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Abstract

Farmed Atlantic salmon is one of Norway’s most valuable export goods. Supporting this industry,
we find the fish feed industry responsible for producing and distributing around 5,000 tonnes of
feed to fish farms along the Norwegian coast every day. Low margins make efficient logistics a
necessity for operating profitably. We present the current process of producing and distributing
fish feed to Atlantic salmon fish farms based on information from SINTEF Ocean and our industry
collaborator, Mowi. The focus is on the scale of operations, logistic constraints, demand variations,
and challenges and limitations in the current planning process. The current order-based system
is a limitation, and industry partners believe that cost savings can be realized by changing to
vendor-managed inventory (VMI).

This serves as the basis for our problem, the fish feed maritime inventory routing problem (FFMIRP).
It is a heterogeneous vessel fleet, multi-product maritime inventory routing problem (MIRP) formu-
lation for the distribution process, where the feed supplier is responsible for maintaining sufficient
inventory at farms. We propose a mathematical model for the FFMIRP, formulated as an arc-flow
mixed-integer linear program with a discrete time representation. Due to the scale and complexity
of the problem, it is difficult, if not impossible, to solve real-world instances to optimality using a
commercial solver.

Consequently, we develop a matheuristic intended to be applied to larger instances. The algo-
rithm is termed the Scalable Memetic Optimization algorithm with LP-based search Techniques
(SMOLT). SMOLT employs a memetic algorithm to decide how to route each vessel and combines
this with a linear program (LP) for optimal quantity assignment. We use a novel representation for
routing consisting of a list of (port, time)-pairs for each vessel. Our solution method implements
a series of mutations operating on routing solutions – including a set of ruin & recreate methods,
among these an adaption of SISR (Christiaens and Vanden Berghe, 2020) to the MIRP. SMOLT
has been designed to be easily parallelized, allowing it to be scaled out to nearly arbitrary levels of
parallel execution. This allows us to solve larger problems than those addressed in the literature
so far.

Test instances are created using real vessel and farm data provided by our industry partner, Mowi.
Smaller instances are made by varying the duration of the planning horizon and by sampling a ran-
dom subset of available farms, vessels, and products. When compared, we find that a commercial
solver performs better than SMOLT on some small instances. However, our algorithm usually ob-
tains solutions close to that of the solver in terms of objective value. For larger instances, SMOLT
outperforms the commercial solver, and is able to identify reasonable solutions for real-world-sized
instances. As part of our analysis, we present SMOLT’s performance on the MIRPLib Group 1
instances (Papageorgiou et al., 2014c) to give a comparison to existing solution methods. Despite
not being specifically designed to solve the MIRPLib instances, the results indicate that SMOLT
can obtain high-quality solutions for most instances. Finally, we give examples of how SMOLT
can be used to support more strategic decisions and discuss possible future improvements for the
solution approach.
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Sammendrag

Oppdrettslaks er en av Norges mest verdifulle eksportvarer. Mindre kjent er fiskefôrindustrien
som daglig produserer og distribuerer omtrent 5.000 tonn fôr til anlegg langs hele norskekysten.
Lave profittmarginer gjør effektiv logistikk en nødvendighet for å tjene penger i industrien. I
denne masteroppgaven presenterer vi de n̊aværende produksjons- og distribusjonsprosessene av
laksefôr basert p̊a informasjon fra SINTEF Ocean og v̊ar industripartner, Mowi. Fokuset ligger p̊a
skaleringen av operasjonelle aspekter, restriksjoner p̊a logistikken, variasjon i fôretterspørselen og
utfordringer og begrensninger ved dagens system. I dag er distribusjonsprosessen basert p̊a ordre
utstedt av anleggene, som h̊andteres av forh̊andsdefinerte ruter. V̊are industripartner tror at det
kan gjøres besparelser ved å g̊a over til en form for vendor-managed inventory (VMI).

Dette danner utgangspunktet for v̊art problem, maritim ruting og lagerstyring av fiskefôr (fish feed
maritime inventory routing problem – FFMIRP). FFMIRP best̊ar av en heterogen flate og flere
produkter, og tar for seg en distribusjonsprosess der distributøren er ansvarlig for å opprettholde
tilstrekkelig lagerbeholdning p̊a alle anlegg. Vi foresl̊ar en matematisk modell for problemet,
formulert som en kantflyt-basert blandet heltallsmodell med en diskret representasjon av tiden.
Grunnet problemets kompleksitet er det vanskelig, om ikke umulig, å løse reelle probleminstanser
til optimalitet med en kommersiell løser.

Som en konsekvens av problemets kompleksitet, utvikler vi en matheuristikk som er tiltenkt å løse
større probleminstanser. Vi har kalt algoritmen ”Scalable Memetic Optimization algorithm with
LP-based search Techniques” (SMOLT). SMOLT benytter en memetisk algoritme for å bestemme
hvordan hvert skip skal rutes, og kombinerer dette med et lineært program (LP) for å tilordne
optimale leveringsmengder. Vi benytter en ny representasjon av rutingen, som best̊ar av (port,
tid)-par for hvert skip. Løsningsmetoden v̊ar inkluderer en rekke mutasjonsoperatorer som endrer
ruteløsningene – blant annet ulike destruer & gjenoppbygg-metoder. SMOLT er designet for å
kunne parallelliseres lett; dette tilrettelegger for høy grad av parallell utførelse. Denne parallellis-
eringen bidrar til å gjøre det mulig for SMOLT å løse større problemer enn de som er adressert i
litteraturen frem til n̊a.

Testinstansene er generert basert p̊a ekte data om skip og anlegg som vi har f̊att fra industripart-
neren v̊ar, Mowi. Mindre instanser er generert ved å variere lengden p̊a planleggingshorisonten og
ved å trekke ut et tilfeldig utvalg av tilgjengelige anlegg, b̊ater og produkter. Vi ser at den kommer-
sielle løseren finner bedre løsninger enn SMOLT p̊a noen av de sm̊a instansene, men SMOLT finner
vanligvis omtrent like gode løsninger ogs̊a i disse tilfellene. P̊a de større, mer reelle instansene,
utkonkurrerer SMOLT den kommersielle løseren og finner fornuftige løsninger. Som en del av
analysen, presenterer vi SMOLT sine resultater p̊a ”MIRPLib Group 1”-instansene (Papageorgiou
et al., 2014c) for å muliggjøre sammenligning med andre løsningsmetoder. Til tross for at SMOLT
ikke er utviklet for å løse disse problemene, viser resultatene at algoritmen finner gode løsninger for
de fleste instansene. Til slutt gir vi eksempler p̊a mulige omr̊ader SMOLT kan bidra som et beslut-
ningsstøttende verktøy i strategiske beslutninger, og diskuterer mulige fremtidige utbedringer av
den foresl̊atte løsningsmetoden.

iii





Table of Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 The Fish Feed Industry 4

2.1 Industry Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Production Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Distribution System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Current Distribution Network . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Factors Impacting Fish Feed Demand . . . . . . . . . . . . . . . . . . . . . 9

2.3.3 Current Distribution Planning . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Challenges in the Current Setup . . . . . . . . . . . . . . . . . . . . . . . . 11

3 The Fish Feed Maritime Inventory Routing Problem 13

4 Literature Review 15

4.1 The Maritime Inventory Routing Problem . . . . . . . . . . . . . . . . . . . . . . . 16

4.1.1 Planning Horizon, Time and Consumption Rates . . . . . . . . . . . . . . . 17

4.1.2 Single-Product or Multi-Product . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.3 Distribution Network and Routing Constraints . . . . . . . . . . . . . . . . 18

4.2 Solution Approaches for the Maritime Inventory Routing Problem . . . . . . . . . 19

4.2.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Approximation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Mathematical Formulation 26

5.1 Modeling Approach and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1.1 Discrete Time and Planning Horizon . . . . . . . . . . . . . . . . . . . . . . 26

iv



TABLE OF CONTENTS

5.1.2 Port and Network Representation . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.3 Inventory Management in Vessels . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.4 Inventory Management at Ports . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.5 Routing Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.6 Dealing with End-Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.1 Objective Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.3.2 Routing Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.3.3 Inventory Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.4 Red, Yellow and Green Zones . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.5 Binary and Non-Negativity Constraints . . . . . . . . . . . . . . . . . . . . 35

6 A Scalable Memetic Optimization Algorithm with LP-based Search Techniques 36

6.1 Memetic Algorithms with Islanding . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Solution Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.1 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2.2 LP Model for Quantity Assignments . . . . . . . . . . . . . . . . . . . . . . 39

6.3 Fitness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4 Memetic Algorithm Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4.1 Parent and Survivor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.4.2 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.4.3 Mutation and Local Search Operators . . . . . . . . . . . . . . . . . . . . . 42

6.5 Other aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5.1 Islanding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5.2 Avoiding Mixing Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5.3 Gradually Extended Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Data and Test Instances 49

7.1 Mowi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.1 Fish Farms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.1.2 Vessels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 MIRPLib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



TABLE OF CONTENTS

7.3 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3.1 Mowi Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.3.2 MIRPLib Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Computational Study 56

8.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2 Mowi Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.2.1 Small Instances – Comparison with Commercial Solver . . . . . . . . . . . . 57

8.2.2 Medium Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.2.3 Large Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8.3 MIRPLib Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.3.1 Group 1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.3.2 Relaxed Group 1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.3.3 Relaxed Group 1 Instances with Long Planning Horizons . . . . . . . . . . 66

8.4 Managerial Insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4.1 Factory and Storage Locations . . . . . . . . . . . . . . . . . . . . . . . . . 67

8.4.2 Vessel Investments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.4.3 Concession Bidding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9 Concluding Remarks 71

10 Future Work 73

Bibliography 74

A LP Model for Quantity Assignments 78

A.1 Sets and Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2.1 Constraint-related Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.2.2 Objective-related Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.2 Port inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.4.3 Vessel inventory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.4.4 Loading and unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.4.5 Non-Negativity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

vi



TABLE OF CONTENTS

A.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.5.1 Travel at Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.5.2 Semi-continuous Restrictions on Loading and Unloading . . . . . . . . . . . 82

A.5.3 Compartment Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

B Details: Slack Induction by String Removal 84

B.1 Deciding on the Number and Length of Strings to Remove . . . . . . . . . . . . . . 84

B.2 “Split String” Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

C Discarded Mutations 85

vii



List of Figures

1.1 Harvested salmon in Norway from 2005 to 2021 . . . . . . . . . . . . . . . . . . . . 1

2.1 Market shares in the Norwegian fish feed industry in 2018 . . . . . . . . . . . . . . 4

2.2 Norway’s goals for future salmon export volume . . . . . . . . . . . . . . . . . . . . 5

2.3 Production process of salmon feed at Mowi’s production plant in Bjugn . . . . . . 6

2.4 Mowi feed composition 2020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5 Disease zones example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Disease zones example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7 Average Norwegian sea temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.8 Consumption of feed relative to the total biomass . . . . . . . . . . . . . . . . . . . 9

2.9 Timing of smolt release and its effect on total feed consumption . . . . . . . . . . . 10

5.1 Illustration of how a full TS network is structured . . . . . . . . . . . . . . . . . . 27

5.2 Illustration of how our TS network is structured . . . . . . . . . . . . . . . . . . . 28

6.1 Overview of SMOLT’s components . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.2 High-level illustration of main steps in GAs and MAs . . . . . . . . . . . . . . . . . 38

6.3 Solution representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.4 PIX crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.5 R&R based on time period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.6 SISR-based ruin operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.7 Time bounce mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.8 SMOLT’s time-based decomposition approach . . . . . . . . . . . . . . . . . . . . . 48

7.1 Mowi locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.2 Grouping of Mowi farms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.1 Factory insertions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 Concession analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

viii



List of Tables

2.1 The duration of, and total feed consumption in, the different stages of growth for
Norwegian Atlantic Salmon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Summary of previous studies on the MIRP . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Summary of previous studies matheuristics to solve the MIRP . . . . . . . . . . . . 24

4.3 Matheuristic techniques presented in the chapter . . . . . . . . . . . . . . . . . . . 24

6.1 Notation used for the LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2 Summary of mutations used in SMOLT . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1 The vessels used in the test instances . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Summary of Mowi instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3 Summary of MIRPLib instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.1 Hardware and software used for computational study . . . . . . . . . . . . . . . . . 56

8.2 SMOLT parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.3 Size of the mathematical model for the different test instances . . . . . . . . . . . . 58

8.4 Computational results for the commercial solver on the small test instances . . . . 58

8.5 Comparison of SMOLT and the commercial solver . . . . . . . . . . . . . . . . . . 60

8.6 SMOLT’s performance on the medium sized Mowi instances . . . . . . . . . . . . . 62

8.7 SMOLT’s performance on the large Mowi instances . . . . . . . . . . . . . . . . . . 63

8.8 SMOLT’s performance on the MRIPLib Group 1 instances . . . . . . . . . . . . . . 65

8.9 SMOLT’s performance on the relaxed MRIPLib Group 1 instances (I) . . . . . . . 66

8.10 SMOLT’s performance on the relaxed MIRPLib Group 1 instances (II) . . . . . . . 67

8.11 Comparison of different locations for a new factory using SMOLT. . . . . . . . . . 68

8.12 Analysis on the total distribution costs when a concession is added in different regions. 70

C.1 Summary of discarded mutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

ix



List of Algorithms

1 SMOLT’s genetic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2 SMOLT’s SISR-based ruin method . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



Chapter 1

Introduction

This thesis builds upon our specialization project Bjelland et al. (2021), and investigates vendor-
managed inventory (VMI) within the salmon feed industry. The thesis focuses on feed distribution
for our industry collaborator, the Norwegian salmon farming company, Mowi. The following chap-
ter is an updated version of the introduction in the specialization project.

The Norwegian aquaculture industry has seen tremendous growth over the last couple of decades.
In 2021 the industry accounted for 116.6 billion NOK, equalling approximately 21.5% of the total
Norwegian mainland exports (Statistics Norway, 2021). Farmed salmon constitutes approximately
70% of the fish exported, and production totaled1 almost 1.6 million tonnes in 2021 as shown in
Figure 1.1 (Directorate of Fisheries, 2021). In the same year, the aquaculture industry reported
consumption of just over two million tonnes of fish feed, more than twice as much as 15 years
ago (Directorate of Fisheries, 2021). This implies that on average, over 5,000 tonnes of fish feed
has to be produced and distributed daily. Increasing demand for fish feed puts a strain on feed
producers, as there is a continuous push for higher production. In addition, there is a downwards
push on margins for fish feed producers. Fish feed is the largest operational cost in the aquaculture
industry, which leads to farming companies working hard to keep prices down. As a result, some
aquaculture companies, such as Mowi, have started vertically integrating feed production into their
operations to gain a competitive advantage.

Figure 1.1: Harvested salmon in Norway from 2005 to 2021.

Source: Directorate of Fisheries (2021)

In combination with intense competition, these factors have led to low margins in the fish feed

1The sum of the domestically consumed and exported volumes.
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production industry, particularly when compared to the salmon farming industry. For comparison,
Mowi Feed and Mowi Farming had an operational EBIT margin in 2021 of 2.7% and 14.4%,
respectively (Mowi, 2021a). Therefore, focusing on costs is vital for feed producers to remain
competitive. The main cost components in the fish feed industry are the raw materials used for
the feed and other production costs. As the available amount of fish meal has decreased, and the
relative cost of marine ingredients compared to vegetable ingredients has increased, producers of
fish feed have gradually replaced the marine ingredients with vegetable ingredients such as soy
(Mowi, 2021b).

Another major cost component is the cost of distribution. Distribution is usually done by spe-
cialized feed vessels transporting the different feed products from the factories to the fish farms
along the Norwegian coast. For BioMar, a large fish feed supplier, this is the second-largest cost
category, making up almost 5% of their total costs (BioMar Group A/S, 2021). Increased pro-
duction puts a bigger burden on effective logistics. Larger shipments and more unique delivery
locations increase the difficulty of planning routes for the vessels. Manually planning a route that
ensures availability of feed at all customer locations becomes difficult by itself, and doing so in
a cost-effective manner may become intractable. Applying mathematical optimization principles
and approximation methods can be a helpful solution to cope with this increased complexity. Even
minor relative improvements in vessel routing can lead to considerable savings in absolute terms,
due to distribution being a large cost center for feed suppliers.

Traditionally, salmon farmers have placed orders for feed that must be delivered within a given
time window. Based on the received orders, the supplier creates a distribution schedule. This
schedule is often constructed manually. Both placing the orders and planning the distribution
are time-consuming. Also, this approach rarely results in an optimal solution. With ever more
sophisticated storage monitoring techniques used at the farms, it is now possible to reduce the time
required by farmers to place orders. Instead of placing orders stating the quantity and delivery
window, the farmers can instead provide the feed producer with its storage data and expected feed
consumption throughout the planning horizon. The feed supplier’s task then changes from serving
all orders to ensuring that the farmers’ feed storage never runs empty within the planning horizon.
This approach, commonly known as VMI, increases the feed supplier’s flexibility and can result in
more efficient routes and schedules for their fish feed vessels.

The overall objective of this master’s thesis is to develop an algorithm that can serve as the basis
for a decision support system for planning the distribution schedule of fish feed. The distribution
plan should state which farms will be visited by which vessels at what time and the quantity of the
different feed types delivered during a visit. The plan should minimize the supplier’s operational
distribution costs while meeting all system requirements, e.g., ensuring a sufficient supply of feed for
farmers and respecting the capacity of the vessels. Therefore, such a tool can make the interaction
between farmers and feed suppliers more seamless while also substantially improving the quality
and robustness of the planning process.

Optimizing the distribution schedule for fish feed is a complex problem. When only focusing on
serving the placed orders, the problem is a variant of the vehicle routing problem (VRP). However,
when allowing the supplier to decide both when and how much feed to deliver, the problem changes
to an inventory routing problem (IRP). This is commonly referred to as a maritime inventory
routing problem (MIRP) for maritime applications. Optimal ship routing and scheduling are in
general well studied, and according to Christiansen et al. (2013) the volume of research within the
field doubled every decade up to 2013. This strong interest and attention suggest that robust and
high-quality planning tools for ship routing are essential for remaining competitive. The MIRP
is an NP-hard problem, meaning that no known polynomial-time algorithm solves it. Despite the
extensive research conducted within the field, for instance by Papageorgiou et al. (2014b), Hemmati
et al. (2016), and Friske et al. (2022), the solution methods for MIRPs are not yet sophisticated
enough to handle many of the problem instances encountered in real-world logistics operations.
One of the main challenges when optimizing a feed supplier’s distribution schedule is the system’s
size and complexity. Since finding the optimal solution is close to impossible, we instead develop a
memetic matheuristic that can be applied to identify good solutions. In addition, the matheuristic
can also be of value when evaluating strategic decisions, such as installing extra storage capacity
or acquiring additional vessels. For example, one can compare the solutions generated when the
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new vessels are included and when they are not.

The thesis includes primarily two contributions to the MIRP research. Firstly, we have created an
extended mathematical model describing a complex MIRP for the fish feed industry with a new
combination of constraints. To our knowledge, this is the first formulation of this variant of the
MIRP. Secondly, we have implemented a novel matheuristic for solving real-life instances of the
MIRP. The matheuristic is termed the Scalable Memetic Optimization algorithm with LP-based
search Techniques, which is abbreviated SMOLT. SMOLT combines a memetic algorithm, which is
a genetic algorithm using local search techniques for making routing decisions, and a linear program
(LP) for deciding the quantities to deliver along the routes. Each individual in the population gives
an exhaustive route for all vessels, including the times of all visits. The linear program is then
solved for the routes with the goal of keeping the feed inventories within the specified limits at all
times.

This report is organized as follows: Chapter 2 describes the context and background of the prob-
lem. Next, the problem is formally described in Chapter 3, and related literature is discussed in
Chapter 4. A mathematical model is presented in Chapter 5. In Chapter 6, our matheuristic,
named SMOLT, is described in detail, and the test instances and computational study is presented
in Chapter 7 and Chapter 8, respectively. Lastly, our concluding remarks and suggestions for
future work are outlined in Chapter 9 and Chapter 10.
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Chapter 2

The Fish Feed Industry

This chapter gives an overview of the Norwegian fish feed industry and how distribution is planned
and executed. A substantial share of the content presented is based on information provided by our
industrial partner. Lastly, some challenges with the current distribution planning are identified.
This chapter is retrieved from our specialization project Bjelland et al. (2021), but some numerical
values are updated.

2.1 Industry Overview

With the rise of the Norwegian aquaculture industry, a large salmon feed market has emerged. The
industry has grown steadily, with a compound annual growth rate (CAGR) of approximately 8.5%
the last decade, and totaled over NOK 27 billion in revenues in 2019 (EY, 2020). The Norwegian
salmon feed industry is dominated by a few prominent actors and has become increasingly consol-
idated in the last decade (Mowi, 2019). Skretting, Ewos, and BioMar were the major actors and
controlled much of the feed output in the years prior to Mowi’s establishment of feed production in
2014 (Mowi, 2019). Mowi is aiming to become self-sufficient for all feed requirements and achieved
a 95% self-sufficiency rate in Norway in 2021 (Mowi, 2021a). The company is the world’s largest
producer of farmed salmon and harvested more than one-fifth of the total volume in Norway in
2020 (Mowi, 2021b). Due to its strategy and size, Mowi’s share of the Norwegian salmon feed
market has increased significantly since 2014 and was approximately 19% in 2018, as shown in
Figure 2.1.

Figure 2.1: Market shares in the Norwegian fish feed industry in 2018.

Source: Mowi (2019)
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2.2. PRODUCTION PROCESS

The Norwegian fish feed market is nearly perfectly correlated to the production of salmon in Nor-
way. Since the 1970s, the volume of harvested Norwegian salmon has increased to approximately
1.6 million tonnes (Directorate of Fisheries, 2021), and farmed salmon has gradually become one
of Norway’s most important industries. The Norwegian government has an ambition of increasing
the export volume by a factor of five by 2050, as shown in Figure 2.2 (Norsk Industri, 2017).
This makes it reasonable to expect an increase in the demand for salmon feed in the coming years
and hence continued growth of the fish feed industry. This growth also comes with challenges for
the suppliers, as high volumes will increase the complexity of the distribution system. Develop-
ing sophisticated planning tools for distribution can help suppliers gain a competitive advantage
compared to their competitors.

Figure 2.2: The Norwegian government is aiming at harvesting five times more salmon in 2050 compared
to today.

Source: Norsk Industri (2017), Directorate of Fisheries (2021)

2.2 Production Process

This section describes the production process of fish feed and seeks to give the reader an un-
derstanding of the product’s characteristics. The content is based on conversations with Mowi
and the description of Mowi’s current production facilities in Bjugn in Trøndelag by Haugland
and Thygesen (2017). The plant in Bjugn is Mowi’s only feed factory in Norway and produces
nearly all the feed supplied to the company’s Norwegian farms. The facility is capable of pro-
ducing feed continuously throughout the year, and the production totaled 358,769 tonnes in 2021,
close to the total capacity of 400,000 tonnes (Mowi, 2021a). Also, as the optimal feed for salmon
varies through its life cycle in terms of size and ingredients, a range of products are produced at
Bjugn. The raw materials going into production are roughly categorized as wet or dry, and the
plant has a storage capacity of 10,000 and 16,000 tonnes for each, respectively. Lastly, it has a
storage capacity of 10,000 tonnes of the finished products. The fish feed must satisfy different
requirements to be considered high quality. First, the product must have the physical properties
that allow it to be transported in large volumes. The finished fish feed has the shape of pellets
and is stored and transported in large bags or silos. During transportation, some degree of pellet
erosion causes degradation and pulverization of pellets. Due to friction, the pellets are especially
exposed to erosion during movement. In practice, this occurs when a bag is moved, or a silo is
loaded or unloaded. For bulk transport, Mowi operates with a degradation ratio of 0.5%, while
they consider the degradation of feed transported in bags to be slightly higher. When pulverized
feed is released into the water, it negatively impacts the water quality and can cause an overgrowth
of algae, negatively influencing the salmon’s health and growth. Therefore, the pellet’s physical
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2.2. PRODUCTION PROCESS

properties should minimize the pulverization occurring during transport.

Other important requirements concern the pellets’ properties in contact with water. For instance,
the pellets must sink at a speed that allows the fish to eat them before reaching the cage’s bottom.
Furthermore, all nutrients should remain inside the pellets until they are eaten. If nutrients dissolve
into the water, the feed quality is significantly reduced, which negatively impacts the growth of
the salmon. Lastly, the pellets must be attractive for the fish to eat, setting requirements to taste
and consistency.

The fish feed production starts with different raw materials that are often categorized as macro,
micro, and oils and are normally transported by sea. Macro materials are plant and animal
ingredients like fish meal and barley grain, while micro materials are vitamins and minerals. The
oils used are both animal- and plant-based. When the raw materials arrive at the production plant,
they are stored in large silos. The first step in the production process is to scale and measure the
different materials going into the feed to secure the correct composition. Next, the components
are mixed and ground in large blenders before water is added to the mixture. At this point, the
mixture is ready to be shaped into pellets. Depending on the specific feed being produced, the
pellets have a diameter between 0.6 mm and 13 mm. The pellets are then dried and treated with
oil. The final step is to place the pellets in an environment with specific pressure and temperature
to obtain the desired characteristics. The finished product is then stored in large bags or silos
before being transported by sea to farms. An overview of the production process is illustrated in
Figure 2.3.

Figure 2.3: Production process of salmon feed at Mowi’s production plant in Bjugn.

Source: Haugland and Thygesen (2017)

The physical properties and ingredients of the salmon feed have significantly changed since the
early phases of the industry. In the 1970s, farmers produced their own feed, mainly consisting of
fish waste, fish meal, and shrimp shells. The feed had high water content, high levels of marine
protein, and low levels of fat and oil (Mowi, 2021b). In the 1990s, the feed consisted of 45% protein,
which was mainly made up of marine protein (Mowi, 2021b). The main differences between today’s
and early phase feed are the reduced level of marine protein and the higher inclusion of fat. The
level of marine protein has decreased due to cost optimization and the volatile supply of fish meal,
and higher inclusion of fat has become possible through technological improvements and extruded
feeds. The marine ingredients have to some extent been replaced with vegetarian alternatives such
as corn or soy, and the main ingredients in today’s feed are vegetarian meal, vegetarian oil, and
fish meal, as shown in Figure 2.4.
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2.3. DISTRIBUTION SYSTEM

Figure 2.4: Mowi feed composition 2020.

Source: (Mowi, 2021b)

2.3 Distribution System

In this section, we discuss Mowi’s current distribution system. Section 2.3.1 briefly describes
restrictions in the current distribution network. Further, we look into different factors that affect
the demand for fish feed, such as sea temperature and growth stage, in Section 2.3.2. Section 2.3.3
describes how the distribution is currently planned. Lastly, Section 2.3.4 highlights challenges in
the current setup, and motivates a transition to a VMI-based system.

2.3.1 Current Distribution Network

There is a multitude of complicating factors in today’s distribution network. We will separate these
into two main groups, restrictions caused by the vessels and those caused by the fish farms. There
are two main types of vessels in terms of how the feed is carried; the feed can either be bulked
in silos or packed in large bags. For the silo-based vessels, the number of different feed types is
limited by the number of silos, as feed types cannot be mixed in a single silo. On the other hand,
vessels using large bags do not have the same constraint, as the content of the bags is not mixed.
Furthermore, the vessels have a maximum load that sets an absolute upper limit for the amount
carried. The final restriction caused by the vessels is their cruising speeds; different vessels have
different cost-efficient cruising speeds, meaning that specific routes might be feasible for one vessel
but not for another.

