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Abstract

Credit scoring models applied by banks are required by financial authorities to be
sufficiently explainable. Logistic regression has long been the industry standard for
these models. Over the last few decades, machine learning (ML) techniques have
advanced default predictions further, with increased predictive performance. How-
ever, current ML approaches are often perceived as black boxes, meaning that it is
hard to understand the inner workings of the models. The explainability deficit of
the best-performing ML models means that banks have to sacrifice predictive power
in order to abide by the regulations regarding explainability.

This paper proposes an explainable ML model for predicting credit default on a
real-world dataset provided by a Norwegian bank. We combine a LightGBM model
with SHAP, an explainable AI (XAI) framework, which enables the interpretation of
explanatory variables affecting the predictions. The LightGBM model is compared
to the bank’s actual credit scoring model (Logistic Regression), where we achieve
a 17% and 114% increase in ROC AUC and PR AUC, respectively. For comparison
reasons, a separate LightGBM model with the same original features as the ones
in Logistic Regression is trained, where we achieve a 9% and 56% increase in ROC
AUC and PR AUC, respectively.

Our main contribution is the implementation of XAI methods in banking, exploring
how these methods can be applied to improve the interpretability and reliability of
state-of-the-art ML models. We specifically find that LightGBM models outperform
LR models for credit scoring in terms of both predictive performance and explain-
ability, and that the economic value of the predictive improvement can be substan-
tial. For the same reasons, European legislators have acknowledged that ML might
play an essential part in banking moving forward. This paper shows that XAI can
assist banks in enabling ML by overcoming the obstacles related to explainability.
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Sammendrag

Finansmyndighetene stiller strenge krav til bankers kredittmodeller. De må være
nøyaktige, men også tilstrekkelig forklarlige. Logistisk regresjon (LR) har lenge
vært industristandarden innen banksektoren, men i løpet av de siste tiårene har
maskinlæring (ML) forbedret de prediktive egenskapene til kredittmodeller bety-
delig. Imidlertid blir dagens ML tilnærminger ofte sett på som "svarte bokser",
da det er vanskelig å forstå logikken og utregningene som ligger bak modellene.
Gapet i forklarbarhet mellom de beste ML modellene og dagens LR modeller, gjør at
bankene må ofre noe av nøyaktigheten i prediksjonene til kredittmodellene sine for
å imøtekomme myndighetens krav til forklarbarhet.

I denne oppgaven presenterer vi en forklarbar ML modell som predikerer mislighold
blant kunder i en norsk bank. Vi kombinerer LightGBM med SHAP, et forklarbart
AI (XAI) rammeverk, som gjør det mulig å tolke hvordan de ulike forklaringsvariab-
lene til modellen påvirker prediksjonene. LightGBM-modellen sammenlignes med
bankens kredittmodell (Logistisk Regresjon), som benyttes daglig i praksis, hvor vi
oppnår en 17% og 114% forbedring i hhv. ROC AUC og PR AUC. For å kunne sam-
menligne metodene mer direkte, trente vi deretter opp en egen LightGBM modell
basert på variablene i LR-datasettet. Denne modellen gav forbedringer på hhv. 9%
og 56% i ROC AUC og PR AUC.

De viktigste bidragene fra denne oppgaven er anvendelsen av XAI innenfor banksek-
toren, og analysen av hvordan disse metodene kan benyttes for å forbedre forklar-
barheten og påliteligheten til moderne ML modeller. Vi viser at LightGBM-modeller
er bedre enn dagens LR-modeller både når det gjelder nøyaktigheten i prediksjonene
og forklarbarheten til modellen. I tillegg viser vi at den prediktive forbedringen ved
å bruke av ML kan ha betydelig økonomisk verdi for bankene. Europeiske lovgi-
vere anerkjenner at ML trolig vil være en helt vesentlig del av bankvirksomheten i
årene som kommer. Denne oppgaven viser hvordan XAI kan hjelpe bankene med å
overkomme utfordringene relatert til forklarbarheten til slike modeller.
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Chapter 1

Introduction

A recent report by the European Banking Authority (EBA) acknowledged that the
standard regression models used in internal ratings-based (IRB) models might no
longer be able to utilize all the data available for banks. Thus, EBA states that ML
might play an essential part in banking moving forward (European Banking Author-
ity, 2021). Linear and non-linear regression models (logit and probit models) have
long been the industry standard for credit modeling. Over the last few decades,
machine learning (ML) techniques have advanced default predictions further. How-
ever, current ML approaches are often perceived as black boxes, meaning that it is
hard to understand the inner workings of the models (Ariza-Garzón et al., 2020;
Gramegna and Giudici, 2021). With the implementation of the Basel II agreement
(Basel Committee on Banking Supervention, 2006) and the General Data Protec-
tion Regulation (GDPR) (European Union, Parliament and Council, 2016), European
banks have to abide by strict regulations enforcing a certain level of explainability in
all decision-making data-based models. The regulations pose significant obstacles
for banks seeking to employ state-of-the-art ML techniques for modeling credit risk
(Bücker et al., 2021).

With its latest discussion paper, EBA uncovered three main challenges related to
the complexity of ML models; i) The challenge of interpreting the results, ii) the
challenge of ensuring that management functions properly understand the models,
and iii) the challenge of justifying the results to supervisors (European Banking Au-
thority, 2021). The European Union is also working on AI-specific regulations. In
the European Commission’s proposal for new AI regulations, AI systems used for
credit scoring are defined as "high-risk AI systems." The Commission proposes that
such systems should be bound by a much stricter regulatory framework related to
transparency, opacity, et cetera, as credit scoring models determine people’s access
to financial resources (European Commission, 2021a). Overall, the European legisla-
tors demand better explainability from credit scoring models than current black-box
ML models can provide.

In other words, there is a need to bridge the explainability deficit of current state-of-
the-art machine learning models. One promising framework that might achieve this
is the SHAP framework, which has been applied successfully in other high-risk ar-
eas, such as disease detection (El-Sappagh et al., 2021; Peng et al., 2021) and surgery
technique selection (Yoo et al., 2020). In this study, we apply the XAI framework
SHAP to an ML model to improve the performance of current credit scoring mod-
els while achieving a level of explainability within the guidelines of the European
legislators.
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The main contribution of this paper is the implementation of XAI methods on a
real-world dataset, exploring how these methods can be applied to improve the in-
terpretability and reliability of state-of-the-art ML models. We specifically find that
LightGBM models outperform Logistic Regression models for credit scoring both in
terms of predictive performance and explainability. The dataset used in this paper
is particularly comprehensive, containing over 13 million records of time series data
for 13, 969 unique customers. The properties of the dataset enabled us to explore a
novel way of integrating multivariate time-series analyses in the ML model through
the use of daily balance data, significantly improving the performance of the credit
scoring model.

This paper is organized as follows. In section 2, relevant literature regarding XAI
for credit scoring is reviewed, and we rely on key findings in the literature to select
the AI and XAI methods for this study. Section 3 outlines the models we employ.
Section 4 introduces and explains the data set. Finally, section 5 provides an as-
sessment of the models’ performance, an in-depth analysis of the explainability of
the models’ output, and an analysis of the potential economic value of an improved
credit scoring model.
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Chapter 2

Literature review

European legislatures have enforced several regulations regarding the explainability
of ML models, and these laws are expected to be strengthened in the future. Auto-
mated processes will be subject to stricter regulations, as errors and biases in the
underlying data can have more significant ramifications in AI decision-making pro-
cesses than in human (European Commission, 2021b) (as cited in Bibal et al., 2021).
As the regulatory scrutiny related to explainability increases, it is essential for finan-
cial institutions to evaluate the explainability of their credit models (Yang and Wu,
2021). Bastos and Matos (2022) finds XAI to be a solution, as it enables banks to
abide by the regulatory transparency requirements in the Basel agreements without
sacrificing predictive accuracy.

Explainable AI (XAI) techniques can be applied to overcome the lack of explain-
ability in black box AI models while preserving their predictive utility (Gramegna
and Giudici, 2021). The two widely accepted state-of-the-art XAI frameworks are
the LIME framework by Ribeiro et al. (2016) and SHAP values by Lundberg and Lee
(2017). These models were created to help users understand the reasons behind pre-
dictions of complex models.

The literature focusing on the use of XAI for credit scoring in finance is very limited.
Nevertheless, there are some highly relevant previous works. This involves inte-
grating XAI on credit scoring models for P2P lending data sets (Misheva et al., 2021;
Bussmann et al., 2020; Ariza-Garzón et al., 2020), applying XAI to explain home eq-
uity credit risk models (Davis et al., 2022), an empirical study comparing XAI with
a scorecard model for credit scoring on a publicly available credit bureau data set
(Bücker et al., 2021), comparing different XAI models’ effectiveness on separating
data from a set of small and medium-sized enterprises data (Gramegna and Giudici,
2021) and applying XAI to interpret a model for predicting crashes on S&P500 (Ben-
hamou et al., 2021). We are not aware of XAI having been applied to an actual cus-
tomer database from a bank before. However, the results from the above-mentioned
applications of XAI on credit scoring are promising.

