
gives 2.138 €/ MW h, slightly less than the 2.170 €/MWh of the Level premium method.
The MAE is larger for the Rate premium method, which has value of 2.930 €/ MWh.

Table 5.1: Accuracy tests of the three methods for risk premium. We perform Mean Absolute Percentage
Error (MAPE), Mean Squares Error (MSE), and Mean Absolute Error (MAE).

MAPE MSE MAE

% (€/MWh)?  €/MWh
Level Premium 8.364 8.859 2.170
Log-Return Premium 8.256 8.503 2.138
Rate Premium 11.439 13.896 2.930

We analyze the difference between the accuracy measurements by performing paired t-
tests to test whether the samples are significantly different. The results of this are shown
in Table 5.2. We see no statistically significant difference between the accuracy scores of
the Level and Log-Return approach. This means that we cannot conclude that the Log-
Return approach is better than the Level approach. The Rate approach is significantly
different from the Level and Log-Return approaches for all three accuracy measures. We
can conclude that both the Level and Log-Return approach appears to be superior to the
Rate approach when considering fitting the elementary forward prices out-of-sample.
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Table 5.2: Significance tests of the outcomes of the accuracy tests. The p-values of the paired t-tests
are presented with Newey-West (HAC) standard errors. At a = 0.05, the blue color indicates a significant
difference, whereas the red color indicates no significant difference.

MSE MAE MAPE

(p-value) (p-value) (p-value)

Level vs. Log-Return 0.859 0.773 0.810
Level vs. Rate 0.015 5.67-1071Y  9.23.10710
Log-Return vs. Rate 0.009 6.20 - 1071 1.50-10710

5.3 Discussion

The extrapolated forward curves can be useful for several purposes. Knowledge of the
futures price on a long-term horizon could be of great value for production planning and
hedging, by lowering risk and making resources available for other objectives. It will be
beneficial for suppliers to assess the value of power plants and potential new projects
more precisely. For instance, net present value estimates for both onshore and offshore
wind projects are often close to zero. Small changes in the valuations of the underlying
assets might ultimately alter the project’s planning, transforming it from successful to
unprofitable or vice versa. Therefore, accurate estimates of the price of long-term forwards
will be of great interest to agents involved in power production and consumption.

Considering these applications, it is essential to evaluate the accuracy of our extrapola-
tions. The three forward premium approaches yield MAPE scores of 8.364%, 8.256%, and
11.439% for the Level, Log-Return, and Rate premium. Evaluating MAPE scores is chal-
lenging, but 8% is generally not a substantial error score. However, one should consider
that these accuracy measurements were performed one year out of sample due to data
limitations for long-term futures. Thus, we would expect the errors to be even larger in
the long run. For some consumers where the cost of electricity is only a small portion of
their production costs, this might be sufficiently accurate. The accuracy may also suffice
for existing power producers with no additional investment costs and low operating costs,
e.g., hydropower plants (Statkraft, 2021). However, for consumers for whom the price of
electricity is a more prominent cost factor and for producers that are close to break-even,
this is not the case. Therefore, the extrapolations may not be accurate enough to be used
directly in these cases. Nevertheless, they provide some insight into the approximate price
levels, and can thus add some value to all market participants.

Moreover, power purchase agreements are over-the-counter (OTC) contracts whose pric-
ing is frequently kept secret between the parties involved. Consequently, knowledge of
the agreed-upon rates is lacking, while the market power of large industrial actors partic-
ipating in many agreements has strengthened in recent years. This can lead to weakening
the assumptions of market efficiency. Market players with better information can secure
superior deals, obtaining rates below forward market prices. Therefore, acquiring infor-
mation on the price of long-term futures could be advantageous for all parties involved in
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these negotiations.

As mentioned earlier in Section 5.1, the difference between the forecast and futures curves
is larger for some issue dates than for others. This difference in forward premium can
be observed by examining Figure A.1 in Appendix. The graph shows time series plots
of the futures, forecast, and forward risk premium for the Y+1 contract. We see that
the premium between 2012 and 2015 was consistently moving around zero. Then there
appears to have been a change around the summer of 2015, with the premium becoming
significantly negative. The volatility also seems to have increased from the same point
in time. For 2021 we see a forward risk premium measured in log-return values between
—20% and —40%. Thus, it is vital to measure the forward risk premium for each forecast
issue date as this is not stable over time in the issue date dimension. Our assumption of a
stable long-term forward risk premium is based on convergence in the maturity dimension.
Thus a change in the premium over time will not affect this assumption.