As for the fish farms, the most apparent implication on the network is the feed demand; as we
comment further in Section 2.3.2, each fish farm has a known demand for each feed type, and
this demand varies based on the season. Furthermore, the farms imply some restrictions for the
vessels. Firstly, each farm has a time window it can receive deliveries. Secondly, some farms
are not compatible with receiving the feed in bulk format and must thus be serviced by a vessel
transporting the feed in bags. The location of the farms can also cause restrictions - some are
located in fjords with too shallow water for the largest vessels, making visits impossible.

Finally, to prevent disease outbreaks, precautions have to be made by the vessels. Fish farms
are categorized in three disease categories - red, yellow and green farms. Fish farms in which a
disease outbreak is currently finding place belong to the red category. A region of a specified size
surrounding the red farms is referred to as a red zone. Healthy farms located within this red zone
belong to the yellow category. In other words, the yellow farms are healthy but located in a region
where the risk of a future outbreak is considered higher than outside the red zones. Healthy farms
located outside red zones are green. In general, green farms should be visited before yellow farms
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2.3. DISTRIBUTION SYSTEM

and yellow farms before red farms. This is to minimize the risk of causing outbreaks in healthy
farms. However, it is possible to visit a healthy farm after an infected one, but then the vessel has
to wait for a specified recovery time to ensure that diseases are not brought to the healthy farm.

Figure 2.5: Example of route travelling to a red zone before all healthy farms are served, forcing it to
either wait the recovery time or to return to the factory.

Figure 2.5 shows an example of a route that travels into the red zone before it has served all farms
it is supposed to serve. Consequently, the planner must decide whether the vessel should wait
the recovery time before continuing the route or return directly to the factory, which is permitted
immediately after red farm visits. Figure 2.6 illustrates an example of a route avoiding this problem.
The total distance traveled is longer than the previous route. However, waiting is avoided due to
the different order of farm visits, and the total duration is less than in the original route.

Figure 2.6: Route serving all healthy farms before it enters the red zone, thus avoiding all waiting.
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2.3. DISTRIBUTION SYSTEM

2.3.2 Factors Impacting Fish Feed Demand

Demand for fish feed changes throughout the year. This can be due to biological effects affecting
the amount of feed a fish will eat, planned events such as slaughter, or unexpected events such as
disease outbreaks.

Figure 2.7: Sea temperature in Mowi’s Norwegian production facilities. Average over five years.

Source: Mowi (2021b)

Most species of fish, including Atlantic salmon, are ectothermic. Their body does not actively
attempt to remain at a specific temperature. Instead, the body temperature of a salmon will
closely match the temperature of the surrounding water. It is common for ectotherms to grow
slower when subjected to lower temperatures (Angilletta et al., 2004). This also applies to the
Atlantic salmon, whose growth rate depends on abiotic1 factors such as temperature and light
(Austreng et al., 1987). The growth rate of a fish impacts how much feed it needs. Consequently,
the demand for fish feed will change as the water temperature changes throughout the four seasons.

Figure 2.8: Consumption of feed relative to the total biomass, average 2016-2020.

Source: Mowi (2021b)

1Abiotic factors refer to nonliving factors in an environment, for instance, sea temperature.
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According to Mowi (2021b), the optimal growth conditions for salmon are obtained in the tem-
perature range of 8-14°C, but they will tolerate temperatures ranging from 0°C to 20°C. This is
aligned with the results of Handeland et al. (2008), who found 14°C to be the temperature for which
Atlantic salmon smolts have the highest growth rate. They also found feed conversion efficiency,
the ratio of feed converted into meat, to be high between 10°C and 14°C, with a peak at 10°C. As
shown in Figure 2.7, the sea temperature in Norwegian salmon farms varies from less than 6°C in
winter to approximately 14°C in late summer. This impacts the feed consumption of the fish, as
evident by the relative feeding for Mowi’s farming facilities, shown in Figure 2.8. Consequently,
this gives rise to a high and low season for fish feed, where feed demand during the low season can
be as little as 30% of the demand during the high season (Mowi, 2021b). This creates challenges
for the feed producers. Large quantities of feed with a limited shelf life must be intermediately
stored to meet the demand in the high season, and scheduling the deliveries of the feed might prove
difficult.

Furthermore, fish will eat feed at different rates depending on its growth stage. A fish requires
more feed as it grows larger over time. This is shown in Table 2.1. To keep feed demand more
stable throughout the year and to make full use of their quotas, farming companies will release
smolt several times throughout the year (Hartvigsen, 2019). Figure 2.9 illustrates the difference
in total feed demand depending on the timing of smolt releases for a set of farms. The figure is
based on the data in Table 2.1, and sea temperature is thus not accounted for. As a result, despite
giving the impression of constant feed demand, the demand in Figure 2.9b is still prone to seasonal
variations. However, variations caused by having salmon in different growth stages are eliminated.

(a) Feed demand over time with synchronous
smolt release. Simultaneous release of smolt
causes the demand to spike significantly through-
out the life span of the fish, as the monthly con-
sumption for a fish increases throughout its life.

(b) Feed demand over time with asynchronous
smolt release. Releasing smolt several times a year
can be used to smooth out changes in total de-
mand. In the later stages of growth, the high de-
mand can be averaged out by having farms with
early-stage fish as a counter-weight.

Figure 2.9: Illustration of a simplified scenario where 17 farms only grow one salmon each. In Figure 2.9a,
one smolt is released simultaneously in all 17 farms. The lowest line represents the monthly consumption of
every individual smolt, and as they are released simultaneously, their monthly consumption will always be
identical. In Figure 2.9b, one farm releases one smolt every month, and when in a steady-state, a salmon is
harvested from one of the farms every month. Since the smolts are released asynchronously, their monthly
consumption will not be identical as in Figure 2.9a. In both Figure 2.9a and Figure 2.9b, the upper green
line represents the total consumption across all farms, and it is clear that releasing smolts with an offset
as in Figure 2.9b keeps the total monthly demand constant.
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Growth intervals 0.1 - 0.2 kg 0.2 - 1 kg 1 - 2 kg 2 - 3 kg 3 - 4 kg 4 - 5 kg
Feed consum. [kg] 0.08 0.75 1.00 1.05 1.10 1.20
Time [months] 2 4 4 3 2 2

Table 2.1: The duration of, and total feed consumption in, the different stages of growth for Norwegian
Atlantic Salmon.

Source: Mowi (2021b)

Sea temperature and a fish’s growth stage are factors that need to be considered in combination
with inventory costs and the feed’s limited shelf life when production is planned. However, several
discrete events can cause abrupt changes in fish feed demand. For example, demand at a farm
will significantly decrease after harvesting. Since harvesting is usually known in advance, feed
producers can incorporate this into their operational planning, potentially reducing distribution
costs by avoiding unnecessary deliveries. Disease outbreaks also affect feed demand but cannot as
easily be planned for. Unhealthy fish generally consume less feed, and large outbreaks might lead
to the farmer deciding to harvest the salmon earlier than planned.

2.3.3 Current Distribution Planning

As mentioned in Section 2.3.1, not all vessels can visit all farms due to different delivery format
requirements, i.e., bulk or bag. In practice, each vessel is assigned a subset of the farms, and
the farms visited on a voyage are based on those farms’ orders. Consequently, today’s standard
is mostly fixed routes for each vessel. On average, each farm needs a refill once or twice a week,
depending on the consumption and storage capacity. A typical voyage, i.e., leaving and at a later
point arriving at a production site, consists of 15 to 20 visits per vessel.

One of Mowi’s vertical integration advantages is the data accessibility, allowing the logistics de-
partment to conduct precise analyses and create future demand forecasts for the individual farms.
These allow production to be planned to produce a sufficient amount of feed. At least two weeks
before the feed ought to be delivered, the orders are placed. The orders contain information re-
garding the farm, delivery time, and the quantity of the demanded feed types. When these orders
are received, the orders can be used to generate a schedule for every vessel. Today, this is to a large
extent, done manually. An initial schedule is set up well before the vessel leaves the production
facility but is continuously changing in the period leading up to the final deadline for orders, four
days before the vessel departs from the production facilities.

As mentioned in Section 2.3.1, all farms have a minimum inventory level that should be maintained
at all times. This is typically equivalent to 1-2 days of feed and can be used when deliveries are
delayed. Keeping a feed buffer is necessary as routes may change after the vessel has left the origin.
If a farm detects a disease outbreak after the route has been set, scheduled visits might have to be
skipped. Other factors, such as bad weather making docking of the vessels challenging, can lead
to similar consequences. In general, the vessels should visit the skipped farms on the way back to
the destination, as lost feed days incur a high cost for the farms.

2.3.4 Challenges in the Current Setup

As mentioned in Section 2.3.3, the current distribution setup heavily relies on farmers placing orders
that are subsequently used in the planning process. Allowing farmers to place orders creates an
incentive to place orders that are ideal for them at a local level. However, such orders might fit
poorly into the distribution plan as a whole. For instance, a farmer might order significantly more
feed in a specific time window than necessary, making it difficult for the planner to satisfy other
orders along the vessel’s route. Consequently, the created routes and schedules become suboptimal.
In addition, Mowi reports that negotiations on specific orders, e.g., changing the quantities, are
necessary relatively often, which in itself is very time-consuming. One farmer placing locally
optimal orders might not significantly affect the entire distribution plan in isolation. However,
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many locally optimal orders may do, and much flexibility is likely to be gained by transitioning
to a VMI system. With a VMI setup, the planners can account for the entire system of farms
when planning the distribution and therefore arrive at a better distribution schedule for Mowi as
a whole.

Furthermore, today’s setup depends on manual input; people in the planning department with
specific domain knowledge use this knowledge to formulate the routes. There are multiple subop-
timal aspects to this approach. Firstly, the dependency on manual work leaves room for human
error. A miscalculation or hasty decisions can affect the feasibility of a route, e.g., that a vessel
does not arrive at a farm within its time window. Another factor leading to human mistakes is the
high dependency on communication between the farmers and the planners. They communicate
through emails and phone calls, and misunderstandings can easily occur. Furthermore, due to the
extensive use of personal domain knowledge, the process leading to a final route may seem like a
“black box” for others than the planner. This means that controlling the work can be difficult.
Previously, when there were fewer farms to serve, it was doable to maintain control and, to some
degree, find close to optimal routes in terms of costs. However, as the network of farms has grown
more complex and the feed processing industry now includes more feed types, the problem is far
too complex to be dealt with manually. During high season, even avoiding farms running out of
feed is challenging.

Finally, due to present bias2 (Chakraborty, 2021), manual planning will generate plans that work
well in the period close to the beginning of the planning horizon, but as time goes by, some decisions
are likely to be suboptimal. This can lead to farms being under-supplied, and consequently, planned
routes can be forced to be altered to ensure that the under-supplied farms do not run empty. As
soon as this begins, the focus will move from supplying the farms in a cost-efficient way to just
ensuring sufficient supply to all farms.

2Present bias is a cognitive bias leading humans to value payoffs closer to the present higher than those that
will occur in the future.
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Chapter 3

The Fish Feed Maritime Inventory
Routing Problem

The Fish Feed Maritime Inventory Routing Problem (FFMIRP) is the problem of keeping a set of
fish farms supplied with fish feed over a given planning horizon using a given fleet of fish feed vessels
operated by the fish feed supplier. Keeping the fish farms stocked is thus the responsibility of the
fish feed vendor, making this an application of VMI. The fish feed originates at a production port
belonging to the vendor, which is a feed factory. Each consumption port, i.e., a fish farm, has a per
time period consumption rate broken down by feed type. This consumption rate is assumed to be
variable but deterministic and known in advance. In addition, each fish farm has the infrastructure
required to hold a certain amount of inventory assumed to be known. This inventory is in the form
of a set of silos with a given capacity that has been assigned to different feed types in advance.
Furthermore, each farm has a per time period lower limit on the inventory of every feed type
that serves as a safety buffer in the case of unforeseen events. The vendor has two options when
supplying a farm. The feed can either be supplied by one of the fish feed supplier’s vessels or by
buying feed from the spot market at a predefined cost per quantity.

Each vessel has a known cost structure, in the form of a fixed cost per time period it is in use and an
additional transportation cost for sailing between two ports, where a port is either a consumption
port or a production port. The first can be considered the fixed cost for keeping the ship operational
and in use, including the fuel cost when idling. The transportation cost is the extra marginal cost
due to, e.g., increased fuel consumption during sailing. Each vessel has a predetermined cruising
speed, determining how much time it needs to sail between two ports. Just like fish farms, each
vessel has a specific storage capacity in the form of silos. In contrast to a farm, the silos on a
vessel are not assigned to specific feed types and can thus transport any feed type at any time.
However, a silo may only contain a single type of feed at a time. When arriving at a port, a vessel
can load or unload a given quantity of feed in a fixed time, which may vary by port. Each port
only has a limited number of berths available at given times, and a vessel is only allowed to dock
for unloading or loading if there is a berth available.

Not all vessels are allowed to visit all ports, e.g., due to shallow waters. A vessel is assumed to be
available from a given time at a specific port and can be situated at any farm or production port
at the end of the planning horizon.

Furthermore, it is assumed that there is always sufficient feed supply at the production site to cover
the farms’ demands. We consider this assumption reasonable for two reasons. Firstly, at Mowi’s
production facility at Bjugn, the production level is close to the total capacity, implying that the
gain from optimizing the production based on raw material prices and storage is limited. Secondly,
the procurement, production schedule, and storage are not directly connected to the distribution,
which is the main focus of this master’s thesis.

With all of this given, we want to determine a distribution plan for the given planning horizon that
minimizes the sum of the fixed costs, transportation costs, and spot market costs. In other words,
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to determine the route and delivered quantities for all vessels, as well as when and how much to
buy from the spot market throughout the planning horizon, while minimizing the total cost.
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Chapter 4

Literature Review

The MIRP is a variant of the inventory routing problem (IRP), first described by Bell et al. (1983).
Solving the combined routing and inventory problem allows for VMI, meaning that all inventory
decisions are made by a central supplier and not by the consumer. It aims at reducing logistics
costs by making decisions for products delivered to customers based on the current inventory lev-
els and consumption rates (Coelho et al., 2014). Combining a traditional routing problem with
inventory management, the IRPs are complex problems and have been of high research interest
within the operations research field. MIRPs are a subgroup of the IRPs with some distinctive
properties. The traditional IRPs, using land-based vehicles, often require the vehicles to return
to their origins. Further, the trips1 typically last for one day, and a homogeneous fleet of capac-
itated vehicles is usually employed. MIRPs often have more time-consuming voyages over longer
distances, making it advantageous to allow them to end in different ports than where they started.
Further, the properties of the vessels used often differ, and consequently, most problems consist of
a heterogeneous fleet.

The MIRP has caught the interest of both academia and industry in the later years, as technological
advances allow real-life problems to be solved, and the results have proven to enable monetary
benefits (Christiansen et al., 2013). Consequently, comprehensive work within the field has been
conducted, and there are numerous studies available. Even though the MIRP is well studied, there
has not been done much work on the problem in the salmon farming industry. However, Brekk̊a
et al. (2022) present a heuristic solving a problem combining a production scheduling problem and
a rich vehicle routing problem (VRP) on a dataset similar to ours. The literature also includes
a study on a single-product MIRP in the salmon farming industry by Agra et al. (2017). This
section presents literature relevant to this thesis, focusing on different applications of the MIRP.
The presented studies range from the pioneering study done within the area by Christiansen (1999)
to the latest research within solution methods using matheuristics by Friske et al. (2022).

The literature review has been split into two main parts – a part where we look into the character-
istics and different structures of the MIRP, and a part that explores existing solution approaches.
The characteristics of the problem include the length of the planning horizon, how time is repre-
sented, how routing is handled, and more. When looking into solution methods, we first examine
studies on exact solution methods before exploring some of the literature related to approximation
approaches.

When we conducted the review, we used the search engine Google Scholar. To get an overview
of the problem, we focused the search around two search phrases, namely “maritime inventory
routing problem” and “ship routing and scheduling.” Both phrases generated a significant number
of studies relevant to the problem. To our knowledge, no studies have been conducted with a
MIRP with the same characteristics as ours. Therefore, we researched a broad part of the MIRP
literature to obtain ideas.

1A trip/voyage is defined as a single route for a vehicle, starting and ending in a depot, including visits to one
or multiple consumption ports along the route.
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4.1. THE MARITIME INVENTORY ROUTING PROBLEM

In Section 4.1 we first give an overview and classify literature and research on the MIRP from the
last two decades. Further in the section, we discuss the characteristics of different MIRPs, and
what has been done previously. Further, in Section 4.2 we discuss existing literature on solution
methods for the MIRP. First, we explore previous research on the problem using exact solution
methods in Section 4.2.1. Then, we look into previous studies discussing approximation methods
for solving the problem in Section 4.2.2. The research on approximation methods is divided into
one part on heuristics and one on matheuristics. Finally, we discuss how our work contributes to
the research on the MIRP in Section 4.3.

Significant parts from Section 4.1 are retrieved from our project thesis, Bjelland et al. (2021).

4.1 The Maritime Inventory Routing Problem

In this section, we investigate the existing literature on the MIRP in a structured way; we look into
different decisions, and problem-specific characteristics researchers are faced with when modeling
the problem. We have chosen to classify the studies along a set of dimensions to get a more
structured walk-through of the them. The chosen dimensions are inspired by the study done by
Christiansen and Fagerholt (2009), but also include aspects we found relevant in order to highlight
how our work differs from previous studies. A summary of the previous studies is given in Table 4.1.

Table 4.1: Summary of previous studies on the MIRP. * – the study has used the MIRPLib benchmark
library presented by Papageorgiou et al. (2014c) as part of its computational study.

Study Type Sol. method Time Network Products |I| |V| |P| |T | (u)
(Christiansen, 1999) Short Exact Cont. N −N Single 16 5 1 36 (d)
(Ronen, 2002) - Exact Discrete 1− 1 Multiple 5+2 - 5 30 (t)
(Dauzère-Pérès et al., 2007) Short Heuristic Discrete 1−N Multiple 10+1 17 16 10 (d)
(Grønhaug and Christiansen, 2009) Deep Exact Discrete N −N Single 3+3 5 1 30 (t)
(Grønhaug et al., 2010) Deep Exact Discrete N −N Single 3+3 5 1 60 (t)
(Christiansen et al., 2011) Short Heuristic Discrete N −N Multiple 49+122 5 11 14 (d)
(Engineer et al., 2012) Deep Exact Discrete N −N Single 6+4 6 1 14 (d)
(St̊alhane et al., 2012) Deep Matheuristic Discrete 1−N Multiple 17+1 46 2 366 (d)
(Agra et al., 2013) Short Exact Discrete N −N Single 6 5 1 30 (d)
(Song and Furman, 2013) - Matheuristic Discrete N −N Single 5+5 8 1 60 (d)
(Uggen et al., 2013) Deep Matheuristic Discrete N −N Single 10 5 1 180 (d)
(Agra et al., 2014) Short Matheuristic Cont. N −N Multiple 7 2 4 180 (d)
(Papageorgiou et al., 2014a)* Deep Matheuristic Discrete N −N Single 9+4 17 1 60 (t)
(Papageorgiou et al., 2014b)* Deep Matheuristic Discrete N −N Single 9+4 17 1 60 (t)
(Agra et al., 2015) Short Exact Cont. N −N Multiple 7 2 4 8 (d)
(Rakke et al., 2015) Deep Exact Discrete N −N Multiple 15 25 2 90 (d)
(Hemmati et al., 2015) Deep Heuristic Discrete N −N Single 303 8 1 30 (d)
(Hemmati et al., 2016) Short Matheuristic Cont. N −N Multiple 20 10 4 1440 (h)
(Agra et al., 2017) Short Matheuristic Cont. N −N Single 60+1 2 1 10 (d)
(De et al., 2017) Short Heuristic Discrete N −N Multiple 10 6 2 22 (t)
(Agra et al., 2018) - Matheuristic Cont. N −N Single 6 5 1 60 (d)
(Friske and Buriol, 2018)* Deep Matheuristic Discrete N −N Single 9+4 17 1 60 (t)
(Papageorgiou et al., 2018)* Deep Matheuristic Discrete N −N Single 9+4 17 1 60 (t)
(Diz et al., 2019) Short Matheuristic Discrete N −N Single 4+2 5 1 15 (d)
(Siswanto et al., 2019) Short Heuristic Cont. N −N Multiple 2+1 2 2 25 (d)
(Friske and Buriol, 2020)* Deep Matheuristic Discrete N −N Single 9+4 17 1 60 (t)
(Misra et al., 2020) Short Exact Hybrid N −N Multiple 6+2 5 3 8 (d)
(Sanghikian et al., 2021) Short Matheuristic Cont. N −N Multiple 18 15 9 60 (d)
(Friske et al., 2022)* Deep Matheuristic Discrete N −N Single 9+4 17 1 60 (t)
This work* Short Matheuristic Discrete N −N Multiple 80+1 10 6 290 (h)

The column “Type” indicates the type of the underlying problem. As in Hemmati et al. (2014), we
distinguish between two types of MIRPs – deep-sea and short-sea problems. In deep-sea problems,
the vessels travel long distances across at least one of the big oceans. On the other hand, short-
sea problems are associated with shorter travel distances. The column “Sol. method” indicates
whether the study solves the MIRP using an exact solution method, a heuristic, or a matheuristic.
The column “Time” indicates if the problem is modeled using discrete or continuous time, or using
a hybrid of the two, as done by Misra et al. (2020). All studies using discrete or hybrid time schemes

2Each port represents a single silo, and the ports are thus less complex than ports with demand for multiple
products, as the silos are dedicated to a particular product.

3The ports are here cargoes, i.e., there are not 30 ports in the problem, but 30 cargoes to be delivered.
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4.1. THE MARITIME INVENTORY ROUTING PROBLEM

also have a variable consumption rate throughout the planning horizon, while the opposite is true
for the studies using continuous time. The column “Network” indicates what the distribution
network looks like; the first number indicates if there are one or multiple production ports, and
the second indicates the same for consumption ports. The values in the column “|I|” indicate the
number of ports in the largest test instance. The number of production and consumption ports are
separated with a ‘+’ sign, where such a distinction is given. Columns “|V|” and “|P|” represent
the number of vessels used and products demanded in the largest problem instance, respectively.
Finally, column “|T |” indicates the length of the planning horizon, either as a measure of time (d
= day, h = hour) or as a number of time periods (t).

In general, all MIRPs are complex problems, but certain problem characteristics can either reduce
or increase the complexity of the problem. In the remainder of this section, we walk through
some crucial things to consider when formulating a MIRP. Section 4.1.1 discusses the length of the
planning horizon and how the time is represented. Section 4.1.2 discusses single and multi-product
problems. Finally, Section 4.1.3 looks into problems with single or multiple production facilities.

4.1.1 Planning Horizon, Time and Consumption Rates

When solving a MIRP, the length of the planning horizon is an essential part of the problem.
As mentioned, we separate between short-sea and deep-sea problems. As a consequence of the
traveling distances, decisions are usually made more frequently, and the planning horizon is usually
shorter, in short-sea problems than in deep-sea problems. The difference in frequency is a direct
consequence of the fraction of the time spent traveling between ports in the two problem types; in
deep-sea problems, the time spent loading and unloading is often diminishing compared to the time
spent traveling. St̊alhane et al. (2012) propose a matheuristic for a deep-sea problem generating
an annual delivery plan (ADP) for a liquefied natural gas (LNG) company. The problem is solved
with a planning horizon up to 366 days. Similarly, Rakke et al. (2015) consider an ADP for LNG,
and solve it for a set of time horizons between three months and a year, and Uggen et al. (2013)
solve a set of LNG MIRPs with time horizons of 180 days. Further, the studies by Agra et al.
(2018) and Friske et al. (2022) are also solving deep-sea problems, both with a planning horizon
of 60 days. Agra et al. (2017), Dauzère-Pérès et al. (2007), De et al. (2017), Diz et al. (2019)
and others consider short-sea problems, and the planning horizons in these problems are usually
significantly shorter than the studies previously mentioned. Our problem is a typical short-sea
problem.

The time can be handled in three ways – continuous, discrete, or a combination of the two. A
continuous time scheme is typically applied to problems where parameters and other conditions
remain constant throughout the planning horizon. This scheme is used by Christiansen (1999),
Agra et al. (2014), Hemmati et al. (2016), Sanghikian et al. (2021) and others. Models using
continuous time often use a visit count for each vessel-port combination to keep track of the
sequence of port visits. This is how e.g., Hemmati et al. (2016) and Agra et al. (2017) modeled
it. Introducing discrete time models increases the number of variables and constraints but allows
the model parameters to vary with time. Thus, in problems where demand, costs, or any other
parameters are time-dependent, discrete time is often preferred. As can be seen in Table 4.1,
discrete time schemes are often used. Also, note that most discrete time studies have solved the
problem using some approximation technique rather than an exact solver. In the studies considering
the MIRPLib benchmark instances, introduced by Papageorgiou et al. (2014c), a discrete time
scheme is employed. This includes the studies by Papageorgiou et al. (2014b) and Friske et al.
(2022) among others.

Misra et al. (2020) use a hybrid time scheme, combining continuous and discrete time. The idea is
to divide the planning horizon into n events, and within each event, there are multiple timelines.
The timelines dealing with variables changing continuously are handled in that way, while discrete
events, such as when a jetty in a port becomes available, are discretized.

As mentioned, continuous time schemes are often preferred when the problem’s parameters are as-
sumed to remain constant. In short-term planning problems, this assumption simplifies the problem
without significantly impacting the model’s ability to reflect reality. The integrality bounds are
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often tighter when using discrete time. However, Agra et al. (2014) argue that when the consump-
tion rates are close to constant throughout the planning horizon, the decreased tightness of the
model is compensated by decreased complexity and running time. On the other hand, in cases
where the consumption rates are expected to fluctuate throughout the planning horizon, a discrete
time scheme is preferred, which is the case in our problem.

4.1.2 Single-Product or Multi-Product

Christiansen (1999) covers a fleet of vessels transporting ammonia, which is the only product
produced at the production facilities, and thus, the problem only consists of a single product. The
same goes for Diz et al. (2019) who handle the distribution of crude oil for a Brazilian oil producer.
In other studies, simplifications are made in order to get a single-product problem, this is the case
in Agra et al. (2017). The study discusses the salmon feed distribution for Mowi (then Marine
Harvest) but due to lack of information on feed types, it operates with a single product. Further,
the MIRPLib benchmark instances consist of a single product.

Christiansen et al. (2011) consider a problem where multiple grades of cement are considered; each
port in the problem represents a specific silo with a known time-dependent consumption of a given
cement grade. This is similar to our problem, where different feed types must be kept apart. When
there are multiple products, there are different ways of handling the allocation of compartments on
vessels and consumption ports. Hemmati et al. (2016) consider a multi-product problem, but does
not consider the allocation of the products, and thus, different products are allowed to be mixed
within a single compartment according to the model. Another way of handling the allocation
of different products is to use designated compartments for each product. This is done by Agra
et al. (2014) where different oil products have pre-determined compartments on the vessels and
consumption ports throughout the planning horizon. Finally, the allocation of compartments
onboard vessels can be done as part of the optimization problem, as done by Christiansen et al.
(2011) and in our project.

4.1.3 Distribution Network and Routing Constraints

The distribution network can either be one-to-one, one-to-many or many-to-many. In a one-to-one
network, all voyages consist of one production port and one consumption port. In a one-to-many
network, all voyages start in the same production port but can visit multiple consumption ports.
Finally, in a many-to-many network, there are multiple production and consumption ports, and
one or more of them can be visited during a voyage. Ronen (2002) addresses a one-to-one MIRP for
liquid products transported in bulk, where each voyage consists of one origin and one destination.
Dauzère-Pérès et al. (2007) consider the distribution of Norwegian calcium carbonate slurry to
multiple European customers. The company has a single factory where all voyages begin; the
problem is thus a one-to-many problem. Similarly, St̊alhane et al. (2012) consider a case from the
distribution of LNG with a single production port and multiple consumption ports. As mentioned
previously, due to the distance traveled in most sea-based voyages, allowing vessels to begin their
voyage in one port, and end it in another, can often prevent vessels being forced to travel long
distances without any load. Consequently, most previous studies employ a flexible model allowing
this.