Misheva et al. (2021) analyze the effectiveness of LIME and SHAP XAI techniques in
the context of credit risk management. Both LIME and SHAP are found to provide
"consistent explanations." However, the SHAP values are highlighted as the most
robust and effective in explaining the importance of the model’s different features.
Gramegna and Giudici (2021) also find that SHAP outperforms LIME in discrim-
inating observations in their credit scoring model. Davis et al. (2022) apply both
SHAP and LIME to analyze the explainability of the output from credit risk models.
Although the authors find LIME to suffer from potential instability issues, they ar-
gue that the computation time of KernelSHAP makes it unscalable for datasets with
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many features. This paper applies a different method, TreeSHAP, that does not suf-
fer from scalability issues as it is polynomial in runtime. Bussmann et al. (2020) focus
on one specific explainable model for fintech risk management, using XGBoost with
SHAP. They find that this model clearly outperforms the LR base model in terms
of predictive accuracy while also providing a detailed explanation for each predic-
tion. This is in line with the findings in Bücker et al. (2021), which show that ML
techniques can achieve a level of interpretability comparable to the traditional score-
card method while preserving its computational edge. According to Ariza-Garzón
et al. (2020), applying XAI on non-linear models such as XGBoost may even im-
prove the explainability compared to statistical approaches, e.g., LR. Such advanced
models enable an understanding of complex, non-linear aspects of the relationships
between variables that classic models are unable to discover. This includes aspects
like "curved relationships, structural breaks, heteroscedasticity and outlying behav-
ior" (Ariza-Garzón et al., 2020). Based on the results from Misheva et al. (2021) and
Gramegna and Giudici (2021), we find sufficient evidence for utilizing SHAP in this
paper.

The discussion above clearly shows that utilizing AI for enhanced predictive per-
formance, in combination with XAI for sufficient explainability, can potentially im-
prove current credit scoring models. However, a challenge with credit scoring as
a classification problem is that only a small minority of the customers are usually
expected to default, i.e., that the dataset is highly imbalanced. Gradient Boosting
Decision Tree (GBDT) is an ML technique that has been frequently used for credit
scoring in the literature because it provides good accuracy for such imbalanced clas-
sification problems (Brown and Mues, 2012; Benhamou et al., 2021). One example
is Bussmann et al. (2020), who show that the GBDT method XGBoost (Chen and
Guestrin, 2016) clearly yields better accuracy than the LR base model for predicting
default on a P2P data set. This is in line with Ariza-Garzón et al. (2020) who find
a GBDT model (XGBoost) to perform better globally than all other methods in their
study of credit scoring models in P2P lending. They also show that this increased
performance comes from "a better description of the relationships among the vari-
ables." The works conducted on P2P lending are closely related to credit scoring in
banks, as the classification problem is fundamentally similar. Thus, we find convinc-
ing evidence in the literature for applying a GBDT model for credit scoring in this
study. As Benhamou et al. (2021) finds LightGBM to be the better GBDT model, with
three times the speed of XGBoost and similar predictive performance, this study will
employ LightGBM.

This study applies LightGBM and SHAP to a comprehensive customer dataset. It
extends the literature in three ways: (i) by implementing the credit scoring model
on a real-life dataset from a bank, (ii) through the use of the bank’s own LR model
to benchmark the ML method, (iii) by utilizing multivariate time-series data to im-
prove predictive performance, and (iv) by analyzing the potential economic gain
from using LightGBM versus Logistic Regression.
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Chapter 3

Methodology

This chapter provides a brief outline of Gradient Boosting Decision Trees, where-
after we present the essential features of LightGBM and Logistic regression. Also, a
description of Shapley values is provided, and lastly, we outline the essential prop-
erties of SHAP.

3.1 Gradient Boosting Decision Trees

Ensemble methods combine several learners to obtain better predictive performance
than a single constituent learning algorithm. The ensemble method used in this pa-
per is boosting, where learners are trained on misclassified instances from the previ-
ous learners. Thus, several weak learners are combined into one strong learner. With
weak learners, we mean models whose performance is slightly better than random
chance. The advantages of using weak learners are outlined in Freund and Schapire
(1995) and can be summarised as being computationally simple, with the ability to
reduce overfitting and bias (Bartlett et al., 1998). Furthermore, a broad range of hy-
perparameters can be applied to the model in order to force each learner to remain
weak, which will be further discussed in chapter 5.

Gradient Boosting Decision Trees (GBDT) utilize the boosting technique by sequen-
tially training decision trees based on the residuals from the previous trees. Building
on the works by Zhang et al. (2017), a standard GBDT model can be expressed with
the following set of equations.

We are given MxN input data, with X = {xi}M
i=1, feature vectors xi = (xi1, . . . , xiN),

and targets Y = (y1, . . . , yM). Overall, GBDT tries to find a strong learner F by min-
imizing a loss function L:

L = arg min
F

M

Â
i=1

l(yi, F(xi)) (3.1)

Here, the strong learner F can be represented as a sum of T weak learners fw (e.g.,
decision trees), F(xi) = ÂT

w=1 fw(xi). At the w-th stage, the previous w � 1 weak
learners are fixed when learning the w-th weak learner. Thus, when constructing the
w-th learner, the following loss is minimized by GBDT:

Lw =
M

Â
i=1

l(yi, Fw�1(xi) + fw(xi)) (3.2)
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Here, Fw�1(x) = Âw�1
k=1 fk(x). This can be further approximated by using first- and

second-order Taylor expansions:

Lw =
M

Â
i=1


l(yi, Fw�1(xi) + gi fw(xi) +

hi
2

f 2
w(xi)

�
(3.3)

Where gi =
∂l(yi ,Fw�1(xi))

∂Fw�1(xi)
, and hi =

∂2l(yi ,Fw�1(xi))
∂2Fw�1(xi)

are the first- and second-order par-
tial derivatives, respectively. Thus, GBDT performs gradient descent in the function
space; at each step w, GBDT tries to find the function fw that minimizes Lw. Each
weak learner fw trains on the negative gradient of the loss function, with respect to
the previous predictions, Fw�1, instead of actual labels Y. The result is a model for re-
ducing bias and variance, and that can be used for both regression and classification
on numerous applications (Breiman, 1998).

3.2 LightGBM

One of the limitations of traditional GBDT methods, such as AdaBoost (Freund and
Schapire, 1999) and XGBoost (Chen and Guestrin, 2016), is the time-consuming pro-
cess of iterating through all of the data in order to estimate the information gain for
all possible splits (Quinto, 2020). Light Gradient Boosting Machine (LightGBM) is
a variant of GBDT designed to be significantly faster than conventional GBDT tech-
niques without sacrificing accuracy. This is done by implementing Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) (Ke et al., 2017).
GOSS exploits that the information gain for instances with larger gradients (under-
trained instances) is higher. By randomly dropping instances with smaller gradi-
ents, and to a larger extent keeping instances with larger gradients, the number of
instances used for training can be reduced without sacrificing the accuracy in infor-
mation gain estimation used for feature splitting in GBDT. EFB exploits sparse data
by bundling mutually exclusive features into a single feature. These two improve-
ments significantly improve the computational speed and memory consumption of
LightGBM, making it state-of-the-art for many applications (Ke et al., 2017).

3.3 Logistic Regression

To evaluate the LightGBM model’s relative performance, a Logistic Regression (LR)
baseline model was used. LR is commonly used to predict categorical values (Lever
et al., 2016) and is currently the most popular method for credit scoring in banks. In
order to make the baseline as realistic as possible, our cooperating bank generously
provided us with their LR model, which is used as of this date to perform credit
scoring in practice. The essential property of LR is that a linear combination of inde-
pendent variables can be mapped to a probability score (Hess and Hess, 2019) and
that the dependent variable can be classified into two groups based on the scores
(Bussmann et al., 2020). The linear model p = bX is the simplest, but the term on
the right-hand side may take on any real number, whereas the probability on the left
side must lie between zero and one. This trick is performed by the logit function.
The logit model we have employed in this study is:

P(Yn = 1|x1n, ..., xTn) =
1

1 + e�(a+ÂT
t=1 btxnt)

(3.4)
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We refer to Appendix A for a more detailed description of Logistic Regression.

3.4 Shapley values

With LR, it is trivial to see how a given feature value xj contributes to the prediction.
The effect of feature j is the difference between the feature value and the average
feature value, that is:

qj( f̂ ) = b jxj � E(b jXj) (3.5)

Here, E(b jXj) is the mean effect estimate for feature j. Similarly, we can find the
feature contributions of all features for a given instance by taking the predicted value
less the average predicted value:

N

Â
j=1

qj( f̂ ) = f̂ (x)� E( f̂ (X)) (3.6)

For more complex non-linear models, such as LightGBM, finding these feature con-
tributions is more complicated due to the inherent complexity of the model. Despite
being non-linear in probabilities and odds, LR is linear in log-odds. Thus, given that
the features are independent, the feature effect in log-odds can be found by multi-
plying the feature coefficient with the feature value, similar to linear models. In a
non-linear model, however, the effect of a feature can also depend on other features’
effects, making it much harder to estimate feature effects. Shapley values lever ideas
from cooperative game theory to tackle this problem (Shapley, 1953). Shapley values
were initially used for calculating a fair payout, i.e., finding payouts to players re-
flecting their contribution to the total payout. Since the sum of all individual payouts
equals the total payout to the coalition, Strumbelj and Kononenko (2013) found that
Shapley values can be applied for explaining models by viewing features as players
and the predictions as payouts. Thus, given a game with M features participating,
where the aim is to maximize some objective function, we have the following.

Let S ✓ M = {1, . . . , M} be a feature group, i.e., a subset consisting of |S| fea-
tures. In addition, let v(S) be a contribution function that maps feature subsets to
real numbers, indicating the contribution of feature group S to the total prediction.
Then, the amount that feature j contributes to the final prediction of one instance is
the weighted sum of all possible feature group combinations:

fj = Â
S✓M\{j}

|S|!(M � |S|� 1)!
M!