A possible criticism of our hypothesis of a stabilizing forward risk premium in the maturity
dimension could include the possibility of a correlation between futures prices and the
price level of power purchase agreements. The expected future cash flows are carefully
evaluated when planning new investment projects. As stated in Section 2.5, new projects
often require a large proportion of the production to be sold through long-term power
purchase agreements. These contracts provide a guaranteed amount for the output and
dramatically reduce the project’s risk. The remaining production capacity can then be
sold through futures contracts or on a more immediate market, such as the spot market.

Following a discussion with Lasse Torgersen, Head of the Department of Energy Market
at Norsk Hydro, an interesting case is suggested. In general, the long-term forecasts show
an appreciation of the spot price, see Table 3.5. Based on our assumption of a constant
forward premium, this should also result in higher futures prices. Nonetheless, as the
spot price is expected to increase, the expected cash flows resulting from the portion of
power sold on the spot market will also increase in value. This alleviates the pressure on
long-term PPA revenue requirements. Thus, the projects are less reliant on high prices for
these agreements and can negotiate lower prices. As a result, the producers can negotiate
PPAs lower than futures prices on the financial market.

The buy-side of power purchase agreements is often a power-intensive industry, new data
centers, and large corporations with an ESG focus. The purchasers benefit by securing
long-term electricity supply at a discount relative to the futures market. Therefore, the
depreciation in prices of power purchase agreements is good news for these market partic-
ipants. Further, PPAs are an increasingly popular alternative to traditional futures. As
a direct result, the financial market lacks a fundamental buy-side for the traditional fu-
tures contracts, although the conventional sell-side of hydropower producers is still there.
As presented in Section 2.5, the traded volumes of PPAs have increased while the cor-
responding volumes of futures have fallen over the last years (Copenhagen Economics,
2020). This creates an imbalance in the equilibrium of the market, resulting in a change
in hedging pressure. This pressure will pull the prices of longer future contracts down
towards the prices of power purchase agreements. This is supported by the findings of
a declining forward risk premium, as seen in Table 2.2. If this assumption holds, power
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purchase agreements play a key role in leading the forward curve. This will eventually
increase the spread between futures and expected spot, contradicting our assumption of
a steady forward risk premium.

However, given the limited data on PPA pricing, there is no empirical evidence of this
potential relationship between the pricing of these agreements and the forward curve.
Moreover, if such a relationship exists in the current market, it is likely a lagging rela-
tionship. This lag is affected by the contract length of the existing agreements. Also,
negotiating new contracts takes some time, the flow of information is minimal, and the
delay associated with acting on this information. Consequently, it will take time for
changes in the long-term forecasts to be incorporated into the price of the PPAs and then
for the price of the agreements to affect the futures prices. As a result, it will likely be
several years before the effect can be observed. Therefore, in our research we assume that
these effects are slow and that changes in the price of power purchase agreements have
no measurable direct impact on futures prices over a few years horizon.

43



6 Conclusion

Futures contracts on electricity offer limited insight into the long-term forward curve.
This thesis proposes a method for extrapolating the long-term continuous forward curves
of electricity in Nord Pool beyond 30 years into the future. First, we employ a smoothing
algorithm for the overlapping tradable contracts, creating elementary forward curves. We
smooth the contracts by fitting a seasonality function, represented by a four-term Fourier
series and a residual term, where the residuals are subject to the maximum smoothness
criterion. Then, the discovered seasonality function is utilized to extrapolate the for-
ward curve relative to a long-term forecast from the forecast providers. By computing
the long-term forward risk premium for the Nordic electricity market, we find evidence
supporting our assumption of long-term premium convergence in the maturity dimension.
We calculate the premium using three distinct techniques, resulting in three extrapolation
models based on a Level premium, a Log-Return premium, and a Rate premium. Tests of
accuracy demonstrate that the Log-Return and Level premium significantly outperform
the Rate premium approach. The extrapolated forward prices are approximations of the
long-term futures curves and can thus be used by both producers and retailers. Knowl-
edge of the long-term futures could be of great value for long-term production planning
and hedging. Another application includes obtaining more accurate evaluations of invest-
ments in power plants. The accuracy of the Level and Log-Return premium approaches
using out-of-sample testing, measured in MAPE is approximately 8.3%. This accuracy is
reasonably accurate and can therefore be utilized for these purposes to some degree.

6.1 Further Work

The assumption of convergence of forward risk premium in the maturity dimension has
been tested by examining and comparing the premia of contracts with Y+2 and Y+3
maturities. Additional futures contracts with a longer time to maturity might enhance
the study. If Nasdaq OMX provides futures contracts with a longer time to maturity,
and the liquidity of the contracts increase, this will be an interesting topic of further
investigation. One possible problem in our study is that we rely on a single forecast
provider to estimate the expected spot price. Utilizing a forecast consensus curve made
of forecasts from many providers will undoubtedly improve the study and analysis. This
method might be an excellent topic for future investigation.