There are many configurations of the many-to-many networks in terms of routing constraints;
we have distinguished these networks along two dimensions – constraints regarding initial load
and initial position for the ships. Hemmati et al. (2016) assume that all ships are empty at the
beginning of the planning horizon, and consequently, must travel directly from their initial position
to a loading port. Other studies allow an initial load on the vessel, and as such, the voyages can
begin from unloading ports, given a positive load. While Agra et al. (2017) assume that all ships
begin the planning horizon at a port and thus are available from the beginning of the planning
horizon, Friske et al. (2022) allow the ships to be located anywhere at initialization. The ships
must then travel from their initial positions to a port before becoming available. We employ a
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model similar to that described by Friske et al. (2022); the network has a many-to-many structure4

and the vessels are allowed to carry an initial load, and they are not required to be located at a
port at the start of the planning horizon but do not become available before arriving at one.

4.2 Solution Approaches for the Maritime Inventory Rout-
ing Problem

Since the MIRP was first discussed, researchers have investigated numerous approaches for solving
it. An observation pointed out in several papers is that problem instances of real-life size are too
complex to be solved using an exact solution method. However, different mathematical models
for the MIRP have been developed, and some of these are discussed in Section 4.2.1. Given the
complexity of the problem, approximation techniques for solving it have been widely exploited.
We present some of the novel work in these areas in Section 4.2.2.

4.2.1 Exact Methods

Particularly in the early studies on the MIRP, much effort was put into formulating mathematical
models to describe and solve the problem. In the pioneering work by Christiansen (1999), the
Combined Inventory and Time Constrained Ship Routing Problem, which is similar to a MIRP, is
modeled using an arc-flow (AF) model. In the model, each node corresponds to a particular visit
to a harbor, i.e., a harbor can be visited multiple times. Arcs connect the nodes, and each arc
corresponds to a vessel traveling from one harbor visit to another.

As mentioned in Section 4.1.1, time-dependent parameters often imply a discrete time scheme.
Song and Furman (2013) proposed, and Papageorgiou et al. (2014b) and Friske et al. (2022) later
applied, an AF model over a time-space (TS) network, which can be viewed as an integer multi-
commodity network flow formulation. The vessels constitute the commodities, while the nodes
represent a visit to a port at a specific time, i.e., there is one node for each combination of port
and time. The arcs in the network represent feasible moves for a particular vessel, and constraints
balance the flow over the arcs to ensure feasible routing. The set of nodes is equivalent for all
vessels, while each vessel has one set of arcs representing the feasible traversals for the particular
vessel.

Another formulation that was introduced early was the path-flow (PF) model. Christiansen (1999)
reformulates and decomposes the AF model of the problem using a Dantzig-Wolfe decomposition
to obtain a PF model. The PF formulation consists of two phases – in the first, vessel schedules are
generated, and in the second, a feasible set of these schedules is selected. The problem is decom-
posed into subproblems for each vessel and each harbor inventory. Columns are then generated in
the subproblems until no further improving columns can be generated. The remaining constraints
are kept in the master problem.

Grønhaug and Christiansen (2009) formulate both a PF model and an AF model. The PF model
enumerates all possible routes and then solves a mathematical model for maximizing the profit for
an LNG-based problem, ensuring that the selected routes constitute a feasible solution. In the AF
model, all vessels have an associated network where the nodes consist of a port. A binary routing
variable is used to ensure that the routing is feasible. The study also includes a computational study
of the two models, comparing their performance. Results indicate that commercial mixed-integer
programming (MIP) solvers struggle to solve the two exact models when the problem size becomes
larger; on a test instance with three vessels, four ports, and 60 time steps, neither formulations
could solve the problem in ten hours.

Agra et al. (2013) argue that the bounds provided by the AF model are weak and thus propose
a strengthened formulation – a fixed charge network flow (FCNF) formulation. The MIRP is

4Even though the data provided by Mowi only contains one production port, yielding a one-to-many network
in the particular case, our model is flexible and can handle multiple production ports.
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formulated as a single-commodity FCNF, and several constraints are added to strengthen the
formulation further. The FCNF formulation provides better bounds than the AF model, according
to the computational results. Friske et al. (2022) also compared the two formulations by employing
them in a Relax & Fix and Fix & Optimize matheuristic; the results from this study substantiates
the findings by Agra et al. (2013) – the FCNF formulation provides better bounds than the TS
model.

4.2.2 Approximation Methods

As evident from the computational study completed on a MIRP considering routing of LNG done
by Grønhaug and Christiansen (2009), the MIRP is a too complex problem for being solved with
exact models – particularly when the problem size becomes realistic. This makes approximation
techniques appropriate for solving the problem. While most of the pioneering studies on the MIRP
focus on describing it by formulating mathematical models, most recent studies focus on devel-
oping heuristic algorithms for solving real-life problems. First, we look at some of the heuristics
that different authors have formulated before looking closer into studies combining heuristics with
mathematical models solved by commercial MIP solvers, i.e., matheuristics.

Heuristics

Christiansen et al. (2011) formulate a construction heuristic for solving a problem in the Norwegian
cement industry with multiple products. The heuristic works by iteratively selecting a silo to be
served and a silo to serve it based on some greedy criteria. Then a vessel is chosen to transport
the cement, ensuring that no different cement grades are mixed in the compartments. Iteratively
shipments, constituted by an origin silo, a destination silo, a vessel to transport, cement quantities,
and a time for departure from the origin and arrival at the destination, are added to the plan.
Finally, a genetic algorithm is used to adjust the weights used for selecting shipments.

Hemmati et al. (2015) consider a routing and scheduling problem for a tramp shipping company and
formulate a two-phased heuristic that converts the cargo and inventory problem into a traditional
cargo routing problem. This is done by first transforming the inventories into cargoes. These
cargoes have predefined origins and destinations, time windows, and quantities. With the cargoes
fixed, the cargo routing problem is solved using an Adaptive Large Neighborhood Search (ALNS).
The heuristic then alternates between updating the cargoes and solving the ALNS.

Further, De et al. (2017) formulate an evolutionary algorithm to solve a MIRP with multiple
products and discrete time. A Particle Swarm Optimization for Composite Particle (PSO-CP)
model is employed. The PSO-CP consists of a swarm of composite particles, an extension of the
traditional PSO designed to avoid immature convergence and entrapments in local optima. The
particles consist of all variable types from the mathematical model of the MIRP. Three particles are
grouped to form a composite particle based on proximity in Euclidean distance in variable space.
The composite particles in the swarm then interact with each other to locate the global optimum.
During an iteration, the position of a particle is updated based on its best-known position and the
current global best solution.

Siswanto et al. (2019) also develop a heuristic for the MIRP with multiple time windows and
products for a national oil company in Southeast Asia. A multi-heuristic genetic algorithm is
proposed and consists of five main steps: (1) a vessel to be routed is selected, (2) the routing of
the vessel is decided, including a supply port and a number of demand ports, (3) the compartment
allocation and loading quantities are decided, (4) the unloading quantities are decided, and (5) the
fitness of the solution is calculated. As the name suggests, different heuristics are used for making
decisions (1)-(4), and these strategies constitute the chromosomes of the population.
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Matheuristics

Pure heuristics have proven efficient for solving problems with binary variables. For most variations
of the VRP, heuristic approaches perform best; Christiaens and Vanden Berghe (2020), and Vidal
(2022) present the current state-of-the-art algorithms for the VRP. However, when continuous
variables, like the inventory variables in the MIRP, are introduced, heuristics not incorporating
some mathematical model often fall short. If we investigate the benchmark instances introduced in
Papageorgiou et al. (2014c), all new best-known solutions since the publication have been discovered
by matheuristics. In this section, we look into the existing solution methods using matheuristics to
solve the MIRP based on the classification of matheuristics used for routing problems by Speranza
and Archetti (2014). They classify the matheuristics into three classes:

1. Decomposition approaches – the problem is divided into smaller and less complex subprob-
lems. The subproblems are solved using a MIP solver to optimality or suboptimality. In
algorithms with a decomposition matheuristic, the matheuristic is normally the main com-
ponent of the algorithm. The decomposition approaches are divided into Two-Phased, Partial
Optimization, and Rolling Horizon (RH) approaches.

2. Improvement heuristics – improves a solution found by another heuristic approach using
MIP solvers. Improvement heuristics are widely used as they can be applied to any problem
independently of the initial solutions generated. The improvement heuristics typically play a
“minor” role in the overall algorithm and are intended to improve already generated solutions.
The class is further divided into one-shot approaches and approaches using MIP models for
local optimization.

3. Branch-and-price/column generation-based approaches – consist of a master problem in which
the routes (columns) to be used to minimize costs are selected and a subproblem that gen-
erates the routes (columns). In the matheuristic, the exact method is modified to reduce
running time and does not guarantee optimality.

The focus in this section is put exclusively on the two first classes, as these are the two most used
for inventory routing problems.

Decomposition Approaches

RH approaches are popular time-based decompositions techniques used by several authors. Agra
et al. (2014) and Papageorgiou et al. (2018) both employ an RH decomposition to solve the problems
at hand. Agra et al. (2014) divide the current planning horizon into three parts – a frozen part
where all binary variables are fixed, a central part where neither restrictions nor relaxations are
made, and a forecasting period, where binary variables are relaxed. A MIP is then solved with the
above restrictions, and the central period in iteration n becomes frozen in period n+1. The study
also proposes two additional procedures used in combination with the RH. First, a local branching
restricts the number of variables allowed to change in search of a local optimum, starting with
a feasible solution. Secondly, a feasibility pump heuristic seeks to obtain a feasible solution by
rounding the values of relaxed binary variables.

To improve the solutions generated by the RH, Papageorgiou et al. (2018) discuss a set of frequently
seen improvement heuristics for MIRPs. From the computational study, it is evident that a hybrid
between an RH and a K-opt local search provides promising results for the hard problems in the
study. In this approach, the RH is run for T/2 time periods before a K-opt local search that fixes
the routes for all but K vessel classes5 is run. Then the RH is run for the rest of the time periods
before the K-opt is called again.

Another time-based decomposition is Relax & Fix (R&F), a technique that shares most of its
characteristics with the RH. The main difference between RH and F&R is the length of the planning
horizon considered in each iteration. In RH, only a part of the problem is considered. In contrast,
the entire planning horizon is considered in the R&F. Uggen et al. (2013), Friske and Buriol (2018)

5In the benchmark instances proposed by Papageorgiou et al. (2014c) all vessels belong to a particular vessel
class with similar properties.
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and Friske et al. (2022) use F&R to generate initial solutions; the traditional F&R divides the
planning horizon into n subhorizons, constituting n subproblems, which are solved iteratively by
relaxing integer constraints. Similar to the RH approaches mentioned, the planning horizon is split
into different parts. In addition to the fixed block, the central part, and the relaxed forecasting
period, a part of the end, called the End Block, is either cut off or dealt with using a simplified
mathematical model, reducing the number of variables.

To improve the initial solutions, Uggen et al. (2013) propose another time-based decomposition; the
planning horizon is again split into m subhorizons. m is typically smaller than the n subhorizons
used for the R&F. The subhorizons are iterated through, fixing all integer variables in future
subhorizons. All variables in the current subhorizon and the continuous variables in the future
subhorizons are optimized. Friske and Buriol (2018) and Friske et al. (2022) develop similar Fix &
Optimize (F&O) algorithms with some extensions. In addition to decomposing the variables based
on time, Friske and Buriol (2018) also generate neighborhoods where all integer variables except
those associated with two vessels were kept fixed. The vessel pairs are selected iteratively until
no further improvements are found. The study also includes a decomposition combining the time
and vessel decompositions. The planning horizon is split into m intervals, and while iteratively
optimizing the intervals, the variables associated with one vessel are optimized. Then, a new vessel
is optimized with the same interval, giving a total of m|V| iterations. In Friske et al. (2022) the
F&O is further extended with one more decomposition strategy – the variables are decomposed
based on the associated port type. First, all discharging port variables are unfixed; then, all
loading port variables are unfixed. The variables connecting the two port types are unfixed in both
subproblems.

Papageorgiou et al. (2014b) present a two-phase algorithm for solving a single-product deep-sea
MIRP. The main idea behind the decomposition is to first “zoom out” from the problem aggregating
information before “zooming in” and solving a series of subproblems. In the “zoom out” phase,
ports are aggregated to regions and vessels to vessel classes. The aggregated model is solved,
producing a solution indicating the number of visits from each vessel class to each region and
each visit’s entering and leaving times. The vessels are then assigned to the regional visits using
a first-in, first-out principle. In the “zoom in” phase, a subproblem is solved for each region on
an augmented TS network, deciding the routes and loading and unloading decisions. After the
subproblems have been solved, a local search is used to remove infeasibilities and improve the
solution. The study also proposes some valid inequalities and branching decisions to reduce the
number of infeasible solutions.

In Papageorgiou et al. (2014a) a novel solution approach using approximate dynamic programming
(DP) to solve a deep-sea MIRP with a long time horizon is proposed. They define a mathematical
formulation, as well as a dynamic programming formulation. The DP formulation uses a state
representation consisting of two vectors: one for current and future vessel positions, and one for
current and future inventory levels. The DP value function is approximated using a piecewise
linear function whose value only depends on the future inventory levels at discharging ports, and
whose value is determined by solving a MIP. At each step of the approximate DP, the value
function approximation is updated based on the occurrences of stockout in the previous solution.
In addition, the approximate DP is supplemented with a local search to find even better solutions.

Hemmati et al. (2016) convert the MIRP into a less complex problem not involving inventory
decisions, a pure cargo routing problem, by transforming the inventories into cargoes. The cargoes
are generated using two mathematical models. First, a transportation model generates a set of
cargoes (quantity, origin, and destination), guaranteeing that all ports have a sufficient amount
of all products loaded or unloaded during the planning horizon. Then, a time window model
maximizes the time window in which cargoes can be delivered while ensuring no inventory violation
occurrences. When all orders are generated, an ALNS is used to solve the ship routing problem.
Further, the quantities in the orders are updated based on information from the ALNS.

Agra et al. (2017) present a decomposition-based matheuristic for a problem similar to Mowi’s
within the Norwegian salmon farming industry. First, a mathematical model using branch-and-cut
is run on an AF formulation. Suppose a feasible solution can be found by the exact method. In
that case, the solution is decomposed into a traveling salesman problem for each vessel with time
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windows, fixing unloading quantities and adding the unloading times to the sailing time of the
route. When a feasible solution is not retrieved from the exact model, an R&F model considering
one vessel at the time is deployed to build each vessel’s route.

Diz et al. (2019) propose a robust variation of the R&F and F&O algorithm for a MIRP where
the time spent by vessels at ports is considered uncertain. A decomposition based on ports is
done for the R&F phase. Through iterations, a subset of the ports is selected. All variables not
associated with the selected ports are relaxed. In the F&O phase, the problem is decomposed on
vessels rather than ports. The matheuristics were applied on an extended FCNF formulation and
executed for different levels of robustness, depending on how conservative the estimations of time
spent by the vessels in ports were. Finally, a Monte Carlo simulation was run to estimate the
probability of the obtained solutions being infeasible for each robustness level.

Improvement Approaches

St̊alhane et al. (2012) formulate a construction and improvement heuristic for creating an ADP for
an LNG company, complemented by a branch-and-bound algorithm on a MIP model. The proposed
solution uses a multi-start approach where a greedy construction heuristic generates several initial
solutions by first selecting a contract to be served before a vessel is selected. Finally, the first day
the vessel can serve the contract is found. An artificial node is used for adding some randomness
and thus, allowing different solutions to be generated. After the set of initial solutions is generated,
a local search using different neighborhood operators and a restricted version of the exact model
of the problem is applied to improve the solutions. The restricted MIP works by generating a
reduced set of variables where multiple factors are kept fixed, creating a problem that is a fraction
of the size of the original problem.

In the study by Song and Furman (2013), a solution technique for solving MIRPs with practical
features is introduced. First, a preprocessing reducing the size of the search space is completed.
Then, a feasible integer solution to the problem is found by running a mathematical model. If the
model cannot find a feasible solution, it is replaced with a feasibility pump. A Large Neighborhood
Search (LNS) is applied from the initial feasible solution, generating small subproblems that are
solved using a MIP model to improve the initial, feasible solution. In the LNS, all binary variables
except those associated with a vessel pair are fixed. An AF model then solves the subproblem.

Agra et al. (2018) propose a robust solution to a MIRP where the sailing times between ports
are considered uncertain. To ensure robustness against delays in sailing time, the problem is
decomposed into a master problem and a subproblem. In the master problem, the constraints
associated with sailing time are considered for a set of sailing time scenarios. The subproblem then
verifies if the solution is feasible for the remaining sailing time scenarios; if not, more scenarios are
added to the master problem until a feasible solution is found. The study proposes a matheuristic
based on a local search to solve larger instances, which uses a conservative solution generated by
the decomposed model as its starting point.

Friske and Buriol (2020) introduce a one-shot matheuristic approach to solve the instances intro-
duced by Papageorgiou et al. (2014c). The first parts of the algorithm are purely heuristic. A
greedy construction heuristic generates a set of solutions with randomness. Deliveries are gen-
erated by selecting (1) urgent ports based on inventory violation times, (2) counterpart ports of
opposite type based on proximity to the urgent port and violation time, or at random, (3) a vessel
to perform the voyage, and (4) delivery time and quantities. This is done until all inventory viola-
tions are removed. To improve the solutions, an LNS destroys the routes of a set of vessels before
rebuilding them using the greedy construction heuristic. After the best solution from the LNS
has been retrieved, a reduced MIP, keeping all variables except inventory variables, spot market
variables, and some other continuous variables fixed, is run, potentially improving the solution.

Sanghikian et al. (2021) present an algorithm to solve a real-life multi-product MIRP faced by a
vertical integrated offshore oil and gas company in Brazil. First, an initial solution considering only
the vessel’s initial positions is constructed. Then, the routing of the vessels is done iteratively by an
LNS, while an LP is used for optimizing inventory levels. The solution is generated in a loop that
uses four different operators to generate neighborhoods. For each neighborhood, the inventories
are solved to optimality by the LP. If the new solution is better than the old best solution, it is
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accepted, or by some probability, if it is not better.

Table 4.2: Summary of previous studies on matheuristics developed to solve the MIRP.

Study Model B V R Construction Improvement Classification
(St̊alhane et al., 2012) Voyage-based - F&O Improvement
(Song and Furman, 2013) TS • • - F&O Improvement
(Uggen et al., 2013) AF R&F F&O Decomposition
(Agra et al., 2014) AF • • RH - Decomposition
(Papageorgiou et al., 2014a) TS TD F&O Decomposition
(Papageorgiou et al., 2014b) TS • • TD F&O Decomposition
(Hemmati et al., 2016) AF TD ALNS6 Decomposition
(Agra et al., 2017) AF • • R&F TD Decomposition
(Diz et al., 2019) FCNF • R&F F&O Decomposition
(Agra et al., 2018) AF • • - MIP LS Improvement
(Friske and Buriol, 2018) FCNF • R&F F&O Decomposition
(Papageorgiou et al., 2018) TS • • RH F&O Decomposition
(Friske and Buriol, 2020) FCNF - F&O Improvement
(Sanghikian et al., 2021) AF - F&O Improvement
(Friske et al., 2022) TS, FCNF • R&F F&O Decomposition
This work TS7 - F&O Improvement

A summary of the studies discussed in this section is given in Table 4.2. The column “Exact
model” indicates the formulation used for the underlying model used for the matheuristic. As can
be seen, all studies use an AF (or TS) or an FCNF formulation. The difference between the AF
and TS formulations is that the TS formulation consists of nodes with both a time and a port,
while the ordinary AF formulation has a network of ports, or port and visit pairs, only. Thus,
most studies using a discrete time scheme use the TS formulation, while those with continuous
time use the AF. The columns “B,” “V,” and “R” indicate if the studies introduce some branching,
valid inequalities, or robustness to handle uncertainty, respectively. Further, the columns “Con-
struction” and “Improvement” indicate the matheuristic techniques used for constructing initial
solutions and improving them, respectively.8 A summary of the matheuristic techniques mentioned
in Table 4.2 with explanations of what is included in each technique is given in Table 4.3. Finally,
the column “Classification” indicates if the main matheuristic proposed in the study is classified
as a decomposition or an improvement heuristic, according to the classes presented by Speranza
and Archetti (2014). As can be seen, our algorithm is classified as an improvement matheuristic –
the commercial solver is solely used for assigning quantities given a complete routing solution to
the problem. Thus, we argue that the LP plays a minor role through local optimization, with the
heuristic doing most of the work. This is discussed further in Chapter 6.

Table 4.3: Matheuristic techniques presented in the chapter.

Matheuristic Description

R&F
Relax & Fix – includes all strategies that consider the entire
planning horizon and splits the planning horizon into parts were
some variables are relaxed and other are fixed.

RH
Rolling Horizon – includes all strategies that split up the planning
horizon without considering the entire planning horizon at the same
time.

TD
Tailored Decomposition – includes all strategies that use some
tailored decomposition of the problem into subproblems based on
the structure of the problem.

F&O

Fix & Optimize – includes all strategies that use some operator
to generate neighborhoods where the neighborhoods are used to
fix certain variables. I.e., heuristics like ALNS and other local
searches followed by a MIP are included in this technique.

MIP LS
MIP-based Local Search – proposed by Friske et al. (2022) and
includes all strategies using a local search with a MIP embedded on
a problem with uncertainty.

6In the work by Hemmati et al. (2016) the ALNS used for improving the solutions generated by the construction
matheuristic is just focusing on the routing and not using a mathematical model, and is thus a pure routing heuristic.

7In our work the exact model solved for the time-space network is not a part of the matheuristic, rather other
linear programs are used.

8Note that the column “Improvement” is not the same term as from the classification by Speranza and Archetti
(2014), but rather an indication of the technique used for improving the initial solutions.
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4.3 Our Contribution

In this section we present the contribution to the MIRP research from this thesis. Our contribution
is two-fold – we have formulated an extended mathematical model describing the MIRP faced by
our industrial partner, Mowi, and we have developed a novel algorithm for solving real-life MIRPs
of substantial complexity.

Even though the MIRP is a well-studied problem and there has been proposed numerous mathe-
matical models describing the problem, the thesis presents a new model in Chapter 5. The model
is an extended version of the TS network model first introduced by Song and Furman (2013). Our
problem is to our knowledge the first MIRP formulated with the combination of discrete time,
multiple products, and a fleet with heterogeneous, non-dedicated compartments. As the products
cannot be mixed, the model also incorporates allocation of compartments, which has not been
modeled for the TS model previously.

The proposed matheuristic, named SMOLT, uses a memetic algorithm to decide how to route each
vessel, and combines this with a continuous LP for optimal quantity assignment. For routing, we
use a novel representation consisting of a list of (port, time)-pairs for each vessel. Our solution
method implements a series of mutations operating on routing solutions. This includes a set of ruin
& recreate methods (R&R), among these an adaption of Slack Induction by String Removal (SISR)
proposed by Christiaens and Vanden Berghe (2020) to the MIRP. SMOLT has been designed to be
embarassingly parallel9, allowing it to be scaled out to nearly arbitrary levels of parallel execution.
This allows us to solve larger problems than those that have been addressed in literature so far.

9A problem where minimal effort is required for separating the problem into a independent tasks that can be
run in parallel.
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Chapter 5

Mathematical Formulation

This section presents the MIP model for the FFMIRP. The model is inspired by, and extends, the
MIP model first formulated by Song and Furman (2013), and later used by Papageorgiou et al.
(2014c), and describes the same problem as the matheuristic presented in Chapter 6 solves. In
Section 5.1 we present the underlying modeling assumptions and relevant data structures. This
includes how fish farms, production facilities, and vessels are represented and several decisions
and assumptions related to modeling the specific problem at hand. In Section 5.2 we present the
notation used in the model. Finally, we present the model and explain it in Section 5.3.

5.1 Modeling Approach and Assumptions

This section presents the foundation and assumptions on which our mathematical formulation is
based. In Section 5.1.1 we elaborate on our representation of time. Then, in Section 5.1.2 we
present the chosen port representation of fish farms and factories and introduce the TS network
structure used in the model. In Section 5.1.3 and Section 5.1.4, we discuss the modelling of
inventory management in vessels and in ports, respectively. Lastly, our routing assumptions are
presented in Section 5.1.5, and measures to avoid adverse end-effects are discussed in Section 5.1.6.

5.1.1 Discrete Time and Planning Horizon

The model is formulated using discrete time period, and the planning horizon is represented as
a sequence of consecutive time periods of equal length. The discretized time allows the feed
consumption rate at a farm to vary throughout the planning horizon. Varying consumption rate
is necessary to incorporate events such as harvesting which can dramatically affect consumption
within a planning horizon.

When using discrete time periods, an activity like sailing or unloading feed is started in a time
period and will last for a given number of time periods. Therefore, the length of the time periods
is crucial for the model’s accuracy. The length is not explicitly defined in the mathematical
formulation but must be stated when solving problem instances. The model’s accuracy decreases
as the length of time periods increases since longer time periods increase the error between actual
and modeled duration for sailing and loading. However, while shorter time periods lead to more
accurate results, it does so at the expense of making the model harder to solve. This is due to
an increase in the number of constraints and variables. Therefore, choosing the duration of the
time periods is a trade-off between the accuracy of the results and the difficulty of solving the
model. For the problem at hand, i.e., Mowi’s problem, having a time period of one hour results in
activities lasting several time periods. Therefore, the inaccuracies caused by the discretization of
time are believed insignificant enough to support our decision to use a discrete-time model.
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(a) A complete TS network without any restrictions

(b) Node and arc information

Figure 5.1: Illustration of how a full TS network is structured

5.1.2 Port and Network Representation

The fish farms and feed factories are represented as consumption and production ports, respectively.
As in Song and Furman (2013), our model uses a TS network that consists of (port, time)-pairs,
each represented as a node in the network. The set of nodes is shared between all vessels, but
each vessel has its own set of associated arcs in the TS network. These directed arcs represent the
potential flow through the network for each vessel, which we elaborate on later.

As explained in Chapter 3, every vessel is associated with a port as its origin and a time period
in which it becomes available. This is incorporated by ensuring that every vessel has to travel to
its origin from an artificial source node in the time period before it becomes available. There are
no restrictions on the number of vessels with a particular port as their origin, nor are there any
restrictions on how many times a vessel can visit the same port during the planning horizon.

In Figure 5.1 we see a similar TS network as the one used by Song and Furman (2013). The
network consists of a source node, ns, a sink node, nt, and several normal nodes consisting of a
port and a time period. A set of different arc types connects the nodes in the network: (1) travel
arcs connect different ports, (2) waiting arcs allow the vessels to remain at a port between time
periods, (3) the source and sink nodes have only outgoing and incoming arcs, respectively, and (4)
an arc connecting the source and sink directly allows for not using vessels.

Figure 5.2 illustrates what the underlying network looks like in our case and how adjusting the set
of arcs available for a vessel deals with the routing restrictions. The first thing to note is that all
vessels are assigned to an origin – the port in which it becomes available. In Figure 5.2a we see the
TS network of a vessel that has no travel restrictions; it is available from the first time period, it
can visit both ports, but it has to start in port j. Figure 5.2b shows the TS network of a vessel that
becomes available in port i in the third time period. Finally, Figure 5.2c displays a case in which
a vessel is not compatible with port j, and thus cannot visit it throughout the planning horizon.
Note that the travel time between node i and node j is two time periods.