(v(S [ {j})� v(S)), j = 1, . . . , M (3.7)

An interpretation of Equation 3.7 is that Shapley values represent the average ex-
pected marginal contribution of a feature on a given prediction after all feature com-
binations have been checked. Informally, this can be expressed as:

fj =
1

# players Â
coalitions excluding j

marginal contribution of j to coalition
number of coalitions excluding j of this size

(3.8)
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Over the years, several techniques for explaining AI models have been developed,
such as LIME (Ribeiro et al., 2016) and DeepLift (Shrikumar et al., 2019). Common to
these techniques however, is that they do not necessarily meet the properties of local
accuracy, missingness, and consistency. In order to have a unified measure of feature
importance, an explanatory model should satisfy the following three requirements.
It should match the original model for a single instance (local accuracy), attribute
zero importance to missing features in a given coalition (missingness), and increase
any attributions for a given feature if the underlying model changes into giving that
feature more impact (consistency) (Lundberg and Lee, 2017). Young (1985) found that
the only values satisfying these three properties are Shapley values. This implies that
any explanation technique not based on Shapley values will violate local accuracy
or consistency (Molnar, 2019).

3.5 SHAP

Using Equation 3.7 directly would yield exact Shapley values, but it would require
retraining of the prediction model on all feature subsets S ✓ M, where M is the set
of all features. With the exponential complexity of Equation 3.7, calculating Shapley
values exactly would thus be challenging and computationally expensive. One so-
lution to this problem is using weighted linear regression (KernelSHAP) (Lundberg
and Lee, 2017). Another approach, and the one employed in this study, TreeSHAP
(Lundberg et al., 2019), is optimized for tree-based machine learning models such as
LightGBM. TreeSHAP uses the conditional expectation EXS|XC

( f̂ (x)|xS) as the con-
tribution function v in Equation 3.7 to estimate feature attributions. Here, X is a
matrix of instances, x is a single instance, XC is coalition data, and f̂ is the underly-
ing model.

Thus, given an ensemble tree, by pushing all subsets S ✓ M down each tree simul-
taneously and keeping track of each subset’s overall weights as well as the number
of subsets, Shapley values of each tree can be calculated in polynomial time (Molnar,
2019). Moreover, because of the additive property of Shapley values (Shapley, 1953),
the Shapley values of the ensemble tree model equals the weighted average Shapley
values of the individual trees.
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Chapter 4

Data

The models outlined in chapter 3 were implemented on a proprietary dataset, gener-
ously provided by a medium-tier bank in Norway. The data set contains time series
data for 13, 969 unique customers and is split into two different files; a mainfile that
consists of monthly customer application data and behavioral data with a total of
268, 120 records, and a balancefile that contains 13, 017, 635 records of daily account
movements. These data sets are linked through unique customer identification num-
bers and dates. The data contains only unsecured consumer loans and is captured
over approximately four years.

The data contains historical customer data captured in Norway over the past years,
where each row in the mainfile represents one month for one customer, and each row
in the balancefile represents one day for one customer. It is captured end-of-month
and end-of-day, respectively. The data is imbalanced, meaning that the target vari-
able is unevenly distributed. More specifically, the defaulting customers constitute
a minority class of 8.8% of the total customers. The target variable indicating default
is determined by the customer being in default for at least 90 days within the 12
months following the scoring date. The choice of target is in line with the regulatory
definition of default for Norwegian banks and thus the industry standard.

The following sections outline the overall strategy behind creating the final datasets
used for the LightGBM and the LR model. First, the data preparation steps con-
ducted for both models are presented. Then we present the exploratory data analy-
sis conducted on the finished processed datasets. The features used in both models
are further explained in Appendix B.

4.1 Data preparation for LightGBM

Utilizing daily account movements in credit scoring models has rarely been per-
formed in the literature. One of our main hypotheses for how to advance the per-
formance of the credit scoring model was that for some customers, the reasons ex-
plaining a default could be found in the historical changes in the daily account data.
Therefore, it was relevant to include as much historical data at the highest granular-
ity possible.

Unlike models such as LSTM and ARIMA, LightGBM and Logistic Regression
are not designed to handle time-series data directly. Thus, as both datasets were
multivariate time-series, several data processing steps were conducted in order to
convert the temporal data into static data that can be utilized by the LightGBM and
Logistic Regression models. These steps can be summarized as data filtering, feature
extraction, and feature selection. Note that these steps were only applied to the



10 Chapter 4. Data

LightGBM model dataset, as the bank predefined the features used in the Logistic
Regression model. This is further discussed in section 4.2.

Data Filtering

As the data contains a large number of observations per customer, it was necessary to
filter out noise. Figure 4.1 shows the overall strategy for selecting these observations.
In the figure, the customer is said to be in legal default after having failed to fulfill
its loan obligations for 90 days, shown as the pink line. The objective is to predict
such legal defaults occurring within the next 12 months, as shown with the stapled
orange line. For the remainder of the text, we define this as a default, unless otherwise
specified. Thus, all observations after a default are irrelevant for predicting legal
default and, consequently, removed for all defaulting customers.

Based on the logic described above, only the last 90 days leading up to a de-
fault are used in the models. The 3-month window was chosen to compromise be-
tween including enough historical data and adding too many observations, leading
to noise. Hence, since the mainfile and the balancefile are structured in a monthly and
daily format, three and 90 observations prior to a default event were considered, re-
spectively. This is shown on the left-hand side of Figure 4.1. Furthermore, the fact
that the target variables were fitted retrospectively to the dataset enabled us to use
the last observations in the datasets for the non-defaulting customers.

FIGURE 4.1: Timeline illustrating the distinction between default and
legal default. 90 days of balance data and 3 months of main data
are used for predicting the probability of a legal default within the
next 12 months. A legal default occurs if a customer fails to fulfill its

obligations over a period of 90 days.

Feature extraction

Once the data was filtered, several aggregation measures were implemented to ex-
tract signals from the data. These aggregation measures differed between the mainfile
and the balancefile.

On the mainfile, a pivot transformation was implemented. This transformation is
exemplified through Table 4.1, where the original data is converted to a format with
one row per customer, i.e., a matrix with 13, 969 rows. The new table is built around
the last observation of each customer, following the description above. In the pivot
operation, one- and three-month lags were utilized. There are two reasons why a
customer might have its last observation at time T; either it enters a default at T + 1,
or there are no subsequent observations for the customer in the data. Either way,
the final dataset will include features captured at time T and the lagged features
from T � 1 and T � 3. Note that in the pivot transformation, missing observations
are preserved to ensure consistency between the observations. Hence, if the mainfile
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has a customer with only 1 observation, as is the case for new loan applicants, NaN
values are generated for the lagged features.

In order to capture the development leading up to the last observation, several
functions were applied to the lagged features, further increasing the feature space. In
addition to including the still features, shown in Table 4.1b, both the actual difference
in feature values and the percentage changes in the feature values for the lagged
features were included in the pivot transformation.

Date Id Features

30.9 A x0
A

31.8 A x�1
A

31.7 A x�2
A

30.6 A x�3
A

31.5 B x0
B

31.3 B x�2
B

28.2 B x�3
B

31.7 C x0
C

(A) Before pivot transformation.

Date Id Current Lag 1 Lag 2

30.9 A x0
A x�1

A x�3
A

31.5 B x0
B NaN x�3

B
31.7 C x0

C NaN NaN

(B) After pivot transformation.

TABLE 4.1: Illustration of the pivot transformation used on the main-
file dataset. xi

j represents an observation (array of feature values) for
customer j at time i, where i = 0 indicates the last observation present
in the data. Observe how customer A has four consecutive rows of
data, and thus no NaN values after the transformation, whereas cus-
tomer B misses an observation at time T � 1 and thus has NaN values

for the lags of 1.

For the balancefile, a different set of aggregation measures was applied. Based on
each customer’s balance movements over the last 90 days, five new features were
generated, where three of them are visualized in Figure 4.2. The new features rep-
resent the standard deviation, maximum value, and minimum value over the entire
period. The purpose of adding these features is to obtain deeper insights into the
customer’s economic situation and financial stability. In addition to the information
provided by these three features, we wanted to derive a measurement indicating
financial distress. Based on the assumption that distressed customers will strug-
gle to remain balance-positive for long periods, a "distress feature" was designed to
capture the longest coherent period with a positive balance, constituting our fourth
feature. Finally, the fifth and last feature generated based on the balancefile dataset
captures irregularly large deposits by measuring the difference between the largest
and the second-largest jump in the balance. There are two reasons why this feature
is assumed to be relevant. First, abnormally large jumps in the balance may indicate
loan disbursements from other banks, meaning that the feature can uncover worry-
ing signs in an otherwise positive balance. Secondly, a measure of the stability of the
income might provide additional insights into the customer’s financial situation. All
five features were ultimately joined with the mainfile, creating one extensive dataset
with one row per customer. The inclusion of the balance features provides a lot of
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additional information to the credit scoring models. Furthermore, it incorporates
time series data in a way the bank has never done before.

FIGURE 4.2: Illustration of three of the new features generated from
the balancefile. The last 90 relevant days of account information were

used for each customer to create aggregated balance features.