The forward risk premium since the summer of 2021 has been highly variable and unpre-
dictable. An interesting area for further work would be to observe these current market
conditions’ short- and long-term effects on the forward curve. It will significantly affect
the forecasts and the forward risk premium. Extending the analyses to incorporate the
most recent year’s data would likely have impacted the results. To account for the chang-
ing market environment, it may be necessary to include a regime-shifting component in
our study by the end of 2021. In such an approach, the magnitude of the volatility shift
might be included directly, along with the probability of such a shift occurring. Moreover,
this price change will increase the volatility, both in terms of forward prices and forward
risk premia. This may impact our assumption of a forward risk premium that stabilizes
for the long-term maturities.
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Extending our research to other markets, such as the German energy market, would be
an additional interesting scenario. Often the same market participants are present in
multiple markets. Gaining knowledge of interconnected markets could further reduce risk
and increase hedging alternatives. It would be interesting to examine if the assumption
of a stable forward risk premium holds in other markets. This would require additional
long-term market forecasts. Through growing integration, it is expected that the German
and Nordic markets have become increasingly correlated over the years. On this basis, we
could anticipate similar findings in the German market. On the contrary, the power mix
is relatively different from the Nordic, and thus we might find different results for the two
markets.

Lastly, one potential study would involve applying other techniques (e.g., Kalman filter)
for incorporating the forecast data in extrapolating the forward curve. This could address
some of the concerns of our approach, as this would omit the assumption of a stable risk
premium in the maturity dimension.
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A Nordic Power Market Graphs

Figure A.1: Y-+1 time series for futures, forecast, and forward risk premium between February 2012
and June 2021. The futures and forecast are measured in €/MWh given by the left-side y-axis, while
the premium is measured in % given by the right-side y-axis. The forward premium is calculated as the
log-return premium using Equation: 4.2. The premium appears to be closer to zero until between 2015
and 2016. After this the variance appears to be larger and the premium to be more negative.
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Figure A.2: Average daily base power spot prices in euros per megawatt hour, for delivery at Nord Pool

from 22 February 2012 through May 2022.
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B Descriptive Statistics of Forward Risk Premium

Table B.1: Descriptive statistics of the forward risk premium (FRP) of the Nordic power market.
Premia are grouped by five selected maturities and presented both for level and log values. The mean
values are the same as presented in the second column of Table 2.2. The standard deviations under the
Price S.D. column are the normal standard deviations.

Nordic FRP from 21 Feb. 2012 to 30 June 2021

Series Mean Price S.D. Skewness Kurtosis No. of
Log  Level Log Level Log Level Log Level obs.
1M -6.16  -1.03 17.60  3.66 -2.22 -0.59 6.56  0.88 266
1Q -4.04  -0.81 12.88  2.96 -2.05 -0.65 727 112 267
1Y -8.66  -2.48 10.31  2.96 -0.78 -0.51 0.84 -0.36 267
2Y -12.29 -3.54 1097  3.17 -0.12  -0.19 -1.19  -0.99 267
3Y -12.30 -3.54 1244 3.66 0.16  0.06 -1.18 -0.88 267
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C Derivation of the Rate Premium Approach

The rate premium approach is based on the relationship between the forward contracts
and the forecasts. The appropriate discount rate for the forecast is defined as the risk-free
rate minus the forward risk premium.

p,,T=I’,,T—FRP, (Cl)

Below is the expression of the relationship when the interest rates are discounted annually.
This is the theoretical starting point for the Rate premium approach.

FWI,T _ FC[’T
(1+ ’”t,T)T (1+ Pt,T)T

(C.2)

This leads to expressions for the forward risk premium and forwards that will depend
on the risk-free interest rate. However, this is because the rates are discounted annu-
ally. When using continuously compounded interest rates, the rates will cancel in these
expressions. Below is the derivation of this:

Initial equations:
FW,re™ 1T = FC,re Pr1T (C.3)

Forward risk premium:
FW[,Te_rt’TT — FCI’Te—(rt,T—FRPt)T

o-(rea—FRe)T _ EWLT ) p

FWI,T
FCt,T

FRP, = ln(

Forwards:
FW[’Te_rt’TT — FCt’Te—(r,,T—FRPt)T

FW[ = FC[ Te_rt,TT"'FRPtT"'rI,TT
FW,r = FC, gt R (C.5)
From this one can see that continuously compounding the interest rate will cancel the

rates in the final expressions. As a result, the Rate premium approach will not depend
on the interest rates.

52



D Formulae for Accuracy Measurements

eT+h = YT+h — YT+h|T

Where yq, ..., yr is the training data and y741, y742, ... is the test data
MSE = mean(e?)
MAE = mean(|et|)

100 - €;
Yt

MAPE = mean()

|

93

(D.1)
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