5.1.3 Inventory Management in Vessels

In practice, each vessel will usually be empty when it becomes available in its origin, but it is no
formal requirement. Hence, each vessel can have a nonzero amount of feed on-board when it first

27



5.1. MODELING APPROACH AND ASSUMPTIONS

(a) Network for a vessel having port j as its origin, without any further restrictions

(b) Network for a vessel becoming available in the third time period with port i as its origin

(c) Network for a vessel that is not compatible with port j

Figure 5.2: Illustration of how the TS network is structured in our thesis. Note that the arcs represent
the same as in Figure 5.1b.
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becomes available. This flexibility enables the modeling of situations where vessels are executing a
previously planned route, but some unforeseen event makes it preferable to reschedule. One such
event could be a disease outbreak that makes a vessel’s route disadvantageous. The model could
then be re-optimized with the farms in which the vessels currently reside as their respective origins
and their current load as their initial load.

Since Mowi has two types of vessels, namely bulk and bag vessels, that impose different require-
ments on inventory management, this has to be handled. Instead of separating the two vessel
types in our mathematical model, we adjust our representation such that both vessel types can be
handled similarly. For bulk vessels, we have to ensure that the capacity of all silos is respected
and that no mixing of multiple products within the same silo occurs. To be able to treat bag
vessels similarly, we represent each potential bag as a silo with a capacity equivalent to the bag
size. Compared to Mowi’s real-life problem, this is a minor simplification as they have multiple
bag sizes, which are not accounted for in the model.

5.1.4 Inventory Management at Ports

Even though Mowi still has farms designed for storing bags and not in silos, we have made a
simplifying assumption that all farms store their feed in silos. Currently, the number of bag farms
is low, and the company plans to move entirely away from them in the future, which justifies the
simplification.

In contrast to silos in vessels, we have simplified the modeling of silos in consumption ports. We
assume an assigned storage capacity for each feed type for these ports, and the assigned capacity
is not allowed to change throughout the planning horizon. In other words, the allocation of feed
types to silos is given in advance as input to the model. This differs from vessels with silos, where
the model itself decides how to allocate feed types to silos. We argue that this is a fair assumption,
as the allocation of silos on farms is closely related to the growth stage of the fish and is thus
unlikely to change significantly during the relatively short planning horizon. The allocation on
farms is thus more stable than the allocation of the vessels’ load, which has to account for multiple
farms with potentially vastly different demands.

In the model, we ensure that the production ports do not deliver anything they have not produced.
I.e., we incorporate production rates at all ports and ensure that the inventory stays between a
minimum and a maximum. However, in Mowi’s case, we assume that the production ports can
always supply the vessels with the demanded quantity of all products. This simplification is made
because the FFMIRP does not incorporate inventory management or production planning on the
production side.

Lastly, as Mowi is an vertically integrated company, it is assumed that the costs of storing the feed
are independent of the specific location in which it is stored. Thus, we assume that the storage
costs at the factory and all fish farms are the same, and consequently, they are left out of the
model.

5.1.5 Routing Assumptions

Upon arrival at a node in the network, the vessel must either wait or start the unloading or
loading process in the subsequent time period. However, as a good solution most likely tries to
avoid waiting, we impose an extra cost if the vessel waits before starting to unload. When a
vessel becomes available in its origin, it is given one additional option to initiate a sailing activity
immediately, without loading or unloading any quantity at the origin port. This is necessary when
the vessel has a nonzero initial feed load or has its origin in a consumption port. Additionally,
as mentioned in Section 5.1.2, there is no restriction on the number of times a vessel can visit a
particular port. This allows a vessel to visit a production or a consumption port multiple times to
either load or deliver more feed during the planning horizon.

29



5.2. NOTATION

5.1.6 Dealing with End-Effects

A challenge when solving MIRPs is to avoid inventory levels at the end of the planning horizon that
are unfortunate for planning beyond the planning horizon. When only minimizing the distribution
cost, the model has no incentive to travel to a port unless the port will experience an overflow or
stockout by the end of the planning horizon. As a result, the ports risk having a meager inventory
(or a lot in the case of production ports) in the final time period. Such solutions seem attractive
to the model as it only considers the costs within the planning horizon. However, it can make
planning beyond the planning horizon difficult. To reduce such negative end-effects a revenue is
given per quantity delivered or picked up at the ports. Setting the revenue sufficiently high will
incentivize the model to make deliveries even when it is not strictly needed. Since a new planning
horizon always follows another, this might help ease the planning and reduce costs over several
planning horizons.

5.2 Notation

The following section presents the notation used in our mathematical model. First, we introduce all
sets in Section 5.2.1, then we explain the parameters and variables in Section 5.2.2 and Section 5.2.3,
respectively.

5.2.1 Sets

v ∈ V – Set of vessels

i ∈ IC – Set of consumption ports

i ∈ IP – Set of production ports

i ∈ I – Set of all ports, I = IC ∪ IP

t ∈ T – Set of time periods in the planning horizon

p ∈ P – Set of different fish feed products

c ∈ Sv – Set of silos on vessel v ∈ V
n ∈ N – Set of port-time pairs that constitute the nodes. N = {(i, t) : i ∈ I, t ∈ T }
n ∈ Nst – Set of nodes including the source and the sink. Nst = N ∪ ns ∪ nt

a ∈ Av – Set of all arcs associated with vessel v ∈ V
a ∈ FSnv – Set of all outgoing arcs associated with node n ∈ Nst and vessel v ∈ V
a ∈ RSnv – Set of all incoming arcs associated with node n ∈ Nst and vessel v ∈ V

5.2.2 Parameters

Vessel-specific parameters

Qvc – The capacity of silo c ∈ Sv on vessel v ∈ V
S0
vcp – The initial inventory of product p ∈ P in silo c ∈ Sv on vessel v ∈ V

CT
va – Cost to traverse arc a = ((i1, t1), (i2, t2)) ∈ Av with vessel v ∈ V
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Port-specific parameters

Bit – Berth capacity (maximum number of vessels loading or unloading) at port
i ∈ I at time t ∈ T

Sip – Total capacity of product p ∈ P at port i ∈ I
Sip – The lower inventory limit of product p ∈ P at port i ∈ I
S0
ip – The initial inventory of product p ∈ P at port i ∈ I

Ditp – The consumption/production of product p ∈ P at port i ∈ I in time t ∈ T
Ii – Indicator of the port type. 1 if the node is a production port, and -1 if the

node is a consumption port

ϵ – Nonnegative and small cost parameter for attempting to load or unload at a
port

βit – The maximum amount of all products that can be bought from the spot
market by port i ∈ I in time period t ∈ T

βtot
i – The maximum amount of all products that can be bought from the spot

market by port i ∈ I throughout the planning horizon

Fmin
it – The minimum amount that can be loaded/unloaded on/from a single vessel in

port i ∈ I in time t ∈ T if such action takes place

Fmax
it – The maximum amount that can be loaded/unloaded on/from a single vessel

in port i ∈ I in time t ∈ T
CS

it – The unit cost of buying from the spot market for port i ∈ I in time period
t ∈ T

Rit – The revenue generated per unit delivery to port i ∈ I in time period t ∈ T

5.2.3 Variables

xva – 1 if vessel v ∈ V traverses arc a ∈ Av, 0 otherwise

znv – 1 if vessel v ∈ V can load/unload at node n ∈ N , 0 otherwisse

qnvcp – The quantity loaded/unloaded from/to silo c ∈ Sv from vessel v ∈ V of
product p ∈ P at node n ∈ N

yvctp – 1 if silo c ∈ Sv in vessel v ∈ V contains product p ∈ P at time period t ∈ T
αitp – Amount of product p ∈ P bought/sold from/to the spot market by port i ∈ I

in time period t ∈ T
sPitp – The current stock of product p ∈ P at port i ∈ I at the end of time period

t ∈ T
sVvctp – The current stock of product p ∈ P in silo c ∈ Sv in vessel v ∈ V at the end of

time period t ∈ T

5.3 Model Formulation

In this section, we present the mathematical model.

5.3.1 Objective Function

The objective consists of four terms: the revenue generated from delivering feed to the nodes, the
cost associated with traversing the arcs between ports, the cost that occurs when the spot market
is used, and finally, the cost associated with docking at a port. The objective is given in Equation
(5.3.1) and maximizes the profit generated. Note that the objective is minimized. This is because
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the purpose of the revenue is to reduce adverse end-effects, while the main focus is on minimizing
distribution costs.

min z =
∑
v∈V

∑
a∈Av

CT
vaxva +

∑
i∈I

∑
t∈T

∑
p∈P

CS
itαitp +

∑
i∈I

∑
v∈V

∑
t∈T

(tϵ)z(i,t)v −
∑
n∈N

∑
v∈V

∑
c∈Sv

∑
p∈P

Rnqnvcp

(5.3.1)

The first term constitutes the total travel cost for all vessels. The second term states that there
are costs related to buying products from the spot market for every combination of a port and a
time period. The third term deals with the cost of docking at a port. As in Papageorgiou et al.
(2014c), we have multiplied by t in the objective. This is done to urge performing the deliveries as
early as possible, which has proven beneficial. The absolute value of ϵ is very low, as it should not
affect the primary goal of minimizing the costs, contributing to telling the model that a solution in
which a docking occurs earlier than in another is preferred. The final term makes up the received
revenue generated from the products being delivered and picked up.

5.3.2 Routing Constraints

As we represent the problem using a TS model, we must ensure that the flow through the network
is balanced. This means that the number of incoming and outgoing arcs in the network should be
equal for all regular nodes in the network. The source node should have one arc leaving for every
vessel and none entering. Similarly, the sink node should have one arc entering and none leaving.
This is represented by Constrains (5.3.2).

∑
a∈FSvn

xva −
∑

a∈RSvn

xva =


1 , if n = ns

−1 , if n = nt

0 , otherwise

, n ∈ Nst, v ∈ V (5.3.2)

Note that as long as Constraints (5.3.2) are respected, most other aspects of the routing are handled
by pre-processing the set of arcs. A vessel will not be able to start before it becomes available,
as there are no arcs to travel along in these time periods. It is also forced to start in its origin as
this is the only arc available when it becomes available. Particular ports that cannot be visited by
certain vessels are handled by excluding all arcs to these ports. Furthermore, waiting in a port is
possible as the network includes arcs going from a port back to the same port with a travel distance
of one time period. Finally, the travel time aspect is handled by the time it takes to traverse an
arc; for every vessel, the difference between the start and end point of a travel arc represents the
travel time. This also allows the travel time between two ports to depend on the time period in
which the travel starts.

As we do not have any hard requirements on the vessels being empty upon returning to a production
facility and have included the discount for traveling empty, another level of complexity is added.
Papageorgiou et al. (2014c) assume that all vessels are empty when they return to a production
facility and when empty, travel costs are reduced by a discount factor. However, we argue that
a similar assumption can be made in our case; in Mowi’s problem, we ignore the production
scheduling part as discussed earlier. Thus, the inventory levels at the production sites are ignored.
This means we can assume high enough inventory at the factories when a vessel arrives to fill it.
Consequently, the only reason for traveling back to a factory with products in stock would be to
save loading time by loading more than needed for the next voyage at a production facility with high
loading rate than the next planned production facility visit. However, in Mowi’s problem, there is
currently just one factory, and thus, we assume that vessels always return empty to a production
facility. Hence, the costs of traversing all arcs entering a production node are discounted as fuel
consumption is lower when traveling empty. In other words, it is cheaper to travel to a production
node, than to leave a production node.
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5.3.3 Inventory Constraints

This section presents the constraints related to inventory control for ports and vessels.

Port Storage

At the end of a time period, the inventory at a port is the sum of the inventory at the beginning
of the period, the consumed/produced amount, the loaded/unloaded amount, and the amount
bought from/sold to the spot market. This is represented by Constraints (5.3.3).

sPitp = sPi,t−1,p + Ii(Ditp −
∑
v∈V

∑
c∈Sv

qvctp − αitp), n = {(i, t) : i ∈ I, t ∈ T \{0}}, p ∈ P (5.3.3)

The initial inventory of all products in all ports is handled by Constraints (5.3.4).

sPi0p = S0
ip + Ii(Di0p −

∑
v∈V

∑
c∈Sv

qvc0p − αi0p), i ∈ I, p ∈ P (5.3.4)

At all times, the inventories of all fish feed products have to stay between the provided minimum
and maximum bounds. This is ensured by Constraints (5.3.5).

Sip ≤ sPitp ≤ Sip, i ∈ I, t ∈ T , p ∈ P (5.3.5)

Vessel Storage

The outgoing inventory level of a product in a particular silo in a vessel in a time period is the
sum of the incoming inventory and the amount loaded or unloaded throughout the time period
from the compartment. This is enforced by Constraints (5.3.6).

sVvctp = sVvc,t−1,p +
∑
i∈I

Iiqvc(i,t)p, v ∈ V, c ∈ Sv, t ∈ T \{0}, p ∈ P (5.3.6)

We also have to handle the initial inventory of all products in all compartments in all vessels; this
is done by Constraints (5.3.7).

sVvc0p = S0
vcp +

∑
i∈I

Iiqvc(i,0)p, v ∈ V, c ∈ Sv, p ∈ P (5.3.7)

Further, as we do not require the vessels to be empty when arriving at the production ports, it
must be made sure that the inventory levels in all silos are below the capacities of the silos. This
is enforced by Constraints (5.3.8).

∑
p∈P

sVvctp ≤ Qvc, v ∈ V, c ∈ Sv, t ∈ T (5.3.8)

Constraining the storage is more complicated for the vessels due to the non-allocated compart-
ments. The product stored in a silo can change throughout the planning horizon multiple times.
At the same time, it is crucial to ensure that multiple products are never mixed in the same
compartment. Constraints (5.3.9) make sure that there is at most one product located in each
compartment in all vessels throughout all time periods. Further, Constraints (5.3.10) ensure that
the product stored in a compartment cannot change unless it is emptied.
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∑
p∈P

yvctp ≤ 1, v ∈ V, c ∈ Sv, t ∈ T (5.3.9)

sVvctp ≤ Qvcyvctp, v ∈ V, c ∈ Sv, t ∈ T , p ∈ P (5.3.10)

Note that the Qvc values work as “big-M”-bounds in Constraints (5.3.10).

Loading and Unloading

There is a limited number of berths available for docking at the ports; it must therefore be enforced
that the number of vessels loading or unloading does not surpass this number. This is done by
Constraints (5.3.11).

∑
v∈V

znv ≤ Bit, i ∈ I, t ∈ T (5.3.11)

Further, a vessel can only deliver products to a port if the vessel is located at that port. This is
ensured by Constraints (5.3.12).

znv ≤
∑

a∈RSnv

xva, n ∈ N , v ∈ V (5.3.12)

All (vessel, port)-pairs have lower and upper bounds on the loading and unloading rates within a
time period, meaning that the total flow of products must be within these bounds. Constraints
(5.3.13) enforce this.

Fmin
it znv ≤

∑
c∈Sv

∑
p∈P

qvcnp ≤ Fmax
it znv, n ∈ N , v ∈ V (5.3.13)

Further, we have a restriction on the amount that can be bought from the spot marked in each
time period. Constraints (5.3.14) make sure that this is enforced.

∑
p∈P

αitp ≤ βit, i ∈ I, t ∈ T (5.3.14)

Finally, the total amount of a product bought or sold at all ports must be within the total limit
for the planning horizon. This is ensured by Constraints (5.3.15).

∑
t∈T

∑
p∈P

αitp ≤ βtot
i , i ∈ I (5.3.15)

5.3.4 Red, Yellow and Green Zones

As mentioned earlier, disease outbreaks also have to be handled. We use three categories of
fish farms – red, yellow, and green farms. For descriptions of what the labels mean, consult
Section 2.3.1. Vessels leaving red and yellow farms have to wait for a specified recovery time before
they can dock at a green farm, and similarly, vessels leaving a red farm have to wait before they
can dock at a yellow farm. These constraints are handled by pre-processing the data. All arcs
leading to a recovery time have an associated travel time equal to the maximum of its original
travel time and the recovery time. As this potentially increased time is accounted for in the cost,
we avoid all prohibited travels without further constraints.
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5.3.5 Binary and Non-Negativity Constraints

xav ∈ {0, 1}, a ∈ Av, v ∈ V, (5.3.16)

znv ∈ {0, 1}, n = (i, t) ∈ N , v ∈ V (5.3.17)

yvcpt ∈ {0, 1}, v ∈ V, c ∈ Sv, p ∈ P, t ∈ T (5.3.18)

qvcpn ≥ 0, v ∈ V, c ∈ Sv, p ∈ P, t ∈ T (5.3.19)

αpit ≥ 0, p ∈ P, i ∈ I, t ∈ T (5.3.20)

sPpit ≥ 0, p ∈ P, i ∈ I, t ∈ T (5.3.21)

sVpvct ≥ 0, p ∈ P, v ∈ V, c ∈ Sv, t ∈ T (5.3.22)
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Chapter 6

A Scalable Memetic Optimization
Algorithm with LP-based Search
Techniques

This chapter introduces our algorithm, termed the Scalable Memetic Optimization algorithm with
LP-based search Techniques (hereafter SMOLT), an algorithm for solving the FFMIRP. It has a
novel solution representation and several novel mutation operators.

An overview of SMOLT is given in Figure 6.1. As can be seen, SMOLT consists of two main
components – a heuristic for deciding the routes of all vessels and an exact solution method for
assigning the loading and unloading quantities given a routing solution. The core idea of SMOLT
is to keep the reliance on mathematical programs to a minimum – the LP solved is simple and all
routing decisions are made by the heuristic. The rationale behind this is to ensure the scalability
of SMOLT; a well-developed heuristic can scale well for complex problems, but an exact method
becomes intractable when the number of variables and constraints gets too large.

Section 6.1 gives an overview of the metaheuristic SMOLT is based on, the memetic algorithm
(MA), and introduces the concept of islanding used to increase performance and population di-
versity. Then, Section 6.2 presents the chosen solution representation in SMOLT, and Section 6.3
describes its fitness function. Further, Section 6.4 gives a thorough presentation of the different
operators used, emphasizing the mutation operators used for conducting local searches. Finally,
Section 6.5 presents how islanding is implemented in SMOLT specifically, how compartment allo-
cation is handled, and how we gradually expand the planning horizon to improve the scalability of
SMOLT.

6.1 Memetic Algorithms with Islanding

MAs are a subgroup of a more broad class of metaheuristics, namely the genetic algorithm (GA).
GAs are inspired by the principle of evolution applicable to solving a wide variety of optimization
problems. Though different variations exist, the core principle is straightforward. GAs work
by maintaining a population of candidate solutions that are evolved throughout generations by
perturbing single individuals and by constructing new individuals by combining multiple candidate
solutions. This is analogous to the principles of genetic mutation and sexual reproduction found
in nature. Candidate solutions within a population are commonly known as individuals, which is
a convention we will apply here.

To guide evolution, each individual has an associated fitness. This is a scalar- or vector value
defining the quality of the solution represented by the individual. An ordering between fitnesses
allows us to say whether one solution is better than another. Evolutionary pressure is usually
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Figure 6.1: An overview of the components of SMOLT. First the population is initialized as empty
solutions. After the population has been initialized, the memetic algorithm loop starts. The loop consists
of four steps: (1) parents are selected for generating offspring based on their fitness, (2) the parents are
recombined to create offsprings, (3) the offsprings are mutated through simple mutations and local search
techniques, and (4) the new population is selected from the combination of parents and offspring. Every
time a routing solution changes, and the delivered quantities are requested, the LP for quantity assignments
is invoked.

applied in at least two ways: (1) by increasing the likelihood that fit individuals are selected for
reproduction and (2) by making it more likely for fit individuals to survive from one generation to
the next. This is akin to how different species evolve. Individuals who are slightly better adapted
to their surroundings, i.e., have better fitness, are more likely to survive and produce offsprings
that carry their genes into the next generation. These improvements accumulate over time, such
that a population of individuals slowly evolve into a form that is well-suited for the environment
in which they live. Similarly, as generations pass, the fitness of the population within a GA tends
to improve, which is equivalent to saying that the quality of the solution candidates increases. A
graphical illustration is provided in Figure 6.2.

SMOLT uses a concept known as islanding to improve the performance of the GA (Whitley et al.,
1999). Rather than maintaining just one population of individuals that are evolved together, we
instead maintain multiple “islands.” Each island is a separate population that is evolved indepen-
dently from all the others. At regular intervals, individuals are exchanged between different islands
in a process known as migration.

The purpose of islanding is twofold. The first is to preserve diversity. The individuals within a
GA’s population will tend to lose diversity over time. That is to say that many of the individuals
within the population will be very similar. This can lead to the GA being stuck in a local optimum.
Islanding works to preserve diversity, as the independent evolution of each island might lead each
of them towards different local optima. The migrations work as a mechanism to share knowledge
(i.e., good solutions), and provide islands with a possibly different set of individuals (i.e., increase
diversity). The second purpose of islanding is to enable parallel computation for faster convergence.
Each island is only loosely coupled through the migration mechanism. This makes it possible to
run each island in parallel with only minimal overhead. Consequently, we can achieve a near-linear
increase in throughput as a function of available processor cores.

MAs are GAs augmented with local search techniques. SMOLT uses an islanding GA combined
with an ensemble of local search operators, primarily based on the ruin & recreate (R&R) paradigm.
R&R is also commonly known under the name “destroy and repair”. The usage of such local search
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Figure 6.2: An illustration of the high-level steps in GAs and MAs.

operators causes SMOLT to be categorized as an MA. Hereafter, we will only refer to MAs when
discussing concepts related to the two classes of algorithms.

6.2 Solution Representation

Central to every MA is the solution representation. It defines the boundaries which the MA’s
operators will have to operate within. In a MIRP, there are two distinct kinds of decisions – routing
and quantities. Routing decisions concern what locations each vessel should visit, in what order,
and at what time. The quantity decisions concern how much a vessel should pick up or deliver
at each location it will visit. In SMOLT, the MA handles routing decisions while the optimal
quantities for a given routing solution are determined by solving an LP. This means that the
quantity decisions are always optimal and entirely determined by the routing decisions. Hence, the
MA can be limited to only working on the routing decisions without impacting SMOLT’s possibility
of finding optimal solutions. A full candidate solution is the routing decisions combined with the
corresponding optimal quantity assignment. This section first presents the routing representation
before providing a brief overview of the LP determining the quantities.

6.2.1 Routing

Each candidate solution in the MA consists of a routing plan for each vessel. Each vessel’s routing
plan is a list of (port, time)-pairs. We refer to each such (port, time)-pair as a visit and it is
equivalent to a node in the TS network presented in Chapter 5. Each vessel’s solution tells which
nodes it should visit and when it should do so. An illustration of the routing representation is
provided in Figure 6.3.
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Figure 6.3: Solution representation. The left half shows a single routing solution in its list-based repre-
sentation, while the right side shows the corresponding routing plan of the vessels. Time is shown by the
vertical bars, while each numbered circle corresponds to a location. Do note that the solution representa-
tion does not consider travel time in any way.

The chosen representation is flexible. In particular, it allows the distance in time between two visits
to be less than the time required to travel between the corresponding ports. We refer to this concept
as time warp. This is allowed in the representation but is discouraged by (1) penalizing solutions
that have time warp and (2) targeted mutations. However, despite the flexible representation, we
do enforce the following three constraints:

1. The first visit in each vessel’s plan must correspond to a visit at its origin at the time it
becomes available

2. No visit can happen after the end of the planning horizon

3. There can be no more than one visit at a given time in any vessel’s plan. That is, a vessel v
can not have two different visits that happen simultaneously

Mutations and the recombination are designed such that these three constraints are satisfied at all
times.

6.2.2 LP Model for Quantity Assignments

As mentioned, the MA is responsible for all routing decisions. However, the algorithm makes no
quantity decisions; these are done by an LP model embedded in the MA. This LP takes a routing
solution from the MA as input and assigns all loading and unloading quantities. In this section, we
shortly present the main idea of the LP, which can be read in its entirety in Appendix A. Table 6.1
summarizes the notation used for presenting the overview of the LP.
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Table 6.1: Notation used for the LP.

Sets

i ∈ I Set of all ports

v ∈ V Set of vessels

t ∈ T Set of time periods in the planning horizon

p ∈ P Set of different fish feed products

Parameters

CS
it The unit cost of buying from the spot market for port i ∈ I in time period t ∈ T

Rit The revenue generated per unit delivered to port i ∈ I in time period t ∈ T
τ Weight used for adjusting the punishment for inventory violations in ports

ε Weight used for adjusting how much the algorithm prefers early deliveries

Variables

xivtp The quantity loaded/unloaded from/to port i ∈ I from vessel v ∈ V of product p ∈ P at time t ∈ T
witp Inventory violation at production port i ∈ I in time period t ∈ T of product p ∈ P
αitp Amount bought from/sold to the spot market by port i ∈ I in time period t ∈ T of product p ∈ P

The main idea behind the LP is based on the following; if all routes are considered fixed, the
available load on the vessels should be allocated such that inventory violations and spot mar-
ket transactions are kept at a minimum, while striving to deliver as much as possible. This is
represented by equation (6.2.1).

max z =
∑
i∈I

∑
v∈V

∑
t∈T

∑
p∈P

(Rit − εt)xivtp −
∑
i∈I

∑
t∈T

∑
p∈P

(CS
itαitp + τwitp) (6.2.1)

The term Ritxivtp expresses the revenue associated with all loading and unloading actions. Further,
the term εtxivtp makes early deliveries preferable to later ones. The term CS

itαitp constitutes the
costs for buying products from the spot market or the lost revenue that incurs if the product
has to be sold from the production ports due to overflow. Finally, the term τwitp expresses the
inconvenience caused by inventory violations in either consumption or production ports. Note
that the second and fourth terms include weights; these are intended to let the user adjust the
importance of the different parts. Similar weights for revenue and cost can be attained by directly
modifying the revenue parameters Rit and cost parameters CS

it, and are thus not included. A
specific routing solution from the MA gives which vessels that can load or unload at which ports
in which time periods. When a vessel is not present at a port, the associated x variable is given a
upper bound of zero.

The objective represented by Equation (6.2.1) is only subject to two groups of hard constraints.
First, the upper inventory limit for consumption ports and the lower inventory limit for production
ports must be respected. Secondly, the vessels’ inventory limits are respected at all times. The
other inventory constraints at ports are soft, and are accounted for by decreasing the objective
through the violation variable, w.

We mainly prioritize reducing violations and dependency on the spot market in our implementation.
As Mowi is a vertically integrated company, the revenue associated with delivering products to
different farms is assumed to be more or less equivalent. Thus, the revenue term is mainly used for
avoiding adverse end effects, as mentioned in Section 5.1.6. To recall, the model will not deliver
beyond the required quantity to avoid violations if it has no incentive to do so. This is an inefficient
long-term strategy, and the revenue term is intended to prevent this from happening. Further, the
term making early actions preferable is intended to enable differentiation between similar decisions
that only differs in time. In these scenarios, it is desired that the product is delivered as early as
possible.
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6.3 Fitness

SMOLT uses a fitness function to evaluate the quality of a solution. It tries to minimize the fitness
value, and it is used to guide both parent selection and survival selection. As such, it needs to
capture the qualities that we want in a solution. Our goal is to find a solution that does not
violate inventory constraints while minimizing the net cost. For this reason, our fitness function
ought to include these as terms. In addition, we need to penalize solutions that are allowed in our
representation but that violate the problem constraints.

As explained in Section 6.2, our solution representation allows time warps. This is not allowed per
the problem specification and will need to be discouraged. We add this time warp as a penalty
term in the fitness function to combat this. Similarly, we also need to penalize breaches of berth
capacity. The quantity assignment LP does not consider breaches of port capacity since doing so
would require binary variables, which would turn it into a MIP. This is not a viable alternative
since the LP for quantity assignment needs to be solved frequently. Turning it into a MIP would
significantly impact the time required to solve each program. Instead, we count the number of port
capacity violations in the quantity assignment given by the LP and penalize these in the fitness
function.