Feature Selection

The resulting dataset from the feature extraction procedures contained 13, 969 rows,
corresponding to one row per customer. Due to the pivot transformations, this
dataset entailed more than 100 features. The number of features had to be signif-
icantly reduced to make the model more explainable and avoid the curse of di-
mensionality, i.e., separating the data based on too many features. Features were
dropped based on a backward feature selection procedure on a random subset of
the data used for training. The procedure is commonly used within the ML liter-
ature and can be summarized as follows; Start with all features and iteratively re-
move features with low SHAP importance on the validation dataset. The resulting
dataset that eventually was used for training and evaluating the LightGBM model
has 13, 969 rows and 18 features. Feature explanations, statistics, and distributions
are provided in Appendix B.

4.2 Data preparation for Logistic Regression

The bank provided the LR model used in this study, making it an entirely realistic
benchmark model. The target variable of the bank’s model is the same as the default
variable used in ours, i.e., predicting the probability of a legal default occurring
within the next 12 months. The bank’s LR model utilizes six features, where each
feature is split into several bins. Consequently, we created an LR-specific dataset
based on a recipe from the bank that was one-hot-encoded to match the categories
defined by the bins. To ensure that the LR model and the corresponding dataset com-
plied with the assumptions behind Logistic Regression, we used Variance Inflation
Factors (VIF) to verify an acceptable level of multicollinearity among the features
and the Box-Tidwell test to check for linearity in log-odds. As the bank has deemed
its LR model a trade secret, we are precluded from disclosing further details of its
inner workings or details of the performed binning operations.
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4.3 Data visualization

The following subsections present data visualization techniques on the dataset used
for the LightGBM model. First, Principal Component Analysis is conducted to look
for any clear linear separation of the dataset. Second, kernel density estimation is
performed and visualized through violin plots, to better indicate the feature distri-
butions. Finally, correlation heatmaps are presented to look for any patterns between
the features. Data visualizations of the data used for the LR model are found in Ap-
pendix C.

4.3.1 LightGBM dataset

Principal Component Analysis

FIGURE 4.3: Principal Component Analysis on the dataset used for
the LightGBM model. Each instance is normalized and projected onto
the space spanned out by the most dominant eigenvectors. Each in-

stance is color-coded based on the target class.

Figure 4.3 displays the resulting plot after performing Principal Component Analy-
sis (PCA) on the training dataset used by the LightGBM model (Jolliffe, 1986). PCA
projects high-dimensional data down to two dimensions using the most dominant
eigenvalues and their corresponding eigenvectors. In the plot, each dot represents
one instance in the data set and is colored based on the target class. The two axes
are the two largest principal components, which represent the two directions in the
dataset with the most variance.

It is evident from the figure that no clear separation of the target variable exists,
indicating that utilizing a vanilla linear data-separation model without further data
transformations would yield poor results. Furthermore, the two largest principal
components only explain approximately 31% of the variance in the dataset. This
lack of importance, combined with the poor separation, indicates that a model with
the flexibility to handle non-linear correlations, such as LightGBM, is preferred.
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Violin Plot

FIGURE 4.4: Violin plot of the data set used for the LightGBM model,
with normalized values. Each violin indicates a feature distribution
and is colored based on the target class. White dots indicate the fea-
ture median, and the black bar indicates the interquartile range. Out-
liers with an absolute standard deviation larger than 5 are removed

for visualization purposes.

Figure 4.4 displays a violin plot of the data set used for training the LightGBM model
(Hintze and Nelson, 1998). A violin plot combines box plots and kernel density
plots by estimating the underlying distribution of each feature. Thus, violin plots
are suitable for displaying feature characteristics efficiently. In the figure, each white
dot represents the feature median, whereas the width of each violin indicates the
frequency of data points. The black bar of each violin indicates the interquartile
range. Each violin is colored based on the target variable.

From the violin plot, it is evident that most of the features are, to some extent,
concentrated around their means. Notable differences in the feature distributions
for the two target classes are also present, indicating a signal in the data with the
potential to separate these classes. For all features, the tails of the feature distribu-
tions are thin, represented in the plot as the upper and lower thin lines. The feature
Percentage Change in Balance (1MA) stands out, with almost all of the data points con-
centrated around 0.0. The abnormal shape of this violin is caused by a few outliers
with significant percentage changes. The reader is referred to Appendix B, where
feature statistics are presented through the usage of quantiles.
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Correlation heatmap

FIGURE 4.5: Correlation heatmap of the dataset used by the Light-
GBM model. The feature combinations are color-coded based on cor-
relation, explained by the color scale to the right. Light colors indicate

positive correlations.

Figure 4.5 shows the linear correlation between all features, including the target vari-
able. The colors shown on the right-hand axis indicate the magnitude of the correla-
tion. From the plot, it is clear that the target variable does not display any significant
correlation with the features, and that most of the features are only weakly corre-
lated with themselves. A few stronger correlations exists however, most notably
between two pairs of balance-features; Balance Mean (L3M) with Balance Minimum
Level (L3M), and Balance Differentiated Max Change (L3M with Balance Standard Devia-
tion (L3M). It is quite expected that a pair of features related to the balance level and
another pair related to the volatility display strong correlations. Over three months,
if the average balance is high, the minimum balance level is often high. Conversely,
if the balance standard deviation is high, the largest differentiated balance change
tends to be high. These pairs of strong correlations could indicate that consumers
behave relatively steadily over three months. Since these correlations are so strong,
it would be difficult to include all of these features in a Logistic Regression model
without violating the assumption of independent variables. However, for Light-
GBM, correlated features are less of an issue.
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Chapter 5

Results

In this chapter, we present and discuss the findings from three different areas. First,
we evaluate the performance of the different models described in chapter 3. Sec-
ondly, we demonstrate how SHAP can be applied to improve the interpretability
and reliability of state-of-the-art ML models. Lastly, the economic value of allow-
ing advanced ML models for credit scoring in banks is examined. We focus on how
ML models such as LightGBM can advance credit scoring by enabling the models
to process more extensive datasets. However, to verify the predictive advantage of
LightGBM compared to LR, a second, scaled-down LightGBM model is fitted solely
on the features used in the LR model.

Before the models were developed, the data was split into a training set and a test
set using stratified sampling. Stratified sampling ensures that the training set and
test set have approximately the same proportion of the target class as the original
data set. Due to the high amount of signal in the data, and to prevent overfitting,
we decided to use a bigger test set than conventional. The test set contained 40% of
the original data, corresponding to 5,587 customers. Furthermore, it was completely
held out during the development phase as a further measure to prevent overfitting
and ensure the validity of the results. Class distributions for the training and test
set are found in Appendix B. Stratified k-fold cross-validation was further used to
optimize the training on the training set. With this method, the training data is par-
titioned into k-folds, each fold having approximately the same target distribution.
Then, for each fold, a model is trained on the remaining training data and evaluated
using the held-out fold. In this study, k = 10 folds were found to be the optimal
parameter. Thus, during training, 10 sub-models were trained. The resulting final
predictions are the mean of the predictions over all ten folds.

For the LightGBM model, the Neptune-Optuna client (Niedzwiedz, 2022) was used
to perform hyperparameter searches. Several intervals in the hyperparameter space
were defined and narrowed down iteratively on each trial. The resulting hyperpa-
rameters from the best performing trial, used in the final model, are found in Ap-
pendix D.

The performance of the models was evaluated using ROC- and PR curves, with their
corresponding area under the curve (AUC) values. One of the advantages of using
these two evaluation metrics is that they are not constrained to thresholds for classi-
fying default or not default. Hence, ROC AUC and PR AUC provide an aggregated
performance measure across all possible classification thresholds. As this study fo-
cuses on XAI and explainable credit scoring models, these evaluation metrics were
deemed appropriate for assessing the performance of the models. The metrics are
further explained in Appendix E.
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5.1 Model Evaluation

LightGBM Logistic Regression
Actual Positive Negative Positive Negative

Predicted

Threshold = 10%
Positive 467 1,170 464 3,255

Negative 25 3,926 28 1,841

Threshold = 15% Positive 455 927 438 2,524

Negative 37 4,169 54 2,572

TABLE 5.1: Confusion matrix for different thresholds for the Light-
GBM and Logistic Regression models.

Table 5.1 shows confusion matrices comparing the performance of the LightGBM
model and the Logistic Regression model. For the LightGBM model with a thresh-
old of 10%, the value of 467 represents the number of true positives, 1, 170 is the
number of false positives, 25 is the false negatives, whereas 3, 926 represents the true
negative values. Note that the table includes the thresholds 10% and 15%. Using
a probability of default (PD) threshold of 10%, means that any customers with PD
higher than 10% are classified as defaulting, and any customers with lower or equal
PD are classified as not defaulting. Thus, from a practical perspective, lower thresh-
olds correspond to stricter models, as fewer loans are granted. From the table, we
can see that at the strictest level (threshold = 10%), the LightGBM model is able to
capture more customers subject to default yet still achieves a higher precision (fewer
false positives).

(A) ROC plot (B) PR plot

FIGURE 5.1: Evaluation curves. (a) ROC plot and (b) PR plot compar-
ing the performance of the LightGBM and LR model. It is clear that
LightGBM outperforms LR with a 17% and a 114% increase in ROC

AUC and PR AUC, respectively.
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Figure 5.1 provides the ROC and PR curves for both the LR model and the Light-
GBM model. Both models perform well measured in ROC AUC, with scores above
0.8, indicating strong predictive capabilities. It is evident from both plots, how-
ever, that the LightGBM model outperforms the LR model for all thresholds, with
an area under the LightGBM curve (orange) of 0.96 compared to 0.82 for the LR model
(blue). The difference constitutes a 17% improvement in ROC AUC for the LightGBM
model.