These factors make up our fitness function. The selection pressure in the population refers to the
likeliness of fitter individuals to survive or be chosen as parents. Too high selection pressure can
result in premature convergence. One way to avoid overly high selection pressure is to reduce the
individual’s relative difference in fitness. We, therefore, apply a logarithm to a weighted sum of
the mentioned factors. This also requires us to add an offset to prevent the weighted sum from
becoming less than 1. Equation (6.3.1) shows the general form of the fitness function used. SMOLT
seeks to minimize this value.

f(s) = ln (α · warp(s) + β · berth(s) + γ · violation(s) + δ · (cost(s)− revenue(s)) + offset)
(6.3.1)

The fitness function as implemented in SMOLT uses a time-dependent set of weights, α, β, γ, δ, for
the different terms of the fitness function. The idea is to prioritize cost-efficient routes in the early
iterations and then ensure there are no inventory violations, berth breaches, or time warps. Thus,
the weights for time warps, berth capacity, and inventory violations are set to 0 at initialization.
The weights are then linearly increased, and after a while, the weights are significantly higher than
that of the revenue and costs, prioritizing finding feasible solutions. An individual’s fitness must
be positive to work correctly with the selection procedure, and an offset large enough to avoid the
sum from becoming less than 1 is therefore added in the last term.

6.4 Memetic Algorithm Components

This section presents the MA in SMOLT in a structured and detailed manner. Algorithm 1 gives an
overview of the MA. First, we initialize a population of empty solutions, i.e., with no visits except
the origin visit of each vessel. Then, we present how parents are selected to generate offspring in
and how the next generation is selected from the pool of offspring and parents in Section 6.4.1.
Further, the crossover technique used, PIX, is presented in Section 6.4.2. Finally, the mutation
and local search operators are described in detail in Section 6.4.3.

6.4.1 Parent and Survivor Selection

The MA underpinning SMOLT uses a k-tournament for selecting parents. A parent is chosen by
choosing the best among k randomly chosen individuals from the population. This is repeated
multiple times to construct a set of parents, which will be used as the basis for recombination
(i.e., reproduction) and mutation. Survivor selection uses roulette wheel selection with k-elite,
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Algorithm 1 SMOLT’s genetic algorithm

parameter(kt: Number of individuals selected in each tournament)
parameter(ke: Number of elites)
parameter(p: Number of parents to generate)
parameter(n: Population size)

▷ High-level flow of SMOLT
function smolt-ga():

/* Start with a population of empty individuals */

population ← initialize-empty(n)
while termination criteria not met do

/* Select p parents by holding p k-tournaments using kt parents in each

tournament */

parents ← select-parents(population, p, kt)
/* Generate offspring by using PIX crossover on parents */

offspring ← recombine(parents)
/* Mutate offspring using a set of mutation and local search operators */

offspring ← mutate(offspring)
/* Select survivors from parents and offspring keeping ke best */

population ← select-survivors(population, offspring, ke)

return population

first introduced by De Jong (1975). Given both the old population and the generated children,
it starts by first selecting the k best. These constitute the elite and are guaranteed to make it
to the next generation. The rest of the survivors are chosen by sampling the desired number of
individuals from the two populations. The probability that an individual is chosen is proportional
to its weight, which is a function of its fitness. Fit individuals will be given more significant weight
and will thus have a higher probability of being brought into the new generation.

6.4.2 Recombination

To combine gene information between the individuals in the population, we use a simple crossover
technique to generate offsprings from parents. The recombination works by combining the routes
from two parents – either by directly copying the route of one or several vessels or by crossing the
routes for the same vessel from the parents. In all cases, we will produce exactly two offsprings for
each pair of parents.

First, two parents are selected. Then, the set of vessel indices is divided into three sets – (1) a
set used for copying vessel routes directly from parent p to offspring i, (2) a set used for copying
vessel routes directly from parent p to offspring j, and (3) a set used to mix the routes of the two
parents. The third set is mixed using a 1-point crossover. In a 1-point crossover, a random index,
n, is generated, and then all visits with an index lower than n from parent p, and all visits with
an index equal to or larger than n from parent q, are selected to constitute a new route. A visual
representation of the crossover is given in Figure 6.4.

The figure shows that two parents have been selected, and the vessel indices are divided into three
sets. Vessels 1 and 3 constitute set 1, vessel 5 constitutes set 2, and vessels 2 and 4 constitute
set 3. In “Step 1,” the routes belonging to set 1 are directly copying from parent 1 to offspring 1
and from parent 2 to offspring 2. In “Step 2,” the routes from set 2 are copied from parent 1 to
offspring 2 and from parent 2 to offspring 1. Finally, a 1-point crossover is done on the routes in
set 3 with n = 1 for both vessels.

6.4.3 Mutation and Local Search Operators

The most influential components of SMOLT are the solution representation combined with the
recombination operator and the various mutation operators. The operators are designed to work
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Figure 6.4: PIX crossover.

in tandem with the routing representation to allow the MA to converge to good solutions quickly.
This section presents the various operators and describes their purpose. The descriptions presented
here should be detailed enough to enable readers to reimplement the algorithm. However, we
sometimes omit minute details for ease of reading. Handling corner cases that would drastically
affect the readability and clarity of the algorithms are left out. For the actual implementations,
please consult our GitHub1.

Table 6.2: Summary of mutations used in SMOLT.

Mutations Description

Remove random Removes a random visit from a random vessel’s route

Add random Adds a random visit to a random vessel’s route

Inter-swap
Swaps a random visit between two vessels. Only the ports
of the visits are swapped, the time is kept constant

Intra-swap Swaps the ports between two visits within a vessel’s route

2-opt Normal 2-opt that only considers distance

Time bounce
Push visits that cause time warp away from each other in order
to reduce the warp

Ruin & recreate A set of techniques that destroys solutions before rebuilding them

Mutations, i.e., the operators of the MA targeting single individuals, are the only way of introduc-
ing new gene material to the population and are crucial for escaping local minima and constitute
exploration. SMOLT employs several mutations to explore the solution space. Some of the mu-
tation techniques we have are general techniques that can be applied to a broad set of problems,
while some are tailored for the solution representation and problem at hand. A summary of the
mutations in SMOLT is given in Table 6.2. During development, a few other mutations were im-
plemented but found to provide little or no benefit and were subsequently discarded. These can

1https://github.com/fiskeforgutane/master-thesis
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be found in Appendix C.

Ruin & Recreate

Ruin & recreate (R&R) operators are based on destroying the current solution before it is rebuilt
using some logic. Within the ALNS literature, this is commonly known as destroy & repair. This
section presents three ruin operators employed by SMOLT and the recreate operator used for
repairing the solutions afterward.

The first ruin operator destroys the current routing solutions exclusively based on the time period
visits occur. A random interval within the planning horizon is selected, and if a visit takes place
within the interval, it is removed with a given probability. The two first elements in Figure 6.5
illustrate this ruin operator. Here, the interval is from t = 4 to t = 6, and all visits within the
interval except the grey vessel’s visit to port 3 are removed. The grey vessel’s visit to port 3 is left
in the plan due to the stochastic nature of the removal: it was “lucky” enough to be left as-is.

Figure 6.5: R&R based on period. In the first element, we see the routes of three vessels, and the time
interval to be ruined marked with a red rectangle. In the second element, the two first visits of the blue
vessel and the last visit of the orange vessel have been removed. The grey vessel’s route is intact. The
third element displays the candidate visits to be evaluated, and the final element indicates that a visit to
port 0 was the best according to the fitness of the solution.

Further, we have implemented a ruin operator that only removes visits from one vessel. This
operator first selects a random vessel, and then removes each visit in that vessel’s route with a
given probability.

Lastly, we have included a ruin operator based on Slack Induction by String Removal (SISR)
inspired by the work of Christiaens and Vanden Berghe (2020), who applied it to solve different
variations of the VRP. The concept is rather simple. When a visit is removed from a candidate
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solution, it introduces slack. That is, it frees up resources that might allow us to insert one or
multiple new visits in the vacancy left behind. In our case, removing a visit frees up the time that
was spent traveling to the visit and the time spent loading or unloading, as well as possibly the
load that was delivered during the visit. The authors of the original paper conjectured that this
slack is most useful when it is focused around a specific area. The slack must be above a certain
threshold in order to be useful.

In the original SISR, this targeted slack is realized by removing multiple consecutive visits from
the routes of multiple vehicles. They call each such collection of consecutive visits a string. By
choosing geographically close strings, they are able to introduce targeted slack. This approach was
shown to provide state-of-the-art results on the VRP variants they benchmarked.

We have implemented an adaption of the core principles of SISR for the FFMIRP. MIRPs often
have a more complex time representation than VRPs and regular IRPs. For this reason, we
chose to consider both spatial and temporal distance when determining what visits to remove. A
pseudocode is presented in Algorithm 2, which is accompanied by Figure 6.6. Apart from using
both space and time to determine proximity, we stay true to the original SISR. We use the same
procedure as Christiaens and Vanden Berghe (2020) in order to decide on the number of strings
to remove as well as the length of each string. This is outlined in Appendix B.

Algorithm 2 SMOLT’s SISR-based ruin method

▷ SISR-based ruin method
function sisr-ruin(solution):

k ← Decide on the number of strings to remove
seed ← Select a random visit within solution
/* An ordered list of the time windows we will consider. Note that each entry

in periods is a time period, i.e., a continuous subset of T */

periods ← {time-of(seed) . . . time-of(seed)}
/* The strings we have selected for removal */

strings ← ∅
/* The vessels we have selected a string from */

used ← ∅
/* Select k strings for removal */

repeat k times
/* If no suitable anchor is found for any period p in periods, we try to

find one within the full planning period T */

for p ∈ periods ∪ {T } do
anchor ← Choose the visit within the time period p that is closest to node-of(seed),
and whose vessel is not in used
if anchor ̸= nil then

l ← Decide on the length of the string we will select now
string ← Determine a string of length l that contains anchor
strings ← strings ∪ string
periods ← periods ∪ {time period of the newly added string}
used ← used ∪ vessel-of(string)
break

/* Remove the selected strings */

solution ← solution with strings removed
return solution

Independent of the ruin operator applied to the solution, the same recreate operator is applied.
They all use an adaption of the “greedy with blinks” method as presented in Christiaens and
Vanden Berghe (2020). After a routing solution has been ruined, a set of candidate visits are
generated. The candidate visits are possible new insertions in the solution and consist of a visit
(port and time) and a vessel to perform the visit. Each candidate is evaluated with probability
(1 − ε), and the one with the best fitness is inserted into the routing solution. In the case of
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(a) Legend for the figures that follow. Note that an anchor visit is identified by pattern only, not by
color.

(b) First string selection. In the first illustration, a seed visit has been chosen randomly. Since the seed
visit is the closest visit to itself, it is also chosen as the first anchor. In the transition from the first to
the second illustration, we have drawn a random string of length l = 3 that includes the anchor chosen
in the leftmost picture. The rightmost illustration shows how the time-based region of interest expands
after a new string has been selected.

(c) Second string selection. This works similar to the first string removal. In the leftmost illustration,
the last visit of the orange boat is chosen as the anchor. The process to decide on this as the anchor
proceeded as follows: first, we would try to find the closest visit within the darker red region of interest.
Since there are no visits within this period, we proceed to the light red region. Here, the visit at port
2 was chosen, since the port 1 of the seed node is closer to port 2 than to port 3. We then proceed in
the same manner as in the first iteration. A string is drawn that includes the chosen anchor, which in
this case has length l = 2, and include the period occupied by the newly drawn string into the regions
of interest.

(d) String removal. After k = 2 strings have been selected, they are
removed from the routing solution. At this point, we will apply the
recreate-procedure in order to rebuild a new solution.

Figure 6.6: Illustration of how the SISR-based ruin operator works.

skipped evaluation for a solution, which happens with probability ε, we assign the solution the
worst possible fitness instead of evaluating it. The process outlined above is repeated until no
candidates improve the solution.

In Figure 6.5, the recreate operator is applied in step 3 and 4. For the grey vessel, no visits are
feasible within the assessed region, as the travel time from port 3, which is already in the route, is
higher than one time period to all other ports. Further, we see that for the blue and orange vessels,
all three time periods in the interval are feasible insertion points for at least one port. Then, all
these insertion points are evaluated with the LP, and the visit to port 0 in time period 4 for the
orange vessel was evaluated to be the best insertion. In practice, this process would be repeated
until no further improvements were possible.

Time Mutation Operator

To decrease time warp occurrences, we have included a mutation for specifically targeting this
problem. The idea is to push the origin of the violated arc forward in time, and the destination
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backward, without causing additional time warps. An illustration of the idea is given in the context
of a single vessel’s route in Figure 6.7. In the left-most situation, the vessel waits for one time
period in port 0 and port 3 before it starts serving. Later in the route, the vessel does not arrive
at port 1 in time to perform the loading/unloading. By pushing the action at port 0 forward by
one time period and arriving directly at port 3 in t = 2, we can get to port 1 in time.

Figure 6.7: Time bounce mutation.

6.5 Other aspects

This section presents three aspects of SMOLT that are implemented in order to ensure feasibility
of solutions and scalability of the algorithm. Section 6.5.1 describes how the SMOLT’s islanding
approach is implemented. Section 6.5.2 presents how we ensure that no products are mixed in the
same compartments, even though this is not handled by the quantity assignment LP. Section 6.5.3
presents a warm-start approach used for decreasing the sensitivity for long planning horizons.

6.5.1 Islanding

SMOLT’s islanding is implemented by starting separate instances of the memetic algorithm, and
using messages to pass data between them. We keep track of the total number of epochs done by
each island, and perform a migration once the total number of epochs surpass given thresholds.

For every p epochs, we will retrieve the populations of each island, shuffle them, and then send
a subset of a given size q from each population to a different island. Each island is independent
of the others at all times except when a migration occurs. This results in minimal amounts of
synchronization overhead. In order to avoid resource congestion, we restrict the commercial solver
to use a single thread, and typically set the number of islands to be at most equal to the number
of processor cores. Consequently, each island is effectively pinned to a single core.

6.5.2 Avoiding Mixing Products

As mentioned in Chapter 3, products cannot be mixed when transported in a vessel. However,
Section 6.2.2 states that the LP handling all quantity decisions does not respect any other con-
straints than basic inventory limit constraints. If the LP were to assign the quantities to specific
compartments as well, it would become a MIP which is not computationally viable as explained
in Section 6.3. Therefore, SMOLT is applied as if there were no restrictions on mixing products.
When SMOLT terminates, an extended version of the LP that handles compartment assignment is
applied to the best-found solution. The extended version is available in Appendix A.5.3. This does
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not affect the transportation cost of the best-found solution as the LP does not alter the routes.
However, if the quantities are reduced due to the compartment assignment, the revenue is reduced,
and it might become necessary to buy more from the spot market. This approach is suboptimal
as SMOLT does not consider the mixing constraints. However, it is believed that the optimal
routes with and without these constraints are relatively similar in practice. This, combined with
the computational efficiency of having an LP rather than a MIP, substantiate why this approach
is reasonable.

6.5.3 Gradually Extended Horizon

As discussed multiple times, the problem at hand is highly complex. The complexity of the problem
increases rapidly with the problem size, and thus, decomposition principles can be handy when
dealing with large problem instances. This section proposes a novel decomposition technique based
on the time periods.

The idea is based on iteratively building the solutions by first solving a problem with a reduced
number of time periods. The simplified problem’s solution is then used as the initial solution for a
problem with a longer planning horizon. This process is repeated until the desired time periods are
incorporated into the solution. In other words, our decomposition based on a gradually extended
horizon can be considered a way of using the solutions of a less complex problem to warm-start a
more complex problem.

In our implementation, we start solving the problems using 30 time periods. The problem is
extended to 32 time periods in the next iteration. 2 and 2 time periods are then added iteratively.
SMOLT is run for a user-defined amount of time in each step before moving on to the next step.

Figure 6.8: A schematic illustration of the decomposition approach employed in SMOLT. The leftmost
element displays the situation after solving the problem for eight time periods. The second element displays
the situation when two additional time periods are added, but before a new solution is found. Finally, the
rightmost element displays the new solution found for ten time periods when the algorithm is warm-started
with the eight time periods solution.
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Chapter 7

Data and Test Instances

This chapter presents the data and test instances used in the computational study presented
in Chapter 8, where SMOLT is applied to two different sets of problem instances. The first set
contains instances based on data provided by our industry collaborator, Mowi, which produces and
distributes fish feed to fish farms along the Norwegian coastline. The other set contains some of
the instances found in the benchmark library MIRPLib, presented by Papageorgiou et al. (2014c).

Section 7.1 presents how the data provided by Mowi is used to replicate farms and vessels that can
be used in the problem instances. Next, Section 7.2 presents the MIRPLib benchmark library, and
lastly, Section 7.3 presents all the test instances. The objective of the computational study is to
observe the performance of SMOLT, presented in Chapter 6. Therefore, the Mowi test instances
are carefully designed to give an impression of both the achieved solution quality and the scalability
of the algorithm.

Some parts of Section 7.1 are retrieved from our specialization project, Bjelland et al. (2021),
however, the method used to generate test instances has been modified.

7.1 Mowi

The Mowi instances are based on data provided by Mowi and Brekk̊a and Randøy (2021). This
includes data on production facilities, farms, vessels, as well as feed consumption forecasts from
Mowi’s internal forecasting software. In cases where data is missing or incomplete, we have filled
the gaps using online research and our own assumptions.

7.1.1 Fish Farms

Figure 7.1 shows a map of the locations of the farms and factories that are included in the test
instances. The data consists of a selection of 89 Mowi farms and their production facility at Bjugn
and is based on historical orders. In addition, Mowi provided 11 feed consumption scenarios for
every farm. The scenarios are relatively similar, and to avoid more test instances than possible to
process in the computational study, all instances are generated based on one consumption scenario.
In this scenario, the farms consume 13 different feed products every week in total. As the problem
complexity is highly dependent on the number of products, we can reduce it by aggregating some
products. However, this must be done with care to obtain realistic problem instances. First of all,
the six most consumed products in the chosen scenario constitute 95% of the total demand. In
addition, most of the products with low demand have the same weight and size as one with high
demand. Therefore, a simplifying measure is to consider all product types of the same weight and
size as the same product. This aggregation results in six products in demand, which reduces the
problem complexity significantly.

49



7.1. MOWI

Figure 7.1: The farms (blue) and factory (red) belonging to Mowi.

The data does not include any information on the total feed capacity at the farms. Every farm
must therefore be assigned a capacity. A farm’s capacity is set to 40% more than the single largest
quantity delivered of a product among the historical deliveries in the data. Next, every farm is
assigned an initial inventory of the six aggregated product types. The initial inventory significantly
impacts the difficulty of finding solutions where the vessels are capable of satisfying all demand.
We therefore introduce three levels of difficulty, A, B, and C. At level A, all farms are given an
initial inventory of six feed days, i.e., the farms will run empty after six days, given no deliveries.
At level B, the farms are assigned an initial inventory between four and eight feed days, and at
level C, it is set between two and eight feed days. The number of feed days is drawn from a uniform
distribution for levels B and C. Next, every farm has an assigned lower limit for every feed type,
which is set to zero for all farms and product types. Lastly, the berth capacity at all farms is set
to one, and it is set to four at the factory, where the latter means that up to four vessels can load
at the factory simultaneously.

The chosen consumption forecast in the data is used to calculate the consumption rates at the
farms. The forecast shows the expected consumption of each product for a week. For simplicity,
the demand in every time period is set to the forecasted demand adjusted for the length of a
time period. This means that the demand for every feed type is constant; however, both the
mathematical model presented in Chapter 5 and the solution algorithm SMOLT presented in
Chapter 6 are capable of handling varying demands.

Next, it is not given that it is possible to keep the inventory at all farms above zero by only
delivering feed from the vessels. Some inventory breaches can be impossible to handle given the
farms’ initial inventories and the vessels’ initial loads and positions. However, as mentioned in
Chapter 3, it is allowed to handle such cases by ordering deliveries from a spot market. To ensure
that the problem instances are guaranteed to be feasible, we impose no restrictions on the total
quantity ordered from the spot market. The cost per quantity bought at the spot market is set to
twice the round trip cost of visiting the farm furthest away from the factory for the most expensive
vessel, divided by the vessel’s capacity.

As mentioned in Section 6.2.2, a revenue is given as a reward per quantity delivered at a farm to
reduce negative end-effects. The revenue in the Mowi instances is set to half the spot market cost
per quantity.

Lastly, the data contains information about areas with disease outbreaks, and hence red, green,
and yellow zones, as described in Section 2.3.1. This could have been included in our test instances.
However, neither red, green, nor yellow zones are directly reflected in our mathematical model or
SMOLT. Instead, the zones are handled by modifying the travel times between ports, as described
in Section 5.3.4. Therefore, the zone information in the data is ignored, as it would only affect the
travel times. All farms are thus treated as green, and the travel times between them are set to the
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actual travel times for the vessels.

7.1.2 Vessels

The vessels used are presented in Table 7.1. These vessels correspond to actual vessels operated
by Mowi or BioMar. BioMar is another fish feed producer distributing feed along the Norwergian
coastline. The capacity and speed data originate from Mowi or BioMar, or is collected through
relevant web pages. The travel costs are calculated based on LPG prices from 2022. Next, the
fixed cost per hour is assumed to be driven by the crew’s salary. The crew size is set to five and
each crew member is assigned a cost of 350 NOK per hour, yielding an hourly fixed cost of 1,750
NOK.

Table 7.1: The name, capacity, cruising speed, travel cost, and fixed costs for the vessels considered in
the test instances.

Vessel Name Capacity Cruising Speed Travel Cost Fixed Cost

[tons] [#silos] [knots] [NOK/hour] [NOK/hour]

With Harvest 3,000 11 13 4,813 1,750

Høydal 2,006 28 11 4,147 1,750

Mikal with 1,110 13 10 3,702 1,750

V̊agsund 1,306 26 10 2,649 1,750

In the FFMIRP, the vessels can become available at any factory or farm in any time period within
the planning horizon. The origin of a vessel is with a probability of 50% assigned to the factory
and with a probability of 50% to any of the farms. If a vessel is assigned a farm as its origin, the
probability of selecting a specific farm is set proportional to how soon the farm would run empty
of a product. This is considered a fair assumption as vessels are more likely to visit a farm with
low stock than one with high stock. Next, the time period when the vessels become available is
randomly drawn from a uniform probability distribution from zero to ten, where the duration of
one time period is one hour. This procedure for assigning origins and when vessels become available
is intended to make the test instances more realistic, as the vessels in reality become available at
different locations and times.

Furthermore, the FFMIRP allows vessels to have an initial load. In reality, vessels visiting a factory
are often empty, while they have some load when visiting a farm. In the test instances, we assign
the initial loads to reflect this. If the vessel becomes available at a factory, we assign an initial
inventory of zero. Next, if a vessel becomes available at a farm it starts fully loaded, and its initial
inventory of every product is set proportional to the total consumption of the product across all
farms.

As mentioned in Chapter 3, all vessels cannot usually visit all farms. To recall, there are at least
two potential reasons why a vessel cannot visit a farm. Firstly, a bulk vessel cannot deliver feed to
a bag farm, and secondly, physical constraints such as shallow waters can make it impossible for
the vessel to dock at a farm. In our case, all farms and vessels are considered bulk, and according
to Mowi, there are currently no vessels that cannot visit a farm due to physical constraints. All
vessels are therefore allowed to visit all farms in the test instances.

7.2 MIRPLib

In Papageorgiou et al. (2014c), a library of benchmark problems for the class of deterministic,
single-product MIRPs is presented. The primary purpose of including some MIRPLib instances in
the computational study is to verify that SMOLT can produce high-quality solutions. In general,
only toy size instances of MIRPs and FFMIRPs can be solved to optimality with a commercial
solver. Hence, for larger instances, it is difficult to evaluate the quality of solutions generated by
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approximation methods by comparison to solutions of a commercial solver. Since several differ-
ent algorithms have been applied to the MIRPLib instances, it allows us to compare SMOLT’s
performance to the best-known solution methods.

The instances found in MIRPLib differ from the FFMIRP instances along a couple of dimensions.
However, they are similar enough to evaluate SMOLT’s performance on variants of the MIRP
compared to other solution methods. If SMOLT can perform well on the MIRPLib instances, it
probably also performs well when applied to FFMIRP instances. The first difference between MIR-
PLib and FFMIRP is that the MIRPLib instances are deep-sea problems, and the ports are located
in discharging and loading regions. The distances between ports within one region are short, while
the distances between regions are long. Furthermore, unlike the FFMIRP, the production ports
have a production rate and an upper capacity limit. Consequently, the production ports must be
visited regularly to keep the inventories below the capacity limits, and a vessel cannot fully load
unless there is enough product available at the time of the visit. This difference distinguishes the
MIRPLib instances the most from the FFMIRP instances. Next, the MIRPLib instances require
vessels to arrive at production ports empty and leave them fully loaded. The purpose of these
constraints is to fully utilize the vessel capacity, even though it has been shown that such an as-
sumption may not be optimal (Fodstad et al., 2010). Lastly, the MIRPLib instances require all
loading and unloading variables to be semi-continuous. Thus, if a loading or unloading activity is
undertaken, the quantity loaded or unloaded must lie in the interval [min,max], where min > 0.
Requiring fully exploitation of vessel capacity and semi-continuous loading and unloading quanti-
ties are convenient when using MIP techniques to solve the MIPRLib instances as it reduces the
search space. However, disregarding such requirements in solution methods similar to SMOLT is
not a problem. Nevertheless, SMOLT is modified to accommodate all differences between the MIR-
PLib and FFMIRP instances, which is described in Appendix A.5. Despite not being specifically
designed to solve MIRPLib instances, SMOLT’s performance presented in Section 8.3 suggests that
it achieves high quality solutions for these instances.

The MIRPLib library contains three main groups of problems, referred to as Group 1, 2, and 3.
The instances of Group 1 have a planning horizon of 360 periods. These instances have ports
organized in regions, and each region can contain multiple ports. Also, split pickups and split
deliveries are often necessary to satisfy demand, meaning that the vessels must coordinate some
pickups and deliveries at some ports within a small time window. Finding a feasible solution to
these problems is considered a challenge, and no solutions are reported for instances with a planning
horizon longer than 60 time periods. The instances of Group 2 never require split pickups or split
deliveries; however, the travel times are longer, ranging from 5 to 37 time periods. For these
instances, solutions are reported for planning horizons longer than 60 time periods. The Group 3
instances are provided by Jiang and Grossmann (2015).

As Group 1 is considered the most challenging group, the instances of this group are chosen to take
part in the computational study. Group 2 and 3 are left out as there are some minor differences to
Group 1 that would require some modifications of SMOLT. The included instances are presented
in Section 7.3.

7.3 Test Instances

This section presents the test instances that take part in our computational study presented in
Chapter 8. The problem complexity of the FFMIRP, described in Chapter 3, and the MIRPLib
instances is assumed to be sensitive to the following factors: the total number of ports |I|, the total
number of vessels |V|, the number of products |P|, and the number of time periods |T |. Further,
the set of ports is segmented into two parts – |IC | indicating the number of consumption ports,
i.e., farms, and |IP | indicating the number of factories. The problem complexity increases with
the size of these sets because it increases the size of the search space.

The presentation of instances is twofold, starting with the Mowi instances in Section 7.3.1 and
followed by the Group 1 instances of the MIRPLib library in Section 7.3.2.
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7.3.1 Mowi Instances

Table 7.2 summarizes the different configurations of farms, factories, vessels, products, and time
periods that are used to generate test instances. When sampling farms, the 89 Mowi farms are
grouped into three groups of sizes 30, 30, and 29, depending on their latitude coordinate. This
resulted in three groups named south, middle, and north. These groups are visualized in Figure 7.2.
When sampling a subset of the farms, an equal number of farms are sampled from the three groups
to ensure that the included farms are geographically dispersed. This causes the problem instances
to be more realistic and not too easy to solve. The sampling of vessels is done by including every
vessel an equal number of times and duplicating the vessels if necessary. The sampling of products
is done by taking the p most consumed products where p is the number of products to include in
the test instance.

Figure 7.2: The three groups of farms, south (orange), middle (green), north (blue). Note the factory
marked in red.

For every configuration in Table 7.2, six or nine test instances are generated using the planning
horizon lengths in column |T |, and the three difficulty levels, A, B, and C, presented in Section 7.1.1.
E.g., in the first configuration, p-05-02-02, five of the 89 farms, the factory, two of the four vessels,
and two products are sampled. Due to the problem complexity, the mathematical model described
in Chapter 5 cannot be solved to optimality by commercial solvers for large problem instances. As
the problem size grows, even finding a feasible solution in a reasonable time proves difficult. The
set of configurations is therefore split into three subsets. The first subset contains configurations
resulting in instances small enough for a commercial solver to at least obtain reasonable solutions.
These instances are therefore used to compare SMOLT’s performance with the mathematical model
on small instances. The two other configuration subsets results in larger test instances used for
SMOLT performance testing on more realistic instances. These two subsets are referred to as the
medium and large instances, respectively. In total, 132 Mowi test instances are created.

53



7.3. TEST INSTANCES

Table 7.2: Test instance configurations used for the Mowi instances. The instances in the upper part
separated with a horizontal line are attempted solved with a commercial solver, while those in two lower
parts are not. For configurations in the upper part, six instances are generated, while nine instances are
generated for the ones in the lower parts. The three parts are referred to as small, medium, and large
instances, respectively. The ID format is |IC |-|V|-|P|. The prefix “p” stands for problem.

ID |T | |I| |IP | |IC | |V| |P| Level

p-05-02-02 145, 290 6 1 5 2 2 A, B, C

p-05-02-04 145, 290 6 1 5 2 4 A, B, C

p-10-02-02 145, 290 11 1 10 2 2 A, B, C

p-10-02-04 145, 290 11 1 10 2 4 A, B, C

p-20-06-01 145, 235, 290 21 1 20 6 1 A, B, C

p-20-06-03 145, 235, 290 21 1 20 6 3 A, B, C

p-20-06-06 145, 235, 290 21 1 20 6 6 A, B, C

p-40-07-01 145, 235, 290 41 1 40 7 1 A, B, C

p-40-07-03 145, 235, 290 41 1 40 7 3 A, B, C

p-40-07-06 145, 235, 290 41 1 40 7 6 A, B, C

p-60-10-01 145, 235, 290 61 1 60 10 1 A, B, C

p-60-10-03 145, 235, 290 61 1 60 10 3 A, B, C

p-60-10-06 145, 235, 290 61 1 60 10 6 A, B, C

p-80-10-01 145, 235, 290 81 1 80 10 1 A, B, C

p-80-10-03 145, 235, 290 81 1 80 10 3 A, B, C

p-80-10-06 145, 235, 290 81 1 80 10 6 A, B, C

In Table 7.2, the leftmost column represents the configuration identification, where each of the
numbers indicates the corresponding size of the set on the corresponding position in the instance
ID. Please note that when referring to specific instances one also needs to include the number of
time periods and the difficulty level. Therefore, when referring to the instance p-05-02-02 with
145 time periods and level A the ID is extended to p-05-02-02-145-A.

In all test instances, the length of one time period is set to one hour, as sailing times between farms
typically range from a few hours to a couple of days. The service times are often approximately
one hour, and using a time period length of one hour therefore results in activities lasting at least
one or several time periods.

7.3.2 MIRPLib Instances

All problem instances from Group 1 in the MIRPLib library are included in the computational
study. The number of ports and vessels in each instance range from 4 to 13 and 6 to 17, respectively.
No solution for a planning horizon longer than 60 time periods has been reported for any of the
Group 1 instances. However, we include planning horizons of 90 and 120 time periods in the
computational study. The instances are summarized in Table 7.3. The naming convention is the
number of loading regions, the number of loading ports in each loading region, the number of
discharge regions, the number of discharge ports in each discharge region, the number of vessel
classes, and the number of vessels. Finally, if a letter is included at the end, this is to distinguish
this instance from other instances.
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Table 7.3: The Group 1 MIRPLib instances included in the compuational study.

ID |T | |I| |IP | |IC | |V|

LR1-1-DR1-3-VC1-V7a 45, 60, 90, 120 4 1 3 7

LR1-1-DR1-4-VC3-V11a 45, 60, 90, 120 5 1 4 11

LR1-1-DR1-4-VC3-V12a 45, 60, 90, 120 5 1 4 12

LR1-1-DR1-4-VC3-V12b 45, 60, 90, 120 5 1 4 12

LR1-1-DR1-4-VC3-V8a 45, 60, 90, 120 5 1 4 8

LR1-1-DR1-4-VC3-V9a 45, 60, 90, 120 5 1 4 9

LR1-2-DR1-3-VC2-V6a 45, 60, 90, 120 5 2 3 6

LR1-2-DR1-3-VC3-V8a 45, 60, 90, 120 5 2 3 8

LR2-11-DR2-22-VC3-V6a 45, 60, 90, 120 6 2 4 6

LR2-11-DR2-33-VC4-V11a 45, 60, 90, 120 8 2 6 11

LR2-11-DR2-33-VC5-V12a 45, 60, 90, 120 8 2 6 12

LR2-22-DR2-22-VC3-V10a 45, 60, 90, 120 8 4 4 10

LR2-22-DR3-333-VC4-V14a 45, 60, 90, 120 13 4 9 14

LR2-22-DR3-333-VC4-V17a 45, 60, 90, 120 13 4 9 17
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Chapter 8

Computational Study

This chapter presents the results of the computational study performed on the two sets of test
instances introduced in Section 7.3. In Section 8.1, we present the test environment in which the
computational study was performed and the parameters used. Further, Section 8.2 presents the
results obtained when applying SMOLT to the Mowi instances. The section is divided into three
parts – first, SMOLT is compared to the commercial solver on a set of small instances before
its performance on the medium and large instances is presented. Section 8.3 presents the results
from applying SMOLT to the MIRPLib instances introduced in Papageorgiou et al. (2014c) and
compares the results with the currently best-known solutions. Lastly, Section 8.4 discusses and
presents some examples of how SMOLT can be used as a decision-support tool when high-level
strategic decisions are made.

8.1 Test Environment

Table 8.1 presents a summary of the hardware and software used for the computational study,
while Table 8.2 presents the parameters used by SMOLT. For the Mowi and MIRPLib instances,
SMOLT was configured differently. The Mowi instances were run with one island per core and
would terminate after three hours or if SMOLT found a feasible solution and could not improve
it within 30 minutes. For MIRPLib, we ran SMOLT using gradually extending horizon starting
at t = 30 with increments of δ = 2. The horizon was extended whenever SMOLT failed to find a
better solution within five minutes. At selected checkpoints, e.g., t = 45 and t = 60, we let it run
until it was unable to find a better solution within 30 minutes. In addition, a hard timeout of two
hours was employed for t ≤ 60. No hard timeout was used for t > 60.

Table 8.1: Hardware and software used for computational study.

Processor 2 x Intel E5-2670v3 @ 2.3GHz

Memory 64GB

Commercial solver Gurobi v9.5.1

Programming language Rust v1.60.0
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Table 8.2: SMOLT parameters used for the computational study.

Element Parameters

PIX p = 10%

Add random p = 1%

Remove random p = 1%

Interswap p = 1%

Intraswap p = 1%

2 opt p = 1%

Time bounce p = 1%

R&R period p = 10%, interval size = 6

R&R vessel p = 5%

R&R SISR p = 2%, c = 2, Lmax = 10

Blink rate (recreation) 5%

k-Tournament k = 2

Population size per island 3

Number of islands 1 or 24

SMOLT parameters were mostly chosen through trial and error. The large number of potential pa-
rameters combined with long solution times made it infeasible to perform an exhaustive parameter
tuning. However, some systematic testing was performed. We evaluated the performance of each
mutation with different parameters on the largest MIRPLib Group 1 instance. A minimal set of
mutations consisting of “Add random”, “Remove random”, and swaps was selected without further
evaluation. Each remaining mutation was evaluated in isolation by adding it to the minimal set of
mutations and systematically trying a few different parameters. The parameters of each mutation
that seemed to perform the best in terms of solution quality and runtime were chosen.

We chose to implement SMOLT in the programming language Rust as it has high performance, a
strong emphasis on memory safety, and a focus on making it easy to write correct concurrent and
parallel code. In addition, Rust has good interoperability with Python. This allowed us to use
Python for visualization and debugging during development. Further, Gurobi (hereafter referred
to as the commercial solver) was used for solving the LP included in SMOLT. Gurobi provides
state-of-the-art efficiency and has a Rust API, allowing the mathematical models to be seamlessly
integrated with the rest of the code.

8.2 Mowi Instances

This section presents the results when applying SMOLT to the Mowi instances presented in Chap-
ter 7. As mentioned, the instances are split into three subsets – small, medium, and large. It
is possible to obtain relatively high-quality solutions when applying the commercial solver to the
small instances, even though none can be solved to optimality. Section 8.2.1 presents the results
when applying both the commercial solver and SMOLT to the small instances. The commercial
solver cannot produce any valuable results for the medium and large instances. Sections 8.2.2 and
8.2.3 therefore only present SMOLT’s performance on the medium and large instances, respectively.

8.2.1 Small Instances – Comparison with Commercial Solver

In Table 8.3 a summary of the number of variables and constraints for the small test instances is
given. Recall three instances with difficulty levels, A, B, and C, were created for every configura-
tion of nodes, vessels, products, and time periods. The only difference between these instances is
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the farms’ initial inventory. Hence, the problem sizes of the three levels are identical, and Table 8.3
therefore only reports values for each configuration of nodes, vessels, products, and time periods.
The columns “#Cont. variables” and “#Int. variables” indicate the number of continuous and in-
teger variables, respectively, while the column “#Constraints” indicates the number of constraints.
The leftmost column shows the instance configurations. Table 8.3 clearly shows that the number
of variables and constraints increase with the size of the input sets.

Table 8.3: Description of the problem sizes for the mathematical model for the different test instances.
The reported values are before presolve is performed.

#Cont. variables #Int. variables #Constraints

p-05-02-02-145 94,540 896,382 50,107

p-05-02-04-145 189,080 907,692 78,743

p-10-02-02-145 130,210 1,902,096 57,070

p-10-02-04-145 260,420 1,913,406 88,316

p-05-02-02-290 189,080 3,558,872 100,277

p-05-02-04-290 378,160 3,581,492 157,623

p-10-02-02-290 260,420 7,588,706 114,200

p-10-02-04-290 520,840 7,611,326 176,766

Table 8.4 presents the computational results from solving the small instances using the commercial
solver. The results of the commercial solver were reported at two separate times – after 3,600 and
7,200 seconds. By reporting results twice, it is possible to observe the progress of the commercial
solver throughout the run. The upper time limit is set to 7,200 seconds as the progression seems
to stagnate after around two hours.

Table 8.4: Computational results for the commercial solver on the small test instances.

Time Limit 3,600s Time Limit 7,200s Improvement

Primal

bound

Dual

bound

Gap

[%]

Time

[s]

Primal

bound

Dual

bound

Gap

[%]

Time

[s]

Primal

bound [%]

Gap

[p.p.]

p-05-02-02-145-A -1,151,963 -1,233,521 7.1 3594 -1,151,963 -1,220,163 5.9 6201 0.0 1.2

p-05-02-02-145-B -952,655 -1,050,532 10.3 3589 -952,655 -1,045,727 9.8 7110 0.0 0.5

p-05-02-02-145-C -1,084,341 -1,245,305 14.8 3572 -1,084,341 -1,245,305 14.8 7176 0.0 0.0

p-05-02-04-145-A -1,485,345 -1,861,032 25.3 3512 -1,486,091 -1,850,913 24.5 7179 0.1 0.8

p-05-02-04-145-B -1,450,665 -1,775,408 22.4 3561 -1,450,665 -1,769,404 22.0 7126 0.0 0.4

p-05-02-04-145-C -1,678,706 -1,959,103 16.7 3577 -1,683,418 -1,899,830 12.9 7121 0.3 3.8

p-10-02-02-145-A -1,311,177 -1,795,547 36.9 3515 -1,311,177 -1,631,920 24.5 7191 0.0 12.4

p-10-02-02-145-B -1,375,116 -1,646,025 19.7 3562 -1,444,476 -1,644,635 13.9 7067 5.0 5.8

p-10-02-02-145-C -1,554,698 -1,880,353 20.9 3570 -1,558,110 -1,880,353 20.7 7152 0.2 0.2

p-10-02-04-145-A -1,277,314 -2,767,810 117.0 3588 -1,826,526 -2,767,810 51.5 7,200 43.0 65.5

p-10-02-04-145-B -2,126,800 -2,609,166 22.7 3590 -2,173,842 -2,573,315 18.4 7100 2.2 4.3

p-10-02-04-145-C -2,361,876 -2,939,039 24.4 3544 -2,436,823 -2,939,039 20.6 7093 3.2 3.8

p-05-02-02-290-A -1,194,671 -1,876,084 57.0 3500 -1,398,033 -1,875,969 34.2 7087 17.0 22.8

p-05-02-02-290-B -1,326,793 -1,824,505 37.5 3577 -1,334,645 -1,824,505 36.7 7141 0.6 0.8

p-05-02-02-290-C -1,418,548 -1,976,973 39.4 3395 -1,427,038 -1,976,973 38.5 7,200 0.6 0.9

p-05-02-04-290-A -1,311,285 -2,741,223 109.0 3330 -1,313,523 -2,741,223 109.0 7,200 0.2 0.0

p-05-02-04-290-B - -2,655,191 - 2502 - -2,655,165 - 5958 - -

p-05-02-04-290-C -503,224 -2,803,955 457.0 3113 -503,224 -2,803,930 457.0 5162 0.0 0.0

p-10-02-02-290-A -1,234,663 -2,498,996 102.0 3422 -1,622,675 -2,498,484 54.0 7114 31.4 48.0

p-10-02-02-290-B -1,027,368 -2,410,944 135.0 2404 -1,581,153 -2,410,944 52.5 7169 53.9 82.5

p-10-02-02-290-C -1,861,315 -2,580,220 38.6 3506 -2,039,024 -2,580,220 26.5 6979 9.5 12.1

p-10-02-04-290-A - -3,827,517 - 3294 - -3,827,491 - 5801 - -

p-10-02-04-290-B - -3,671,591 - 3527 - -3,671,269 - 7072 - -

p-10-02-04-290-C - -4,007,156 - 3463 - -4,007,131 - 6335 - -
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The leftmost column indicates the problem instance. The table is split into three main sections –
the results after 3,600 seconds and 7,200 seconds, respectively, and the improvement between the
two times. The columns “Primal bound” indicate the objective value of the best-found feasible
solution. Next, the columns “Dual bound” indicate the best lower bound found, and the columns
“Gap [%]” show the gap between the primal and dual bound in percentage. This gap is calculated
as |1− dual bound

primal bound |. A non-zero gap means that the commercial could not find a feasible solution

that was proven optimal. Lastly, the columns “Time [s]” indicate the time at which the current
best found solution was last reported. The time is less than the time limit in some cases, which
means that the commercial solver did not report any new values from this time until the time limit
was reached. The last section presenting the improvement consists of the columns “Primal bound
[%]” and “Gap [p.p.],” which indicate the improvement of the primal bound and the percentage
point improvement of the gap, between 3,600 and 7,200 seconds of running time, respectively.

The results show that even for relatively small instances, the commercial solver cannot solve any
instances to optimality. For the smallest instance, p-05-02-02-145-A it obtains a gap of 5.9%.
However, for the larger instances, such as p-10-02-04-290-A, the solver does not even find a
feasible solution. This is expected as the problem complexity quickly increases with the size of the
input sets. Furthermore, the results indicate that the solver’s progress is modest between 3,600
and 7,200 seconds for several instances. However, there are a couple of exceptions, such as instance
p-10-02-02-290-B where the primal bound is improved by 53.9% and the gap is reduced by 82.5
percentage points.

One interesting observation is that in some cases, it seems to be easier for the commercial solver to
obtain a relatively tight cap for C-instances compared to their corresponding A-instances. This is
surprising as the A-instances are intended to be easier to solve than the C-instances. To recall, all
farms are given an initial inventory of six feed days in the A-instances, while the initial inventory
is randomly set between two and eight feed days in the C-instances. The reduced flexibility in the
C-instances might cause the observed behavior. This reduced flexibility results in a smaller search
space for the commercial solver to investigate, which might be the reason for the smaller gaps.

Table 8.5 presents a comparison between SMOLT’s and the commercial solver’s performance on
the small Mowi instances. The table is structured in three sections, where the first section shows
the commercial solver’s performance after 7,200 seconds, which is also shown in Table 8.4. The
column “Lowest objective” corresponds to the “Primal bound” column in Table 8.4, the column
“Gap [%]” shows the optimality gap, and the column “Time [s]” presents the time in seconds.
Further, the SMOLT section consists of four columns. The columns “Lowest objective” and “Time
[s]” are the same as in the section for the commercial solver. However, the columns “Gap [%]”
and “Beat time [s]” are also included in this section. “Gap [%]” indicates the optimality gap
obtained when using SMOLT’s lowest objective and the commercial solver’s obtained dual bound.
The solution identified by SMOLT is guaranteed to be within the gap percentage of the optimal
solution. The column “Beat time [s]” shows the time it took for SMOLT to beat the commercial
solver if it managed to do so. Lastly, the “Difference” section presents the relative and absolute
difference in both objective value and the time to obtain the best solution found throughout the
run.
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Table 8.5: Comparison of the performance of SMOLT and the commercial solver.

Commercial Solver SMOLT Difference

Lowest

objective

Gap

[%]

Time

[s]

Lowest

objective

Gap

[%]

Beat time

[s]

Time

[s]

Objective

[%]/[abs]

Time

[%]/[s]

p-05-02-02-145-A -1,151,963 5.9 6201 -1,151,979 5.9 2075 2075 0/-15 -67/-4,126

p-05-02-02-145-B -952,655 9.8 7110 -903,666 15.7 - 536 -5/+48,989 -92/-6,574

p-05-02-02-145-C -1,084,341 14.8 7176 -1,029,273 21.0 - 848 -5/+55,068 -88/-6,328

p-05-02-04-145-A -1,486,091 24.5 7179 -1,487,259 24.5 738 781 0/-1,167 -89/-6,398

p-05-02-04-145-B -1,450,665 22.0 7126 -1,170,041 51.2 - 426 -19/+280,624 -94/-6,700

p-05-02-04-145-C -1,683,418 12.9 7121 -1,349,377 40.8 - 3148 -20/+334,041 -56/-3,973

p-10-02-02-145-A -1,311,177 24.5 7191 -1,171,482 39.3 - 880 -11/+139,694 -88/-6,311

p-10-02-02-145-B -1,444,476 13.9 7067 -1,223,293 34.4 - 805 -15/+221,183 -89/-6,262

p-10-02-02-145-C -1,558,110 20.7 7152 -1,326,327 41.8 - 549 -15/+231,782 -92/-6,603

p-10-02-04-145-A -1,826,526 51.5 7,200 -2,239,153 23.6 510 3128 +23/-412,627 -57/-4,072

p-10-02-04-145-B -2,173,842 18.4 7100 -2,026,134 27.0 - 5932 -7/+147,707 -16/-1,168

p-10-02-04-145-C -2,436,823 20.6 7093 -2,294,560 28.1 - 1537 -6/+142,263 -78/-5,556

p-05-02-02-290-A -1,398,033 34.2 7087 -1,539,748 21.8 529 561 +10/-141,714 -92/-6,526

p-05-02-02-290-B -1,334,645 36.7 7141 -1,389,950 31.3 2641 2777 +4/-55,304 -61/-4,364

p-05-02-02-290-C -1,427,038 38.5 7,200 -1,557,887 26.9 1285 2047 +9/-130,848 -72/-5,153

p-05-02-04-290-A -1,313,523 109.0 7,200 -1,708,972 60.4 148 2485 +30/-395,449 -65/-4,715

p-05-02-04-290-B - - 5958 -2,103,859 26.2 8 7110 -/- +19/+1,152

p-05-02-04-290-C -503,224 457.0 5162 -1,790,312 56.6 8 3168 +256/-1,287,088 -39/-1,994

p-10-02-02-290-A -1,622,675 54.0 7114 -1,721,215 45.2 1240 3666 +6/-98,540 -48/-3,448

p-10-02-02-290-B -1,581,153 52.5 7169 -1,743,349 38.3 583 6962 +10/-162,196 -3/-207

p-10-02-02-290-C -2,039,024 26.5 6979 -1,640,710 57.3 - 2080 -20/+398,314 -70/-4,899

p-10-02-04-290-A - - 5801 -2,565,496 49.2 8 2160 -/- -63/-3,641

p-10-02-04-290-B - - 7072 -2,268,751 61.8 9 3102 -/- -56/-3,970

p-10-02-04-290-C - - 6335 -2,564,049 56.3 9 927 -/- -85/-5,408

The results show that SMOLT is not able to outperform the commercial solver when applied to the
majority of the small instances with 145 time periods. This is expected as the commercial solver
obtains relatively tight gaps for these instances. That being said, for these instances, SMOLT
identifies solutions with an objective value close to the commercial solver’s solution in many cases,
with four instances within 5%. SMOLT outperforms the commercial solver on all but one of the
larger instances with 290 time periods. The commercial solver struggles to find high-quality or
feasible solutions for these instances, and SMOLT can identify significantly better solutions in
some cases. For example, for the instance p-10-02-04-290-C, SMOLT obtains an objective value
of -2,564,049 while the commercial solver does not find a feasible solution. Furthermore, the gap
obtained by the commercial solver on the instances with 290 time periods ranges between 26.5%
and 457.0%, with an average of 101.1%. Note that this is the average gap for the instances for which
the commercial solver manages to identify a feasible solution at all. SMOLT, on the other hand, is
able to obtain a feasible solution for all instances with 290 time periods, and achieves a gap lower
than 61.8% for all instances, with an average of 44.3%. This illustrates how well SMOLT scales
compared to the commercial solver while still being capable of obtaining high-quality solutions.

Next, Table 8.5 also compares the solution time of the commercial solver and SMOLT. For most
instances, SMOLT identifies its best-found solution long before the time limit of 7,200 seconds.
Even for the instances where SMOLT does not beat the commercial solver, the solutions are found
quicker, and in many cases only a fraction of the time limit of 7,200 seconds is needed. Also, for
the instances where SMOLT beats the commercial solver, SMOLT finds a better solution than
the commercial solver relatively quickly. For example, for the instances p-05-02-04-290 B and
C, SMOLT beats the commercial solver in only eight seconds. On average, the beat time is 699
seconds, which is only 9.7% of the time limit of 7,200 seconds for the commercial solver.
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8.2.2 Medium Instances

Table 8.6 presents SMOLT’s results when applied to the medium-sized Mowi instances in Table 7.2.
SMOLT was configured to terminate if no improvement was made in 30 minutes or if the time
limit of three hours (10,800 seconds) was reached. The table is structured in three sections. As
mentioned in Section 6.4, the initial solutions are empty, meaning that the vessels stay at their
origin for the entire planning horizon. The first section presents the properties of the initial empty
solution. The second section presents the final solution obtained by SMOLT before terminating.
The two first sections consist of the columns “Lowest objective,” “Spot [abs],” and “Spot share
[%]”. The two first columns of these sections indicate the objective value and the spot market cost
associated with the solution, respectively. Note that the objective value can become positive in
cases where the total costs, which includes spot costs and travel costs, exceed the total revenue
from delivery. The last column, “Spot share [%]” indicates the spot costs’ share of the solutions’
total costs, i.e., the transportation and spot market costs. Lastly, the third section presents the
differences between the two first sections.

As explained in Section 7.3.1, these instances have been generated by the authors. The problems
are complex, and it is not guaranteed that it is possible to serve all demands at the farms with the
available vessels. The spot market cost cannot be reduced to zero in such cases. Furthermore, due
to the large instance sizes, the commercial solver will not identify any valuable solutions, making a
comparison to the commercial solver’s results worthless. Hence, it is difficult to assess the quality
of SMOLT’s solutions. However, the results in Table 8.6 allow us to draw some conclusions.

First, SMOLT can identify solutions with low spot market usage for all instances, and in several
cases, the solutions do not rely on spot market deliveries at all. On average, the spot market
cost only constitutes 1.8% of the total costs in the best solutions found by SMOLT. Furthermore,
SMOLT improves the solution quality significantly between the first and last reported solution.
On average, the objective is reduced by 728.5%. However, for some instances, the improvement is
notably better. Lastly, as these instances are generated to imitate instances faced in day-to-day
operations, the solution times must reflect this. All the solutions were found within a time limit
of three hours, which in our opinion, is sufficient to be used in daily operations.
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Table 8.6: SMOLT’s performance on the medium sized Mowi instances.