The findings in Table 5.1 and Figure 5.1 clearly show the advantage of the Light-
GBM model, as it outperforms the benchmark LR model for all thresholds. Further
evaluation metrics, confirming the edge of LightGBM, are summarized in Table 5.2.

LightGBM model based on LR features

A second, scaled-down LightGBM model was created to confirm the predictive ad-
vantage of LightGBM compared to LR. This model used the same six features as the
LR model to make the comparison as realistic as possible. Note that these features
were not binned as in the LR model but used directly. The scaled-down LightGBM
version still outperformed the LR model, achieving a ROC AUC of 0.89, correspond-
ing to a 9% increase. The results of this model is shown in Table 5.2 as LightGBM
(LR). Further comparison figures, such as ROC AUC and PR AUC curves, are found
in Appendix F.

Metric LightGBM LightGBM (LR) Logistic Regression

Threshold = 10%

F1-score 43.9% 26.0% 22.0%
Recall 94.9% 97.0% 94.3%

Precision 28.5% 15.0% 12.5%
Accuracy 78.6% 51.4% 41.2%

Threshold = 15%

F1-score 48.6% 29.1% 25.3%
Recall 92.5% 95.1% 89.0%

Precision 32.9% 17.2% 14.8%
Accuracy 82.8% 59.1% 53.9%

TABLE 5.2: Metrics for the three models that were trained. Light-
GBM was trained with 18 features, whereas LightGBM (LR) was used
for directly comparing Logistic Regression with LightGBM using the

same 6 features.
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5.2 LightGBM explainability

FIGURE 5.2: Feature importance according to the LightGBM model.
Average values across the 10 models from the stratified cross-
validation, ranked by information gain. The number of splits on the
right y-axis, and corresponding information gain for splits on the left

y-axis.

Figure 5.2 shows the feature importances in the LightGBM model. Note that in order
to obtain the splits and gains for the entire LightGBM model, we averaged the fea-
ture importances across the ten individual models resulting from cross-validation.
In the plot, blue bars indicate the total number of splits on each feature, whereas
orange bars indicate the total information gains of splits that use the feature. From
the plot, it is clear that Balance in Percentage and Percentage Change in Balance (1MA)
are the two features associated with the highest information gain. It can also be
observed that Balance Minimum Level (L3M), Balance Standard Deviation (L3M), and
Percentage Change in Balance (1MA) are the features with the largest number of splits
in each node. Besides just being a proxy for average feature effects on the dependent
variable, a clear disadvantage of LightGBM explainability plots is the lack of direc-
tional feature effects. The high information gain of Balance in Percentage indicates
that it is an important feature for separating the two classes in the dataset. However,
it is impossible to interpret to which extent the feature would impact a given pre-
diction. This information is not provided by the number of splits either, as it only
measures the number of times each feature is used in the model. There is clearly a
need for bolstering the explainability of LightGBM, and the following section shows
how SHAP can be used to bridge the explainability gap.
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5.3 SHAP explanations

In this section, we apply SHAP to provide further explanations of the workings of
the LightGBM model. SHAP values correspond to feature effects, and this section
shows how such explanations can solve the main challenges uncovered by EBA, re-
lated to the complexity of ML models, as discussed in chapter 1. As outlined in
section 3.5, SHAP values are calculated using a conditional expectation function
derived from the LightGBM model. However, the 10-fold cross-validation of the
LightGBM model complicates the application of SHAP, as SHAP expects one single
model as input. In order to overcome this issue, we averaged the SHAP values of
the ten individual models, in line with the recommendations of the creator of SHAP,
(Lundberg, 2018).

5.3.1 Global explanations

FIGURE 5.3: Simplified SHAP variable importance plot for the Light-
GBM model, ranked by importance. Note that SHAP values are in

absolute log-odds.

Figure 5.3 shows the magnitude of the contribution of each feature, measured in ab-
solute log-odds values. We observe that Balance Standard Deviation (L3M), Balance
in Percentage and Customer Length in Months have the highest impact on the model.
The feature effects found by SHAP correspond reasonably well with the LightGBM
importance plot in Figure 5.2, as many of the same features show significant impor-
tance measured in either splits or gain. Furthermore, we can observe that features
from the balance dataset are of high importance. This clearly indicates that utilizing
daily account movements for credit scoring customers gives the model more signal,
thus increasing its predictive performance.
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FIGURE 5.4: SHAP variable importance plot for the LightGBM
model. Positive SHAP values are associated with an increase in de-
fault probability, and feature values are color-coded according to the
scale on the right side. E.g., a high level of Customer Length in Months,
shown in red, is associated with a decrease in default probability,
whereas a low feature level, shown in blue, is associated with an in-
crease in the probability of default. Missing values are colored grey,

and all SHAP values are measured in log-odds.

Figure 5.4 shows a more detailed summary of the workings of the LightGBM model,
where directional feature effects on the resulting predictions are visualized. Each
dot on the feature rows represents a single instance in the dataset, distributed on
the x-axis according to the SHAP value for that feature value. The high and low
relative feature values are color-coded as red and blue, respectively. Missing values
are colored grey. High SHAP values are associated with an increase in the predicted
probability of default, whereas low SHAP values correspond to a reduction in the
predicted probability of default. The features are ranked by importance, with the
most important features for the prediction at the top.

Most of the feature rows in Figure 5.4 display a distinct trend in how different
feature values affect the model. In other words, one can observe a clear distinction
between the red and blue dots, as the high and low feature values contribute in
different directions in terms of default probability.
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Dependence plot

Contrary to LR, LightGBM can utilize complex cross-feature relations in its black-
box calculation. Though partial dependence plots can display dependencies be-
tween a variable and the response, they cannot show how the importance of a vari-
able can vary for specific feature values or display interaction effects between fea-
tures. SHAP can visualize this by plotting all instances in a scatter plot, with the
feature value on the x-axis and the importance measured in SHAP values on the
y-axis. By color-coding the values of a second feature, the plot can then display
dependencies between variables and how they affect the model. The insights from
such dependence plots can provide valuable information for banks and regulators
about the inner workings of ML models and thus help evaluate whether the model
is in accordance with the regulatory requirements described in chapter 2.

FIGURE 5.5: SHAP dependence plot showing SHAP values for Bal-
ance Standard Deviation (L3M), up to the 95th percentile. Each dot rep-
resents one customer and positive SHAP values are associated with

an increase in default probability.

Figure 5.5 shows how the SHAP values, and thus the feature effects, for Balance
Standard Deviation (L3M) vary for different feature values. Note that the data is not
normalized. The upward trend in the plot indicates that higher volatility in a cus-
tomer’s balance over the last 90 days is associated with an increase in default proba-
bility. Standard deviations below approximately 2, 000 are associated with negative
SHAP values, meaning that these feature values contribute in the direction of non-
default. In the range between approximately 2, 000 and approximately 30, 000, the
SHAP values increase steadily, denoting that the importance of the Balance Standard
Deviation (L3M) feature as an indicator of default increases. Above 30, 000, the plot
is significantly sparser as few customers experience such high levels of volatility in
their balance.

The findings in Figure 5.5 can be interpreted as follows; customers with a stable
economic situation, defined by low volatility in their balance, are less likely to de-
fault. Conversely, customers with more variation in their balance are far more likely
to default on their debt obligations. Seeing that Balance Standard Deviation (L3M) is
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the feature with the highest average impact on the model, as shown in Figure 5.3,
the information in this dependence plot can be important for understanding the pre-
dictions of the LGB model.

FIGURE 5.6: SHAP dependence plot showing SHAP values for Cus-
tomer Length in Months, color-coded based on the value of the Balance
Longest Positive Interval (L3M) feature. Each dot represents one cus-
tomer and positive SHAP values are associated with an increase in

default probability.

The SHAP dependence plot can be further extended by color-coding interaction ef-
fects between features. This is displayed in Figure 5.6, where the SHAP values of
Customer Length in Months are displayed and coloured based on the feature values
of Balance Longest Positive Interval (L3M). A clear trend is visible, where longer cus-
tomer relationships with the bank are associated with a lower probability of default.
Furthermore, a few larger shifts in the effect of the probability of default are visible.
For instance, customer relationships shorter than approximately 4 years (48 months)
contribute in the direction of default (positive SHAP values), whereas relationships
longer than approximately 12 years (144 months) are very positive in terms of cred-
itworthiness (large negative SHAP values). More mature customers are thus less
likely to default on their loans. However, the vertical spread in the plot indicates
that other features interact with Customer Length in Months. For customer lengths
below 150, the vertical separation of the color-coding suggests that Balance Longest
Positive Interval (L3M) is one among these variables. For customers with longer con-
tinuous positive balances (red dots), the feature effect of customer length on default
is reduced, as the red dots tend to lie closer to a SHAP value of 0. However, for
customers with a shorter continuous positive balance (blue dots), the effect of cus-
tomer length is more important for default prediction, as the absolute SHAP values
are larger. This pattern ends for customer lengths above 150, stipulating that other
features have more significant interaction effects with Customer Length in Months for
these instances.
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Dependence plot with Logistic Regression coefficients

In the following subsection, we offer a novel way of comparing the SHAP feature
effects with the feature effects in the LR model. The LR dependencies were derived
using the coefficient of the features and mapping the binned values back to the orig-
inal values to use the same x-axis. The result is visualized with grey dots in the
figures. This approach can show where the feature effects differ between the models
and provide insights as to why one model outperforms the other.