Empty solution Final solution Difference

Lowest

objective

Spot

[abs]

Spot

share [%]

Lowest

objective

Spot

[abs]

Spot

share [%]

Objective

[%]/[abs]

Spot

share [p.p.]

p-20-06-01-145-A -867,966 1,826 100.0 -2,949,299 0 0.1 239/-2,081,333 -99.9

p-20-06-01-145-B -458,270 9,017 100.0 -2,623,940 706 0.3 472/-2,165,669 -99.7

p-20-06-01-145-C -1,340,163 55,704 100.0 -3,056,298 2,381 0.5 128/-1,716,134 -99.5

p-20-06-03-145-A -700,676 5,605 100.0 -8,304,951 0 0.0 1,085/-7,604,275 -100.0

p-20-06-03-145-B -2,286,464 18,365 100.0 -7,896,486 658 0.1 245/-5,610,022 -99.9

p-20-06-03-145-C -254,513 237,830 100.0 -8,848,034 5,586 0.7 3,376/-8,593,521 -99.3

p-20-06-06-145-A -1,463,838 8,016 100.0 -11,645,454 0 0.0 695/-10,181,616 -100.0

p-20-06-06-145-B -2,012,943 47,543 100.0 -11,295,754 4,131 0.3 461/-9,282,810 -99.7

p-20-06-06-145-C -857,924 281,489 100.0 -12,566,054 9,209 0.7 1,364/-11,708,129 -99.3

p-20-06-01-235-A -170,993 184,478 100.0 -3,427,878 3,417 0.6 1,904/-3,256,885 -99.4

p-20-06-01-235-B -420 147,269 100.0 -3,301,432 0 0.0 785,259/-3,301,011 -100.0

p-20-06-01-235-C -846,474 225,171 100.0 -3,207,345 28,332 7.3 278/-2,360,870 -92.7

p-20-06-03-235-A -1,881,910 473,052 100.0 -6,583,439 7,912 0.5 249/-4,701,529 -99.5

p-20-06-03-235-B -436,280 435,348 100.0 -8,747,953 13,057 0.9 1,905/-8,311,672 -99.1

p-20-06-03-235-C -118,062 690,373 100.0 -7,917,898 45,887 1.0 6,606/-7,799,836 -99.0

p-20-06-06-235-A -1,248,134 704,728 100.0 -9,781,509 8,814 0.4 683/-8,533,375 -99.6

p-20-06-06-235-B -2,496,304 504,013 100.0 -9,334,559 11,003 0.6 273/-6,838,254 -99.4

p-20-06-06-235-C -1,937,649 817,591 100.0 -9,243,540 118,480 2.1 377/-7,305,890 -97.9

p-20-06-01-290-A -408,211 295,822 100.0 -3,705,772 13,358 1.7 807/-3,297,560 -98.3

p-20-06-01-290-B -1,404,903 207,634 100.0 -3,611,075 2,951 0.5 157/-2,206,171 -99.5

p-20-06-01-290-C -174,604 352,445 100.0 -4,190,309 11,472 1.6 2,299/-4,015,704 -98.4

p-20-06-03-290-A -2,348,811 678,722 100.0 -10,103,431 42,188 2.1 330/-7,754,619 -97.9

p-20-06-03-290-B -256,331 718,591 100.0 -10,050,603 21,431 1.3 3,820/-9,794,272 -98.7

p-20-06-03-290-C -3,602,836 684,780 100.0 -11,609,474 46,332 3.5 222/-8,006,637 -96.5

p-20-06-06-290-A -940,586 1,196,023 100.0 -12,164,139 56,628 2.1 1,193/-11,223,553 -97.9

p-20-06-06-290-B -535,836 1,083,599 100.0 -12,273,768 106,899 5.0 2,190/-11,737,932 -95.0

p-20-06-06-290-C -1,316,728 1,147,057 100.0 -12,305,810 145,961 8.1 834/-10,989,082 -91.9

p-40-07-01-145-A -944,546 3,613 100.0 -6,992,961 0 0.0 640/-6,048,415 -100.0

p-40-07-01-145-B 22,476 22,476 100.0 -6,703,296 0 0.0 -29,924/-6,725,772 -100.0

p-40-07-01-145-C -768,749 113,840 100.0 -7,155,846 10,738 1.3 830/-6,387,097 -98.7

p-40-07-03-145-A -2,561,077 9,180 100.0 -14,649,650 29 0.0 472/-12,088,573 -100.0

p-40-07-03-145-B -1,508,689 75,121 100.0 -14,270,288 0 0.0 845/-12,761,599 -100.0

p-40-07-03-145-C -2,679,997 288,756 100.0 -15,205,376 3,868 0.2 467/-12,525,379 -99.8

p-40-07-06-145-A -2,476,389 12,673 100.0 -17,478,918 1,970 0.0 605/-15,002,528 -100.0

p-40-07-06-145-B -1,509,477 91,801 100.0 -14,272,729 15,203 0.9 845/-12,763,252 -99.1

p-40-07-06-145-C -1,895,721 378,396 100.0 -17,611,000 47,808 3.1 829/-15,715,278 -96.9

p-40-07-01-235-A 103,721 356,138 100.0 -7,549,749 21,477 1.8 -7,378/-7,653,470 -98.2

p-40-07-01-235-B 163,534 285,761 100.0 -7,147,930 17,897 1.3 -4,470/-7,311,464 -98.7

p-40-07-01-235-C -102,317 399,806 100.0 -7,847,099 7,586 0.7 7,569/-7,744,782 -99.3

p-40-07-03-235-A -57,351 868,908 100.0 -10,363,539 54,549 2.8 17,970/-10,306,187 -97.2

p-40-07-03-235-B -895,264 712,850 100.0 -13,635,518 30,253 1.3 1,423/-12,740,253 -98.7

p-40-07-03-235-C -1,712,316 928,012 100.0 -12,702,485 45,937 1.3 641/-10,990,169 -98.7

p-40-07-06-235-A -2,451,637 1,180,497 100.0 -15,167,675 129,113 4.0 518/-12,716,037 -96.0

p-40-07-06-235-B -1,110,399 1,071,210 100.0 -14,155,860 5,911 0.2 1,174/-13,045,461 -99.8

p-40-07-06-235-C -2,260,937 1,322,148 100.0 -13,054,632 183,623 1.9 477/-10,793,694 -98.1

p-40-07-01-290-A -1,019,132 523,222 100.0 -7,933,753 26,968 2.0 678/-6,914,621 -98.0

p-40-07-01-290-B 192,402 486,903 100.0 -7,926,901 513 0.0 -4,220/-8,119,304 -100.0

p-40-07-01-290-C 451,234 625,954 100.0 -8,028,173 49,883 3.9 -1,879/-8,479,407 -96.1

p-40-07-03-290-A -1,385,150 1,304,394 100.0 -13,196,289 50,588 1.2 852/-11,811,139 -98.8

p-40-07-03-290-B -1,593,087 1,180,381 100.0 -13,675,277 94,534 3.6 758/-12,082,190 -96.4

p-40-07-03-290-C 209,301 1,558,782 100.0 -11,570,204 115,416 1.3 -5,628/-11,779,506 -98.7

p-40-07-06-290-A -2,051,844 1,790,781 100.0 -12,568,613 252,915 5.5 512/-10,516,768 -94.5

p-40-07-06-290-B -3,124,048 1,675,381 100.0 -13,561,439 293,010 10.1 334/-10,437,390 -89.9

p-40-07-06-290-C -2,050,770 1,996,785 100.0 -9,996,783 460,311 8.3 387/-7,946,012 -91.7

Average -1,173,779 564,368 100.0 -9,725,337 48,646 1.8 728/-8,551,558 -98.2
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8.2.3 Large Instances

Table 8.7 presents SMOLT’s results when applied to the large-sized Mowi instances in Table 7.2.
The table is structured exactly as Table 8.6 presenting the results for the medium-sized instances.

Table 8.7: SMOLT’s performance on the large Mowi instances.

Empty solution Final solution Difference

Lowest

objective

Spot

[abs]

Spot

share [%]

Lowest

objective

Spot

[abs]

Spot

share [%]

Objective

[%]/[abs]

Relative

spot [p.p.]

p-60-10-01-145-A -1,001,852 5,933 100.0 -10,308,692 0 0.0 929/-9,306,840 -100.0

p-60-10-01-145-B -2,463,023 29,183 100.0 -9,833,191 164 0.0 299/-7,370,168 -100.0

p-60-10-01-145-C -1,019,859 228,721 100.0 -10,679,150 20,170 1.6 947/-9,659,291 -98.4

p-60-10-03-145-A -2,938,398 13,440 100.0 -15,369,493 2,964 0.2 423/-12,431,095 -99.8

p-60-10-03-145-B -741,601 123,298 100.0 -14,062,316 34,567 2.3 1,796/-13,320,714 -97.7

p-60-10-03-145-C -2,778,186 488,702 100.0 -16,223,425 37,932 2.3 484/-13,445,239 -97.7

p-60-10-06-145-A -4,389,866 19,726 100.0 -14,820,988 6,593 0.5 237/-10,431,121 -99.5

p-60-10-06-145-B -4,103,549 176,359 100.0 -13,433,175 86,341 8.4 227/-9,329,626 -91.6

p-60-10-06-145-C -3,361,969 616,487 100.0 -14,887,170 133,973 6.3 342/-11,525,200 -93.7

p-60-10-01-235-A -1,465,306 491,791 100.0 -12,180,716 18,212 1.2 731/-10,715,409 -98.8

p-60-10-01-235-B -1,061,062 466,182 100.0 -11,546,296 17,282 0.9 988/-10,485,234 -99.1

p-60-10-01-235-C 7,306 717,815 100.0 -11,831,667 53,161 2.3 -162,035/-11,838,974 -97.7

p-60-10-03-235-A -2,269,871 1,248,192 100.0 -17,569,626 148,956 4.6 674/-15,299,755 -95.4

p-60-10-03-235-B -1,908,493 1,061,286 100.0 -19,003,324 56,126 1.5 895/-17,094,831 -98.5

p-60-10-03-235-C -4,502,252 1,400,993 100.0 -17,048,103 77,047 2.5 278/-12,545,851 -97.5

p-60-10-06-235-A -2,077,641 1,838,086 100.0 -15,169,843 131,026 2.8 630/-13,092,202 -97.2

p-60-10-06-235-B -2,732,559 1,532,091 100.0 -17,386,653 149,560 3.4 536/-14,654,093 -96.6

p-60-10-06-235-C -2,562,763 2,118,907 100.0 -13,595,136 522,198 9.5 430/-11,032,373 -90.5

p-60-10-01-290-A -444,164 882,392 100.0 -12,478,367 15,868 0.8 2,709/-12,034,203 -99.2

p-60-10-01-290-B -473,931 771,359 100.0 -11,904,770 23,445 1.1 2,411/-11,430,838 -98.9

p-60-10-01-290-C -258,109 1,082,034 100.0 -13,064,114 37,411 1.7 4,961/-12,806,004 -98.3

p-60-10-03-290-A -1,383,227 1,949,387 100.0 -14,313,592 362,031 10.9 934/-12,930,365 -89.1

p-60-10-03-290-B -927,736 1,778,338 100.0 -15,043,419 240,971 4.9 1,521/-14,115,682 -95.1

p-60-10-03-290-C -67,874 2,346,350 100.0 -13,454,242 314,682 7.7 19,722/-13,386,367 -92.3

p-60-10-06-290-A -738,220 2,876,955 100.0 -11,131,646 1,956,420 76.9 1,407/-10,393,425 -23.1

p-60-10-06-290-B -2,916,268 2,657,772 100.0 -23,673,276 350,809 9.9 711/-20,757,007 -90.1

p-60-10-06-290-C -2,846,091 3,137,522 100.0 -28,333,263 668,935 17.1 895/-25,487,172 -82.9

p-80-10-01-145-A -1,527,907 8,479 100.0 -10,991,609 1,186 0.1 619/-9,463,701 -99.9

p-80-10-01-145-B -572,018 73,478 100.0 -12,152,474 9,892 0.7 2,024/-11,580,456 -99.3

p-80-10-01-145-C -1,203,740 277,734 100.0 -12,580,032 32,568 2.1 945/-11,376,292 -97.9

p-80-10-03-145-A -2,550,553 23,208 100.0 -24,799,228 700 0.0 872/-22,248,674 -100.0

p-80-10-03-145-B -1,773,978 240,523 100.0 -20,899,833 24,095 0.7 1,078/-19,125,855 -99.3

p-80-10-03-145-C -2,417,985 795,760 100.0 -22,986,755 57,133 1.8 850/-20,568,769 -98.2

p-80-10-06-145-A -2,660,077 32,059 100.0 -30,245,825 1,693 0.0 1,037/-27,585,747 -100.0

p-80-10-06-145-B -2,811,277 312,691 100.0 -19,147,983 118,898 2.9 581/-16,336,706 -97.1

p-80-10-06-145-C -1,206,452 950,584 100.0 -21,025,114 130,698 2.0 1,642/-19,818,662 -98.0

p-80-10-01-235-A -866,093 764,902 100.0 -15,203,629 25,807 1.1 1,655/-14,337,536 -98.9

p-80-10-01-235-B -2,126,892 588,726 100.0 -14,193,634 29,831 1.3 567/-12,066,742 -98.7

p-80-10-01-235-C 54,983 1,013,630 100.0 -15,179,048 83,633 4.2 -27,706/-15,234,032 -95.8

p-80-10-03-235-A -2,164,141 2,046,267 100.0 -15,141,610 382,642 9.5 599/-12,977,469 -90.5

p-80-10-03-235-B -939,121 1,920,029 100.0 -23,984,662 454,780 15.3 2,453/-23,045,541 -84.7

p-80-10-03-235-C 695,278 2,630,246 100.0 -15,373,946 641,971 13.1 -2,311/-16,069,224 -86.9

p-80-10-06-235-A -3,081,728 2,729,840 100.0 -32,236,212 572,558 13.3 946/-29,154,484 -86.7

p-80-10-06-235-B -2,160,621 2,543,514 100.0 -29,841,713 467,990 9.1 1,281/-27,681,091 -90.9

p-80-10-06-235-C -1,956,674 3,278,714 100.0 -10,800,378 1,507,733 25.8 452/-8,843,704 -74.2

p-80-10-01-290-A -597,543 1,240,904 100.0 -15,252,998 124,980 4.5 2,452/-14,655,454 -95.5

p-80-10-01-290-B 181,703 1,199,162 100.0 -12,777,616 174,968 8.3 -7,132/-12,959,320 -91.7

p-80-10-01-290-C -422,194 1,455,015 100.0 -15,051,979 124,858 5.3 3,465/-14,629,785 -94.7

p-80-10-03-290-A -598,078 3,334,064 100.0 -23,092,793 591,393 9.8 3,761/-22,494,715 -90.2

p-80-10-03-290-B -1,461,812 3,087,296 100.0 -16,804,475 795,334 19.7 1,049/-15,342,663 -80.3

p-80-10-03-290-C -337,863 3,799,989 100.0 -15,910,441 1,082,866 20.8 4,609/-15,572,577 -79.2

p-80-10-06-290-A 839,104 4,481,229 100.0 -12,196,978 2,965,559 80.4 -1,553/-13,036,082 -19.6

p-80-10-06-290-B -2,065,149 4,067,761 100.0 -8,148,628 3,010,046 75.6 294/-6,083,479 -24.4

p-80-10-06-290-C 1,517,366 5,103,132 100.0 -14,792,324 3,091,120 65.8 -1,074/-16,309,690 -34.2

Average -1,548,889 1,445,523 100.0 -16,280,696 406,885 10.6 951/-14,731,806 -89.4
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Like the medium-sized instances, we observe a significant improvement from the initial empty and
the final solution. The average spot market dependency is 10.6%, which is higher than for the
medium instances. However, this is largely due to a few instances with large spot dependency
in the final solution, such as p-80-10-06-290-A. Most of the large instances have a spot share
similar in size to that of the medium instances. The instances contributing to the higher spot
share average are especially those with 6 products, 290 time periods, and 60 and 80 nodes. The
complexity of these instances is beyond any instances previously solved in the literature, and it is
therefore not surprising that SMOLT’s obtained solutions have a relatively high spot share. Still,
for instances such as p-80-10-01-290-C and p-80-10-01-235-C solutions with a low spot share
of 5.3% and 4.2%, respectively, are obtained. Even though these instances are not the largest, they
are larger than typical MIRP instances found in the literature. Therefore, obtaining solutions with
such low spot shares is considered promising.

8.3 MIRPLib Instances

This section presents the computational results of the test instances from the MIRPLib benchmark
library. As mentioned in Section 7.2, there are some differences between the FFMIRP and the
MIRPLib instances. To recall, the vessels must arrive at production ports empty and leave them
fully loaded, and there is a semi-continuous requirement on the quantity being loaded and unloaded.
As argued in Section 7.2, in reality, these restrictions are not necessary. The results from the Group
1 instances are therefore presented in two ways. Section 8.3.1 presents the Group 1 results with all
requirements of MIRPLib respected, while Section 8.3.2 presents the results generated when the
restrictions mentioned above are relaxed, referred to as the relaxed Group 1 instances. The results
are presented in this manner for two reasons. Firstly, when comparing SMOLT’s performance to
the best-known solutions, all restrictions must be respected for a fair comparison. However, as
mentioned in Section 7.2, relaxation of these constraints might allow us to construct more efficient
routes. For MIP-based approaches, these additional constraints reduce the size of the search space
and will typically allow a solver to more efficiently tackle the problem. Relaxing these constraints
and presenting the results shows that SMOLT can still solve the problem instances efficiently
and, in some cases, identify better solutions compared to the non-relaxed instances. Lastly, in
Section 8.3.3 the results from the Group 1 instances with longer planning horizons than what has
been solved previously by other approaches are presented.

A more exhaustive presentation of these results, including more elaborate visualizations, are avail-
able at https://fiskeforgutane.github.io.

8.3.1 Group 1 Instances

Table 8.8 presents the results from solving the MIRPLib Group 1 instances while respecting all
restrictions. The leftmost column indicates the problem instance, as described in Table 7.3. The
rest of the table is separated into two sections - the results from a planning horizon of 45 and
60 time periods, respectively. The column “SMOLT” indicates the objective value obtained by
SMOLT, and “BKS” indicates the best-known solution. The column “Gap [%]” shows the relative
difference between SMOLT’s and the best-known solution’s objective value, i.e., 1− SMOLT

BKS . The
columns “Time” present the solution times for SMOLT and the current BKS, respectively.

In order to make these results comparable to earlier attempts at solving MIRPLib Group 1 in-
stances, all runs were done using a single island running on a single thread. Do note that this
represents a worst-case scenario for SMOLT’s performance. Islanding plays an important role in
maintaining a diverse set of candidate solutions. By effectively removing islanding, we drastically
reduce the amount of diversity, increasing the risk of premature convergence to a suboptimal local
minimum. In addition to this, we run SMOLT without restricting variables to be semi-continuous.
These restrictions are instead added after SMOLT has converged to a solution. A consequence is
that SMOLT might be able to find a solution that is valid without the semi-continuous restrictions,
but invalid or of poorer quality when they are imposed. All of the results presented in Table 8.8
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respect the semi-continuous constraints.

Table 8.8: SMOLT’s performance on the MIRPLib Group 1 instances with 45 and 60 time periods. The
dashed values indicate that SMOLT was unable to find a feasible solution within the time limit. The
current best-known solutions were obtained by Papageorgiou et al. (2014b)a, Friske and Buriol (2017)b,
Friske and Buriol (2018)c, Friske and Buriol (2020)d, and Friske et al. (2022)e.

|T | = 45 |T | = 60

SMOLT Time BKS Time Gap [%] SMOLT Time BKS Time Gap [%]

LR1-1-DR1-3-VC1-V7a -13,254 7,313 -13,272a 177 0.1 -16,655 3,531 -16,675d 444 0.1

LR1-1-DR1-4-VC3-V11a -10,947 2,741 -11,243b 1,578 2.6 -12,841 5,686 -13,257a 7,139 3.1

LR1-1-DR1-4-VC3-V12a -10,737 3,622 -10,766e 10,339 0.3 - - -11,040a 7,731 -

LR1-1-DR1-4-VC3-V12b -9,047 2,354 -9,085b 1,942 0.4 -9,881 6,900 -10,053a 8,710 1.7

LR1-1-DR1-4-VC3-V8a -5,025 2,849 -5,106a 4,609 1.6 -4,571 6,726 -5,191a 7,687 11.9

LR1-1-DR1-4-VC3-V9a -6,645 2,131 -6,921c 1,220 4.0 -7,366 5,533 -7,552a 8,285 2.5

LR1-2-DR1-3-VC2-V6a -9,902 3,072 -11,134a 5,963 11.1 -12,701 9,922 -13,532e 8,300 6.1

LR1-2-DR1-3-VC3-V8a -11,878 2,481 -12,010a 7,634 1.1 -14,174 7,202 -14,652e 8,031 3.3

LR2-11-DR2-22-VC3-V6a -9,561 3,772 -9,718a 8,149 1.6 -12,692 4,922 -12,745a 8,404 0.4

LR2-11-DR2-33-VC4-V11a - - -14,017a 8,913 - - - -15,387a 8,943 -

LR2-11-DR2-33-VC5-V12a - - -18,524e 8,934 - - - -22,948c 6,335 -

LR2-22-DR2-22-VC3-V10a - - -24,985c 6,279 - - - -32,627a 8,803 -

LR2-22-DR3-333-VC4-V14a - - -21,952a 9,406 - - - -26,873a 9,542 -

LR2-22-DR3-333-VC4-V17a - - -22,294a 10,793 - - - -27,000a 9,615 -

The results in Table 8.8 show that SMOLT is not able to obtain a feasible solution for all Group 1
instances. However, it solves 17 of the 28 instances and is within 3.1% of the BKS on average. Fur-
thermore, when comparing the solution times, one observes significant differences between SMOLT
and the BKS. For some instances, as LR1-1-DR1-3-VC1-V7a, SMOLT spends significantly more
time than the method used for obtaining the current BKS. However, for other instances, as LR1-2-
DR1-3-VC3-V8a, SMOLT’s solution is within 1.1% of the BKS in less than 50% of the time used
by the BKS method. Note that the criterion used for gradually expanding the horizon prevents
SMOLT from ever converging to a solution in less than about half an hour for |T | = 45. Changing
the criterion or reducing the use of the gradually expanding horizon decomposition could lead to
much faster convergence for some problems. However, this might come at the expense of solution
quality.

However, as Table 8.8 shows, SMOLT is not able to solve 11 of the 28 instances. This is believed
to be caused by two main reasons. Firstly, SMOLT is not designed to handle the additional
constraints of the MIRPLib instances as they are irrelevant for FFMIRPs, while also negatively
impacting the efficiency of SMOLT, as described in Appendix A.5.2. These constraints include that
all vessels must leave production sites empty and arrive at them fully loaded and a semi-continuous
constraint on the unloaded amounts. In fact, if the semi-continuous constraints, which represent
an artificial restriction on the problem intended to simplify it, are relaxed, SMOLT obtains valid
solutions for all instances. Secondly, the instances with no valid solution are the most challenging
ones with several loading and discharging regions. As mentioned above, running on only one thread
effectively removes islanding, and this is believed to impact the solution quality for these instances
the most, as their complexity increases the risk of SMOLT converging to a suboptimal solution.

8.3.2 Relaxed Group 1 Instances

Table 8.9 presents SMOLT’s results on the MIRPLib Group 1 instances with the semi-continuous
loading and unloading restrictions and full capacity exploitation disabled. Furthermore, these
results are generated by running 24 islands in parallel. These conditions are better suited for
SMOLT, which is reflected in the results. The table is structured as Table 8.8, except that the
solution times are not reported because when using several threads in parallel, the comparison to
the BKS solution times is unfair. The results clearly show that SMOLT has no problem solving
the relaxed instances, while it is considered more challenging for MIP-based approaches. This is
an advantage as it enables SMOLT to find better solutions than those found when respecting all
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restrictions. In fact, SMOLT identifies solutions that beat the current best-known solutions on
14 instances, with a 7.7% improvement on instance LR2-11-DR2-33-VC4-V11a with 60 time
periods. This clearly illustrates the advantage of applying solution methods that do not require
the introduction of artificial constraints in order to work effectively.

Table 8.9: SMOLT’s performance on the relaxed Group 1 instances with 45 and 60 time periods. The bold
values indicate new best-known solutions. The current best-known solutions were obtained by Papageorgiou
et al. (2014b)a, Friske and Buriol (2017)b, Friske and Buriol (2018)c, Friske and Buriol (2020)d, and Friske
et al. (2022)e.

|T | = 45 |T | = 60

SMOLT BKS Gap [%] SMOLT BKS Gap [%]

LR1-1-DR1-3-VC1-V7a -14,143 -13,272a -6.6 -17,403 -16,675a -4.4

LR1-1-DR1-4-VC3-V11a -11,277 -11,243b -0.3 -12,868 -13,257a 2.9

LR1-1-DR1-4-VC3-V12a -10,752 -10,766e 0.1 -11,243 -11,040d -1.8

LR1-1-DR1-4-VC3-V12b -9,350 -9,085b -2.9 -9,986 -10,053a 0.7

LR1-1-DR1-4-VC3-V8a -5,112 -5,106a -0.1 -5,271 -5,191a -1.5

LR1-1-DR1-4-VC3-V9a -6,707 -6,921c 3.1 -7,445 -7,552a 1.4

LR1-2-DR1-3-VC2-V6a -11,142 -11,134a -0.1 -13,632 -13,532a -0.7

LR1-2-DR1-3-VC3-V8a -11,981 -12,010a 0.2 -14,382 -14,652a 1.8

LR2-11-DR2-22-VC3-V6a -9,922 -9,718a -2.1 -12,927 -12,745e -1.4

LR2-11-DR2-33-VC4-V11a -13,907 -14,017a 0.8 -16,577 -15,387a -7.7

LR2-11-DR2-33-VC5-V12a -18,338 -18,524e 1.0 -22,452 -22,948c 2.2

LR2-22-DR2-22-VC3-V10a -25,041 -24,985e -0.2 -32,322 -32,627a 0.9

LR2-22-DR3-333-VC4-V14a -22,176 -21,952a -1.0 -25,966 -26,873a 3.4

LR2-22-DR3-333-VC4-V17a -22,030 -22,294c 1.2 -23,932 -27,000a 11.4

8.3.3 Relaxed Group 1 Instances with Long Planning Horizons

Lastly, we present SMOLT’s performance on the relaxed Group 1 instances with planning horizons
of 90 and 120 time periods. As far as we know, no solutions for the original Group 1 instances have
been reported previously for |T |> 60. Despite relaxing the instances, SMOLT is, to the best of our
knowledge, the first solution method attempting to solve any variant of the Group 1 instances with
a longer planning horizon than 60 time periods. The table is structured as Table 8.9; however,
instead of reporting the gap to the BKS, which in this case is SMOLT’s solution, we also report
the inventory violations. The violation is calculated as the cumulative inventory shortage (or
overflow for production ports) throughout the planning horizon, i.e., a shortage of 10, 20, and 30
in time periods 1, 2, and 3, accumulates to a violation of 60. To understand whether the reported
violation is large or small, we also report the violation as the share of the experienced violation
if no products could be delivered neither from the vessels nor the spot market. This is what the
column “Violation gap [%]” reports. The results colored in light gray are instances where SMOLT
did not identify a solution with no violation.
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Table 8.10: SMOLT’s performance on the relaxed Group 1 instances with 90 and 120 time periods.

|T | = 90 |T | = 120

SMOLT Violation
Violation
gap [%]

BKS SMOLT Violation
Violation
gap [%]

BKS

LR1-1-DR1-3-VC1-V7a -24,037 0.0 0.0 -24,037 -30,591 0.0 0.0 -30,591

LR1-1-DR1-4-VC3-V11a -15,611 0.0 0.0 -15,611 -19,257 0.0 0.0 -19,257

LR1-1-DR1-4-VC3-V12a -14,298 0.0 0.0 -14,298 -16,904 0.0 0.0 -16,904

LR1-1-DR1-4-VC3-V12b -11,044 0.0 0.0 -11,044 -12,540 0.0 0.0 -12,540

LR1-1-DR1-4-VC3-V8a -3,996 684.0 0.1 -3,996 -4,711 6921.0 0.5 -4,711

LR1-1-DR1-4-VC3-V9a -8,235 0.0 0.0 -8,235 -8,886 0.0 0.0 -8,886

LR1-2-DR1-3-VC2-V6a -18,292 0.0 0.0 -18,292 -23,165 0.0 0.0 -23,165

LR1-2-DR1-3-VC3-V8a -18,864 0.0 0.0 -18,864 -23,618 0.0 0.0 -23,618

LR2-11-DR2-22-VC3-V6a -16,904 75.0 0.0 -16,904 -21,231 891.0 0.1 -21,231

LR2-11-DR2-33-VC4-V11a -18,459 0.0 0.0 -18,459 -23,621 3.0 0.0 -23,621

LR2-11-DR2-33-VC5-V12a -27,047 22.0 0.0 -27,047 -34,180 333.0 0.0 -34,180

LR2-22-DR2-22-VC3-V10a -39,963 0.0 0.0 -39,963 -55,449 0.0 0.0 -55,449

LR2-22-DR3-333-VC4-V14a -29,366 71.0 0.0 -29,366 -36,287 779.0 0.0 -36,287

LR2-22-DR3-333-VC4-V17a -18,140 56.0 0.0 -18,140 -23,204 830.0 0.0 -23,204

SMOLT can find a feasible solution with no violation in nine instances with a planning horizon
of 90 time periods and eigth in the ones with a planning horizon of 120 time periods. For the
instances where SMOLT cannot find a solution with no violation, the violation gap is minimal,
meaning that almost all demand is covered. In all cases except one, SMOLT is able to identify a
solution with a violation gap of less than 0.1%. The one case with a larger gap has a gap of 0.5%.
Note that as no solutions have been reported for these instances previously, it is not given that a
feasible solution exists for all of them.

8.4 Managerial Insights

The forecast for the Norwegian salmon farming industry is clear – according to Norsk Industri
(2017), the Norwegian government has the ambition to increase the size of the salmon farming
industry by a factor of five in the next three decades. Consequently, the actors in the industry will
have to invest significantly in new infrastructure to keep up with the demand. These investments
will include both new farms, vessels, and factories. While the primary purpose of SMOLT is to
provide Mowi with a tool for making operational decisions on a day-to-day basis, it can also be
used for decision support when long-term strategic decisions are being made.

This section presents some proposals on how SMOLT can be used to gain managerial insights
– in particular, how Mowi can use SMOLT as a tool when deciding on future investments in
infrastructure and how it can be used as a valuation tool for concessions. First, Section 8.4.1
discusses how SMOLT can be used in deciding the locations of future factories and storage facilities.
Then, Section 8.4.2 presents a proposed way of using SMOLT to decide on when to invest in new
vessels and what type of vessel should be bought. Finally, Section 8.4.3 discusses how SMOLT can
contribute to the valuation of salmon concessions.

8.4.1 Factory and Storage Locations

When deciding the location of a new factory or storage facility, many factors play a role. However,
in situations where Mowi is left with several possible options, SMOLT can be used to support
decisions quantitatively. By including the new infrastructure in the problem and setting several
potential locations, SMOLT can solve the different instances representing the alternatives, allowing
for comparison.

67



8.4. MANAGERIAL INSIGHTS

Figure 8.1: Scenario where four different new factory locations are analysed and compared. The red
diamond represents the current factory location at Bjugn. The orange square represents Location 1, the
green square represents Location 2, the pink square represents Location 3, and the gray square represents
Location 4. Finally, the blue circles represent the farms.

Particularly when deciding on the locations of future factories, we believe such quantitative analyses
can be valuable. Mowi currently only has one factory, and where future factories are located
can play a major role in keeping the salmon feed part of the company profitable. Consider a
scenario where Mowi has singled out four potential locations for their next factory, illustrated in
Figure 8.1. We assume that a factory in each of the four locations has similar terms regarding
operational factors, including the delivery of raw material, access to staff, and investment costs.
In this scenario, SMOLT can be employed to compare the four locations. When comparing the
locations, it is essential to consider different demand scenarios; one location might contribute to
the lowest costs during a low-demand planning horizon, but another location becomes preferable as
the demand increases. Hence, a simulation of different demand scenarios, all solved with SMOLT,
can be applied to find the most robust location.

We conduct an analysis of the scenario described above on three different instances of medium
size, more specifically on p-40-07-01-145-C, p-40-07-03-145-C, and p-40-07-06-145-C. For
each instance, we generate four new instances where we replace one farm with a factory in each
instance. The locations of the new factories correspond to the scenario illustrated in Figure 8.1.
SMOLT is run three times for each instance, and the best objective is reported for each of them,
along with the corresponding cost associated with purchases from the spot market. The results of
the analysis are given in Table 8.11.

Table 8.11: Comparison of the objectives with added factories in different locations for a new factory
using SMOLT.

Location 1 Location 2 Location 3 Location 4

Objective Spot Objective Spot Objective Spot Objective Spot

p-40-07-01-145-C -7,140,892 2,248 -7,282,099 10,739 -6,986,010 14,714 -6,531,956 17,864

p-40-07-03-145-C -16,025,255 12,876 -16,003,697 6,092 -15,206,808 13,318 -14,849,321 10,972

p-40-07-06-145-C -24,322,843 34,174 -24,702,815 30,409 -24,155,659 35,118 -23,440,405 6,274

Average -15,829,663 16,433 -15,996,204 15,746 -15,449,492 21,050 -14,940,560 11,703

Table 8.11 presents an analysis of how the objective is affected by adding the four proposed factory
locations. From the analysis, we can see that Location 2 is the most favorable location – it has
the lowest average objective, and it finds the best solution in two of the three problem instances.
Location 1 is a close second and finds the best solution in the instance with three products. From
an intuitive perspective, the results make sense – Location 1 and Location 2 are located south
of the current factory at Bjugn in an area with high density of farms. Thus, better objectives can
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be achieved by decreasing travel distances to the farms in the southern region with a new factory.

Further, we see that Location 4 provides the lowest spot cost. This indicates that much of the
spot dependency originates in the northern region in the other instances. The cost of serving the
farms in the region is too high to be profitable. By adding a factory in the region, these farms can
be served more cost-efficiently, and consequently, the spot dependency is reduced. However, the
average objective is worse for Location 4 than for the other three. This is a consequence of low
total feed demand in the proximity of the added factory.

Similarly to the factory analysis above, SMOLT can be used in order to assess both existing and
potential new storage locations1. We argue that analyses similar to the one discussed in this
section are valuable for the management as the decisions to be made are of great importance, and
the underlying information is complex to analyze manually. Without a simulation tool, assessing
the impact of a structural change in the distribution network is challenging.

8.4.2 Vessel Investments

As the total feed demand increases, investments in new vessels will become necessary to satisfy
the demand. Similarly, as with the factory locations, SMOLT can be used to simulate how an
extra vessel in the fleet will affect the costs in different demand scenarios. This can be particularly
interesting in high-demand scenarios, where Mowi is relying on external deliveries from the spot
market today. For the people responsible for making investment decisions, these analyses can be
used to find the right timing for introducing new vessels and how much capacity the new vessels
should have.

More specifically, simulations can be run using forecasts of future production volumes to determine
the degree of self-sufficiency given the current fleet. At some point, the costs of buying from external
will exceed the costs associated with investing in a new vessel; by employing such analyses, Mowi
can stay ahead of time and order new vessels well in advance.

8.4.3 Concession Bidding

The Norwegian salmon farming industry is regulated by concessions issued by the Ministry of
Trade, Industry and Fisheries. The concessions are associated with a production region, and when
new concessions are issued, a limited number becomes available in each region (Directorate of
Fisheries, 2022). The concessions are sold at auctions, more specifically at simultaneous clock
auctions. In a simultaneous clock auction, the price gradually increases until the demand equals
the supply. Thus, reasonable valuations of the concessions are crucial for making good deals. These
valuations depend on numerous factors – some factors are easy to calculate, while others are more
intricate. One such intricate factor is how additional feed demand in a particular region affects the
total distribution costs. In a region with a high density of farms, added demand is likely to affect
the distribution costs less than in a region with fewer farms, and hence, a concession in the latter
case should be valued lower.

When a concession is bought, Mowi has two options – the concession can be given to one farm in
the region, or a new farm can be established. In the first case, SMOLT can be used to calculate
the additional costs by simply adding feed demand at the particular farms corresponding to the
increased production volume. The difference in distribution costs between the new demand scenario
and the original one makes up for the additional distribution costs accrued by the concession. These
additional distribution costs are likely to differ from region to region, and thus, quantifying them
can contribute in valuating the concessions. Similarly, SMOLT can be used for evaluating new
potential farm locations, if no existing farms have the capacity to include a new concession. In the
following analysis, we assume that all farms have the capacity required.

1A storage location is here referring to the facilities used by Mowi for storing feed produced in periods with
excess production rates. This is currently not implemented in SMOLT but is discussed in Chapter 10.
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Figure 8.2: Scenario where four farms in each of the three regions are given extra consumption corre-
sponding to a concession. The red diamond represents the current factory location at Bjugn. The orange
circles represent the randomly chosen farms from Region South, the green circles the farms from Region
Middle, and the blue circles the farms from Region North. Finally, the black circles represent the farms
not chosen for additional consumption.

The Norwegian coastline is divided into 13 production regions, but we use a simplified represen-
tation to keep the analysis simple and easy to read. Instead of 13 regions, we have divided the
coastline into three regions, equivalent to the regions presented in Section 7.3.1. The analysis
is conducted using a single problem instance, namely p-20-06-01-145-C. In each region, four
random farms are selected to be assigned additional feed consumption corresponding to that of
a concession. An illustration of the problem is given in Figure 8.2. A new problem instance for
each of the consumption scenarios is generated, resulting in a total of 12 problem instances. All
12 instances are run twice, and the lowest costs are reported. The results are given in Table 8.12.

Table 8.12: Analysis on the total costs when a concession is added in different regions.

Region South Region Middle Region North

Total cost Spot Total cost Spot Total cost Spot

Farm 1 382,888 257 364,140 257 353,736 2,262

Farm 2 467,051 257 369,877 257 374,205 5,001

Farm 3 482,553 257 382,274 2,797 399,848 350

Farm 4 503,932 3,008 391,060 257 434,516 3,474

Average 459,106 945 376,838 892 390,576 2,772

According to the results, a concession in Region Middle has the lowest total distribution cost.
This makes sense as the factory is located at Bjugn in the region. Further, Region South has
the highest marginal increase in total costs on average. As can be seen from Figure 8.2, three
of the selected farms from the southern region are located relatively far away from the factory,
making them expensive to serve. Surprisingly, Region North has an average cost almost as low as
Region Middle. This is most likely due to three of the four selected farms, which constitute the
three lowest costs, are located in proximity of the factory at Bjugn, as can be seen from Figure 8.2.
Note that this analysis is simplified, and is intended to communicate how SMOLT can be used
to conduct advanced analyses. The results are thus not a representation of how things are in the
real-life scenario.
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Chapter 9

Concluding Remarks

The salmon farming industry has been growing rapidly for the last decades and is expected to
continue growing. As the industry becomes larger, the distribution problems faced by the actors
become increasingly complex, and manual planning becomes intractable. Even though the industry
as a whole is profitable, the margins in the salmon feed industry are low. Hence, optimized
everyday operations are crucial. The complexity of manual planning and the low margins calls
for automation of the logistics process. Today, the salmon farming company Mowi employs an
order-based model for their feed distribution, influenced by manual decisions. As they have access
to all relevant data for a vendor-managed inventory approach (VMI), this master’s thesis focuses
on an optimization algorithm that serves as a VMI planning tool. The VMI approach, in this case,
a maritime inventory routing problem (MIRP), ensures that all fish farms maintain a stock level
of all demanded feed types within user-specified limits. Thus, the manual aspects of the planning
are removed in their entirety.

This thesis explores a particular type of the MIRP, namely the fish feed MIRP (FFMIRP) faced
by Mowi. The problem at hand incorporates several complicating factors – Mowi has multiple
unmixable products, the consumption rates vary over time, and the size of the distribution network
is significantly larger than those explored by previous studies. We first propose an extension of
the arc-flow model introduced by Song and Furman (2013) to incorporate all aspects relevant to
the FFMIRP. The model uses a time-space network, where each node represents a combination
of a port and a time period. A set of arcs between the nodes is generated for each vessel in
the heterogeneous fleet based on vessel-specific properties. The problem is then solved as a flow
problem over the arcs in the network, minimizing the distribution cost while delivering as much
feed as possible throughout the planning horizon.

The FFMIRP is a complex problem, so commercial solvers cannot solve real-life instances using
exact models. Hence, to solve the problem faced by Mowi, we have implemented a matheuristic –
the Scalable Memetic Optimization algorithm with LP-based search Techniques (SMOLT). SMOLT
exploits the structure of the problem by separating the routing from the quantity assignments. The
routing is done entirely by a memetic algorithm (MA), a genetic algorithm augmented with local
search techniques. On the other hand, a linear program (LP) is used for assigning quantities to all
visits, given a routing solution from the MA.

The computational study indicates that the results generated by SMOLT on the instances based on
Mowi data are promising. First, a comparison between SMOLT and a commercial solver on a set
of small test instances is presented. As expected, the commercial solver outperforms SMOLT on
the smallest instances. However, SMOLT obtains high-quality solutions, with four solutions within
5% of those of the commercial solver. Among the larger instances used to compare SMOLT to the
commercial solver, SMOLT performs significantly better with an average gap of 44.3% compared
to 101.1% for the commercial solver. Further, the results from the larger instances indicate that
adequate solutions are found in a reasonable time, indicating that SMOLT scales well.

Finally, a computational study on the MIRPLib benchmark instances introduced by Papageorgiou
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et al. (2014c) is given to further strengthen the indications that SMOLT can discover good solutions.
Despite not being designed with MIRPLib Group 1 in mind, SMOLT is able to find high-quality
solutions for most of these instances. In the fully constrained instances, including a semi-continuous
constraint on the loading and unloading quantities, and a requirement to always leave production
ports fully loaded and return to them empty, SMOLT struggles to find feasible solutions in some
of the instances. However, in the instances it obtains feasible solutions, the average gap from the
best-known solutions is only 3.1%. When these artificial constraints are relaxed, it consistently
produces better solutions than previously presented in the literature. It finds 14 solutions with a
better objective than the best-known solutions out of 28 MIRPLib Group 1 instances. Furthermore,
it is able to find feasible or nearly-feasible solutions for all relaxed instances with a planning horizon
of 90 and 120 time periods.

This master’s thesis contributes to the research on the MIRP in two ways. An extended mathe-
matical model is formulated and implemented in a commercial solver, incorporating a combination
of aspects that has not been explored previously. Further, a novel matheuristic is developed and
implemented to be scalable to large real-life instances.
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Chapter 10

Future Work

This chapter discusses potential future improvements and extensions of the work presented in this
master’s thesis. The discussion is twofold – we first present an extension of SMOLT to incorporate
further aspects from the real-life scenario faced by Mowi and propose a way to integrate the
algorithm into day-to-day operations. Then, we discuss potential improvements to the current
implementation.

During high-demand seasons, the production capacity of feed is a limiting factor for Mowi to be
self-sufficient. Consequently, temporary storage facilities store feed produced in seasons with excess
production. The current implementation of SMOLT does not incorporate this aspect; however,
introducing hybrid ports can solve it. The hybrid ports have no consumption or production rates
and can be loaded at and unloaded from. By associating a revenue for delivering to the ports,
vessels will be incentivized to do so, and in periods with insufficient production, the vessels can
load at the ports. Further, to allow SMOLT to have actual operational value for Mowi, it must
be integrated into a holistic system. This would require continuously updated and complete data
and integrating SMOLT in an application dedicated to operators.

When it comes to the current implementation of SMOLT, we have identified some ideas that
could be worth exploring. As of today, the bottleneck in terms of run time is the LP that assigns
quantities. Consequently, we have considered implementing a sparse version of the current LP,
which would only construct the variables and constraints relevant to the specified routing solution.
For example, we only need to define a vessel’s load for the time periods when it is docked at a
port since that is the only time the load may change. Every time something in a routing solution
changes, the LP is solved, and a quantity is requested. If we can reduce the number of variables
optimized, we would also reduce the run time of SMOLT.

Further, we have not considered any particular tailored decomposition approach suitable for the
problem at hand. This could, for example, include clustering the ports similarly to what is proposed
in the study by Papageorgiou et al. (2014b). The ports can then be aggregated into clusters; each
cluster contains aggregated information regarding the ports in it. SMOLT’s routing and quantity
assignments can be applied to the aggregated sets to reduce the complexity. Finally, a dedicated
algorithm can do the routing within the clusters, and quantity assignments to ports can be made.

The current parameters used are not necessarily well-tuned. We have conducted some easily
accessible trial-and-error analyses on some of the most critical parameters, like the population
size. However, conducting a more rigorous parameter tuning can improve the performance of
SMOLT further and can thus be an idea for future work.

Finally, the current implementation of the Mowi problem does not consider the production side
of the real-life problem. As discussed in the study by Brekk̊a et al. (2022), the production rates
at the factory are not unlimited. Thus, the instances would be even more realistic by including
this in the problem instances. As a matter of fact, the logic for dealing with production rates is
already implemented in SMOLT, as this was necessary for the MIRPLib instances. The only thing
required for it to work would be further data on production rates.
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Appendix A

LP Model for Quantity
Assignments

In this appendix, we present the linear mathematical model used for assigning quantities in SMOLT
in its entirety.

A.1 Sets and Indices

i ∈ IC – Set of consumption ports

i ∈ IP – Set of production ports

i ∈ I – Set of all ports, I = IC ∪ IP

v ∈ V – Set of vessels

t ∈ T – Set of time periods in the planning horizon

p ∈ P – Set of different products

A.2 Parameters

A.2.1 Constraint-related Parameters

L0
vp – The initial load of product p ∈ P on vessel v ∈ V

Lv – The total capacity of vessel v ∈ V
S0
ip – The initial inventory of product p ∈ P at port i ∈ I

Sip – Total capacity of product p ∈ P at port i ∈ I
Ditp – The consumption/production of product p ∈ P at port i ∈ I in time t ∈ T .
Ii – Indicator of the port type. 1 if the node is a production port, and -1 if the

node is a consumption port

Fmax
it – The maximum amount that can be loaded/unloaded on/from a single vessel

in port i ∈ I in time t ∈ T
βit – The maximum amount of all products that can be bought from the spot

market by port i ∈ I in time period t ∈ T
βtot
i – The maximum amount of all products that can be bought from the spot

market by port i ∈ I throughout the planning horizon
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A.2.2 Objective-related Parameters

CS
it – The unit cost of buying from the spot market for port i ∈ I in time period

t ∈ T
Rit – The revenue generated per unit delivery to port i ∈ I in time period t ∈ T
τ – Scaling factor used for punishing excessive inventories in production ports

and shortage in consumption ports

ε – Scaling factor used for making early deliveries more preferable

A.3 Variables

xivtp – The quantity loaded/unloaded from/to port i ∈ I from vessel v ∈ V of
product p ∈ P at time t ∈ T

sitp – The current stock of product p ∈ P at port i ∈ I at the beginning of time
period t ∈ T

lvtp – The current stock of product p ∈ P on vessel v ∈ V at the beginning of time
period t ∈ T

witp – excess inventory/shortage at port i ∈ I at the beginning of time period t ∈ T
of product p ∈ P

αitp – amount bought from / sold to the spot market by port i ∈ I at the beginning
of time period t ∈ T of product p ∈ P

A.4 Model Formulation

A.4.1 Objective

The objective consists of four terms. One represents the revenue, one represents the advantage of
delivering early, one represents the cost of buying/selling to the spot market, and the final term
represents the punishment that occurs when inventory violations occur. The objective is given in
Equation (A.4.1).

max z =
∑
i∈I

∑
v∈V

∑
t∈T

∑
p∈P

(Rit − εt)xivtp −
∑
i∈I

∑
t∈T

∑
p∈P

(
CS

itαitp + τwitp

)
(A.4.1)

A.4.2 Port inventory

Constraints (A.4.2) set the initial inventory in all ports.

si0p = S0
ip, i ∈ I, p ∈ P (A.4.2)

Constraints (A.4.3) ensure that the inventories are correctly updated in all time periods for all
ports.

sitp = si,t−1,p + Ii

(
Di,t−1,p −

∑
v∈V

xiv,t−1,p − αitp

)
, i ∈ I, t ∈ T \{0}, p ∈ P (A.4.3)

Constraints (A.4.4) ensure that the inventories remain within the capacity limits plus the current
excess inventory for all production ports.

0 ≤ sitp ≤ Sip + witp, i ∈ IP , t ∈ T , p ∈ P (A.4.4)
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Constraints (A.4.5) ensure that the inventories are held between the shortage and the capacity for
all consumption ports.

−witp ≤ sitp ≤ Sip, i ∈ IC , t ∈ T , p ∈ P (A.4.5)

A.4.3 Vessel inventory

Constraints (A.4.6) set the initial inventory for all vessels.

li0p = L0
vp, v ∈ V, p ∈ P (A.4.6)

Constraints (A.4.7) ensure that the inventories are correct throughout the planning horizon for all
vessels.

litp = li,t−1,p + Ii

(∑
i∈I

xiv,t−1,p

)
, v ∈ V, t ∈ T \{0}, p ∈ P (A.4.7)

Constraints (A.4.8) ensure that the total inventory onboard a vessel is within the capacity limits
of the vessel at all times. ∑

p∈P
lvtp ≤ Lv, v ∈ V, t ∈ T (A.4.8)

A.4.4 Loading and unloading

Constraints (A.4.9) ensure that the total loaded/unloaded amount at all ports are within the rate
constraints for that particular port in all time periods.∑

p∈P
xivtp ≤ Fmax

it , i ∈ I, v ∈ V, t ∈ T (A.4.9)

Constraints (A.4.10) make sure that the amount bought from / sold to the spot market in all time
periods is within the limit for that particular port in that time period.∑

p∈P
αitp ≤ βit, i ∈ I, t ∈ T (A.4.10)

Constraints (A.4.11) make sure that the amount bought from / sold to the spot market in through-
out the planning horizon is is within the available amount for all ports.∑

t∈T

∑
p∈P

αitp ≤ βmax
i , i ∈ I (A.4.11)

A.4.5 Non-Negativity Constraints

xivtp ≥ 0, i ∈ I, v ∈ V, t ∈ T , p ∈ P (A.4.12)

lvtp ≥ 0, v ∈ V, t ∈ T , p ∈ P (A.4.13)

witp ≥ 0, i ∈ I, t ∈ T , p ∈ P (A.4.14)

αitp ≥ 0, i ∈ I, t ∈ T , p ∈ P (A.4.15)

A.5 Extensions

In this section, we present some extensions to the basic LP model. The extensions are mainly
developed for solving compatibility issues with the MIRPLib benchmark instances.
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A.5.1 Travel at Capacity

To make the results of SMOLT comparable to the benchmark results on the MIRPLib instances,
there was in particular one thing we had to incorporate. As mentioned in Section 7.3, the MIRPLib
instances have constraints forcing all vessels to leave production ports fully loaded, and to return
to the production ports empty (hereafter referred to as the “travel at capacity” constraints). This
is a simplification of the general MIRP problem as this is not a hard constraint in reality, and
it is not implemented in SMOLT by default. That being said, good solutions often fully exploit
the vessels’ capacities and are therefore likely to respect the travel at capacity constraints even if
they are not explicitly defined. In fact, SMOLT tends to produce solutions that either respect or
nearly respect the travel at capacity constraints, simply because such solution characteristics are
favourable. However to further increase the attractiveness of solutions respecting these constraints,
we have added a penalty term punishing solutions that do not. This extension is presented in this
section.

First, we have to introduce additional sets, parameters and some variables.

Sets

t ∈ T P
v – Set of time periods vessel v ∈ V arrives at a production port during the

planning horizon

t ∈ T C
v – Set of time periods vessel v ∈ V arrives at a consumption port right after a

production port visit during the planning horizon

t ∈ Tv – Tv = T P
v ∪ T C

v

Parameters

σC – Weight for adjusting the “travel at capacity” violations at consumption ports

σP – Weight for adjusting the “travel at capacity” violations at production ports

Variables

γvt – The “travel at capacity” constraint violation by vessel v ∈ V when arriving at
a port in time period t ∈ Tv

The sets T P
v and TC

v are calculated before the LP model is optimized. As known, upon running,
the routing solution is already fixed from the MA. Thus, before optimizing the quantities, we
already know when the vessels arrive at production ports and leave them, and can calculate the
set.

γvt = Lv −
∑
p∈P

lvtp, v ∈ V, t ∈ T C
v (A.5.1)

Further, we can simply use lvtp to punish the vessel when arriving at production ports with load
as this should be 0 to avoid any punishment.

We add the two “punishment terms” to the objective, impose a non-negativity constraint on γvt,
and get the final extended model.

max z =
∑
i∈I

∑
v∈V

∑
t∈T

∑
p∈P

(Rit−εt)xivtp−
∑
i∈I

∑
t∈T

∑
p∈P

(CS
itαitp+τwitp)−

∑
v∈V

(
∑
t∈T C

v

σCγvt+
∑
t∈T C

v

∑
p∈P

σP lvtp)

(A.5.2)
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γvt ≥ 0, v ∈ V, t ∈ T (A.5.3)

A.5.2 Semi-continuous Restrictions on Loading and Unloading

The MIRPLib instances require the loading and unloading quantities to be semi-continuous. This
can easily be incorporated into the LP presented above by converting the continuous l variables
to be semi-continuous. However, this will cause the LP to become a MIP, which is significantly
more time-consuming to solve. As a result, this would reduce the efficiency of SMOLT drastically,
and the semi-continuous restrictions were therefore not implemented directly in SMOLT. To handle
these constraints, SMOLT can be applied as if they did not exist. The routing solution obtained by
SMOLT is then given to an extended version of the LP that enforces the semi-continuous constraints
that calculates the quantities. If it is impossible to satisfy the semi-continuous constraints given
the routing solution, the solution is infeasible. This approach is not optimal, however, as SMOLT
was not originally designed to solve the MIRPLib instances, and because the semi-continuous
constraints are not enforced in reality, it was considered acceptable.

A.5.3 Compartment Assignment

The Mowi instances provide a further complexity over the MIRPLib instances by requiring feed
to be carried in distinct silos, each of which is only capable of carrying a single type of feed at a
time. In order to adhere to these restrictions, we add the following to the model.

Sets

c ∈ Cv – Set of compartments onboard vessel v ∈ V

Parameters

CC
c – Capacity of compartment c ∈ Cv

Variables

ζvtpc – Binary variable saying whether compartment c ∈ Cv aboard vessel v ∈ V is
assigned to carry product p ∈ P at time t ∈ T

The load carried on a vessel is required to fit into a set of assigned compartments. This is enforced
by Equation (A.5.4).

ltvp ≤
∑
c∈Cv

CC
c ζvtpc, v ∈ V, t ∈ T , p ∈ P (A.5.4)

Each compartment is only allowed to carry at most one product type. This is enforced by Equation
(A.5.5).

∑
p∈P

ζvtpc ≤ 1, v ∈ V, t ∈ T , c ∈ Cv (A.5.5)

Lastly, we put binary constraints on the assignment variables ζvtpc. This is enforced by Equation
(A.5.6).
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ζvtpc ∈ {0, 1} , v ∈ V, t ∈ T , c ∈ Cv, p ∈ P (A.5.6)

Note that these constraints only enforce that it should be possible to carry each load by assign-
ing some combination of the available compartments to different products. It does not put any
constraints on how this assignment can change over time. As such, a solution is allowed to re-
order compartment assignment at each time step. Keeping track of compartment assignment over
time would require us to index the quantity unloaded and loaded by compartment, which would
significantly increase the size of the model.
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Appendix B

Details: Slack Induction by String
Removal

Our adaptation of SISR to the MIRP mainly differs in how it considers proximity when removing
strings. While the original study by Christiaens and Vanden Berghe (2020) considers the closest
nodes by distance, we instead use a combination of time and space. This chapter describes the
aspects of SISR that was left out from the main text for the sake of brevity. All of these aspects
are largely unchanged from the original SISR (Christiaens and Vanden Berghe, 2020).

B.1 Deciding on the Number and Length of Strings to Re-
move

The number of strings to remove and how long each string should be is stochastic, but controlled
by two parameters: Lmax and c. Lmax sets an upper limit for the size of removed strings, while c
controls the average number of visits removed. In combination, these allow us to adjust how many
strings to remove as well as the length of each string.

With Lmax and c given, the maximum size of the removed strings lmaxs , the number of strings to
be removed ks, and the length lt of a string taken from vessel plan t is given by:

lmaxs = min (Lmax,average vessel plan length) (B.1.1)

ks =

⌊
U

(
1,

4c

1 + lMAX
s

)⌋
(B.1.2)

lt = ⌊U (1,min (|t|, lmaxs ) + 1)⌋ (B.1.3)

where U(a, b) is a number drawn from the continuous uniform distribution between a and b.

B.2 “Split String” Procedure

In Christiaens and Vanden Berghe (2020), the authors present two string removal procedures:
“string” and “split string”. This work has only adapted the “string” procedure to the MIRP; the
“split string” procedure was not implemented.
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Appendix C

Discarded Mutations

Several other mutation operators were implemented and tested in addition to the ones mentioned
in Section 6.4.3. During testing, these were found to provide little or no additional benefit to
solution speed and quality, and were therefore discarded. However, for completeness, we give a
summary of them here. See Table C.1. The implementations can be found on our GitHub.

Table C.1: Summary of mutations that were discarded from SMOLT.

Mutations Description

Best move
Remove the most expensive visit in terms of distance
from a random route and do a greedy reinsertion in the same route

Relocate
Remove the most expensive visit in terms of distance
from a random route and do a greedy reinsertion in any route

Reduced cost
Give more time before/after the visit that has the
best reduced cost w.r.t. quantity delivered

Replace node
Choose a random visit, and replace the node of
the visit with the node that gives the best fitness

Time setter
Given that the order of node visits remain unchanged, use
a continuous LP to decide quantities and arrival times at each node

Vessel swap Swap the routes of two vessels
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