FIGURE 5.7: SHAP dependence plot showing SHAP values for bal-
ance in Percentage. Logistic Regression feature effects for the balance
are displayed in grey and scaled to log-odds, corresponding to the
SHAP values on the y-axis. All values from the 4 separate Balance in

Percentage bins are mapped back to original values to fit the x-axis.

Figure 5.7 combines a SHAP dependency plot with an LR dependency plot for the
Balance in Percentage feature. This feature measures the percentage share of the is-
sued consumer loan that the customer has outstanding at the time of credit scoring.
Specifically, a feature value of 0.0 means the customer has repaid all its debt, while a
value of 1.0 implies all of the debt is still outstanding. The leftmost dots in the plot,
next to the y-axis, represent missing feature values in the dataset provided by the
bank and correspond to the gray dots in Figure 5.4.

Both the SHAP and LR graphs display an upward-sloping trend, where higher
feature values are associated with a higher probability of default. Comparing the
two graphs plotted in Figure 5.7, one can observe that the magnitude of the SHAP
feature effects is greater than the LR model’s feature effects on both ends of the x-axis
(further away from y = 0). Thus, the LR model appears to underestimate the effects
of the Balance in Percentage feature, though it is able to capture the overall trend of
the effects. For instance, on the one hand, the LR model assigns the same negative
contribution for all feature values below approximately 0.75. The straight grey LR
line shows this. On the other hand, the LightGBM model is able to differentiate
this group of customers substantially. LightGBM clearly finds segments where the
customers with outstanding consumer loans lower than approximately 17% have
notable negative SHAP values, indicating significant creditworthiness. The differ-
ence between the models is also visible for the largest feature values. For example,
for customers with outstanding consumer loans over 95%, LightGBM and SHAP
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yield a significantly higher probability of default than the LR model. All in all, the
LightGBM model’s advantage in its ability to differentiate customers based on the
Balance in Percentage feature can be a part of the explanation as to why the model
significantly outperforms the LR model.

FIGURE 5.8: SHAP dependence plot showing SHAP values for Aver-
age Used Credit (L3M), color-coded based on the value of the Balance
Longest Positive Interval (L3M) feature. Logistic Regression feature ef-
fects for average used credit is displayed in grey and scaled to log-
odds, corresponding to the SHAP values on the y-axis. All values
from the 4 separate Average Used Credit bins are mapped back to orig-

inal values to fit the x-axis.

An example where the feature importances of the LR model coincide better with the
SHAP values is shown in Figure 5.8. The figure contains both SHAP and LR depen-
dence plots for Average Used Credit (L3M). The feature measures the average share
of the granted credit limit for unsecured products drawn in the last three months.
Drawn credit is defined as a negative number and credit limit as a positive number,
meaning that feature values of �1.0 and 0.0 indicate that the credit facilities have
been fully drawn and remained untouched, respectively.

Average Used Credit (L3M) feature values of below �0.9 contribute substantially
in the direction of default in the LR model. The effects in the LightGBM model are
more ambiguous, as the vertical distribution of the SHAP values ranges from �1 to
+2, indicating that other variables might interact with the feature. From the color
coding, it is evident that the interaction effect between Average Used Credit (L3M) and
Balance Longest Positive Interval (L3M) can help explain the spread. Among customers
that have drawn most of their credit facilities (feature values below approximately
�0.7), those with a shorter period of continuous positive balance (blue) are far more
likely to default than those with longer positive stretches (red). For the latter, the
default probability is actually reduced, meaning that a combination of a low fea-
ture value for Average Used Credit (L3M) and a high Balance Longest Positive Interval
(L3M) is an indicator of creditworthiness. The LR model’s inability to detect such
multidimensional relationships between features makes it fundamentally inferior to
advanced ML models, explaining some of the deficit in predictive utility.
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Decision plot

Figure 5.9 can provide further insights into why LightGBM outperforms the LR
model. The plot shows the feature effects of 20 instances that go into default. These
instances are wrongly classified as non-default by the LR model but correctly clas-
sified as default by the LightGBM model. The features on the y-axis are ordered
by descending importance, whereas the upper x-axis shows the LightGBM predic-
tions on these instances. The colors of the lines indicate the predicted probability
of default; red indicates strong confidence in default, whereas blue indicates lower
confidence. Moving from the bottom to the top of the plot, one can observe that each
feature’s effects on the resulting prediction are added to the intercept. The intercept,
represented as the gray vertical line in the plot at 10%, is the chosen cutoff for pre-
dicting default versus non-default. The value was selected to be 10%, as it represents
the sum of the true proportion in the test class (8.8%), plus a small risk margin.

FIGURE 5.9: Decision plot for 20 defaulting observations correctly
classified by the LightGBM model but wrongly classified by the LR
model. Each line represents one customer. The plot is read bottom-
up, starting with the chosen intercept and adding feature effects until
each observation’s final prediction is reached. Features are ordered

based on importance, in descending order.

As we can see from the upper x-axis in Figure 5.9, the model displays a wide range
of default probabilities among the 20 customers. The predictions vary from 0.9 to
0.1 and are color-coded accordingly. The SHAP feature effects show that most of
the differences in PD are caused by the four most important features, as one can
observe a large spike in the predicted probabilities of the red lines for the upper
four features. For almost all instances, the balance features Balance Longest Positive
Interval (L3M), Balance Standard Deviation (L3M) and Balance Mean have an elevating
effect on the PD. This effect means that these three variables contribute significantly
to the LightGBM model’s correct default predictions. Since the Logistic Regression
model is created without the balance features, this might explain why the LightGBM
model correctly classified these instances as default, whereas LR did not.
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5.3.2 Local explanations

The GDPR demands that all users subject to an automated decision-making pro-
cess that "significantly affects" them have the right to obtain an explanation for the
outcome (European Union, Parliament and Council, 2016). Thus, there is an abso-
lute need for sufficient local explanations of ML credit scoring models. This section
demonstrates how SHAP can be used to abide by these regulations.

Waterfall plot
SHAP can provide descriptive and intuitive explanations for individual predictions
through waterfall plots. The SHAP waterfall plots show the contribution of each fea-
ture value to the default prediction, with red and blue bars indicating positive and
negative contributions, respectively. The features are ranked by importance, and the
actual feature values are displayed on the left side. In Figure 5.10, the prediction
by the LightGBM model is displayed as f (x) and the positive bias or intercept from
the LightGBM model is expressed below the plot as E[ f (X)], both measured in log
odds. Note that the difference between the true proportion of the target class and the
intercept visualized in the plot is caused by the LightGBM model being slightly un-
derfitted and having a minor bias towards not predicting default. The figure shows
a waterfall plot for a customer that LightGBM correctly predicted not to default,
while LR falsely predicted to default. By analyzing an instance with conflicting pre-
dictions, we can provide insights into the strengths of the LightGBM model and
showcase the straightforwardness of the local explanations provided by SHAP. The
log-odds f (x) value of �12.871, corresponds to a probability of 0.0003%, making the
LightGBM model very certain in its non-default prediction.

FIGURE 5.10: SHAP waterfall plot visualizing the predicted feature
contributions to a non-defaulting customer. All values are in log-
odds. The prediction by the model, f (x), corresponds to a probability
of 0.0003%. The bias of the LightGBM model is displayed as E[ f (X)].
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The feature value contributing the most to the non-default prediction is the Balance
Minimum Level (L3M) of 4, 564, showing that constantly having a positive balance
is an important indicator of creditworthiness in the LightGBM model. The second
most decisive contribution comes from the Customer Length in Months value of 161.
The negative contribution of �2.25 reflects the findings in Figure 5.6, where cus-
tomer relationships longer than 144 months displayed a significant reduction in the
probability of default. The depicted customer is further a part of the low-risk group
with a stable economic situation identified in Figure 5.5, exhibiting a Balance Stan-
dard Deviation (L3M) as low as 0.155. The last major contributor in the direction of
non-default is the Average Used Credit (L3M) feature value of �1.003. It is interest-
ing that having over-drawn the credit facilities actually contributes towards a non-
default prediction for this customer in the LightGBM model. This differs from the
LR model, where Figure 5.8 shows that such low feature values elevate the PD sig-
nificantly. However, because the customer has a high Balance Longest Positive Interval
(L3M) value, the LightGBM model considers the combination of these features to
have a positive impact on the creditworthiness of the customer. The ability to cap-
ture such complex feature interactions showcases one of the important strengths of
the LighGBM model.

Waterfall plot with probabilities

FIGURE 5.11: SHAP waterfall plot with feature effects converted to
probabilities. E[f(X)] is the bias of LightGBM, whereas, f(x) is the pre-
diction of LightGBM for this instance. All SHAP values are trans-
formed to probabilities. Feature values shown on the left-hand side.

The explainability of the SHAP waterfall plots can be further improved by convert-
ing the feature effects from log-odds to probabilities. The conversion is possible due
to the additive property of SHAP values. By normalizing the SHAP values for a
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given instance xi and multiplying the normalized SHAP values with the difference
between the prediction and the bias ( f (xi)� E[ f (X)]), we can convert the SHAP val-
ues from log-odds to probabilities while retaining the additive property. However,
as outlined in section 3.4, SHAP is just an approximation of exact Shapley values.
Thus, the probabilities will not be exact, but the additive property will still be en-
forced.

An example of SHAP waterfall plots with probabilities is shown in Figure 5.11,
where we see that the predicted probability of default, f (x) = 58.8%, equals the sum
of the SHAP values in probabilities, and the expected probability of default from the
model, E[ f (X)] = 0.9%. As mentioned earlier, due to the LightGBM model being
slightly underfitted, it exhibits some bias towards predicting non-default, which can
explain the difference in the intercept compared to the true target class proportion.
However, this difference is distributed over all features, making the individual fea-
ture effects relatively accurate.

The instance in Figure 5.11 represents a customer correctly identified as default-
ing by the LightGBM model but predicted not to default by the Logistic Regression
model. The plot clearly shows that the features from the balance dataset are impor-
tant; Balance Longest Positive Interval (L3M), Balance in Percentage and Balance Standard
Deviation (L3M) increase the probability of default with approximately 17%, 15%,
and 11%, respectively. These features correspond with the most important features
found in the decision plot in Figure 5.9. The feature effects of the SHAP waterfall
plots with scaled probabilities are intuitive and easy to understand, making them
suitable for explaining model outcomes even to non-practitioners.

5.3.3 Summary of SHAP explanations

The applications of SHAP that are discussed in this section show that the framework
is capable of improving the explainability of LightGBM significantly and provid-
ing even more insightful model explanations than the current industry-standard LR
models. We argue that the combination of SHAP and LightGBM has the potential to
answer the three challenges highlighted by EBA, previously discussed in chapter 1.

• SHAP can ease the challenge of interpreting results
The local explanations provided by waterfall plots show that SHAP provides
an intuitive approach for interpreting results. Furthermore, whereas feature
effects in LR are always given as the feature values multiplied with the corre-
sponding betas, SHAP displays more flexibility and is more accurate, easing
the challenge of interpreting the results.

• SHAP can facilitate managers’ understanding of the credit models.
The dependence plots with LR coefficients provide improved comparisons be-
tween different credit scoring models, enabling managers to bolster their un-
derstanding of the models.

• SHAP can help to justify a model’s results to supervisory authorities
Comprehensive global explanations visualizing feature importances, feature
dependencies, and interactions between features enable a detailed understand-
ing of the different features’ impact on the model output.

Additionally, the local explanations provided by SHAP enable justifications for indi-
vidual predictions, which is a regulatory requirement imposed by GDPR (European
Union, Parliament and Council, 2016).
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5.4 The economic value of a more accurate model

This section analyzes the potential economic value of the LightGBM model’s in-
creased predictive performance compared to the bank’s LR model. Credit risk mod-
eling has several areas of use within a bank, where common usage includes evaluat-
ing the creditworthiness of new loan applicants and calculating loan loss provisions.
We will here focus on the combined gains by improving both. Thus, we find it rele-
vant to analyze the incorrect predictions produced by the two models by identifying
false positives and false negatives for both models, using the held-out test set.

For this purpose, we created two evaluation metrics - LGD and LP. LGD represents
loss-given-default and is the associated loss from customers who received a loan but
defaulted (false negatives). This metric was calculated as a proxy by assuming that
all remaining balance is lost on default. LP represents lost profits and is the yearly al-
ternative cost of not granting loans to non-defaulting customers (false positives). LP
was calculated by assuming a flat 10% yearly interest rate on all consumer loans. A
separate, 3-dimensional LP plot, that includes changes in interest rates, is provided
in Appendix G.

FIGURE 5.12: Approximated costs for imperfect credit scoring mod-
els. The X-axis indicates the threshold for default, whereas the left
y-axis indicates potential losses. The shaded area displays the differ-
ence in total loss between Logistic Regression and LightGBM, and is
measured on the right y-axis. Loss given default (LGD) and lost profits

(LP) are plotted, for both LightGBM and Logistic Regression.

Figure 5.12 shows LGD (loss-given-default) and LP (lost-profits) for both models for
various probabilities of default thresholds (x-axis). The left y-axis indicates the losses
for LP and LGD, whereas the right y-axis indicates the total loss of having an imper-
fect model. As we can see from the figure, the losses from the LightGBM model are
lower than Logistic Regression for both LP and LGD at almost all thresholds higher
than 20%. Below 20%, the losses from the LP of Logistic Regression are significantly
larger than those from the LP of LightGBM. Note that this plot assumes that the de-
fault threshold is equal for both models. Therefore, it was necessary to calibrate the



32 Chapter 5. Results

LightGBM model by fitting ridge regressors to the one-hot encoded indexes of the
leaves produced by the LightGBM model. The calibration was performed solely for
this plot in order to keep the comparison between LR and LightGBM as simple as
possible. More details about the calibration procedure are presented in Appendix H.

The relative smoothness of the red and orange curves of the LightGBM model com-
pared to the green and blue of the LR model indicates that the potential losses of
using the LightGBM model are less sensitive to changes in the threshold for classi-
fying default. The sudden jumps in the LR curves suggest that any minor changes
or inaccuracies in the LR model can have significant economic impacts on the bank.
Banks typically operate with probability bands for default rather than clear thresh-
olds, and with smoother LP and LGD curves, the model will operate more uniformly
within these bands. We argue that the increased smoothness of the LightGBM curves
further highlights the advantages of enabling LightGBM for credit scoring.

Despite being an approximated figure, Figure 5.12 indicates that bank losses can
be substantially reduced by enabling ML in credit scoring. As the current effective
interest rates on consumer loans in Norway typically range between 10% and 25%1,
having an internal threshold of default in the bank somewhere between 10% and
20% seems like a reasonable approximation. At these thresholds, the lost profits of
the LightGBM model are significantly lower than for the LR model, with a reduc-
tion ranging from about NOK 35, 000, 000 at 10% to 22, 000, 000 at 20%. This benefit
clearly outweighs the slight inferiority of the LightGBM model’s LGD for the same
thresholds. The total reduced losses for using LightGBM instead of LR, on the held-
out test set, shown as the shaded area with the y-axis on the right-hand side, are
between NOK 30, 000, 000 and 20, 000, 000 yearly, depending on the threshold for
default.

Overall, Figure 5.12 illustrates that the economic value of enabling advanced ML
methods for credit scoring in banks can be substantial. As seen in the previous sec-
tions, specifically in section 5.1 and section 5.3.1, the difference in predictive ability
is likely caused by the inherent ability of ML models to capture non-linear relation-
ships in the data efficiently.

1Finansportalen.no - a service by the Norwegian Consumer Council. Loan amount: 100,000 NOK,
period of repayment: 1 year (Accessed 01.06.2022)
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Chapter 6

Conclusion

In this paper, we have shown that LightGBM models outperform LR models for
credit scoring in terms of both predictive performance and explainability, and that
the economic value of the predictive improvement can be substantial. Three mod-
els were utilized and compared in this paper; a full-scale LightGBM model, which
utilizes daily multivariate time-series data from the balance accounts of the bank’s
customers, a Logistic Regression model that was received from the bank and used as
a benchmark, as well as a second LightGBM model trained on the same features as
the LR model. The full-scale LightGBM model achieved a ROC AUC of 0.96, corre-
sponding to a 17% improvement compared to the benchmark LR model, confirming
our hypothesis that using daily balance data improves the predictive performance.
Furthermore, the performance of the second LightGBM model, achieving a 9% in-
crease in ROC AUC compared to the LR model, shows that LightGBM is more accu-
rate than LR on the same dataset.

Our main contribution is the application of the explainable AI framework SHAP,
where we utilize SHAP values for both global explanations of ML models and local
explanations of individual predictions. We have shown how this framework can be
applied to improve the interpretability and reliability of state-of-the-art ML models
and, specifically, how SHAP can be used to meet the challenges outlined by the Eu-
ropean Banking Association concerning AI. Lastly, our work highlights the potential
economic value of allowing banks to utilize advanced ML models for credit scoring.

Improving the performance and the explainability of credit scoring models should
have positive implications for multiple stakeholders. First, banks would be better
equipped to manage their risk and, consequently, reduce their losses. Second, fi-
nancial authorities would be provided with a more intuitive and detailed tool to
interpret the credit models’ underlying mechanisms. Finally, increased explainabil-
ity can improve customers’ trust in the credit scoring systems by providing detailed
reasoning for customers whose loan applications are rejected.

We identify three potential future improvements to this study that we view as cru-
cial steps on the path toward enabling XAI for credit scoring. First, different tree-
based models with XAI should be evaluated on the dataset. Second, the Logistic
Regression model used for comparing these models should be open-sourced to en-
able a more comprehensive comparison with LightGBM. Third, more research on
the calibration of LightGBM models should be conducted. Our uncalibrated Light-
GBM models clearly outperform the LR model from the bank, and we believe there
is unrealized potential for advancing default predictions further by calibrating the
LightGBM model.
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Appendix A

Logistic Regression Theory

For evaluating the relative performance of the LightGBM model, an industry-standard
LR model generously provided by a medium-tier bank in Norway. LR is commonly
used to predict categorical values (Lever et al., 2016) and is the most popular method
for credit scoring in banks. The LR model from the bank was used in order to make
the baseline as realistic as possible. The essential property of LR is that a linear
combination of independent variables can be mapped to a probability score (Hess
and Hess, 2019), and that the dependent variable can be classified into two groups
based on the scores (Bussmann et al., 2020). This section outlines how LR works for
estimating probability of default (PD):

Let Yn be the estimated default probability for customer n, based on on the fea-
ture values x1n, ..., xTn. PD can then be expressed as:

P(Yn = 1|x1n, ..., xTn) = pn (A.1)

This probability can be further expressed as an odds ratio, which is an indicator
of an association between variables (Connelly, 2020). Odds ratio can be defined
as the ratio of the probability of an outcome occurring to the probability of it not
occurring (Lever et al., 2016):

Odds ratio =
pn

1 � pn
(A.2)

The linear combination of the independent variables can be expressed as the nat-
ural logarithm of the odds ratio. This yields the logistic regression equation (Hess and
Hess, 2019):

ln(
pn

1 � pn
) = a +

T

Â
t=1

btxnt (A.3)

Where a is the intercept and bt is the t’th regression coefficient. These parameters
are estimated using MLE. Solving Equation A.3 for p gives a probability function
that maps the linear function back to probabilities:

pn =
1

1 + e�(a+ÂT
t=1 btxnt)

(A.4)

This expression is called the logistic function and yields a sigmoid curve, which
lies between 0 and 1 for all values of the linear predictor (Lever et al., 2016; Hess and
Hess, 2019).

Using Equation A.1 and Equation A.4, the PD can thus be expressed as a logistic
function:

P(Yn = 1|x1n, ..., xTn) =
1

1 + e�(a+ÂT
t=1 btxnt)

(A.5)
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The LR model is non-linear in probabilities and odds (Equation A.4), but linear
in log-odds (Equation A.3). Any input variable can be transformed, but the logistic
regression equation (Equation A.4) will remain linear. The transformation of the
input variables applies to all of the data, meaning that some non-linear relationships
between features might be overlooked by the model.
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Appendix B

Data

B.1 Features used in the LR model

Feature Name Feature Explanation Type

Customer Length in Months Number of months since the customer first joined
as a client bin

Number of Mortgages Number of mortgages at the time of scoring bin

Average Salary (L3M) Average salary of the customer, last three months bin

Average Used Credit (L3M) Average used credits by the customer, last three
months bin

Balance in Percentage Balance in Percentage bin

Grouped Number of Notices Grouping of reminder variables bin

TABLE B.1: Explanations of the features used in the LR model.
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B.2 Features used in the LightGBM model

Feature Name Feature Explanation Type

Customer Length in Months Number of months since the customer first joined
as a client float

Number of Mortgages Number of mortgages at the time of scoring float

Average Salary (L3M) Average salary of the customer, last three months float

Limit Blanco Unsecured (2MA) Limit Blanco two months ago float

Average Used Credit (L3M) Average used credits by the customer, last three
months float

Savings Balance Sum balance at the time of scoring float

Savings Balance (1MA) Sum balance one month before scoring float

Number of Logins (L3M) Number of logins, last three months float

Number of First Reminders Unsecured Number of first reminders on unsecured loans float

Balance Consumer Loan Balance of the consumer loan at the time of scoring float

Balance in Percentage Balance in Percentage float

Percentage Change in Balance (1MA) Percentage change in balance between one month
ago and time of scoring float

Percentage Change in Balance (3MA) Percentage change in balance between three
months ago and time of scoring float

Balance Longest Positive Interval (L3M) Longest continous period of positive balance, over
the last three months float

Balance Standard Deviation (L3M) Standard deviation of balance, last three months float

Balance Minimum Level (L3M) The lowest balance level, last three months float

Balance Mean (L3M) Balance mean, last three months float

Balance Differentiated Max Change (L3M) The differentiated maximum change in balance,
last three months float

TABLE B.2: Explanations of the features used in the LightGBM model.
A subset of these features was used for the LightGBM (LR) model.
This model was used for comparing LR and LightGBM more directly.
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B.3 Feature statistics
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TABLE B.3: Feature statistics for the training set consisting of 8,381 instances
(60% of the data). Note that the data is not normalized.
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B.4 Class distributions

Training Test

Size 60% (8,381) 40% (5,588)

Minority class 8.82% (739) 8.80% (492)

TABLE B.4: Class distribution and size of each dataset, used for all
models. Stratified sampling was used to split the datasets evenly.
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Appendix C

Data Visualization for Logistic
Regression

C.1 Correlation heatmap of LR features

FIGURE C.1: Correlation heatmap for the features used in the LR
model. The feature combinations are color coded by correlation, ex-

plained by the color scale to the right.
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C.2 Principal component analysis of LR features

FIGURE C.2: Principal component analysis (PCA) conducted on the
Logistic Regression dataset.
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C.3 Violin plot of LR features

FIGURE C.3: Kernel density estimation on the Logistic Regression
dataset visualized through violin plots.
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Appendix D

Model details

D.1 Final hyperparameters for LightGBM model

Hyperparameter Value
Boosting GBDT
Metric AUC
Learning rate 0.007
Scale pos. weight 11.5
Boosting rounds 25,000
Early stopping 5,000
Number of leaves 3
Max bin 255
Min data in leaf 1
Max depth -1
Number of splits 10
Lambda L1 (Lasso) 0.6
Lambda L2 (Ridge) 0.02

TABLE D.1: Hyperparameters for the final LightGBM model. The
exact same parameters were used on the scaled-down LightGBM (LR)

model.
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Appendix E

ROC and PR evaluation metrics

Receiver operating characteristic (ROC) ROC curves plot the true positive rate
(TPR), also called recall, on the y-axis against the false positive rate (FPR) on the
x-axis for all possible cut-off values:

TPR =
TP

TP + FN
(E.1)

FPR =
FP

FP + TN
(E.2)

Accurate models are recognized by as high TPR as possible for low FPR values,
meaning that a bigger AUC is better.

Precision recall (PR) Precision recall curves plot positive predictive value (PPV),
also called precision, on the y-axis and recall on the x-axis:

PPV =
TP

TP + FP
(E.3)

For imbalanced data sets with smaller positive classes, the most important task
of the model is to correctly predict positive cases. The focus on negative predictions
are reduced, meaning that the importance of PPV increases. This makes precision
recall a valuable measurement for the LightGBM model.
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Appendix F

Model comparison with same
features

F.1 AUC and PRC curves

(A) ROC plot (B) PR plot

FIGURE F.1: Evaluation curves. (a) ROC plot and (b) PR plot com-
paring the performance of the LightGBM and LR models where both
models are trained on the same features. Note that the LR variables
are binned in order to comply with the LR assumptions, whereas

LightGBM are trained on the features directly.
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F.2 SHAP Feature Importance

FIGURE F.2: Simplified SHAP variable importance plot for the Light-
GBM (LR) model ranked by importance. Note that SHAP values are

in absolute log-odds.
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F.3 Confusion matrices

LightGBM (LR) Logistic Regression
Actual Positive Negative Positive Negative

Predicted

Threshold = 10%
Positive 477 2,700 464 3,255

Negative 15 2,396 28 1,841

Threshold = 15%
Positive 468 2,260 438 2,524

Negative 24 2,836 54 2,572

TABLE F.1: Confusion matrix for different cut-off limits for the Light-
GBM and Logistic Regression models, where both models are trained

on the same features.
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Appendix G

Difference in approximated lost
profits for the two models

FIGURE G.1: 3D plot of differences in lost profits between Logistic
Regression and LightGBM, for various levels of interest rates and
thresholds for default. The graph approximates the current yearly
loss of not using LightGBM as credit scoring model. Note that the

LightGBM model is calibrated.
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Appendix H

Calibration of LightGBM model

H.1 Uncalibrated LightGBM vs calibrated LightGBM

FIGURE H.1: Predicted probabilities against true fraction of probabil-
ities. The black dotted line represents a perfectly calibrated classifier.
The blue and orange lines represents the uncalibrated and calibrated
LightGBM models, respectively. Note how the uncalibrated Light-

GBM model (yellow) overestimates the true probabilities.
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H.2 Theory and procedure behind LightGBM calibration

The idea behind calibration within machine learning is that a model’s predicted
probabilities of outcomes reflect the true probabilities of those outcomes (Nixon et
al., 2019). Thus, a classification model is calibrated if the predicted probability p̂ is
always equal to the true probability, p, for a given class y. From Figure H.1, it is clear
that the uncalibrated LightGBM model overestimates the true probabilities. For in-
stance, for a predicted probability of 40%, the true fraction of positives (representing
true probabilities) is just below 20%.

Our calibration procedure can be summarized as follows:

1. Instead of using the LightGBM model directly for predicting, we stored the
index of the leaf used for the prediction. Thus, since our model had 25000
trees, an array of shape (Nx25000) was stored for predictions on N instances.
Each element in the array indicates the leaf of each tree.

2. This array was then one-hot encoded, yielding a (Nx75000) array.

3. Using this array as our input data, X, and the actual targets as the labels, y, a
Linear Regression model f (X, y) was trained.

Thus, this model would function as a regressor mapping the LightGBM classifier
output to a calibrated probability between 0 and 1.

Since we used stratified k-fold cross-validation, 10 LightGBM models were trained.
Thus, 10 models had to be calibrated. Therefore, the procedure mentioned above
was repeated 10 times, yielding 10 Linear Regression models (calibrators). Thus, the
final predictions became the mean of the outputs from all 10 calibrators. Note that
to reduce overfitting, the calibrators were only trained on the training data, repre-
senting 60% of the overall dataset, and only evaluated on the test data. The resulting
calibrated LightGBM model is shown in Figure H.1 in blue, where we clearly see
that the predicted probabilities are closer to the ideal probabilities.
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